Science.gov

Sample records for aerobic culture conditions

  1. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  2. Quantitative proteome and transcriptome analysis of the archaeon Thermoplasma acidophilum cultured under aerobic and anaerobic conditions.

    PubMed

    Sun, Na; Pan, Cuiping; Nickell, Stephan; Mann, Matthias; Baumeister, Wolfgang; Nagy, István

    2010-09-03

    A comparative proteome and transcriptome analysis of Thermoplasma acidophilum cultured under aerobic and anaerobic conditions has been performed. One-thousand twenty-five proteins were identified covering 88% of the cytosolic proteome. Using a label-free quantitation method, we found that approximately one-quarter of the identified proteome (263 proteins) were significantly induced (>2 fold) under anaerobic conditions. Thirty-nine macromolecular complexes were identified, of which 28 were quantified and 15 were regulated under anaerobiosis. In parallel, a whole genome cDNA microarray analysis was performed showing that the expression levels of 445 genes were influenced by the absence of oxygen. Interestingly, more than 40% of the membrane protein-encoding genes (145 out of 335 ORFs) were up- or down-regulated at the mRNA level. Many of these proteins are functionally associated with extracellular protein or peptide degradation or ion and amino acid transport. Comparison of the transcriptome and proteome showed only a weak positive correlation between mRNA and protein expression changes, which is indicative of extensive post-transcriptional regulatory mechanisms in T. acidophilum. Integration of transcriptomics and proteomics data generated hypotheses for physiological adaptations of the cells to anaerobiosis, and the quantitative proteomics data together with quantitative analysis of protein complexes provide a platform for correlation of MS-based proteomics studies with cryo-electron tomography-based visual proteomics approaches.

  3. Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach.

    PubMed

    Fang, Ruihua; Elias, Dwayne A; Monroe, Matthew E; Shen, Yufeng; McIntosh, Martin; Wang, Pei; Goddard, Carrie D; Callister, Stephen J; Moore, Ronald J; Gorby, Yuri A; Adkins, Joshua N; Fredrickson, Jim K; Lipton, Mary S; Smith, Richard D

    2006-04-01

    We describe the application of LC-MS without the use of stable isotope labeling for differential quantitative proteomic analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and suboxic conditions. LC-MS/MS was used to initially identify peptide sequences, and LC-FTICR was used to confirm these identifications as well as measure relative peptide abundances. 2343 peptides covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as statistical analysis of microarrays, whereas another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis was transitioned from aerobic to suboxic conditions.

  4. Differential Label-free Quantitative Proteomic Analysis of Shewanella oneidensis Cultured under Aerobic and Suboxic Conditions by Accurate Mass and Time Tag Approach

    SciTech Connect

    Fang, Ruihua; Elias, Dwayne A.; Monroe, Matthew E.; Shen, Yufeng; McIntosh, Martin; Wang, Pei; Goddard, Carrie D.; Callister, Stephen J.; Moore, Ronald J.; Gorby, Yuri A.; Adkins, Joshua N.; Fredrickson, Jim K.; Lipton, Mary S.; Smith, Richard D.

    2006-04-01

    We describe the application of liquid chromatography coupled to mass spectrometry (LC/MS) without the use of stable isotope labeling for differential quantitative proteomics analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and sub-oxic conditions. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to initially identify peptide sequences, and LC coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR) was used to confirm these identifications, as well as measure relative peptide abundances. 2343 peptides, covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as SAM, while another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis is transitioned from aerobic to sub-oxic conditions.

  5. Biotransformation of phytosterols under aerobic conditions.

    PubMed

    Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

    2014-07-01

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

  6. Modeling microbial ethanol production by E. coli under aerobic/anaerobic conditions: applicability to real postmortem cases and to postmortem blood derived microbial cultures.

    PubMed

    Boumba, Vassiliki A; Kourkoumelis, Nikolaos; Gousia, Panagiota; Economou, Vangelis; Papadopoulou, Chrissanthy; Vougiouklakis, Theodore

    2013-10-10

    The mathematical modeling of the microbial ethanol production under strict anaerobic experimental conditions for some bacterial species has been proposed by our research group as the first approximation to the quantification of the microbial ethanol production in cases where other alcohols were produced simultaneously with ethanol. The present study aims to: (i) study the microbial ethanol production by Escherichia coli under controlled aerobic/anaerobic conditions; (ii) model the correlation between the microbial produced ethanol and the other higher alcohols; and (iii) test their applicability in: (a) real postmortem cases that had positive BACs (>0.10 g/L) and co-detection of higher alcohols and 1-butanol during the original ethanol analysis and (b) postmortem blood derived microbial cultures under aerobic/anaerobic controlled experimental conditions. The statistical evaluation of the results revealed that the formulated models were presumably correlated to 1-propanol and 1-butanol which were recognized as the most significant descriptors of the modeling process. The significance of 1-propanol and 1-butanol as descriptors was so powerful that they could be used as the only independent variables to create a simple and satisfactory model. The current models showed a potential for application to estimate microbial ethanol - within an acceptable standard error - in various tested cases where ethanol and other alcohols have been produced from different microbes.

  7. Adsorption, inhibition, and biotransformation of ciprofloxacin under aerobic conditions.

    PubMed

    Liu, Zhanguang; Sun, Peizhe; Pavlostathis, Spyros G; Zhou, Xuefei; Zhang, Yalei

    2013-09-01

    The adsorption, inhibition, and biotransformation of the fluoroquinolone antibiotic ciprofloxacin (CIP) under aerobic conditions were investigated in this study. The maximum adsorption capacity and the Langmuir constant were 37.9 mg CIP/g VSS and 37 L/g, respectively. A glucose-fed aerobic culture was inhibited by CIP at 10mg/L or higher and the degree of inhibition increased with increasing CIP concentration. However, the microbial activity recovered to some extent with prolonged incubation under a semi-continuous feeding mode. A low extent of CIP biotransformation was observed in an aerobic, glucose-fed culture derived from poultry litter extract. LC/UV/MS analysis of the biotransformation product showed that only the piperazine ring was oxidized, while the antibiotic quinolone part of CIP was intact. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Investigation of oxidative phosphorylation in continuous cultures. A non-equilibrium thermodynamic approach to energy transduction for Escherichia coli in aerobic condition

    NASA Astrophysics Data System (ADS)

    Ghafuri, Mohazabeh; Nosrati, Mohsen; Hosseinkhani, Saman

    2015-03-01

    Adenosine triphosphate (ATP) production in living cells is very important. Different researches have shown that in terms of mathematical modeling, the domain of these investigations is essentially restricted. Recently the thermodynamic models have been suggested for calculation of the efficiency of oxidative phosphorylation process and rate of energy loss in animal cells using chemiosmotic theory and non-equilibrium thermodynamics equations. In our previous work, we developed a mathematical model for mitochondria of animal cells. In this research, according to similarities between oxidative phosphorylation process in microorganisms and animal cells, Golfar's model was developed to predict the non-equilibrium thermodynamic behavior of the oxidative phosphorylation process for bacteria in aerobic condition. With this model the rate of energy loss, P/O ratio, and efficiency of oxidative phosphorylation were calculated for Escherichia coli in aerobic condition. The results then were compared with experimental data given by other authors. The thermodynamic model had an acceptable agreement with the experimental data.

  9. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.

    PubMed

    Gangadharan Puthiya Veetil, Prajeesh; Vijaya Nadaraja, Anupama; Bhasi, Arya; Khan, Sudheer; Bhaskaran, Krishnakumar

    2012-07-01

    Triclosan (2, 4, 4'-trichloro-2'-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1 g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10 mg/L level triclosan, 95 ± 1.2% was degraded in 5 days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1 g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).

  10. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  11. Precipitation of Dolomite in Aerobic Culture Experiments Using Halophilic Bacteria

    NASA Astrophysics Data System (ADS)

    Roman, M. S.; Vasconcelos, C.; McKenzie, J. A.

    2003-12-01

    The study of carbonate biomineralization in hypersaline environments provides information about the key role microorganisms have played in global carbon cycling, especially in the Precambrian. Recently, a microbial dolomite model was proposed based on the study of a hypersaline coastal lagoon, Lagoa Vermelha, Rio de Janeiro (Brazil). This model suggests that sulfate-reducing bacteria mediate dolomite precipitation by increasing pH and removing the sulfate inhibitor. The anoxic conditions of this system may not, however, apply to all ancient dolomite formation. Dolomite is an abundant carbonate mineral found widespread in the geological record in a variety of environmental settings. Thus, a single microbial dolomite model probably cannot explain its widespread distribution and a broad spectrum of conditions may be linked with its formation. In contrast to Lagoa Vermelha, Brejo do Espinho, a shallow hypersaline lagoon located in the same region, is a dolomite-forming environment with oxic bottom conditions. The sediment comprises primarily high Mg-calcite and Ca-dolomite. Heterotrophic microorganisms have been isolated from algal mats growing in Brejo do Espinho, and biomineralization experiments have been conducted at variable temperatures (15, 20, 25, 30, 35 and 40° C) and salinities (sea water and 2x seawater) to simulate the natural environmental conditions. After a 20-day incubation period, several aerobic culture experiments have crystal growth of Ca-dolomite and high Mg-calcite. Our study demonstrates that, under aerobic conditions, heterotrophic microorganisms can mediate dolomite precipitation. These results indicate that microbial dolomite precipitation is not necessarily linked to any particular group of organisms or specific metabolic processes or even a specific environment, i.e., it is not exclusively an anoxic mineral but can be precipitated in the presence of oxygen. This has implications for the distribution of dolomite in the geologic record.

  12. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions.

    PubMed Central

    Otte, S; Grobben, N G; Robertson, L A; Jetten, M S; Kuenen, J G

    1996-01-01

    Nitrous oxide can be a harmful by-product in nitrogen removal from wastewater. Since wastewater treatment systems operate under different aeration regimens, the influence of different oxygen concentrations and oxygen fluctuations on denitrification was studied. Continuous cultures of Alcaligenes faecalis TUD produced N2O under anaerobic as well as aerobic conditions. Below a dissolved oxygen concentration of 5% air saturation, the relatively highest N2O production was observed. Under these conditions, significant activities of nitrite reductase could be measured. After transition from aerobic to anaerobic conditions, there was insufficient nitrite reductase present to sustain growth and the culture began to wash out. After 20 h, nitrite reductase became detectable and the culture started to recover. Nitrous oxide reductase became measurable only after 27 h, suggesting sequential induction of the denitrification reductases, causing the transient accumulation of N2O. After transition from anaerobic conditions to aerobic conditions, nitrite reduction continued (at a lower rate) for several hours. N2O reduction appeared to stop immediately after the switch, indicating inhibition of nitrous oxide reductase, resulting in high N2O emissions (maximum, 1.4 mmol liter-1 h-1). The nitrite reductase was not inactivated by oxygen, but its synthesis was repressed. A half-life of 16 to 22 h for nitrite reductase under these conditions was calculated. In a dynamic aerobic-anaerobic culture of A. faecalis, a semisteady state in which most of the N2O production took place after the transition from anaerobic to aerobic conditions was obtained. The nitrite consumption rate in this culture was equal to that in an anaerobic culture (0.95 and 0.92 mmol liter-1 h-1, respectively), but the production of N2O was higher in the dynamic culture (28 and 26% of nitrite consumption, respectively). PMID:8779582

  13. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions

    PubMed Central

    Kato, Yoichiro; Okami, Midori

    2011-01-01

    Background and Aims Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture. Methods Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions. Key Results Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa. Conclusions Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep

  14. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis

    Treesearch

    T. W. Jeffries

    1981-01-01

    Candida tropicalis converts xylose to ethanol under aerobic, but not anaerobic, conditions. Ethanol production lags behind growth and is accelerated by increased aeration. Adding xylose to active cultures stimulates ethanol production as does serial subculture in a medium containing xylose as a sole carbon source.

  15. Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions.

    PubMed

    Kuhn, M; Steinbüchel, A; Schlegel, H G

    1984-08-01

    When strains and mutants of the strictly aerobic hydrogen-oxidizing bacterium Alcaligenes eutrophus are grown heterotrophically on gluconate or fructose and are subsequently exposed to anaerobic conditions in the presence of the organic substrates, molecular hydrogen is evolved. Hydrogen evolution started immediately after the suspension was flushed with nitrogen, reached maximum rates of 70 to 100 mumol of H2 per h per g of protein, and continued with slowly decreasing rates for at least 18 h. The addition of oxygen to an H2-evolving culture, as well as the addition of nitrate to cells (which had formed the dissimilatory nitrate reductase system during the preceding growth), caused immediate cessation of hydrogen evolution. Formate is not the source of H2 evolution. The rates of H2 evolution with formate as the substrate were lower than those with gluconate. The formate hydrogenlyase system was not detectable in intact cells or crude cell extracts. Rather the cytoplasmic, NAD-reducing hydrogenase is involved by catalyzing the release of excessive reducing equivalents under anaerobic conditions in the absence of suitable electron acceptors. This conclusion is based on the following experimental results. H2 is formed only by cells which had synthesized the hydrogenases during growth. Mutants lacking the membrane-bound hydrogenase were still able to evolve H2. Mutants lacking the NAD-reducing or both hydrogenases were unable to evolve H2.

  16. Fungal degradation of nitrocellulose under aerobic conditions

    SciTech Connect

    Sharma, A.; Sundaram, S.T.; Zhang, Y.Z.; Brodman, B.W.

    1995-12-31

    Mycelial fungi were screened alone or in combinations for their ability to degrade nitrocellulose (3 g/L) in liquid medium. All of the fungi tested used nitrocellulose to a varying extent, but a combination of Sclerotium rolfsii ATCC 24459 and Fusarium solani IFO 31093 was found to be the best because it significantly degraded nitrocellulose. About 38% of the nitrocellulose was degraded by these fungi in a 7-day period when the culture medium was buffered at pH 6.0 with morphilino ethane sulfonic acid.

  17. Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions.

    PubMed

    Hwang, Jae-Hoon; Kim, Hyun-Chul; Choi, Jeong-A; Abou-Shanab, R A I; Dempsey, Brian A; Regan, John M; Kim, Jung Rae; Song, Hocheol; Nam, In-Hyun; Kim, Su-Nam; Lee, Woojung; Park, Donghee; Kim, Yongje; Choi, Jaeyoung; Ji, Min-Kyu; Jung, Woosik; Jeon, Byong-Hun

    2014-01-01

    Eukaryotic algae and cyanobacteria produce hydrogen under anaerobic and limited aerobic conditions. Here we show that novel microalgal strains (Chlorella vulgaris YSL01 and YSL16) upregulate the expression of the hydrogenase gene (HYDA) and simultaneously produce hydrogen through photosynthesis, using CO2 as the sole source of carbon under aerobic conditions with continuous illumination. We employ dissolved oxygen regimes that represent natural aquatic conditions for microalgae. The experimental expression of HYDA and the specific activity of hydrogenase demonstrate that C. vulgaris YSL01 and YSL16 enzymatically produce hydrogen, even under atmospheric conditions, which was previously considered infeasible. Photoautotrophic H2 production has important implications for assessing ecological and algae-based photolysis.

  18. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.

    PubMed

    Tsuge, Yota; Hori, Yoshimi; Kudou, Motonori; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-10-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.

  19. Decomposition of organic waste products under aerobic and anaerobic conditions

    SciTech Connect

    Gale, P.M.

    1988-01-01

    The objectives of this research were to determine the kinetics of C and N mineralization under aerobic and anaerobic conditions. These parameters were then used to verify the simulation model, DECOMPOSITION, for the anaerobic system. Incubation experiments were conducted to compare the aerobic and anaerobic decomposition of alfalfa (Medicago sativa L.), a substrate with a low C:N ratio. Under anaerobic conditions the net mineralization of N occurred more rapidly than that under aerobic conditions. However, the rate of C mineralization as measured by CO{sub 2} evolution was much lower. For the anaerobic decomposition of alfalfa, C mineralization was best described as the sum of the CO{sub 2} and CH{sub 4} evolved plus the water soluble organic C formed. The kinetics of C mineralization, as determined by this approach, were used to successfully predict the rate and amount of N mineralization from alfalfa undergoing anaerobic decomposition. The decomposition of paper mill sludge, a high C:N ratio substrate, was also evaluated.

  20. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  1. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose.

  2. The impact of feed composition on biodegradation of benzoate under cyclic (aerobic/anoxic) conditions.

    PubMed

    Cinar, Ozer

    2004-02-09

    The response of a mixed microbial culture to different feed compositions, that is, containing benzoate and pyruvate as sole carbon sources at different levels, was studied in a chemostat with a 48-h hydraulic residence time under cyclic aerobic and anoxic (denitrifying) conditions. The cyclic bacterial culture was well adapted to different feed compositions as evidenced by the lack of accumulation of benzoate or pyruvate in the chemostat. Both the benzoate-degrading capabilities and the in vitro catechol 2,3-dioxygenase (C23DO) activities of the cyclic bacterial cultures were in direct proportion to the flux through the chemostat of the substrate degraded by the pathway containing C23DO, with some exceptions. The quantity of C23DO showed a transient decrease during the initial portion of the aerobic period before returning to the level present during the anoxic period. That decrease was most likely caused by the production of H(2)O(2) by the cells upon being returned to aerobic conditions.

  3. Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions.

    PubMed

    Bordeleau, Geneviève; Martel, Richard; Bamba, Abraham N'Valoua; Blais, Jean-François; Ampleman, Guy; Thiboutot, Sonia

    2014-10-01

    The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils. The role of SOM in NG degradation has already been documented under anoxic conditions, and was attributed to SOM-mediated electron transfer involving different reducing agents. However, unsaturated soils are usually well-oxygenated, and it was not clear whether SOM could participate in NG degradation under these conditions. Our results from batch- and column-type experiments clearly demonstrate that in presence of dissolved organic matter (DOM) leached from a natural soil, partial NG degradation can be achieved. In presence of particulate organic matter (POM) from the same soil, complete NG degradation was achieved. Furthermore, POM caused rapid sorption of NG, which should result in NG retention in the organic matter-rich shallow horizons of the soil profile, thus promoting degradation. Based on degradation products, the reaction pathway appears to be reductive, in spite of the aerobic conditions. The relatively rapid reaction rates suggest that this process could significantly participate in the natural attenuation of NG, both on military training ranges and in contaminated soil at production facilities.

  4. Degradation of toxaphene in water during anaerobic and aerobic conditions.

    PubMed

    LacayoR, M; van Bavel, B; Mattiasson, B

    2004-08-01

    The degradation of technical toxaphene in water with two kinds of bioreactors operating in sequence was studied. One packed bed reactor was filled with Poraver (foam glass particles) running at anaerobic conditions and one suspended carrier biofilm reactor working aerobically. Chemical oxygen demand (COD), chloride, sulphate, pH, dissolved oxygen, total toxaphene and specific toxaphene isomers were measured. After 6 weeks approx. 87% of the total toxaphene was degraded reaching 98% by week 39. The majority of the conversion took place in the anaerobic reactor. The concentrations of toxaphene isomers with more chlorine substituents decreased more rapidly than for isomers with less chlorine substituents.

  5. Flow microcalorimetry investigation of the influence of surfactants on a heterogeneous aerobic culture.

    PubMed Central

    Beaubien, A; Keita, L; Jolicoeur, C

    1987-01-01

    The influence of various surfactants on the biological activity of a mixed aerobic culture has been investigated by using flow microcalorimetry. The response of the culture to the addition of homologous n-alkylcarboxylates (C2 to C16) and n-alkylpyridinium bromides (C11 to C14) has been examined under endogenous and substrate saturation conditions, and inhibitory concentrations (MIC or the concentration which decreased the initial activity (heat flux) of the culture by 50%) were determined for each state. Under both conditions, the n-alkylpyridinium bromides were found to be more toxic than the n-alkylcarboxylates of identical chain length, thus confirming that the head group of the amphiphiles plays an important role in the microbial toxicity of surfactants. The relationship observed between the concentration at which 50% of the activity is lost and the chain length of the surfactant further confirms that cellular toxicity is also dependent on surfactant hydrophobicity. In relation to the biodegradability of surfactants in mixed aerobic cultures, the low concentration effects of n-alkylcarboxylates on endogenous culture were investigated in some detail. There appear to be compounded indications that these surfactants are rapidly metabolized by the microorganisms of the mixed culture, at least for homologs lower than C10. PMID:3426221

  6. Cyanide toxicity in hepatocytes under aerobic and anaerobic conditions.

    PubMed

    Aw, T Y; Jones, D P

    1989-09-01

    The effect of cyanide on cell viability and mitochondrial function was studied in hepatocytes exposed to air or argon. Cells were more susceptible to cyanide toxicity under air than under argon. Analysis of the disposition of cyanide showed that the difference in susceptibility to KCN was not due to O2-dependent differences in cyanide metabolism or elimination. Studies of mitochondrial function revealed that cyanide under aerobic conditions resulted in substantial swelling of the mitochondria, which corresponded to a matrix loading of phosphate. In addition, cyanide caused a loss of the mitochondrial protonmotive force. This was in contrast to the results for cells exposed to 30 min of anoxia alone in which there was no loss of mitochondrial delta pH, no detectable change in mitochondrial volume, and little matrix loading of phosphate. These results show that at least some of the protective mechanisms elicited by anoxia (B. S. Andersson, T. Y. Aw, and D. P. Jones. Am. J. Physiol. 252 (Cell Physiol. 21): C349-C355, 1987) are not elicited by cyanide alone. Thus cyanide under aerobic conditions does not provide a completely valid model for simple anoxia. Moreover, the results suggest that the molecular sensor necessary to signal suppression of metabolic and transport functions during neahypoxia is dependent on O2 and is neither stimulated nor antagonized by KCN.

  7. Effects of aerobic conditioning in lupus fatigue: a pilot study.

    PubMed

    Robb-Nicholson, L C; Daltroy, L; Eaton, H; Gall, V; Wright, E; Hartley, L H; Schur, P H; Liang, M H

    1989-12-01

    Fatigue, a complex symptom, significantly affects the quality of life in many patients with systemic lupus erythematosus (SLE). To understand this phenomenon, 23 patients with SLE and fatigue were studied. Standardized tests of depression (NIMH), fatigue, exercise tolerance (ETT) on a bicycle ergometer, and SLE activity were obtained. At baseline, SLE patients had significantly lower maximum oxygen consumption (VO2 max) than normals (p less than 0.005). Adjusted for age and sex, SLE patients perform at 54% of their expected maximum VO2, which is similar to published data from patients with rheumatoid arthritis. Depression by NIMH was not correlated with VO2 max or length of time on ETT. Fatigue measured by Profile of Mood States (POMS) was correlated with ETT time (r = 0.476, p less than 0.025) and with VO2 max (r = -0.402, p less than 0.07). After an 8-week aerobic conditioning programme the experimental group increased their aerobic capacity by 19% in contrast to 8% in controls. This change correlated with decreased fatigue as measured by visual analogue scales. Exercise did not exacerbate disease, and only two of 16 experimental subjects experienced transient joint symptoms during exercise.

  8. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2014-01-01

    Although it is known that a part of lactic acid bacteria can produce carotenoid, little is known about the regulation of carotenoid production. The objective of this study was to determine whether aerobic growth condition influences carotenoid production in carotenoid-producing Enterococcus gilvus. Enterococcus gilvus was grown under aerobic and anaerobic conditions. Its growth was slower under aerobic than under anaerobic conditions. The decrease in pH levels and production of lactic acid were also lower under aerobic than under anaerobic conditions. In contrast, the amount of carotenoid pigments produced by E. gilvus was significantly higher under aerobic than under anaerobic conditions. Further, real-time quantitative reverse transcription PCR revealed that the expression level of carotenoid biosynthesis genes crtN and crtM when E. gilvus was grown under aerobic conditions was 2.55-5.86-fold higher than when it was grown under anaerobic conditions. Moreover, after exposure to 16- and 32-mM H2O2, the survival rate of E. gilvus grown under aerobic conditions was 61.5- and 72.5-fold higher, respectively, than when it was grown under anaerobic conditions. Aerobic growth conditions significantly induced carotenoid production and the expression of carotenoid biosynthesis genes in E. gilvus, resulting in increased oxidative stress tolerance.

  9. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  10. [Influence of predominant aerobic bacteria isolated from different healthy animals on daidzein biotransforming capacity by co-culture with different daidzein biotransforming bacteria].

    PubMed

    Luo, Jinglong; Wang, Xiuling; Fan, Jinru; Wang, Shiying; Li, Jia

    2011-08-01

    To investigate the influence of isolated predominant aerobic bacteria on daidzein biotransformation capacity by co-culture with daidzein biotransforming bacteria. Predominant aerobic bacteria were isolated from diluted feces solutions of different healthy animals, including ICR mice, Luhua chicken, Landrace pigs and Rex rabbits. Daidzein biotransforming bacteria were anaerobically co-cultured with the isolated predominant aerobic bacteria and the cultural broth was extracted and detected by high performance liquid chromatography (HPLC). Twenty two predominant aerobic bacteria were isolated from the four different healthy animals mentioned above. Based on the analyses of 16S rRNA gene sequences, morphology study and relative biophysico-biochemical characteristics, all 22 isolates belong to the 5 genera, i. e. Escherichia (10) , Proteus (5) , Enterococcus (4), Bacillus (2) and Pseudomonas (1). Co-culture between predominant aerobic bacteria and daidzein biotransforming bacteria was carried out under anaerobic conditions. The results showed that the biotransformation capacity was totally lost when different daidzein biotransforming bacterium was co-cultured with either Bacillus cereus ( R1 ) or Pseudomonas aerginosa (R5) and continuously inoculated for 2 or 3 passages. However, no obvious influence was observed when daidzein biotransforming bacteria were co-cultured with all the other isolated predominant aerobic bacteria except R1 and R5. In addition, when strain R1 and R5 was co-cultured with the intestinal microflora of the ICR mice anaerobically and continuously inoculated for 5 passages, about 90% of the co-cultures totally lost the activity to convert daidzein to equol effectively. Different predominant aerobic bacteria showed different influence on daidzein biotransformation capacity after being co-cultured with different daidzein biotransforming bacteria. Among all the isolated predominant aerobic bacteria used for co-culture, both Bacillus cereus ( R1) and

  11. DosR-regulon genes induction in Mycobacterium bovis BCG under aerobic conditions.

    PubMed

    Flores Valdez, Mario Alberto; Schoolnik, Gary K

    2010-05-01

    In this report we demonstrated that under aerobic conditions, Mycobacterium bovis BCG expressing an hsp60-driven second copy of the hypoxia-related transcriptional regulator DosR increased 2-fold or greater the expression of 38 out of the 48 genes belonging to the DosR regulon, including the latency antigens Rv1733c, Rv2029, Rv2627, and Rv2628. Expression of DosR under these conditions slightly delayed in vitro growth, but did not promote a non-replicating state as opposed to microaerobic and hypoxic adaptation. Our results suggest BCG producing DosR can be cultured under standard in vitro conditions, allowing evaluation of this strain as a latency-specific vaccine candidate.

  12. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    PubMed

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii.

  13. Isolation and identification of Sphingomonas sp. that yields tert-octylphenol monoethoxylate under aerobic conditions.

    PubMed

    Nishio, Eriko; Yoshikawa, Hiromichi; Wakayama, Manabu; Tamura, Hiroto; Morita, Shiro; Tomita, Yoshifumi

    2005-07-01

    Topsoil samples were collected from eight golf courses in Yamaguchi Prefecture, Japan, and enrichment cultures were carried out with a basal-salt medium containing 0.2% 4-tert-octylphenol polyethoxylate (OPPEO) as sole carbon source. OPPEO-degrading activity was detected in one of the samples, from which a strain of OPPEO-degrading bacterium was isolated. The isolated bacterium grew on a nutritionally enriched medium (NE medium) containing 0.2% OPPEO as sole carbon source, and accumulated 4-tert-octylphenol diethoxylate (OP2EO) (63%), 4-tert-octylphenol triethoxylate (OP3EO) (14%), and 4-tert-octylphenol monoethoxylate (OP1EO) (2%) after 7 d cultivation under aerobic conditions. The addition of clay mineral (vermiculite) to the medium accelerated the degradation of OP2EO (40%) and OP3EO (4%) to OP1EO (23%). This is the first report about bacteria that can degrade OPPEO to OP1EO under aerobic conditions. The strain was identified as Sphingomonas macrogoltabidus, based on the homology of a 16S rDNA sequence.

  14. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.

    PubMed

    Fresno, Teresa; Peñalosa, Jesús M; Santner, Jakob; Puschenreiter, Markus; Prohaska, Thomas; Moreno-Jiménez, Eduardo

    2016-09-01

    Arsenic is a non-threshold carcinogenic metalloid. Thus, human exposure should be minimised, e.g. by chemically stabilizing As in soil. Since iron is a potential As immobiliser, it was investigated whether root iron plaque, formed under aerobic conditions, affects As uptake, metabolism and distribution in Lupinus albus plants. White lupin plants were cultivated in a continuously aerated hydroponic culture containing Fe/EDDHA or FeSO4 and exposed to arsenate (5 or 20 μM). Only FeSO4 induced surficial iron plaque in roots. LA-ICP-MS analysis accomplished on root sections corroborated the association of As to this surficial Fe. Additionally, As(V) was the predominant species in FeSO4-treated roots, suggesting less efficient As uptake in the presence of iron plaque. Fe/EDDHA-exposed roots neither showed such surficial FeAs co-localisation nor As(V) accumulation; in contrast As(III) was the predominant species in root tissue. Furthermore, FeSO4-treated plants showed reduced shoot-to-root As ratios, which were >10-fold lower compared to Fe/EDDHA treatment. Our results highlight the role of an iron plaque formed in roots of white lupin under aerobic conditions on As immobilisation. These findings, to our knowledge, have not been addressed before for this plant and have potential implications on soil remediation (phytostabilisation) and food security (minimising As in crops).

  15. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    PubMed

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  16. Antibiotic Susceptibilities of Pseudomonas aeruginosa Isolates Derived from Patients with Cystic Fibrosis under Aerobic, Anaerobic, and Biofilm Conditions

    PubMed Central

    Hill, Dominic; Rose, Barbara; Pajkos, Aniko; Robinson, Michael; Bye, Peter; Bell, Scott; Elkins, Mark; Thompson, Barbara; MacLeod, Colin; Aaron, Shawn D.; Harbour, Colin

    2005-01-01

    Recent studies have determined that Pseudomonas aeruginosa can live in a biofilm mode within hypoxic mucus in the airways of patients with cystic fibrosis (CF). P. aeruginosa grown under anaerobic and biofilm conditions may better approximate in vivo growth conditions in the CF airways, and combination antibiotic susceptibility testing of anaerobically and biofilm-grown isolates may be more relevant than traditional susceptibility testing under planktonic aerobic conditions. We tested 16 multidrug-resistant isolates of P. aeruginosa derived from CF patients using multiple combination bactericidal testing to compare the efficacies of double and triple antibiotic combinations against the isolates grown under traditional aerobic planktonic conditions, in planktonic anaerobic conditions, and in biofilm mode. Both anaerobically grown and biofilm-grown bacteria were significantly less susceptible (P < 0.01) to single and combination antibiotics than corresponding aerobic planktonically grown isolates. Furthermore, the antibiotic combinations that were bactericidal under anaerobic conditions were often different from those that were bactericidal against the same organisms grown as biofilms. The most effective combinations under all conditions were colistin (tested at concentrations suitable for nebulization) either alone or in combination with tobramycin (10 μg ml−1), followed by meropenem combined with tobramycin or ciprofloxacin. The findings of this study illustrate that antibiotic sensitivities are dependent on culture conditions and highlight the complexities of choosing appropriate combination therapy for multidrug-resistant P. aeruginosa in the CF lung. PMID:16207967

  17. Effect of the process conditions of aerobic bioconversion on the characteristics of biologically processed brown coals

    SciTech Connect

    I.P. Ivanov

    2007-04-15

    The effect of the laboratory and pilot process conditions of the aerobic bioconversion of brown coals on the elemental composition and technical characteristics of the organic matter of the resulting biologically processed coals is reported.

  18. The Effects of Desiccation on Methanogens Under Aerobic and Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Murphy, C.; Kral, T. A.

    2010-04-01

    Survival of methanogens following desiccation depends on whether they are maintained under aerobic or anaerobic conditions. Cells maintained in a desiccated state in the presence of oxygen did not survive as well as those maintained anaerobically.

  19. Inhibition of Salmonella Typhimurium by Cultures of Cecal Bacteria during Aerobic Incubation

    USDA-ARS?s Scientific Manuscript database

    Two trials were conducted to examine the ability of cecal bacterial cultures from broilers to inhibit growth of Salmonella Typhimurium during aerobic incubation. Cecal broth media was inoculated with 10 µl of cecal contents from 6 week old broilers taken from 2 separate flocks. Cultures were incubat...

  20. Activities of drug combinations against Mycobacterium tuberculosis grown in aerobic and hypoxic acidic conditions.

    PubMed

    Piccaro, Giovanni; Giannoni, Federico; Filippini, Perla; Mustazzolu, Alessandro; Fattorini, Lanfranco

    2013-03-01

    Mycobacterium tuberculosis is exposed to hypoxia and acidity within granulomatous lesions. In this study, an acidic culture model of M. tuberculosis was used to test drug activity against aerobic 5-day-old (A5) and hypoxic 5-, 12-, and 19-day-old (H5, H12, and H19, respectively) bacilli after 7, 14, and 21 days of exposure. In A cultures, CFU and pH rapidly increased, while in H cultures growth stopped and pH increased slightly. Ten drugs were tested: rifampin (R), isoniazid (I), pyrazinamide (Z), ethambutol (E), moxifloxacin (MX), amikacin (AK), metronidazole (MZ), nitazoxanide (NZ), niclosamide (NC), and PA-824 (PA). Rifampin was the most active against A5, H5, H12, and H19 bacilli. Moxifloxacin and AK efficiently killed A5 and H5 cells, I was active mostly against A5 cells, Z was most active against H12 and H19 cells, and E showed low activity. Among nitrocompounds, NZ, NC, and PA were effective against A5, H5, H12, and H19 cells, while MZ was active against H12 and H19 cells. To kill all A and H cells, A5- and H5-active agents R, MX, and AK were used in combination with MZ, NZ, NC, or PA, in comparison with R-I-Z-E, currently used for human therapy. Mycobacterial viability was determined by CFU and a sensitive test in broth (day to positivity, MGIT 960 system). As shown by lack of regrowth in MGIT, the most potent combination was R-MX-AK-PA, which killed all A5, H5, H12, and H19 cells in 14 days. These observations demonstrate the sterilizing effect of drug combinations against cells of different M. tuberculosis stages grown in aerobic and hypoxic acidic conditions.

  1. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland.

    PubMed

    Finnegan, Lucy; Garcia-Melgares, Manuel; Gmerek, Tomasz; Huddleston, W Ryan; Palmer, Alexander; Robertson, Andrew; Shapiro, Sarah; Unkles, Shiela E

    2011-10-01

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews, Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions in the laboratory. Bacteria isolated on Marine Agar 2216 were all Gram-negative and identified to genus level by sequencing the gene encoding 16S rRNA. Colwellia, Maribacter, Pseudoaltermonas and Shewanella were observed in aerobically-grown cultures while Vibrio was found to be present in both aerobic and anaerobic cultures. The obligate anaerobic bacterium Psychrilyobacter atlanticus, a recently defined genus, was identified as a close relative of isolates grown anaerobically. The results provide valuable information as to the main players that attach and form de novo biofilms on common minerals in sea water.

  2. Ethylene Dibromide Mineralization in Soils under Aerobic Conditions

    PubMed Central

    Pignatello, Joseph J.

    1986-01-01

    1,2-Dibromoethane (EDB), which is a groundwater contaminant in areas where it was once used as a soil fumigant, was shown to be degraded aerobically by microorganisms in two types of surface soils from an EDB-contaminated groundwater discharge area. At initial concentrations of 6 to 8 μg/liter, EDB was degraded in a few days to near or below the detection limit of 0.02 μg/liter. At 15 to 18 mg/liter, degradation was slower. Bromide ion release at the higher concentrations was 1.4 ± 0.3 and 2.1 ± 0.2 molar equivalents for the two soils. Experiments with [14C]EDB showed that EDB was converted to approximately equal amounts of CO2 and apparent cellular carbon; only small amounts of added 14C were not attributable to these products or unreacted EDB. These results are encouraging, because they indicate that groundwater bacteria may hasten the removal of EDB from contaminated aerobic groundwater supplies. This report also provides evidence for soil-mediated chemical transformations of EDB. PMID:16347020

  3. Validity of Monod kinetics at different sludge ages--peptone biodegradation under aerobic conditions.

    PubMed

    Orhon, Derin; Cokgor, Emine Ubay; Insel, Guclu; Karahan, Ozlem; Katipoglu, Tugce

    2009-12-01

    The study presented an evaluation of the effect of culture history (sludge age) on the growth kinetics of a mixed culture grown under aerobic conditions. It involved an experimental setup where a lab-scale sequencing batch reactor was operated at steady-state at two different sludge ages (theta(X)) of 2 and 10 days. The system sustained a mixed culture fed with a synthetic substrate mainly consisting of peptone. The initial concentration of substrate COD was selected around 500 mg COD/L. Polyhydroxyalkanoate (PHA) storage occurred to a limited extent, around 30 mg COD/L for theta(X)=10 days and 15 mg COD/L for theta(X)=2 days. Evaluation of the experimental data based on calibration of two different models provided consistent and reliable evidence for a variable Monod kinetics where the maximum specific growth rate, was assessed as 6.1/day for theta(X)=2 days and 4.1/day for theta(X)=10 days. A similar variability was also applicable for the hydrolysis and storage kinetics. The rate of storage was significantly lower than the levels reported in the literature, exhibiting the ability of the microorganisms to regulate their metabolic mechanisms for adjusting the rate of microbial growth and storage competing for the same substrate. This adjustment evidently resulted in case-specific, variable kinetics both for microbial growth and substrate storage.

  4. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.

    PubMed

    Amaral, J A; Ekins, A; Richards, S R; Knowles, R

    1998-02-01

    Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (-)-alpha-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (-)-alpha-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (-)-alpha-pinene, gamma-terpinene, or beta-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (-)-alpha-pinene, (S)-(-)-limonene, (R)-(+)-limonene, and gamma-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, alpha-pinene oxide, linalool, alpha-terpineol] and a noncyclic hydrocarbon (beta-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature.

  5. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.

    PubMed

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-01

    According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills. Copyright © 2015. Published by Elsevier Ltd.

  6. Mycobacterium and Aerobic Actinomycete Culture: Are Two Medium Types and Extended Incubation Times Necessary?

    PubMed

    Simner, Patricia J; Doerr, Kelly A; Steinmetz, Lory K; Wengenack, Nancy L

    2016-04-01

    Mycobacterial cultures are historically performed using a liquid medium and a solid agar medium with an incubation period of up to 60 days. We performed a retrospective analysis of 21,494 mycobacterial and aerobic actinomycetes cultures performed over 10 months to determine whether two medium types remain necessary and to investigate whether culture incubation length can be shortened. Specimens were cultured using Bactec MGIT liquid medium and Middlebrook 7H11/S7H11 solid medium with incubation periods of 42 and 60 days, respectively. Time-to-positivity and the identity of isolates recovered from each medium were evaluated. A total of 1,205/21,494 cultures (6%) were positive on at least one medium. Of the 1,353 isolates recovered, 1,110 (82%) were nontuberculous mycobacteria, 145 (11%) were aerobic actinomycetes, and 98 (7%) wereMycobacterium tuberculosiscomplex. Assessing medium types, 1,121 isolates were recovered from solid medium cultures, 922 isolates were recovered from liquid medium cultures, and 690 isolates were recovered on both media. Liquid cultures were positive an average of 10 days before solid cultures when the two medium types were positive (P< 0.0001). Isolates detected on solid medium after 6 weeks of incubation included 65 (5%) nontuberculous mycobacteria, 4 (0.3%) aerobic actinomycetes, and 2 (0.2%) isolates from theM. tuberculosiscomplex. Medical chart review suggested that most of these later-growing isolates were insignificant, as the diagnosis was already known, or they were considered colonizers/contaminants. This study reaffirms the need for both liquid medium and solid medium for mycobacterial and aerobic actinomycetes culture and demonstrates that solid medium incubation times may be reduced to 6 weeks without significantly impacting sensitivity.

  7. Comparison of dry medium culture plates for mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.

    PubMed

    Park, Junghyun; Kim, Myunghee

    2013-12-01

    This study was performed to compare the performance of Sanita-Kun dry medium culture plate with those of traditional culture medium and Petrifilm dry medium culture plate for the enumeration of the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet. Mesophilic aerobic bacteria were comparatively evaluated in milk, ice cream, ham, and codfish fillet using Sanita-Kun aerobic count (SAC), Petrifilm aerobic count (PAC), and traditional plate count agar (PCA) media. According to the results, all methods showed high correlations of 0.989~1.000 and no significant differences were observed for enumerating the mesophilic aerobic bacteria in the tested food products. SAC method was easier to perform and count colonies efficiently as compared to the PCA and PAC methods. Therefore, we concluded that the SAC method offers an acceptable alternative to the PCA and PAC methods for counting the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.

  8. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    SciTech Connect

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  9. Effectiveness of Resins in Neutralizing Antibiotic Activities in Bactec Plus Aerobic/F Culture Medium

    PubMed Central

    Spaargaren, J.; van Boven, C. P. A.; Voorn, G. P.

    1998-01-01

    Incorporating resins in blood culture media can effectively reduce the activities of several antibiotics. It was shown that the activities of some generally used antibiotics decreased by 80 to 90% within 2 h in Bactec Plus Aerobic/F resin-containing culture medium. Bactec vials containing resins were still found to be positive for bacteria when antibiotics were present. The addition of β-lactamase shortened the detection time irrespective of the presence of resins. PMID:9817911

  10. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    PubMed

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation.

  11. Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1.

    PubMed

    Medhi, Kristina; Singhal, Anjali; Chauhan, D K; Thakur, Indu Shekhar

    2017-03-16

    Municipal wastewater contains multiple nitrogen contaminants such as ammonia, nitrate and nitrite. Two heterotrophic nitrifier and aerobic denitrifiers, bacterial isolates ISTOD1 and ISTVD1 were isolated from domestic wastewater. On the basis of removal efficiency of ammonia, nitrate and nitrite under both aerobic and anaerobic conditions, ISTOD1 was selected and identified as Paracoccus denitrificans. Aerobically, NH4(+)-N had maximum specific nitrogen removal rate (Rxi) of 7.6g/gDCW/h and anaerobically, NO3(-)N showed Rxi of 2.5*10(-1)g/g DCW/h. Monod equation described the bioprocess kinetic coefficients, µmax and Ks, obtained by regression. Error functions were calculated to validate the Monod equation experimental data. Aerobic NO3(-)N showed the highest YW of 0.372mg DCW/mg NO3(-)N among the five conditions. ISTOD1 serves as a potential candidate for treating nitrogen rich wastewater using simultaneous nitrification and aerobic denitrification. It can be used in bioaugmentation studies under varied condition.

  12. Development of microorganisms in the chernozem under aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Polyanskaya, L. M.; Gorbacheva, M. A.; Milanovskii, E. Yu.; Zvyagintsev, D. G.

    2010-03-01

    A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in different horizons of a chernozem. It was revealed that, under aerobic conditions, all the microorganisms grow irrespective of the soil horizon; fungi and bacteria grow at the first succession stages, and actinomycetes grow at the last stages. It was shown that, in the case of a simulated anaerobiosis commonly used to study anaerobic populations of bacteria, the mycelium of micromycetes grows in the upper part of the chernozem’s A horizon. Under anaerobic conditions, the peak of the mycelium development is shifted from the 3rd to 7th days (typical for aerobic conditions) to the 7th to 15th days of incubation. The level of mycelium length’s stabilization under aerobic and anaerobic conditions also differs: it is higher or lower than the initial one, respectively. Under anaerobic conditions, the growth of fungal mycelium, bacteria, and actinomycetes in the lower part of the A horizon and in the B horizon is extremely weak. There was not any observed growth of actinomycetes in all the chernozem’s horizons under anaerobic conditions.

  13. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  14. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  15. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    PubMed

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  16. Differential Isotopic Fractionation during Cr(VI) Reduction by an Aquifer-Derived Bacterium under Aerobic versus Denitrifying Conditions

    SciTech Connect

    Han, R.; Qin, L.; Brown, S. T.; Christensen, J. N.; Beller, H. R.

    2012-01-27

    We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Finally, despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).

  17. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving

    DTIC Science & Technology

    2014-09-30

    be resolvable with the addition both antibiotics and antimycotics to the transfer and culturing medias. With those changes and our anticipated...transfer cells exclusively in F10 (with antibiotics /antimycotics) for the next field trip. February 2013 With newly-weaned pups available to...of f-10 based growth media + 0.5% lipid (prewarmed to 37oC) 22. Plate cells on matrigel- coated plates for initial growth phase. 23. Check on

  18. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving

    DTIC Science & Technology

    2013-09-30

    one ml of 2 % Lidocaine is then injected beneath the skin around the biopsy site to minimize the trauma to the biopsy site. The skin is punctured...with a #10 scalpel and the biopsy needle inserted to a depth of 3-4 inches (the blubber layer is typically 2 inches thick). Once collected, the biopsy...30 SEP 2013 2 . REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Proof of Concept to Isolate and Culture Primary

  19. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  20. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  1. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  2. Efficient production and secretion of pyruvate from Halomonas sp. KM-1 under aerobic conditions.

    PubMed

    Kawata, Yoshikazu; Nishimura, Taku; Matsushita, Isao; Tsubota, Jun

    2016-03-01

    The alkaliphilic, halophilic bacterium Halomonas sp. KM-1 can utilize both hexose and pentose sugars for the intracellular storage of bioplastic poly-(R)-3-hydroxybutyric acid (PHB) under aerobic conditions. In this study, we investigated the effects of the sodium nitrate concentration on PHB accumulation in the KM-1 strain. Unexpectedly, we observed the secretion of pyruvate, a central intermediate in carbon- and energy-metabolism processes in all organisms; therefore, pyruvate is widely used as a starting material in the industrial biosynthesis of pharmaceuticals and is employed for the production of crop-protection agents, polymers, cosmetics, and food additives. We then further analyzed pyruvate productivity following changes in culture temperature and the buffer concentration. In 48-h batch-cultivation experiments, we found that wild-type Halomonas sp. KM-1 secreted 63.3 g/L pyruvate at a rate of 1.32 g/(L·h), comparable to the results of former studies using mutant and recombinant microorganisms. Thus, these data provided important insights into the production of pyruvate using this novel strain.

  3. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Simon, Cedric J; Smith, Gregory G; Carter, Chris G; Battaglene, Stephen C

    2017-05-01

    We examined the effects of temperature on the growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi, in order to determine if temperature acclimated aerobic scope correlates with optimum for growth and to establish the thermal tolerance window for this emerging aquaculture species. Juvenile lobsters (initial weight=10.95±0.47g) were reared (n=7) at temperatures from 11.0 to 28.5°C for 145days. All lobsters survived from 14.5 to 25.0°C while survival was reduced at 11.0°C (86%) and all lobsters died at 28.5°C. Lobster specific growth rate and specific feed consumption displayed a unimodal response with temperature, peaking at 21.5°C. Lobster standard, routine and maximum metabolic rates, and aerobic scope all increased exponentially up to maximum non-lethal temperature. Optimum temperature for growth did not correspond to that for maximum aerobic scope suggesting that aerobic scope is not an effective predictor of the thermal optimum of spiny lobsters. Plateauing of specific feed consumption beyond 21.5°C suggests that temperature dependent growth of lobsters is limited by capacity to ingest or digest sufficient food to meet increasing maintenance metabolic demands at high temperatures. The nutritional condition of lobsters was not influenced by temperature and feed conversion ratio was improved at lower temperatures. These findings add to a growing body of evidence questioning the generality of aerobic scope to describe the physiological thermal boundaries of aquatic ectotherms and suggest that feed intake plays a crucial role in regulating performance at thermal extremes.

  4. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving

    DTIC Science & Technology

    2012-09-30

    the skin is first cleaned with betadine scrub. A small area the size of a dime is shaved and one ml of 2 % Lidocaine ; to minimize the trauma to the...cells as compared to terrestrial models. Objective 2 . To test the hypothesis, that varying levels of stimulation and/or hypoxic conditions will...depth of 3-4 inches (the blubber layer is typically 2 inches thick). Once collected, the biopsy will be dipped in 100% ethanol for sterilization

  5. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: relationship with irritable bowel syndrome.

    PubMed

    Pyleris, Emmannouil; Giamarellos-Bourboulis, Evangelos J; Tzivras, Dimitrios; Koussoulas, Vassilios; Barbatzas, Charalambos; Pimentel, Mark

    2012-05-01

    Many studies have linked irritable bowel syndrome (IBS) with small intestinal bacterial overgrowth (SIBO), although they have done so on a qualitative basis using breath tests even though quantitative cultures are the hallmark of diagnosis. The purpose of this study was to underscore the frequency of SIBO in a large number of Greeks necessitating upper gastrointestinal (GI) tract endoscopy by using quantitative microbiological assessment of the duodenal aspirate. Consecutive subjects presenting for upper GI endoscopy were eligible to participate. Quantitative culture of aspirates sampled from the third part of the duodenum during upper GI tract endoscopy was conducted under aerobic conditions. IBS was defined by Rome II criteria. Among 320 subjects enrolled, SIBO was diagnosed in 62 (19.4%); 42 of 62 had IBS (67.7%). SIBO was found in 37.5% of IBS sufferers. SIBO was found in 60% of IBS patients with predominant diarrhea compared with 27.3% without diarrhea (P = 0.004). Escherichia coli, Enterococcus spp and Klebsiella pneumoniae were the most common isolates within patients with SIBO. A step-wise logistic regression analysis revealed that IBS, history of type 2 diabetes mellitus and intake of proton pump inhibitors were independently and positively linked with SIBO; gastritis was protective against SIBO. Using culture of the small bowel, SIBO by aerobe bacteria is independently linked with IBS. These results reinforce results of clinical trials evidencing a therapeutic role of non-absorbable antibiotics for the management of IBS symptoms.

  6. Acetate removal in sewer biofilms under aerobic conditions.

    PubMed

    Raunkjaer, K; Nielsen, P H; Hvitved-Jacobsen, T

    1997-11-01

    Removal of acetate has been investigated in sewer biofilms by continuous-flow biofilm reactor studies simulating the conditions in a gravity sewer. Non-steady-state conditions are prevailing in sewers, due to periodic variations in substrate concentrations. In order to simulate two extreme situations in a gravity sewer, biofilms defined as high-loaded and low-loaded, respectively, were grown by continuously feeding wastewater to the reactors with and without supplementary addition of acetate. During short-term experiments with high acetate concentrations (1-2 h), surface removal rates of acetate and dissolved oxygen (DO) and observed yield coefficients were determined, as well as the influence of DO concentration on acetate removal rates. The low-loaded biofilms showed very high acetate removal rates in short-term experiments at high acetate concentrations. The DO uptake rates were low, resulting in an average observed yield coefficient of 0.79 g biomass produced per gram acetate (as chemical oxygen demand, COD) consumed. This indicated a luxury uptake by the cells probably for storage inside the cells or for production of extracellular polymeric substances. The high-loaded biofilms showed lower acetate removal rates during the short-term experiments, with an average yield coefficient of 0.49 g biomass produced per gram acetate (as COD) consumed. The level of the acetate removal rates seemed to be related to the structure of the biofilm. The highest acetate removal rates were found for the low-loaded biofilm, where the biofilm was very hairy with 'streamers" with a length of 8-9 mm. At low acetate removal rates (high-loaded biofilm), the "streamer" lengths were only 3-5 mm. The surface removal rates for acetate and DO seemed to follow 1/2 order approximations to biofilm kinetics. For a DO of 0.8 and 6.0 g/m3, the limiting acetate concentrations were about 34 and 20 g-COD/m3, respectively. Under real gravity sewer conditions, the typical concentration ranges for

  7. Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Tajima, Takahisa; Yakushi, Toshiharu; Matsushita, Kazunobu; Kato, Junichi

    2015-06-20

    1-Butanol is an important industrial platform chemical and an advanced biofuel. While various groups have attempted to construct synthetic pathways for 1-butanol production, efforts to construct a pathway that functions under aerobic conditions have met with limited success. Here, we constructed a CoA-dependent 1-butanol synthetic pathway that functions under aerobic conditions in Escherichia coli, by expanding the previously reported (R)-1,3-butanediol synthetic pathway. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, bld (butylraldehyde dehydrogenase) from Clostridium saccharoperbutylacetonicum, and inherent alcohol dehydrogenase(s) from E. coli. To evaluate the potential of this pathway for 1-butanol production, culture conditions, including volumetric oxygen transfer coefficient (kLa) and pH were optimized in a mini-jar fermenter. Under optimal conditions, 1-butanol was produced at a concentration of up to 8.60gL(-1) after 46h of fed-batch cultivation.

  8. Methane emissions from terrestrial plants under aerobic conditions.

    PubMed

    Keppler, Frank; Hamilton, John T G; Brass, Marc; Röckmann, Thomas

    2006-01-12

    Methane is an important greenhouse gas and its atmospheric concentration has almost tripled since pre-industrial times. It plays a central role in atmospheric oxidation chemistry and affects stratospheric ozone and water vapour levels. Most of the methane from natural sources in Earth's atmosphere is thought to originate from biological processes in anoxic environments. Here we demonstrate using stable carbon isotopes that methane is readily formed in situ in terrestrial plants under oxic conditions by a hitherto unrecognized process. Significant methane emissions from both intact plants and detached leaves were observed during incubation experiments in the laboratory and in the field. If our measurements are typical for short-lived biomass and scaled on a global basis, we estimate a methane source strength of 62-236 Tg yr(-1) for living plants and 1-7 Tg yr(-1) for plant litter (1 Tg = 10(12) g). We suggest that this newly identified source may have important implications for the global methane budget and may call for a reconsideration of the role of natural methane sources in past climate change.

  9. Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature.

    PubMed

    Shao, Liming; Wang, Tianfeng; Li, Tianshui; Lü, Fan; He, Pinjing

    2013-07-01

    Aerobic and anaerobic digestion are popular methods for the treatment of waste activated sludge. However, the differences in degradation of sludge during aerobic and anaerobic digestion remain unclear. In this study, the sludge degradation during aerobic and anaerobic digestion was investigated at mesophilic temperature, focused on protein based on the degradation efficiency and degree of humification. The duration of aerobic and anaerobic digestion was about 90 days. The final degradation efficiency of volatile solid was 66.1 ± 1.6% and 66.4 ± 2.4% under aerobic and anaerobic conditions, respectively. The final degradation efficiency of protein was 67.5 ± 1.4% and 65.1 ± 2.6% under aerobic and anaerobic conditions, respectively. The degradation models of volatile solids were consistent with those of protein under both aerobic and anaerobic conditions. The solubility of protein under aerobic digestion was greater than that under anaerobic digestion. Moreover, the humification index of dissolved organic matter of aerobic digestion was greater than that during anaerobic digestion.

  10. Aerobic microbiology and culture sensitivity of head and neck space infection of odontogenic origin

    PubMed Central

    Shah, Amit; Ramola, Vikas; Nautiyal, Vijay

    2016-01-01

    Context: Head and neck space infections source, age, gender, tooth involved, fascial spaces involved, microbiological study of aerobic flora, and antibiotic susceptibilities. Aims: The aim of the present study is to identify causative aerobic microorganisms responsible for deep fascial spaces of head and neck infections and evaluate the resistance of antibiotics used in the treatment of such. Settings and Design: Prospective study in 100 patients. Materials and Methods: This prospective study was conducted on 100 patients who reported in the outpatient department and fulfilled the inclusion criteria to study aerobic microbiology and antibiotic sensitivity in head and neck space infection of odontogenic origin. Pus sample was obtained either by aspiration or by swab stick from the involved spaces, and culture and sensitivity tests were performed. Statistical Analysis Used: Chi-square test and level of significance. Results: Result showed aerobic Gram-positive isolates were 73% and aerobic Gram-negative isolates were 18%. Nine percent cases showed no growth. Streptococcus viridans was the highest isolate in 47% cases among Gram-positive bacteria, and in Gram-negative, Klebsiella pneumoniae was the highest isolate of total cases 11%. Amoxicillin showed resistance (48.4%) as compared to other antibiotics such as ceftriaxone, carbenicillin, amikacin, and imipenem had significantly higher sensitivity. Conclusions: Amoxicillin with clavulanic acid showed (64.8%) efficacy for all organisms isolated, whereas ceftriaxone showed (82.4%) efficacy and could be used in odontogenic infections for both Gram-positive and Gram-negative microorganisms. Substitution of third generation cephalosporin for amoxicillin in the empirical management of deep fascial space infections can also be used. Carbenicillin, amikacin, and imipenem showed (93.4%) sensitivity against all microorganisms and should be reserved for more severe infection. Newer and broad-spectrum antibiotics are more

  11. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures.

    PubMed

    Oliver, Christy E; Beier, Ross C; Hume, Michael E; Horrocks, Shane M; Casey, Thomas A; Caton, Joel S; Nisbet, David J; Smith, David J; Krueger, Nathan A; Anderson, Robin C

    2010-04-01

    Experiments were conducted to determine factors that affect sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5mM). In our first experiment, cultures grown without chlorate grew more rapidly than those with chlorate. An extended lag before logarithmic growth was observed in anaerobic but not aerobic cultures containing chlorate. Chlorate inhibition of growth during aerobic culture began later than that observed in anaerobic cultures but persisted once inhibition was apparent. Conversely, anaerobic cultures appeared to adapt to chlorate after approximately 10h of incubation, exhibiting rapid compensatory growth. In anaerobic chlorate-containing cultures, 20% of total viable counts were resistant to chlorate by 6h and had propagated to 100% resistance (>10(9)CFU mL(-1)) by 24h. In the aerobic chlorate-containing cultures, 12.9% of colonies had detectable resistance to chlorate by 6h, but only 1% retained detectable resistance at 24h, likely because these cultures had opportunity to respire on oxygen and were thus not enriched via the selective pressure of chlorate. In another study, treatment with shikimic acid (0.34 mM), molybdate (1mM) or their combination had little effect on aerobic or anaerobic growth of Salmonella in the absence of added chlorate. As observed in our earlier study, chlorate resistance was not detected in any cultures without added chlorate. Chlorate resistant Salmonella were recovered at equivalent numbers regardless of treatment after 8h of aerobic or anaerobic culture with added chlorate; however, by 24h incubation chlorate sensitivity was completely restored to aerobic but not anaerobic cultures treated with shikimic acid or molybdate but not their combination. Results indicate that anaerobic adaptation of S. Typhimurium to sodium chlorate during pure culture is likely due to the selective propagation of low numbers of cells exhibiting spontaneous resistance to chlorate and this resistance is not reversible by

  12. Effect of aerobic and microaerophilic culture in the growth dynamics of Saccharomyces cerevisiae and in training of quiescent and non-quiescent subpopulations.

    PubMed

    Carbó, Rosa; Ginovart, Marta; Carta, Akatibu; Portell, Xavier; del Valle, Luis J

    2015-10-01

    Saccharomyces cerevisiae is industrially the most important yeast, and its growth in different concentrations of oxygen can be used to improve various application processes. The aims of this work were to study in aerobic and microaerophilic growth conditions the cell size and tendency of morphological changes in S. cerevisiae in different stages of growth and to assess the effect of the two growth conditions in the differentiation of quiescent and non-quiescent subpopulations in the stationary phase. Dissolved oxygen levels in the culture medium for aerobic and microaerophilic conditions were 6.6 and 5.2 mg L(-1), respectively. In both growth conditions, similar viable cell populations were obtained, although in aerobic conditions the stationary phase was reached and the quiescent and non-quiescent subpopulations were also differentiated. The microaerophilic growth produced a significant reduction in the specific growth rate and consequently also in glucose and oxygen consumption. The most notable changes in cellular size and morphology occurred with the depletion of glucose and oxygen. The concentration of dissolved oxygen in the culture medium significantly modulated the growth kinetics of S. cerevisiae and their development and differentiation to quiescent cells. This could justify the need to readjust small variations in oxygen levels during yeast cultures in biotechnological processes.

  13. Culturing aerobic and anaerobic bacteria and mammalian cells with a microfluidic differential oxygenator.

    PubMed

    Lam, Raymond H W; Kim, Min-Cheol; Thorsen, Todd

    2009-07-15

    In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel network functioning as an oxygen-nitrogen mixer generates differential oxygen concentration. By controlling the relative flow rate of the oxygen and nitrogen input gases, the dissolved oxygen (DO) concentration in proximal microchannels filled with culture media are precisely regulated by molecular diffusion. Sensors consisting of an oxygen-sensitive dye embedded in the fluid channels permit dynamic fluorescence-based monitoring of the DO concentration using low-cost light-emitting diodes. To demonstrate the general utility of the platform for both aerobic and anaerobic culture, three bacteria with differential oxygen requirements (E. coli, A. viscosus, and F. nucleatum), as well as a model mammalian cell line (murine embryonic fibroblast cells (3T3)), were cultured. Growth characteristics of the selected species were analyzed as a function of eight discrete DO concentrations, ranging from 0 ppm (anaerobic) to 42 ppm (fully saturated).

  14. Unexpected ring-opening reactions of aziridines with aldehydes catalyzed by nucleophilic carbenes under aerobic conditions.

    PubMed

    Liu, Yan-Kai; Li, Rui; Yue, Lei; Li, Bang-Jing; Chen, Ying-Chun; Wu, Yong; Ding, Li-Sheng

    2006-04-13

    [reaction: see text] The chemoselective ring opening of N-tosyl aziridines with aldehydes catalyzed by an N-heterocyclic carbene was investigated under aerobic conditions. Unexpected carboxylates of 1,2-amino alcohols from the corresponding aldehydes, rather than the acyl anion ring-opened beta-amino ketones, were exclusively obtained. A plausible mechanism for this unprecedented carbene-mediated reaction was also proposed.

  15. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    PubMed

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed.

  16. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  17. Aerobic capacity in wild satin bowerbirds: repeatability and effects of age, sex and condition.

    PubMed

    Chappell, Mark A; Savard, Jean-Francois; Siani, Jennifer; Coleman, Seth W; Keagy, Jason; Borgia, Gerald

    2011-10-01

    Individual variation in aerobic capacity has been extensively studied, especially with respect to condition, maturity or pathogen infection, and to gain insights into mechanistic foundations of performance. However, its relationship to mate competition is less well understood, particularly for animals in natural habitats. We examined aerobic capacity [maximum rate of O2 consumption (VO2,max) in forced exercise] in wild satin bowerbirds, an Australian passerine with a non-resource based mating system and strong intermale sexual competition. We tested for repeatability of mass and VO2,max, differences among age and sex classes, and effects of several condition indices. In adult males, we examined interactions between aerobic performance and bower ownership (required for male mating success). There was significant repeatability of mass and VO2,max within and between years, but between-year repeatability was lower than within-year repeatability. VO2,max varied with an overall scaling to mass(0.791), but most variance in VO2,max was not explained by mass. Indicators of condition (tarsus and wing length asymmetry, the ratio of tarsus length to mass) were not correlated to VO2,max. Ectoparasite counts were weakly correlated to VO2,max across all age-sex classes but not within any class. Adult males, the cohort with the most intense levels of mating competition, had higher VO2,max than juvenile birds or adult females. However, there was no difference between the VO2,max of bower-owning males and that of males not known to hold bowers. Thus one major factor determining male reproductive success was not correlated to aerobic performance.

  18. Theoretical analysis of municipal solid waste treatment by leachate recirculation under anaerobic and aerobic conditions.

    PubMed

    van Turnhout, André G; Brandstätter, Christian; Kleerebezem, Robbert; Fellner, Johann; Heimovaara, Timo J

    2017-10-07

    Long-term emissions of Municipal Solid Waste (MSW) landfills are a burden for future generations because of the required long-term aftercare. To shorten aftercare, treatment methods have to be developed that reduce long-term emissions. A treatment method that reduces emissions at a lysimeter scale is re-circulation of leachate. However, its effectiveness at the field scale still needs to be demonstrated. Field scale design can be improved by theoretical understanding of the processes that control the effectiveness of leachate recirculation treatment. In this study, the simplest and most fundamental sets of processes are distilled that describe the emission data measured during aerobic and anaerobic leachate recirculation in lysimeters. A toolbox is used to select essential processes with objective performance criteria produced by Bayesian statistical analysis. The controlling processes indicate that treatment efficiency is mostly affected by how homogeneously important reactants are spread through the MSW during treatment. A more homogeneous spread of i.e. oxygen or methanogens increases the total amount of carbon degraded. Biodegradable carbon removal is highest under aerobic conditions, however, the hydrolysis rate constant is lower which indicates that hydrolysis is not enhanced intrinsically in aerobic conditions. Controlling processes also indicate that nitrogen removal via sequential nitrification and denitrification is plausible under aerobic conditions as long as sufficient biodegradable carbon is present in the MSW. Major removal pathways for carbon and nitrogen are indicated which are important for monitoring treatment effectiveness at a field scale. Optimization strategies for field scale application of treatments are discussed. Copyright © 2017. Published by Elsevier Ltd.

  19. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions.

    PubMed

    Zhao, Lanmei; Bao, Mutai; Yan, Miao; Lu, Jinren

    2016-09-01

    Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Prolonged exposure of mixed aerobic cultures to low temperature and benzalkonium chloride affect the rate and extent of nitrification.

    PubMed

    Yang, Jeongwoo; Tezel, Ulas; Li, Kexun; Pavlostathis, Spyros G

    2015-03-01

    The combined effect of benzalkonium chloride (BAC) and prolonged exposure to low temperature on nitrification was investigated. Ammonia oxidation at 22-24°C by an enriched nitrifying culture was inhibited at increasing BAC concentrations and ceased at 15 mg BAC/L. The non-competitive inhibition coefficient was 1.5±0.9 mg BAC/L. Nitrification tests were conducted without and with BAC at 5mg/L using an aerobic, mixed heterotrophic/nitrifying culture maintained at a temperature range of 24-10°C. Maintaining this culture at 10°C for over one month in the absence of BAC, resulted in slower nitrification kinetics compared to those measured when the culture was first exposed to 10°C. BAC was degraded by the heterotrophic population, but its degradation rate decreased significantly as the culture temperature decreased to 10°C. These results confirm the negative impact of quaternary ammonium compounds on the nitrification process, which is further exacerbated by prolonged, low temperature conditions.

  1. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds.

    PubMed

    Melendez, J H; Frankel, Y M; An, A T; Williams, L; Price, L B; Wang, N-Y; Lazarus, G S; Zenilman, J M

    2010-12-01

    Chronic wounds cause substantial morbidity and disability. Infection in chronic wounds is clinically defined by routine culture methods that can take several days to obtain a final result, and may not fully describe the community of organisms or biome within these wounds. Molecular diagnostic approaches offer promise for a more rapid and complete assessment. We report the development of a suite of real-time PCR assays for rapid identification of bacteria directly from tissue samples. The panel of assays targets 14 common, clinically relevant, aerobic pathogens and demonstrates a high degree of sensitivity and specificity using a panel of organisms commonly associated with chronic wound infection. Thirty-nine tissue samples from 29 chronic wounds were evaluated and the results compared with those obtained by culture. As revealed by culture and PCR, the most common organisms were methicillin-resistant Staphylococcus aureus (MRSA) followed by Streptococcus agalactiae (Group B streptococcus) and Pseudomonas aeruginosa. The sensitivities of the PCR assays were 100% and 90% when quantitative and qualitative culture results were used as the reference standard, respectively. The assays allowed the identification of bacterial DNA from ten additional organisms that were not revealed by quantitative or qualitative cultures. Under optimal conditions, the turnaround time for PCR results is as short as 4-6 h. Real-time PCR is a rapid and inexpensive approach that can be easily introduced into clinical practice for detection of organisms directly from tissue samples. Characterization of the anaerobic microflora by real-time PCR of chronic wounds is warranted.

  2. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions.

    PubMed

    Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Andaya, Christina; Rezes, Rachel; Michalsen, Mandy M; Crocker, Fiona H; Indest, Karl J; Jung, Carina M; Alon Blakeney, G; Istok, Jonathan D; Hammett, Steven A

    2017-07-01

    Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in laboratory columns following biostimulation and bioaugmentation was investigated using sediment and groundwater from a contaminated aquifer at a US Navy facility. No RDX degradation was observed following aerobic biostimulation with either fructose or lactate (both 0.1 mM) prior to bioaugmentation. Replicate columns were then bioaugmented with either Gordonia sp. KTR9, Pseudomonas fluorescens I-C (Ps I-C), or both strains. Under aerobic conditions (influent dissolved oxygen (DO) >6 mg/L), RDX was degraded following the addition of fructose, and to a lesser extent with lactate, in columns bioaugmented with KTR9. No degradation was observed in columns bioaugmented with only Ps I-C under aerobic conditions, consistent with the known anaerobic RDX degradation pathway for this strain. When influent DO was reduced to <2 mg/L, good RDX degradation was observed in the KTR9-bioaugmented column, and some degradation was also observed in the Ps I-C-bioaugmented column. After DO levels were kept below 1 mg/L for more than a month, columns bioaugmented with KTR9 became unresponsive to fructose addition, while RDX degradation was still observed in the Ps I-C-bioaugmented columns. These results indicate that bioaugmentation with the aerobic RDX degrader KTR9 could be effective at sites where site geology or geochemistry allow higher DO levels to be maintained. Further, inclusion of strains capable of anoxic RDX degradation such as Ps I-C may facilitate bimodal RDX removal when DO levels decrease.

  3. Study on optimization of proportion between fermented liquid and traditional cultural medium of bioflocculant production and its flocculant performance considering the aerobic fermentation of rice straw as substrate.

    PubMed

    Zhao, Zhen; Wei, Li; Li, Chun-Ying; Wang, Zhe; Hu, Yi-Wen; Liu, Chang-Chao; Ma, Fang

    2014-11-01

    High cost of traditional culture medium of flocculant is the key element to limit the bioflocculant production. It's therefore much crucial to seek the economic production materials. In this research, part of the traditional culture medium of bioflocculant is replaced by the fermented liquid of rice straw to conduct the discussion on fermentation matching, optimization of fermentation condition and ability of flocculant production. The optimal proportion of aerobic saccharification liquid and traditional cultural medium of flocculant production is 1: 3. The flocculant rates of the economic culture medium of flocculant production are the highest, 65.49% and 71.24%, which are combined by 67d and 109d fermented saccharification liquid and the traditional cultural medium of flocculant production. The growth of flocculant production bacterium is in better situation for composite culture medium of flocculant production. The amount of bioflocculant is 40kg from per ton. The fermentation cost of flocculant saves by 25% comparing with the traditional culture medium. The simple aerobic fermentation technique opens up a new road for low-cost culture medium of flocculant production.

  4. Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus.

    PubMed

    Hernández, Noemi; Escudero, José A; San Millán, Álvaro; González-Zorn, Bruno; Lobo, Jorge M; Verdú, José R; Suárez, Mónica

    2015-04-01

    Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle's gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Proteobacteria, Firmicutes, and Actinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant. The main functions associated with the bacteria found in the gut of T. lusitanicus would likely include nitrogen fixation, denitrification, detoxification, and diverse defensive roles against pathogens.

  5. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions

    PubMed Central

    Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile

    2016-01-01

    Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection. PMID:27790195

  6. Effects of aerobic exercise under different thermal conditions on human somatosensory processing.

    PubMed

    Nakata, Hiroki; Oshiro, Misaki; Namba, Mari; Shibasaki, Manabu

    2016-10-01

    The present study aimed to investigate the effects of aerobic exercise on human somatosensory processing recorded by somatosensory evoked potentials (SEPs) under temperate [TEMP, 20°C and 40% relative humidity (RH)] and hot (HOT, 35°C and 30% RH) environments. Fifteen healthy subjects performed 4 × 15-min bouts of a moderate cycling exercise [mean power output: 156.5 ± 7.7 (SE) W], with a 10-min rest period and received a posterior tibial nerve stimulation at the left ankle before and after each exercise bout; SEPs were recorded in five sessions; 1st (pre), 2nd (post-1st exercise bout), 3rd (post-2nd exercise bout), 4th (post-3rd exercise bout), and 5th (post-4th exercise bout). The peak latencies and amplitudes of the P37, N50, P60, and N70 components at Cz were evaluated. The latencies of P37, N50, P60, and N70 were significantly shorter with the repetition of aerobic exercise, and these shortened latencies were significantly greater in the HOT condition than in the TEMP condition (P37: 3rd, P < 0.05, and 5th, P < 0.01; P60: 4th, P < 0.05, and 5th, P < 0.01; N70: 4th, P < 0.05, and 5th, P < 0.001). No significant differences were observed in the amplitudes of any SEP component under either thermal condition. These results suggest that the conduction velocity of the ascending somatosensory input was accelerated by increases in body temperature, and aerobic exercise did not alter the strength of neural activity in cortical somatosensory processing.

  7. Degradation of phenanthrene-analogue azaarenes by Mycobacterium gilvum strain LB307T under aerobic conditions.

    PubMed

    Willumsen, P A; Nielsen, J K; Karlson, U

    2001-08-01

    A polycyclic aromatic hydrocarbon degrading Mycobacterium gilvum, strain LB307T, was able to degrade the azaarenes 5,6-benzoquinoline, 7,8-benzoquinoline, and phenanthridine (nitrogen-containing heterocyclic aromatic hydrocarbons) under aerobic conditions. The strain was able to use 5,6-benzoquinoline as sole sources of carbon, nitrogen, and energy. However, inhibition of degradation and growth was observed with increasing substrate concentration. During degradation, metabolites built up transiently. One of the metabolites detected during 5,6-benzoquinoline degradation is suggested to be 2-oxo-5,6-benzoquinoline. This is the first report on bacterial degradation of phenanthrene-analogue azaarenes.

  8. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions.

    PubMed

    Mohee, R; Unmar, G D; Mudhoo, A; Khadoo, P

    2008-01-01

    A study was conducted on two types of plastic materials, Mater-Bi Novamont (MB) and Environmental Product Inc. (EPI), to assess their biodegradability under aerobic and anaerobic conditions. For aerobic conditions, organic fractions of municipal solid wastes were composted. For the anaerobic process, anaerobic inoculum from a wastewater treatment plant was used. Cellulose filter papers (CFP) were used as a positive control for both mediums. The composting process was monitored in terms of temperature, moisture and volatile solids and the biodegradation of the samples were monitored in terms of mass loss. Monitoring results showed a biodegradation of 27.1% on a dry basis for MB plastic within a period of 72 days of composting. Biodegradability under an anaerobic environment was monitored in terms of biogas production. A cumulative methane gas production of 245 ml was obtained for MB, which showed good degradation as compared to CFP (246.8 ml). However, EPI plastic showed a cumulative methane value of 7.6 ml for a period of 32 days, which was close to the blank (4.0 ml). The EPI plastic did not biodegrade under either condition. The cumulative carbon dioxide evolution after 32 days was as follows: CFP 4.406 cm3, MB 2.198 cm3 and EPI 1.328 cm3. The cumulative level of CO2 varying with time fitted sigmoid type curves with R2 values of 0.996, 0.996 and 0.995 for CFP, MB and EPI, respectively.

  9. Comparison of the transport and deposition of Pseudomonas aeruginosa under aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Huixin; Zeng, Hongbo; Ulrich, Ania C.; Liu, Yang

    2016-02-01

    Laboratory-scale columns were employed to study the effect of oxygen and ionic strength on the transport of Pseudomonas aeruginosa PAO1 in porous media. In anaerobic experiments, cells were grown and transport experiments were conducted in a well-controlled anaerobic chamber. Cell surface electrokinetic potentials were measured and surface elemental composition was analyzed using X-ray photoelectron spectroscopy (XPS). Transport experimental results showed reduced travel distance of PAO1 with increased ionic strength under aerobic and anaerobic conditions, consistent with calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The deposition rates of PAO1 were significantly higher in aerobic than in anaerobic condition at higher ionic strength (10 and 100 mM), although the electrokinetic potentials were similar throughout the tested ionic strength (1, 10, and 100 mM). No difference in PAO1 deposition rate was observed at 1 mM. XPS analysis showed that variation in cell surface composition due to different growth conditions played a primary role in determining the different deposition behaviors.

  10. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions

    PubMed Central

    Reighard, Katelyn P.

    2015-01-01

    Chitosan oligosaccharides were modified with N-diazeniumdiolates to yield biocompatible nitric oxide (NO) donor scaffolds. The minimum bactericidal concentrations and MICs of the NO donors against Pseudomonas aeruginosa were compared under aerobic and anaerobic conditions. Differential antibacterial activities were primarily the result of NO scavenging by oxygen under aerobic environments and not changes in bacterial physiology. Bacterial killing was also tested against nonmucoid and mucoid biofilms and compared to that of tobramycin. Smaller NO payloads were required to eradicate P. aeruginosa biofilms under anaerobic versus aerobic conditions. Under oxygen-free environments, the NO treatment was 10-fold more effective at killing biofilms than tobramycin. These results demonstrate the potential utility of NO-releasing chitosan oligosaccharides under both aerobic and anaerobic environments. PMID:26239983

  11. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Long, Xiaoyong; Ji, Junfeng; Barrón, Vidal; Torrent, José

    2016-10-01

    Iron oxides are widely distributed across the surface of the Earth as a result of the aerobic weathering of primary Fe-bearing minerals. Pedogenic iron oxides which consist mainly of hematite (Hm), goethite (Gt), maghemite (Mgh), are often concentrated synchronously in aerobic soils under low to moderate rainfall regimes. Magnetic susceptibility (χ) and redness, which respectively reflect the content of Mgh and Hm in soils, are considered reasonable pedogenic and climatic indicators in soil taxonomy and paleorainfall reconstruction. However, under high rainfall regimes, the grain growth of Mgh and transformation to Hm, combined with the prior formation of Gt under conditions of high relative humidity (RH), can result in magnetic reduction and dramatic yellowing of soils and sediments, which explains the existence of rainfall thresholds for Mgh and Hm at a large scale even before the pedogenic environment turns anaerobic. In order to capture the rainfall thresholds for Mgh and Hm occurring under aerobic conditions, we explored a tropical transect across a granitic region where the soil color turned from red to yellow under a wide rainfall range of 900-2200 mm/yr and a corresponding mean annual RH range of 77%-85%. We observed a lower rainfall threshold of ∼1500 mm/yr and a corresponding RH ∼80% for Mgh and Hm along this transect, as well as a higher rainfall threshold of ∼1700 mm/yr and a corresponding RH of ∼81% for Gt and total pedogenic iron oxides (citrate/bicarbonate/dithionite-extractable Fe, Fed). Cross-referencing with comparable studies in temperate and subtropical regions, we noted that the rainfall or RH thresholds for Fed and Hm or Mgh likewise increase with temperature. Moreover, the different thresholds for total and individual iron oxide phase indicates that a negative correlation between chemical weathering intensity and redness or χ in sediment sequences can occur under the prevalent climate regime just between their thresholds. Finally

  12. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions.

    PubMed

    Nittami, Tadashi; Oi, Hiroshi; Matsumoto, Kanji; Seviour, Robert J

    2011-12-15

    Previous research has suggested that enhanced biological phosphorus removal (EBPR) from wastewater can be achieved under continuous aerobic conditions over the short term. However, little is known how environmental conditions might affect aerobic EBPR performance. Consequently we have investigated the impact of temperature, pH and dissolved oxygen (DO) concentrations on EBPR performance under strictly aerobic conditions. A sequencing batch reactor (SBR) was operated for 108 days on a six-hour cycle (four cycles a day). The SBR ran under alternating anaerobic-aerobic conditions as standard and then operated under strictly aerobic conditions for one cycle every three or four days. SBR operational temperature (10, 15, 20, 25 and 30°C), pH (6, 7, 8 and 9) and DO concentration (0.5, 2.0 and 3.5mg/L) were changed consecutively during the aerobic cycle. Recorded increases in mixed liquor phosphorus (P) concentrations during aerobic carbon source uptake (P release) were affected by the biomass P content rather than the imposed changes in the operational conditions. Thus, P release levels increased with biomass P content. By contrast, subsequent aerobic P assimilation (P uptake) levels were both affected by changes in operational temperature and pH, and peaked at 20-25°C and pH 7-8. Highest P uptake detected under these SBR operating conditions was 15.4 mg Pg-MLSS(-1) (at 25°C, pH 7 and DO 2.0mg/L). The ability of the community for linked aerobic P release and P uptake required the presence of acetate in the medium, a finding which differs from previous data, where these are reported to occur in the absence of any exogenous carbon source. Fluorescence in situ hybridization was performed on samples collected from the SBR, and Candidatus 'Accumulibacter phosphatis' cells were detected with PAOmix probes through the operational periods. Thus, Candidatus 'Accumulibacter phosphatis' seemed to perform P removal in the SBR as shown in previous studies on P removal under

  13. Long-term storage of aerobic granules in liquid media: viable but non-culturable status.

    PubMed

    Wan, Chunli; Zhang, Qinlan; Lee, Duu-Jong; Wang, Yayi; Li, Jieni

    2014-08-01

    Long-term storage and successful reactivation after storage are essential for practical applications of aerobic granules on wastewater treatment. This study cultivated aerobic granules (SI) in sequencing batch reactors and then stored the granules at 4 °C in five liquid media (DI water (SW), acetone (SA), acetone/isoamyl acetate mix (SAA), saline water (SS), and formaldehyde (SF)) for over 1 year. The first four granules were then successfully reactivated in 24h cultivation. The specific oxygen uptake rates (SOUR) of the granules followed SI>SS>SA>SAA>SW>SF; and the corresponding granular strengths (10 min ultrasound) followed SI>SA=SS>SAA>SW>SF. During storage the granular cells secreted excess quantities of cyclic-diguanylate (c-di-GMP) and pentaphosphate (ppGpp) as responses to the stringent challenges. We proposed that to force cells in granules (Alphaproteobacteria, Flavobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Sphingobacteria, and Clostridia) entering viable but non-culturable (VBNC) status is the key of success for extended period storage of granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    PubMed

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  15. Aerobic carboxydotrophy under extremely haloalkaline conditions in Alkalispirillum/Alkalilimnicola strains isolated from soda lakes.

    PubMed

    Sorokin, Dimitry Yu; Tourova, Tatjana P; Kovaleva, Olga L; Kuenen, J Gijs; Muyzer, Gerard

    2010-03-01

    Aerobic enrichments from soda lake sediments with CO as the only substrate resulted in the isolation of five bacterial strains capable of autotrophic growth with CO at extremely high pH and salinity. The strains belonged to the Alkalispirillum/Alkalilimnicola cluster in the Gammaproteobacteria, where the ability to oxidize CO, but not growth with CO, has been demonstrated previously. The growth with CO was possible only at an oxygen concentration below 5 % and CO concentration below 20 % in the gas phase. The isolates were also capable of growth with formate but not with H(2). The carboxydotrophic growth occurred within a narrow pH range from 8 to 10.5 (optimum at 9.5) and a broad salt concentration from 0.3 to 3.5 M total Na(+) (optimum at 1.0 M). Cells grown on CO had high respiration activity with CO and formate, while the cells grown on formate actively oxidized formate alone. In CO-grown cells, CO-dehydrogenase (CODH) activity was detectable both in soluble and membrane fractions, while the NAD-independent formate dehydrogenase (FDH) resided solely in membranes. The results of total protein profiling and the failure to detect CODH with conventional primers for the coxL gene indicated that the CO-oxidizing enzyme in haloalkaliphilic isolates might differ from the classical aerobic CODH complex. A single cbbL gene encoding the RuBisCO large subunit was detected in all strains, suggesting the presence of the Calvin cycle of inorganic carbon fixation. Overall, these results demonstrated the possibility of aerobic carboxydotrophy under extremely haloalkaline conditions.

  16. Detailed observation and measurement of sewer sediment erosion under aerobic and anaerobic conditions.

    PubMed

    Schellart, A; Veldkamp, R; Klootwijk, M; Clemens, F; Tait, S; Ashley, R; Howes, C

    2005-01-01

    A greater understanding of the erosion behaviour of sewer sediments is necessary in order to reliably estimate the amount and nature of the sewer sediments released from deposits in sewers and transported either to waste water treatment plants or discharged into the environment. Research has indicated that microbial activity in sediment can influence the physical release of sediment from in-pipe deposits. This paper reports on a series of erosion tests in which sewer sediments from different sewer networks are kept under different environmental conditions and their resistance to erosion is examined. The erosion tests are carried out under aerobic and anaerobic conditions and two temperatures, one representing ambient sewer temperatures and a lower temperature that significantly suppresses bacterial activity.

  17. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions.

    PubMed

    Wang, Di; Xu, Anming; Elmerich, Claudine; Ma, Luyan Z

    2017-07-01

    The multicellular communities of microorganisms known as biofilms are of high significance in agricultural setting, yet it is largely unknown about the biofilm formed by nitrogen-fixing bacteria. Here we report the biofilm formation by Pseudomonas stutzeri A1501, a free-living rhizospheric bacterium, capable of fixing nitrogen under microaerobic and nitrogen-limiting conditions. P. stutzeri A1501 tended to form biofilm in minimal media, especially under nitrogen depletion condition. Under such growth condition, the biofilms formed at the air-liquid interface (termed as pellicles) and the colony biofilms on agar plates exhibited nitrogenase activity in air. The two kinds of biofilms both contained large ovoid shape 'cells' that were multiple living bacteria embedded in a sac of extracellular polymeric substances (EPSs). We proposed to name such large 'cells' as A1501 cyst. Our results suggest that the EPS, especially exopolysaccharides enabled the encased bacteria to fix nitrogen while grown under aerobic condition. The formation of A1501 cysts was reversible in response to the changes of carbon or nitrogen source status. A1501 cyst formation depended on nitrogen-limiting signaling and the presence of sufficient carbon sources, yet was independent of an active nitrogenase. The pellicles formed by Azospirillum brasilense, another free-living nitrogen-fixing rhizobacterium, which also exhibited nitrogenase activity and contained the large EPS-encapsuled A1501 cyst-like 'cells'. Our data imply that free-living nitrogen-fixing bacteria could convert the easy-used carbon sources to exopolysaccharides in order to enable nitrogen fixation in a natural aerobic environment.

  18. An initial investigation into the ecology of culturable aerobic postmortem bacteria.

    PubMed

    Chun, Lauren P; Miguel, Marcus J; Junkins, Emily N; Forbes, Shari L; Carter, David O

    2015-12-01

    Postmortem microorganisms are increasingly recognized for their potential to serve as physical evidence. Yet, we still understand little about the ecology of postmortem microbes, particularly those associated with the skin and larval masses. We conducted an experiment to characterize microbiological and chemical properties of decomposing swine (Sus scrofa domesticus) carcasses on the island of Oahu, Hawaii, USA, during June 2013. Bacteria were collected from the head, limb, and larval mass during the initial 145h of decomposition. We also measured the pH, temperature, and oxidation-reduction potential of larval masses in situ. Bacteria were cultured aerobically on Standard Nutrient Agar at 22°C and identified using protein or genetic signals. Carcass decomposition followed a typical sigmoidal pattern and associated bacterial communities differed by sampling location and time since death, although all communities were dominated by phyla Actinobacteria, Firmicutes, and Proteobacteria. Larval masses were reducing environments (~-200mV) of neutral pH (6.5-7.5) and high temperature (35°C-40°C). We recommend that culturable postmortem and larval mass microbiology and chemistry be investigated in more detail, as it has potential to complement culture-independent studies and serve as a rapid estimate of PMI.

  19. Two-year experience with aerobic culturing of apheresis and whole blood-derived platelets.

    PubMed

    Kleinman, Steven H; Kamel, Hany T; Harpool, Dennis R; Vanderpool, Sandra K; Custer, Brian; Wiltbank, Thomas B; Nguyen, Kim-Anh; Tomasulo, Peter A

    2006-10-01

    Throughout its system of regional centers, Blood Systems implemented culture based bacterial testing with a standardized protocol for both apheresis and whole blood-derived platelets (PLTs). After a 24-hour hold, 4 mL of PLT product was inoculated into an aerobic bottle (BacT/ALERT, bioMérieux). Cultures were incubated for 24 hours before routine product release to prevent distribution of infected products while minimizing consignee notification, product retrievals, and hospital PLT inventory problems. Initial-positives were further tested (and bacteria identified) by performing cultures from the original component and subcultures from the BacT/ALERT bottle. Results were categorized according to AABB recommended definitions with minor modifications. The rate of true-positive detections from culturing 122,971 apheresis PLTs was 0.017 percent (95% confidence interval [CI], 0.011%-0.026%). All true-positive microorganisms were Gram-positive with a predominance of coagulase-negative Staphylococcus and Bacillus species. Twenty of the 21 true-positive samples (95%) were detected by 24 hours but only 14 (68%) were detected by 18 hours. The false-positive rate due to contamination was 0.1 percent with the majority of isolates being skin or environmental organisms. Results did not differ significantly for whole blood-derived versus apheresis PLTs. These data corroborate the fact that the rate of detection of truly contaminated PLT apheresis products in the United States is approximately 1 in 5000 (0.02%); this is lower than the 0.03 to 0.05 percent rates that were generally quoted in the literature before the implementation of prospective bacterial culturing programs.

  20. Effect of cycle time on polyhydroxybutyrate (PHB) production in aerobic mixed cultures.

    PubMed

    Ozdemir, Sebnem; Akman, Dilek; Cirik, Kevser; Cinar, Ozer

    2014-03-01

    The aim of this study was to investigate the effect of cycle time on polyhydroxybutyrate (PHB) production under aerobic dynamic feeding system. The acetate-fed feast and famine sequencing batch reactor was used to enrich PHB accumulating microorganism. Sequencing batch reactor (SBR) was operated in four different cycle times (12, 8, 4, and 2 h) fed with a synthetic wastewater. The system performance was determined by monitoring total dissolved organic carbon, dissolved oxygen, oxidation-reduction potential, and PHB concentration. In this study, under steady-state conditions, the feast period of the SBR was found to allow the PHB storage while a certain part of stored PHB was used for continued growth in famine period. The percentage PHB storages by aerobic microorganism were at 16, 18, 42, and 55% for the 12, 8, 4, and 2-h cycle times, respectively. The PHB storage was increased as the length of the cycle time was decreased, and the ratio of the feast compared to the total cycle length was increased from around 13 to 33% for the 12 and 2-h cycle times, respectively.

  1. Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors.

    PubMed

    Rodríguez-Freire, Lucía; Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2012-02-01

    Arsenic is a carcinogenic compound widely distributed in the groundwater around the world. The fate of arsenic in groundwater depends on the activity of microorganisms either by oxidizing arsenite (As(III)), or by reducing arsenate (As(V)). Because of the higher toxicity and mobility of As(III) compared to As(V), microbial-catalyzed oxidation of As(III) to As(V) can lower the environmental impact of arsenic. Although aerobic As(III)-oxidizing bacteria are well known, anoxic oxidation of As(III) with nitrate as electron acceptor has also been shown to occur. In this study, three As(III)-oxidizing bacterial strains, Azoarcus sp. strain EC1-pb1, Azoarcus sp. strain EC3-pb1 and Diaphorobacter sp. strain MC-pb1, have been characterized. Each strain was tested for its ability to oxidize As(III) with four different electron acceptors, nitrate, nitrite, chlorate and oxygen. Complete As(III) oxidation was achieved with both nitrate and oxygen, demonstrating the novel ability of these bacterial strains to oxidize As(III) in either anoxic or aerobic conditions. Nitrate was only reduced to nitrite. Different electron donors were used to study their suitability in supporting nitrate reduction. Hydrogen and acetate were readily utilized by all the cultures. The flexibility of these As(III)-oxidizing bacteria to use oxygen and nitrate to oxidize As(III) as well as organic and inorganic substrates as alternative electron donors explains their presence in non-arsenic-contaminated environments. The findings suggest that at least some As(III)-oxidizing bacteria are flexible with respect to electron-acceptors and electron-donors and that they are potentially widespread in low arsenic concentration environments.

  2. Photoinduced N-demethylation of rufloxacin and its methyl ester under aerobic conditions.

    PubMed

    Belvedere, Alessandra; Boscá, Francisco; Cuquerella, M Consuelo; de Guidi, Guido; Miranda, Miguel A

    2002-09-01

    Irradiation of rufloxacin (RF) under aerobic conditions gives rise to N-demethylation of the piperazinyl ring, which is enhanced in aerated D2O. Two primary processes seem to be involved in RF N-demethylation: photoionization from 1RF and singlet oxygen generation from 3RF. Both processes may lead to the same key intermediates, namely, RF*+ and superoxide radical anion; coupling of these intermediates explains N-demethylation of RF via an iminium cation. Formation of the hydrated electron by a monophotonic process (with a quantum yield of 0.09) is detected along with 3RF (with a intersystem-crossing quantum yield phiISC = 0.36) by laser flash photolysis. Studies performed on RF methyl ester give qualitatively similar results.

  3. Rapid detection of a gfp-marked Enterobacter aerogenes under anaerobic conditions by aerobic fluorescence recovery.

    PubMed

    Zhang, Chong; Xing, Xin-Hui; Lou, Kai

    2005-08-15

    A gfp- and kanamycin-resistance gene-containing plasmid pUCGK was successfully constructed and transformed into Enterobacter aerogenes to develop a rapid GFP-based method for quantifying the bacterial concentration under anaerobic conditions for production of biohydrogen. Since the use of GFP as a molecular reporter is restricted by its requirement for oxygen in the development of the fluorophore, fluorescence detection for the fluorescent E. aerogenes grown anaerobically for hydrogen production was performed by developing a method of aerobic fluorescence recovery (AFR) of the anaerobically expressed GFP. By using this AFR method, rapid and non-disruptive cell quantification of E. aerogenes by fluorescence density was achieved for analyzing the hydrogen production process.

  4. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.

    PubMed

    de Groot, Marco J L; Daran-Lapujade, Pascale; van Breukelen, Bas; Knijnenburg, Theo A; de Hulster, Erik A F; Reinders, Marcel J T; Pronk, Jack T; Heck, Albert J R; Slijper, Monique

    2007-11-01

    Saccharomyces cerevisiae is unique among yeasts in its ability to grow rapidly in the complete absence of oxygen. S. cerevisiae is therefore an ideal eukaryotic model to study physiological adaptation to anaerobiosis. Recent transcriptome analyses have identified hundreds of genes that are transcriptionally regulated by oxygen availability but the relevance of this cellular response has not been systematically investigated at the key control level of the proteome. Therefore, the proteomic response of S. cerevisiae to anaerobiosis was investigated using metabolic stable-isotope labelling in aerobic and anaerobic glucose-limited chemostat cultures, followed by relative quantification of protein expression. Using independent replicate cultures and stringent statistical filtering, a robust dataset of 474 quantified proteins was generated, of which 249 showed differential expression levels. While some of these changes were consistent with previous transcriptome studies, many of the responses of S. cerevisiae to oxygen availability were, to our knowledge, previously unreported. Comparison of transcriptomes and proteomes from identical cultivations yielded strong evidence for post-transcriptional regulation of key cellular processes, including glycolysis, amino-acyl-tRNA synthesis, purine nucleotide synthesis and amino acid biosynthesis. The use of chemostat cultures provided well-controlled and reproducible culture conditions, which are essential for generating robust datasets at different cellular information levels. Integration of transcriptome and proteome data led to new insights into the physiology of anaerobically growing yeast that would not have been apparent from differential analyses at either the mRNA or protein level alone, thus illustrating the power of multi-level studies in yeast systems biology.

  5. Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions.

    PubMed

    Dominguez, Silvia A; Schaffner, Donald W

    2007-12-15

    Poultry meat spoils quickly unless it is processed, stored, and distributed under refrigerated conditions. Research has shown that the microbial spoilage rate is predominantly controlled by temperature and the spoilage flora of refrigerated, aerobically-stored poultry meat is generally dominated by Pseudomonas spp. The objective of our study was to develop and validate a mathematical model that predicts the growth of Pseudomonas in raw poultry stored under aerobic conditions over a variety of temperatures. Thirty-seven Pseudomonas growth rates were extracted from 6 previously published studies. Objectives, methods and data presentation formats varied widely among the studies, but all the studies used either naturally contaminated meat or poultry or Pseudomonas isolated from meat or poultry grown in laboratory media. These extracted growth rates were used to develop a model relating growth rate of Pseudomonas to storage or incubation temperature. A square-root equation [Ratkowsky, D.A., Olley, J., McMeekin, T.A., and Ball, A., 1982. Relationship between temperature and growth rate of bacterial cultures. J. Appl. Bacteriol. 149, 1-5.] was used to model the data. Model predictions were then compared to 20 Pseudomonas and 20 total aerobes growth rate measurements collected in our laboratory. The growth rates were derived from more than 600 bacterial concentration measurements on raw poultry at 10 temperatures ranging from 0 to 25 degrees C. Visual inspection of the data and the indices of bias and accuracy factors proposed by Baranyi et al. [Baranyi, J., Pin, C., and Ross, T., 1999. Validating and comparing predictive models. Int. J. Food Micro. 48, 159-166.] were used to analyze the performance of the model. The experimental data for Pseudomonas showed a 4.8% discrepancy with the predictions and a bias of +3.6%. Percent discrepancies show close agreement between model predictions and observations, and the positive bias factor demonstrates that the proposed model over

  6. Reducing time to identification of aerobic bacteria and fastidious micro-organisms in positive blood cultures.

    PubMed

    Intra, J; Sala, M R; Falbo, R; Cappellini, F; Brambilla, P

    2016-12-01

    Rapid and early identification of micro-organisms in blood has a key role in the diagnosis of a febrile patient, in particular, in guiding the clinician to define the correct antibiotic therapy. This study presents a simple and very fast method with high performances for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after only 4 h of incubation. We used early bacterial growth on PolyViteX chocolate agar plates inoculated with five drops of blood-broth medium deposited in the same point and spread with a sterile loop, followed by a direct transfer procedure on MALDI-TOF MS target slides without additional modification. Ninety-nine percentage of aerobic bacteria were correctly identified from 600 monomicrobial-positive blood cultures. This procedure allowed obtaining the correct identification of fastidious pathogens, such as Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae that need complex nutritional and environmental requirements in order to grow. Compared to the traditional pathogen identification from blood cultures that takes over 24 h, the reliability of results, rapid performance and suitability of this protocol allowed a more rapid administration of optimal antimicrobial treatment in the patients.

  7. Evaluation of a plastic nonvented aerobic blood culture bottle for use with the BacT/ALERT microbial detection system.

    PubMed

    Snyder, J W; Munier, G K; Bostic, G D; Bozigar, P S; Hanna, R

    2002-12-01

    The current BacT/ALERT SA (BTA SA) aerobic blood culture bottle is made from glass, does not require venting, and contains a liquid emulsion sensor (LES). Its performance has been shown to be equivalent to that of the vented standard aerobic culture bottle. A further-improved version of the BTA SA bottle, designated the BacT/ALERT plastic SA (BTA PSA) culture bottle, is made from clear plastic to prevent breakage, does not require venting, and contains a modified LES (LES 2) to reduce the possibility of false positives. The BTA PSA provides a practical alternative to the current glass version of this bottle. The plastic bottle is also comparable to the current glass bottle in transparency and growth performance and additionally minimizes the exposure to infectious agents due to glass bottle breakage.

  8. Biodegradation of three- and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions

    SciTech Connect

    McNally, D.L.; Mihelcic, J.R.; Lueking, D.R.

    1998-09-01

    PAHs are thought to be particularly persistent in environments where anaerobic conditions exist. This study presents evidence for the biodegradation of three- and four-ringed PAHs (anthracene, phenanthrene, and pyrene) under strict anaerobic, denitrifying conditions. Three pseudomonad strains, isolated from contrasting environments, were used in this study. All three strains were known PAH degraders and denitrifiers. Degradation proceeded to nondetectable levels in 12--80 h for anthracene, 12--44 h for phenanthrene, and 24--72 h for pyrene. The rates of anaerobic degradation were typically slower than under aerobic conditions in almost all cases, except for strain SAG-R which had similar removal rates for all three and four-ring PAHs. Denitrification activity was verified by monitoring nitrate utilization and nitrous oxide production. Although none of the pseudomonads were adapted to the denitrifying conditions, only the pseudomonad isolated from a noncontaminated site consistently exhibited an adaptation period which approximated 12 h. This study supports growing evidence that the degradation of aromatic hydrocarbons coupled to denitrification may be an important factor affecting the fate of these compounds in natural and engineered systems.

  9. Mood after various brief exercise and sport modes: aerobics, hip-hop dancing, ice skating, and body conditioning.

    PubMed

    Kim, Sungwoon; Kim, Jingu

    2007-06-01

    To investigate the potential psychological benefits of brief exercise and sport activities on positive mood alterations, 45 Korean high school and 232 undergraduate students enrolled in physical education and stress management classes voluntarily participated and were randomly assigned to one of four activities: aerobic exercise, body conditioning, hip-hop dancing, and ice skating. Mood changes from before to after exercise (2 pm to 3 pm) were measured based on a Korean translation of the Subjective Exercise Experiences Scale. The findings suggested that the aerobics and hip-hop dancing groups rated positive well-being higher than the body conditioning and ice skating groups. Immediately after exercise, psychological distress was rated lower in the aerobics and hip-hop dancing groups, as was fatigue.

  10. Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions.

    PubMed

    Işik, Mustafa; Sponza, Delia Teresa

    2004-01-01

    Batch anaerobic and sequential anaerobic upflow anaerobic sludge blanket (UASB)/aerobic continuous stirred tank reactor (CSTR) were used to determine the color and COD removals under anaerobic/aerobic conditions. Two azo dyes namely "Reactive Black 5 (RB 5)," "Congo Red (CR)," and glucose as a carbon source were used for synthetic wastewater. The course of the decolorization process approximates to first order and zero order kinetics with respect to dye concentration for RB 5 and Congo Red azo dyes, respectively, in batch conditions. The decolorization kinetic constant (K0) values increased from 3.6 to 11.8 mg(L h)(-1) as increases in dye concentrations from 200 to 3200 mg L(-1) for CR. Increases in dye concentrations from 0 to 3200 mg L(-1) reduce the decolorization rate constant (k1) values from 0.0141 to 0.0019 h(-1) in batch studies performed with RB 5. Decolorization was achieved effectively under test conditions but ultimate decolorization of azo dyes was not observed at all dye concentrations in batch assay conditions. Dye concentrations of 100 mg L(-1) and 3000 mg L(-1) of glucose-COD containing basal medium were used for continuous studies. The effect of organic loadings and HRT, on the color removal efficiencies and methane gas productions were monitored. 94.1-45.4% COD and 79-73% color removal efficiencies were obtained at an organic system during decolorization of Reactive Black 5. 92.3-77.0% COD and 95.3-92.2% decolorization efficiencies were achieved at a organic loading rate of 1.03-6.65 kg (m3 day)(-1) and a HRT of 3.54-0.49 for Congo Red treatment. The results of this study showed that, although decolorization continued, COD removal efficiencies and methane gas production were depressed at high organic loadings under anaerobic conditions. Furthermore, VFA accumulation, alkalinity consumption, and methane gas percentage were monitored at organic loading as high as 2.49-4.74 kg (m3 day)(-1) and 24.60-30.62 kg (m3 day)(-1), respectively, through the

  11. pH-dependent degradation of p-nitrophenol by sulfidated nanoscale zerovalent iron under aerobic or anoxic conditions.

    PubMed

    Tang, Jing; Tang, Lin; Feng, Haopeng; Zeng, Guangming; Dong, Haoran; Zhang, Chang; Huang, Binbin; Deng, Yaocheng; Wang, Jiajia; Zhou, Yaoyu

    2016-12-15

    Sulfidated nanoscale zerovalent iron (S-NZVI) is attracting considerable attention due to its easy production and high reactivity to pollutants. We studied the reactivity of optimized S-NZVI (Fe/S molar ratio 6.9), comparing with pristine nanoscale zerovalent iron (NZVI), at various pH solutions (6.77-9.11) towards p-nitrophenol (PNP) under aerobic and anoxic conditions. Studies showed that the optimized extent of sulfidation could utterly enhance PNP degradation compared to NZVI. Batch experiments indicated that in anoxic S-NZVI systems the degradation rate constant increased with increasing pH up to 7.60, and then declined. However, in aerobic S-NZVI, and in anoxic or aerobic NZVI systems, it decreased as pH increased. It was manifested that anoxic S-NZVI systems preferred to weaker alkaline solutions, whereas aerobic S-NZVI systems performed better in acidic solutions. The highest TOC removal efficiency of PNP (17.59%) was achieved in the aerobic S-NZVI system at pH 6.77, revealing that oxygen improved the degradation of PNP by excessive amounts of hydroxyl radicals in slightly acidic conditions, and the TOC removal efficiency was supposed to be further improved in moderate acidic solutions. Acetic acid, a nontoxic ring opening by-product, confirms that the S-NZVI system could be a promising process for industrial wastewater containing sulfide ions.

  12. Culturing conditions determine neuronal and glial excitability.

    PubMed

    Stoppelkamp, Sandra; Riedel, Gernot; Platt, Bettina

    2010-12-15

    The cultivation of pure neuronal cultures is considered advantageous for the investigation of cell-type specific responses (such as transmitter release and also pharmacological agents), however, divergent results are a likely consequence of media modifications and culture composition. Using Fura-2 based imaging techniques, we here set out to compare calcium responses of rat hippocampal neurones and glia to excitatory stimulation with l-glutamate in different culture types and media. Neurones in neurone-enriched cultures had increased responses to 10 μM and 100 μM l-glutamate (+43 and 45%, respectively; p's< 0.001) and a slower recovery compared to mixed cultures, indicating heightened excitability. In matured (15-20 days in vitro) mixed cultures, neuronal responder rates were suppressed in a neurone-supportive medium (Neurobasal-A, NB: 65%) compared to a general-purpose medium (supplemented minimal essential medium, MEM: 96%). Glial response size in contrast did not differ greatly in isolated or mixed cultures maintained in MEM, but responder rates were suppressed in both culture types in NB (e.g. 10 μM l-glutamate responders in mixed cultures: 29% in NB, 71% in MEM). This indicates that medium composition is more important for glial excitability than the presence of neurones, whereas the presence of glia has an important impact on neuronal excitability. Therefore, careful consideration of culturing conditions is crucial for interpretation and comparison of experimental results. Especially for investigations of toxicity and neuroprotection mixed cultures may be more physiologically relevant over isolated cultures as they comprise aspects of mutual influences between glia and neurones.

  13. Sensitive and selective culture medium for detection of environmental Clostridium difficile isolates without requirement for anaerobic culture conditions.

    PubMed

    Cadnum, Jennifer L; Hurless, Kelly N; Deshpande, Abhishek; Nerandzic, Michelle M; Kundrapu, Sirisha; Donskey, Curtis J

    2014-09-01

    Effective and easy-to-use methods for detecting Clostridium difficile spore contamination would be useful for identifying environmental reservoirs and monitoring the effectiveness of room disinfection. Culture-based detection methods are sensitive for detecting C. difficile, but their utility is limited due to the requirement of anaerobic culture conditions and microbiological expertise. We developed a low-cost selective broth medium containing thioglycolic acid and l-cystine, termed C. difficile brucella broth with thioglycolic acid and l-cystine (CDBB-TC), for the detection of C. difficile from environmental specimens under aerobic culture conditions. The sensitivity and specificity of CDBB-TC (under aerobic culture conditions) were compared to those of CDBB (under anaerobic culture conditions) for the recovery of C. difficile from swabs collected from hospital room surfaces. CDBB-TC was significantly more sensitive than CDBB for recovering environmental C. difficile (36/41 [88%] versus 21/41 [51%], respectively; P = 0.006). C. difficile latex agglutination, an enzyme immunoassay for toxins A and B or glutamate dehydrogenase, and a PCR for toxin B genes were all effective as confirmatory tests. For 477 total environmental cultures, the specificity of CDBB-TC versus that of CDBB based upon false-positive yellow-color development of the medium without recovery of C. difficile was 100% (0 false-positive results) versus 96% (18 false-positive results), respectively. False-positive cultures for CDBB were attributable to the growth of anaerobic non-C. difficile organisms that did not grow in CDBB-TC. Our results suggest that CDBB-TC provides a sensitive and selective medium for the recovery of C. difficile organisms from environmental samples, without the need for anaerobic culture conditions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions.

    PubMed Central

    Kaiser, J P; Feng, Y; Bollag, J M

    1996-01-01

    Our review of the metabolic pathways of pyridines and aza-arenes showed that biodegradation of heterocyclic aromatic compounds occurs under both aerobic and anaerobic conditions. Depending upon the environmental conditions, different types of bacteria, fungi, and enzymes are involved in the degradation process of these compounds. Our review indicated that different organisms are using different pathways to biotransform a substrate. Our review also showed that the transformation rate of the pyridine derivatives is dependent on the substituents. For example, pyridine carboxylic acids have the highest transformation rate followed by mono-hydroxypyridines, methylpyridines, aminopyridines, and halogenated pyridines. Through the isolation of metabolites, it was possible to demonstrate the mineralization pathway of various heterocyclic aromatic compounds. By using 14C-labeled substrates, it was possible to show that ring fission of a specific heterocyclic compound occurs at a specific position of the ring. Furthermore, many researchers have been able to isolate and characterize the microorganisms or even the enzymes involved in the transformation of these compounds or their derivatives. In studies involving 18O labeling as well as the use of cofactors and coenzymes, it was possible to prove that specific enzymes (e.g., mono- or dioxygenases) are involved in a particular degradation step. By using H2 18O, it could be shown that in certain transformation reactions, the oxygen was derived from water and that therefore these reactions might also occur under anaerobic conditions. PMID:8840783

  15. Effect of dissolved oxygen concentration (microaerobic and aerobic) on selective enrichment culture for bioaugmentation of acidic industrial wastewater.

    PubMed

    Quan, Ying; Han, Hui; Zheng, Shaokui

    2012-09-01

    The successful application of bioaugmentation is largely dependent on the selective enrichment of culture with regards to pH, temperature, salt, or specific toxic organic pollutants. In this study, we investigated the effect of dissolved oxygen (DO) concentrations (aerobic, >2 mg L(-1); microaerobic, <1 mg L(-1)) on yeast enrichment culture for bioaugmentation of acidic industrial wastewater (pH 3.9-4.7). Clone library analyses revealed that the yeast community shifted in response to different DO levels, and that Candida humilis and Candida pseudolambica were individually dominant in the aerobic and microaerobic enrichment cultures. This would significantly influence the isolation results, and further hinder bioaugmentation due to differences in DO environments during the enrichment and application periods. However, differences in the selective enrichment culture cannot be predicted based on differences in pollutant removal performance. Thus, DO concentrations (aerobic/microaerobic) should be considered a secondary selective pressure to achieve successful bioaugmentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors.

    PubMed

    Wagner, Jamile; Weissbrodt, David Gregory; Manguin, Vincent; da Costa, Rejane Helena Ribeiro; Morgenroth, Eberhard; Derlon, Nicolas

    2015-11-15

    The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that

  17. Comparison of Sterol Import under Aerobic and Anaerobic Conditions in Three Fungal Species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae

    PubMed Central

    Zavrel, Martin; Hoot, Sam J.

    2013-01-01

    Sterol import has been characterized under various conditions in three distinct fungal species, the model organism Saccharomyces cerevisiae and two human fungal pathogens Candida glabrata and Candida albicans, employing cholesterol, the sterol of higher eukaryotes, as well as its fungal equivalent, ergosterol. Import was confirmed by the detection of esterified cholesterol within the cells. Comparing the three fungal species, we observe sterol import under three different conditions. First, as previously well characterized, we observe sterol import under low oxygen levels in S. cerevisiae and C. glabrata, which is dependent on the transcription factor Upc2 and/or its orthologs or paralogs. Second, we observe sterol import under aerobic conditions exclusively in the two pathogenic fungi C. glabrata and C. albicans. Uptake emerges during post-exponential-growth phases, is independent of the characterized Upc2-pathway and is slower compared to the anaerobic uptake in S. cerevisiae and C. glabrata. Third, we observe under normoxic conditions in C. glabrata that Upc2-dependent sterol import can be induced in the presence of fetal bovine serum together with fluconazole. In summary, C. glabrata imports sterols both in aerobic and anaerobic conditions, and the limited aerobic uptake can be further stimulated by the presence of serum together with fluconazole. S. cerevisiae imports sterols only in anaerobic conditions, demonstrating aerobic sterol exclusion. Finally, C. albicans imports sterols exclusively aerobically in post-exponential-growth phases, independent of Upc2. For the first time, we provide direct evidence of sterol import into the human fungal pathogen C. albicans, which until now was believed to be incapable of active sterol import. PMID:23475705

  18. Glutamate Impairs Mitochondria Aerobic Respiration Capacity and Enhances Glycolysis in Cultured Rat Astrocytes.

    PubMed

    Yan, Xu; Shi, Zhong Fang; Xu, Li Xin; Li, Jia Xin; Wu, Min; Wang, Xiao Xuan; Jia, Mei; Dong, Li Ping; Yang, Shao Hua; Yuan, Fang

    2017-01-01

    To study the effect of glutamate on metabolism, shifts in glycolysis and lactate release in rat astrocytes. After 10 days, secondary cultured astrocytes were treated with 1 mmol/L glutamate for 1 h, and the oxygen consumption rates (OCR) and extra cellular acidification rate (ECAR) was analyzed using a Seahorse XF 24 Extracellular Flux Analyzer. Cell viability was then evaluated by MTT assay. Moreover, changes in extracellular lactate concentration induced by glutamate were tested with a lactate detection kit. Compared with the control group, treatment with 1 mmol/L glutamate decreased the astrocytes' maximal respiration and spare respiratory capacity but increased their glycolytic capacity and glycolytic reserve. Further analysis found that 1-h treatment with different concentrations of glutamate (0.1-1 mmol/L) increased lactate release from astrocytes, however the cell viability was not affected by the glutamate treatment. The current study provided direct evidence that exogenous glutamate treatment impaired the mitochondrial respiration capacity of astrocytes and enhanced aerobic glycolysis, which could be involved in glutamate injury or protection mechanisms in response to neurological disorders. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  19. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  20. Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise.

    PubMed

    Brooks, G A

    1986-12-01

    O2 insufficiency and other factors increase the rate of lactate production. Significant quantities of lactate are produced under postabsorptive as well as postprandial conditions in resting individuals. In humans during postabsorptive rest, 25-50% of the total carbohydrate combusted appears to pass through the lactate pool. During sustained submaximal (in terms of VO2max) exercise, the rates of lactate production (Ri) and oxidation (Rox) are greatly elevated as compared to rest. However, lactate production and oxidation increase relatively less than O2 consumption during moderate-intensity exercise. Because the lactate production index (RiI = Ri/VO2) decreases during submaximal, moderate-intensity exercise compared to rest, it is concluded that skeletal muscle and other sites of lactate production are effectively oxygenated. Alterations in the levels of circulating catecholamines can affect levels and turnover rates of glucose and lactate. In pure red dog gracilis muscle in situ and in the healthy and myocardium in vivo, contraction results in glycolysis and lactate production. This production of lactate occurs despite an apparent abundance of O2. Similarly, glucose catabolism in the human brain results in lactate production. The formation of lactate under fully aerobic conditions of rest and exercise represents an important mechanism by which different tissues share a carbon source (lactate) for oxidation and other processes such as gluconeogenesis. This mechanism has been termed the lactate shuttle.

  1. Growth characteristics of freeze-tolerant baker's yeast Saccharomyces cerevisiae AFY in aerobic batch culture.

    PubMed

    Ji, Meng; Miao, Yelian; Chen, Jie Yu; You, Yebing; Liu, Feilong; Xu, Lin

    2016-01-01

    Saccharomyces cerevisiae AFY is a novel baker's yeast strain with strong freeze-tolerance, and can be used for frozen-dough processing. The present study armed to clarify the growth characteristics of the yeast AFY. Aerobic batch culture experiments of yeast AFY were carried out using media with various initial glucose concentrations, and the culture process was analyzed kinetically. The growth of the yeast AFY exhibited a diauxic pattern with the first growth stage consuming glucose and the second growth stage consuming ethanol. The cell yield decreased with increasing initial glucose concentration in the first growth stage, and also decreased with increasing initial ethanol concentration in the second growth stage. In the initial glucose concentration range of 5.0-40.0 g/L, the simultaneous equations of Monod equation, Luedeking-Piret equation and pseudo-Luedeking-Piret equation could be used to describe the concentrations of cell, ethanol and glucose in either of the two exponential growth phases. At the initial glucose concentrations of 5.0, 10.0 and 40.0 g/L, the first exponential growth phase had a maximal specific cell growth rate of 0.52, 0.98 and 0.99 h(-1), while the second exponential growth phase had a maximal specific cell growth rate of 0.11, 0.06 and 0.07 h(-1), respectively. It was indicated that the efficiency of the yeast production could be improved by reducing the ethanol production in the first growth stage.

  2. Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: Simulation and model verification

    SciTech Connect

    Pham, H.T.B.; Larsson, G.; Enfors, S.O.

    1998-11-20

    Some yeast species are classified as being glucose sensitive, which means that they may produce ethanol also under aerobic conditions when the sugar concentration is high. A kinetic model of overflow metabolism in Saccharomyces cerevisiae was used for simulation of aerobic fed-batch cultivations. An inhibitory effect of ethanol on the maximum respiration of the yeast was observed in the experiments and included in the model. The model predicts respiration, biomass, and ethanol formation and the subsequent ethanol consumption, and was experimentally validated in fed-batch cultivations. Oscillating sugar feed with resulting oscillating carbon dioxide production did not influence the maximum respiration rate, which indicates that the pyruvate dehydrogenase complex is not involved as a bottleneck causing aerobic ethanol formation.

  3. Impact of ArcA loss in Shewanella oneidensis revealed by comparative proteomics under aerobic and anaerobic conditions

    SciTech Connect

    Yuan, Jie; Wei, Buyun; Lipton, Mary S.; Gao, Haichun

    2012-06-01

    Shewanella inhabit a wide variety of niches in nature and can utilize a broad spectrum of electron acceptors under anaerobic conditions. How they modulate their gene expression to adapt is poorly understood. ArcA, homologue of a global regulator controlling hundreds of genes involved in aerobic and anaerobic respiration in E. coli, was shown to be important in aerobiosis/anaerobiosis of S. oneidensis as well. Loss of ArcA, in addition to altering transcription of many genes, resulted in impaired growth under aerobic condition, which was not observed in E. coli. To further characterize the impact of ArcA loss on gene expression on the level of proteome under aerobic and anaerobic conditions, liquid-chromatography-mass-spectrometry (LC-MS) based proteomic approach was employed. Results show that ArcA loss led to globally altered gene expression, generally consistent with that observed with transcripts. Comparison of transcriptomic and proteomic data permitted identification of 17 high-confidence ArcA targets. Moreover, our data indicate that ArcA is required for regulation of cytochrome c proteins, and the menaquinone level may play a role in regulating ArcA as in E. coli. Proteomic-data-guided growth assay revealed that the aerobic growth defect of ArcA mutant is presumably due to impaired peptide utilization.

  4. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    PubMed

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories.

  5. Mathematic modeling for optimum conditions on aflatoxin B1 degradation by the aerobic bacterium Rhodococcus erythropolis

    USDA-ARS?s Scientific Manuscript database

    Response surface methodology was employed to optimize the degradation conditions of AFB1 by Rhodococcus erythropolis in liquid culture. The most important factors that influence the degradation, as identified by a two-level Plackett-Burman design with 6 variables, were temperature, pH, liquid volume...

  6. Reductive dechlorination of trichloroethylene and tetrachloroethylene under aerobic conditions in a sediment column

    SciTech Connect

    Enzien, M.V.; Picardal, F.; Hazen, T.

    1994-06-01

    This study investigated the bioremediation of chlorinated solvents in a sediment column. Biodegradation potentials of trichloroethylene and tetrachloroethylene during aerobic methanotrophic biostimulation were studied at the Savannah River Site. 30 refs., 3 figs., 3 tabs.

  7. Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization.

    PubMed

    Joss, Adriano; Andersen, Henrik; Ternes, Thomas; Richle, Philip R; Siegrist, Hansruedi

    2004-06-01

    The removal of estrogens (estrone E1, estradiol E2, and ethinylestradiol EE2) was studied in various municipal wastewater treatment processes equipped for nutrient removal. A biological degradation model is formulated, and kinetic parameters are evaluated with batch experiments under various redox conditions. The resulting model calculations are then compared with sampling campaigns performed on differenttypes of full-scale plant: conventional activated-sludge treatment, a membrane bioreactor, and a fixed-bed reactor. The results show a > 90% removal of all estrogens in the activated sludge processes. (Due to the analytical quantification limit and low influent concentrations, however, this removal efficiency represents only an observable minimum.) The removal efficiencies of 77% and > or = 90% for E1 and E2, respectively, in the fixed-bed reactor represent a good performance in view of the short hydraulic retention time of 35 min. The first-order removal-rate constant in batch experiments observed for E2 varied from 150 to 950 d(-1) for a 1 gSS L(-1) sludge suspension. The removal efficiency of E1 and EE2 clearly depends on the redox conditions, the maximum removal rate occurring under aerobic conditions when E1 was reduced to E2. Sampling campaigns on full-scale plants indicate that the kinetic values identified in batch experiments (without substrate addition) for the natural estrogens may overestimate the actual removal rates. Although this paper does not give direct experimental evidence, it seems that the substrate present in the raw influent competitively inhibits the degradation of E1 and E2. These compounds are therefore removed mainly in activated sludge compartments with low substrate loading. Theoretical evaluation leads us to expect that diffusive mass transfer inside the floc (but not across the laminar boundary layer) appreciably influences the observed degradation rates of E1 and E2, but not of EE2.

  8. Understanding the physiological roles of polyhydroxybutyrate (PHB) in Rhodospirillum rubrum S1 under aerobic chemoheterotrophic conditions.

    PubMed

    Narancic, Tanja; Scollica, Elisa; Kenny, Shane T; Gibbons, Helena; Carr, Eibhlin; Brennan, Lorraine; Cagney, Gerard; Wynne, Kieran; Murphy, Cormac; Raberg, Matthias; Heinrich, Daniel; Steinbüchel, Alexander; O'Connor, Kevin E

    2016-10-01

    Polyhydroxybutyrate (PHB) is an important biopolymer accumulated by bacteria and associated with cell survival and stress response. Here, we make two surprising findings in the PHB-accumulating species Rhodospirillum rubrum S1. We first show that the presence of PHB promotes the increased assimilation of acetate preferentially into biomass rather than PHB. When R. rubrum is supplied with (13)C-acetate as a PHB precursor, 83.5 % of the carbon in PHB comes from acetate. However, only 15 % of the acetate ends up in PHB with the remainder assimilated as bacterial biomass. The PHB-negative mutant of R. rubrum assimilates 2-fold less acetate into biomass compared to the wild-type strain. Acetate assimilation proceeds via the ethylmalonyl-CoA pathway with (R)-3-hydroxybutyrate as a common intermediate with the PHB pathway. Secondly, we show that R. rubrum cells accumulating PHB have reduced ribulose 1,5-bisphosphate carboxylase (RuBisCO) activity. RuBisCO activity reduces 5-fold over a 36-h period after the onset of PHB. In contrast, a PHB-negative mutant maintains the same level of RuBisCO activity over the growth period. Since RuBisCO controls the redox potential in R. rubrum, PHB likely replaces RuBisCO in this role. R. rubrum is the first bacterium found to express RuBisCO under aerobic chemoheterotrophic conditions.

  9. Bioelectrochemical treatment of acid mine drainage (AMD) from an abandoned coal mine under aerobic condition.

    PubMed

    Peiravi, Meisam; Mote, Shekhar R; Mohanty, Manoj K; Liu, Jia

    2017-07-05

    In this study, a bioelectrochemical system (BES) was used to treat acid mine drainage (AMD) from an abandoned coal mine in the cathode chamber under aerobic condition. Activated sludge from a local wastewater treatment plant was used in the anode chamber of the BES to supply electrons to the treatment. After 7days, the pH of the cathode solution enhanced from 2.5 to 7.3. More than 99% of Al, Fe and Pb were removed, and removal rates of 93%, 91%, 89% and 69% were achieved for Cd, Zn, Mn and Co respectively with biocathode. Energy-dispersive X-ray spectroscopy (EDS) study revealed the deposition of the various types of metals on the cathode surface, and some metals were detected in the precipitates of the cathode chamber. The bacteria for AMD treatment was identified to be Serratia spp. using 16s rRNA gene amplification and sequencing. Scanning electron microscopy showed attached growth of the bacteria on the cathode. The bioelectrochemical treatment of the AMD was also compared with the biological treatment in a continuously stirred batch reactor (CSBR). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Carbohydrate metabolism in human platelets in a low glucose medium under aerobic conditions.

    PubMed

    Niu, X; Arthur, P; Abas, L; Whisson, M; Guppy, M

    1996-10-24

    The metabolism of human platelets has been the subject of investigation for at least three decades, at the level of basic metabolism, and because of the increasing requirement for platelet storage. Platelets are relatively active metabolically and are typical cells in terms of fuels and metabolic pathways. They contain glycogen and utilize glucose and demonstrate aerobic glycolysis and carbohydrate oxidation. Both glycolysis and carbohydrate oxidation contribute significantly to total ATP turnover, so platelets are an ideal system in which to study the partitioning of carbohydrate metabolism between the two available fuels and the two available pathways, in the presence of adequate oxygen. We have designed a system whereby we can study carbohydrate metabolism in relatively pure human platelets, under sterile conditions, over long periods. The system enables us to determine total ATP turnover and, with the aid of a mathematical model, the contribution to this turnover of glycolysis and the oxidation of glucose/glycogen and lactate. When glucose and glycogen are present, most of the glucose and glycogen utilised is converted to lactate, but lactate is being oxidised at this time. When glucose/glycogen stores are exhausted lactate oxidation continues and increases with the result that carbohydrate oxidation accounts for 41% of total ATP turnover over 48 h.

  11. Recovery of Stored Aerobic Granular Sludge and Its Contaminants Removal Efficiency under Different Operation Conditions

    PubMed Central

    Zhao, Zhiwei; Shi, Wenxin; Li, Ji

    2013-01-01

    The quick recovery process of contaminants removal of aerobic granular sludge (AGS) is complex, and the influencing factors are still not clear. The effects of dissolved oxygen (DO, air intensive aeration rate), organic loading rate (OLR), and C/N on contaminants removal characteristics of AGS and subsequently long-term operation of AGS bioreactor were investigated in this study. DO had a major impact on the recovery of AGS. The granules reactivated at air intensive aeration rate of 100 L/h achieved better settling property and contaminants removal efficiency. Moreover, protein content in extracellular polymeric substance (EPS) was almost unchanged, which demonstrated that an aeration rate of 100 L/h was more suitable for maintaining the biomass and the structure of AGS. Higher OLR caused polysaccharides content increase in EPS, and unstable C/N resulted in the overgrowth of filamentous bacteria, which presented worse NH4 +-N and PO4 3−-P removal. Correspondingly, quick recovery of contaminants removal was accomplished in 12 days at the optimized operation conditions of aeration rate 100 L/h, OLR 4 g/L·d, and C/N 100 : 10, with COD, NH4 +-N, and PO4 3−-P removal efficiencies of 87.2%, 86.9%, and 86.5%, respectively. The renovation of AGS could be successfully utilized as the seed sludge for the rapid start-up of AGS bioreactor. PMID:24106695

  12. Removal of naproxen and bezafibrate by activated sludge under aerobic conditions: kinetics and effect of substrates.

    PubMed

    Tang, Ying; Li, Xiao-Ming; Xu, Zhen-Cheng; Guo, Qing-Wei; Hong, Cheng-Yang; Bing, Yong-Xin

    2014-01-01

    Naproxen and bezafibrate fall into the category of pharmaceuticals that have been widely detected in the aquatic environment, and one of the major sources is the effluent discharge from wastewater treatment plants. This study investigated the sorption and degradation kinetics of naproxen and bezafibrate in the presence of activated sludge under aerobic conditions. Experimental results indicated that the adsorption of pharmaceuticals by activated sludge was rapid, and the relative adsorbabilities of the two-target compounds were based on their log Kow and pKa values. The adsorption data could be well interpreted by the pseudo-second-order kinetic model. The degradation process could be described by the pseudo-first-order kinetic model, whereas the pseudo-second-order kinetics were also well suited to describe the degradation process of the selected compounds at low concentrations. Bezafibrate was more easily degraded by activated sludge compared with naproxen. The spiked concentration of the two-target compounds was negatively correlated with k1 and k2s , indicating that the substrate inhibition effect occurred at the range of studied concentrations. Chemical oxygen demand (COD) did not associate with naproxen degradation; thus, COD is not an alternative method that could be applied to investigate natural organic matter's impact on degradation of pharmaceuticals by activated sludge. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. System-level approach to studying oxygen stress and acclimation of Shewanella oneidensis to growth under aerobic conditions

    NASA Astrophysics Data System (ADS)

    Beliaev, A.

    2008-12-01

    Systems-level approaches have been proven extremely useful in elucidating the mechanisms involved in stress response and acclimation of microorganisms to different environments. Recent studies of Shewanella oneidensis, a dissimilatory metal reducer catalyzing biogeochemical cycling of Fe and Mn, demonstrate that this facultatively aerobic bacterium is inhibited by high concentrations of oxygen. Physiological and genomic studies demonstrated that growth under aerobic conditions triggers autoaggregation of S. oneidensis leading to significant physiological and morphological changes which are consistent with biofilm mode of growth. Global transcriptome profiling of the aggregates revealed coordinated upregulation of various attachment and adhesion factors which is governed through coordinate regulation by the RpoS, SpoIIA, and Crp transcription factors. The aerobic aggregated cells also revealed increased expression of putative anaerobic electron transfer and homologs of metal reduction genes. The experimental evidence indicates that aggregate formation in S. oneidensis may serve as an alternative or an addition to biochemical detoxification to reduce the oxidative stress associated with production of reactive oxygen species during aerobic metabolism while facilitating the development of hypoxic conditions within the aggregate interior.

  14. Model photoautrophs isolated from a Proterozoic ocean analog - aerobic life under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Hamilton, T. L.; de Beer, D.; Klatt, J.; Macalady, J.; Weber, M.; Lott, C.; Chennu, A.

    2016-12-01

    The 1-2 billion year delay before the final rise of oxygen at the end of the Proterozoic represents an important gap in our understanding of ancient biogeochemical cycling. Primary production fueled by sulfide-dependent anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, has been invoked as a mechanism for sustaining low atmospheric O2 throughout much of the Proterozoic. However, we understand very little about photoautotrophs that inhabit Proterozoic-like environments present on Earth today. Here we report on the isolation and characterization of a cyanobacterium and a green sulfur bacterium that are the dominant members of pinnacle mats in Little Salt Spring—a karst sinkhole in Florida with perennially low levels of dissolved oxygen and sulfide. The red pinnacle mats bloom in the anoxic basin of the sinkhole and receive light that is of very poor quality to support photosynthesis. Characterization of the isolates is consistent with observations of oxygenic and anoxygenic photosynthesis in situ—both organisms perform anoxygenic photosynthesis under conditions of very low light quality and quantity. Oxygenic photosynthesis by the cyanobacterium isolate is inhibited by the presence of sulfide and under optimal light conditions, rates of anoxygenic photosynthesis are nearly double that of oxygenic photosynthesis. The green sulfur bacterium is tolerant of oxygen and has a very low affinity for sulfide. In Little Salt Spring, oxygenic photosynthesis occurs for only four hours a day and the water column remains anoxic because of a continuous supply of sulfide. Isolation and characterization of these photoautotrophs combined with our high resolution microsensor data in situ highlight microbial biogeochemical cycling in this exceptional site where aerobic microorganisms persist in a largely anoxic ecosystem.

  15. Ecology of the Microbial Community Removing Phosphate from Wastewater under Continuously Aerobic Conditions in a Sequencing Batch Reactor▿

    PubMed Central

    Ahn, Johwan; Schroeder, Sarah; Beer, Michael; McIlroy, Simon; Bayly, Ronald C.; May, John W.; Vasiliadis, George; Seviour, Robert J.

    2007-01-01

    All activated sludge systems for removing phosphate microbiologically are configured so the biomass is cycled continuously through alternating anaerobic and aerobic zones. This paper describes a novel aerobic process capable of decreasing the amount of phosphate from 10 to 12 mg P liter−1 to less than 0.1 mg P liter−1 (when expressed as phosphorus) over an extended period from two wastewaters with low chemical oxygen demand. One wastewater was synthetic, and the other was a clarified effluent from a conventional activated sludge system. Unlike anaerobic/aerobic enhanced biological phosphate removal (EBPR) processes where the organic substrates and the phosphate are supplied simultaneously to the biomass under anaerobic conditions, in this aerobic process, the addition of acetate, which begins the feed stage, is temporally separated from the addition of phosphate, which begins the famine stage. Conditions for establishing this process in a sequencing batch reactor are detailed, together with a description of the changes in poly-β-hydroxyalkanoate (PHA) and poly(P) levels in the biomass occurring under the feed and famine regimes, which closely resemble those reported in anaerobic/aerobic EBPR processes. Profiles obtained with denaturing gradient gel electrophoresis were very similar for communities fed both wastewaters, and once established, these communities remained stable over prolonged periods of time. 16S rRNA-based clone libraries generated from the two communities were also very similar. Fluorescence in situ hybridization (FISH)/microautoradiography and histochemical staining revealed that “Candidatus Accumulibacter phosphatis” bacteria were the dominant poly(P)-accumulating organisms (PAO) in both communities, with the phenotype expected for PAO. FISH also identified large numbers of betaproteobacterial Dechloromonas and alphaproteobacterial tetrad-forming organisms related to Defluviicoccus in both communities, but while these organisms assimilated

  16. Modeling the influence of varying hydraulic conditions on aerobic respiration and denitrification in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Trauth, N.; Schmidt, C.; Fleckenstein, J. H.

    2013-12-01

    Exchange of water and solutes across the stream-sediment interface is an important control for biogeochemical transformations in the hyporheic zone (HZ) with measurable impacts on nutrient cycling and solute attenuation in fluvial systems. Here we investigate the interplay between turbulent stream flow and HZ flow under various hydraulic conditions applied to two cases: a) three-dimensional generic pool-riffle sequences with different morphological properties, and b) a real mid-stream gravel-bar. Stream flow is simulated by the open source computational fluid dynamics (CFD) software OpenFOAM which provides the hydraulic head distribution at the streambed. It is sequentially coupled to the top of the groundwater model code MIN3P, simulating flow, solute transport, aerobic respiration (AR) and denitrification (DN) in the HZ. Flow in the HZ is directly influenced by the hydraulic head distribution at the streambed surface and the ambient groundwater flow. Three reactive transport scenarios are considered: 1) stream water as the primary source of dissolved oxygen (DO), nitrate (NO3) and dissolved organic carbon (DOC), 2) upwelling groundwater as an additionally source of NO3, and 3) upwelling groundwater as an additional source of DO in various concentrations. Results show an increase in hyporheic exchange flow for increasing stream discharge with a concurrent decrease in residence time. The fraction of circulating stream water through the HZ is in the range of 1x10-5 to 1x10-6 per unit stream length, decreasing with increasing discharge. Ambient groundwater flow in both the up- and downwelling direction diminishes significantly the hyporheic exchange flow and extent. Biogeochemical processes in the HZ are strongly controlled by ambient groundwater flow, even more so than by changes in stream discharge. AR and DN efficiencies of the HZ are significantly reduced by up- and downwelling groundwater and are positively correlated with median residence times. AR occurs in

  17. Physiological activities associated with biofilm growth in attached and suspended growth bioreactors under aerobic and anaerobic conditions.

    PubMed

    Naz, Iffat; Seher, Shama; Perveen, Irum; Saroj, Devendra P; Ahmed, Safia

    2015-01-01

    This research work evaluated the biofilm succession on stone media and compared the biochemical changes of sludge in attached and suspended biological reactors operated under aerobic and anaerobic conditions. Stones incubated (30±2°C) with activated sludge showed a constant increase in biofilm weight up to the fifth and seventh week time under anaerobic and aerobic conditions, respectively, where after reduction (>80%) the most probable number index of pathogen indicators on ninth week was recorded. Reduction in parameters such as biological oxygen demand (BOD) (47.7%), chemical oxygen demand (COD, 41%), nitrites (60.2%), nitrates (105.5%) and phosphates (58.9%) and increase in dissolved oxygen (176.5%) of sludge were higher in aerobic attached growth reactors as compared with other settings. While, considerable reductions in these values were also observed (BOD, 53.8%; COD, 2.8%; nitrites, 28.6%; nitrates, 31.7%; phosphates, 41.4%) in the suspended growth system under anaerobic conditions. However, higher sulphate removal was observed in suspended (40.9% and 54.9%) as compared with biofilm reactors (28.2% and 29.3%). Six weeks biofilm on the stone media showed maximum physiological activities; thus, the operational conditions should be controlled to keep the biofilm structure similar to six-week-old biofilm, and can be used in fixed biofilm reactors for wastewater treatment.

  18. Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions.

    PubMed

    Xu, Fen; Ma, Teng; Zhou, Lian; Hu, Zhifang; Shi, Liu

    2015-07-01

    This study investigated the fractionation of chromium isotopes during chromium reduction by Bacillus sp. under aerobic condition, variable carbon source (glucose) concentration (0, 0.1, 1, 2.5 and 10mM), and incubation temperatures (4, 15, 25 and 37°C). The results revealed that the δ(53)Cr values in the residual Cr(VI) increased with the degree of Cr reduction, and followed a Rayleigh fractionation model. The addition of glucose only slightly affected cell-specific Cr(VI) reduction rates (cSRR). However, the value of ε (2.00±0.21‰) in the experiments with different concentrations of glucose (0.1, 1, 2.5 and 10mM) was smaller than that from the experiment without glucose (3.74±0.16‰). The results indicated that the cell-specific reduction rate is not the sole control on the degree of isotopic fractionation, and different metabolic pathways would result in differing degrees of Cr isotopic fractionation. The cSRR decreased with decreasing temperature, showing that the values of ε were 7.62±0.36‰, 4.59±0.28‰, 3.09±0.16‰ and 1.99±0.23‰ at temperatures of 4, 15, 25 and 37°C, respectively. It shown that increasing cSRR linked to decreasing fractionations has been associated with increasing temperatures. Overall, our results revealed that temperature is a primary factor affecting Cr isotopic fractionation under microbial actions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The bifunctional aldehyde-alcohol dehydrogenase controls ethanol and acetate production in Entamoeba histolytica under aerobic conditions.

    PubMed

    Pineda, Erika; Encalada, Rusely; Olivos-García, Alfonso; Néquiz, Mario; Moreno-Sánchez, Rafael; Saavedra, Emma

    2013-01-16

    By applying metabolic control analysis and inhibitor titration we determined the degree of control (flux control coefficient) of pyruvate:ferredoxin oxidoreductase (PFOR) and bifunctional aldehyde-alcohol dehydrogenase (ADHE) over the fluxes of fermentative glycolysis of Entamoeba histolytica subjected to aerobic conditions. The flux-control coefficients towards ethanol and acetate formation determined for PFOR titrated with diphenyleneiodonium were 0.07 and 0.09, whereas for ADHE titrated with disulfiram were 0.33 and -0.19, respectively. ADHE inhibition induced significant accumulation of glycolytic intermediates and lower ATP content. These results indicate that ADHE exerts significant flux-control on the carbon end-product formation of amoebas subjected to aerobic conditions. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. A study of the thermal decomposition of adulterated cocaine samples under optimized aerobic pyrolytic conditions.

    PubMed

    Gostic, T; Klemenc, S; Stefane, B

    2009-05-30

    The pyrolysis behaviour of pure cocaine base as well as the influence of various additives was studied using conditions that are relevant to the smoking of illicit cocaine by humans. For this purpose an aerobic pyrolysis device was developed and the experimental conditions were optimized. In the first part of our study the optimization of some basic experimental parameters of the pyrolysis was performed, i.e., the furnace temperature, the sampling start time, the heating period, the sampling time, and the air-flow rate through the system. The second part of the investigation focused on the volatile products formed during the pyrolysis of a pure cocaine free base and mixtures of cocaine base and adulterants. The anaesthetics lidocaine, benzocaine, procaine, the analgesics phenacetine and paracetamol, and the stimulant caffeine were used as the adulterants. Under the applied experimental conditions complete volatilization of the samples was achieved, i.e., the residuals of the studied compounds were not detected in the pyrolysis cell. Volatilization of the pure cocaine base showed that the cocaine recovery available for inhalation (adsorbed on traps) was approximately 76%. GC-MS and NMR analyses of the smoke condensate revealed the presence of some additional cocaine pyrolytic products, such as anhydroecgonine methyl ester (AEME), benzoic acid (BA) and carbomethoxycycloheptatrienes (CMCHTs). Experiments with different cocaine-adulterant mixtures showed that the addition of the adulterants changed the thermal behaviour of the cocaine. The most significant of these was the effect of paracetamol. The total recovery of the cocaine (adsorbed on traps and in a glass tube) from the 1:1 cocaine-paracetamol mixture was found to be only 3.0+/-0.8%, versus 81.4+/-2.9% for the pure cocaine base. The other adulterants showed less-extensive effects on the recovery of cocaine, but the pyrolysis of the cocaine-procaine mixture led to the formation of some unique pyrolytic products

  1. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition.

    PubMed

    Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong

    2017-05-01

    The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has <50% sulfide removal with no elemental sulfur transformation. Under micro-aerobic condition to remove <5% sulfide by chemical oxidation pathway, 100% sulfide removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Naturally Occurring Culturable Aerobic Gut Flora of Adult Phlebotomus papatasi, Vector of Leishmania major in the Old World

    PubMed Central

    Mukhopadhyay, Jaba; Braig, Henk R.; Rowton, Edgar D.; Ghosh, Kashinath

    2012-01-01

    Background Cutaneous leishmaniasis is a neglected, vector-borne parasitic disease and is responsible for persistent, often disfiguring lesions and other associated complications. Leishmania, causing zoonotic cutaneous leishmaniasis (ZCL) in the Old World are mainly transmitted by the predominant sand fly vector, Phlebotomus papatasi. To date, there is no efficient control measure or vaccine available for this widespread insect-borne infectious disease. Methodology/Principal Findings A survey was carried out to study the abundance of different natural gut flora in P. papatasi, with the long-term goal of generating a paratransgenic sand fly that can potentially block the development of Leishmania in the sand fly gut, thereby preventing transmission of leishmania in endemic disease foci. Sand flies, in particular, P. papatasi were captured from different habitats of various parts of the world. Gut microbes were cultured and identified using 16S ribosomal DNA analysis and a phylogenetic tree was constructed. We found variation in the species and abundance of gut flora in flies collected from different habitats. However, a few Gram-positive, nonpathogenic bacteria including Bacillus flexus and B. pumilus were common in most of the sites examined. Conclusion/Significance Our results indicate that there is a wide range of variation of aerobic gut flora inhabiting sand fly guts, which possibly reflect the ecological condition of the habitat where the fly breeds. Also, some species of bacteria (B. pumilus, and B. flexus) were found from most of the habitats. Important from an applied perspective of dissemination, our results support a link between oviposition induction and adult gut flora. PMID:22629302

  3. Catalytic epoxidation activity of keplerate polyoxomolybdate nanoball toward aqueous suspension of olefins under mild aerobic conditions.

    PubMed

    Rezaeifard, Abdolreza; Haddad, Reza; Jafarpour, Maasoumeh; Hakimi, Mohammad

    2013-07-10

    Catalytic efficiency of a sphere-shaped nanosized polyoxomolybdate {Mo132} in the aerobic epoxidation of olefins in water at ambient temperature and pressure in the absence of reducing agent is exploited which resulted good-to-high yields and desired selectivity.

  4. EFFECTS OF AEROBIC CONDITIONING ON CARDIOVASCULAR SYMPATHETIC RESPONSE TO AND RECOVERY FROM CHALLENGE

    PubMed Central

    Lindgren, M; Alex, C; Shapiro, PA; McKinley, PS; Brondolo, EN; Myers, MM; Choi, CJ; Lopez-Pintado, S; Sloan, RP

    2013-01-01

    Objective Exercise has widely-documented cardioprotective effects but the mechanisms behind these effects are still poorly understood. Here, we test the hypothesis that aerobic training lowers cardiovascular sympathetic responses to and speeds recovery from challenge. Methods We conducted a randomized controlled trial contrasting aerobic versus strength training on indices of cardiac (pre-ejection period, PEP) and vascular (low-frequency blood pressure variability, LF-BPV) sympathetic responses to and recovery from psychological and orthostatic challenge in 149 young, healthy and sedentary adults. Results Aerobic and strength training did not alter PEP or LF-BPV reactivity to or recovery from challenge. Conclusions These findings, from a large randomized controlled trial using an intent-to-treat design, show that moderate aerobic exercise training has no effect on PEP and LF BPV reactivity to or recovery from psychological or orthostatic challenge. In healthy young adults, the cardioprotective effects of exercise training are unlikely to be mediated by changes in sympathetic activity. PMID:23889039

  5. BIODEGRADATION KINETICS AND TOXICITY OF VEGETABLE OIL TRIACYLGLYCEROLS UNDER AEROBIC CONDITIONS

    EPA Science Inventory

    The aerobic biodegradation of five triacylglycerols (TAGs), three liquids [triolein (OOO), trilinolein (LLL), and trilinolenin (LnLnLn)] and two solids [tripalmitin (PPP) and tristearin (SSS)] was studied in water. Respirometry tests were designed and conducted to determine the b...

  6. BIODEGRADATION KINETICS AND TOXICITY OF VEGETABLE OIL TRIACYLGLYCEROLS UNDER AEROBIC CONDITIONS

    EPA Science Inventory

    The aerobic biodegradation of five triacylglycerols (TAGs), three liquids [triolein (OOO), trilinolein (LLL), and trilinolenin (LnLnLn)] and two solids [tripalmitin (PPP) and tristearin (SSS)] was studied in water. Respirometry tests were designed and conducted to determine the b...

  7. Mathematic Modeling for Optimum Conditions on Aflatoxin B1 Degradation by the Aerobic Bacterium Rhodococcus erythropolis

    PubMed Central

    Kong, Qing; Zhai, Cuiping; Guan, Bin; Li, Chunjuan; Shan, Shihua; Yu, Jiujiang

    2012-01-01

    Response surface methodology was employed to optimize the degradation conditions of AFB1 by Rhodococcus erythropolis in liquid culture. The most important factors that influence the degradation, as identified by a two-level Plackett-Burman design with six variables, were temperature, pH, liquid volume, inoculum size, agitation speed and incubation time. Central composite design (CCD) and response surface analysis were used to further investigate the interactions between these variables and to optimize the degradation efficiency of R. erythropolis based on a second-order model. The results demonstrated that the optimal parameters were: temperature, 23.2 °C; pH, 7.17; liquid volume, 24.6 mL in 100-mL flask; inoculum size, 10%; agitation speed, 180 rpm; and incubation time, 81.9 h. Under these conditions, the degradation efficiency of R. erythropolis could reach 95.8% in liquid culture, which was increased by about three times as compared to non-optimized conditions. The result by mathematic modeling has great potential for aflatoxin removal in industrial fermentation such as in food processing and ethanol production. PMID:23202311

  8. Comparative evaluation of paired blood culture (aerobic/aerobic) and single blood culture, along with clinical importance in catheter versus peripheral line at a tertiary care hospital.

    PubMed

    Tarai, B; Das, P; Kumar, D; Budhiraja, S

    2012-01-01

    Paired blood culture (PBC) is uncommon practice in hospitals in India, leading to delayed and inadequate diagnosis. Also contamination remains a critical determinant in hampering the definitive diagnosis. To establish the need of PBC over single blood culture (SBC) along with the degree of contamination, this comparative retrospective study was initiated. We processed 2553 PBC and 4350 SBC in BacT/ALERT 3D (bioMerieux) between October 2010 and June 2011. The positive cultures were identified in VITEK 2 Compact (bioMerieux). True positivity and contaminants were also analyzed in 486 samples received from catheter and peripheral line. Out of 2553 PBC samples, positivity was seen in 350 (13.70%). In 4350 SBC samples, positivity was seen in 200 samples (4.59%). In PBC true pathogens were 267 (10.45%) and contaminants were 83 (3.25%), whereas in SBC 153 (3.51%) were true positives and contaminants were 47 (1.08%). Most of the blood cultures (99.27 %) grew within 72 h and 95.8% were isolated within 48 h. In 486 PBCs received from catheter/periphery (one each), catheter positivity was found in 85 (true positives were 48, false positives 37). In peripheral samples true positives were 50 and false positives were 8. Significantly higher positive rates were seen in PBCs compared with SBCs. Automated blood culture and identification methods significantly reduced the time required for processing of samples and also facilitated yield of diverse/rare organisms. Blood culture from catheter line had higher false positives than peripheral blood culture. Thus every positive result from a catheter must be correlated with clinical findings and requires further confirmation.

  9. Comparison of fumerate-pyruvate media and beef extract media for aerobically culturing Campylobacter species

    USDA-ARS?s Scientific Manuscript database

    Media supplemented with fumarate, pyruvate, and a vitamin-mineral solution or with beef extract were compared for the ability to support aerobic growth of Campylobacter. Basal broth composed of tryptose, yeast extract, bicarbonate, and agar was supplemented with 30 mM fumarate, 100 mM pyruvate, and ...

  10. Experiments with osteoblasts cultured under hypergravity conditions

    NASA Technical Reports Server (NTRS)

    Kacena, Melissa A.; Todd, Paul; Gerstenfeld, Louis C.; Landis, William J.

    2004-01-01

    To understand further the role of gravity in osteoblast attachment, osteoblasts were subjected to hypergravity conditions in vitro. Scanning electron microscopy of all confluent coverslips from FPA units show that the number of attached osteoblasts was similar among gravitational levels and growth durations (90 cells/microscopic field). Specifically, confluent 1.0 G control cultures contained an average of 91 +/- 8 cells/field, 3.3 G samples had 88 +/- 8 cells/field, and 4.0 G cultures averaged 90 +/- 7 cells/field. The sparsely plated cultures assessed by immunohistochemistry also had similar numbers of cells at each time point (l.0 G was similar to 3.3 and 4.0 G), but cell number changed from one time point to the next as those cells proliferated. Immunohistochemistry of centrifuged samples showed an increase in number (up to 160% increase) and thickness (up to 49% increase) of actin fibers, a decrease in intensity of fibronectin fluorescence (18-23% decrease) and an increase in number of vinculin bulbs (202-374% increase in number of vinculin bulbs/area). While hypergravity exposure did not alter the number of attached osteoblasts, it did result in altered actin, fibronectin, and vinculin elements, changing some aspects of osteoblast- substrate adhesion.

  11. Experiments with osteoblasts cultured under hypergravity conditions

    NASA Technical Reports Server (NTRS)

    Kacena, Melissa A.; Todd, Paul; Gerstenfeld, Louis C.; Landis, William J.

    2004-01-01

    To understand further the role of gravity in osteoblast attachment, osteoblasts were subjected to hypergravity conditions in vitro. Scanning electron microscopy of all confluent coverslips from FPA units show that the number of attached osteoblasts was similar among gravitational levels and growth durations (90 cells/microscopic field). Specifically, confluent 1.0 G control cultures contained an average of 91 +/- 8 cells/field, 3.3 G samples had 88 +/- 8 cells/field, and 4.0 G cultures averaged 90 +/- 7 cells/field. The sparsely plated cultures assessed by immunohistochemistry also had similar numbers of cells at each time point (l.0 G was similar to 3.3 and 4.0 G), but cell number changed from one time point to the next as those cells proliferated. Immunohistochemistry of centrifuged samples showed an increase in number (up to 160% increase) and thickness (up to 49% increase) of actin fibers, a decrease in intensity of fibronectin fluorescence (18-23% decrease) and an increase in number of vinculin bulbs (202-374% increase in number of vinculin bulbs/area). While hypergravity exposure did not alter the number of attached osteoblasts, it did result in altered actin, fibronectin, and vinculin elements, changing some aspects of osteoblast- substrate adhesion.

  12. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions.

    PubMed

    Moraitis, Christos; Curran, Brendan P G

    2010-02-01

    We have previously demonstrated that in aerobically-grown cells of the yeast Saccharomyces cerevisiae, hydrogen peroxide (H(2)O(2)) increases and ascorbic acid decreases cellular thermosensitivity, as determined by the inducibility of a heat shock (HS)-reporter gene. In this work, we reveal that the aerobic thermosensitivity of anaerobically-grown yeast cells also increases in the presence of H(2)O(2), albeit differentially between cells with two different lipid profiles. In comparison to aerobically-grown fermenting cells treated with the same H(2)O(2) concentration, both these types of anaerobically-grown cells were found to be considerably less sensitive to aerobic heat shock and considerably more thermotolerant. Paradoxically, and in contrast to ascorbate-pretreated aerobically-grown yeast cells, when anaerobically-grown cells were heat-shocked aerobically in the presence of the same ascorbic acid concentration, they exhibited increased thermosensitivity and decreased intrinsic thermotolerance with respect to their untreated counterparts. These findings are discussed with respect to what is currently known about the redox and physiological status of yeast cells grown aerobically and cells reoxygenated following anoxic growth.

  13. Effect of sludge age on population dynamics and acetate utilization kinetics under aerobic conditions.

    PubMed

    Pala-Ozkok, Ilke; Rehman, Ateequr; Kor-Bicakci, Gokce; Ural, Aslihan; Schilhabel, Markus B; Ubay-Cokgor, Emine; Jonas, Daniel; Orhon, Derin

    2013-09-01

    The study addressed acetate utilization by an acclimated mixed microbial culture under different growth conditions. It explored changes in the composition of the microbial community and variable process kinetics induced by different culture history. Sequencing batch reactors were operated at steady-state at different sludge ages of two and ten days. Microbial population structure was determined using high-throughput sequencing of 16S rRNA genes. Parallel batch experiments were conducted with acclimated biomass for respirometric analyses. A lower sludge age sustained a different community, which also reflected as variable kinetics for microbial growth and biopolymer storage. The maximum growth rate was observed to change from 3.9/d to 8.5/d and the substrate storage rate from 3.5/d to 5.9/d when the sludge age was decreased from 10 d to 2.0 d. Results challenge the basic definition of heterotrophic biomass in activated sludge models, at least by means of variable kinetics under different growth conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bioconversion of 2,4-diamino-6-nitrotoluene to a novel metabolite under anoxic and aerobic conditions.

    PubMed Central

    Gilcrease, P C; Murphy, V G

    1995-01-01

    Under nitrate-reducing, nongrowth conditions, a Pseudomonas fluorescens species reduced 2,4,6-trinitrotoluene to aminodinitrotoluenes, which were then further reduced to diaminonitrotoluenes. 2,4-Diamino-6-nitrotoluene (2,4-DANT) was further transformed to a novel metabolite, 4-N-acetylamino-2-amino-6-nitrotoluene (4-N-AcANT), while 2,6-diamino-4-nitrotoluene (2,6-DANT) was persistent. Efforts to further degrade 2,4-DANT and 2,6-DANT under aerobic, nitrogen-limited conditions were unsuccessful; 2,6-DANT remained persistent, and 2,4-DANT was again transformed to the 4-N-AcANT compound. PMID:8534088

  15. Rhythm of carbon and nitrogen fixation in unicellular cyanobacteria under turbulent and highly aerobic conditions.

    PubMed

    Krishnakumar, S; Gaudana, Sandeep B; Viswanathan, Ganesh A; Pakrasi, Himadri B; Wangikar, Pramod P

    2013-09-01

    Nitrogen fixing cyanobacteria are being increasingly explored for nitrogenase-dependent hydrogen production. Commercial success however will depend on the ability to grow these cultures at high cell densities. Photo-limitation at high cell densities leads to hindered photoautotrophic growth while turbulent conditions, which simulate flashing light effect, can lead to oxygen toxicity to the nitrogenase enzyme. Cyanothece sp. strain ATCC 51142, a known hydrogen producer, is reported to grow and fix nitrogen under moderately oxic conditions in shake flasks. In this study, we explore the growth and nitrogen fixing potential of this organism under turbulent conditions with volumetric oxygen mass transfer coefficient (KL a) values that are up to 20-times greater than in shake flasks. In a stirred vessel, the organism grows well in turbulent regime possibly due to a simulated flashing light effect with optimal growth at Reynolds number of approximately 35,000. A respiratory burst lasting for about 4 h creates anoxic conditions intracellularly with near saturating levels of dissolved oxygen in the extracellular medium. This is concomitant with complete exhaustion of intracellular glycogen storage and upregulation of nifH and nifX, the genes encoding proteins of the nitrogenase complex. Further, the rhythmic oscillations in exhaust gas CO2 and O2 profiles synchronize faithfully with those in biochemical parameters and gene expression thereby serving as an effective online monitoring tool. These results will have important implications in potential commercial success of nitrogenase-dependent hydrogen production by cyanobacteria.

  16. Cell density-correlated induction of pyruvate decarboxylase under aerobic conditions in the yeast Pichia stipitis.

    PubMed

    Mergler, M; Klinner, U

    2001-01-01

    During the aerobic batch cultivation of P. stipitis CBS 5776 with glucose, pyruvate decarboxylase was activated in a cell number-correlated manner. Activation started when a cell number between 7 x 10(7) and x 10(8) cells ml(-1) was reached and the enzyme activity increased during further cultivation. This induction might have been triggered either by an unknown quorum sensing system or by a shortage of cytoplasmic acetyl-CoA.

  17. Highly diastereoselective and regioselective copper-catalyzed nitrosoformate dearomatization reaction under aerobic-oxidation conditions.

    PubMed

    Yang, Weibo; Huang, Long; Yu, Yang; Pflästerer, Daniel; Rominger, Frank; Hashmi, A Stephen K

    2014-04-01

    An unprecedented copper-catalyzed acylnitroso dearomatization reaction, which expands the traditional acylnitroso ene reaction and acylnitroso Diels-Alder reaction to a new type of transformation, has been developed under aerobic oxidation. Intermolecular and intra-/intermolecular reaction modes demonstrate an entirely different N- or O-acylnitroso selectivity. Hence, we can utilize this reaction as a highly diastereoselective access to a series of new pyrroloindoline derivatives, which are important structural motifs for natural-product synthesis.

  18. Effects of aerobic conditioning and strength training on a child with Down syndrome: a case study.

    PubMed

    Lewis, Cynthia L; Fragala-Pinkham, Maria A

    2005-01-01

    To determine the effects of a home exercise program of combined aerobic and strength training on fitness with a 10.5-year-old girl with Down syndrome (DS). Measurements included cardiovascular variables, strength, body composition, flexibility, and skill. The subject participated in a home exercise program: 30 to 60 minutes of moderate- to high-intensity exercise five to six days per week for six weeks. The cardiovascular variables monitored were heart rate, respiration rate, and oxygen consumption during a submaximal treadmill stress test. Other measures included 10-repetition maximal strength of selected muscle groups, body mass index, flexibility, Gross Motor Scales of the Bruininks-Oseretsky Test of Motor Proficiency, and anaerobic muscle power. Improvements in submaximal heart and respiration rates, aerobic performance, muscle strength and endurance, gross motor skills, and anaerobic power were observed for this subject. Body weight and flexibility were unchanged. For this subject, a combined aerobic and strength-training program resulted in improved cardiopulmonary functions not observed in previous studies of subjects with DS.

  19. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    PubMed Central

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852

  20. Antimicrobial therapy and aerobic bacteriologic culture patterns in canine intensive care unit patients: 74 dogs (January-June 2006).

    PubMed

    Black, Dorothy M; Rankin, Shelley C; King, Lesley G

    2009-10-01

    Describe antimicrobial therapy and aerobic bacteriologic culture patterns in canine intensive care unit (ICU) patients in a university hospital. Retrospective descriptive. A tertiary university referral hospital. Seventy-four canine ICU patients. From January to June 2006 patient antimicrobial use, minimum inhibitory concentration (MIC) results, and clinical data were recorded. Appropriate antimicrobial use was analyzed relative to the time of culture submission and MIC results. Mean+/-SD age was 7.2+/-4.2 years. Median (range) length of ICU and hospital stays were 3 days (1-25 d) and 4 days (1-27 d), respectively. A total of 106 cultures were submitted; 47 of 106 (44%) cultures were positive for 70 isolates, including Escherichia coli (16/70 [23%]), Staphylococcus intermedius (7/70 [10%]), and Acinetobacter baumannii (5/70 [7%]). A multidrug resistant pattern occurred in 19 of 70 (27%) isolates, and was significantly more likely after 48 hours of hospitalization (P<0.001). Antimicrobials were administered before culture submission in 42 of 74 dogs (57%) and included enrofloxacin (23/42 [55%]), ampicillin (20/42 [48%]), and amoxicillin/clavulanic acid (8/42 [19%]). Antimicrobial choices were appropriate 19% of the time. While pending culture results, antimicrobials were administered to 67 of 72 (94%) dogs remaining alive, and were appropriate 75% of the time. The most common antimicrobials administered while awaiting culture results were ampicillin (52/67 [78%]), enrofloxacin (49/67 [73%]), and amikacin (9/67 [13%]). Post-MIC antimicrobials were appropriate 89% of the time. Of 45 dogs remaining alive, 17 (37%) continued to receive antimicrobials despite negative cultures. Antimicrobial use was extensive in this patient population, but when available, MIC results were used to guide antimicrobial therapy. Many patients with negative cultures continued to receive antimicrobial therapy. Multidrug resistant bacteria were more likely in cultures taken after 48 hours of

  1. Metabolite analysis of Mycobacterium species under aerobic and hypoxic conditions reveals common metabolic traits.

    PubMed

    Drapal, Margit; Wheeler, Paul R; Fraser, Paul D

    2016-08-01

    A metabolite profiling approach has been implemented to elucidate metabolic adaptation at set culture conditions in five Mycobacterium species (two fast- and three slow-growing) with the potential to act as model organisms for Mycobacterium tuberculosis (Mtb). Analysis has been performed over designated growth phases and under representative environments (nutrient and oxygen depletion) experienced by Mtb during infection. The procedure was useful in determining a range of metabolites (60-120 compounds) covering nucleotides, amino acids, organic acids, saccharides, fatty acids, glycerols, -esters, -phosphates and isoprenoids. Among these classes of compounds, key biomarker metabolites, which can act as indicators of pathway/process activity, were identified. In numerous cases, common metabolite traits were observed for all five species across the experimental conditions (e.g. uracil indicating DNA repair). Amino acid content, especially glutamic acid, highlighted the different properties between the fast- and slow-growing mycobacteria studied (e.g. nitrogen assimilation). The greatest similarities in metabolite composition between fast- and slow-growing mycobacteria were apparent under hypoxic conditions. A comparison to previously reported transcriptomic data revealed a strong correlation between changes in transcription and metabolite content. Collectively, these data validate the changes in the transcription at the metabolite level, suggesting transcription exists as one of the predominant modes of cellular regulation in Mycobacterium. Sectors with restricted correlation between metabolites and transcription (e.g. hypoxic cultivation) warrant further study to elucidate and exploit post-transcriptional modes of regulation. The strong correlation between the laboratory conditions used and data derived from in vivo conditions, indicate that the approach applied is a valuable addition to our understanding of cell regulation in these Mycobacterium species.

  2. Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor.

    PubMed

    Yu, Hao; Chen, Chuan; Ma, Jincai; Xu, Xijun; Fan, Ronggui; Wang, Aijie

    2014-05-01

    Limited oxygen supply to anaerobic wastewater treatment systems had been demonstrated as an effective strategy to improve elemental sulfur (S(0)) recovery, coupling sulfate reduction and sulfide oxidation. However, little is known about the impact of dissolved oxygen (DO) on the microbial functional structures in these systems. We used a high throughput tool (GeoChip) to evaluate the microbial community structures in a biological desulfurization reactor under micro-aerobic conditions (DO: 0.02-0.33 mg/L). The results indicated that the microbial community functional compositions and structures were dramatically altered with elevated DO levels. The abundances of dsrA/B genes involved in sulfate reduction processes significantly decreased (p < 0.05, LSD test) at relatively high DO concentration (DO: 0.33 mg/L). The abundances of sox and fccA/B genes involved in sulfur/sulfide oxidation processes significantly increased (p < 0.05, LSD test) in low DO concentration conditions (DO: 0.09 mg/L) and then gradually decreased with continuously elevated DO levels. Their abundances coincided with the change of sulfate removal efficiencies and elemental sulfur (S(0)) conversion efficiencies in the bioreactor. In addition, the abundance of carbon degradation genes increased with the raising of DO levels, showing that the heterotrophic microorganisms (e.g., fermentative microorganisms) were thriving under micro-aerobic condition. This study provides new insights into the impacts of micro-aerobic conditions on the microbial functional structure of sulfate-reducing sulfur-producing bioreactors, and revealed the potential linkage between functional microbial communities and reactor performance. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans Under Aerobic vs. Denitrifying Conditions

    SciTech Connect

    Beller, H R; Letain, T E; Chakicherla, A; Kane, S R; Legler, T C; Coleman, M A

    2006-04-22

    Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with ke chemolithoautotrophic functions (such as sulfur-compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately ten percent of the genome) as differentially expressed using Robust Multi-array Average statistical analysis and a 2-fold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated respectively with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur-compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription, quantitative PCR analysis was used to validate these trends.

  4. Influence of operational conditions on the stability of aerobic granules from the perspective of quorum sensing.

    PubMed

    Zhang, Chen; Sun, Supu; Liu, Xiang; Wan, Chunli; Lee, Duu-Jong

    2017-03-01

    Integrated aerobic granules were first cultivated in two sequencing batch reactors (SBRs) (A1 and A2). Then, A1's influent organic loading rate (OLR) was changed from alternating to constant (cycling time was still 6 h), while A2's cycling time varied from 6 to 4 h (influent OLR strategy remained alternating). After 30-day operation since the manipulative alternations, granule breakage happened in two reactors at different operational stages, along with the decrease of granule intensity. Granule diameter in A1 declined from the original 0.84 to 0.32 cm during the whole operation, while granules in A2 dwindled to 0.31 cm on day 22 with similar size to A1. Both the amount of total extracellular polymeric substances (EPSs) and the protein were declining throughout the operation, and the large molecular weight of protein was considered closely related to the stability of aerobic granules. The relative AI-2 level decreased at the same time, and influent OLR strategy might had more evident impact on quorum sensing (QS) ability of sludge compared with starvation period. Combined with microbial results, the decline of total EPS amount in two reactors could be concluded as follows: During the reactor operation, some functional bacteria gradually lost their dominance and were eliminated from the reactors, which finally caused granule disintegration. In summary, the results further confirmed that alternating OLR and proper starvation period were two major factors in effective cultivation and stability of aerobic granules from the perspective of QS.

  5. The preferential growth of branched GDGT source microorganisms under aerobic conditions in peat revealed by stable isotope probing experiments

    NASA Astrophysics Data System (ADS)

    Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Derenne, Sylvie; Hinrichs, Kai-Uwe

    2016-04-01

    Branched glycerol dialkyl glycerol tetraether (brGDGTs) membrane lipids are widely distributed in aquatic and terrestrial environments and are being increasingly used as temperature proxies. Nevertheless, little is known regarding the microorganisms that produce these lipids, which are found in especially high abundance in the anaerobic horizons of peat bogs. We initiated stable isotope probing incubations of peat samples from a Sphagnum-dominated peatland (Jura Mountains, France) to measure the incorporation of (D)-D2O and 13C-labeled dissolved inorganic carbon (DIC) into brGDGTs, and thus gauge the activity, growth, and turnover times of their source organisms. Peat samples were collected from two adjacent sites with contrasting humidity levels (hereafter called "fen" and "bog" sites). For each site, samples from the surficial aerobic layer (acrotelm) and deeper anaerobic layer (catotelm) were collected and were incubated under both anaerobic and aerobic conditions for the acrotelm samples and only anaerobic conditions for the catotelm. The incubations were performed at 12 ° C, consistent with the mean summer air temperature at the sampling site. After two months of incubation, there was no incorporation of 13C label in brGDGTs for samples incubated under either aerobic or anaerobic conditions, showing that brGDGT-producing bacteria are heterotrophic microorganisms, as previously observed in organo-mineral soils (Weijers et al., 2011). Similarly, little to no deuterium incorporation was observed for brGDGTs isolated from anaerobically-incubated deep samples. In contrast, in the aerobic incubations of acrotelm samples from bog and fen, the weighted average δD of brGDGT core lipids (CLs) increased by up to 3332‰ and 933‰ after two months, respectively, indicating that fresh brGDGT CLs were biosynthesized at the peat surface. D incorporation into brGDGT CLs converted to production rates ranging from 30-106 ng cm-3y-1 in the aerobic acrotelm from bog and fen

  6. Influence of ammonium on the accumulation of polyhydroxybutyrate (PHB) in aerobic open mixed cultures.

    PubMed

    Johnson, Katja; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2010-05-17

    Mixed microbial cultures enriched in feast-famine sequencing batch reactors (SBRs) can accumulate large amounts of the bioplastic PHB under conditions of ammonium starvation. If waste streams are to be used as a substrate, nutrient starvation may not always be achievable. The aim of this study was to investigate the influence of ammonium on PHB production in the PHB production stage of the process. The biomass was enriched in an acetate-fed (carbon limited) feast-famine SBR operated at 30 degrees C, 1-d sludge residence time and with a cycle length of 12h. The biomass was used in three fed-batch experiments with medium C/N ratios of infinity (ammonium starvation), 40 Cmol Nmol(-1) (ammonium limitation) and 8 Cmol Nmol(-1) (ammonium excess) and acetate as the carbon source. Under conditions of ammonium starvation the biomass reached a maximum PHB content of 89 wt% after 7.6h, under ammonium limitation 77 wt% after 9.3h and under ammonium excess 69 wt% after 4.4h. PHB contents decreased after these maxima were reached. PHB production slowed down more with time with larger ammonium availability. Growth led to a dilution of the PHB pool after the maximum PHB content was reached. Nutrient starvation seems thus to be the best strategy for maximal PHB production.

  7. Homeostasis of metabolites in Escherichia coli on transition from anaerobic to aerobic conditions and the transient secretion of pyruvate

    PubMed Central

    Yasid, Nur Adeela; Rolfe, Matthew D.; Green, Jeffrey

    2016-01-01

    We have developed a method for rapid quenching of samples taken from chemostat cultures of Escherichia coli that gives reproducible and reliable measurements of extracellular and intracellular metabolites by 1H NMR and have applied it to study the major central metabolites during the transition from anaerobic to aerobic growth. Almost all metabolites showed a gradual change after perturbation with air, consistent with immediate inhibition of pyruvate formate-lyase, dilution of overflow metabolites and induction of aerobic enzymes. Surprisingly, although pyruvate showed almost no change in intracellular concentration, the extracellular concentration transiently increased. The absence of intracellular accumulation of pyruvate suggested that one or more glycolytic enzymes might relocate to the cell membrane. To test this hypothesis, chromosomal pyruvate kinase (pykF) was modified to express either PykF-green fluorescent protein or PykF-FLAG fusion proteins. Measurements showed that PykF-FLAG relocates to the cell membrane within 5 min of aeration and then slowly returns to the cytoplasm, suggesting that on aeration, PykF associates with the membrane to facilitate secretion of pyruvate to maintain constant intracellular levels. PMID:27853594

  8. Characterisation of initial fouling in aerobic submerged membrane bioreactors in relation to physico-chemical characteristics under different flux conditions.

    PubMed

    Ng, Tze Chiang Albert; Ng, How Yong

    2010-04-01

    The initial fouling characteristics of aerobic submerged membrane bioreactors (MBRs) were analysed under different flux conditions. Physico-chemical analyses of the mixed liquor hinted that carbohydrates were more important to membrane fouling than proteins. However, this contrasted with the characterisation of foulants on the membrane surfaces. Micro-structural analyses of the foulants on the membrane surfaces showed that the dominant foulants were different under different flux conditions. Membrane fouling occurred through a biofilm-dominated process under lower flux conditions, but the mechanism shifted towards a non-biofilm, organic fouling process as the flux was increased. In spite of the differences in fouling mechanisms, it was found that the protein fraction on the membrane surfaces, in the initial stages of MBR operations, had the greatest impact in the rise of transmembrane pressure. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  9. Screening and enumeration of lactic acid bacteria in milk using three different culture media in Petrifilm Aerobic Count plates and conventional pour plate methodology.

    PubMed

    Ortolani, Maria B T; Viçosa, Gabriela N; Beloti, Vanerli; Nero, Luís A

    2007-11-01

    This study aimed to compare Petrifilm Aerobic Count (AC) plates and the conventional pour plate methodology using de Mann-Rogosa-Sharpe (MRS), Kang-Fung (KF) and Kang-Fung-Sol (KFS) culture media for screening and enumeration of lactic acid bacteria (LAB) in milk. Suspensions of 10 LAB species in reconstituted powder skim milk and 30 raw milk samples, without experimental inoculation, were tested. For selective enumeration, all samples were previously diluted in MRS, KF and KFS broths and then plated in Petrifilm AC and conventional pour plate methodology, using the same culture media with added agar. All plates were incubated at 37 degrees C for 48 h in anaerobic conditions. Differences in the counts were observed only for raw milk samples using KFS in conventional methodology, when compared with the counts obtained from MRS and KF (P0.05). The results showed excellent correlation indexes between both methodologies using the three culture media for LAB suspensions (r=0.97 for MRS, KF and KFS). For raw milk samples, the correlation indexes were excellent (r=0.97, for MRS) and good (r=0.84 for KF, and r=0.82 for KFS), showing some interference in Petrifilm AC when supplements were added, especially lactic acid. These results indicate the possibility of using Petrifilm AC plates for enumeration of LAB in milk, even with the use of selective supplements.

  10. Intense Exercise and Aerobic Conditioning Associated with Chromium or L-Carnitine Supplementation Modified the Fecal Microbiota of Fillies.

    PubMed

    Almeida, Maria Luiza Mendes de; Feringer, Walter Heinz; Carvalho, Júlia Ribeiro Garcia; Rodrigues, Isadora Mestriner; Jordão, Lilian Rezende; Fonseca, Mayara Gonçalves; Carneiro de Rezende, Adalgiza Souza; de Queiroz Neto, Antonio; Weese, J Scott; Costa, Márcio Carvalho da; Lemos, Eliana Gertrudes de Macedo; Ferraz, Guilherme de Camargo

    2016-01-01

    Recent studies performed in humans and rats have reported that exercise can alter the intestinal microbiota. Athletic horses perform intense exercise regularly, but studies characterizing horse microbiome during aerobic conditioning programs are still limited. Evidence has indicated that this microbial community is involved in the metabolic homeostasis of the host. Research on ergogenic substances using new sequencing technologies have been limited to the intestinal microbiota and there is a considerable demand for scientific studies that verify the effectiveness of these supplements in horses. L-carnitine and chromium are potentially ergogenic substances for athletic humans and horses since they are possibly able to modify the metabolism of carbohydrates and lipids. This study aimed to assess the impact of acute exercise and aerobic conditioning, associated either with L-carnitine or chromium supplementation, on the intestinal microbiota of fillies. Twelve "Mangalarga Marchador" fillies in the incipient fitness stage were distributed into four groups: control (no exercise), exercise, L-carnitine (10g/day) and chelated chromium (10mg/day). In order to investigate the impact of acute exercise or aerobic conditioning on fecal microbiota all fillies undergoing the conditioning program were analyzed as a separate treatment. The fillies underwent two incremental exercise tests before and after training on a treadmill for 42 days at 70-80% of the lactate threshold intensity. Fecal samples were obtained before and 48 h after acute exercise (incremental exercise test). Bacterial populations were characterized by sequencing the V4 region of the 16S rRNA gene using the MiSeq Illumina platform, and 5,224,389 sequences were obtained from 48 samples. The results showed that, overall, the two most abundant phyla were Firmicutes (50.22%) followed by Verrucomicrobia (15.13%). The taxa with the highest relative abundances were unclassified Clostridiales (17.06%) and "5 genus

  11. Intense Exercise and Aerobic Conditioning Associated with Chromium or L-Carnitine Supplementation Modified the Fecal Microbiota of Fillies

    PubMed Central

    Feringer, Walter Heinz; Carvalho, Júlia Ribeiro Garcia; Rodrigues, Isadora Mestriner; Jordão, Lilian Rezende; Fonseca, Mayara Gonçalves; Carneiro de Rezende, Adalgiza Souza; de Queiroz Neto, Antonio; Weese, J. Scott; da Costa, Márcio Carvalho

    2016-01-01

    Recent studies performed in humans and rats have reported that exercise can alter the intestinal microbiota. Athletic horses perform intense exercise regularly, but studies characterizing horse microbiome during aerobic conditioning programs are still limited. Evidence has indicated that this microbial community is involved in the metabolic homeostasis of the host. Research on ergogenic substances using new sequencing technologies have been limited to the intestinal microbiota and there is a considerable demand for scientific studies that verify the effectiveness of these supplements in horses. L-carnitine and chromium are potentially ergogenic substances for athletic humans and horses since they are possibly able to modify the metabolism of carbohydrates and lipids. This study aimed to assess the impact of acute exercise and aerobic conditioning, associated either with L-carnitine or chromium supplementation, on the intestinal microbiota of fillies. Twelve “Mangalarga Marchador” fillies in the incipient fitness stage were distributed into four groups: control (no exercise), exercise, L-carnitine (10g/day) and chelated chromium (10mg/day). In order to investigate the impact of acute exercise or aerobic conditioning on fecal microbiota all fillies undergoing the conditioning program were analyzed as a separate treatment. The fillies underwent two incremental exercise tests before and after training on a treadmill for 42 days at 70–80% of the lactate threshold intensity. Fecal samples were obtained before and 48 h after acute exercise (incremental exercise test). Bacterial populations were characterized by sequencing the V4 region of the 16S rRNA gene using the MiSeq Illumina platform, and 5,224,389 sequences were obtained from 48 samples. The results showed that, overall, the two most abundant phyla were Firmicutes (50.22%) followed by Verrucomicrobia (15.13%). The taxa with the highest relative abundances were unclassified Clostridiales (17.06%) and "5 genus

  12. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions.

    PubMed

    Ko, Yeounjoo; Ashok, Somasundar; Ainala, Satish Kumar; Sankaranarayanan, Mugesh; Chun, Ah Yeong; Jung, Gyoo Yeol; Park, Sunghoon

    2014-12-01

    Coenzyme B12 (Vitamin B12 ) is one of the most complex biomolecules and an essential cofactor required for the catalytic activity of many enzymes. Pseudomonas denitrificans synthesizes coenzyme B12 in an oxygen-dependent manner using a pathway encoded by more than 25 genes that are located in six different operons. Escherichia coli, a robust and suitable host for metabolic engineering was used to produce coenzyme B12 . These genes were cloned into three compatible plasmids and expressed heterologously in E. coli BL21 (DE3). Real-time PCR, SDS-PAGE analysis and bioassay showed that the recombinant E. coli expressed the coenzyme B12 synthetic genes and successfully produced coenzyme B12 . However, according to the quantitative determination by inductively coupled plasma-mass spectrometry, the amount of coenzyme B12 produced by the recombinant E. coli (0.21 ± 0.02 μg/g cdw) was approximately 13-fold lower than that by P. denitrificans (2.75 ± 0.22 μg/g cdw). Optimization of the culture conditions to improve the production of coenzyme B12 by the recombinant E. coli was successful, and the highest titer (0.65 ± 0.03 μg/g cdw) of coenzyme B12 was obtained. Interestingly, although the synthesis of coenzyme B12 in P. denitrificans is strictly oxygen-dependent, the recombinant E. coli could produce coenzyme B12 under anaerobic conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. SBA-15-functionalized 3-oxo-ABNO as recyclable catalyst for aerobic oxidation of alcohols under metal-free conditions.

    PubMed

    Karimi, Babak; Farhangi, Elham; Vali, Hojatollah; Vahdati, Saleh

    2014-09-01

    The nitroxyl radical 3-oxo-9-azabicyclo [3.3.1]nonane-N-oxyl (3-oxo-ABNO) has been prepared using a simple protocol. This organocatalyst is found to be an efficient catalyst for the aerobic oxidation of a wide variety of alcohols under metal-free conditions. In addition, the preparation and characterization of a supported version of 3-oxo-ABNO on ordered mesoporous silica SBA-15 (SABNO) is described for the first time. The catalyst has been characterized using several techniques including simultaneous thermal analysis (STA), transmission electron microscopy (TEM), and nitrogen sorption analysis. This catalyst exhibits catalytic performance comparable to its homogeneous analogue and much superior catalytic activity in comparison with (2,2,6,6-tetramethylpiperidin-1-yl)oxy (TEMPO) for the aerobic oxidation of almost the same range of alcohols under identical reaction conditions. It is also found that SABNO can be conveniently recovered and reused at least 12 times without significant effect on its catalytic efficiency.

  14. Improved conditions for murine epidermal cell culture.

    PubMed

    Fischer, S M; Viaje, A; Harris, K L; Miller, D R; Bohrman, J S; Slaga, T J

    1980-02-01

    An improved method for cultivating newborn mouse epidermal cells has been developed that increases the longevity, epithelial nature and efficiency of cell-line establishment. The use of Super Medium, an enriched Waymouth's formulation, increased proliferation for long periods of time, as did incubation at 31 degrees C rather than 37 degrees C. The fetal bovine serum requirement was found to be reduced at the lower temperature. An increase in labeling indices was seen when epidermal growth factor (EGF) or the cyclic nucleotides were added and the presence of EGF receptors was determined. Of the prostaglandins (PG) examined, PGE1 and PGE2 produced the greatest increase in DNA synthesis. The PG precursors, arachidonic and 8,11,14-eicosatrienoic acid, were also greatly stimulatory. The use of a lethally irradiated 3T3 feeder layer at 31 degrees C proved superior in maintenance of an epithelial morphology. Subculturable cell lines were established much more readily and reproducibly in carcinogen-treated cultures grown under the improved conditions.

  15. Dietary citrus pulp improves protein stability in lamb meat stored under aerobic conditions.

    PubMed

    Gravador, Rufielyn S; Jongberg, Sisse; Andersen, Mogens L; Luciano, Giuseppe; Priolo, Alessandro; Lund, Marianne N

    2014-06-01

    The antioxidant effects of dried citrus pulp on proteins in lamb meat, when used as a replacement of concentrate in the feed, was studied using meat from 26 male Comisana lambs. The lambs of age 90 days had been grouped randomly to receive one of the three dietary treatments: (1) commercial concentrate with 60% barley (Control, n=8), (2) concentrate with 35% barley and 24% citrus pulp (Cp24, n=9), or (3) concentrate with 23% barley and 35% citrus pulp (Cp35, n=9). Slices from the longissimus thoracis et lomborum muscle were packed aerobically and stored for up to 6days at 4°C in the dark. The citrus pulp groups, Cp24 and Cp35, significantly decreased protein radicals and carbonyls, and preserved more thiols within six days of storage compared to the Control group. The citrus pulp groups significantly slowed down the rate of protein oxidation, indicating that dietary citrus pulp reduced oxidative changes in meat proteins.

  16. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions

    PubMed Central

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer’s plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  17. Constraints in the colonization of natural and engineered subterranean igneous rock aquifers by aerobic methane-oxidizing bacteria inferred by culture analysis.

    PubMed

    Chi Fru, E

    2008-08-01

    The aerobic methane-oxidizing bacteria (MOB) are suggested to be important for the removal of oxygen from subterranean aquifers that become oxygenated by natural and engineering processes. This is primarily because MOB are ubiquitous in the environment and in addition reduce oxygen efficiently. The biogeochemical factors that will control the success of the aerobic MOB in these kinds of underground aquifers remain unknown. In this study, viable and cultivable MOB occurring at natural and engineered deep granitic aquifers targeted for the disposal of spent nuclear fuel (SNF) in the Fennoscandian Shield (approximately 3-1000 m) were enumerated. The numbers were correlated with in situ salinity, methane concentrations, conductivity, pH, and depth. A mixed population habiting freshwater aquifers (approximately 3-20 m), a potential source for the inoculation of MOB into the deeper aquifers was tested for tolerance to NaCl, temperature, pH, and an ability to produce cysts and exospores. Extrapolations show that due to changing in situ parameters (salinity, conductivity, and pH), the numbers of MOB in the aquifers dropped quickly with depth. A positive correlation between the most probable numbers of MOB and methane concentrations was observed. Furthermore, the tolerance-based tests of cultured strains indicated that the MOB in the shallow aquifers thrived best in mesophilic and neutrophilic conditions as opposed to the hyperthermophilic and alkaliphilic conditions expected to develop in an engineered subterranean SNF repository. Overall, the survival of the MOB both quantitatively and physiologically in the granitic aquifers was under the strong influence of biogeochemical factors that are strongly depth-dependent.

  18. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  19. QuadraPure-Supported Palladium Nanocatalysts for Microwave-Promoted Suzuki Cross-Coupling Reaction under Aerobic Condition

    PubMed Central

    Loh, Poh Lee; Juan, Joon Ching; Yarmo, Mohd Ambar; Yusop, Rahimi M.

    2014-01-01

    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4–10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity. PMID:25054185

  20. QuadraPure-supported palladium nanocatalysts for microwave-promoted Suzuki cross-coupling reaction under aerobic condition.

    PubMed

    Liew, Kin Hong; Loh, Poh Lee; Juan, Joon Ching; Yarmo, Mohd Ambar; Yusop, Rahimi M

    2014-01-01

    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4-10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity.

  1. Conditioning Factors of an Organizational Learning Culture

    ERIC Educational Resources Information Center

    Rebelo, Teresa Manuela; Gomes, Adelino Duarte

    2011-01-01

    Purpose: The aim of this study is to assess the relationship between some variables (organizational structure, organizational dimension and age, human resource characteristics, the external environment, strategy and quality) and organizational learning culture and evaluate the way they interact with this kind of culture.…

  2. Conditioning Factors of an Organizational Learning Culture

    ERIC Educational Resources Information Center

    Rebelo, Teresa Manuela; Gomes, Adelino Duarte

    2011-01-01

    Purpose: The aim of this study is to assess the relationship between some variables (organizational structure, organizational dimension and age, human resource characteristics, the external environment, strategy and quality) and organizational learning culture and evaluate the way they interact with this kind of culture.…

  3. Time-to-positivity-based discrimination between Enterobacteriaceae, Pseudomonas aeruginosa and strictly anaerobic Gram-negative bacilli in aerobic and anaerobic blood culture vials.

    PubMed

    Defrance, Gilles; Birgand, Gabriel; Ruppé, Etienne; Billard, Morgane; Ruimy, Raymond; Bonnal, Christine; Andremont, Antoine; Armand-Lefèvre, Laurence

    2013-05-01

    Time-to-positivity (TTP) of first positive blood cultures growing Gram-negative bacilli (GNB) was investigated. When anaerobic vials were positive first, TTP ≤ 18 h differentiated Enterobacteriaceae from strict anaerobic Gram-negative bacilli (PPV 98.8%). When the aerobic ones were first, TTP ≤ 13 h differentiated Enterobacteriaceae from Pseudomonas aeruginosa and other GNB (PPV 80.8%).

  4. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions

    PubMed Central

    Takahashi, Hirokazu; Yamauchi, Takaki; Rajhi, Imene; Nishizawa, Naoko K.; Nakazono, Mikio

    2015-01-01

    Background and Aims Internal aeration is important for plants to survive during periods of waterlogging, and the ability to form aerenchyma contributes by creating a continuous gas space between the shoots and the roots. Roots of maize (Zea mays) react to prolonged waterlogging by forming aerenchyma in root cortical cells by programmed cell death (PCD) in response to ethylene. The aim of this study was to understand the molecular mechanisms of ethylene-induced aerenchyma formation by identifying genes that are either up- or downregulated by ethylene treatment in maize root cortical cells. Methods Three-day-old maize seedlings were treated with ethylene for several hours under aerobic conditions. Cortical cells were isolated from the primary roots using laser microdissection (LM), and transcript profiles with and without ethylene treatment were compared by microarray. In addition, the effect on ethylene-induced aerenchyma formation of diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, was examined in order to assess the involvement of reactive oxygen species (ROS). Key Results A total of 223 genes were identified whose transcript levels were significantly increased or decreased by ethylene treatment in root cortical cells under aerobic conditions. Subsequent tissue-specific quantitative reverse-transcription PCR analyses revealed that ethylene increased the transcript levels of genes related to ethylene signalling in all of the root tissues examined (stelar cells, cortical cells and outer cell layers), whereas it increased the transcript levels of genes related to cell wall modification and proteolysis specifically in the cortical cells. DPI treatment inhibited the ethylene-induced aerenchyma formation and suppressed expression of some cell wall modification-related genes. Conclusions Several genes related to cell wall modification and proteolysis are specifically up- or downregulated in cortical cells during lysigenous aerenchyma formation under aerobic

  5. Biodegradation of Benzene by Halophilic and Halotolerant Bacteria under Aerobic Conditions

    PubMed Central

    A. Nicholson, Carla; Z. Fathepure, Babu

    2004-01-01

    A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment. PMID:14766609

  6. Microbiological Degradation of Malodorous Substances of Swine Waste under Aerobic Conditions

    PubMed Central

    Bourque, Denis; Bisaillon, Jean-Guy; Beaudet, Réjean; Sylvestre, M.; Ishaque, Muhammad; Morin, André

    1987-01-01

    Phenol, p-cresol, and volatile fatty acids (VFA; acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids) were used as odor indicators of swine waste. Aeration of the waste allowed the indigenous microorganisms to grow and degrade these malodorous substances. The time required for degradation of these substances varied according to the waste used, and it was not necessarily related to their concentrations. Using a minimal medium which contained one of the malodorous compounds as sole carbon source, we have selected from swine waste microorganisms that can grow in the medium. The majority of these microorganisms were able to degrade the same substrate when inoculated in sterilized swine waste but with an efficiency varying from one strain to the other. None of these strains was able to degrade all malodorous substances studied. Within 6 days of incubation these selected strains degraded the following: Acinetobacter calcoaceticus, phenol and all VFA; Alcaligenes faecalis, p-cresol and all VFA; Corynebacterium glutamicum and Micrococcus sp., phenol, p-cresol, and acetic and propionic acids; Arthrobacter flavescens, all VFA. On a laboratory scale, the massive inoculation of swine waste with C. glutamicum or Micrococcus sp. accelerated degradation of the malodorous substances. However, this effect was not observed with all of the various swine wastes tested. These results suggest that an efficient deodorization process of various swine wastes could be developed at the farm level based on the aerobic indigenous microflora of each waste. PMID:16347254

  7. Intrinsic bioremediation of a BTEX and MTBE plume under mixed aerobic/denitrifying conditions

    SciTech Connect

    Borden, R.C.; Daniel, R.A.

    1995-09-01

    A shallow Coastal Plain aquifer in rural Sampson Country, North Carolina, has been contaminated with petroleum hydrocarbon from a leaking underground storage tank containing gasoline.An extensive field characterization has been performed to define the horizontal and vertical distribution of soluble gasoline components and indicator parameters. A plume of dissolved methyl tert-butyl ether (MTBE) and the aromatic hydrocarbons benzene, toluene, ethylbenzene, and xylene isomers (BTEX) is present in the aquifer and has migrated over 600 ft from the source area. Background dissolved oxygen concentrations range from 7 to 8 mg/L, and nitrate concentrations range from 5 to 22 mg/L as N due to extensive fertilization of fields surrounding the spill. In the center of the BTEX plume, oxygen concentrations decline to less than 1 mg/L while nitrate concentrations remain high. The total mass flux of MTBE and all BTEX components decline with distance downgradient relative to a conservative tracer (chloride). At the source, the total BTEX concentration exceeds 75 mg/L while 130 ft downgradient, total BTEX concentrations are less than 4.9 mg/L, a 15-fold reduction. Toluene and ethylbenzene decline most rapidly followed by m-p-xylene, o-xylene and finally benzene. Biodegradation of TEX appears to be enhanced by the excess nitrate present in the aquifer while benzene biodegradation appears to be due to strictly aerobic processes.

  8. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    PubMed

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2017-03-13

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  9. Light-Driven Hydrogen Production by Hydrogenases and a Ru-Complex inside a Nanoporous Glass Plate under Aerobic External Conditions.

    PubMed

    Noji, Tomoyasu; Kondo, Masaharu; Jin, Tetsuro; Yazawa, Tetsuo; Osuka, Hisao; Higuchi, Yoshiki; Nango, Mamoru; Itoh, Shigeru; Dewa, Takehisa

    2014-07-17

    Hydrogenases are powerful catalysts for light-driven H2 production using a combination of photosensitizers. However, except oxygen-tolerant hydrogenases, they are immediately deactivated under aerobic conditions. We report a light-driven H2 evolution system that works stably even under aerobic conditions. A [NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F was immobilized inside nanoporous glass plates (PGPs) with a pore diameter of 50 nm together with a ruthenium complex and methyl viologen as a photosensitizer and an electron mediator, respectively. After immersion of PGP into the medium containing the catalytic components, an anaerobic environment automatically established inside the nanopores even under aerobic external conditions upon irradiation with solar-simulated light; this system constantly evolved H2 with an efficiency of 3.7 μmol H2 m(-2) s(-1). The PGP system proposed in this work represents a promising first step toward the development of an O2-tolerant solar energy conversion system.

  10. Ability of Cecal Cultures to Inhibit Growth of Salmonella Typhimurium during Aerobic Incubation

    USDA-ARS?s Scientific Manuscript database

    Introduction: Poultry can serve as reservoirs for Salmonella; however, chicks provided cultures of cecal bacteria develop resistance to colonization by Salmonella. Research has indicated that cecal bacteria metabolize organic acids to produce substances that inhibit Salmonella growth. Purpose: The...

  11. Optimization of culture conditions for Gardnerella vaginalis biofilm formation.

    PubMed

    Machado, Daniela; Palmeira-de-Oliveira, Ana; Cerca, Nuno

    2015-11-01

    Bacterial vaginosis is the leading vaginal disorder in women in reproductive age. Although bacterial vaginosis is related with presence of a biofilm composed predominantly by Gardnerella vaginalis, there has not been a detailed information addressing the environmental conditions that influence the biofilm formation of this bacterial species. Here, we evaluated the influence of some common culture conditions on G. vaginalis biofilm formation, namely inoculum concentration, incubation period, feeding conditions and culture medium composition. Our results showed that culture conditions strongly influenced G. vaginalis biofilm formation and that biofilm formation was enhanced when starting the culture with a higher inoculum, using a fed-batch system and supplementing the growth medium with maltose.

  12. Evaluation of a Novel Dry Sheet Culture Method for Rapid Enumeration of Total Aerobic Count in Foods.

    PubMed

    Teramura, Hajime; Iwasaki, Mihoko; Ushiyama, Masashi; Ogihara, Hirokazu

    2015-10-01

    A novel dry sheet culture method (Sanita-kun ACplus; SkACp) for rapid enumeration of total viable count has been developed. This rehydrated plate system comprises an adhesive sheet, nonwoven fabric coated with nutrients, and two types of water absorption polymers. In addition, SkACp facilitates methods for both rapid count (rapid mode: 24-h incubation) and accurate enumeration (standard mode: 48-h incubation) because it not only contains conventional 2,3,5-triphenyltetrazolium chloride but also contains two kinds of new tetrazolium salts for rapid and accurate enumeration of total aerobic count. When SkACp was assessed with 91 microorganisms, 87 strains (95.6%), excluding lactic acid and psychrotrophic bacteria, formed red-colored colonies within 24 h, whereas all microorganisms tested formed colonies within 48 h. The SkACp method, with both 24 and 48 h of incubation, was compared with plate count agar (PCA) and 3M Petrifilm AC (PAC) by using 107 naturally contaminated foods. For all foods tested (n = 107), the linear correlation coefficients of 48-h counts on SkACp compared with PCA and PAC were 0.98 and 0.75, respectively, while the 24-h counts on SkACp compared with PCA and PAC were 0.77 and 0.96, respectively. For foods tested, excluding yogurt and lactic beverages ( n = 101), the linear correlation coefficients of 48-h counts on SkACp compared with PCA and PAC were 0.98 and 0.96, respectively, while the 24-h counts on SkACp compared with PCA and PAC were 0.96 and 0.95, respectively. These results demonstrated that SkACp (48 h) is a useful alternative for the enumeration of the total aerobic count for all foods, whereas SkACp (24 h) was also an effective method for rapid enumeration in foods, excluding yogurt and lactic beverages.

  13. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions.

    PubMed

    Kristensen, N B; Sloth, K H; Højberg, O; Spliid, N H; Jensen, C; Thøgersen, R

    2010-08-01

    The present study aimed to investigate the effects of 2 corn silage inoculation strategies (homofermentative vs. heterofermentative inoculation) under field conditions and to monitor responses in silage variables over the feeding season from January to August. Thirty-nine commercial dairy farms participated in the study. Farms were randomly assigned to 1 of 3 treatments: control (nonactive carrier; Chr. Hansen A/S, Hørsholm, Denmark), Lactisil (inoculation with 1 x 10(5)Lactobacillus pentosus and 2.5 x 10(4)Pediococcus pentosaceus per gram of fresh matter; Chr. Hansen A/S), and Lalsil Fresh (inoculation with 3 x 10(5)Lactobacillus buchneri NCIMB 40788 per gram of fresh matter; Lallemand Animal Nutrition, Blagnac, France). Inoculation with Lactisil had no effects on fermentation variables and aerobic stability. On the contrary, inoculation with Lalsil Fresh doubled the aerobic stability: 37, 38, and 80+/-8h for control, Lactisil, and Lalsil Fresh, respectively. The effect of Lalsil Fresh on aerobic stability tended to differ between sampling times, indicating a reduced difference between treatments in samples collected in April. Lalsil Fresh inoculation increased silage pH and contents of acetic acid, propionic acid, propanol, propyl acetate, 2-butanol, propylene glycol, ammonia, and free AA. The contents and ratios of DL-lactic acid, L-lactic acid relative to DL-lactic acid, free glucose, and DL-lactic acid relative to acetic acid decreased with Lalsil Fresh inoculation. Lalsil Fresh inoculation increased the silage counts of total lactic acid bacteria and reduced yeast counts. The Fusarium toxins deoxynivalenol, nivalenol, and zearalenone were detected in all silages at all collections, but the contents were not affected by ensiling time or by inoculation treatment. The effect of inoculation treatments on milk production was assessed by collecting test-day results from the involved farms and comparing the actual milk production with predicted milk production

  14. Relating carbon and nitrogen isotope effects to reaction mechanisms during aerobic or anaerobic degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by pure bacterial cultures

    USGS Publications Warehouse

    Fuller, Mark E.; Heraty, Linnea J.; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, John Karl; Hatzinger, Paul B.

    2016-01-01

    Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted.

  15. Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions.

    PubMed

    Wayne, L G

    1976-10-01

    When Mycobacterium tuberculosis is grown in detergent-containing medium under continous agitation, multiplication is known to follow a logarithmic mode. When the cultures are not continuously shaken, but only agitated a few times a week to resuspend the bacilli and permit turbidity to be measured, the net increase suggests an arithmetic growth mode. It is shown here that a single pulse of aeration of an unshaken submerged culture of M. tuberculosis causes an almost instantaneous acceleration of growth, followed rapidly by a cessation of growth. Whether or not the bacilli will subsequently resume growth depends on the bacillary population density of the cuture at the time of application of the pulse of aeration. If the bacilli are permitted to grow in the depths of Dubos Tween Albumin broth without any agitation, they exhibit net arithmetic growth and attain a maximal population density greater than is seen in cultures exposed to occasional pulses of aeration. By the use of isotopically labeled cells, it has been shown that replication occurs ar a logarithmic rate amoung the small proportion of the bacilli that remain suspended in nonagitated cultures. This replication is balanced by settling of cells, resulting in a net appearance of arithmetic multiplication. The cells that have settled into the sediment replicate at a very slow rate, if at all, but do retain their viability for 4 weeks or longer. This suggests a possible analogy to quiescent tubercle bacilli in vivo.

  16. Assessment of the endogenous respiration rate and the observed biomass yield for methanol-fed denitrifying bacteria under anoxic and aerobic conditions.

    PubMed

    Alikhani, Jamal; Al-Omari, Ahmed; De Clippeleir, Haydee; Murthy, Sudhir; Takacs, Imre; Massoudieh, Arash

    2017-01-01

    In this study, the endogenous respiration rate and the observed biomass yield of denitrifying methylotrophic biomass were estimated through measuring changes in denitrification rates (DNR) as a result of maintaining the biomass under methanol deprived conditions. For this purpose, activated sludge biomass from a full-scale wastewater treatment plant was kept in 10-L batch reactors for 8 days under fully aerobic and anoxic conditions at 20 °C without methanol addition. To investigate temperature effects, another biomass sample was placed under starvation conditions over a period of 10 days under aerobic conditions at 25 °C. A series of secondary batch tests were conducted to measure DNR and observed biomass yields. The decline in DNR over the starvation period was used as a surrogate to biomass decay rate in order to infer the endogenous respiration rates of the methylotrophs. The regression analysis on the declining DNR data shows 95% confidence intervals of 0.130 ± 0.017 day(-1) for endogenous respiration rate under aerobic conditions at 20 °C, 0.102 ± 0.013 day(-1) under anoxic conditions at 20 °C, and 0.214 ± 0.044 day(-1) under aerobic conditions at 25 °C. Results indicated that the endogenous respiration rate of methylotrophs is 20% slower under anoxic conditions than under aerobic conditions, and there is a significant temperature dependency, with an Arrhenius coefficient of 1.10. The observed biomass yield value showed an increasing trend from approximately 0.2 to 0.6 when the starvation time increased from 0 to 10 days.

  17. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    2002-01-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  18. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  19. More than just one Methane Paradox? - Methane Production in Oxic Waters and Aerobic Methane Oxidation under Oxygen-Depleted Conditions

    NASA Astrophysics Data System (ADS)

    Lehmann, M. F.; Niemann, H.; Bartosiewicz, M.; Blees, J.; Steinle, L.; Su, G.; Zopfi, J.

    2016-12-01

    The standing paradigm is that methane (CH4) production through methanogenesis occurs exclusively under anoxic conditions and that at least in freshwater environments most of the biogenic CH4 is oxidized by aerobic methanotrophic bacteria (MOB) under oxic conditions. However, subsurface CH4 accumulation in oxic waters, a phenomenon referred to as the "CH4 paradox", has been observed both in the ocean and in lakes, and suggests in-situ CH4 production or a remarkable tolerance of at least some methanogens to O2. Analogously, MOB seem to thrive also under micro-oxic conditions, i.e., they may be responsible for significant CH4 turnover at extremely low O2 concentrations. O2 availability particularly within the sub-micromolar range is likely one of the key factors controlling the balance between CH4 production and consumption in redox-transition zones of aquatic environments, yet threshold O2 concentrations are poorly constrained. Here we provide multiple lines of evidence for apparent "methanogenesis" in well-oxygenated waters and discuss the potential mechanisms that lead to CH4 accumulation in the oxic epilimnia of two south-alpine lakes. On the other end, we present data from a deep meromictic lake, which indicate aerobic CH4 oxidation (MOx) at O2 concentrations below the detection limit of common O2 sensors. A strong MOx potential throughout the anoxic hyplimnion of the studied lake implies that the MOB community is able to survive prolonged periods of O2 starvation and is capable to rapidly resume microaerobic MOx upon introduction of low levels of O2. This conclusion is qualitatively consistent with field data from a coastal shelf environment in the Baltic Sea, where we observed maximum MOx rates during the summer stratification period when O2 concentrations were lowest, implying that in both environments MOx bacteria are adapted to trace levels of O2. Indeed, laboratory experiments at different manipulated O2 concentration levels suggest a nanomolar O2 optimum

  20. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, W.A.

    1998-08-18

    A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

  1. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, William A.

    1998-01-01

    A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

  2. Volatile chemical spoilage indexes of raw Atlantic salmon (salmo salar)stored under aerobic condition in relation to microbiological and sensory shelf lives

    USDA-ARS?s Scientific Manuscript database

    The purpose of this investigation was to identify and quantify the volatile chemical spoilage indexes (CSIs) for raw Atlantic salmon (Salmo salar) fillets stored under aerobic storage conditions at 4, 10 and 21 degrees C in relation to the determined microbial and sensory shelf lives. The volatile o...

  3. Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures.

    PubMed

    Moita Fidalgo, Rita; Ortigueira, Joana; Freches, André; Pelica, João; Gonçalves, Magarida; Mendes, Benilde; Lemos, Paulo C

    2014-06-25

    Recent research on polyhydroxyalkanoates (PHAs) has focused on developing cost-effective production processes using low-value or industrial waste/surplus as substrate. One of such substrates is the liquid fraction resulting from pyrolysis processes, bio-oil. In this study, valorisation of bio-oil through PHA production was investigated. The impact of the complex bio-oil matrix on PHA production by an enriched mixed culture was examined. The performance of the direct utilization of pure bio-oil was compared with the utilization of three defined substrates contained in this bio-oil: acetate, glucose and xylose. When compared with acetate, bio-oil revealed lower capacity for polymer production as a result of a lower polymer yield on substrate and a lower PHA cell content. Two strategies for bio-oil upgrade were performed, anaerobic fermentation and vacuum distillation, and the resulting liquid streams were tested for polymer production. The first one was enriched in volatile fatty acids and the second one mainly on phenolic and long-chain fatty acids. PHA accumulation assays using the upgraded bio-oils attained polymer yields on substrate similar or higher than the one achieved with acetate, although with a lower PHA content. The capacity to use the enriched fractions for polymer production has yet to be optimized. The anaerobic digestion of bio-oil could also open-up the possibility to use the fermented bio-oil directly in the enrichment process of the mixed culture. This would increase the selective pressure toward an optimized PHA accumulating culture selection. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments.

    PubMed

    Ballarini, E; Beyer, C; Bauer, R D; Griebler, C; Bauer, S

    2014-06-01

    The influence of transverse mixing on competitive aerobic and anaerobic biodegradation of a hydrocarbon plume was investigated using a two-dimensional, bench-scale flow-through laboratory tank experiment. In the first part of the experiment aerobic degradation of increasing toluene concentrations was carried out by the aerobic strain Pseudomonas putida F1. Successively, ethylbenzene (injected as a mixture of unlabeled and fully deuterium-labeled isotopologues) substituted toluene; nitrate was added as additional electron acceptor and the anaerobic denitrifying strain Aromatoleum aromaticum EbN1 was inoculated to study competitive degradation under aerobic /anaerobic conditions. The spatial distribution of anaerobic degradation was resolved by measurements of compound-specific stable isotope fractionation induced by the anaerobic strain as well as compound concentrations. A fully transient numerical reactive transport model was employed and calibrated using measurements of electron donors, acceptors and isotope fractionation. The aerobic phases of the experiment were successfully reproduced using a double Monod kinetic growth model and assuming an initial homogeneous distribution of P. putida F1. Investigation of the competitive degradation phase shows that the observed isotopic pattern cannot be explained by transverse mixing driven biodegradation only, but also depends on the inoculation process of the anaerobic strain. Transient concentrations of electron acceptors and donors are well reproduced by the model, showing its ability to simulate transient competitive biodegradation.

  5. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.

  6. Culturable diversity of aerobic halophilic archaea (Fam. Halobacteriaceae) from hypersaline, meromictic Transylvanian lakes.

    PubMed

    Baricz, Andreea; Cristea, Adorján; Muntean, Vasile; Teodosiu, Gabriela; Andrei, Adrian-Ştefan; Molnár, Imola; Alexe, Mircea; Rakosy-Tican, Elena; Banciu, Horia Leonard

    2015-03-01

    Perennially stratified salt lakes situated in the Transylvanian Basin (Central Romania) were surveyed for the diversity of culturable halophilic archaea (Fam. Halobacteriaceae). The physical and chemical characteristics of the waters indicated that all the investigated lakes were meromictic and neutral hypersaline. Samples collected from upper, intermediate, and deeper water layers and sediments were used for the isolation of halophilic strains followed by 16S rRNA gene-based identification and phenotypic characterization. The phylogenetic analysis of the 16S rRNA gene sequences revealed that all 191 isolates reported in this study and 43 strains previously isolated were affiliated with the family Halobacteriaceae and classified to 18 genera. Haloferax was the most frequently isolated genus (~47 %), followed by Halobacterium spp. (~12 %), and Halorubrum spp. (~11 %). Highest culturable diversity was detected in Brâncoveanu Lake, the oldest and saltiest of all studied lakes, while the opposite was observed in the most stable and least human-impacted Fără Fund Lake. One strain from Ursu Lake might possibly constitute a novel Halorubrum species as shown by phylogenetic analysis. Several haloarchaeal taxa recently described in Asian (i.e., Iran, China) saline systems were also identified as inhabiting the Transylvanian salt lakes thus expanding our knowledege on the geographic distribution of Halobacteriaceae.

  7. Bioaugmentation of an Aerobic Culture Capable of Chlorinated Solvent Cometabolism to a Subsurface Test Zone

    NASA Astrophysics Data System (ADS)

    Dolan, M. E.; Semprini, L.; McCarty, P. L.; Hopkins, G.

    2002-12-01

    A butane-utilizing culture able to cometabolize chlorinated aliphatic hydrocarbons (CAHs) was bioaugmented into an aquifer test zone at Moffett Federal Airfield, CA. Microcosm bioaugmentation tests conducted with groundwater and aquifer solids collected from the test site indicated a strong potential for viability of the bioaugmented culture in the site subsurface. Microcosms bioaugmented with the butane-utilizing culture were able to degrade aqueous concentrations of 1,1-dichloroethylene (1,1-DCE) up to 1 mg/L and could successfully transform mixtures of 1,1-DCE, 1,1,1-trichloroethane (TCA) and 1,1-dichloroethane (DCA) when fed butane. T-RFLP analyses showed the presence of bioaugmented organisms within the microcosms throughout the 10-month test period. An isolate from the butane-utilizing culture was grown in batch bottles containing mineral media and a butane-in-air headspace. Approximately 4 g dry weight of culture was harvested and bioaugmented to the field site. The site consisted of two parallel well legs, each with an injection well, two fully penetrating monitoring wells containing solid support media, three groundwater monitoring wells and an extraction well. One well leg was bioaugmented with the isolate and the other was used as an indigenous control leg. A mixture of 1,1-DCE, TCA and DCA (~50 ug/L, 135 ug/L and 150 ug/L respectively) was continuously pumped through both well legs with alternate pulses of dissolved oxygen and butane. Fifty percent removal of 1,1-DCE occurred within one day in the bioaugmented leg; however, it took about 6 days to achieve complete butane utilization and 1,1-DCE removal to below 2 ug/L. During this period DCA and TCA were reduced by 70- 90 percent and 30-50 percent respectively. When the butane/oxygen pulses were changed from a 1-hr cycle to a 24-hr cycle 1,1-DCE removal fell to 50 percent and DCA and TCA concentrations increased to influent levels. Upon returning to short pulse cycles, 1,1-DCE removal efficiency

  8. Conditional independence mapping of DIGE data reveals PDIA3 protein species as key nodes associated with muscle aerobic capacity

    PubMed Central

    Burniston, Jatin G.; Kenyani, Jenna; Gray, Donna; Guadagnin, Eleonora; Jarman, Ian H.; Cobley, James N.; Cuthbertson, Daniel J.; Chen, Yi-Wen; Wastling, Jonathan M.; Lisboa, Paulo J.; Koch, Lauren G.; Britton, Steven L.

    2014-01-01

    Profiling of protein species is important because gene polymorphisms, splice variations and post-translational modifications may combine and give rise to multiple protein species that have different effects on cellular function. Two-dimensional gel electrophoresis is one of the most robust methods for differential analysis of protein species, but bioinformatic interrogation is challenging because the consequences of changes in the abundance of individual protein species on cell function are unknown and cannot be predicted. We conducted DIGE of soleus muscle from male and female rats artificially selected as either high- or low-capacity runners (HCR and LCR, respectively). In total 696 protein species were resolved and LC–MS/MS identified proteins in 337 spots. Forty protein species were differentially (P < 0.05, FDR < 10%) expressed between HCR and LCR and conditional independence mapping found distinct networks within these data, which brought insight beyond that achieved by functional annotation. Protein disulphide isomerase A3 emerged as a key node segregating with differences in aerobic capacity and unsupervised bibliometric analysis highlighted further links to signal transducer and activator of transcription 3, which were confirmed by western blotting. Thus, conditional independence mapping is a useful technique for interrogating DIGE data that is capable of highlighting latent features. PMID:24769234

  9. Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen.

    PubMed

    Wong, Pan Yu; Ginige, Maneesha P; Kaksonen, Anna H; Cord-Ruwisch, Ralf; Sutton, David C; Cheng, Ka Yu

    2015-01-01

    A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0-8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e(-)/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs.

  10. Microbial aerobic and anaerobic degradation of acrylamide in sludge and water under environmental conditions--case study in a sand and gravel quarry.

    PubMed

    Guezennec, A G; Michel, C; Ozturk, S; Togola, A; Guzzo, J; Desroche, N

    2015-05-01

    Polyacrylamides (PAMs) are used in sand and gravel quarries as water purification flocculants for recycling process water in a recycling loop system where the flocculants remove fine particles in the form of sludge. The PAM-based flocculants, however, contain residual amounts of acrylamide (AMD) that did not react during the polymerization process. This acrylamide is released into the environment when the sludge is discharged into a settling basin. Here, we explore the microbial diversity and the potential for AMD biodegradation in water and sludge samples collected in a quarry site submitted to low AMD concentrations. The microbial diversity, analyzed by culture-dependent methods and the denaturing gradient gel electrophoresis approach, reveals the presence of Proteobacteria, Cyanobacteria, and Actinobacteria, among which some species are known to have an AMD biodegradation activity. Results also show that the two main parts of the water recycling loop-the washing process and the settling basin-display significantly different bacterial profiles. The exposure time with residual AMD could, thus, be one of the parameters that lead to a selection of specific bacterial species. AMD degradation experiments with 0.5 g L(-1) AMD showed a high potential for biodegradation in all parts of the washing process, except the make-up water. The AMD biodegradation potential in samples collected from the washing process and settling basin was also analyzed taking into account on-site conditions: low (12 °C) and high (25 °C) temperatures reflecting the winter and summer seasons, and AMD concentrations of 50 μg L(-1). Batch tests showed rapid (as little as 18 h) AMD biodegradation under aerobic and anaerobic conditions at both the winter and summer temperatures, although there was a greater lag time before activity started with the AMD biodegradation at 12 °C. This study, thus, demonstrates that bacteria present in sludge and water samples exert an in situ and rapid

  11. Effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure.

    PubMed

    Parkinson, R; Gibbs, P; Burchett, S; Misselbrook, T

    2004-01-01

    Cattle manure from stock bedded on straw was aerobically composted under ambient conditions, turning with either a tractor-mounted front-end loader or a rear discharge manure spreader. Three composting experiments, each of approximately four months duration, were conducted to investigate the effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Manure stacks of 12-15 m(3) initial volume were constructed in separate 5 x 5 m concrete compartments. Experiment 1 (January-April 1999) compared manure heaps turned once (T1) or three times (T3) using a front-end loader with an unturned static (S) control manure stack. Experiment 2 (June-September 1999) compared the same treatments as Experiment 1. Experiment 3 (September-December 1999) compared T1 and T3 turning regimes using a front end loader with turning by a rear-discharge spreader (TR1 and TR1T2) for more effective aeration of the manure. Turning took place at 6 weeks for the one turn treatments, and after 2, 6 and 10 weeks for the three turn treatments. Leachate losses were dominated by NH(4)-N during the first three weeks of composting, after which time NH4-N and NO3-N concentrations in leachates were approximately the same, in the range 0-20 mg N l(-1). The concentrations of both NH4-N and NO3-N in leachate were higher after turning. Molybdate-reactive P concentrations in leachate tended not to be significantly influenced by turning regime. Gaseous losses of NH3 and N2O rose quickly during the initial phases of composting, peaking at 152 g N t(-1) d(-1) for the T3 treatment. Mean NH3 emission rate (25-252 g N t(-1) d(-1)) for the first two weeks of Experiment 2 conducted during the period June-September were an order of magnitude greater (1-10 g N t(-1) d(-1)) than Experiment 3, conducted during the colder, wetter autumn period (September-December). Nitrous oxide emission rates ranged between 1-14 g N t(-1) d(-1) and showed little

  12. [Culture conditions and analysis of amanitins on Amanita spissa].

    PubMed

    Guo, Xue-Wu; Wang, Guo-Lun; Gong, Jian-Hua

    2006-06-01

    Isolate of Amanita spissa was obtained from basidiome stipe material collected from environment. It could utilize a broad range of carbon and nitrogen resources. Study on the influence of different conditions for solid culture was carried out. Optimal culture conditions were at 28 degrees C, pH6, in the dark. A. spissa was then fermentated in liquid culture for more mycelia. In flask and Airlift/ff bioreactor, maximum dry mycelia weight of A. spissa reached 0.893 g/L and 2.33 g/L, respectively. Mycelia obtained from solid culture and Airlift/ff bioreactor were then analyzed by HPLC. The results showed that mycelia from both cultures contained amatoxins but no phallotoxins. alpha-Amanitin in mycelia reached 26.02 microg/DWg under solid culture condition, and 15.25 microg/DWg under liquid culture condition. The amanitins were also confirmed by bud-inhibited assay. The results revealed that the effect of amanitin on mung bean cell was identical to that of authentic amanitins. This work suggests that it is possible to produce amatoxin by liquid culturing of A. spissa.

  13. Availability of O2 as a substrate in the cytoplasm of bacteria under aerobic and microaerobic conditions.

    PubMed

    Arras, T; Schirawski, J; Unden, G

    1998-04-01

    The growth rates of Pseudomonas putida KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O2 tension [pO2] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O2 (corresponding to 7 to 8 microM O2) (1 bar = 10(5) Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and microaerobic conditions (about 10 mbar of O2), the diffusion of O2 into the cytoplasm occurs at high rates sufficient for catabolic processes. This is in agreement with calculated O2 diffusion rates. Below 10 mbar of O2, oxygen became limiting for the oxygenases, probably due to their high Km values, but the diffusion of O2 into the cytoplasm presumably should be sufficiently rapid to maintain ambient oxygen concentrations at oxygen tensions as low as 1 mbar of O2. The consequences of this finding for the availability of O2 as a substrate or as a regulatory signal in the cytoplasm of bacterial cells are discussed.

  14. Availability of O2 as a Substrate in the Cytoplasm of Bacteria under Aerobic and Microaerobic Conditions

    PubMed Central

    Arras, Tanja; Schirawski, Jan; Unden, Gottfried

    1998-01-01

    The growth rates of Pseudomonas putida KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O2 tension [pO2] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O2 (corresponding to 7 to 8 μM O2) (1 bar = 105 Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and microaerobic conditions (about 10 mbar of O2), the diffusion of O2 into the cytoplasm occurs at high rates sufficient for catabolic processes. This is in agreement with calculated O2 diffusion rates. Below 10 mbar of O2, oxygen became limiting for the oxygenases, probably due to their high Km values, but the diffusion of O2 into the cytoplasm presumably should be sufficiently rapid to maintain ambient oxygen concentrations at oxygen tensions as low as 1 mbar of O2. The consequences of this finding for the availability of O2 as a substrate or as a regulatory signal in the cytoplasm of bacterial cells are discussed. PMID:9555896

  15. Laboratory Study of Chemical Speciation of Mercury in Lake Sediment and Water under Aerobic and Anaerobic Conditions

    PubMed Central

    Regnell, Olof; Tunlid, Anders

    1991-01-01

    Chemical speciation and partitioning of radiolabeled HgCl2 were studied in model aquatic systems consisting of undisturbed eutrophic lake sediment and water in plastic cylinders. The cylinders were either gradually made anaerobic by a gentle flow of N2-CO2 or kept aerobic by air flow. The proportion of methylated 203Hg was significantly higher, in both water and sediment, in the anaerobic systems than in the aerobic systems. The composition and total concentration of fatty acids originating from bacterial phospholipids, as well as the concentration of vitamin B12, including related cobalamins, were similar in sediments from the anaerobic and aerobic systems. Bacterial cell numbers were, on average, 3.6 times higher in the anaerobic water columns than in the aerobic ones. Volatilization of 203Hg occurred in all systems except in an autoclaved control and was of similar magnitudes in the anaerobic and aerobic systems. Incorporation of 203Hg into the sediment was significantly faster in the aerobic systems than in the anaerobic systems. These results suggest that episodes of anoxia in bottom waters and sediment cause an increase in net mercury methylation and, hence, an increase in bioavailable mercury. PMID:16348444

  16. Sleep and Culture in Children with Medical Conditions

    PubMed Central

    Koinis-Mitchell, Daphne

    2010-01-01

    Objectives To provide an integrative review of the existing literature on the interrelationships among sleep, culture, and medical conditions in children. Methods A comprehensive literature search was conducted using PubMed, Medline, and PsychINFO computerized databases and bibliographies of relevant articles. Results Children with chronic illnesses experience more sleep problems than healthy children. Cultural beliefs and practices are likely to impact the sleep of children with chronic illnesses. Few studies have examined cultural factors affecting the relationship between sleep and illness, but existing evidence suggests the relationship between sleep and illness is exacerbated for diverse groups. Conclusions Sleep is of critical importance to children with chronic illnesses. Cultural factors can predispose children both to sleep problems and to certain medical conditions. Additional research is needed to address the limitations of the existing literature, and to develop culturally sensitive interventions to treat sleep problems in children with chronic illnesses. PMID:20332222

  17. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.

    PubMed

    Lochmatter, Samuel; Holliger, Christof

    2014-08-01

    The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Influence of sludge retention time and temperature on the sludge removal in a submerged membrane bioreactor: comparative study between pure oxygen and air to supply aerobic conditions.

    PubMed

    Rodríguez, F A; Leyva-Díaz, J C; Reboleiro-Rivas, P; González-López, J; Hontoria, E; Poyatos, J M

    2014-01-01

    Performance of a bench-scale wastewater treatment plant, which consisted of a membrane bioreactor, was monitored daily using pure oxygen and air to supply aerobic conditions with the aim of studying the increases of the aeration and sludge removal efficiencies and the effect of the temperature. The results showed the capacity of membrane bioreactor systems for removing organic matter. The alpha-factors of the aeration were determined for six different MLSS concentrations in order to understand the system working when pure oxygen and air were used to supply aerobic conditions in the system. Aeration efficiency was increased between 30.7 and 45.9% when pure oxygen was used in the operation conditions (a hydraulic retention time of 12 h and MLSS concentrations between 4,018 and 11,192 mg/L). Sludge removal efficiency increased incrementally, from 0.2 to 1.5% when pure oxygen was used at low sludge retention time and from 1.5% to 15.4% at medium sludge retention time when temperature conditions were lower than 20°C. Moreover, the difference between calculated and experimental sludge retention time was lesser when pure oxygen was used to provide aerobic conditions, so the influence of the temperature decreased when the pure oxygen was used. These results showed the convenience of using pure oxygen due to the improvement in the performance of the system.

  19. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  20. A generalized model for settling velocity of aerobic granular sludge.

    PubMed

    Liu, Yu; Wang, Zhi-Wu; Liu, Yong-Qiang; Qin, Lei; Tay, Joo-Hwa

    2005-01-01

    Aerobic granulation is a novel biotechnology recently receiving intensive research attention. Aerobic granules developed in SBR can be as big as several millimeters, thus the traditional models describing the settling velocity of activated sludge are no long valid in aerobic granules culture. In this study, a new type of model was developed for the settling velocity of aerobic granules. This model shows that the settling velocity of aerobic granules is the function of SVI, mean size of granules and biomass concentration of granules. When the size of bioparticle is small enough, the proposed model reduces to the well-known Vesilind equation. Results indicated that the proposed model could satisfactorily fit experimental results obtained in the course of aerobic granulation under different conditions, while the Vesilind equation failed to or very poorly fit the experimental data. In addition, the proposed model can also be extended to anaerobic granules. The settling velocity is one of the most important parameters in both aerobic and anaerobic granulation, and successful biogranulation is highly related to the manipulation of settling velocity. It was demonstrated that the proposed model can sever as a useful tool for design and operation engineers to properly select the settling velocity for enhanced aerobic and anaerobic granulation.

  1. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    PubMed

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices. © 2013 Wiley Periodicals, Inc.

  2. In vitro alterations in fecal short chain fatty acids and organic anions induced by the destruction of intestinal microflora under hypotonic and aerobic conditions.

    PubMed

    Araki, Yoshio; Andoh, Akira; Fujiyama, Yoshihide; Itoh, Akihiko; Bamba, Tadao

    2002-06-01

    The pathogenesis of inflammatory bowel disease (IBD) remains unknown. It has been suggested that luminal factors such as the microflora, short chain fatty acids (SCFAs), food antigens and so on play important roles in the disease progression. Many reports have revealed alterations in the SCFA and organic acid concentration of the colon, especially increased lactate and decreased butyrate, in IBD patients. The mechanisms responsible for these alterations, however, remain unclear. Therefore, the effects of aerobic conditions on the alterations in the SCFA and organic anion levels in the feces was evaluated. Fecal specimens were collected from 5 healthy volunteers. Under aerobic condition, a mixture of feces and distilled water was incubated in 37 degrees C for 1 and 3 h. The pH, osmotic pressures, the concentrations of potassium, bicarbonate, SCFA and organic anion, and the activities of alpha-amylase and lactate dehydrogenase (LDH) in the mixture were then measured. We also examined any changes in the microscopic microflora under the hypotonic and aerobic conditions. The results showed the osmotic pressure, and the concentrations of lactate and SCFAs (formate, acetate, propionate and n-valerate) were progressively increased with longer incubation times, and reached a statistically significant difference. In particular, the ratios of lactate, succinate and n-valerate after 1 and 3 h of incubation increased remarkably. In contrast, the electrolyte levels and both alpha-amylase and LDH activities were not altered significantly. Microscopically, the microflora in the mixture decreased with prolonged incubation times. These data suggest that under these in vitro conditions, the organic anion and SCFA levels in the feces easily increased. It is probable that the alterations in the SCFA and organic anion levels in IBD patients may be partly due to intracellular components derived from microflora destroyed under hypotonic and aerobic conditions in the colonic lumen, for

  3. Aerobic fitness and sympatho-adrenal response to short-term psycho-emotional stress under field conditions.

    PubMed

    Wittels, P; Rosenmayr, G; Bischof, B; Hartter, E; Haber, P

    1994-01-01

    A possible relationship between aerobic fitness (AF), measured by maximal cycle ergometry (CE) and sympatho-adrenal response to acute, short lasting psycho-emotional stress was investigated by monitoring heart rate (fc) and excretion of catecholamines. The activation of the sympatho-adrenal system was characterised by the noradrenaline: adrenaline ratio. A group of 11 healthy men [22.8 (SD 2.52) years] lived under identical environmental conditions; their mean maximal oxygen uptake (VO2max) was 47.1 (SD 3.9) ml.min-1.kg-1. After the physiological and psychological laboratory tests had been completed the fc of the subjects was monitored continuously during the "guerilla slide" and "parachute jump by night", two emotionally stressful military tasks. Maximal fc (fc, max) attained during these events was 84.5% and 83% of fc, max during CE (fc, max, CE), respectively. A significant relationship (r = -0.92, P < 0.0002) between fc, max reached during the stressful tasks and VO2max was found only for the guerilla slide, which was preceded by physical strain, sleep deprivation and energy deficit. One subject with some prior experience in parachuting showed the lowest fc response and the lowest sympatho-adrenal activation in both events, independent of the degree of AF. In conclusion, AF was found to influence the sympatho-adrenal and fc response to acute, short-lasting emotional stress when the stressful event was aggravated by preceding physical strain, the magnitude of the stress response depending largely on individual experience and effective mechanisms for coping with specific stimuli.

  4. Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor.

    PubMed

    He, Qiulai; Zhang, Wei; Zhang, Shilu; Zou, Zhuocheng; Wang, Hongyu

    2017-08-01

    The evolution of removal performance and bacterial population dynamics of an aerobic granular sequencing batch reactor were investigated during stable operation and reactivation after prolonged storage. The system was run for a period of 130days including the stable condition phase, storage period and the subsequent reactivation process. Excellent removal performance was obtained during the stable operation period, which was decayed by the extended idle conditions. The removal efficiencies for both carbon and nitrogen decayed while phosphorus removal remained unaffected. Both granules structure and physical properties could be fully restored. Microbial populations shifted sharply and the storage perturbations irreversibly altered the microbial communities at different levels. Extracellular polymeric substances (especially protein) and key groups were identified as contributors for storage and re-startup of the aerobic granular system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Morphogenesis of human embryonic stem cells into mature neurons under in vitro culture conditions

    PubMed Central

    Shroff, Geeta

    2016-01-01

    AIM To describe the morphogenesis of different neuronal cells from the human embryonic stem cell (hESC) line, SCT-N, under in vitro culture conditions. METHODS The directed neuronal cell line was produced from a single, spare, pre-implantation stage fertilized ovum that was obtained during a natural in vitro fertilization process. The hESCs were cultured and maintained as per our proprietary in-house technology in a Good Manufacturing Practice, Good Laboratory Practice and Good Tissue Practice compliant laboratory. The cell line was derived and incubated in aerobic conditions. The cells were examined daily under a phase contrast microscope for their growth and differentiation. RESULTS Different neural progenitor cells (NPCs) and differentiating neurons were observed under the culture conditions. Multipotent NPCs differentiated into all three types of nervous system cells, i.e., neurons, oligodendrocytes and astrocytes. Small projections resembling neurites or dendrites, and protrusion coming out of the cells, were observed. Differentiating cells were observed at day 18 to 20. The differentiating neurons, neuronal bodies, axons, and neuronal tissue were observed on day 21 and day 30 of the culture. On day 25 and day 30, prominent neurons, axons and neuronal tissue were observed under phase contrast microscopy. 4’, 6-diamidino-2-phenylindole staining also indicated the pattern of differentiating neurons, axonal structure and neuronal tissue. CONCLUSION This study describes the generation of different neuronal cells from an hESC line derived from biopsy of blastomeres at the two-cell cleavage stage from a discarded embryo. PMID:27909687

  6. Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus

    PubMed Central

    Siti Murni, M.J.; Fauzi, D.; Abas Mazni, O.; Saleh, N.M.

    2011-01-01

    Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were 30℃ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media. PMID:22783083

  7. Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus.

    PubMed

    Lai, W H; Siti Murni, M J; Fauzi, D; Abas Mazni, O; Saleh, N M

    2011-06-01

    Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were 30℃ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media.

  8. Dynamic in vivo (31)P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose-limited chemostat culture during the aerobic-anaerobic shift.

    PubMed

    Gonzalez, B; de Graaf, A; Renaud, M; Sahm, H

    2000-04-01

    The purpose of this work was to analyse in vivo the influence of sudden oxygen depletion on Saccharomyces cerevisiae, grown in glucose-limited chemostat culture, using a recently developed cyclone reactor coupled with (31)P NMR spectroscopy. Before, during and after the transition, intracellular and extracellular phosphorylated metabolites as well as the pHs in the different cellular compartments were monitored with a time resolution of 2.5 min. The employed integrated NMR bioreactor system allowed the defined glucose-limited continuous cultivation of yeast at a density of 75 g DW/l and a p(O(2)) of 30% air saturation. A purely oxidative metabolism was maintained at all times. In vivo (31)P NMR spectra obtained were of excellent quality and even allowed the detection of phosphoenolpyruvate (PEP). During the switch from aerobic to anaerobic conditions, a rapid, significant decrease of intracellular ATP and PEP levels was observed and the cytoplasmic pH decreased from 7.5 to 6.8. This change, which was accompanied by a transient influx of extracellular inorganic phosphate (P(i)), appeared to correlate linearly with the decrease of the ATP concentration, suggesting that the cause of the partial collapse of the plasma membrane pH gradient was a reduced availability of ATP. The complete phosphorous balance established from our measurement data showed that polyphosphate was not the source of the increased intracellular P(i). The derived intracellular P(i), ATP and ADP concentration data confirmed that the glycolytic flux at the level of glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase and enolase enzymes is mainly controlled by thermodynamic constraints.

  9. Aerobic granulation utilizing fermented municipal wastewater under low pH and alkalinity conditions in a sequencing batch reactor.

    PubMed

    Leong, Jason; Rezania, Babak; Mavinic, Don S

    2016-01-01

    The aim of this study was to achieve aerobic granulation utilizing fermented municipal wastewater under low pH, and alkalinity conditions. Stable granulation was achieved after a 166-day start-up period. Due to low influent strength, supplemental carbon addition, in the form of sucrose, was added to the feed storage tank on the 82nd day of start-up to facilitate granulation. This increased the system's organic loading rate from 1.43 ± 0.14 to 2.53 ± 0.18 kg COD/m(3)/d, and reduced the influent pH due to fermentation of the added sucrose. Although granulation was successful, the nutrient removal was limited. Removal rates at an influent pH of 6.23 ± 0.06 were 54.4% ± 8.3% for phosphorus, 21.9% ± 4.1% for ammonium, and 84.0% ± 3.0% for total chemical oxygen demand (COD). During the second phase of experimentation, increased amounts of sucrose were added to the feed, which resulted in increased volatile fatty acid concentrations and pH reduction to 5.62 ± 0.12 due to fermentation. Under further reduced pH conditions, phosphorus, ammonium, and total COD removal were found to be 58.9% ± 4.7%, 37.9% ± 4.7%, and 87.1% ± 0.9%, respectively. Settling volume indexes, SVI10 and SVI30, were found to be 148.8 ± 28.9 mL/g, for the influent pH of 6.23 ± 0.06, and 157.5 ± 40.6 mL/g, for the influent pH of 5.62 ± 0.12. This high SVI is indicative of the formation of lower-density granules in comparison to high-ash-content granules. The absence of denitrification-induced chemical phosphorus precipitation within the granule was likely a contributing factor to the low granule density observed in the system.

  10. Relating Carbon and Nitrogen Isotope Effects to Reaction Mechanisms during Aerobic or Anaerobic Degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Pure Bacterial Cultures

    PubMed Central

    Heraty, Linnea; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, J. K.; Hatzinger, Paul B.

    2016-01-01

    ABSTRACT Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted. IMPORTANCE This work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also

  11. Relating Carbon and Nitrogen Isotope Effects to Reaction Mechanisms during Aerobic or Anaerobic Degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Pure Bacterial Cultures.

    PubMed

    Fuller, Mark E; Heraty, Linnea; Condee, Charles W; Vainberg, Simon; Sturchio, Neil C; Böhlke, J K; Hatzinger, Paul B

    2016-06-01

    Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in (15)N were observed during biodegradation of RDX via anaerobic ring cleavage (ε(15)N = -12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε(15)N = -9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε(15)N = -2.4‰ ± 0.2‰). (13)C enrichment was negligible during aerobic RDX biodegradation (ε(13)C = -0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε(13)C = -4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε(13)C/ε(15)N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ(15)N value of +9‰, δ(15)N values of the NO2 (-) released from RDX ranged from -7‰ to +2‰ during aerobic biodegradation and from -42‰ to -24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2 (-) production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε(15)N-NO2 (-) values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2 (-) formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted. This work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also provides

  12. Influence of aerobic and anaerobic conditions on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in Luria-Bertani broth, farm-yard manure and slurry.

    PubMed

    Semenov, Alexander V; van Overbeek, Leo; Termorshuizen, Aad J; van Bruggen, Ariena H C

    2011-03-01

    The influence of aerobic and anaerobic conditions on the survival of the enteropathogens Escherichia coli O157:H7 and Salmonella serovar Typhimurium was investigated in microcosms with broth, cattle manure or slurry. These substrates were inoculated with a green fluorescent protein transformed strain of the enteropathogens at 10(7) cells g(-1) dry weight. Survival data was fitted to the Weibull model. The survival curves in aerobic conditions generally showed a concave curvature, while the curvature was convex in anaerobic conditions. The estimated survival times showed that E. coli O157:H7 survived significantly longer under anaerobic than under aerobic conditions. Survival ranged from approximately. 2 weeks for aerobic manure and slurry to more than six months for anaerobic manure at 16 °C. On average, in 56.3% of the samplings, the number of recovered E. coli O157:H7 cells by anaerobic incubation of Petri plates was significantly (p < 0.05) higher in comparison with aerobic incubation. Survival of Salmonella serovar Typhimurium was not different between aerobic and anaerobic storage of LB broth or manure as well as between aerobic and anaerobic incubation of Petri dishes. The importance of changes in microbial community and chemical composition of manure and slurry was distinguished for the survival of E. coli O157:H7 in different oxygen conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  14. Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture.

    PubMed

    Wagner, Andreas Otto; Schwarzenauer, Thomas; Illmer, Paul

    2013-11-15

    Trichoderma viride is known as a potent cellulose decomposer and was successfully used to improve and accelerate the decomposition process of aerobic composting. In contrast, the role of fungi as pre-treatment organisms for anaerobic digestion is not clear, since the fast aerobic decomposition is thought to be responsible for a rapid depletion of easily available nutrients, leading to a lack of these for the anaerobic community. In the present study carried out in lab-scale, the application of T. viride for the aerobic pre-incubation of organic matter derived from the inlet port of a 750,000 L anaerobic digester led to an increase in total gas and methane production in a subsequent anaerobic digestion step. A high cellulase activity caused by the addition of T. viride seemed to be responsible for a better nutrient availability for anaerobic microorganisms. Therefore, aerobic pre-incubation of organic residues with T. viride for subsequent anaerobic digestion is a promising approach in order to increase methane yields.

  15. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions

    PubMed Central

    2014-01-01

    Background Selenite (SeO32−) oxyanion shows severe toxicity to biota. Different bacterial strains exist that are capable of reducing SeO32− to non-toxic elemental selenium (Se0), with the formation of Se nanoparticles (SeNPs). These SeNPs might be exploited for technological applications due to their physico-chemical and biological characteristics. The present paper discusses the reduction of selenite to SeNPs by a strain of Bacillus sp., SeITE01, isolated from the rhizosphere of the Se-hyperaccumulator legume Astragalus bisulcatus. Results Use of 16S rRNA and GyrB gene sequence analysis positioned SeITE01 phylogenetically close to B. mycoides. On agarized medium, this strain showed rhizoid growth whilst, in liquid cultures, it was capable of reducing 0.5 and 2.0 mM SeO32− within 12 and 24 hours, respectively. The resultant Se0 aggregated to form nanoparticles and the amount of Se0 measured was equivalent to the amount of selenium originally added as selenite to the growth medium. A delay of more than 24 hours was observed between the depletion of SeO32 and the detection of SeNPs. Nearly spherical-shaped SeNPs were mostly found in the extracellular environment whilst rarely in the cytoplasmic compartment. Size of SeNPs ranged from 50 to 400 nm in diameter, with dimensions greatly influenced by the incubation times. Different SeITE01 protein fractions were assayed for SeO32− reductase capability, revealing that enzymatic activity was mainly associated with the membrane fraction. Reduction of SeO32− was also detected in the supernatant of bacterial cultures upon NADH addition. Conclusions The selenite reducing bacterial strain SeITE01 was attributed to the species Bacillus mycoides on the basis of phenotypic and molecular traits. Under aerobic conditions, the formation of SeNPs were observed both extracellularly or intracellullarly. Possible mechanisms of Se0 precipitation and SeNPs assembly are suggested. SeO32− is proposed to be enzimatically reduced to

  16. Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions

    NASA Astrophysics Data System (ADS)

    Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.

    1999-03-01

    Aerobic biodegradation and volatilization near the water table constitute a coupled pathway that contributes significantly to the natural attenuation of hydrocarbons at gasoline spill sites. Rates of hydrocarbon biodegradation and volatilization were quantified by analyzing vapor transport in the unsaturated zone at a gasoline spill site in Beaufort, South Carolina. Aerobic biodgradation rates decreased with distance above the water table, ranging from 0.20 to 1.5 g m-3 d-1 for toluene, from 0.24 to 0.38 g m-3 d-1 for xylene, from 0.09 to 0.24 g m-3 d-1 for cyclohexene, from 0.05 to 0.22 g m-3 d-1 for ethylbenzene, and from 0.02 to 0.08 g m-3 d-1 for benzene. Rates were highest in the capillary zone, where 68% of the total hydrocarbon mass that volatilized from the water table was estimated to have been biodegraded. Hydrocarbons were nearly completely degraded within 1m above the water table. This large loss underscores the importance of aerobic biodradation in limiting the transport of hydrocarbon vapors in the unsaturated zone and implies that vapor-plume migration to basements and other points of contact may only be significant if a source of free product is present. Furthermore, because transport of the hydrocarbon in the unsaturated zone can be limited relative to that of oxygen and carbon dioxide, soil-gas surveys conducted at hydrocarbon-spill sites would benefit by the inclusion of oxygen- and carbon-dioxide-gas concentration measurements. Aerobic degradation kinetics in the unsaturated zone were approximately first-order. First-order rate constants near the water table were highest for cyclohexene (0.21-0.65 d-1) and nearly equivalent for ethylbenzene (0.11-0.31 d-1), xylenes (0.10-0.31 d-1), toluene (0.09-0.30 d-1), and benzene (0.07-0.31 d-1). Hydrocarbon mass loss rates at the water table resulting from the coupled aerobic biodgradation and volatilization process were determined by extrapolating gas transport rates through the capillary zone. Mass loss

  17. Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions

    USGS Publications Warehouse

    Lahvis, M.A.; Baehr, A.L.; Baker, R.J.

    1999-01-01

    Aerobic biodegradation and volatilization near the water table constitute a coupled pathway that contributes significantly to the natural attenuation of hydrocarbons at gasoline spill sites. Rates of hydrocarbon biodegradation and volatilization were quantified by analyzing vapor transport in the unsaturated zone at a gasoline spill site in Beaufort, South Carolina. Aerobic biodegradation rates decreased with distance above the water table, ranging from 0.20 to 1.5g m-3 d-1 for toluene, from 0.24 to 0.38 g m-3 d-1 for xylene, from 0.09 to 0.24 g m-3 d-1 for cyclohexene, from 0.05 to 0.22 g m-3 d-1 for ethylbenzene, and from 0.02 to 0.08 g m-3 d-1 for benzene. Rates were highest in the capillary zone, where 68% of the total hydrocarbon mass that volatilized from the water table was estimated to have been biodegraded. Hydrocarbons were nearly completely degraded within 1 m above the water table. This large loss underscores the importance of aerobic biodegradation in limiting the transport of hydrocarbon vapors in the unsaturated zone and implies that vapor-plume migration to basements and other points of contact may only be significant if a source of free product is present. Furthermore, because transport of the hydrocarbon in the unsaturated zone can be limited relative to that of oxygen and carbon dioxide, soil, gas surveys conducted at hydrocarbon-spill sites would benefit by the inclusion of oxygen- and carbon-dioxide-gas concentration measurements. Aerobic degradation kinetics in the unsaturated zone were approximately first-order. First-order rate constants near the water table were highest for cyctohexene (0.21-0.65 d-1) and nearly equivalent for ethylbenzene (0.11-20.31 d-1), xylenes (0.10-0.31 d-1), toluene (0.09-0.30 d-1), and benzene (0.07,0.31 d-1). Hydrocarbon mass loss rates at the water table resulting from the coupled aerobic biodegradation and volatilization process were determined by extrapolating gas transport rates through the capillary zone. Mass

  18. Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis.

    PubMed

    Yin, Weiyu; Wang, Chengming; Huang, Yong

    2013-04-19

    A mild, aerobic, catalytic process for obtaining nitriles directly from alcohols and aqueous ammonia is described. The reaction proceeds via a dehydrogenation cascade mediated by catalytic CuI, bpy, and TEMPO in the presence of O2. The substrate scope is broad including various functionalized aromatic and aliphatic alcohols. This protocol enabled the one-pot synthesis of various biaryl heterocycles directly from commercially available alcohols.

  19. Culture-Independent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation ▿ †

    PubMed Central

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M.; Weightman, Andrew J.; Mahenthiralingam, Eshwar

    2011-01-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by “JW”) was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. PMID:21602386

  20. Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobic cultivation.

    PubMed

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M; Weightman, Andrew J; Mahenthiralingam, Eshwar

    2011-07-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by "JW") was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas.

  1. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.

    PubMed

    Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A

    2015-06-02

    Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD.

  2. Loss of SigB in Listeria monocytogenes Strains EGD-e and 10403S Confers Hyperresistance to Hydrogen Peroxide in Stationary Phase under Aerobic Conditions

    PubMed Central

    Boura, Marcia; Keating, Ciara; Royet, Kevin; Paudyal, Ranju; O'Donoghue, Beth

    2016-01-01

    ABSTRACT SigB is the main stress gene regulator in Listeria monocytogenes affecting the expression of more than 150 genes and thus contributing to multiple-stress resistance. Despite its clear role in most stresses, its role in oxidative stress is uncertain, as results accompanying the loss of sigB range from hyperresistance to hypersensitivity. Previously, these differences have been attributed to strain variation. In this study, we show conclusively that unlike for all other stresses, loss of sigB results in hyperresistance to H2O2 (more than 8 log CFU ml−1 compared to the wild type) in aerobically grown stationary-phase cultures of L. monocytogenes strains 10403S and EGD-e. Furthermore, growth at 30°C resulted in higher resistance to oxidative stress than that at 37°C. Oxidative stress resistance seemed to be higher with higher levels of oxygen. Under anaerobic conditions, the loss of SigB in 10403S did not affect survival against H2O2, while in EGD-e, it resulted in a sensitive phenotype. During exponential phase, minor differences occurred, and this result was expected due to the absence of sigB transcription. Catalase tests were performed under all conditions, and stronger catalase results corresponded well with a higher survival rate, underpinning the important role of catalase in this phenotype. Furthermore, we assessed the catalase activity in protein lysates, which corresponded with the catalase tests and survival. In addition, reverse transcription-PCR (RT-PCR) showed no differences in transcription between the wild type and the ΔsigB mutant in various oxidative stress genes. Further investigation of the molecular mechanism behind this phenotype and its possible consequences for the overall phenotype of L. monocytogenes are under way. IMPORTANCE SigB is the most important stress gene regulator in L. monocytogenes and other Gram-positive bacteria. Its increased expression during stationary phase results in resistance to multiple stresses. However

  3. Loss of SigB in Listeria monocytogenes Strains EGD-e and 10403S Confers Hyperresistance to Hydrogen Peroxide in Stationary Phase under Aerobic Conditions.

    PubMed

    Boura, Marcia; Keating, Ciara; Royet, Kevin; Paudyal, Ranju; O'Donoghue, Beth; O'Byrne, Conor P; Karatzas, Kimon A G

    2016-08-01

    SigB is the main stress gene regulator in Listeria monocytogenes affecting the expression of more than 150 genes and thus contributing to multiple-stress resistance. Despite its clear role in most stresses, its role in oxidative stress is uncertain, as results accompanying the loss of sigB range from hyperresistance to hypersensitivity. Previously, these differences have been attributed to strain variation. In this study, we show conclusively that unlike for all other stresses, loss of sigB results in hyperresistance to H2O2 (more than 8 log CFU ml(-1) compared to the wild type) in aerobically grown stationary-phase cultures of L. monocytogenes strains 10403S and EGD-e. Furthermore, growth at 30°C resulted in higher resistance to oxidative stress than that at 37°C. Oxidative stress resistance seemed to be higher with higher levels of oxygen. Under anaerobic conditions, the loss of SigB in 10403S did not affect survival against H2O2, while in EGD-e, it resulted in a sensitive phenotype. During exponential phase, minor differences occurred, and this result was expected due to the absence of sigB transcription. Catalase tests were performed under all conditions, and stronger catalase results corresponded well with a higher survival rate, underpinning the important role of catalase in this phenotype. Furthermore, we assessed the catalase activity in protein lysates, which corresponded with the catalase tests and survival. In addition, reverse transcription-PCR (RT-PCR) showed no differences in transcription between the wild type and the ΔsigB mutant in various oxidative stress genes. Further investigation of the molecular mechanism behind this phenotype and its possible consequences for the overall phenotype of L. monocytogenes are under way. SigB is the most important stress gene regulator in L. monocytogenes and other Gram-positive bacteria. Its increased expression during stationary phase results in resistance to multiple stresses. However, despite its important

  4. Examination of various cell culture techniques for co-incubation of virulent Treponema pallidum (Nichols I strain) under anaerobic conditions.

    PubMed Central

    Sandok, P L; Knight, S T; Jenkin, H M

    1976-01-01

    Treponema pallidum (Nichols virulent) was incubated with and without cells in cell culture medium reduced to -275 mV Ecal, pH 7.3, under deoxygenated conditions. Five to ten percent of the treponemes attached to cells and remained motile for at least 120 h in cell-treponeme systems of co-incubation. Virulent treponemes could be detected after 120 to 144 h in the supernatant fluids of cell-treponeme co-incubation cultures and in cell-free tubes containing medium harvested from aerobically cultivated mammalian cells. Medium supplemented with ox serum ultrafiltrate, pyruvate, and sodium thioglycolate and gas mixtures containing H2 and CO2 enhanced treponemal survival. Increases in treponemal numbers were observed using dark-field microscopy but were not substantiated using the rabbit lesion test. Continuous passage of the treponeme was not achieved in vitro. PMID:789395

  5. EFFECT OF CATALASE AND CULTURAL CONDITIONS ON GROWTH OF BEGGIATOA.

    PubMed

    BURTON, S D; MORITA, R Y

    1964-12-01

    Burton, Sheril D. (Oregon State University, Corvallis), and Richard Y. Morita. Effect of catalase and cultural conditions on growth of Beggiatoa. J. Bacteriol. 88:1755-1761. 1964.-The addition of catalase to culture medium increased the period of viability of Beggiatoa from 1 week to 2 months. Addition of catalase also produced a marked increase in cell yield and enzyme activity. Cultures grown without catalase exhibited an absorption peak characteristic of peroxides. This absorption peak was removed by addition of catalase during or after growth. Oxygen was required for growth, but carbon dioxide was not produced. Malate and acetate stimulated growth at low concentrations. Glucose and thiosulfate were not oxidized, and cytochromes were not detectable by spectrophotometric analysis.

  6. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions.

    PubMed

    Calegari-Santos, Rossana; Diogo, Ricardo Alexandre; Fontana, José Domingos; Bonfim, Tania Maria Bordin

    2016-05-01

    Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms.

  7. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  8. Culture-Based Screening of Aerobic Microbiome in Diabetic Foot Subjects and Developing Non-healing Ulcers

    PubMed Central

    Noor, Saba; Ahmad, Jamal; Parwez, Iqbal; Ozair, Maaz

    2016-01-01

    The study was carried on diabetic foot patients to deduce clinical attributes, the occurrence of the range of aerobic microbial flora and to assess their comparative in vitro susceptibility to the customarily used antimicrobials. We also studied the potential risk factors involved in the development of non-healing ulcers. A total of 87 organisms were isolated from 70 specimens, including Escherichia coli (19.5%) among the Gram-negative and Staphylococcus aureus (18.4%) among the Gram-positive as the predominant aerobes explored. Pseudomonas aeruginosa and E. coli were predominant isolates of non-healing ulcers. The antimicrobial sensitivity pattern revealed that vancomycin (100%) and amikacin (90.4%) exhibited highest sensitivity to Gram-positive cocci, while all strains of P. aeruginosa were sensitive toward imipenem (100%). The prevalent uncontrolled glycemic status, altered lipid spectra, the existence of neuropathy, and peripheral vascular disease, suggested predisposition toward the development of non-healing lesions. The study has underlined the need for continuous surveillance of bacteria and their antimicrobial sensitivity blueprints to provide the basis for empirical therapy and to minimize the risk of complications. Further, stringent clinical evaluation, and medical history will help in revealing the risk of developing non-healing status in diabetic foot ulcers. PMID:27920754

  9. Linking non-culturable (qPCR) and culturable enterococci densities with hydrometeorological conditions

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Shively, Dawn A.; Nevers, Meredith B.

    2010-01-01

    Quantitative polymerase chain reaction (qPCR) measurement of enterococci has been proposed as a rapid technique for assessment of beach water quality, but the response of qPCR results to environmental conditions has not been fully explored. Culture-based E. coli and enterococci have been used in empirical predictive models to characterize their responses to environmental conditions and to increase monitoring frequency and efficiency. This approach has been attempted with qPCR results only in few studies. During the summer of 2006, water samples were collected from two southern Lake Michigan beaches and the nearby river outfall (Burns Ditch) and were analyzed for enterococci by culture-based and non-culture-based (i.e., qPCR) methods, as well as culture-based E. coli. Culturable enterococci densities (log CFU/100 ml) for the beaches were significantly correlated with enterococci qPCR cell equivalents (CE) (R = 0.650, P N = 32). Enterococci CE and CFU densities were highest in Burns Ditch relative to the beach sites; however, only CFUs were significantly higher (P R = 0.565, P N = 32). Culturable E. coli and enterococci densities were significantly correlated (R = 0.682, P N = 32). Regression analyses suggested that enterococci CFU could be predicted by lake turbidity, Burns Ditch discharge, and wind direction (adjusted R2 = 0.608); enterococci CE was best predicted by Burns Ditch discharge and log-transformed lake turbidity × wave height (adjusted R2 = 0.40). In summary, our results show that analytically, the qPCR method compares well to the non-culture-based method for measuring enterococci densities in beach water and that both these approaches can be predicted by hydrometeorological conditions. Selected predictors and model results highlight the differences between the environmental responses of the two method endpoints and the potentially high variance in qPCR results

  10. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    PubMed

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Molecular and culture-based diagnosis of Clostridium difficile isolates from Côte d'Ivoire after prolonged storage at disrupted cold chain conditions.

    PubMed

    Becker, Sören L; Chatigre, Justin K; Coulibaly, Jean T; Mertens, Pascal; Bonfoh, Bassirou; Herrmann, Mathias; Kuijper, Ed J; N'Goran, Eliézer K; Utzinger, Jürg; von Müller, Lutz

    2015-10-01

    Although Clostridium difficile is a major cause of diarrhoea, its epidemiology in tropical settings is poorly understood. Strain characterisation requires work-up in specialised laboratories, often after prolonged storage without properly maintained cold chain. We screened 298 human faecal samples from Côte d'Ivoire using a rapid test for C. difficile glutamate dehydrogenase (GDH). GDH-positive samples were aerobically stored at disrupted cold chain conditions (mean duration: 11 days) before transfer to a reference laboratory for anaerobic culture, susceptibility testing, PCR assays and ribotyping. Sixteen samples (5.4%) had a positive GDH screening test. C. difficile infection was confirmed in six specimens by culture and PCR, while no nucleic acids of C. difficile were detected in the culture-negative samples. Further analysis of stool samples harbouring toxigenic C. difficile strains confirmed that both GDH and toxins remained detectable for at least 28 days, regardless of storage conditions (aerobic storage at 4°C or 20°C). Storage conditions only minimally affect recovery of C. difficile and its toxins in stool culture. A rapid GDH screening test and subsequent transfer of GDH-positive stool samples to reference laboratories for in-depth characterisation may improve our understanding of the epidemiology of C. difficile in the tropics. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  14. Mathematical Model for Predicting the Growth Probability of Staphylococcus aureus in Combinations of NaCl and NaNO2 under Aerobic or Evacuated Storage Conditions

    PubMed Central

    Lee, Jeeyeon; Gwak, Eunji; Ha, Jimyeong; Kim, Sejeong; Lee, Soomin; Lee, Heeyoung; Oh, Mi-Hwa; Park, Beom-Young; Oh, Nam Su; Choi, Kyoung-Hee; Yoon, Yohan

    2016-01-01

    The objective of this study was to describe the growth patterns of Staphylococcus aureus in combinations of NaCl and NaNO2, using a probabilistic model. A mixture of S. aureus strains (NCCP10826, ATCC13565, ATCC14458, ATCC23235, and ATCC27664) was inoculated into nutrient broth plus NaCl (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and NaNO2 (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm). The samples were then incubated at 4, 7, 10, 12 and 15℃ for up to 60 d under aerobic or vacuum conditions. Growth responses [growth (1) or no growth (0)] were then determined every 24 h by turbidity, and analyzed to select significant parameters (p<0.05) by a stepwise selection method, resulting in a probabilistic model. The developed models were then validated with observed growth responses. S. aureus growth was observed only under aerobic storage at 10-15℃. At 10-15℃, NaCl and NaNO2 did not inhibit S. aureus growth at less than 1.25% NaCl. Concentration dependency was observed for NaCl at more than 1.25%, but not for NaNO2. The concordance percentage between observed and predicted growth data was approximately 93.86%. This result indicates that S. aureus growth can be inhibited in vacuum packaging and even aerobic storage below 10℃. Furthermore, NaNO2 does not effectively inhibit S. aureus growth. PMID:28115886

  15. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  16. Hydrogen Photoproduction by Nutrient-Deprived Chalamydomonas reinhardtii Cells Immobilized Within Thin Alginate Films Under Aerobic and Anaerobic Conditions

    SciTech Connect

    Kosourov, S. N.; Seibert, M.

    2009-01-01

    A new technique for immobilizing H{sub 2}-photoproducing green algae within a thin (<400 {micro}m) alginate film has been developed. Alginate films with entrapped sulfur/phosphorus-deprived Chlamydomonas reinhardtii, strain cc124, cells demonstrate (a) higher cell density (up to 2,000 {micro}g Chl mL{sup -1} of matrix), (b) kinetics of H{sub 2} photoproduction similar to sulfur-deprived suspension cultures, (c) higher specific rates (up to 12.5 {micro}mol mg{sup -1} Chl h{sup -1}) of H{sub 2} evolution, (d) light conversion efficiencies to H{sub 2} of over 1% and (e) unexpectedly high resistance of the H{sub 2}-photoproducing system to inactivation by atmospheric O{sub 2}. The algal cells, entrapped in alginate and then placed in vials containing 21% O{sub 2} in the headspace, evolved up to 67% of the H{sub 2} gas produced under anaerobic conditions. The results indicate that the lower susceptibility of the immobilized algal H{sub 2}-producing system to inactivation by O{sub 2} depends on two factors: (a) the presence of acetate in the medium, which supports higher rates of respiration and (b) the capability of the alginate polymer itself to effectively separate the entrapped cells from O{sub 2} in the liquid and headspace and restrict O{sub 2} diffusion into the matrix. The strategy presented for immobilizing algal cells within thin polymeric matrices shows the potential for scale-up and possible future applications.

  17. Cultural conditionally and aid to education in east Africa

    NASA Astrophysics Data System (ADS)

    Brock-Utne, Birgit

    1995-05-01

    Aid to African education often involves the imposition of conditions that create dependency and undermine indigenous educational patterns. Such conditions can include the insistence on textbooks written and published abroad, the use of examination systems devised in Europe or North America, and the neglect of African culture and languages. In the first part of this article the author examines the attempts at educational reform after the African states had achieved independence. The second part highlights the renewed dangers of educational dependency following the 1990 World Conference on Education for All, held in Jomtien, Thailand. The last part of the article discusses whether there is such a thing as "educational aid for empowerment" and gives some examples of good educational aid projects in Africa.

  18. Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions.

    PubMed

    Raynal, M; Pruden, A

    2008-04-01

    This study explores the effect of microbial consortium composition and reactor configuration on methyl tert-butyl ether (MTBE) biodegradation in the presence of benzene, toluene, ethylbenzene and p-xylenes(BTEX). MTBE biodegradation was monitored in the presence and absence of BTEX in duplicate batch reactors inoculated with distinct enrichment cultures: MTBE only (MO-originally enriched on MTBE) and/or MTBE BTEX (MB-originally enriched on MTBE and BTEX). The MO culture was also applied in a semi-batch reactor which received both MTBE and BTEX periodically in fresh medium after allowing cells to settle. The composition of the microbial consortia was explored using a combination of 16S rRNA gene cloning and quantitative polymerase chain reaction targeting the known MTBE-degrading strain PM1T. MTBE biodegradation was completely inhibited by BTEX in the batch reactors inoculated with the MB culture, and severely retarded in those inoculated with the MO culture (0.18+/-0.04 mg/L-day). In the semi-batch reactor, however, the MTBE biodegradation rate in the presence of BTEX was almost three times as high as in the batch reactors (0.48+/-0.2 mg/L-day), but still slower than MTBE biodegradation in the absence of BTEX in the MO-inoculated batch reactors (1.47+/-0.47 mg/L-day). A long lag phase in MTBE biodegradation was observed in batch reactors inoculated with the MB culture (20 days), but the ultimate rate was comparable to the MO culture (0.95+/-0.44 mg/L-day). Analysis of the cultures revealed that strain PM1T concentrations were lower in cultures that successfully biodegraded MTBE in the presence of BTEX. Also, other MTBE degraders, such as Leptothrix sp. and Hydrogenophaga sp. were found in these cultures. These results demonstrate that MTBE bioremediation in the presence of BTEX is feasible, and that culture composition and reactor configuration are key factors.

  19. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by (13)C metabolic flux analysis.

    PubMed

    Gonzalez, Jacqueline E; Long, Christopher P; Antoniewicz, Maciek R

    2017-01-01

    Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no (13)C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in (13)C metabolic flux analysis ((13)C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated (13)C-MFA using the optimal tracers [1,2-(13)C]glucose, [1,6-(13)C]glucose, [1,2-(13)C]xylose and [5-(13)C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-(13)C]glucose and [U-(13)C]xylose tracers. We demonstrated that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrated that β-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.

  20. Development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions.

    PubMed

    Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E

    2016-05-01

    The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (μmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the μmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken. Copyright © 2015

  1. Protective role of the RpoE (σE) and Cpx envelope stress responses against gentamicin killing of nongrowing Escherichia coli incubated under aerobic, phosphate starvation conditions.

    PubMed

    Moreau, Patrice L

    2014-08-01

    The viability of Escherichia coli starved of nitrogen (N) or phosphorus (P) decreased by up to seven orders of magnitude during prolonged incubation under aerobic conditions when exposed to high levels of the antibiotic gentamicin, whereas viability of cells starved of carbon (C) was barely affected. However, the initial rate of killing was lower for P-starved cells than for N-starved cells. The transient resistance of P-starved cells was partially dependent upon the expression of the phosphate (Pho) and Cpx responses. Constitutive activity of the Cpx and RpoE (σ(E)) envelope stress regulons increased the resistance of P- and N-starved cells. The level of expression of the RpoE regulon was fourfold higher in P-starved cells than in N-starved cell at the time gentamicin was added. Gentamicin killing of nongrowing cells may thus require ongoing aerobic glucose metabolism and faulty synthesis of structural membrane proteins. However, membrane protein damage induced by gentamicin can be eliminated or repaired by RpoE- and Cpx-dependent mechanisms pre-emptively induced in P-starved cells, which reveals a novel mechanism of resistance to gentamicin that is active in certain circumstances.

  2. Influence of culture conditions on glutathione production by Saccharomyces cerevisiae.

    PubMed

    Santos, Lucielen Oliveira; Gonzales, Tatiane Araujo; Ubeda, Beatriz Torsani; Monte Alegre, Ranulfo

    2007-12-01

    A strategy of experimental design using a fractional factorial design (FFD) and a central composite rotatable design (CCRD) were carried out with the aim to obtain the best conditions of temperature (20-30 degrees C), agitation rate (100-300 rpm), initial pH (5.0-7.0), inoculum concentration (5-15%), and glucose concentration (30-70 g/l) for glutathione (GSH) production in shake-flask culture by Saccharomyces cerevisiae ATCC 7754. By a FFD (2(5-2)), the agitation rate, temperature, and pH were found to be significant factors for GSH production. In CCRD (2(2)) was obtained a second-order model equation, and the percent of variation explained by the model was 95%. The results showed that the optimal culture conditions were agitation rate, 300 rpm; temperature, 20 degrees C; initial pH, 5; glucose, 54 g/l; and inoculum concentration, 5%. The highest GSH concentration (154.5 mg/l) was obtained after 72 h of fermentation.

  3. Assistance of Ectoine on Acinetobacter sp. A06 of simultaneous heterotrophic nitrification and aerobic denitrification denitrifying at stress condition

    NASA Astrophysics Data System (ADS)

    Xue, P.; Li, X. W.; Tan, F. X.; Qu, A.; Yuan, X. N.; Zhang, L. H.

    2017-08-01

    The simultaneous heterotrophic nitrification and aerobic denitrification (SND) performed by Acinetobacter sp. A06 could be inhibited by high salt, high ammonia nitrogen concentrations and extreme pH. To improve the SND nitrogen removal efficiency of Acinetobacter sp. A06 in adverse environment, we investigated the effects on nitrogen removal by Acinetobacter sp. A06 of five compatible solutes. The results show that Ectoine was the best effect in five osmotic compensation solutes when the salt concentration was 15 g/L, 30 g/L, 45 g/L, and 60 g/L, adding Ectoine, nitrogen removal were increased by 21.10%, 26.94%, 14.67% and 11.21%, respectively. When the NH4 +-N concentration was 1.5 g/L, 2 g/L and 2.5 g/L, adding Ectoine, the nitrogen removal rate increased by 15.93%, 10.07% and 7.11%, respectively,. When the extreme pH of pH was 5 or 9, adding Ectoine, the nitrogen removal rate was increased by 20.70% and 10.44%, respectively.

  4. Lab scale experiments using a submerged MBR under thermophilic aerobic conditions for the treatment of paper mill deinking wastewater.

    PubMed

    Simstich, Benjamin; Beimfohr, Claudia; Horn, Harald

    2012-10-01

    This paper describes the results of laboratory experiments using a thermophilic aerobic MBR (TMBR) at 50 °C. An innovative use of submerged flat-sheet MBR modules to treat circuit wastewater from the paper industry was studied. Two experiments were conducted with a flux of 8-13 L/m(2)/h without chemical membrane cleaning. COD and BOD(5) elimination rates were 83% and 99%, respectively. Calcium was reduced from 110 to 180 mg/L in the inflow to 35-60 mg/L in the permeate. However, only negligible membrane scaling occurred. The observed sludge yield was very low and amounted to 0.07-0.29 g MLSS/g COD(eliminated). Consequently, the nutrient supply of ammonia and phosphate can be lower compared to a mesophilic process. Molecular-biological FISH analysis revealed a likewise high diversity of microorganisms in the TMBR compared to the mesophilic sludge used for start-up. Furthermore, ammonia-oxidising bacteria were detected at thermophilic operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  6. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  7. Comparison of Cultured and Wild Sheepshead Minnow (Cyprinodon variegatus) Health Condition Metrics

    EPA Science Inventory

    Four standard health condition metrics (hepatosomatic index, HSI; gonadosomatic index, GSI; fecundity, condition factor) were compared between cultured and wild caught sheepshead minnow (Cyrprinodon variegatus) to determine if laboratory cultured were representative of wild popul...

  8. Comparison of Cultured and Wild Sheepshead Minnow (Cyprinodon variegatus) Health Condition Metrics

    EPA Science Inventory

    Four standard health condition metrics (hepatosomatic index, HSI; gonadosomatic index, GSI; fecundity, condition factor) were compared between cultured and wild caught sheepshead minnow (Cyrprinodon variegatus) to determine if laboratory cultured were representative of wild popul...

  9. The Culture Conditions for the Mycelial Growth of Phellinus spp.

    PubMed

    Jo, Woo-Sik; Rew, Young-Hyun; Choi, Sung-Guk; Seo, Geon-Sik; Sung, Jae-Mo; Uhm, Jae-Youl

    2006-12-01

    Phellinus genus belonged to Hymenochaetaceae of Basidiomycetes and has been well known as one of the most popular medicinal mushrooms due to high antitumor activity. This study was carried out to obtain the basic information for mycelial culture conditions of Phellinus linteus, P. baumii, and P. gilvus. According to colony diameter and mycelial density, the media for suitable mycelial growth of them were shown in MEA, glucose peptone, and MCM. The optimum temperature for mycelial growth was 30℃. Carbon and nitrogen sources were mannose and malt extract, respectively. The optimum C/N ratio was 10 : 1 to 5: 1 with 2% glucose concentration, vitamin was thiamine-HCl, organic acid was succinic acid, and mineral salt was MgSO4·7H2O.

  10. The Culture Conditions for the Mycelial Growth of Phellinus spp.

    PubMed Central

    Rew, Young-Hyun; Choi, Sung-Guk; Seo, Geon-Sik; Sung, Jae-Mo; Uhm, Jae-Youl

    2006-01-01

    Phellinus genus belonged to Hymenochaetaceae of Basidiomycetes and has been well known as one of the most popular medicinal mushrooms due to high antitumor activity. This study was carried out to obtain the basic information for mycelial culture conditions of Phellinus linteus, P. baumii, and P. gilvus. According to colony diameter and mycelial density, the media for suitable mycelial growth of them were shown in MEA, glucose peptone, and MCM. The optimum temperature for mycelial growth was 30℃. Carbon and nitrogen sources were mannose and malt extract, respectively. The optimum C/N ratio was 10 : 1 to 5 : 1 with 2% glucose concentration, vitamin was thiamine-HCl, organic acid was succinic acid, and mineral salt was MgSO4·7H2O. PMID:24039499

  11. Optimization of culture conditions for porcine corneal endothelial cells.

    PubMed

    Proulx, Stéphanie; Bourget, Jean-Michel; Gagnon, Nicolas; Martel, Sophie; Deschambeault, Alexandre; Carrier, Patrick; Giasson, Claude J; Auger, François A; Brunette, Isabelle; Germain, Lucie

    2007-04-03

    To optimize the growth condition of porcine corneal endothelial cells (PCEC), we evaluated the effect of coculturing with a feeder layer (irradiated 3T3 fibroblasts) with the addition of various exogenous factors, such as epidermal growth factor (EGF), nerve growth factor (NGF), bovine pituitary extract (BPE), ascorbic acid, and chondroitin sulfate, on cell proliferation, size, and morphology. PCEC cultures were seeded at an initial cell density of 400 cells/cm(2) in the presence or absence of 20,000 murine-irradiated 3T3 fibroblast/cm(2) in the classic media Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 20% fetal bovine serum (FBS). Mean cell size and bromodeoxyuridine incorporation was assessed at various passages. Growth-promoting factors were studies by seeding PCEC at 8,000 cells/cm(2) in DMEM with 20% FBS or Opti-MEM I supplemented with 4% FBS and one of the following additives: EGF (0.5, 5, 25 ng/ml), NGF (5, 20, 50 ng/ml), BPE (25, 50, 100, 200 microg/ml), ascorbic acid (10, 20, 40 microg/ml) and chondroitin sulfate (0.03, 0.08, 1.6%), alone or in combination. Cell number, size and morphology of PCEC were assessed on different cell populations. Each experiment was repeated at least twice in three sets. In some cases, cell cultures were maintained after confluence to observe post-confluence changes in cell morphology. Co-cultures of PCEC grown in DMEM 20% FBS with a 3T3 feeder layer improved the preservation of small polygonal cell shape. EGF, NGF, and chondroitin sulfate did not induce proliferation above basal level nor did these additives help maintain a small size. However, chondroitin sulfate did help preserve a good morphology. BPE and ascorbic acid had dose-dependent effects on proliferation. The combination of BPE, chondroitin sulfate, and ascorbic acid significantly increased cell numbers above those achieved with serum alone. No noticeable changes were observed when PCEC were cocultured with a 3T3 feeder layer in the final selected

  12. Optimization of culture conditions for porcine corneal endothelial cells

    PubMed Central

    Proulx, Stéphanie; Bourget, Jean-Michel; Gagnon, Nicolas; Martel, Sophie; Deschambeault, Alexandre; Carrier, Patrick; Giasson, Claude J.; Auger, François A.; Brunette, Isabelle

    2007-01-01

    Purpose To optimize the growth condition of porcine corneal endothelial cells (PCEC), we evaluated the effect of coculturing with a feeder layer (irradiated 3T3 fibroblasts) with the addition of various exogenous factors, such as epidermal growth factor (EGF), nerve growth factor (NGF), bovine pituitary extract (BPE), ascorbic acid, and chondroitin sulfate, on cell proliferation, size, and morphology. Methods PCEC cultures were seeded at an initial cell density of 400 cells/cm2 in the presence or absence of 20,000 murine-irradiated 3T3 fibroblast/cm2 in the classic media Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 20% fetal bovine serum (FBS). Mean cell size and bromodeoxyuridine incorporation was assessed at various passages. Growth-promoting factors were studies by seeding PCEC at 8,000 cells/cm2 in DMEM with 20% FBS or Opti-MEM I supplemented with 4% FBS and one of the following additives: EGF (0.5, 5, 25 ng/ml), NGF (5, 20, 50 ng/ml), BPE (25, 50, 100, 200 μg/ml), ascorbic acid (10, 20, 40 μg/ml) and chondroitin sulfate (0.03, 0.08, 1.6%), alone or in combination. Cell number, size and morphology of PCEC were assessed on different cell populations. Each experiment was repeated at least twice in three sets. In some cases, cell cultures were maintained after confluence to observe post-confluence changes in cell morphology. Results Co-cultures of PCEC grown in DMEM 20% FBS with a 3T3 feeder layer improved the preservation of small polygonal cell shape. EGF, NGF, and chondroitin sulfate did not induce proliferation above basal level nor did these additives help maintain a small size. However, chondroitin sulfate did help preserve a good morphology. BPE and ascorbic acid had dose-dependent effects on proliferation. The combination of BPE, chondroitin sulfate, and ascorbic acid significantly increased cell numbers above those achieved with serum alone. No noticeable changes were observed when PCEC were cocultured with a 3T3 feeder layer in the final

  13. Aerobic glucose fermentation by Trypanosoma cruzi axenic culture amastigote-like forms during growth and differentiation to epimastigotes.

    PubMed

    Engel, J C; Franke de Cazzulo, B M; Stoppani, A O; Cannata, J J; Cazzulo, J J

    1987-11-01

    Axenic culture amastigote-like forms of Trypanosoma cruzi, grown at 28 degrees C, reach a stationary phase after two generations, and differentiate to epimastigotes, which then resume growth. Axenic culture amastigotes readily ferment glucose to succinate and acetate, and do not excrete NH3; they have high activities of hexokinase and phosphoenolpyruvate carboxykinase, and very low citrate synthase activity; cytochrome o is absent, and cytochrome b-like is present at a very low level. Epimastigotes catabolize glucose and produce succinate and acetate at a considerably lower rate; they exhibit lower levels of hexokinase and carboxykinase, and much higher levels of citrate synthase and cytochromes o and b-like. They catabolize amino acids, as shown by excretion of NH3 to the medium. The results suggest that axenic culture amastigotes have an essentially glycolytic metabolism, and they acquire the ability to oxidize substrates such as amino acids only after differentiation to epimastigotes.

  14. Suppression of Eis and expression of Wag31 and GroES in Mycobacterium tuberculosis cytosol under anaerobic culture conditions.

    PubMed

    Maurya, Vineet K; Singh, Kavita; Sinha, Sudhir

    2014-08-01

    A major impediment in chemotherapy of Tuberculosis (TB) is the persistence of M. tuberculosis in a latent or dormant state, possibly perpetuated by paucity of oxygen within the lung granuloma. Proteome analysis of the anaerobically persisting microbe could therefore provide novel targets for drugs against latent TB infection (LTBI). An Indian clinical isolate of M. tuberculosis was cultured under aerobic and anaerobic conditions following Wayne's hypoxia model and its cytosolic proteins were resolved by two-dimensional gel electrophoresis (2DE). Peptide mass fingerprinting of 32 differentially expressed spots using MALDI TOF-TOF MS-MS resulted in identification of 23 proteins. Under the anaerobic culture conditions, expression of 12 of these proteins was highly suppressed (>2 fold reduction in spot volumes), with 4 of them (GrpE, CanB, MoxR1 and Eis) appearing as completely suppressed since corresponding spots were not detectable in the anaerobic sample. On the other hand, 4 proteins were highly expressed, with two of them (Wag31 and GroES) being uniquely expressed under anaerobic conditions. Suppression of Eis could make the anaerobically persisting bacilli susceptible to the aminoglycoside antibiotics which are known to be acetylated and inactivated by Eis. Although all 4 overexpressed proteins can be considered as putative drug targets for LTBI, Wag31 appears particularly interesting in view of its role in the cell wall biogenesis.

  15. Induction of mutations in V79-4 mammalian cells under hypoxic and aerobic conditions by the cytotoxic 2-nitroimidazole-aziridines, RSU-1069 and RSU-1131. The influence of cellular glutathione.

    PubMed

    Sapora, O; Paone, A; Maggi, A; Jenner, T J; O'Neill, P

    1992-10-06

    Incubation of the 2-nitroimidazole-aziridine, RSU-1069 [1-(2-nitro-1-imidazolyl)-3-(1-aziridinyl)-2-propanol], and its monomethylaziridine analogue, RSU-1131 [1-(2-nitro-1-imidazolyl)-3-(1-(2-methylaziridinyl))-2-propanol], with V79-4 mammalian cells for 2 hr under aerobic or hypoxic conditions induces mutations as measured at the hypoxanthine phosphoribosyl transferase locus. The ability of these agents to induce mutations is increased by a factor of 12-14 under hypoxic conditions. The increased cytotoxicity of these agents under hypoxic conditions was confirmed following a 2 hr incubation period. Decreasing the glutathione (GSH) content of the cells with buthionine-(S,R)-sulphoximine to < 1% of the control generally results in an increase in the cytotoxicity and mutagenicity of these agents under both aerobic and hypoxic conditions. Since these agents do not modify the cellular GSH levels, it is inferred that the thiols partially detoxify through removal of a reactive metabolite of the agents, under hypoxic conditions, or removal of known DNA adducts, and not through their interaction with the agents themselves. Under aerobic conditions, the formation of mutations is consistent with the established monofunctional action of these agents whereas under hypoxic conditions the bifunctional action predominates for mutation induction, based upon the large differential aerobic:hypoxic effect. From a comparison of the number of mutations per lethal event, the effect of thiol depletion is more pronounced for cytotoxicity than for mutation induction by these agents. In summary, these agents are considered to be weak mutagens towards V79-4 cells under aerobic conditions when compared with other DNA alkylating agents, although they are more potent under anoxic conditions.

  16. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  17. Optimizing enrichment culture conditions for detecting Helicobacter pylori in foods.

    PubMed

    Jiang, Xiuping; Doyle, Michael P

    2002-12-01

    The survival and growth of Helicobacter pylori under enrichment conditions in fresh, autoclaved and irradiated ground beef were determined. H. pylori grew in autoclaved ground beef at 37 degrees C under microaerobic conditions in brain heart infusion broth with 7% horse serum at pH 7.3 after 3 to 7 days of lag time but did not grow within 7 days in irradiated (10 kGy) ground beef under the same enrichment conditions. Adjustment of the enrichment broth to pH 5.5 enabled the growth (ca. 2 log10 CFU/ml) of H. pylori within 7 days in the presence of irradiated ground beef and the prolific growth (ca. 3 to 4 log10 CFU/ml) of H. pylori within 3 days in the presence of autoclaved beef. H. pylori in fresh ground beef could not be isolated from enrichment media with antibiotics; however. H. pylori ureA could be detected by polymerase chain reaction (PCR) in such enrichment media after 1 to 3 days of incubation at 37 degrees C. The addition of supplements, i.e., 0.3% mucin, 0.05% ferrous sulfate, and 0.05% sodium pyruvate or 0.008 M urea, or the adjustment of the enrichment broth pH to 5.5 or 4.5 enabled the detection of H. pylori ureA in enrichment media incubated for 1, 2, 3, and/or 7 days at 37 degrees C. H. pylori in sterile milk refrigerated at 4 degrees C at an initial level of 10(6) CFU/ml was inactivated to an undetectable level within 6 days; however, H. pylori was not detected either by a PCR assay or by the plating of enrichment cultures of 120 raw bovine milk samples.

  18. Hypoxic culture conditions enhance the generation of regulatory T cells

    PubMed Central

    Neildez-Nguyen, Thi My Anh; Bigot, Jérémy; Da Rocha, Sylvie; Corre, Guillaume; Boisgerault, Florence; Paldi, Andràs; Galy, Anne

    2015-01-01

    The generation of large amounts of induced CD4+ CD25+ Foxp3+ regulatory T (iTreg) cells is of great interest for several immunotherapy applications, therefore a better understanding of signals controlling iTreg cell differentiation and expansion is required. There is evidence that oxidative metabolism may regulate several key signalling pathways in T cells. This prompted us to investigate the effects of oxygenation on iTreg cell generation by comparing the effects of atmospheric (21%) or of low (5%) O2 concentrations on the phenotype of bead-stimulated murine splenic CD4+ T cells from Foxp3-KI-GFP T-cell receptor transgenic mice. The production of intracellular reactive oxygen species was shown to play a major role in the generation of iTreg cells, a process characterized by increased levels of Sirt1, PTEN and Glut1 on the committed cells, independently of the level of oxygenation. The suppressive function of iTreg cells generated either in atmospheric or low oxygen levels was equivalent. However, greater yields of iTreg cells were obtained under low oxygenation, resulting from a higher proliferative rate of the committed Treg cells and higher levels of Foxp3, suggesting a better stability of the differentiation process. Higher expression of Glut1 detected on iTreg cells generated under hypoxic culture conditions provides a likely explanation for the enhanced proliferation of these cells as compared to those cultured under ambient oxygen. Such results have important implications for understanding Treg cell homeostasis and developing in vitro protocols for the generation of Treg cells from naive T lymphocytes. PMID:25243909

  19. Understanding Culture: A Pre-Condition for Effective Learning.

    ERIC Educational Resources Information Center

    Little, Angela

    This paper is concerned with the cultures of learning and the customs of learners. A distinction is drawn between the base learning culture of the learner as that which represents the knowledge, learning orientations, and strategies the learner brings to a learning situation, and a cultural learning posture that comprises the knowledge, learning…

  20. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    PubMed

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.

  1. Constitutive expression of Campylobacter jejuni truncated hemoglobin CtrHb improves the growth of Escherichia coli cell under aerobic and anaerobic conditions.

    PubMed

    Yang, Jiang-Ke; Xiong, Wei; Xu, Li; Li, Jia; Zhao, Xiu-Ju

    2015-01-01

    Bacteria hemoglobin could bind to the oxygen, transfer it from the intracellular microenvironment to the respiration process and sustain the energy for the metabolism and reproduction of cells. Heterologous expression of bacteria hemoglobin gene could improve the capacity of the host on oxygen-capturing and allow it to grow even under microaerophilic condition. To develop a system based on hemoglobin to help bacteria cells overcome the oxygen shortage in fermentation, in this study, Campylobacter jejuni truncated hemoglobin (CtrHb) gene was synthesized and expressed under the control of constitutive expression promoters P2 and P(SPO1-II) in Escherichia coli. As showed by the growth curves of the two recombinants P2-CtrHb and P(SPO1-II)-CtrHb, constitutive expression of CtrHb improved cell growth under aerobic shaking-flasks, anaerobic capped-bottles and bioreactor conditions. According to the NMR analysis, this improvement might come from the expression of hemoglobin which could boost the metabolism of cells by supplying more oxygen to the respiratory chain processes. Through semi-quantitative RT-PCR and CO differential spectrum assays, we further discussed the connection between the growth patterns of the recombinants, the expression level of CtrHb and oxygen binding capacity of CtrHb in cells. Based on the growth patterns of these recombinants in bioreactor, a possible choice on different type of recombinants under specific fermentation conditions was also suggested in this study.

  2. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.

    PubMed

    Chwa, Jun-Won; Kim, Wook Jin; Sim, Sang Jun; Um, Youngsoon; Woo, Han Min

    2016-08-01

    Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2 . However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP-driven malonyl-CoA synthesis pathway and heterologous phosphoketolase (PHK)-phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl-CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl-CoA-derived biochemicals.

  3. Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.

    PubMed Central

    Rhee, S K; Lee, G M; Yoon, J H; Park, Y H; Bae, H S; Lee, S T

    1997-01-01

    New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications. PMID:9212408

  4. Aerobic granular sludge: recent advances.

    PubMed

    Adav, Sunil S; Lee, Duu-Jong; Show, Kuan-Yeow; Tay, Joo-Hwa

    2008-01-01

    Aerobic granulation, a novel environmental biotechnological process, was increasingly drawing interest of researchers engaging in work in the area of biological wastewater treatment. Developed about one decade ago, it was exciting research work that explored beyond the limits of aerobic wastewater treatment such as treatment of high strength organic wastewaters, bioremediation of toxic aromatic pollutants including phenol, toluene, pyridine and textile dyes, removal of nitrogen, phosphate, sulphate and nuclear waste and adsorption of heavy metals. Despite this intensive research the mechanisms responsible for aerobic granulation and the strategy to expedite the formation of granular sludge, and effects of different operational and environmental factors have not yet been clearly described. This paper provides an up-to-date review on recent research development in aerobic biogranulation technology and applications in treating toxic industrial and municipal wastewaters. Factors affecting granulation, granule characterization, granulation hypotheses, effects of different operational parameters on aerobic granulation, response of aerobic granules to different environmental conditions, their applications in bioremediations, and possible future trends were delineated. The review attempts to shed light on the fundamental understanding in aerobic granulation by newly employed confocal laser scanning microscopic techniques and microscopic observations of granules.

  5. Influence of an aerobic fungus grown on solid culture on ruminal degradability and on a mixture culture of anaerobic cellulolytic bacteria.

    PubMed

    Hernández-Díaz, R; Pimentel-González, D J; Figueira, A C; Viniegra-González, G; Campos-Montiel, R G

    2010-06-01

    In this work, the effect of a solid fungal culture of Aspergillus niger (An) grown on coffee pulp on the in situ ruminal degradability (RD) of corn stover was evaluated. In addition, the effect of its extracts on the in vitro dry matter disappearance (IVDMD) and on a mixed culture of anaerobic cellulolytic bacteria (MCACB) was also investigated. The solid ferment was a crude culture of An, grown on coffee pulp. Regarding in situ RD, a significant difference (p < 0.05) was found between treatment with 200 g/day of the solid culture and control (no solid culture added) on dry matter, crude protein and neutral detergent fibre on RD. All the water extracts (pH 4, 7 and 10) enhanced IVDMD and stimulated the cellulolytic activity on a MCACB. Ultrafiltration results showed that active compounds with a molecular weight lower than 30 kDa were responsible for the effect on MCACB. Such results suggest that the effects of the solid An culture in RD are related to the presence of water soluble compounds having a molecular weight lower than 30 kDa.

  6. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    NASA Astrophysics Data System (ADS)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  7. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  8. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.

    PubMed

    Bruckmann, Astrid; Hensbergen, Paul J; Balog, Crina I A; Deelder, André M; Brandt, Raymond; Snoek, I S Ishtar; Steensma, H Yde; van Heusden, G Paul H

    2009-01-30

    The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.

  9. [Influence of liquid or solid culture conditions on the volatile components of mycelia of Isariacateinannulata].

    PubMed

    Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin

    2011-12-01

    To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.

  10. In vivo analysis of NH4+ transport and central N-metabolism of Saccharomyces cerevisiae under aerobic N-limited conditions.

    PubMed

    Cueto-Rojas, H F; Maleki Seifar, R; Ten Pierick, A; van Helmond, W; Pieterse M, M; Heijnen, J J; Wahl, S A

    2016-09-16

    Ammonium is the most common N-source for yeast fermentations. Although, its transport and assimilation mechanisms are well documented, there have been only few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N-sources (ammonium, urea and glutamate) at the same growth rate (0.05 h(-1)). The experimental results suggest that, at this growth rate, a similar concentration of intracellular ammonium, about 3.6 mmol NH4(+)/LIC, is required to supply the reactions in the central N-metabolism independent of the N-source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage to the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between reactions Gdh1 and Gdh2. Finally, using shotgun proteomics with labeled reference-relative protein expression, differences between the various environmental conditions were identified and correlated with previously identified N-compound sensing mechanisms.

  11. MALDI-TOF MS Imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions.

    PubMed

    Rivas, Daniel; Ginebreda, Antoni; Pérez, Sandra; Quero, Carmen; Barceló, Damià

    2016-10-01

    Degradation of solid polymers in the aquatic environment encompasses a variety of biotic and abiotic processes giving rise to heterogeneous patterns across the surface of the material, which cannot be investigated using conventional Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that only renders an "average" picture of the sample. In that context, MALDI-TOF MS Imaging (MALDI MSI) provides a rapid and efficient tool to study 2D spatial changes occurred in the chemical composition of the polymer surface. Commercial polycaprolactone diol (average molecular weight of 1250Da) was selected as test material because it had been previously known to be amenable to biological degradation. The test oligomer probe was incubated under aerobic and denitrifying conditions using synthetic water and denitrifying mixed liquor obtained from a wastewater treatment plant respectively. After ca. seven days of exposure the mass spectra obtained by MALDI MSI showed the occurrence of chemical modifications in the sample surface. Observed heterogeneity across the probe's surface indicated significant degradation and suggested the contribution of biotic processes. The results were investigated using different image processing tools. Major changes on the oligomer surface were observed when exposed to denitrifying conditions.

  12. On-line estimation of biomass through pH control analysis in aerobic yeast fermentation systems.

    PubMed

    Vicente, A; Castrillo, J I; Teixeira, J A; Ugalde, U

    1998-05-20

    The amount of acid or base consumed in yeast cultures has been recently assigned to the pathway of nitrogen assimilation under respiratory conditions with no contribution by carbon metabolism (Castrillo et al., 1995). In this investigation, experiments under respirofermentative conditions have shown that production or consumption of ethanol does not contribute significantly to the specific rate of proton production (qH+), thus extending the previously obtained relationships for all aerobic conditions in which other major acid/base contributions are not involved. Tests in batch and chemostat culture confirm the validity of qH+ as a formal control parameter in aerobic fermentations.

  13. Gaseous elemental mercury emissions and CO(2) respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions.

    PubMed

    Obrist, Daniel; Faïn, Xavier; Berger, Carsen

    2010-03-01

    Mercury (Hg) levels in terrestrial soils are linked to the presence of organic carbon (C). Carbon pools are highly dynamic and subject to mineralization processes, but little is known about the fate of Hg during decomposition. This study evaluated relationships between gaseous Hg emissions from soils and carbon dioxide (CO(2)) respiration under controlled laboratory conditions to assess potential losses of Hg to the atmosphere during C mineralization. Results showed a linear correlation (r(2)=0.49) between Hg and CO(2) emissions in 41 soil samples, an effect unlikely to be caused by temperature, radiation, different Hg contents, or soil moisture. Stoichiometric comparisons of Hg/C ratios of emissions and underlying soil substrates suggest that 3% of soil Hg was subject to evasion. Even minute emissions of Hg upon mineralization, however, may be important on a global scale given the large Hg pools sequestered in terrestrial soils and C stocks. We induced changes in CO(2) respiration rates and observed Hg flux responses, including inducement of anaerobic conditions by changing chamber air supply from N(2)/O(2) (80% and 20%, respectively) to pure N(2). Unexpectedly, Hg emissions almost quadrupled after O(2) deprivation while oxidative mineralization (i.e., CO(2) emissions) was greatly reduced. This Hg flux response to anaerobic conditions was lacking when repeated with sterilized soils, possibly due to involvement of microbial reduction of Hg(2+) by anaerobes or indirect abiotic effects such as alterations in soil redox conditions. This study provides experimental evidence that Hg volatilization, and possibly Hg(2+) reduction, is related to O(2) availability in soils from two Sierra Nevada forests. If this result is confirmed in soils from other areas, the implication is that Hg volatilization from terrestrial soils is partially controlled by soil aeration and that low soil O(2) levels and possibly low soil redox potentials lead to increased Hg volatilization from

  14. Aerobic exercise modulation of mental stress-induced responses in cultured endothelial progenitor cells from healthy and metabolic syndrome subjects.

    PubMed

    Rocha, Natalia G; Sales, Allan R K; Miranda, Renan L; Silva, Mayra S; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nóbrega, Antonio C L

    2015-02-15

    Numerous studies have demonstrated that exercise acutely prevents the reduction in flow-mediated dilation induced by mental stress in subjects with metabolic syndrome (MetS). However, it is unknown whether a similar effect occurs in endothelial progenitors cells (EPCs). This study investigated whether exercise protects from the deleterious effect of mental stress on cultured EPCs in healthy subjects and those with MetS. Ten healthy subjects (aged 31±2) and ten subjects with MetS (aged 36±2) were enrolled. Subjects underwent a mental stress test, followed immediately by either 40 min of leg cycling or rest across two randomized sessions: mental stress+non-exercise control (MS) and mental stress+exercise (MS+EXE). The Stroop Color-Word Test was used to elicit mental stress. Blood samples were drawn at baseline and following sessions to isolate mononuclear cells. These cells were cultured in fibronectin-coated plates for seven days, and EPCs were identified by immunofluorescence (acLDL(+)/ UEA-I Lectin(+)). All subjects presented similar increases in mean blood pressure and heart rate during the mental stress test (P<0.01) in both the MS and MS+EXE sessions. Number of EPCs was not different between groups at baseline in both sessions (P>0.05). The EPC response to MS and MS+EXE was increased in healthy subjects, whereas it was decreased in subjects with MetS (P<0.04). In healthy subjects, the EPC response to MS+EXE was greater than the response to MS alone (P=0.03). An exercise session increased EPCs in healthy subjects but did not prevent the EPC reduction induced by mental stress among subjects with MetS. © 2015.

  15. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    PubMed

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes.

  16. Effects of recreational aerobics on adaptation of female first-year students from urban area and rural area to conditions of higher school education.

    PubMed

    Panikhina, A V; Kolesnikova, O B

    2012-02-01

    Experiments proved beneficial effects of additional classes for recreational aerobics on the realization of morphophysiological mechanisms of adaptation to the education in Higher School in female first-year students.

  17. Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling.

    PubMed

    Yazdani, Ramin; Mostafid, M Erfan; Han, Byunghyun; Imhoff, Paul T; Chiu, Pei; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2010-08-15

    A bioreactor landfill cell at Yolo County, California was operated aerobically for six months to quantify the extent of aerobic degradation and mechanisms limiting aerobic activity during air injection and liquid addition. The portion of the solid waste degraded anaerobically was estimated and tracked through time. From an analysis of in situ aerobic respiration and gas tracer data, it was found that a large fraction of the gas-filled pore space was in immobile zones where it was difficult to maintain aerobic conditions, even at relatively moderate landfill cell-average moisture contents of 33-36%. Even with the intentional injection of air, anaerobic activity was never less than 13%, and sometimes exceeded 65%. Analyses of gas tracer and respiration data were used to quantify rates of respiration and rates of mass transfer to immobile gas zones. The similarity of these rates indicated that waste degradation was influenced significantly by rates of oxygen transfer to immobile gas zones, which comprised 32-92% of the gas-filled pore space. Gas tracer tests might be useful for estimating the size of the mobile/immobile gas zones, rates of mass transfer between these regions, and the difficulty of degrading waste aerobically in particular waste bodies.

  18. Biodegradability of Poly-3-hydroxybutyrate/Bacterial Cellulose Composites under Aerobic Conditions, Measured via Evolution of Carbon Dioxide and Spectroscopic and Diffraction Methods.

    PubMed

    Ruka, Dianne R; Sangwan, Parveen; Garvey, Christopher J; Simon, George P; Dean, Katherine M

    2015-08-18

    Poly-3-hydroxybutyrate (PHB) and bacterial cellulose (BC) are both natural polymeric materials that have the potential to replace traditional, nonrenewable polymers. In particular, the nanofibrillar form of bacterial cellulose makes it an effective reinforcement for PHB. Neat PHB, bacterial cellulose, and a composite of PHB/BC produced with 10 wt % cellulose were composted under accelerated aerobic test conditions, with biodegradability measured by the carbon dioxide evolution method, in conjunction with spectroscopic and diffraction methods to assess crystallinity changes during the biodegradation process. The PHB/BC composite biodegraded at a greater rate and extent than that of PHB alone, reaching 80% degradation after 30 days, whereas PHB did not reach this level of degradation until close to 50 days of composting. The relative crystallinity of PHB and PHB in the PHB/BC composite was found to increase in the initial weeks of degradation, with degradation occurring primarily in the amorphous region of the material and some recrystallization of the amorphous PHB. Small angle X-ray scattering indicates that the change in PHB crystallinity is accompanied by a change in morphology of semicrystalline lamellae. The increased rate of biodegradability suggests that these materials could be applicable to single-use applications and could rapidly biodegrade in compost on disposal.

  19. Kinetic study and oxygen transfer efficiency evaluation using respirometric methods in a submerged membrane bioreactor using pure oxygen to supply the aerobic conditions.

    PubMed

    Rodríguez, Francisco A; Poyatos, José M; Reboleiro-Rivas, Patricia; Osorio, Francisco; González-López, Jesús; Hontoria, Ernesto

    2011-05-01

    The performance of a wastewater bench-scale ultrafiltration membrane bioreactor (MBR) treatment plant using pure oxygen to supply the aerobic conditions for 95 days was studied. The results showed the capacity of the MBR systems to remove organic material under a hydraulic retention time of 12h and a sludge retention time of 39.91 days. Aeration represents its major power input; this is why the alpha-factor of the aeration and kinetic parameters (design parameters) were determined when the mixed liquid suspended solids (MLSS) was increased from 3420 to 12,600 mg/l in order to understand the system. An alpha-factor in the range 0.462-0.022 and the kinetic parameters measured with the respirometric method (K(M) of 73.954-3.647 mg/l, k(d) of 0.0142-0.104 day(-1), k(H) of 0.1266-0.655 day(-1), and the yield mean coefficient of 0.941) were obtained. Our study suggested significant changes in the behaviour of the biological system when the concentration of MLSS was increased.

  20. Persistence and cell culturability of biocontrol strain Pseudomonas fluorescens CHA0 under plough pan conditions in soil and influence of the anaerobic regulator gene anr.

    PubMed

    Mascher, Fabio; Schnider-Keel, Ursula; Haas, Dieter; Défago, Geneviève; Moënne-Loccoz, Yvan

    2003-02-01

    Certain fluorescent pseudomonads can protect plants from soil-borne pathogens, and it is important to understand how these biocontrol agents survive in soil. The persistence of the biocontrol strain Pseudomonas fluorescens CHA0-Rif under plough pan conditions was assessed in non-sterile soil microcosms by counting total cells (immunofluorescence microscopy), intact cells (BacLight membrane permeability test), viable cells (Kogure's substrate-responsiveness test) and culturable cells (colony counts on selective plates) of the inoculant. Viable but non-culturable cells of CHA0-Rif (106 cells g-1 soil) were found in flooded microcosms amended with fermentable organic matter, in which the soil redox potential was low (plough pan conditions), in agreement with previous observations of plough pan samples from a field inoculated with CHA0-Rif. However, viable but non-culturable cells were not found in unamended flooded, amended unflooded or unamended unflooded (i.e. control) microcosms, suggesting that such cells resulted from exposure of CHA0-Rif to a combination of low redox potential and oxygen limitation in soil. CHA0-Rif is strictly aerobic. Its anaerobic regulator ANR is activated by low oxygen concentrations and it controls production of the biocontrol metabolite hydrogen cyanide under microaerophilic conditions. Under plough pan conditions, an anr-deficient mutant of CHA0-Rif and its complemented derivative displayed the same persistence pattern as CHA0-Rif, indicating that anr was not implicated in the formation of viable but non-culturable cells of this strain at the plough pan.

  1. Encoding Conditions Affect Recognition of Vocally Expressed Emotions Across Cultures

    PubMed Central

    Jürgens, Rebecca; Drolet, Matthis; Pirow, Ralph; Scheiner, Elisabeth; Fischer, Julia

    2013-01-01

    Although the expression of emotions in humans is considered to be largely universal, cultural effects contribute to both emotion expression and recognition. To disentangle the interplay between these factors, play-acted and authentic (non-instructed) vocal expressions of emotions were used, on the assumption that cultural effects may contribute differentially to the recognition of staged and spontaneous emotions. Speech tokens depicting four emotions (anger, sadness, joy, fear) were obtained from German radio archives and re-enacted by professional actors, and presented to 120 participants from Germany, Romania, and Indonesia. Participants in all three countries were poor at distinguishing between play-acted and spontaneous emotional utterances (58.73% correct on average with only marginal cultural differences). Nevertheless, authenticity influenced emotion recognition: across cultures, anger was recognized more accurately when play-acted (z = 15.06, p < 0.001) and sadness when authentic (z = 6.63, p < 0.001), replicating previous findings from German populations. German subjects revealed a slight advantage in recognizing emotions, indicating a moderate in-group advantage. There was no difference between Romanian and Indonesian subjects in the overall emotion recognition. Differential cultural effects became particularly apparent in terms of differential biases in emotion attribution. While all participants labeled play-acted expressions as anger more frequently than expected, German participants exhibited a further bias toward choosing anger for spontaneous stimuli. In contrast to the German sample, Romanian and Indonesian participants were biased toward choosing sadness. These results support the view that emotion recognition rests on a complex interaction of human universals and cultural specificities. Whether and in which way the observed biases are linked to cultural differences in self-construal remains an issue for further investigation. PMID

  2. Nitrogen removal by Providencia rettgeri strain YL with heterotrophic nitrification and aerobic denitrification.

    PubMed

    Ye, Jun; Zhao, Bin; An, Qiang; Huang, Yuan-Sheng

    2016-09-01

    Providencia rettgeri strain YL shows the capability of nitrogen removal under sole aerobic conditions. By using isotope ratio mass spectrometry, (15)N-labelled N2O and N2 were detected in aerobic batch cultures containing [Formula: see text], [Formula: see text] or [Formula: see text]. Strain YL converted [Formula: see text], [Formula: see text] and [Formula: see text] to produce more N2O than N2 in the presence of [Formula: see text]. An (15)N isotope tracing experiment confirmed that the nitrogen removal pathway of strain YL was heterotrophic nitrification-aerobic denitrification. The optimal treatment conditions for nitrogen removal were pH of 8, C/N ratio of 12, temperature of 25°C and shaking speed of 105 rpm. A continuous aerobic bioreactor inoculated with strain YL was developed. With an influent [Formula: see text] concentration of 90-200 mg/L, the [Formula: see text] removal efficiency ranged from 80% to 97% and the total nitrogen removal efficiency ranged from 72% to 95%. The nitrogen balance in the continuous bioreactor revealed that approximately 35-52% of influent [Formula: see text] was denitrified aerobically to form gaseous nitrogen. These findings show that the P. rettgeri strain YL has potential application in wastewater treatment for nitrogen removal under sole aerobic conditions.

  3. Native Libraries: Cross-Cultural Conditions in the Circumpolar Countries.

    ERIC Educational Resources Information Center

    Hills, Gordon H.

    This book draws on an extensive literature review and personal experience to examine cross-cultural issues in the development of libraries for Arctic indigenous communities. Although the book highlights circumstances in Alaska, its geographical scope is circumpolar, including Canada, Greenland, and the former Soviet Union and present-day Russian…

  4. Learning Elementary School Mathematics as a Culturally Conditioned Process.

    ERIC Educational Resources Information Center

    Vasco, Carlos E.

    Mathematics is thought to be the most culturally independent of all academic subjects. "New Math" textbooks printed in the United States or Belgium were translated into Spanish and Portuguese with only minor variations in the story problems and are now taught in most Latin-American countries. Looking backwards, it was not different in past years…

  5. Hexosaminidase and alkaline phosphatase activities in articular chondrocytes and relationship to cell culture conditions.

    PubMed

    Mokonjimobe, E; Hecquet, C; Robic, D; Bourbouze, R; Adolphe, M

    1992-04-15

    Hexosaminidase and alkaline phosphatase activities in rabbit articular chondrocytes have been studied under different cell culture conditions. Chondrocytes were cultured in monolayer primary culture, monolayer subcultured to the fifth passage (in vitro aging) and cultured within a collagen gel; enzymatically released cartilage cells were used as control. Under these conditions, the two enzymes behave quite differently in relationship to alteration of the chondrocyte phenotype in culture. Increased lysosomal hexosaminidase activity could be considered to be a marker of the dedifferentiated phenotype in monolayer subculture; membrane alkaline phosphatase activity could be used as a marker of non-proliferating cells.

  6. Efficiency of neural network-based combinatorial model predicting optimal culture conditions for maximum biomass yields in hairy root cultures.

    PubMed

    Mehrotra, Shakti; Prakash, O; Khan, Feroz; Kukreja, A K

    2013-02-01

    KEY MESSAGE : ANN-based combinatorial model is proposed and its efficiency is assessed for the prediction of optimal culture conditions to achieve maximum productivity in a bioprocess in terms of high biomass. A neural network approach is utilized in combination with Hidden Markov concept to assess the optimal values of different environmental factors that result in maximum biomass productivity of cultured tissues after definite culture duration. Five hidden Markov models (HMMs) were derived for five test culture conditions, i.e. pH of liquid growth medium, volume of medium per culture vessel, sucrose concentration (%w/v) in growth medium, nitrate concentration (g/l) in the medium and finally the density of initial inoculum (g fresh weight) per culture vessel and their corresponding fresh weight biomass. The artificial neural network (ANN) model was represented as the function of these five Markov models, and the overall simulation of fresh weight biomass was done with this combinatorial ANN-HMM. The empirical results of Rauwolfia serpentina hairy roots were taken as model and compared with simulated results obtained from pure ANN and ANN-HMMs. The stochastic testing and Cronbach's α-value of pure and combinatorial model revealed more internal consistency and skewed character (0.4635) in histogram of ANN-HMM compared to pure ANN (0.3804). The simulated results for optimal conditions of maximum fresh weight production obtained from ANN-HMM and ANN model closely resemble the experimentally optimized culture conditions based on which highest fresh weight was obtained. However, only 2.99 % deviation from the experimental values could be observed in the values obtained from combinatorial model when compared to the pure ANN model (5.44 %). This comparison showed 45 % better potential of combinatorial model for the prediction of optimal culture conditions for the best growth of hairy root cultures.

  7. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  8. Volatile chemical spoilage indexes of raw Atlantic salmon (Salmo salar) stored under aerobic condition in relation to microbiological and sensory shelf lives.

    PubMed

    Mikš-Krajnik, Marta; Yoon, Yong-Jin; Ukuku, Dike O; Yuk, Hyun-Gyun

    2016-02-01

    The purpose of this investigation was to identify and quantify the volatile chemical spoilage indexes (CSIs) for raw Atlantic salmon (Salmo salar) fillets stored under aerobic storage conditions at 4, 10 and 21 °C in relation to microbial and sensory shelf lives. The volatile organic compounds (VOCs) were analyzed with SPME-GC-MS technique. Through multivariate chemometric method, hierarchical cluster analysis (HCA) and Pearson's correlations, the CSIs: trimethylamine (TMA), ethanol (EtOH), 3-methyl-1-butanol (3Met-1But), acetoin and acetic acid (C2) were selected from the group of 28 detected VOCs. At the moment of microbiological shelf life established at total viable count (TVC) of 7.0 log CFU/g, the CSIs achieved levels of 11.5, 38.3, 0.3, 24.0 and 90.7 μg/g of salmon for TMA, EtOH, 3M-1But, acetoin and C2, respectively. Pseudomonas spp. was found as major specific spoilage organism (SSOs), suitable for shelf life prediction using modified Gompertz model at the cut-off level of 6.5 log CFU/g. H2S producing bacteria and Brochothrix thermosphacta were considered as important spoilage microorganisms; however, they were not suitable for shelf life estimation. Partial least square (PLS) regression revealed possible associations between microorganisms and synthetized VOCs, showing correlations between Pseudomonas spp. and 3Met-1But and aldehydes synthesis, lactic acid bacteria were linked with EtOH, C2 and esters, and B. thermosphacta with acetoin formation.

  9. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions.

    PubMed

    Molina-Muñoz, M; Poyatos, J M; Sánchez-Peinado, M; Hontoria, E; González-López, J; Rodelas, B

    2009-06-15

    A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD(5) of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community

  10. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  11. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  12. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  13. Modifying culture conditions in chemical library screening identifies alternative inhibitors of mycobacteria.

    PubMed

    Miller, Christopher H; Nisa, Shahista; Dempsey, Sandi; Jack, Cameron; O'Toole, Ronan

    2009-12-01

    In this study, application of a dual absorbance/fluorescence assay to a chemical library screen identified several previously unknown inhibitors of mycobacteria. In addition, growth conditions had a significant effect on the activity profile of the library. Some inhibitors such as Se-methylselenocysteine were detected only when screening was performed under nutrient-limited culture conditions as opposed to nutrient-rich culture conditions. We propose that multiple culture condition library screening is required for complete inhibitory profiling and for maximal antimycobacterial compound detection.

  14. Quantitative colorimetric measurement of cellulose degradation under microbial culture conditions.

    PubMed

    Haft, Rembrandt J F; Gardner, Jeffrey G; Keating, David H

    2012-04-01

    We have developed a simple, rapid, quantitative colorimetric assay to measure cellulose degradation based on the absorbance shift of Congo red dye bound to soluble cellulose. We term this assay "Congo Red Analysis of Cellulose Concentration," or "CRACC." CRACC can be performed directly in culture media, including rich and defined media containing monosaccharides or disaccharides (such as glucose and cellobiose). We show example experiments from our laboratory that demonstrate the utility of CRACC in probing enzyme kinetics, quantifying cellulase secretion, and assessing the physiology of cellulolytic organisms. CRACC complements existing methods to assay cellulose degradation, and we discuss its utility for a variety of applications.

  15. Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions

    PubMed Central

    Weyand, Birgit; Nöhre, Mariel; Schmälzlin, Elmar; Stolz, Marvin; Israelowitz, Meir; Gille, Christoph; von Schroeder, Herb P.; Reimers, Kerstin; Vogt, Peter M.

    2015-01-01

    Abstract We present a new method for noninvasive real-time oxygen measurement inside three-dimensional tissue-engineered cell constructs in static and dynamic culture settings in a laminar flow bioreactor. The OPAL system (optical oxygen measurement system) determines the oxygen-dependent phosphorescence lifetime of spherical microprobes and uses a two-frequency phase-modulation technique, which fades out the interference of background fluorescence from the cell carrier and culture medium. Higher cell densities in the centrum of the scaffolds correlated with lower values of oxygen concentration obtained with the OPAL system. When scaffolds were placed in the bioreactor, higher oxygen values were measured compared to statically cultured scaffolds in a Petri dish, which were significantly different at day 1–3 of culture. This technique allows the use of signal-weak microprobes in biological environments and monitors the culture process inside a bioreactor. PMID:26309802

  16. Aerobic exercise (image)

    MedlinePlus

    Aerobic exercise gets the heart working to pump blood through the heart more quickly and with more ... must be oxygenated more quickly, which quickens respiration. Aerobic exercise strengthens the heart and boosts healthy cholesterol ...

  17. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    PubMed

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Evaluation of cell culture flasks designed for experiment under altered gravity-vector conditions.

    PubMed

    Gyotoku, Jun-Ichiro; Nagase, Mutsumu; Ando, Noboru; Tanigaki, Fumiaki; Takaoki, Muneo

    2003-10-01

    Cell culture flasks applicable for altered gravity conditions, such as centrifugation, clino-rotation or microgravity in space, were manufactured for trial. The flask has flat polystyrene surface for monolayer culture and gas-permeable film window on the opposite face. The space in-between consists the culture chamber to be filled with liquid medium. To reduce the water loss and bubble formation in the culture fluid, another gas permeable window was placed on top to form a space where distilled water may be filled. The double-decker culture flask can be used for both space and ground-based experiments in common.

  19. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  20. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  1. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  2. The effects of aerobic training on children's creativity, self-perception, and aerobic power.

    PubMed

    Herman-Tofler, L R; Tuckman, B W

    1998-10-01

    The article examines whether participation in an aerobic exercise program (AE), as compared with a traditional physical education class (PE), significantly increased children's perceived athletic competence, physical appearance, social acceptance, behavioral conduct, and global self-worth; increased their figural creativity; and improved aerobic power as measured by an 800-meter run around a track. Further research on the effects of different types of AE is discussed, as well as the need for aerobic conditioning in the elementary school.

  3. Effects of Aerobic Growth on the Fatty Acid and Hydrocarbon Compositions of Geobacter bemidjiensis Bem(T).

    PubMed

    Ueno, Akio; Shimizu, Satoru; Hashimoto, Mikako; Adachi, Takumi; Matsushita, Takako; Okuyama, Hidetoshi; Yoshida, Kiyohito

    2017-01-01

    Geobacter spp., regarded as strict anaerobes, have been reported to grow under aerobic conditions. To elucidate the role of fatty acids in aerobiosis of Geobacter spp., we studied the effect of aerobiosis on fatty acid composition and turnover in G. bemidjiensis Bem(T). G. bemidjiensis Bem(T) was grown under the following different culture conditions: anaerobic culture for 4 days (type 1) and type 1 culture followed by 2-day anaerobic (type 2) or aerobic culture (anaerobic-to-aerobic shift; type 3). The mean cell weight of the type 3 culture was approximately 2.5-fold greater than that of type 1 and 2 cultures. The fatty acid methyl ester and hydrocarbon fraction contained hexadecanoic (16:0), 9-cis-hexadecenoic [16:1(9c)], tetradecanoic (14:0), tetradecenoic [14:1(7c)] acids, hentriacontanonaene, and hopanoids, but not long-chain polyunsaturated fatty acids. The type 3 culture contained higher levels of 14:0 and 14:1(7c) and lower levels of 16:0 and 16:1(9c) compared with type 1 and 2 cultures. The weight ratio of extracted lipid per dry cell was lower in the type 3 culture than in the type 1 and 2 cultures. We concluded that anaerobically-grown G. bemidjiensis Bem(T) followed by aerobiosis were enhanced in growth, fatty acid turnover, and de novo fatty acid synthesis.

  4. Effects of cultural conditions on protease production by Aeromonas hydrophila.

    PubMed Central

    O'Reilly, T; Day, D F

    1983-01-01

    Production of extracellular proteolytic activity by Aeromonas hydrophila was influenced by temperature, pH, and aeration. Conditions which produced maximal growth also resulted in maximal protease production. Enzyme production appeared to be modulated by an inducer catabolite repression system whereby NH4+ and glucose repressed enzyme production and complex nitrogen and nonglucose, carbon energy sources promoted it. Under nutritional stress, protease production was high, despite poor growth. PMID:6342534

  5. Defining cell culture conditions to improve human norovirus infectivity assays.

    PubMed

    Straub, T M; Hutchison, J R; Bartholomew, R A; Valdez, C O; Valentine, N B; Dohnalkova, A; Ozanich, R M; Bruckner-Lea, C J

    2013-01-01

    Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional (3-D) tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that lead to more reproducible hNoV infectivity in vitro requires that the cell line be (1) of human gastrointestinal origin, (2) expresses apical microvilli, and (3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log(10) increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microscopy. In our hands, using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using qRT-PCR that measures all RNA vs. plaque assays that measure infectious virus.

  6. Defining cell culture conditions to improve human norovirus infectivity assays

    SciTech Connect

    Straub, Tim M.; Hutchison, Janine R.; Bartholomew, Rachel A.; Valdez, Catherine O.; Valentine, Nancy B.; Dohnalkova, Alice; Ozanich, Richard M.; Bruckner-Lea, Cindy J.

    2013-01-10

    Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that leads to more reproducible hNoV infectivity in vitro requires that the cell line be 1) of human gastrointestinal origin, 2) expresses apical microvilli, and 3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log10 increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both reverse transcription quantitative PCR (qRT-PCR) and microscopy. Using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using quantitative reverse transcription PCR (qRT-PCR) that measures all RNA vs. plaque assays that measure infectious virus.

  7. Bacillus sp. SXB and Pantoea sp. IMH, aerobic As(V)-reducing bacteria isolated from arsenic-contaminated soil.

    PubMed

    Wu, Q; Du, J; Zhuang, G; Jing, C

    2013-03-01

    To isolate highly effective aerobic As(V)-reducing bacteria from arsenic(As)-contaminated soils in Northwest China and to identify their dynamic As(V) reduction processes and genomic detoxification mechanisms. Enrichment cultures were performed aerobically in tryptone, yeast extract and glucose medium in the presence of As(V). Strain SXB isolated from soil in Shanxi Province, belonging to Bacillus genus, reduced As(V) more effectively under aerobic conditions than under anaerobic conditions. Strain IMH, a strictly aerobic isolate obtained from soil in Inner Mongolia, identified as Pantoea, is reported for the first time to reduce As(V). Both isolates could reduce over 90% As(V) in 36 h under aerobic conditions. Putative gene fragments for the ArsB efflux pump gene were obtained from both strains. The putative arsenate reductase gene was only amplified from strain SXB. A putative arsH gene was amplified from strain IMH. Strains SXB and IMH isolated from the As-contaminated soils reduce As(V) effectively under aerobic conditions via a detoxification mechanism regulated by ars operons. Pantoea genus is reported to reduce As(V) for the first time. This study provides a full understanding of the highly effective As(V)-reducing bacteria SXB and IMH, which could influence the As biogeochemical cycle in soils. © 2012 The Society for Applied Microbiology.

  8. Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions.

    PubMed

    Lee, Won-Young; Park, Hyun-Jung; Lee, Ran; Lee, Kyung-Hoon; Kim, Yong-Hee; Ryu, Buom-Yong; Kim, Nam-Hyung; Kim, Jin-Hoi; Kim, Jae-Hwan; Moon, Sung-Hwan; Park, Jin-Ki; Chung, Hak-Jae; Kim, Dong-Hoon; Song, Hyuk

    2013-11-01

    The objective of this study was to establish a porcine spermatogonial germ cell (pSGC) line and develop an in vitro culture system. Isolated total testicular cells (TTCs) from 5-day-old porcine testes were primary cultured at 31, 34, and 37°C. Although the time of colony appearance was delayed at 31°C, strong alkaline phosphatase staining, expressions of pluripotency marker genes such as OCT4, NANOG, and THY1, and the gene expressions of the undifferentiated germ cell markers PLZF and protein gene product 9.5 (PGP9.5) were identified compared to 34 and 37°C. Cell cycle analysis for both pSGC and feeder cells at the three temperatures revealed that more pSGCs were in the G2/M phase at 31°C than 37°C at the subculture stage. In vitro, pSGCs could stably maintain undifferentiated germ cell and stem cell characteristics for over 60days during culture at 31°C. Xenotransplantation of pSGCs to immune deficient mice demonstrated a successful colonization and localization on the seminiferous tubule basement membrane in the recipient testes. In conclusion, pSGCs from neonatal porcine were successfully established and cultured for long periods under a low temperature culture environment in vitro.

  9. Culture Conditions Affecting the Optimal Mycelial Growth of Cystoderma amianthinum

    PubMed Central

    Shim, Sung Mi; Oh, Yun Hee; Lee, Kyung Rim; Kim, Seong Hwan; Im, Kyung Hoan; Kim, Jung Wan; Lee, U Youn; Shim, Jae Ouk; Shim, Mi Ja; Lee, Min Woong; Ro, Hyeon Su; Lee, Hyun Sook

    2005-01-01

    Cystoderma amianthinum, one of edible fungi belongs to Agaricaceae of Basidiomycota, has a good taste and flavor. This study was carried out to obtain the basic informations for the optimum mycelial growth of C. amianthinum. The optimal conditions for the mycelial growth were 25℃ and pH 5 in potato dextrose agar (PDA). C. amianthinum showed the favorable growth in the PDA and yeast malt extract agar (YMA). The favorable carbon and nitrogen sources promoting mycelial growth were fructose and histidine, respectively. The optimum C/N ratio was about 30 : 1 in case that 1% glucose was supplemented to the basal medium as a carbon source. PMID:24049476

  10. Carotenoids production in different culture conditions by Sporidiobolus pararoseus.

    PubMed

    Han, Mei; He, Qian; Zhang, Wei-Guo

    2012-01-01

    Carotenoids produced by Sporidiobolus pararoseus were studied. It was found that biomass was connected with carbon source, temperature, and pH, but carotenoids proportion was seriously influenced by dissolved oxygen and nitrogen source. Different carotenoids could be obtained by using selected optimum conditions. In the end we established the strategies to produce β-carotene or torulene. Fed-batch fermentation in fermentor was used to prove the authenticity of our conclusions. The cell biomass, β-carotene content, and β-carotene proportion could reach 56.32 g/L, 18.92 mg/L and 60.43%, respectively, by using corn steep liquor at 0-5% of dissolved oxygen saturation. β-Carotene content was 271% higher than before this addition. The cell biomass, torulene content, and torulene proportion could reach 62.47 g/L, 31.74 mg/L, and 70.41%, respectively, by using yeast extract at 30-35% of dissolved oxygen saturation. Torulene content was 152% higher than before this addition. The strategy for enhancing specific carotenoid production by selected fermentation conditions may provide an alternative approach to enhance carotenoid production with other strains.

  11. Aerobic biotransformation and mineralization of 2,4,6-trinitrotoluene

    SciTech Connect

    Bae, B.H.; Autenrieth, R.L.; Bonner, J.S.

    1995-12-31

    Respirometric mineralization studies of 2,4,6-trinitrotoluene (TNT) were conducted with microorganisms isolated from a site contaminated with munitions waste in Illinois. Nine aerobic bacterial species were isolated under a carbon- and nitrogen-limited condition and tentatively identified as: one Pseudomonas species; one Enterobacter species; and seven Alcaligenes species. Experiments were performed using each of the nine organisms individually and with a consortium of all nine bacterial species. The aerobic microorganisms were cultured in a sterile nutrient solution with glucose and 20 mg/L TNT. Mineralization was determined using uniformly ring-labeled {sup 14}C-TNT in a respirometer that trapped the evolved CO{sub 2}. Biodegradation behavior was characterized based on oxygen consumption, distribution of {sup 14}C activity, and high-performance liquid chromatography (HPLC) analysis of TNT and its transformation products.

  12. Transformation of Corporate Culture in Conditions of Transition to Knowledge Economics

    ERIC Educational Resources Information Center

    Korsakova, Tatiana V.; Chelnokova, Elena A.; Kaznacheeva, Svetlana N.; Bicheva, Irena B.; Lazutina, Antonina L.; Perova, Tatyana V.

    2016-01-01

    This article is devoted to the problem of corporate culture transformations which are conditioned by changes in social-economic situation. The modern paradigm of knowledge management is assumed to become the main value for forming a new vision of corporate culture. The starting point for transformations can be found in the actual corporate culture…

  13. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors.

    PubMed

    Costache, T A; Acién Fernández, F Gabriel; Morales, M M; Fernández-Sevilla, J M; Stamatin, I; Molina, E

    2013-09-01

    In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m(2) s; in addition to reduced photosynthesis rates at inadequate temperatures or pH-the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.

  14. Monochloramine Cometabolism by Mixed-Culture Nitrifiers under Drinking Water Conditions

    EPA Science Inventory

    The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under drinking water relevant conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Three batch reactors were used in each ...

  15. Monochloramine Cometabolism by Mixed-Culture Nitrifiers under Drinking Water Conditions

    EPA Science Inventory

    The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under drinking water relevant conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Three batch reactors were used in each ...

  16. High catalytic activity of palladium(II)-exchanged mesoporous sodalite and NaA zeolite for bulky aryl coupling reactions: reusability under aerobic conditions.

    PubMed

    Choi, Minkee; Lee, Dong-Hwan; Na, Kyungsu; Yu, Byung-Woo; Ryoo, Ryong

    2009-01-01

    Exchange for the better: Mesoporous sodalite and NaA zeolite exchanged with Pd(2+) exhibit remarkably high activity and reusability in C-C coupling reactions under aerobic atmosphere. It is proposed that the catalytic reactions are mediated by a molecular Pd(0) species generated in situ within the pores (see picture), which is oxidized back to Pd(2+) by O(2), preventing the formation of catalytically inactive Pd(0) agglomerates.

  17. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4°C.

    PubMed

    Liang, Rongrong; Yu, Xiaoqiao; Wang, Renhuan; Luo, Xin; Mao, Yanwei; Zhu, Lixian; Zhang, Yimin

    2012-06-01

    This study analyzed the bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products stored aerobically at 4°C, using "bone and chicken string," a product popular in the People's Republic of China, as the study subject. Samples collected from three different factories were tray packaged with cling film and stored at 4°C. Bacterial diversity and dominant bacteria were analyzed using PCR amplification and denaturing gradient gel electrophoresis. Combined with selective cultivation of the dominant bacteria and correlation analysis, the dominant spoilage microbiota was determined. The results showed that bacterial diversity varied with different manufacturers. Such bacteria as Acinetobacter sp., Carnobacterium sp., Rahnella sp., Pseudomonas sp., Brochothrix sp., and Weissella sp. were detected in freshly prepared chicken products during storage. And Carnobacterium sp., Pseudomonas sp., and Brochothrix sp. bacteria were the common dominant spoilage bacteria groups in most freshly prepared chicken products from different factories. Carnobacterium was, for the first time, shown to be an important contributor to the spoilage-related microflora of freshly prepared chicken products stored aerobically under refrigeration. Our work shows the bacterial diversity and dominant spoilage microbiota of freshly prepared chicken products stored aerobically under refrigeration.

  18. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources.

    PubMed

    Wu, Ling; Prins, Henk-Jan; Helder, Marco N; van Blitterswijk, Clemens A; Karperien, Marcel

    2012-08-01

    Earlier, we have shown that the increased cartilage production in pellet co-cultures of chondrocytes and bone marrow-derived mesenchymal stem cells (BM-MSCs) is due to a trophic role of the MSC in stimulating chondrocyte proliferation and matrix production rather than MSCs actively undergoing chondrogenic differentiation. These studies were performed in a culture medium that was not compatible with the chondrogenic differentiation of MSCs. In this study, we tested whether the trophic role of the MSCs is dependent on culturing co-culture pellets in a medium that is compatible with the chondrogenic differentiation of MSCs. In addition, we investigated whether the trophic role of the MSCs is dependent on their origins or is a more general characteristic of MSCs. Human BM-MSCs and bovine primary chondrocytes were co-cultured in a medium that was compatible with the chondrogenic differentiation of MSCs. Enhanced matrix production was confirmed by glycosaminoglycans (GAG) quantification. A species-specific quantitative polymerase chain reaction demonstrated that the cartilage matrix was mainly of bovine origin, indicative of a lack of the chondrogenic differentiation of MSCs. In addition, pellet co-cultures were overgrown by bovine cells over time. To test the influence of origin on MSCs' trophic effects, the MSCs isolated from adipose tissue and the synovial membrane were co-cultured with human primary chondrocytes, and their activity was compared with BM-MSCs, which served as control. GAG quantification again confirmed increased cartilage matrix production, irrespective of the source of the MSCs. EdU staining combined with cell tracking revealed an increased proliferation of chondrocytes in each condition. Irrespective of the MSC source, a short tandem repeat analysis of genomic DNA showed a decrease in MSCs in the co-culture over time. Our results clearly demonstrate that in co-culture pellets, the MSCs stimulate cartilage formation due to a trophic effect on the

  19. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  20. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  1. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  2. Conversion of primordial germ cells to pluripotent stem cells: methods for cell tracking and culture conditions.

    PubMed

    Nagamatsu, Go; Suda, Toshio

    2013-01-01

    Primordial germ cells (PGCs) are unipotent cells committed to germ lineage: PGCs can only differentiate into gametes in vivo. However, upon fertilization, germ cells acquire the capacity to differentiate into all cell types in the body, including germ cells. Therefore, germ cells are thought to have the potential for pluripotency. PGCs can convert to pluripotent stem cells in vitro when cultured under specific conditions that include bFGF, LIF, and the membrane-bound form of SCF (mSCF). Here, the culture conditions which efficiently convert PGCs to pluripotent embryonic germ (EG) cells are described, as well as methods used for identifying pluripotent candidate cells during culture.

  3. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.

    PubMed

    Raasch, Martin; Rennert, Knut; Jahn, Tobias; Peters, Sven; Henkel, Thomas; Huber, Otmar; Schulz, Ingo; Becker, Holger; Lorkowski, Stefan; Funke, Harald; Mosig, Alexander

    2015-03-02

    Hemodynamic forces generated by the blood flow are of central importance for the function of endothelial cells (ECs), which form a biologically active cellular monolayer in blood vessels and serve as a selective barrier for macromolecular permeability. Mechanical stimulation of the endothelial monolayer induces morphological remodeling in its cytoskeleton. For in vitro studies on EC biology culture devices are desirable that simulate conditions of flow in blood vessels and allow flow-based adhesion/permeability assays under optimal perfusion conditions. With this aim we designed a biochip comprising a perfusable membrane that serves as cell culture platform multi-organ-tissue-flow (MOTiF biochip). This biochip allows an effective supply with nutrition medium, discharge of catabolic cell metabolites and defined application of shear stress to ECs under laminar flow conditions. To characterize EC layers cultured in the MOTiF biochip we investigated cell viability, expression of EC marker proteins and cell adhesion molecules of ECs dynamically cultured under low and high shear stress, and compared them with an endothelial culture in established two-dimensionally perfused flow chambers and under static conditions. We show that ECs cultured in the MOTiF biochip form a tight EC monolayer with increased cellular density, enhanced cell layer thickness, presumably as the result of a rapid and effective adaption to shear stress by remodeling of the cytoskeleton. Moreover, endothelial layers in the MOTiF biochip express higher amounts of EC marker proteins von-Willebrand-factor and PECAM-1. EC layers were highly responsive to stimulation with TNFα as detected at the level of ICAM-1, VCAM-1 and E-selectin expression and modulation of endothelial permeability in response to TNFα/IFNγ treatment under flow conditions. Compared to static and two-dimensionally perfused cell culture condition we consider MOTiF biochips as a valuable tool for studying EC biology in vitro under

  4. Effect of culture conditions on synthesis of triterpenoids in suspension cultures of Lantana camara L.

    PubMed

    Srivastava, Priyanka; Sisodia, Vikash; Chaturvedi, Rakhi

    2011-01-01

    Present report is aimed to study the batch kinetics of Lantana camara. Dynamic changes of parameters, such as pH, conductivity, wet and dry cell concentrations, consumption of major nutrients, carbon source and agitation speeds were investigated to understand the culture characteristics of suspended cells grown on MS + BAP + 2,4-D + NAA in shake flasks. Results indicated that the consumption of phosphate resulted in the onset of stationary phase in cultures. Maltose as carbon source resulted in production of maximum triterpenoid content (31.08 mg/L) while the least was found on glucose (10.69 mg/L). Notably, both did not support accumulation of betulinic acid. Sucrose, although stood second in terms of quantity (21.6 mg/L), supported the production of all the three triterpenoids-oleanolic, ursolic and betulinic acids. Maximum viable cultures were obtained at a rotation speed of 120 rpm. The present finding will form a background for further scale-up related studies.

  5. Biomaterial culture conditions impacting the performance of a PAM fluorometry based aquatic phytotoxicity assay.

    PubMed

    Bengtson Nash, S M; Quayle, P A

    2007-09-30

    An aquatic phytotoxicity assay, based on the principles of pulse amplitude modulated (PAM) fluorometry has recently been developed and validated under laboratory conditions. Characteristics of the assay include the use of photosynthesising biomaterial, most frequently whole organism microalgae. The instrument employs light probing measurements to monitor chlorophyll fluorescence signals emitted by the biomaterial component. These characteristics could leave assay performance susceptible to interference by minor variations in biomaterial treatment and culture conditions prior to testing. This study investigates assay performance in response to variations in two microalgae culture parameters; short-term light history (24h) prior to testing and the sterility of long-term culture conditions. Light history of the four microalgal species tested significantly impacted their toxicity response, as measured with the assay. Light treatments of 5 micromol photons m(-2)s(-1) produced the highest photosystem II quantum yields (Phi(II)) whilst higher light intensities resulted in an inverse relationship between Phi(II) and the measured toxicity response (inhibition (%) of photochemistry). Of the two microalgal cultures tested, sterility of culture conditions significantly impacted the performance of the green freshwater algae, Chlorella vulgaris as assay biomaterial. On average 1 microg L(-1) diuron inhibited photochemistry 2.6% less in axenically cultured C. vulgaris compared with non-axenically maintained cultures. This investigation series contributes valuable quality assurance data towards microalgal based PAM fluorometry assays and emphasises the importance of such investigations if new biorecognition systems are to be accredited and/or routinely incorporated for biomonitoring purposes.

  6. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain▿

    PubMed Central

    Zelle, Rintze M.; de Hulster, Erik; Kloezen, Wendy; Pronk, Jack T.; van Maris, Antonius J. A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter−1 of malate at a yield of 0.42 mol (mol glucose)−1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this process cannot be controlled independently. In this study, growth and product formation by the engineered strain were studied in bioreactors in order to separately analyze the effects of pH, calcium, and carbon dioxide and oxygen availability. A near-neutral pH, which in shake flasks was achieved by adding CaCO3, was required for efficient C4 dicarboxylic acid production. Increased calcium concentrations, a side effect of CaCO3 dissolution, had a small positive effect on malate formation. Carbon dioxide enrichment of the sparging gas (up to 15% [vol/vol]) improved production of both malate and succinate. At higher concentrations, succinate titers further increased, reaching 0.29 mol (mol glucose)−1, whereas malate formation strongly decreased. Although fully aerobic conditions could be achieved, it was found that moderate oxygen limitation benefitted malate production. In conclusion, malic acid production with the engineered S. cerevisiae strain could be successfully transferred from shake flasks to 1-liter batch bioreactors by simultaneous optimization of four process parameters (pH and concentrations of CO2, calcium, and O2). Under optimized conditions, a malate yield of 0.48 ± 0.01 mol (mol glucose)−1 was obtained in bioreactors, a 19% increase over yields in shake flask experiments. PMID:20008165

  7. Maintenance of human embryonic stem cells in animal serum- and feeder layer-free culture conditions.

    PubMed

    Amit, Michal; Itskovitz-Eldor, Joseph

    2006-01-01

    The availability of human embryonic stem cells (hESCs) reflects their outstanding potential for research areas such as human developmental biology, teratology, and cell-based therapies. To allow their continuous growth as undifferentiated cells, isolation and culturing were traditionally conducted on mouse embryonic fibroblast feeder layers, using medium supplemented with fetal bovine serum. However, these conditions allow possible exposure of the cells to animal pathogens. Because both research and future clinical application require an animal-free and well-defined culture system for hESCs, these conventional conditions would prevent the use of hESCs in human therapy. This chapter describes optional culture conditions based on either animal-free or feeder-free culture methods for hESCs.

  8. Optimization of Cultural Conditions for Antioxidant Exopolysaccharides from Xerocomus badius Grown in Shrimp Byproduct

    PubMed Central

    Gao, Xiujun; Yan, Peisheng; Liu, Xin; Wang, Jianbing; Yu, Jiajia

    2016-01-01

    To optimize the production conditions for exopolysaccharides with higher antioxidant activities from Xerocomus badius cultured in shrimp byproduct medium, Plackett-Burman design, path of steepest ascent, and response surface methodology were explored. Based on the results of Plackett-Burman design and path of steepest ascent, a Box-Behnken design was applied to optimization and the regression models. The optimal cultural condition for high yield and antioxidant activity of the exopolysaccharides was determined to be 10.347% of solid-to-liquid ratio, a 4.322% content of bran powder, and a 1.217% concentration of glacial acetic acid. Culturing with the optimal cultural conditions resulted in an exopolysaccharides yield of 4.588 ± 0.346 g/L and a total antioxidant activity of 2.956 ± 0.105 U/mg. These values are consistent with the values predicted by the corresponding regression models (RSD < 5%). PMID:26998481

  9. Properties of Dental Pulp-derived Mesenchymal Stem Cells and the Effects of Culture Conditions.

    PubMed

    Kawashima, Nobuyuki; Noda, Sonoko; Yamamoto, Mioko; Okiji, Takashi

    2017-09-01

    Dental pulp mesenchymal stem cells (DPMSCs) highly express mesenchymal stem cell markers and possess the potential to differentiate into neural cells, osteoblasts, adipocytes, and chondrocytes. Thus, DPMSCs are considered suitable for tissue regeneration. The colony isolation method has commonly been used to collect relatively large amounts of heterogeneous DPMSCs. Homogenous DPMSCs can be isolated by fluorescence-activated cell sorting using antibodies against mesenchymal stem cell markers, although this method yields a limited number of cells. Both quality and quantity of DPMSCs are critical to regenerative therapy, and cell culture methods need to be improved. We thus investigated the properties of DPMSCs cultured with different methods. DPMSCs in a three-dimensional spheroid culture system, which is similar to the hanging drop culture for differentiation of embryonic stem cells, showed upregulation of odonto-/osteoblastic markers and mineralized nodule formation. This suggests that this three-dimensional spheroid culturing system for DPMSCs may be suitable for inducing hard tissues. We further examined the effect of cell culture density on the properties of DPMSCs because the properties of stem cells can be altered depending on the cell density. DPMSCs cultured under the confluent cell density condition showed slight downregulation of some mesenchymal stem cell markers compared with those under the sparse condition. The ability of DPMSCs to differentiate into hard tissue-forming cells was found to be enhanced in the confluent condition, suggesting that the confluent culture condition may not be suitable for maintaining the stemness of DPMSCs. When DPMSCs are to be used for hard tissue regeneration, dense followed by sparse cell culture conditions may be a better alternative strategy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Chromosomal variability of human mesenchymal stem cells cultured under hypoxic conditions

    PubMed Central

    Ueyama, Hanae; Horibe, Tomohisa; Hinotsu, Shiro; Tanaka, Tomoaki; Inoue, Takeomi; Urushihara, Hisashi; Kitagawa, Akira; Kawakami, Koji

    2012-01-01

    Abstract Bone marrow derived human mesenchymal stem cells (hMSCs) have attracted great interest from both bench and clinical researchers because of their pluripotency and ease of expansion ex vivo. However, these cells do finally reach a senescent stage and lose their multipotent potential. Proliferation of these cells is limited up to the time of their senescence, which limits their supply, and they may accumulate chromosomal changes through ex vivo culturing. The safe, rapid expansion of hMSCs is critical for their clinical application. Chromosomal aberration is known as one of the hallmarks of human cancer, and therefore it is important to understand the chromosomal stability and variability of ex vivo expanded hMSCs before they are used widely in clinical applications. In this study, we examined the effects of culturing under ambient (20%) or physiologic (5%) O2 concentrations on the rate of cell proliferation and on the spontaneous transformation of hMSCs in primary culture and after expansion, because it has been reported that culturing under hypoxic conditions accelerates the propagation of hMSCs. Bone marrow samples were collected from 40 patients involved in clinical research. We found that hypoxic conditions promote cell proliferation more favourably than normoxic conditions. Chromosomal aberrations, including structural instability or aneuploidy, were detected in significantly earlier passages under hypoxic conditions than under normoxic culture conditions, suggesting that amplification of hMSCs in a low-oxygen environment facilitated chromosomal instability. Furthermore, smoothed hazard-function modelling of chromosomal aberrations showed increased hazard after the fourth passage under both sets of culture conditions, and showed a tendency to increase the detection rate of primary karyotypic abnormalities among donors aged 60 years and over. In conclusion, we propose that the continuous monitoring of hMSCs will be required before they are used in

  11. Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Bagherzadeh, Mojtaba

    2015-06-15

    We report the green synthesis of palladium/CuO nanoparticles (Pd/CuO NPs) using Theobroma cacao L. seeds extract and their catalytic activity for the reduction of 4-nitrophenol and Heck coupling reaction under aerobic conditions. The catalyst was characterized using the powder XRD, TEM, EDS, UV-vis and FT-IR. This method has the advantages of high yields, elimination of surfactant, ligand and homogeneous catalysts, simple methodology and easy work up. The catalyst can be recovered from the reaction mixture and reused several times without any significant loss of catalytic activity.

  12. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions.

    PubMed

    Tabacco, E; Piano, S; Revello-Chion, A; Borreani, G

    2011-11-01

    This study determined the efficacy of the use of 2 commercial inoculants containing Lactobacillus buchneri alone or in combination with homofermentative lactic acid bacteria in improving aerobic stability of corn silage stored in commercial farm silos in northern Italy. In the first survey, samples were collected from 10 farms that did not inoculate their silages and from 10 farms that applied a Pioneer 11A44 inoculant (L. buchneri strain LN4637; Pioneer Hi-Bred International, Des Moines, IA). In the second survey, corn silage samples were collected from 11 farms that did not inoculate their silages and from 11 farms that applied a Pioneer 11CFT inoculant (L. buchneri strain LN40177; Pioneer Hi-Bred International). Inoculants were applied directly through self-propelled forage harvesters, at the recommended rate of 1 g/t of fresh forage, to achieve a final application rate of 1.0 × 10(5) cfu/g of L. buchneri. One corn bunker silo, which had been open for at least 10 d, was examined in detail on each farm. The silages inoculated with L. buchneri had lower concentrations of lactic acid, a lower lactic-to-acetic acid ratio, a lower yeast count, and higher aerobic stability compared with the untreated silages. Unexpectedly, concentrations of acetic acid and 1,2-propanediol, 2 hallmarks of L. buchneri activity, did not differ between treatments and were only numerically higher in the inoculated silages compared with untreated ones, in both surveys. Aerobic stability, on average, was 107 and 121 h in the inoculated silages and 64 and 74 h in the untreated silages, for surveys 1 and 2, respectively, and decreased exponentially as the yeast count in the silage at the time of sampling increased, regardless of treatment. Inoculation with L. buchneri proved to be effective in reducing the yeast count to <2 log cfu/g of silage in 16 of 21 of the studied farm silages, confirming the ability of this inoculum to enhance the aerobic stability of corn silages in farm bunker silos

  13. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri

    PubMed Central

    McDonald, Michael J.; Galafassi, Silvia; Compagno, Concetta; Piškur, Jure

    2017-01-01

    The Crabtree positive yeasts, such as Saccharomyces cerevisiae, prefer fermentation to respiration, even under fully aerobic conditions. The selective pressures that drove the evolution of this trait remain controversial because of the low ATP yield of fermentation compared to respiration. Here we propagate experimental populations of the weak-Crabtree yeast Lachancea kluyveri, in competitive co-culture with bacteria. We find that L. kluyveri adapts by producing quantities of ethanol lethal to bacteria and evolves several of the defining characteristics of Crabtree positive yeasts. We use precise quantitative analysis to show that the rate advantage of fermentation over aerobic respiration is insufficient to provide an overall growth advantage. Thus, the rapid consumption of glucose and the utilization of ethanol are essential for the success of the aerobic fermentation strategy. These results corroborate that selection derived from competition with bacteria could have provided the impetus for the evolution of the Crabtree positive trait. PMID:28282411

  14. Therapeutic aspects of aerobic dance participation.

    PubMed

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  15. Optimization of Large-Scale Culture Conditions for the Production of Cordycepin with Cordyceps militaris by Liquid Static Culture

    PubMed Central

    Kang, Chao; Wen, Ting-Chi; Kang, Ji-Chuan; Meng, Ze-Bing; Li, Guang-Rong; Hyde, Kevin D.

    2014-01-01

    Cordycepin is one of the most important bioactive compounds produced by species of Cordyceps sensu lato, but it is hard to produce large amounts of this substance in industrial production. In this work, single factor design, Plackett-Burman design, and central composite design were employed to establish the key factors and identify optimal culture conditions which improved cordycepin production. Using these culture conditions, a maximum production of cordycepin was 2008.48 mg/L for 700 mL working volume in the 1000 mL glass jars and total content of cordycepin reached 1405.94 mg/bottle. This method provides an effective way for increasing the cordycepin production at a large scale. The strategies used in this study could have a wide application in other fermentation processes. PMID:25054182

  16. Characterization of bovine embryos cultured under conditions appropriate for sustaining human naïve pluripotency

    PubMed Central

    van Tol, Helena T. A.; Groot Koerkamp, Marian J. A.; Wubbolts, Richard W.; Haagsman, Henk P.; Roelen, Bernard A. J.

    2017-01-01

    In mammalian preimplantation development, pluripotent cells are set aside from cells that contribute to extra-embryonic tissues. Although the pluripotent cell population of mouse and human embryos can be cultured as embryonic stem cells, little is known about the pathways involved in formation of a bovine pluripotent cell population, nor how to maintain these cells in vitro. The objective of this study was to determine the transcriptomic profile related to bovine pluripotency. Therefore, in vitro derived embryos were cultured in various culture media that recently have been reported capable of maintaining the naïve pluripotent state of human embryonic cells. Gene expression profiles of embryos cultured in these media were compared using microarray analysis and quantitative RT-PCR. Compared to standard culture conditions, embryo culture in ‘naïve’ media reduced mRNA expression levels of the key pluripotency markers NANOG and POU5F1. A relatively high percentage of genes with differential expression levels were located on the X-chromosome. In addition, reduced XIST expression was detected in embryos cultured in naïve media and female embryos contained fewer cells with H3K27me3 foci, indicating a delay in X-chromosome inactivation. Whole embryos cultured in one of the media, 5iLA, could be maintained until 23 days post fertilization. Together these data indicate that ‘naïve’ conditions do not lead to altered expression of known genes involved in pluripotency. Interestingly, X-chromosome inactivation and development of bovine embryos were dependent on the culture conditions. PMID:28241084

  17. Osteogenic induction of human periodontal ligament fibroblasts under two- and three-dimensional culture conditions.

    PubMed

    Inanc, Bülend; Elcin, A Eser; Elcin, Y Murat

    2006-02-01

    Human periodontal ligament fibroblasts (hPDLF) play a key role in the regeneration of periodontal compartment during guided tissue regeneration procedures. This property is attributed to the progenitor cell subsets residing in the area. The aim of this study was to investigate whether hPDLFs could undergo an osteogenic differentiation under two- and three-dimensional (2D and 3D) culture conditions upon osteogenic induction. hPDLFs were isolated from six healthy donors, cultured, and expanded according to standard protocols. Then, three osteogenic culture conditions (dexamethasone, ascorbic acid, and beta-glycerophosphate) were established: 1) 2D culture as single-cell monolayer, 2) 3D-static culture on mineralized poly(DL-lactic-co-glycolic acid) (PLGA) scaffold, and 3) 3D culture on mineralized PLGA scaffold inside the NASA-approved bioreactor stimulating microgravity conditions. After 21 days of osteogenic induction, the majority of monolayer cultures had undergone differentiation toward osteogenic lineage, as indicated by morphological changes, mineralization assay, and some phenotypical properties. However, immunohistochemistry revealed that the scaffold cultures expressed higher levels of osteogenic marker proteins compared with that of the monolayers. Secondly, hPDLF-PLGA constructs in bioreactor showed an increased expression of osteopontin and osteocalcin compared with that of static 3D culture after 21 days. Results indicate that human periodontal ligament contains a subpopulation of cells capable of undergoing osteogenic differentiation and presumably contributing to regeneration of bone defects in the adjacent area. Human PDLF-seeded mineralized PLGA scaffold in microgravity bioreactor may be used to support osteogenic differentiation in vitro. Thus, this system may offer new potential benefits as a tool for periodontal tissue engineering.

  18. Enumeration of total aerobic microorganisms in foods by SimPlate Total Plate Count-Color Indicator methods and conventional culture methods: collaborative study.

    PubMed

    Feldsine, Philip T; Leung, Stephanie C; Lienau, Andrew H; Mui, Linda A; Townsend, David E

    2003-01-01

    The relative efficacy of the SimPlate Total Plate Count-Color Indicator (TPC-CI) method (SimPlate 35 degrees C) was compared with the AOAC Official Method 966.23 (AOAC 35 degrees C) for enumeration of total aerobic microorganisms in foods. The SimPlate TPC-CI method, incubated at 30 degrees C (SimPlate 30 degrees C), was also compared with the International Organization for Standardization (ISO) 4833 method (ISO 30 degrees C). Six food types were analyzed: ground black pepper, flour, nut meats, frozen hamburger patties, frozen fruits, and fresh vegetables. All foods tested were naturally contaminated. Nineteen laboratories throughout North America and Europe participated in the study. Three method comparisons were conducted. In general, there was <0.3 mean log count difference in recovery among the SimPlate methods and their corresponding reference methods. Mean log counts between the 2 reference methods were also very similar. Repeatability (Sr) and reproducibility (SR) standard deviations were similar among the 3 method comparisons. The SimPlate method (35 degrees C) and the AOAC method were comparable for enumerating total aerobic microorganisms in foods. Similarly, the SimPlate method (30 degrees C) was comparable to the ISO method when samples were prepared and incubated according to the ISO method.

  19. Bioaugmentation of half-matured granular sludge with special microbial culture promoted establishment of 2,4-dichlorophenoxyacetic acid degrading aerobic granules.

    PubMed

    Quan, Xiangchun; Ma, Jingyun; Xiong, Weicong; Wang, Xinrui

    2015-06-01

    Aerobic granular sludge degrading recalcitrant compounds are generally hard to be cultivated. This study investigated the feasibility of cultivating 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granules using half-matured sludge granules pre-grown on glucose as the seeds and bioaugmentation with a 2,4-D degrading strain Achromobacter sp. QXH. Results showed that bioaugmentation promoted the steady transformation of glucose-grown granules to 2,4-D degrading sludge granules and fast establishment of 2,4-D degradation ability. The 2,4-D degradation rate of the bioaugmented granules was enhanced by 36-62 % compared to the control at 2,4-D concentrations of 144-565 mg/L on Day 18. The inoculated strain was incorporated into the half-matured granules successfully and survived till the end of operation (220 days). Sludge granules at a mean size of 420 µm and capable of utilizing 500 mg/L 2,4-D as the sole carbon source were finally obtained. Sludge microbial community shifted slightly during the whole operation and the dominant bacteria species belonged to Proteobacteria.

  20. Conditions for initiating Lake Victoria haplochromine (Oreochromis esculentus) primary cell cultures from caudal fin biopsies.

    PubMed

    Filice, Melissa; Lee, C; Mastromonaco, Gabriela F

    2014-10-01

    The global decline of freshwater fishes has created a need to cryopreserve biological materials from endangered species in an effort to conserve the biodiversity within this taxon. Since maternal gametes and embryos from fish are difficult to cryopreserve, somatic cells obtained from caudal fins have become an increasingly popular resource as they contain both maternal and paternal DNA ensuring valuable traits are not lost from the population. Somatic cells stored in cryobanks can be used to supplement endangered populations with genetically valuable offspring with the use of assisted reproductive technologies. However, initiating primary cell cultures from caudal fin biopsies of endangered species can be challenging as standardized protocols have not yet been developed. The objective of this study was to identify culture conditions, including antibiotic supplementation, biopsy size, and culture temperature, suitable for establishing primary cell cultures of ngege (Oreochromis esculentus), a critically endangered African cichlid. Six-millimeter caudal fin biopsies provided sufficient material to develop a primary cell culture when incubated at 25°C using standard fish cell culture medium containing 1× Primocin. Further investigation and application of these culture conditions for other endangered freshwater fishes is necessary.

  1. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines

    PubMed Central

    Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W.; Stringer, Brett W.; Boyd, Andrew W.; Johns, Terrance G.; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A.

    2015-01-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture. PMID:25806119

  2. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.

    PubMed

    Rahman, Maryam; Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W; Stringer, Brett W; Boyd, Andrew W; Johns, Terrance G; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A

    2015-03-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.

  3. Tunable Structural and Mechanical Properties of Cellulose Nanofiber Substrates in Aqueous Conditions for Stem Cell Culture.

    PubMed

    Smyth, Megan; Fournier, Carole; Driemeier, Carlos; Picart, Catherine; Foster, E Johan; Bras, Julien

    2017-07-10

    Thin cellulose nanofiber (CNF) nanostructured substrates with varying roughness, stiffness (Young's modulus), porosity, and swelling properties were produced by varying the conditions used during fabrication. It was shown that with increased heat exposure, CNF substrate porosity in an aqueous state decreased while Young's modulus in a water submerged state increased. In this study, the adhesion and viability of mesenchymal stem cells (MSCs) cultured on this CNF substrate will be presented. Viability of D1/BALBc MSCs were assessed for 24 and 48 h, and it was shown that depending on the CNF substrate the viability varied significantly. The adhesion of MSCs after 6 and 24 h was conditional on material mechanical properties and porosity of the CNF in cell culture conditions. These results suggest that material properties of CNF nanostructured substrate within the aqueous state can be easily tuned with curing step without any chemical modification to the CNF and that these changes can affect MSC viability in cell culture.

  4. Effects of culture conditions and biofilm formation on the iodine susceptibility of Legionella pneumophila

    NASA Technical Reports Server (NTRS)

    Cargill, K. L.; Pyle, B. H.; Sauer, R. L.; McFeters, G. A.

    1992-01-01

    The susceptibility of Legionella pneumophila to iodination was studied with cultures grown in well water, on rich agar media, and attached to stainless-steel surfaces. Legionella pneumophila grown in water cultures in association with other microorganisms were less sensitive to disinfection by chlorine and iodine than were agar-passaged cultures. Differences in sensitivity to disinfection between water-cultured and agar-grown legionellae were determined by comparing C x T values (concentration in milligrams per litre multiplied by time in minutes to achieve 99% decrease in viability) and CM x T values (concentration in molarity). Iodine (1500x) gave a greater difference in CM x T values than did chlorine (68x). Iodine was 50 times more effective than chlorine when used with agar-grown cultures but was only twice as effective when tested against water-grown Legionella cultures. C x T x S values (C x T multiplied by percent survivors), which take into consideration the percent surviving bacteria, were used to compare sensitivities in very resistant populations, such as those in biofilms. Water cultures of legionellae associated with stainless-steel surfaces were 135 times more resistant to iodination than were unattached legionellae, and they were 210,000 times more resistant than were agar-grown cultures. These results indicate that the conditions under which legionellae are grown can dramatically affect their susceptibility to some disinfectants and must be considered when evaluating the efficacy of a disinfecting agent.

  5. Effects of culture conditions on ligninolytic enzymes and protease production by Phanerochaete chrysosporium in air.

    PubMed

    Xiong, Xiaoping; Wen, Xianghua; Bai, Yanan; Qian, Yi

    2008-01-01

    The production of ligninolytic enzymes and protease by Phanerochaete chrysosporium was investigated under different culture conditions. Different amounts of medium were employed in free and immobilized culture, together with two kinds of medium with different C/N ratios. Little lignin peroxidase (LiP) (< 2 U/L) was detected in free culture with nitrogen-limited medium (C/N ratio: 56/2.2, in mmol/L), while manganese peroxidase (MnP) maximum activity was 231 and 240 U/L in 50 and 100 ml medium culture, respectively. Immobilized culture with 50 ml nitrogen-limited medium gave the highest MnP and LiP production with the maximum values of 410 and 721 U/L separately on the day 5; however, flasks containing 100 ml nitrogen-limited medium only produced less MnP with a peak value of 290 U/L. Comparatively, carbon-limited medium (C/N ratio: 28/44, in mmol/L) was adopted in culture but produced little MnP and LiP. Medium type had the greatest impact on protease production. Large amount of protease was produced due to glucose limitation. Culture type and medium volume influence protease activity corporately by affecting oxygen supply. The results implied shallow immobilized culture was a possible way to gain high production of ligninolytic enzymes.

  6. Effects of culture conditions and biofilm formation on the iodine susceptibility of Legionella pneumophila

    NASA Technical Reports Server (NTRS)

    Cargill, K. L.; Pyle, B. H.; Sauer, R. L.; McFeters, G. A.

    1992-01-01

    The susceptibility of Legionella pneumophila to iodination was studied with cultures grown in well water, on rich agar media, and attached to stainless-steel surfaces. Legionella pneumophila grown in water cultures in association with other microorganisms were less sensitive to disinfection by chlorine and iodine than were agar-passaged cultures. Differences in sensitivity to disinfection between water-cultured and agar-grown legionellae were determined by comparing C x T values (concentration in milligrams per litre multiplied by time in minutes to achieve 99% decrease in viability) and CM x T values (concentration in molarity). Iodine (1500x) gave a greater difference in CM x T values than did chlorine (68x). Iodine was 50 times more effective than chlorine when used with agar-grown cultures but was only twice as effective when tested against water-grown Legionella cultures. C x T x S values (C x T multiplied by percent survivors), which take into consideration the percent surviving bacteria, were used to compare sensitivities in very resistant populations, such as those in biofilms. Water cultures of legionellae associated with stainless-steel surfaces were 135 times more resistant to iodination than were unattached legionellae, and they were 210,000 times more resistant than were agar-grown cultures. These results indicate that the conditions under which legionellae are grown can dramatically affect their susceptibility to some disinfectants and must be considered when evaluating the efficacy of a disinfecting agent.

  7. Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures.

    PubMed

    Kumar, Rahul; Shimizu, Kazuyuki

    2011-01-27

    It is important to understand the cellular responses emanating from environmental perturbations to redesign the networks for practical applications. In particular, the carbon (C) metabolism, nitrogen (N) assimilation, and energy generation are by far important, where those are interconnected and integrated to maintain cellular integrity. In our previous study, we investigated the effect of C/N ratio on the metabolic regulation of gdhA, glnL, glt B,D mutants as well as wild type Escherichia coli (Kumar and Shimizu, MCF, 1-17, 9:8,2010), where it was shown that the transcript levels of cyoA and cydB which encode the terminal oxidases, fnr and fur which encode global regulators were significantly up-regulated under N-limited condition as compared to C-limited condition. In the present study, therefore, the effects of such single-gene knockout on the metabolic regulation were investigated to clarify the roles of those genes in the aerobic continuous culture at the dilution rate of 0.2 h(-1). The specific glucose consumption rates and the specific CO2 production rates of cyoA, cydB, fnr, and fur mutants were all increased as compared to the wild type under both C-limited and N-limited conditions. The former phenomenon was consistent with the up-regulations of the transcript levels of ptsG and ptsH, which are consistent with down-regulations of crp and mlc genes. Moreover, the increase in the specific glucose consumption rate was also caused by up-regulations of the transcript levels of pfkA, pykF and possibly zwf, where those are consistent with the down regulations of cra, crp and mlc genes. Moreover, the transcript levels of rpoN together with glnK, glnB, glnE were up-regulated, and thus the transcript levels of glnA,L,G, and gltB,D as well as nac were up-regulated, while gdhA was down-regulated. This implies the interconnection between cAMP-Crp and PII-Ntr systems. Moreover, cyoA, cydB, fnr and fur gene deletions up-regulated the transcript levels of respiration (nuo

  8. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  9. Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes

    SciTech Connect

    Callister, Stephen J.; Nicora, Carrie D.; Zeng, Xiaohua; Roh, Jung Hyeob; Dominguez, Migual; Tavano, Christine; Monroe, Matthew E.; Kaplan, Samuel; Donohue, Timothy; Smith, Richard D.; Lipton, Mary S.

    2006-07-05

    Proteomes from aerobic and photosynthetic grown Rhodobacter sphaeroides 2.4.1 cell cultures were characterized using liquid chromatography-mass spectrometry in conjunction with an accurate mass and elution time (AMT) tag approach. Roughly 8000 high quality peptides were detected that represented 1,445 gene products and 34% of the predicted proteins. The identified proteins corresponded primarily to open reading frames (ORFs) contained within the two chromosomal elements of this bacterium, but a significant number were also observed from ORFs associated with 5 naturally occurring plasmids. Data mining of peptides revealed a number of proteins uniquely detected within the photosynthetic cell culture. Proteins observed in both aerobic respiratory and photosynthetic grown cultures were analyzed semi-quantitatively by comparing their estimated abundances to provide insights into bioenergetic models for aerobic respiration and photosynthesis. Additional emphasis was placed on gene products annotated as hypothetical to gain information as to their potential roles within these two growth conditions. Where possible, transcriptome data for R. sphaeroides obtained under the same culture conditions were compared with these results. This comparative study demonstrated the applicability of the AMT tag approach for high-throughput proteomic analyses of pathways associated with the photosynthetic lifestyle.

  10. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  11. Differential sensitivity of aerobic gram-positive and gram-negative microorganisms to 2,4,6-trinitrotoluene (TNT) leads to dissimilar growth and TNT transformation: Results of soil and pure culture studies

    SciTech Connect

    Fuller, M.E.; Manning, J.F. Jr.

    1996-07-30

    The effects of 2,4,6-trinitrotoluene (TNT) on indigenous soil populations and pure bacterial cultures were examined. The number of colony-forming units (CFU) appearing when TNT-contaminated soil was spread on 0.3% molasses plates decreased by 50% when the agar was amended with 67 {mu}g TNT mL{sup -1}, whereas a 99% reduction was observed when uncontaminated soil was plated. Furthermore, TNT-contaminated soil harbored a greater number of organisms able to grow on plates amended with greater than 10 {mu}g TNT mL{sup -1}. The percentage of gram-positive isolates was markedly less in TNT-contaminated soil (7%; 2 of 30) than in uncontaminated soil (61%; 20 of 33). Pseudomonas aeruginosa, Pseudomonas corrugate, Pseudomonasfluorescens and Alcaligenes xylosoxidans made up the majority of the gram-negative isolates from TNT-contaminated soil. Gram-positive isolates from both soils demonstrated marked growth inhibition when greater than 8-16 {mu}g TNT mL{sup -1} was present in the culture media. Most pure cultures of known aerobic gram-negative organisms readily degraded TNT and evidenced net consumption of reduced metabolites. However, pure cultures of aerobic gram-positive bacteria were sensitive to relatively low concentrations of TNT as indicated by the 50% reduction in growth and TNT transformation which was observed at approximately 10 {mu}g TNT mL{sup -1}. Most non-sporeforming gram-positive organisms incubated in molasses media amended with 80 {mu}g TNT mL{sup -1} or greater became unculturable, whereas all strains tested remained culturable when incubated in mineral media amended with 98 {mu}g TNT mL{sup -1}, indicating that TNT sensitivity is likely linked to cell growth. These results indicate that gram-negative organisms are most likely responsible for any TNT transformation in contaminated soil, due to their relative insensitivity to high TNT concentrations and their ability to transform TNT.

  12. Biodegradation of 4-chlorophenol by Arthrobacter chlorophenolicus A6: effect of culture conditions and degradation kinetics.

    PubMed

    Sahoo, N K; Pakshirajan, K; Ghosh, P K; Ghosh, A

    2011-04-01

    Among known microbial species, Arthrobacter chlorophenolicus A6 has shown very good potential to treat phenolic wastewaters. In this study, the levels of various culture conditions, namely initial pH, agitation (rpm), temperature (°C), and inoculum age (h) were optimized to enhance 4-chlorophenol (4-CP) biodegradation and the culture specific growth rate. For optimization, central composite design of experiments followed by response surface methodology (RSM) was applied. Results showed that among the four independent variables, i.e., pH, agitation (rpm), temperature (°C), and inoculum age (h) investigated in this study, interaction effect between agitation and inoculum age as well as that between agitation and temperature were significant on both 4-CP biodegradation efficiency and culture specific growth rate. Also, at the RSM optimized settings of 7.5 pH, 207 rpm, 29.6°C and 39.5 h inoculum age, 100% biodegradation of 4-CP at a high initial concentration of 300 mg l(-1) was achieved within a short span of 18.5 h of culture. The enhancement in the 4-CP biodegradation efficiency was found to be 23% higher than that obtained at the unoptimized settings of the culture conditions. Results of batch growth kinetics of A. chlorophenolicus A6 for various 4-CP initial concentrations revealed that the culture followed substrate inhibition kinetics. Biokinetic constants involved in the process were estimated by fitting the experimental data to several models available from the literature.

  13. Protein secretory patterns of rat Sertoli and peritubular cells are influenced by culture conditions

    SciTech Connect

    Kierszenbaum, A.L.; Crowell, J.A.; Shabanowitz, R.B.; DePhilip, R.M.; Tres, L.L.

    1986-08-01

    An approach combining two-dimensional gel electrophoresis and autoradiography was used to correlate patterns of secretory proteins in cultures of Sertoli and peritubular cells with those observed in the incubation medium from segments of seminiferous tubules. Sertoli cells in culture and in seminiferous tubules secreted three proteins designated S70 (Mr 72,000-70,000), S45 (Mr 45,000), and S35 (Mr 35,000). Cultured Sertoli and peritubular cells and incubated seminiferous tubules secreted two proteins designated SP1 (Mr 42,000) and SP2 (Mr 50,000). SP1 and S45 have similar Mr but differ from each other in isoelectric point (pI). Cultured peritubular cells secreted a protein designated P40 (Mr 40,000) that was also seen in intact seminiferous tubules but not in seminiferous tubules lacking the peritubular cell wall. However, a large number of high-Mr proteins were observed only in the medium of cultured peritubular cells but not in the incubation medium of intact seminiferous tubules. Culture conditions influence the morphology and patterns of protein secretion of cultured peritubular cells. Peritubular cells that display a flat-stellate shape transition when placed in culture medium free of serum (with or without hormones and growth factors), accumulate various proteins in the medium that are less apparent when these cells are maintained in medium supplemented with serum. Two secretory proteins stimulated by follicle-stimulating hormone (FSH) (designated SCm1 and SCm2) previously found in the medium of cultured Sertoli cells, were also observed in the incubation medium of seminiferous tubular segments stimulated by FSH. Results of this study show that, although cultured Sertoli and peritubular cells synthesize and secrete proteins also observed in segments of incubated seminiferous tubules anther group of proteins lacks seminiferous tubular correlates.

  14. [Culture and differentiation of obligatory aerobic gram-negative rods from human material; a scheme for application in routine diagnosis (author's transl)].

    PubMed

    von Graevenitz, A; Grehn, M

    1976-12-01

    The diagnosis of obligately aerobic Gram-negative rods in the clinical laboratory may encounter difficulties since media used for Enterobacteriacae are only partially usable for the diagnosis of this group of bacteria (Psuedomonas, Xanthomonas, Alcaligenes, Achromobacter, Brucella, Bordetella, Flavobacterium, Moraxella, Acinetobacter, and some still unnamed taxa). We have developed a diagnostic scheme, based on recent publications in the field and representing an extension of earlier tables from this and other laboratories, which attempts to classify a maximal number of obligately aerobic Gram-negative rods with a minimal number of tests. The scheme, employed on 4051 strains, used blood agar and MacConkey Agar as isolation media. Growth characteristics on these media and microscopic morphology may be of help, but only the type of growth on Triple Sugar Iron (or Kligler's) Agar is characteristic for the group as a whole (no growth in the butt, alkalinization or no pH change on the slant). A primary identification series employs tests for oxidase (Kovacs), oxidation of glucose and xylose (in OF medium), deoxyribonuclease and indole (in DNase Test Agar with Methyl Green), nitrate reduction (in Indole Nitrite Medium), motility (hanging drop), and fluorescein production (on Flo Agar). Results of Kirby-Bauer antimicrobial sensitivity testing serve as additional (colistin) or confirmatory criteria. Incubation is at 30 degrees C for 24-48 hrs. If a diagnosis is not possible than, a secondary series, including tests for lysine decarboxylase (tablets), 4 hr urease, esculin hydrolysis, growth at 42 C and on SS Agar, gelatin liquefaction, and flagellar staining may have to be used, and read after 4-24 hrs at 30 degrees C. Five tables, drawn up according to oxidase, glucose, and xylose reactions, serve to identify the species or taxa. Biotypes cannot be differentiated. The scheme will need updating as more knowledge of these bacteria will become available.

  15. Optimization of culture conditions of Fusarium solani for the production of neoN-methylsansalvamide.

    PubMed

    Lee, Hee-Seok; Phat, Chanvorleak; Nam, Woo-Seon; Lee, Chan

    2014-01-01

    The aim of this study was to optimize the culture conditions of Fusarium solani KCCM90040 on cereal grain for the production of neoN-methylsansalvamide, a novel low-molecular-weight cyclic pentadepsipeptide exhibiting cytotoxic and multidrug resistance reversal effects. From the analysis of variance results using response surface methodology, temperature, initial moisture content, and growth time were shown to be important parameters for the production of neoN-methylsansalvamide on cereal grain. A model was established in the present study to describe the relationship between environmental conditions and the production of neoN-methylsansalvamide on rice, the selected cereal grain. The optimal culture conditions were determined at 25.79 °C with the initial moisture content of 40.79%, and 16.19 days of growth time. This report will give important information concerning the optimization of environmental conditions using statistic methodology for the production of a new cyclic pentadepsipeptide from fungi.

  16. Standard culture medium allows clonal dilution of Trypanosoma brucei procyclic cells after auto-conditioning.

    PubMed

    Archer, Stuart K

    2009-03-01

    Trypanosoma brucei can be cultured in vitro in the mammalian bloodstream form or in the procyclic (PC) form found in the insect vector. Bloodstream trypanosomes can be cloned by limiting dilution, but PCs can only be diluted in conditioned medium, i.e., medium in which PC cells have previously been grown. It is shown here that this limitation does not apply to the most commonly used PC cell strain, Lister 427, if free radicals are removed from the medium. The reported benefit of conditioning media may arise in part from a process of hemin-catalysed depletion of peroxide ("auto-conditioning") which occurs during extended incubation at growth temperature. Scavenging free radicals by addition of pyruvate also improves PC cell viability. However, other PC cell strains such as Treu 927 require cell-conditioned media unless grown in a 5% CO2 atmosphere. Several other culture parameters that affect growth rates and dilution capability were identified.

  17. Mechanistic study on the palladium(II)-catalyzed synthesis of 2,3-disubstituted indoles under aerobic conditions: anion effects and the development of a low-catalyst-loading process.

    PubMed

    Yao, Bo; Wang, Qian; Zhu, Jieping

    2014-09-15

    As a result of detailed mechanistic and kinetic studies, we have proposed that PdX2-catalyzed oxidative coupling of o-alkynylanilines 1 with terminal alkynes 2 under aerobic conditions is initiated by aminopalladation of 1 followed by ligand exchange of the resulting σ-indolylpalladium(II) complex with 2, reductive elimination and N-demethylation. Side reactions associated with intermediates on the way to 2,3-disubstituted indoles 3 were identified, and the roles of acetate and iodide in channeling the reaction towards the desired product were established. Based on kinetic and spectroscopic studies, the soluble iodide-ligated Pd(0) species was proposed to be the resting state of the catalyst and its oxidation to active Pd(II) species was the turnover-limiting step. Catalytic conditions with low loading of Pd(OAc)2 (0.0005 to 0.001 equiv) were subsequently developed.

  18. Enzymatic hydrolysis of cellulose: evaluation of cellulase culture filtrates under use conditions

    SciTech Connect

    Mandels, M.; Medeiros, J.E.; Andreotti, R.E.; Bissett, F.H.

    1981-09-01

    Culture filtrates from three mutant strains of Trichoderma reesei grown on lactose and on cellulose were compared under use conditions on four cellulose substrates. Cellulose culture filtrates contained five to six times as much cellulase as lactose culture filtrates. Unconcentrated cellulose culture filtrates produced up to 10% sugar solutions from 15% cellulose in 24 hours. Specific activity in enzyme assays and efficiency in saccharification tests were low for enzymes from all the mutants. Over a wide range the percent saccharification of a substrate in a given time was directly proportional to the logarithm of the ratio of initial concentrations of enzyme and substrate. As a result of this, dilute enzyme is more efficient than concentrated enzyme, but if high sugar concentrations are desired, very large quantities of enzyme are required. Since the slopes of these plots varied, the relative activity of cellulase on different substrates may be affected by enzyme concentration. (Refs. 28).

  19. Methods and Compositions Based on Culturing Microorganisms in Low Sedimental Fluid Shear Conditions

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Nickerson, Cheryl A.; Wilson, James W.; Sarker, Shameema; Nauman, Eric A.; Schurr, Michael J.; Nelman-Gonzalez, Mayra A.

    2012-01-01

    The benefits of applying a low sedimental fluid shear environment to manipulate microorganisms were examined. Microorganisms obtained from a low sedimental fluid shear culture, which exhibit modified phenotypic and molecular genetic characteristics, are useful for the development of novel and improved diagnostics, therapeutics, vaccines, and bio-industrial products. Furthermore, application of low sedimental fluid conditions to microorganisms permits identification of molecules uniquely expressed under these conditions, providing a basis for the design of new therapeutic targets.

  20. Alkaloid patterns in Leucojum aestivum shoot culture cultivated at temporary immersion conditions.

    PubMed

    Ivanov, Ivan; Georgiev, Vasil; Berkov, Strahil; Pavlov, Atanas

    2012-01-15

    The alkaloid patterns in Leucojum aestivum L. shoot culture cultivated at temporary immersion conditions were investigated using gas chromatography-mass spectrometry. 18 alkaloids were identified, and galanthamine, hamayne and lycorine were dominant. The L. aestivum 80 shoot culture, cultivated at temporary immersion conditions, is a prospective biological matrix for obtaining wide range Amaryllidaceae alkaloids, showing valuable biological and pharmacological activities. The temperature of cultivation influenced enzyme activities, catalyzing phenol oxidative coupling of 4'-O-methylnorbelladine and formation of the different groups Amaryllidaceae alkaloids. Decreasing the temperature of cultivation of L. aestivum 80 shoot culture led to activation of para-ortho' phenol oxidative coupling (formation of galanthamine type alkaloids) and inhibited ortho-para' and para-para' phenol oxidative coupling (formation of lycorine and haemanthamine types alkaloids). Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. The Characteristics of Cultural Conditions for the Mycelial Growth of Macrolepiota procera

    PubMed Central

    Shim, Sung Mi; Oh, Yun Hee; Lee, Kyung Rim; Kim, Seong Hwan; Im, Kyung Hoan; Kim, Jung Wan; Lee, U Youn; Shim, Jae Ouk; Shim, Mi Ja; Lee, Min Woong; Ro, Hyeon Su; Lee, Hyun Sook

    2005-01-01

    Macrolepiota procera, one of edible mushrooms belongs to Agaricaceae of Basidiomycota, has a good taste and good medicinal value. As a preliminary study for the development of artificial cultivation method of edible mushroom, cultural characteristics of M. procera was investigated on various culture media under different environmental conditions. Mycelial growth was compared on culture media composed of various carbon and nitrogen sources, and C/N ratios. The optimal conditions for the mycelial growth were 30℃ and pH 7. M. procera showed the rapid mycelial growth in the PDA media. The optimal carbon and nitrogen sources were maltose and glycine, respectively. The optimum C/N ratio was about 10 : 1 in case that 1% glucose was supplemented to the basal media as carbon source. PMID:24049468

  2. [Genetic regulation of T-lymphocyte responsiveness to PHA is independent of culture conditions (author's transl)].

    PubMed

    Stiffel, C; Liacopoulos-Briot, M; Decreusefond, C; Lambert, F

    1979-01-01

    A maximal interline separation has been obtained after 10 consecutive generations of selective breeding for the character "quantitative in vitro response of lymph node lymphocytes to the mitogenic effect of phytohaemagglutinin". At the selection limit the difference between high and low responder lines was about 20-fold. A similar interline separation has been demonstrated for the T-mitogen effect of concanavalin A. The identical response to PPD (purified protein derivative of tuberculin), a B mitogen, proved that the genetic selection has only modified the potentialities of T lymphocytes. During the selective breeding, responsiveness to PHA stimulation has been always measured under identical culture conditions. To demonstrate that the interline difference in responsiveness was due essentially to genetic factors independent of environmental effects, a systematic study of various culture conditions has been undertaken. The optimal stimulation was found after two days of culture for high line cells and after three days for low line cells. The difference between maximal responses was only slightly lower than that obtained after a two-day culture as used for the selection test. Increase in cell concentrations produced higher thymidine incorporation. In the two lines, a linear correlation was established between the cell concentration and the response produced. The maximal response given by the highest number of low line lymphocytes was equivalent to that given by a number, 11-fold smaller, of high line cells. Within certain limits, changes in the amount of tritiated thymidine added to the culture did not affect the interline separation. With a thymidine of high specific activity, a sub-evaluation of uptake by high line cells decreased the interline difference. Results in mixed culture of lymph node cells from high and low lines indicated that the low response was not due to the release of inhibiting factors or to the presence of suppressive cells in low responder mice

  3. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions.

    PubMed

    Cusick, Kathleen D; Fitzgerald, Lisa A; Cockrell, Allison L; Biffinger, Justin C

    2015-01-01

    The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR) is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1) aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2) anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3) aerobic growth with different heating methods: gyrA, gap, gyrB; (4) all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute quantification

  4. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions

    PubMed Central

    Cusick, Kathleen D.; Fitzgerald, Lisa A.; Cockrell, Allison L.; Biffinger, Justin C.

    2015-01-01

    The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR) is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1) aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2) anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3) aerobic growth with different heating methods: gyrA, gap, gyrB; (4) all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute quantification

  5. Axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions: a new protocol for kinetic studies.

    PubMed

    Farges, B; Poughon, L; Roriz, D; Creuly, C; Dussap, C-G; Lasseur, C

    2012-07-01

    As a part of a natural biological N-cycle, nitrification is one of the steps included in the conception of artificial ecosystems designed for extraterrestrial life support systems (LSS) such as Micro-Ecological Life Support System Alternative (MELiSSA) project, which is the LSS project of the European Space Agency. Nitrification in aerobic environments is carried out by two groups of bacteria in a two-step process. The ammonia-oxidizing bacteria (Nitrosomonas europaea) realize the oxidation of ammonia to nitrite, and the nitrite-oxidizing bacteria (Nitrobacter winogradskyi), the oxidation of nitrite to nitrate. In both cases, the bacteria achieve these oxidations to obtain an energy and reductant source for their growth and maintenance. Furthermore, both groups also use CO₂ predominantly as their carbon source. They are typically found together in ecosystems, and consequently, nitrite accumulation is rare. Due to the necessity of modeling accurately conversion yields and transformation rates to achieve a complete modeling of MELiSSA, the present study focuses on the experimental determination of nitrogen to biomass conversion yields. Kinetic and mass balance studies for axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions are performed. The follow-up of these cultures is done using flow cytometry for assessing biomass concentrations and ionic chromatography for ammonium, nitrite, and nitrate concentrations. A linear correlation is observed between cell count and optical density (OD) measurement (within a 10 % accuracy) validating OD measurements for an on-line estimation of biomass quantity even at very low biomass concentrations. The conversion between cell count and biomass concentration has been determined: 7.1 × 10¹² cells g dry matter (DM)⁻¹ for Nitrobacter and 6.3 × 10¹² cells g DM⁻¹ for Nitrosomonas. Nitrogen substrates and products are assessed redundantly showing excellent agreement for mass

  6. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    NASA Astrophysics Data System (ADS)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  7. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions.

    PubMed

    Min, Kyoung Ah; Rosania, Gus R; Shin, Meong Cheol

    2016-06-01

    To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport.

  8. Mid-Infrared and Near-Infrared Spectroscopic Properties of Fusarium Isolates: Effects of Culture Conditions

    USDA-ARS?s Scientific Manuscript database

    The Fusarium genus includes soil saprobes as well as pathogenic or toxin-producing species. Traditional classification of Fusarium isolates is slow and requires a high level of expertise. The objective of this project is to describe culture condition effects on mid-infrared (MidIR) and near-infrared...

  9. Adjusting policy to institutional, cultural and biophysical context conditions: The case of conservation banking in California

    Treesearch

    Carsten Mann; James D. Absher

    2013-01-01

    This paper examines the political construction of a policy instrument for matching particular institutional, biophysical and cultural context conditions in a social–ecological system, using the case of conservation banking in California as an example. The guiding research question is: How is policy design negotiated between various actors on its way from early...

  10. Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry.

    PubMed

    Zotta, T; Parente, E; Ricciardi, A

    2017-04-01

    This review outlines the recent advances in the knowledge on aerobic and respiratory growth of lactic acid bacteria, focusing on the features of respiration-competent lactobacilli. The species of the genus Lactobacillus have been traditionally classified as oxygen-tolerant anaerobes, but it has been demonstrated that several strains are able to use oxygen as a substrate in reactions mediated by flavin oxidases and, in some cases, to synthesize a minimal respiratory chain. The occurrence of genes related to aerobic and respiratory metabolism and to oxidative stress response apparently correlates with the taxonomic position of lactobacilli. Members of the ecologically versatile Lactobacillus casei, L. plantarum and L. sakei groups are apparently best equipped to deal with aerobic/respiratory growth. The shift from anaerobic growth to aerobic (oxygen) and/or respiratory promoting (oxygen, exogenous haem and menaquinone) conditions offers physiological advantages and affects the pattern of metabolite production in several species. Even if this does not result in dramatic increases in biomass production and growth rate, cells grown in these conditions have improved tolerance to heat and oxidative stresses. An overview of benefits and of the potential applications of Lactobacillus cultures grown under aerobic or respiratory conditions is also discussed. © 2017 The Society for Applied Microbiology.

  11. Different Culture Conditions Modulate the Immunological Properties of Adipose Stem Cells

    PubMed Central

    Sivula, Jyrki; Huhtala, Heini; Helminen, Mika; Salo, Fanny; Mannerström, Bettina; Miettinen, Susanna

    2014-01-01

    The potential of human adipose stem cells (ASCs) for regenerative medicine has received recognition owing to their ease of isolation and their multilineage differentiation capacity. Additionally, low immunogenicity and immunosuppressive properties make them a relevant cell source when considering immunomodulation therapies and allogeneic stem cell treatments. In the current study, immunogenicity and immunosuppression of ASCs were determined through mixed lymphocyte reactions. The immunogenic response was analyzed after cell isolation and expansion in fetal bovine serum (FBS), human serum (HS)-supplemented medium, and xeno-free and serum-free (XF/SF) conditions. Additionally, the immunophenotype and the secretion of CXC chemokine ligand 8 (CXCL8), CXCL9, CXCL10, C-C chemokine ligand 2 (CCL2), CCL5, interleukin 2 (IL-2), IL-4, IL-6, IL-10, IL-17A, tumor necrosis factor-α, interferon-γ, transforming growth factor-β1, indoleamine 2,3-deoxygenase, Galectin-1, and Galectin-3 were analyzed. The results showed that ASCs were weakly immunogenic when expanded in any of the three conditions. The significantly strongest suppression was observed with cells expanded in FBS conditions, whereas higher ASC numbers were required to display suppression in HS or XF/SF conditions. In addition, statistically significant differences in protein secretion were observed between direct versus indirect cocultures and between different culture conditions. The characteristic immunophenotype of ASCs was maintained in all conditions. However, in XF/SF conditions, a significantly lower expression of CD54 (intercellular adhesion molecule 1) and a higher expression of CD45 (lymphocyte common antigen) was observed at a low passage number. Although culture conditions have an effect on the immunogenicity, immunosuppression, and protein secretion profile of ASCs, our findings demonstrated that ASCs have low immunogenicity and promising immunosuppressive potential whether cultured in FBS, HS, or XF

  12. Mesenchymal Stromal Cell Culture and Delivery in Autologous Conditions: A Smart Approach for Orthopedic Applications

    PubMed Central

    Trombi, Luisa; Danti, Serena; Savelli, Sara; Moscato, Stefania; D'Alessandro, Delfo; Ricci, Claudio; Giannotti, Stefano; Petrini, Mario

    2016-01-01

    Human Mesenchymal Stromal Cells (hMSCs) are cultured in vitro with different media. Limits on their use in clinical settings, however, mainly depend on potential biohazard and inflammation risks exerted by xenogeneic nutrients for their culture. Human derivatives or recombinant materials are the first choice candidates to reduce these reactions. Therefore, culture supplements and materials of autologous origin represent the best nutrients and the safest products. Here, we describe a new protocol for the isolation and culture of bone marrow hMSCs in autologous conditions — namely, patient-derived serum as a supplement for the culture medium and fibrin as a scaffold for hMSC administration. Indeed, hMSC/fibrin clot constructs could be extremely useful for several clinical applications. In particular, we focus on their use in orthopedic surgery, where the fibrin clot derived from the donor's own blood allowed effective cell delivery and nutrient/waste exchanges. To ensure optimal safety conditions, it is of the utmost importance to avoid the risks of hMSC transformation and tissue overgrowth. For these reasons, the approach described in this paper also indicates a minimally ex vivo hMSC expansion, to reduce cell senescence and morphologic changes, and short-term osteo-differentiation before implantation, to induce osteogenic lineage specification, thus decreasing the risk of subsequent uncontrolled proliferation. PMID:28060333

  13. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions.

    PubMed

    Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi

    2016-01-01

    Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design.

  14. Optimization of Conditions for In Vitro Culture of the Microphallid Digenean Gynaecotyla adunca.

    PubMed

    West, Jenna; Mitchell, Alexandra; Pung, Oscar J

    2014-01-01

    In vitro cultivation of digeneans would aid the development of effective treatments and studies of the biology of the parasites. The goal of this study was to optimize culture conditions for the trematode, Gynaecotyla adunca. Metacercariae of the parasite from fiddler crabs, Uca pugnax, excysted in trypsin, were incubated overnight to permit fertilization, and were cultured in different conditions to find those that resulted in maximum worm longevity and egg production. When cultured in media lacking serum, worms lived longer in Hanks balanced salt solution and Dulbecco's Modified Eagle medium/F-12 (DME/F-12) than in RPMI-1640 but produced the most eggs in DME/F-12. Worm longevity and egg production increased when worms were grown in DME/F-12 supplemented with 20% chicken, horse, or newborn calf serum but the greatest number of eggs was deposited in cultures containing horse or chicken serum. Horse serum was chosen over chicken serum due to the formation of a precipitate in chicken serum. The optimal concentration of horse serum with respect to egg production ranged from 5 to 20%. Infectivity of eggs deposited by worms in culture was tested by feeding eggs to mud snails, Ilyanassa obsoleta. None of these snails produced G. adunca cercariae.

  15. Effects of ozone pretreatment and operating conditions on membrane fouling behaviors of an anoxic-aerobic membrane bioreactor for oil sands process-affected water (OSPW) treatment.

    PubMed

    Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2016-11-15

    Two identical anoxic-aerobic membrane bioreactors (MBRs) were operated in parallel for 742 consecutive days for raw and ozonated oil sands process-affected water (OSPW) treatment. The MBRs not only substantially degraded OSPW classical and oxidized NAs, but also demonstrated outstanding membrane fouling control performance (the MBR receiving raw OSPW experienced its first severe fouling with a transmembrane pressure (TMP) of -35 kPa on Day 433). The mild ozonation (30 mg O3/L) pretreatment of OSPW remarkably enhanced OSPW NA degradation, and improved the MBR's fouling control in terms of prolonged long-term slow TMP growth phase and reduced TMP jump frequency. Ozonation substantially altered the feed water organic composition, reshaped the microbial community (e.g., reduced growth of extracellular polymeric substances (EPS) producers and biofilm formation facilitators), and lowered EPS production and EPS protein/polysaccharides (PN/PS) ratio, consequently leading to the better fouling control. Examination on fouling behaviors at different HRTs of the raw OSPW MBR indicates that HRT also played a role in determining the dominating fouling mechanism during the sharp TMP rise phase. Therefore, the results of this study suggest that the low-dose ozone pretreatment is a good option to enhance organic contaminant degradation and alleviate membrane fouling in the MBR for OSPW treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Determination of the optimal culture conditions for detecting thermophilic campylobacters in environmental water.

    PubMed

    Lévesque, Simon; St-Pierre, Karen; Frost, Eric; Arbeit, Robert D; Michaud, Sophie

    2011-07-01

    This study evaluated alternative protocols for culturing thermophilic campylobacters in environmental water. All samples were filtered through a sterile 0.45μm pore-size membrane, which was then incubated in Preston enrichment broth. Four variables were compared: water sample volume (2000mL vs. 500mL), enrichment broth volume (25mL vs. 100mL), enrichment incubation duration (24h vs. 48h), and number of enrichment passages (one vs. two). In addition, DNA extracts were prepared from all final broths and analyzed using three rRNA PCR assays. River water was collected at 3 sampling sites weekly for 9 weeks. Among these 27 collections, 25 (93%) yielded Campylobacter spp. under at least one of the 16 culture conditions. By univariate analysis, yields were significantly better for the 2000mL sample volume (68.5% vs. 43.0%, p<0.0001) and the 25mL enrichment broth volume (64.5% vs. 47.0%, p<0.0004). Neither of the enrichment period had a significant effect, although there was a trend in favor of 48h incubation (59.5% vs. 52.0%, p=0.13). The three PCR methods gave concordant results for 66 (33%) of the culture-negative samples and 103 (50%) of the culture-positive samples. Compared with culture results, Lubeck's 16S PCR assay had the best performance characteristics, with a sensitivity of 82% and a specificity of 94%. Of the 12 culture-negative samples positive by Lubeck's PCR assay, 11 (92%) samples were also positive by Denis' 16S PCR assay, suggesting that in these cases the culture might have been falsely negative. Based on our results, we conclude that the optimal conditions for detecting Campylobacter spp. in natural waters include 2000mL sample volume and a single enrichment broth of 25mL PB incubated for 48h.

  17. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    PubMed

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (P<0.05) in CM. In CaCo-2 cultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (P<0.001) and elevated levels of hydrogen peroxide (P<0.01). Incubation of CaCo-2 cells with CM reduced the hypoxia-induced signs of cell damage and LDH release (P<0.01) and abrogated the hypoxia-induced increase of hydrogen peroxide. These events were associated with an enhanced phosphorylation status of the prosurvival kinase Erk1/2 (P<0.05) but not Akt and STAT-5. Taken together, CM of hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury. The established culture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. [Testing aerobic power].

    PubMed

    Lehance, C; Bury, T

    2008-01-01

    Maximal oxygen uptake (VO2 max) is regarded by some as the best single measurement of aerobic fitness. An other major determinant of successful endurance performance is the percentage of VO2 max that an athlete can maintain for a prolonged period. It is related to the lactate threshold. Two other factors also appear to be important for endurance activities as high economy of effort, or low VO2 value for the same rate of work; high percentage of ST muscle fibers. In the laboratory, the usual measurements of aerobic power include the determination of maximum oxygen consumption and the identification of lactate threshold. Testing aerobic power can help determine the type of aerobic training that should be emphasized.

  19. An integrated system for synchronous culture of animal cells under controlled conditions.

    PubMed

    Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A

    2016-01-01

    The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture.

  20. Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions.

    PubMed

    Cheraiti, Naoufel; Guezenec, Stéphane; Salmon, Jean-Michel

    2005-01-01

    Wine yeast starters that contain a mixture of different industrial yeasts with various properties may soon be introduced to the market. The mechanisms underlying the interactions between the different strains in the starter during alcoholic fermentation have never been investigated. We identified and investigated some of these interactions in a mixed culture containing two yeast strains grown under enological conditions. The inoculum contained the same amount (each) of a strain of Saccharomyces cerevisiae and a natural hybrid strain of S. cerevisiae and Saccharomyces uvarum. We identified interactions that affected biomass, by-product formation, and fermentation kinetics, and compared the redox ratios of monocultures of each strain with that of the mixed culture. The redox status of the mixed culture differed from that of the two monocultures, showing that the interactions between the yeast strains involved the diffusion of metabolite(s) within the mixed culture. Since acetaldehyde is a potential effector of fermentation, we investigated the kinetics of acetaldehyde production by the different cultures. The S. cerevisiae-S. uvarum hybrid strain produced large amounts of acetaldehyde for which the S. cerevisiae strain acted as a receiving strain in the mixed culture. Since yeast response to acetaldehyde involves the same mechanisms that participate in the response to other forms of stress, the acetaldehyde exchange between the two strains could play an important role in inhibiting some yeast strains and allowing the growth of others. Such interactions could be of particular importance in understanding the ecology of the colonization of complex fermentation media by S. cerevisiae.

  1. Optical examination of cell culture in bioreactors creating simulated in vivo conditions

    NASA Astrophysics Data System (ADS)

    Rolfe, Peter J.

    2005-01-01

    Cell culture using bioreactors is a vital part of Cellular and Tissue Engineering. Bioreactor design continues to advance, in order to allow control over physical and chemical parameters as well as continuous assessment of cell behaviour, gene expression, and tissue formation and growth. Measurement or monitoring of many such parameters or features can be achieved with optical techniques. The current aim of cell culture is to re-create in vivo conditions and in order to achieve this control of the chemical environment is required and some cell types must be subjected to shear stress and/or axial loads. For creating tissue engineered cartilage chondrocytes are cultured within a biodegradable scaffold. Influences of cyclic loading and of oxygen supply on phenotype are studied. Vascular endothelial cells are subjected to fluid shear stress and the influence on prostacyclin production is measured. Optical interrogation of culture fluid, attached cells, cells in suspension and tissue constructs is carried out using a combination of spectrophotometry, analysis of scattering, and chemical sensing. Insertion of sensing probes within the culture vessel presents problems of protein adsorption to sensing surfaces. Approaches based on cell membrane mimicry are being evaluated for their potential to overcome this problem. Sensors based on immobilised fluorophores and chromaphores within either wall-mounted membranes or within optical fibres are assessed. Culture fluid turbidity is evaluated with scattering determinations and circulating glucose concentration is measured spectrophotometrically. Formed tissue is interrogated with NIR radiation and in the future will include the use of OCT.

  2. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    SciTech Connect

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-08-26

    Highlights: {yields} Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. {yields} The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. {yields} Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  3. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications.

    PubMed

    da Silva Ferreira, Veronica; Sant'Anna, Celso

    2017-01-01

    Chlorophyll is a commercially important natural green pigment responsible for the absorption of light energy and its conversion into chemical energy via photosynthesis in plants and algae. This bioactive compound is widely used in the food, cosmetic, and pharmaceutical industries. Chlorophyll has been consumed for health benefits as a nutraceutical agent with antioxidant, anti-inflammatory, antimutagenic, and antimicrobial properties. Microalgae are photosynthesizing microorganisms which can be extracted for several high-value bioproducts in the biotechnology industry. These microorganisms are highly efficient at adapting to physicochemical variations in the local environment. This allows optimization of culture conditions for inducing microalgal growth and biomass production as well as for changing their biochemical composition. The modulation of microalgal culture under controlled conditions has been proposed to maximize chlorophyll accumulation. Strategies reported in the literature to promote the chlorophyll content in microalgae include variation in light intensity, culture agitation, and changes in temperature and nutrient availability. These factors affect chlorophyll concentration in a species-specific manner; therefore, optimization of culture conditions has become an essential requirement. This paper provides an overview of the current knowledge on the effects of key environmental factors on microalgal chlorophyll accumulation, focusing on small-scale laboratory experiments.

  4. A semi-empirical glycosylation model of a camelid monoclonal antibody under hypothermia cell culture conditions.

    PubMed

    Aghamohseni, Hengameh; Spearman, Maureen; Ohadi, Kaveh; Braasch, Katrin; Moo-Young, Murray; Butler, Michael; Budman, Hector M

    2017-03-11

    The impact of cell culture environment on the glycan distribution of a monoclonal antibody (mAb) has been investigated through a combination of experiments and modeling. A newly developed CHO DUXB cell line was cultivated at two levels of initial Glutamine (Gln) concentrations (0, 4 mM) and incubation temperatures of (33 and 37 °C) in batch operation mode. Hypothermia was applied either through the entire culture duration or only during the post-exponential phase. Beyond reducing cell growth and increasing productivity, hypothermia significantly altered the galactosylation index profiles as compared to control conditions. A novel semi-empirical dynamic model was proposed for elucidating the connections between the extracellular cell culture conditions to galactosylation index. The developed model is based on a simplified balance of nucleotides sugars and on the correlation between sugars' levels to the galactosylation index (GI). The model predictions were found to be in a good agreement with the experimental data. The proposed empirical model is expected to be useful for controlling the glycoprofiles by manipulating culture conditions.

  5. [Optional growth medium and conditions for mass production of Pandora delphacis mycelia in submerged culture].

    PubMed

    Liu, Z Q; Feng, M G

    2001-07-01

    The entomophthoraceous fungi are important microbial control agents for insect control but their mass production is usually difficult and expensive. To produce in large quantity the mycelia of the entomophthoraceous fungus, Pandora delphacis (isolate F95129), this study was aimed at replacing expensive components of liquid medium that is usually used in laboratory only with cheap materials easily available. Based on comparative experiments with primary components of several media designed and optional conditions for submerged culture, an appropriate medium was recognized that included(per liter) 10 g of homemade yeast extract, 10 g industrial fish meal, 10 g wheat bran, 15 g corn meal, 1.0 g KH2PO4, 3.0 g NH4NO3, and 0.25 g MgSO(4).7H2O. The optional conditions for submerged culture was 25-30 degrees C, initial pH 6.5, and 40% (V/V) of flask filled with the medium and 10% of initial inoculum (liquid culture containing mycelia) for inoculation. Using the selected medium and the conditions considered, 48 h culture resulted in a considerably high yield of dry mycelia(> 25 mg/mL) with desirable capacity of spore production.

  6. Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts.

    PubMed

    Heras, Sonia; De Coninck, Dieter I M; Van Poucke, Mario; Goossens, Karen; Bogado Pascottini, Osvaldo; Van Nieuwerburgh, Filip; Deforce, Dieter; De Sutter, Petra; Leroy, Jo L M R; Gutierrez-Adan, Alfonso; Peelman, Luc; Van Soom, Ann

    2016-01-22

    Since the development of in vitro embryo production in cattle, different supplements have been added to culture media to support embryo development, with serum being the most popular. However, the addition of serum during embryo culture can induce high birthweights and low viability in calves (Large Offspring Syndrome). Analysis of global gene expression in bovine embryos produced under different conditions can provide valuable information to optimize culture media for in vitro embryo production. We used RNA sequencing to examine the effect of in vitro embryo production, in either serum-containing or serum-free media, on the global gene expression pattern of individual bovine blastocysts. Compared to in vivo derived embryos, embryos produced in serum-containing medium had five times more differentially expressed genes than embryos produced in serum-free conditions (1109 vs. 207). Importantly, in vitro production in the presence of serum appeared to have a different impact on the embryos according to their sex, with male embryos having three times more genes differentially expressed than their female counterparts (1283 vs. 456). On the contrary, male and female embryos produced in serum-free conditions showed the same number (191 vs. 192) of genes expressed differentially; however, only 44 of those genes were common in both comparisons. The pathways affected by in vitro production differed depending on the type of supplementation. For example, embryos produced in serum-containing conditions had a lower expression of genes related to metabolism while embryos produced in serum-free conditions showed aberrations in genes involved in lipid metabolism. Serum supplementation had a major impact on the gene expression pattern of embryos, with male embryos being the most affected. The transcriptome of embryos produced in serum-free conditions showed a greater resemblance to that of in vivo derived embryos, although genes involved in lipid metabolism were altered. Male

  7. Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture

    PubMed Central

    DURRANT, L. A.; ARCHER, C. W.; BENJAMIN, M.; RALPHS, J. R.

    1999-01-01

    Articular cartilage undergoes cycles of compressive loading during joint movement, leading to its cyclical deformation and recovery. This loading is essential for chondrocytes to perform their normal function of maintenance of the extracellular matrix. Various lines of evidence suggest the involvement of the cytoskeleton in load sensing and response. The purpose of the present study is to describe the 3-dimensional (3D) architecture of the cytoskeleton of chondrocytes within their extracellular matrix, and to examine cytoskeletal responses to experimentally varied mechanical conditions. Uniformly sized explants of articular cartilage were dissected from adult rat femoral heads. Some were immediately frozen, cryosectioned and labelled for filamentous actin using phalloidin, and for the focal contact component vinculin or for vimentin by indirect immunofluorescence. Sections were examined by confocal microscopy and 3D modelling. Actin occurred in all chondrocytes, appearing as bright foci at the cell surface linked to an irregular network beneath the surface. Cell surface foci colocalised with vinculin, suggesting the presence of focal contacts between the chondrocyte and its pericellular matrix. Vimentin label occurred mainly in cells of the deep zone. It had a complex intracellular distribution, with linked networks of fibres surrounding the nucleus and beneath the plasma membrane. When cartilage explants were placed into organ culture, where in the absence of further treatments cartilage imbibes fluid from the culture medium and swells, cytoskeletal changes were observed. After 1 h in culture the vimentin cytoskeleton was disassembled, leading to diffuse labelling of cells. After a further hour in culture filamentous vimentin label reappeared in deep zone chondrocytes, and then over the next 48 h became more widespread in cells of the explants. Actin distribution was unaffected by culture. Further experiments were performed to test the effects of load on the

  8. Quantification of conserved antigens in Helicobacter pylori during different culture conditions.

    PubMed Central

    Lindholm, C; Osek, J; Svennerholm, A M

    1997-01-01

    In this study, we raised monoclonal antibodies (MAbs) against three conserved Helicobacter pylori antigens, i.e., the N-acetylneuraminyllactose-binding fibrillar hemagglutinin, HpaA; the flagellin subunits, FlaA and FlaB; and a species-specific 26-kDa protein. The MAbs were used for the development of sensitive inhibition enzyme-linked immunosorbent assays for quantification of these antigens in H. pylori during various culture conditions. The quantities of these antigens varied considerably (up to 8-fold) during different culture procedures and between strains (up to 10-fold). PMID:9393845

  9. Blood culture series benefit may be limited to selected clinical conditions: time to reassess.

    PubMed

    Khatib, R; Simeunovic, G; Sharma, M; Fakih, M G; Johnson, L B; Briski, L; Lebar, W

    2015-04-01

    Blood cultures are often submitted as series (two to three sets per 24 hours) to maximize sample recovery. We assessed the actual benefit of additional sets. Blood cultures submitted from adults (≥ 18 years old) over 1 year (1 February 2012 to 31 January 2013) were examined. The medical records of patients with positive cultures were reviewed. Cultures with commensal organisms were considered contamination in the absence of a source and clinical findings. The impact of additional sets on antibiotic therapy was estimated. We evaluated 15,394 blood cultures. They were submitted as two to five sets per 24 hours in 12,236 (79.5%) instances. Pathogens were detected in 1227 sets, representing 741 bacteremias, of which 618 (83.4%) were detected in the first set and 123 (16.6%) in the additional sets. Pathogens missed in the first set were recovered from patients receiving antibiotics (n = 72; 58.5%) and after undergoing a procedure (n = 54; 43.9%). The additional sets' results could have influenced antibiotic therapy in 76/6235 (1.2%) instances, including 40 (0.6%) antibiotic switches and 36 (0.6%) possible extensions of therapy. The potential impact of the detection of missed pathogens on antibiotic therapy was not apparent in patients who had an endovascular infection (26/27, 96.3%) and those who lacked an obvious source of pathogens (10/10, 100%). These findings suggest that one blood culture is probably adequate in patients with an obvious source of pathogens. Blood culture series are beneficial in patients without an obvious source of pathogens and in those with endovascular infections. It is time to reassess the benefit of blood culture series, perhaps limiting them to selected conditions.

  10. Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture.

    PubMed

    Li, Qing; Huang, Bing; Wu, Hui; Li, Zhimin; Ye, Qin

    2017-05-01

    Glycerol is an important resource for production of value-added bioproducts due to its large availability from the biodiesel industry as a by-product. In this study, two metabolic regulation strategies were applied in the aerobic stage of a two-stage fermentation to achieve high metabolic capacities of the pflB ldhA double mutant Escherichia coli strain overexpressing phosphoenolpyruvate carboxykinase (PCK) in the subsequent anaerobic stage: use of acetate as a co-carbon source of glycerol and restriction of oxygen supply in the PCK induction period. The succinate concentration achieved 926.7mM with a yield of 0.91mol/mol during the anaerobic stage of fermentation in a 1.5-L reactor. qRT-PCR indicated that the two strategies enhanced transcription of genes related with glycerol metabolism and succinate production. Our results showed this metabolically engineered E. coli strain has a great potential in producing succinate using glycerol as carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Kinetics of the aerobic co-metabolism of 1,1-dichloroethylene by Achromobacter sp.: a novel benzene-grown culture.

    PubMed

    Wang, Shizong; Yang, Qi; Zhang, Luning; Wang, Yeyao

    2014-06-01

    Batch experiments were performed for the aerobic co-metabolism of 1,1-dichloroethylene (1,1-DCE) by Achromobacter sp., identified by gene sequencing of 16S rRNA and grown on benzene. Kinetic models were employed to simulate the co-metabolic degradation of 1,1-DCE, and relevant parameters were obtained by non-linear least squares regression. Benzene at 90 mg L(-1) non-competitively inhibited degradation of 1,1-DCE (from 125 to 1,200 μg L(-1)). The maximum specific utilization (kc) rate and the half-saturation constant (Kc) for 1,1-DCE were 54 ± 0.85 μg h(-1) and 220 ± 6.8 μg L(-1), respectively; the kb and Kb for benzene were 13 ± 0.18 mg h(-1) and 28 ± 0.42 mg L(-1), respectively. This study provides a theoretical basis to predict the natural attenuation when benzene and 1,1-DCE occur as co-contaminants.

  12. Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012

    PubMed Central

    2013-01-01

    The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539

  13. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

    PubMed Central

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W.; Browne, Tristan; Cox, Kevin; Paul, Andrew T.; Ko, Seung-Hyun B.; Mortensen, Joel E.; Lam, Joseph S.; Muruve, Daniel A.; Hassett, Daniel J.

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains. PMID:27064218

  14. Direct inoculation method using BacT/ALERT 3D and BD Phoenix System allows rapid and accurate identification and susceptibility testing for both Gram-positive cocci and Gram-negative rods in aerobic blood cultures.

    PubMed

    Yonetani, Shota; Okazaki, Mitsuhiro; Araki, Koji; Makino, Hiroshi; Fukugawa, Yoko; Okuyama, Takahiro; Ohnishi, Hiroaki; Watanabe, Takashi

    2012-06-01

    This study describes a direct inoculation method using the automated BacT/ALERT 3D and the BD Phoenix System in combination for identification and susceptibility testing of isolates from positive blood cultures. Organism identification and susceptibility results were compared with the conventional method for 211 positive aerobic blood cultures. Of 110 Gram-positive cocci (GPCs), 98 (89.1%) isolates were correctly identified to the species level. Of 101 Gram-negative rods (GNRs), 98 (97.0%) isolates were correctly identified to the species level. The overall categorical agreement in antimicrobial susceptibility testing among the 110 GPCs was 92.7%, with 0.04% very major and 0.7% major error rates. The overall categorical agreement among 78 isolates of enterobacteria and 23 isolates of nonfermenters in GNRs was 99.5% and 91.1%, respectively, with no major errors identified. We conclude that, compared with previously reported direct inoculation methods, our method is superior in identification and susceptibility testing of GPCs.

  15. Application of the Accurate Mass and Time Tag Approach to the Proteome Analysis of Sub-cellular Fractions Obtained from Rhodobacter sphaeroides 2.4.1 Aerobic and Photosynthetic Cell Cultures

    SciTech Connect

    Callister, Stephen J.; Dominguez, Migual; Nicora, Carrie D.; Zeng, Xiaohua; Tavano, Christine; Kaplan, Samuel; Donohue, Timothy; Smith, Richard D.; Lipton, Mary S.

    2006-08-04

    Abstract The high-throughput accurate mass and time tag (AMT) proteomic approach was utilized to characterize the proteomes for cytoplasm, cytoplasmic membrane, periplasm, and outer membrane fractions from aerobic and photosynthetic cultures of the gram-nagtive bacterium Rhodobacter sphaeroides 2.4.1. In addition, we analyzed the proteins within purified chromatophore fractions that house the photosynthetic apparatus from photosynthetically grown cells. In total, 8300 peptides were identified with high confidence from at least one sub-cellular fraction from either cell culture. These peptides were derived from 1514 genes or 35% percent of proteins predicted to be encoded by the genome. A significant number of these proteins were detected within a single sub-cellular fraction and their localization was compared to in-silico predictions. However, the majority of proteins were observed in multiple sub-cellular fractions, and the most likely sub-cellular localization for these proteins was investigated using a Z-score analysis of peptide abundance along with clustering techniques. Good (81%) agreement was observed between the experimental results and in-silico predictions. The AMT tag approach provides localization evidence for those proteins that have no predicted localization information, those annotated as putative proteins, and/or for those proteins annotated as hypothetical and conserved hypothetical.

  16. Application of the Accurate Mass and Time Tag Approach to the Proteome Analysis of Sub-cellular Fractions Obtained from Rhodobacter sphaeroides 2.4.1. Aerobic and Photosynthetic Cell Cultures

    PubMed Central

    Callister, Stephen J.; Dominguez, Miguel A.; Nicora, Carrie D.; Zeng, Xiaohua; Tavano, Christine L.; Kaplan, Samuel; Donohue, Timothy J.; Smith, Richard D.; Lipton, Mary S.

    2009-01-01

    The high-throughput accurate mass and time (AMT) tag proteomic approach was utilized to characterize the proteomes for cytoplasm, cytoplasmic membrane, periplasm, and outer membrane fractions from aerobic and photosynthetic cultures of the gram-nagtive bacterium Rhodobacter sphaeroides 2.4.1. In addition, we analyzed the proteins within purified chromatophore fractions that house the photosynthetic apparatus from photosynthetically grown cells. In total, 8300 peptides were identified with high confidence from at least one subcellular fraction from either cell culture. These peptides were derived from 1514 genes or 35% percent of proteins predicted to be encoded by the genome. A significant number of these proteins were detected within a single subcellular fraction and their localization was compared to in silico predictions. However, the majority of proteins were observed in multiple subcellular fractions, and the most likely subcellular localization for these proteins was investigated using a Z-score analysis of estimated protein abundance along with clustering techniques. Good (81%) agreement was observed between the experimental results and in silico predictions. The AMT tag approach provides localization evidence for those proteins that have no predicted localization information, those annotated as putative proteins, and/or for those proteins annotated as hypothetical and conserved hypothetical. PMID:16889416

  17. Enhanced Bioactive Exopolysaccharide Production by Mossy Maze Polypore, Cerrena unicolor (Higher Basidiomycetes) in Submerged Culture Conditions.

    PubMed

    Altinay, Burcu; Karaduman, Ayse Betul; Gursu, Bukay Yenice; Yamac, Mustafa

    2015-01-01

    In this study, the culture requirements of the Cerrena unicolor OBCC 5005 strain were determined to optimize bioactive exopolysaccharide production in submerged culture. The effects of initial medium pH, carbon and nitrogen sources, inoculum age and amount, and mineral source on exopolysaccharide and mycelial biomass production by the C. unicolor OBCC 5005 strain were studied using a one-factor-at-a-time method. The highest exopolysaccharide production was obtained when culture parameters were used as initial medium pH: 5.5, 5% sucrose, 5% mycological peptone, and 5% of 4-day inoculants in the presence of 5 mM Fe2+. Optimized culture conditions at a flask scale were applied to a 3-L stirred tank reactor. As a result, 7.92 g/L and 7.34 g/L maximum exopolysaccharide production in optimized conditions at flask and stirred-tank reactor scales were achieved, respectively. The present study is the first to prove that C. unicolor can yield high bioactive exopolysaccharide production at flask and stirred-tank reactor scales.

  18. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    SciTech Connect

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  19. The effect of neurosphere culture conditions on the cellular metabolism of glioma cells.

    PubMed

    Kahlert, Ulf Dietrich; Koch, Katharina; Suwala, Abigail Kora; Hartmann, Rudolf; Cheng, Menglin; Maciaczyk, Donata; Willbold, Dieter; Eberhart, Charles G; Glunde, Kristine; Maciaczyk, Jarek

    2015-01-01

    Malignant gliomas, with an average survival time of 16-19 months after initial diagnosis, account for one of the most lethal tumours overall. Current standards in patient care provide only unsatisfying strategies in diagnostic and treatment for high-grade gliomas. Here we describe metabolic phenomena in the choline and glycine network associated with stem cell culture conditions in the classical glioma cell line U87. Using high-resolution proton magnetic resonance spectroscopy of cell culture metabolic extracts we compare the metabolic composition of U87 chronically propagated as adherent culture in medium supplemented with serum to serum-free neurosphere growth. We found that the switch to neurosphere growth, besides the increase of cells expressing the putative glioma stem cell marker CD133, modulated a number of intracellular metabolites including choline, creatine, glycine, and myo-inositol that have been previously reported as potential diagnostic markers in various tumours. These findings highlight the critical influence of culture conditions on glioma cell metabolism, and therefore particular caution should be drawn to the use of in vitro system research in order to investigate cancer metabolism.

  20. Shewanella oneidensis MR-1 sensory box protein involved in aerobic and anoxic growth.

    PubMed

    Sundararajan, A; Kurowski, J; Yan, T; Klingeman, D M; Joachimiak, M P; Zhou, J; Naranjo, B; Gralnick, J A; Fields, M W

    2011-07-01

    Although little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) in Shewanella oneidensis MR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame deletion mutant was constructed (ΔSO3389) with approximately 95% of the ORF deleted. Under aerated conditions, wild-type and mutant cultures had similar growth rates, but the mutant culture had a lower growth rate under static, aerobic conditions. Oxygen consumption rates were lower for mutant cultures (1.5-fold), and wild-type cultures also maintained lower dissolved oxygen concentrations under aerated growth conditions. When transferred to anoxic conditions, the mutant did not grow with fumarate, iron(III), or dimethyl sulfoxide (DMSO) as electron acceptors. Biochemical assays demonstrated the expression of different c-type cytochromes as well as decreased fumarate reductase activity in the mutant transferred to anoxic growth conditions. Transcriptomic studies showed the inability of the mutant to up-express and down-express genes, including c-type cytochromes (e.g., SO4047/SO4048, SO3285/SO3286), reductases (e.g., SO0768, SO1427), and potential regulators (e.g., SO1329). The complemented strain was able to grow when transferred from aerobic to anoxic growth conditions with the tested electron acceptors. The modeled structure for the SO3389 PAS domains was highly similar to the crystal structures of FAD-binding PAS domains that are known O2/redox sensors. Based on physiological, genomic, and bioinformatic results, we suggest that the sensory box protein, SO3389, is an O2/redox sensor that is involved in optimization of aerobic growth and transitions to anoxia in S

  1. Accumulation of secreted antibodies in plant cell cultures varies according to the isotype, host species and culture conditions.

    PubMed

    Magy, Bertrand; Tollet, Jérémie; Laterre, Raphaëlle; Boutry, Marc; Navarre, Catherine

    2014-05-01

    Nicotiana tabacum suspension cells have been widely used to produce monoclonal antibodies, but the yield of secreted antibodies is usually low probably because of proteolytic degradation. Most IgGs that have been expressed in suspension cells have been of the human IgG1 isotype. In this study, we examined whether other isotypes displayed the same sensitivity to proteolytic degradation and whether the choice of plant host species mattered. Human serum IgG displayed different degradation profiles when incubated in spent culture medium from N. tabacum, Nicotiana benthamiana or Arabidopsis thaliana suspension cells. Zymography showed that the protease profile was host species dependent. Three human isotypes, IgG1, IgG2 and IgG4, and a mouse IgG2a were provided with the same heavy- and light-chain variable regions from an anti-human IgM antibody and expressed in N. tabacum cv. BY-2 and A. thaliana cv. Col-0 cells. Although all tested isotypes were detected in the extracellular medium using SDS-PAGE and a functional ELISA, up to 10-fold differences in the level of intact antibody were found according to the isotype expressed, to the host species and to the culture conditions. In the best combination (BY-2 cells secreting human IgG1), we reported accumulation of more than 30 mg/L of intact antibody in culture medium. The possibility of using IgG constant regions as a scaffold to allow stable accumulation of antibodies with different variable regions was demonstrated for human IgG2 and mouse IgG2a. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions.

    PubMed

    Badsha, Md Bahadur; Kurata, Hiroyuki; Onitsuka, Masayoshi; Oga, Takushi; Omasa, Takeshi

    2016-07-01

    Chinese hamster ovary (CHO) cells are commonly used as the host cell lines concerning their ability to produce therapeutic proteins with complex post-translational modifications. In this study, we have investigated the time course extra- and intracellular metabolome data of the CHO-K1 cell line, under a control and stress conditions. The addition of NaCl and trehalose greatly suppressed cell growth, where the maximum viable cell density of NaCl and trehalose cultures were 2.2-fold and 2.8-fold less than that of a control culture. Contrariwise, the antibody production of both the NaCl and trehalose cultures was sustained for a longer time to surpass that of the control culture. The NaCl and trehalose cultures showed relatively similar dynamics of cell growth, antibody production, and substrate/product concentrations, while they indicated different dynamics from the control culture. The principal component analysis of extra- and intracellular metabolome dynamics indicated that their dynamic behaviors were consistent with biological functions. The qualitative pattern matching classification and hierarchical clustering analyses for the intracellular metabolome identified the metabolite clusters whose dynamic behaviors depend on NaCl and trehalose. The volcano plot revealed several reporter metabolites whose dynamics greatly change between in the NaCl and trehalose cultures. The elastic net identified some critical, intracellular metabolites that are distinct between the NaCl and trehalose. While a relatively small number of intracellular metabolites related to the cell growth, glucose, glutamine, lactate and ammonium ion concentrations, the mechanism of antibody production was suggested to be very complicated or not to be explained by elastic net regression analysis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Germ-cell culture conditions facilitate the production of mouse embryonic stem cells.

    PubMed

    Ramos-Ibeas, Priscila; Pericuesta, Eva; Fernández-González, Raúl; Gutiérrez-Adán, Alfonso; Ramírez, Miguel Ángel

    2014-09-01

    The derivation of embryonic stem-cell (ESC) lines from blastocysts is a very inefficient process. Murine ESCs are thought to arise from epiblast cells that are already predisposed to a primordial-germ-cell fate. During the process of ESC derivation from B6D2 F1 hybrid mice, if we first culture the embryo from the two-cell stage in medium supplemented with LIF, we improve the quality of the blastocyst. When the blastocyst is then cultured in a germ-line stem-cell culture medium (GSCm), we are able to more efficiently (28.3%) obtain quality ESC lines that have a normal karyotype, proper degree of chimerism, and exhibit germ-line transmission when microinjected into blastocysts. Although germ-cell-specific genes were expressed in all culture medium conditions, GSCm did not shift the transcriptome towards germ-cell specification. A correlation was further observed between ESC derivation efficiency and the expression of some imprinted genes and retrotransposable elements. In conclusion, the combination of LIF supplementation followed by culture in GSCm establishes a higher efficiency method for ESC derivation. © 2014 Wiley Periodicals, Inc.

  4. Optimizing culture conditions for free-living stages of the nematode parasite Strongyloides ratti.

    PubMed

    Dulovic, Alex; Puller, Vadim; Streit, Adrian

    2016-09-01

    The rat parasitic nematode Strongyloides ratti (S. ratti) has recently emerged as a model system for various aspects of parasite biology and evolution. In addition to parasitic parthenogenetic females, this species can also form facultative free-living generations of sexually reproducing adults. These free-living worms are bacteriovorous and grow very well when cultured in the feces of their host. However, in fecal cultures the worms are rather difficult to find for observation and experimental manipulation. Therefore, it has also been attempted to raise S. ratti on Nematode Growth Media (NGM) plates with Escherichia coli OP50 as food, exactly as described for the model nematode Caenorhabditis elegans. Whilst worms did grow on these plates, their longevity and reproductive output compared to fecal cultures were dramatically reduced. In order to improve the culture success we tested other plates occasionally used for C. elegans and, starting from the best performing one, systematically varied the plate composition, the temperature and the food in order to further optimize the conditions. Here we present a plate culturing protocol for free-living stages of S. ratti with strongly improved reproductive success and longevity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Culture-filtrate producing condition and biological activity of Fusarium solani].

    PubMed

    Ding, Wenjiao; Li, Jinhua; Chai, Zhaoxiang

    2009-10-01

    To study the culture-filtrate producing condition of Fusarium Solani isolated from Astragalus root and explore the mechanism Astragalus root rot disease caused by, in order to find theoretical support for screening resistant germ plasma via mycotoxin. The method of germinating seeds in petri dish with filter paper and inhibition method for embryo growth were used to study the biological activity and the specialty of cultural filtrate of 10 F. solani isolates. The toxin produced by F. solani had strong inhibition effect in the different nutrient media, at different temperatures and under different light conditions. With extension of culturing time, embryo inhibition rate went up gradually with the strongest inhibition at the 12th day and the inhibition ratio between 92.0% -52.0%. The toxin produced at 5 degrees C to 35 degrees C inhibited embryo germination of Astragalus differently with the strongest at 25 degrees C, and next to it at 20,30 degrees C. The impact of light on bioactive substances of the toxin was not statistically distinctive, but the 24-hour darkness was benefit to toxin production. PSC had a stronger inhibition rate than the other nutrient media, next to it was PDB. After autoclaving, the toxin still kept toxic to embryo of Astragalus, which indicated that the toxin was tolerant to high temperatures. The toxin produced by F. solani at different growing condition had strong biological activity, was tolerant to high temperature. The best condition for F. solani to produce toxin was that it was cultured in PSC liquid medium, in dark, at 25 degrees C for 12 d. The toxin produced by isolate HQM40 was non-host specific toxin.

  6. Influence of culture conditions on growth and protective antigenicity of Clostridium chauvoei.

    PubMed

    Cortiñas, T I; Micalizzi, B; de Guzman, A M

    1994-10-01

    The effect of culture conditions on growth and immunogenicity of Clostridium chauvoei were examined. The pH control and partial feeding of the carbon source at high concentrations were beneficial for growth. The biomass yield was significatively improved, however the butanol concentration reached toxic levels hampering further growth. For each experimental condition the immunogenicity of cells was tested. No differences were found with cells obtained at different temperatures, but it decreased significatively with the partial supply of the carbon source and pH control.

  7. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantitative assessment of the toxic effects of heavy metals on 1,2-dichloroethane biodegradation in co-contaminated soil under aerobic condition.

    PubMed

    Olaniran, Ademola Olufolahan; Balgobind, Adhika; Pillay, Balakrishna

    2011-10-01

    1,2-Dichloroethane (1,2-DCA) is one of the most hazardous pollutant of soil and groundwater, and is produced in excess of 5.44×10⁹ kg annually. Owing to their toxicity, persistence and potential for bioaccumulation, there is a growing interest in technologies for their removal. Heavy metals are known to be toxic to soil microorganisms at high concentrations and can hinder the biodegradation of organic contaminants. In this study, the inhibitory effect of heavy metals, namely; arsenic, cadmium, mercury and lead, on the aerobic biodegradation of 1,2-DCA by autochthonous microorganisms was evaluated in soil microcosm setting. The presence of heavy metals was observed to have a negative impact on the biodegradation of 1,2-DCA in both soil samples tested, with the toxic effect being more pronounced in loam soil, than in clay soil. Generally, 75 ppm As³⁺, 840 ppm Hg²⁺, and 420 ppm Pb²⁺ resulted in 34.24%, 40.64%, and 45.94% increase in the half live (t½) of 1,2-DCA, respectively, in loam soil, while concentrations above 127.5 ppm Cd²⁺, 840 ppm Hg²⁺ and 420 ppm of Pb²⁺ and less than 75 ppm As³⁺ was required to cause a >10% increase in the t½ of 1,2-DCA in clay soil. A dose-dependent relationship between degradation rate constant (k₁) of 1,2-DCA and metal ion concentrations was observed for all the heavy metals tested, except for Hg²⁺. This study demonstrated that different heavy metals have different impacts on the degree of 1,2-DCA degradation. Results also suggest that the degree of inhibition is metal specific and is also dependent on several factors including; soil type, pH, moisture content and available nutrients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions.

    PubMed

    Tekere, M; Zvauya, R; Read, J S

    2001-01-01

    Lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase activities in selected sub-tropical white rot fungal species from Zimbabwe were determined. The enzyme activities were assayed at varying concentrations of C, N and Mn2+. Manganese peroxidase and laccase activities were the only expressed activities in the fungi under the culture conditions tested. Trametes species, T. cingulata, T. elegans and T. pocas produced the highest manganese peroxidase activities in a medium containing high carbon and low nitrogen conditions. High nitrogen conditions favoured high manganese peroxidase activity in DSPM95, L. velutinus and Irpex spp. High manganese peroxidase activity was notable for T. versicolor when both carbon and nitrogen in the medium were present at high levels. Laccase production by the isolates was highest under conditions of high nitrogen and those conditions with both nitrogen and carbon at high concentration. Mn2+ concentrations between 11-25 ppm gave the highest manganese peroxidase activity compared to a concentration of 40 ppm or when there was no Mn2+ added. Laccase activity was less influenced by Mn2+ levels. While some laccase activity was produced in the absence of Mn2+, the enzyme levels were higher when Mn2+ was added to the culture medium.

  10. Selective advantage of trisomic human cells cultured in non-standard conditions

    PubMed Central

    Rutledge, Samuel D.; Douglas, Temple A.; Nicholson, Joshua M.; Vila-Casadesús, Maria; Kantzler, Courtney L.; Wangsa, Darawalee; Barroso-Vilares, Monika; Kale, Shiv D.; Logarinho, Elsa; Cimini, Daniela

    2016-01-01

    An abnormal chromosome number, a condition known as aneuploidy, is a ubiquitous feature of cancer cells. A number of studies have shown that aneuploidy impairs cellular fitness. However, there is also evidence that aneuploidy can arise in response to specific challenges and can confer a selective advantage under certain environmental stresses. Cancer cells are likely exposed to a number of challenging conditions arising within the tumor microenvironment. To investigate whether aneuploidy may confer a selective advantage to cancer cells, we employed a controlled experimental system. We used the diploid, colorectal cancer cell line DLD1 and two DLD1-derived cell lines carrying single-chromosome aneuploidies to assess a number of cancer cell properties. Such properties, which included rates of proliferation and apoptosis, anchorage-independent growth, and invasiveness, were assessed both under standard culture conditions and under conditions of stress (i.e., serum starvation, drug treatment, hypoxia). Similar experiments were performed in diploid vs. aneuploid non-transformed human primary cells. Overall, our data show that aneuploidy can confer selective advantage to human cells cultured under non-standard conditions. These findings indicate that aneuploidy can increase the adaptability of cells, even those, such as cancer cells, that are already characterized by increased proliferative capacity and aggressive tumorigenic phenotypes. PMID:26956415

  11. Dual effects of carnosine on energy metabolism of cultured cortical astrocytes under normal and ischemic conditions.

    PubMed

    Shen, Yao; Tian, Yueyang; Yang, Jianbo; Shi, Xiaojie; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-01-01

    The aim of this study was to investigate the effects of carnosine on the bioenergetic profile of cultured cortical astrocytes under normal and ischemic conditions. The Seahorse Bioscience XF96 Extracellular Flux Analyzer was used to measure the oxygen consumption rates (OCRs) and extracellular acidification rates (ECARs) of cultured cortical astrocytes treated with and without carnosine under normal and ischemic conditions. Under the normal growth condition, the basal OCRs and ECARs of astrocytes were 21.72±1.59 pmol/min/μg protein and 3.95±0.28 mpH/min/μg protein respectively. Mitochondrial respiration accounted for ~80% of the total cellular respiration and 85% of this coupled to ATP synthesis. Carnosine significantly reduced basal OCRs and ECARs and ATP-linked respiration, but it strikingly increased the spare respiratory capacity of astrocytes. The cellular ATP level in carnosine-treated astrocytes was reduced to ~42% of the control. However, under the ischemic condition, carnosine upregulated the mitochondrial respiratory and cellular ATP content of astrocytes exposed to 8h of oxygen-glucose deprivation (OGD) followed by 24 h of recovery under the normal growth condition. Carnosine may be an endogenous regulator of astrocyte energy metabolism and a clinically safe therapeutic agent for promoting brain energy metabolism recovery after ischemia/reperfusion injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Aerobic rice genotypes displayed greater adaptation to water-limited cultivation and tolerance to polyethyleneglycol-6000 induced stress.

    PubMed

    Sandhu, Nitika; Jain, Sunita; Battan, K R; Jain, R K

    2012-01-01

    Water scarcity and drought have seriously threatened traditional rice cultivation practices in several parts of the world including India. In the present investigation, experiments were conducted to see if the water-efficient aerobic rice genotypes developed at UAS, Bangalore (MAS25, MAS26 and MAS109) and IRRI, Philippines (MASARB25 and MASARB868), are endowed with drought tolerance or not. A set of these aerobic and five lowland high-yielding (HKR47 and PAU201, Taraori Basmati, Pusa1121 and Pusa1460) indica rice genotypes were evaluated for: (i) yield and yield components under submerged and aerobic conditions in field, (ii) root morphology and biomass under aerobic conditions in pots in the nethouse, (iii) PEG-6000 (0, -1, -2 and -3 bar) induced drought stress at vegetative stage using a hydroponic culture system and (iv) polymorphism for three SSR markers associated with drought resistance traits. Under submerged conditions, the yield of aerobic rice genotypes declined by 13.4-20.1 % whereas under aerobic conditions the yield of lowland indica/Basmati rice varieties declined by 23-27 %. Under water-limited conditions in pots, aerobic rice genotypes had 54-73.8 % greater root length and 18-60 % higher fresh root biomass compared to lowland indica rice varieties. Notably, root length of MASARB25 was 35 % shorter than MAS25 whereas fresh and dry root biomass of MASARB25 was 10 % and 64 % greater than MAS25. The lowland indica were more sensitive to PEG-stress with a score of 5.9-7.6 for Basmati and 6.1-6.7 for non-aromatic indica rice varieties, than the aerobic rice genotypes (score 2.7-3.3). A set of three microsatellite DNA markers (RM212, RM302 and RM3825) located on chromosome 1 which has been shown to be associated with drought resistance was investigated in the present study. Two of these markers (RM212 and RM302) amplified a specific allele in all the aerobic rice genotypes which were absent in lowland indica rice genotypes.

  13. Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production.

    PubMed

    Hutchens, S A; León, R V; O'neill, H M; Evans, B R

    2007-02-01

    The purpose of this study was to analyse the effects of different culture parameters on Gluconacetobacter hansenii (ATCC 10821) to determine which conditions provided optimum cellulose growth. Five culture factors were investigated: carbon source, addition of ethanol, inoculation ratio, pH and temperature. jmp Software (SAS, Cary, NC, USA) was used to design this experiment using a fractional factorial design. After 22 days of static culture, the cellulose produced by the bacteria was harvested, purified and dried to compare the cellulose yields. The results were analysed by fitting the data to a first-order model with two-factor interactions. The study confirmed that carbon source, addition of ethanol, and temperature were significant factors in the production of cellulose of this G. hansenii strain. While pH alone does not significantly affect average cellulose production, cellulose yields are affected by pH interaction with the carbon source. Culturing the bacteria on glucose at pH 6.5 produces more cellulose than at pH 5.5, while using mannitol at pH 5.5 produces more cellulose than at pH 6.5. The bacteria produced the most cellulose when cultured on mannitol, at pH 5.5, without ethanol, at 20 degrees C. Inoculation ratio was not found to be a significant factor or involved in any significant two-factor interaction. These findings give insight into the conditions necessary to maximize cellulose production from this G. hansenii strain. In addition, this work demonstrates how the fractional factorial design can be used to test a large number of factors using an abbreviated set of experiments. Fitting a statistical model determined the significant factors as well as the significant two-factor interactions.

  14. In Vivo-Like Culture Conditions in a Bioreactor Facilitate Improved Tissue Quality in Corneal Storage.

    PubMed

    Schmid, Richard; Tarau, Ioana-Sandra; Rossi, Angela; Leonhardt, Stefan; Schwarz, Thomas; Schuerlein, Sebastian; Lotz, Christian; Hansmann, Jan

    2017-09-05

    The cornea is the most-transplanted tissue worldwide. However, the availability and quality of grafts are limited due to the current methods of corneal storage. In this study, a dynamic bioreactor system is employed to enable the control of intraocular pressure and the culture at the air-liquid interface. Thereby, in vivo-like storage conditions are achieved. Different media combinations for endothelium and epithelium are tested in standard and dynamic conditions to enhance the viability of the tissue. In contrast to culture conditions used in eye banks, the combination of the bioreactor and biochrom medium 1 allows to preserve the corneal endothelium and the epithelium. Assessment of transparency, swelling, and the trans-epithelial-electrical-resistance (TEER) strengthens the impact of the in vivo-like tissue culture. For example, compared to corneas stored under static conditions, significantly lower optical densities and significantly higher TEER values were measured (p-value <0.05). Furthermore, healing of epithelial defects is enabled in the bioreactor, characterized by re-epithelialization and initiated stromal regeneration. Based on the obtained results, an easy-to-use 3D-printed bioreactor composed of only two parts was derived to translate the technology from the laboratory to the eye banks. This optimized bioreactor facilitates noninvasive microscopic monitoring. The improved storage conditions ameliorate the quality of corneal grafts and the storage time in the eye banks to increase availability and reduce re-grafting. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov.

    PubMed

    Zhang, Hui; Sekiguchi, Yuji; Hanada, Satoshi; Hugenholtz, Philip; Kim, Hongik; Kamagata, Yoichi; Nakamura, Kazunori

    2003-07-01

    A phylogenetically novel aerobic bacterium was isolated from an anaerobic-aerobic sequential batch reactor operated under enhanced biological phosphorus removal conditions for wastewater treatment. The isolation strategy used targeted slowly growing polyphosphate-accumulating bacteria by combining low-speed centrifugations and prolonged incubation on a low-nutrient medium. The isolate, designated strain T-27T, was a gram-negative, rod-shaped aerobe. Cells often appeared to divide by budding replication. Strain T-27T grew at 25-35 degrees C with an optimum growth temperature of 30 degrees C, whilst no growth was observed below 20 degrees C or above 37 degrees C within 20 days incubation. The pH range for growth was 6.5-9.5, with an optimum at pH 7.0. Strain T-27T was able to utilize a limited range of substrates, such as yeast extract, polypepton, succinate, acetate, gelatin and benzoate. Neisser staining was positive and 4,6-diamidino-2-phenylindole-stained cells displayed a yellow fluorescence, indicative of polyphosphate inclusions. Menaquinone 9 was the major respiratory quinone. The cellular fatty acids of the strain were mainly composed of iso-C15:0, C16:1 and C14:0. The G + C content of the genomic DNA was 66 mol%. Comparative analyses of 16S rRNA gene sequences indicated that strain T-27T belongs to candidate division BD (also called KS-B), a phylum-level lineage in the bacterial domain, to date comprised exclusively of environmental 16S rDNA clone sequences. Here, a new genus and species are proposed, Gemmatimonas aurantiaca (type strain T-27T=JCM 11422T=DSM 14586T) gen. nov., sp. nov., the first cultivated representative of the Gemmatimonadetes phyl. nov. Environmental sequence data indicate that this phylum is widespread in nature and has a phylogenetic breadth (19% 16S rDNA sequence divergence) that is greater than well-known phyla such as the Actinobacteria (18% divergence).

  16. Comparative study on the stem cell phenotypes of C6 cells under different culture conditions.

    PubMed

    Zhang, Suo-Jun; Ye, Fei; Xie, Rui-Fan; Hu, Feng; Wang, Bao-Feng; Wan, Feng; Guo, Dong-Sheng; Lei, Ting

    2011-10-01

    Glioma stem cell (GSC) hypothesis posits that a subpopulation of cells within gliomas have true clonogenic and tumorigenic potential. Significantly, a more controversial correlate to GSC is that cells in different culture conditions might display distinct stem cell properties. Considering these possibilities, we applied an approach comparing stem cell characteristics of C6 glioma cells under different culture conditions. C6 cells were cultured under three different growth conditions, i.e., adherent growth in conventional 10% serum medium, non-adherent spheres growth in serum-free medium, as well as adherent growth on laminin-coated flask in serum-free medium. Growth characteristics were detected contrastively through neurosphere formation assay and cell cycle analysis. Markers were determined by immunofluorescence, relative-quantitative reverse transcription (RT)-PCR, Western blotting and flow cytometry. Side population cells were analyzed via flow cytometry. Tumor models were detected by magnetic resonance imaging and hematoxylin & eosin staining. Data analyses were performed with SPSS software (17.0). C6 cells (C6-Adh, C6-SC-Sph and C6-SC-Adh) showed distinctive growth patterns and proliferation capacity. Compared to suspending C6-SC-Sph, adherent C6-Adh and C6-SC-Adh displayed higher growth ratio. C6-SC-Sph and C6-SC-Adh showed enhanced capability of neurosphere formation and self-renewal. High side population ratio was detected in C6-SC-Sph and C6-SC-Adh. CD133 was not detected in all three kinds of cells. Conversely, Nestin and β-III-tubulin were demonstrated positive, nonetheless with no statistical significance (P > 0.05). Interestingly, lower expression of glial fibrillary acidic protein was demonstrated in C6-SC-Sph and C6-SC-Adh. C6-Adh, C6-SC-Sph and C6-SC-Adh were all displayed in situ oncogenicity, while statistical difference of survival time was not confirmed. C6 glioma cell line is endowed with some GSC phenotypes that can be moderately enriched in

  17. Anaerobic Naphthalene Degradation by Microbial Pure Cultures under Nitrate-Reducing Conditions

    PubMed Central

    Rockne, Karl J.; Chee-Sanford, Joanne C.; Sanford, Robert A.; Hedlund, Brian P.; Staley, James T.; Strand, Stuart E.

    2000-01-01

    Pure bacterial cultures were isolated from a highly enriched denitrifying consortium previously shown to anaerobically biodegrade naphthalene. The isolates were screened for the ability to grow anaerobically in liquid culture with naphthalene as the sole source of carbon and energy in the presence of nitrate. Three naphthalene-degrading pure cultures were obtained, designated NAP-3-1, NAP-3-2, and NAP-4. Isolate NAP-3-1 tested positive for denitrification using a standard denitrification assay. Neither isolate NAP-3-2 nor isolate NAP-4 produced gas in the assay, but both consumed nitrate and NAP-4 produced significant amounts of nitrite. Isolates NAP-4 and NAP-3-1 transformed 70 to 90% of added naphthalene, and the transformation was nitrate dependent. No significant removal of naphthalene occurred under nitrate-limited conditions or in cell-free controls. Both cultures exhibited partial mineralization of naphthalene, representing 7 to 20% of the initial added 14C-labeled naphthalene. After 57 days of incubation, the largest fraction of the radiolabel in both cultures was recovered in the cell mass (30 to 50%), with minor amounts recovered as unknown soluble metabolites. Nitrate consumption, along with the results from the 14C radiolabel study, are consistent with the oxidation of naphthalene coupled to denitrification for NAP-3-1 and nitrate reduction to nitrite for NAP-4. Phylogenetic analyses based on 16S ribosomal DNA sequences of NAP-3-1 showed that it was closely related to Pseudomonas stutzeri and that NAP-4 was closely related to Vibrio pelagius. This is the first report we know of that demonstrates nitrate-dependent anaerobic degradation and mineralization of naphthalene by pure cultures. PMID:10742247

  18. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite.

  19. Development of a selective culture medium for bifidobacteria, Raffinose-Propionate Lithium Mupirocin (RP-MUP) and assessment of its usage with Petrifilm™ Aerobic Count plates.

    PubMed

    Miranda, Rodrigo Otávio; de Carvalho, Antonio Fernandes; Nero, Luís Augusto

    2014-05-01

    This study aimed to develop a selective culture media to enumerate bifidobacteria in fermented milk and to assess this medium when used with Petrifilm™ AC plates. For this purpose, Bifidobacterium spp., Lactobacillus spp. and Streptococcus thermophilus strains were tested to verify their fermentation patterns for different carbohydrates. All bifidobacteria strains were able to use raffinose. Based on these characteristic, a selective culture medium was proposed (Raffinose-Propionate Lithium Mupirocin, RP-MUP), used with Petrifilm™ AC plates, and was used to enumerate bifidobacteria in fermented milk. RP-MUP performance was assessed by comparing the results with this medium to reference protocols and culture media for bifidobacteria enumeration. RP-MUP, whether used or not with Petrifilm™ AC, presented similar performance to TOS-MUP (ISO 29981), with no significant differences between the mean bifidobacteria counts (p < 0.05) and with high correlation indices (r = 0.99, p < 0.05). As an advantage, reliable results were obtained after just 48 h of incubation when RP-MUP was used with Petrifilm™ AC, instead of the 72 h described in the ISO 29981 protocol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Optimum detection times for bacteria and yeast species with the BACTEC 9120 aerobic blood culture system: evaluation for a 5-year period in a Turkish university hospital.

    PubMed

    Durmaz, Gül; Us, Tercan; Aydinli, Aydin; Kiremitci, Abdurrahman; Kiraz, Nuri; Akgün, Yurdanur

    2003-02-01

    We tracked and documented the time of positivity of blood cultures by using the BACTEC 9120 (Becton Dickinson Diagnostic Instrument Systems) blood culture system over a 5-year study period. A 7-day protocol of the incubation period was selected, and a total of 11156 blood cultures were evaluated. The clinically significant microorganisms (32.95%) were isolated in 3676 specimens. Gram-positive and -negative bacterial isolation rates were found to be 41.07 and 44.88%, respectively. Yeasts were found in 14.03% of all pathogens. Both the false-positivity and -negativity rates were very low (0.1 and 0.3%, respectively). The mean detection times for all of the pathogens were determined to be 19.45 h. Yeasts, nonfermentative gram-negative bacteria, and Brucella melitensis strains were isolated within 5 days. By taking these data into account, we decided to establish a 5-day-incubation protocol in our laboratory instead of the 7 days that are commonly used.

  1. Optimum Detection Times for Bacteria and Yeast Species with the BACTEC 9120 Aerobic Blood Culture System: Evaluation for a 5-Year Period in a Turkish University Hospital

    PubMed Central

    Durmaz, Gül; Us, Tercan; Aydinli, Aydin; Kiremitci, Abdurrahman; Kiraz, Nuri; Akgün, Yurdanur

    2003-01-01

    We tracked and documented the time of positivity of blood cultures by using the BACTEC 9120 (Becton Dickinson Diagnostic Instrument Systems) blood culture system over a 5-year study period. A 7-day protocol of the incubation period was selected, and a total of 11,156 blood cultures were evaluated. The clinically significant microorganisms (32.95%) were isolated in 3,676 specimens. Gram-positive and -negative bacterial isolation rates were found to be 41.07 and 44.88%, respectively. Yeasts were found in 14.03% of all pathogens. Both the false-positivity and -negativity rates were very low (0.1 and 0.3%, respectively). The mean detection times for all of the pathogens were determined to be 19.45 h. Yeasts, nonfermentative gram-negative bacteria, and Brucella melitensis strains were isolated within 5 days. By taking these data into account, we decided to establish a 5-day-incubation protocol in our laboratory instead of the 7 days that are commonly used. PMID:12574291

  2. Popular culture and the "new human condition": Catastrophe narratives and climate change

    NASA Astrophysics Data System (ADS)

    Bulfin, Ailise

    2017-09-01

    Striking popular culture images of burnt landscapes, tidal waves and ice-bound cities have the potential to dramatically and emotively convey the dangers of climate change. Given that a significant number of people derive a substantial proportion of their information on the threat of climate change, or the "new human condition", from popular culture works such as catastrophe movies, it is important that an investigation into the nature of the representations produced be embedded in the attempt to address the issue. What climate change-related messages may be encoded in popular films, television and novels, how are they being received, and what effects may they have? This article adopts the cultural studies perspective that popular culture gives us an important means by which to access the "structures of feeling" that characterise a society at a particular historic juncture: the views held and emotional states experienced by significant amounts of people as evident in disparate forms of cultural production. It further adopts the related viewpoint that popular culture has an effect upon the society in which it is consumed, as well as reflecting that society's desires and concerns - although the nature of the effect may be difficult to quantify. From this position, the article puts forward a theory on the role of ecological catastrophe narratives in current popular culture, before going on to review existing critical work on ecologically-charged popular films and novels which attempts to assess their effects on their audiences. It also suggests areas for future research, such as the prevalent but little studied theme of natural and environmental disaster in late-Victorian science fiction writing. This latter area is of interest because it reveals the emergence of an ecological awareness or structure of feeling as early as the late-nineteenth century, and allows the relationship of this development to environmental policy making to be investigated because of the

  3. Optimization of culturing conditions for toxicity testing with the alga Oophila sp. (Chlorophyceae), an amphibian endosymbiont.

    PubMed

    Rodríguez-Gil, José Luis; Brain, Richard; Baxter, Leilan; Ruffell, Sarah; McConkey, Brendan; Solomon, Keith; Hanson, Mark

    2014-11-01

    Eggs of the yellow-spotted salamander (Ambystoma maculatum) have a symbiotic relationship with green algae. It has been suggested that contaminants that are preferentially toxic to algae, such as herbicides, may impair the symbiont and, hence, indirectly affect the development of the salamander embryo. To enable testing under near-standard conditions for first-tier toxicity screening, the authors isolated the alga from field-collected eggs and identified conditions providing exponential growth rates in the apparent asexual phase of the alga. This approach provided a uniform, single-species culture, facilitating assessment of common toxicity end points and comparison of sensitivity relative to other species. Sequencing of the 18s ribosomal DNA indicated that the isolated alga is closely related to the recently described Oophila amblystomatis but is more similar to other known Chlamydomonas species, suggesting possible biogeographical variability in the genetic identity of the algal symbiont. After a tiered approach to culturing method refinement, a modified Bristol's media with 1 mM NH4 (+) as nitrogen source was found to provide suitable conditions for toxicity testing at 18 °C and 200 µmol m(-2) s(-1) photosynthetically active radiation (PAR) on a 24-h light cycle. The validity of the approach was demonstrated with Zn(2+) as a reference toxicant. Overall, the present study shows that screening for direct effects of contaminants on the algal symbiont without the presence of the host salamander is possible under certain laboratory conditions. © 2014 SETAC.

  4. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design.

    PubMed

    Chen, Xiu-Min; Elisia, Ingrid; Kitts, David D

    2010-01-01

    The co-culture of Caco-2 and HT29 cells for testing intestinal drug and nutrient transport and metabolism provides the presence of both absorptive and goblet cells, both of which have different culture requirements for optimal growth and function. The research on the co-culture of Caco-2 and HT29 cells is very limited in respect to refining specific conditions that reduce intra- and inter-laboratory variations. In the present study we reported conditions that enable reproducible results to be obtained for drug permeability using in vitro co-culture of Caco-2 and HT29-MTX based on Taguchi experimental design. The selection of four factors that specified cell culture conditions, namely culture medium, seeding time, seeding density, and Caco-2:HT29-MTX ratio on TEER value and individual permeability coefficients of propranolol, ketoprofen and furosemide was established. Based on the selected conditions for co-culture, we also confirmed the functionality of the final chosen culture condition using nitric oxide as an indicator of intestinal inflammation. Choice of cell culture time and culture medium represented two of the most important factors that affected TEER values and the permeability coefficients of the model drugs. On the other hand, the seeding density and the Caco-2:HT29-MTX ratio exerted no significant influence on TEER values and the drug permeability coefficients. No absolute optimal cell culture condition could be obtained for all drugs; however subsequent confirmation experiments concluded that excellent precision for TEER values and drug permeability coefficients was obtained from the two operators using the following combination of conditions, namely an initial seeding density of 1 x 10(5) Caco-2 and HT29-MTX cells/cm(2) at a ratio of 9:1, followed by a 21day culture time in MEM medium. Finally, functionality of the co-culture model system using the above selected in vitro conditions resulted in comparable nitric oxide synthesis to that of a Caco-2

  5. Culture conditions and salt effects on essential oil composition of sweet marjoram (Origanum majorana) from Tunisia.

    PubMed

    Baâtour, Olfa; Tarchoune, Imen; Mahmoudi, Hela; Nassri, Nawel; Abidi, Wissal; Kaddour, Rym; Hamdaoui, Ghaith; Nasri-Ayachi, Mouhiba Ben; Lachaâl, Mohtar; Marzouk, Brahim

    2012-06-01

    O. majorana shoots were investigated for their essential oil (EO) composition. Two experiments were carried out; the first on hydroponic medium in a culture chamber and the second on inert sand in a greenhouse for 20 days. Plants were cultivated for 17 days in hydroponic medium supplemented with NaCl 100 mmol L⁻¹. The results showed that the O. majorana hydroponic medium offered higher essential oil yield than that from the greenhouse. The latter increased significantly in yield (by 50 %) under saline constraint while it did not change in the culture chamber. Under greenhouse conditions and in the absence of salt treatment, the major constituents were terpinen-4-ol and trans-sabinene hydrate. However, in the culture chamber, the major volatile components were cis-sabinene hydrate and terpinen-4-ol. In the presence of NaCl, new compounds appeared, such as eicosane, spathulenol, eugenol, and phenol. In addition, in the greenhouse, with or without salt, a very important change of trans-sabinene hydrate concentration in EO occurred, whereas in the culture chamber change appeared in cis-sabinene hydrate content.

  6. Sciatic conditioned medium increases survival, proliferation and differentiation of retinal cells in culture.

    PubMed

    Torres, Patrícia Maria Mendonça; Guilarducci, Carla Valéria Vieira; Franco, Alfred Sholl; de Araujo, Elizabeth Giestal

    2002-02-01

    Many evidences clearly demonstrate that Schwann cells provide trophic support for neurons. Different cytokines, including neurotrophins (NTs), are produced and released by Schwann cells. These trophic molecules play an important role on neuronal survival either during the development or during adult life. Cytokines have also a pivotal role on neuronal regeneration after lesions occurring during pathological conditions. The aim of this work was to study the effect of sciatic conditioned medium (SCM) on rat retinal cells maintained in culture. Our results show that treatment with SCM obtained after 14 days in vitro (SCM 14 day) induced a three-fold increase in protein content of the culture after 48 h in vitro and this value remained equally high up to 72 h. This effect was totally blocked either by addition of 30 microM BAPTA-AM, an intracellular calcium chelator, 15 microM fluorodeoxyuridine, an inhibitor of cell division, or 10 microM genistein (geni) plus 1.25 microM chelerythrine chloride (CC), the two last ones inhibitors of tyrosine kinases and protein kinase C, respectively. SCM induced an increase in [(3)H]-choline uptake and [(3)H]-thymidine incorporation of retinal cells. SCM also stimulated an increase in cytoplasmic processes outgrowth of retinal cells and survival of retinal ganglion cells. Our results clearly suggest that soluble molecules released by sciatic nerve fragments are able to increase the proliferation and survival of retinal cells in culture.

  7. Lignolytic enzymes produced by Trametes villosa ccb176 under different culture conditions

    PubMed Central

    Yamanaka, Renata; Soares, Clarissa F.; Matheus, Dácio R.; Machado, Kátia M.G.

    2008-01-01

    The expression of the enzymatic system produced by basidiomycetous fungi, which is involved in the degradation of xenobiotics, mainly depends on culture conditions, especially of the culture medium composition. Trametes villosa is a strain with a proven biotechnological potential for the degradation of organochlorine compounds and for the decolorization of textile dyes. The influence of glucose concentration, addition of a vegetable oil-surfactant emulsion, nature of the surfactant and the presence of manganese and copper on the growth, pH and production of laccase, total peroxidase and manganese-dependent peroxidase activities were evaluated. In general, acidification of the medium was observed, with the pH reaching a value close to 3.5 within the first days of growth. Laccase was the main activity detected under the different conditions and was produced throughout the culture period of the fungus, irrespective of the growth phase. Supplementation of the medium with vegetable oil emulsified with a surfactant induced manganese-dependent peroxidase activity in T. villosa. Higher specific yields of laccase activity were obtained with the addition of copper. PMID:24031184

  8. Establishment of culture conditions for survival of Histomonas meleagridis in transit.

    PubMed

    Gerhold, R W; Lollis, L A; Beckstead, R B; McDougald, L R

    2010-06-01

    Fresh ceca samples from turkeys in North Carolina infected with Histomonas meleagridis were collected at necropsy, inoculated into warmed Dwyers medium, and sent by overnight courier to our laboratory at The University of Georgia. Further incubation at 40 C yielded positive cultures from all four samples. PCR and DNA sequencing confirmed the presence of H. meleagridis. To further establish conditions for survival in transit, we infected turkeys with H. meleagridis, euthanatized the birds 10 days postinfection, and allowed carcasses to incubate at room temperature for either 2 or 24 hr. After incubation, samples of cecal contents (0.5 g) were placed in Dwyers medium and held at 4, 25, or 30 C for 6, 18, 24, 48, 72, 96, or 120 hr, simulating holding conditions during transit. Samples were placed in a 40 C incubator at the specified times and examined daily for histomonad growth by light microscopy. Positive histomonad growth was detected from cecal samples obtained from the 2-hr incubated carcass and from cultures held at 30 C for 6, 18, 24, 48, and 72 hr. No growth was seen from cultures held at 25 or 4 C or at any temperature from the carcass allowed to incubate for 24 hr at room temperature. These results suggest that positive isolation can be made from field samples, provided that material is collected at warm temperatures and transported rapidly to the laboratory.

  9. Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein.

    PubMed

    Zhang, Yin; Wei, Xiong; Lu, Zhou; Pan, Zhongli; Gou, Xinhua; Venkitasamy, Chandrasekar; Guo, Siya; Zhao, Liming

    2017-07-15

    Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h.

  10. Simulated Microgravity Combined with Polyglycolic Acid Scaffold Culture Conditions Improves the Function of Pancreatic Islets

    PubMed Central

    Song, Yimin; Wei, Zheng; Song, Chun; Xie, Shanshan; Feng, Jinfa; Fan, Jiehou; Zhang, Zengling; Shi, Yubo

    2013-01-01

    The in vitro culture of pancreatic islets reduces their immunogenicity and prolongs their availability for transplantation. Both simulated microgravity (sMG) and a polyglycolic acid scaffold (PGA) are believed to confer advantages to cell culture. Here, we evaluated the effects of sMG combined with a PGA on the viability, insulin-producing activity and morphological alterations of pancreatic islets. Under PGA-sMG conditions, the purity of the islets was ≥85%, and the islets had a higher survival rate and an increased ability to secrete insulin compared with islets cultured alone in the static, sMG, or PGA conditions. In addition, morphological analysis under scanning electron microscopy (SEM) revealed that the PGA-sMG treatment preserved the integral structure of the islets and facilitated islet adhesion to the scaffolds. These results suggest that PGA-sMG coculture has the potential to improve the viability and function of islets in vitro and provides a promising method for islet transplantation. PMID:24024182

  11. Drinking water biofilm assessment of total and culturable bacteria under different operating conditions.

    PubMed

    Simões, L C; Azevedo, N; Pacheco, A; Keevil, C W; Vieira, M J

    2006-01-01

    Monitoring of biofilms subjected to different operating conditions was performed using a flow cell system. The system was fed by chlorine-free tap water, with and without added nutrients (0.5 mg l(-1) carbon, 0.1 mg l(-1) nitrogen and 0.01 mg l(-1) phosphorus), and biofilms were grown on polyvinyl chloride (PVC) and stainless steel (SS) coupons, both in laminar and turbulent flow. The parameters analysed were culturable cells, using R2A, and total bacteria, which was assessed using the 4,6-diamino-2-phenylindole (DAPI) staining method. The impact of the different operating conditions in the studied parameters was established using Multivariate Analysis of Variance (MANOVA). From the most relevant to the least relevant factor, the total and culturable bacteria in biofilms increased due to the addition of nutrients to water (F = 20.005; p < 0.001); the use of turbulent (Re = 11000) instead of laminar (Re = 2000) hydrodynamic flows (F = 9.173; p < 0.001); and the use of PVC instead of SS as the support material (F = 2.848; p = 0.060). Interactions between these conditions, namely between surface and flow (F = 8.235; p < 0.001) and also flow and nutrients (F = 5.498; p < 0.05) have also proved to significantly influence biofilm formation. This work highlights the need for a deeper understanding of how the large spectrum of conditions interact and affect biofilm formation potential and accumulation with the final purpose of predicting the total and culturable bacteria attached to real drinking water distribution pipes based on the system characteristics.

  12. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.

    PubMed

    Esteve-Núñez, Abraham; Rothermich, Mary; Sharma, Manju; Lovley, Derek

    2005-05-01

    A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.

  13. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions.

    PubMed

    Lu, Huabing; Keller, Jürg; Yuan, Zhiguo

    2007-12-01

    The endogenous processes of Candidatus Accumulibacter phosphatis (referred to as Accumulibacter), a known polyphosphate-accumulating organism (PAO) responsible for enhanced biological phosphorus removal systems (EBPR), were characterized during 8-day starvation under anaerobic, anoxic, aerobic and intermittent aerobic-anaerobic conditions. A lab-scale EBPR culture with Accumulibacter representing over 85% of the entire bacterial population as quantified with fluorescence in-situ hybridization was used in the study. Cell decay rates were found to be negligible under anaerobic and anoxic conditions and may be ignored in activated sludge models. The decay rate under aerobic conditions was determined to be 0.03/d at 22 degrees C, considerably lower than the values commonly used in activated sludge modeling. Polyphosphate and glycogen were utilized simultaneously under anaerobic and anoxic conditions for maintenance energy production, with glycogen being the primary energy source until the glycogen content reached very low levels. Glycogen was used by Accumulibacter as the primary source of energy for maintenance under aerobic conditions in the absence of polyhydroxyalkanoates. However, Accumulibacter did not seem to use polyphosphate for energy production during aerobic starvation, clearly contrasting the anaerobic and particularly the anoxic case. Intermittent aerobic-anaerobic storage resulted in not only negligible cell decay rate, but also slower rates of glycogen and polyphosphate utilization, and may therefore be an effective strategy for long-term storage of EBPR sludge.

  14. Vocal Problems among Aerobic Instructors and Aerobic Participants.

    ERIC Educational Resources Information Center

    Heidel, Sandra E.; Torgerson, John K.

    1993-01-01

    Comparison of vocal problems of 50 female aerobic instructors and 50 female aerobic participants by means of questionnaires found that aerobic instructors generally experienced more hoarseness and episodes of voice loss during and after instructing and exhibited a significantly higher prevalence of nodules. (Author/DB)

  15. Mineralization and kinetics of Reactive Brilliant Red X-3B by a combined anaerobic-aerobic bioprocess inoculated with the coculture of fungus and bacterium.

    PubMed

    Shi, Shengnan; Ma, Fang; Sun, Tieheng; Li, Ang; Zhou, Jiti; Qu, Yuanyuan

    2014-01-01

    Mineralization of Reactive Brilliant Red X-3B by a combined anaerobic-aerobic process which was inoculated with the co-culture of Penicillium sp. QQ and Exiguobacterium sp. TL was studied. The optimal conditions of decolorization were investigated by response surface methodology as follows: 132.67 g/L of strain QQ wet spores, 1.09 g/L of strain TL wet cells, 2.25 g/L of glucose, 2.10 g/L of yeast extract, the initial dye concentration of 235.14 mg/L, pH 6.5, and 33 °C. The maximal decolorization rate was about 96 % within 12 h under the above conditions. According to the Haldane kinetic equation, the maximal specific decolorization rate was 89.629 mg/g˙h. It was suggested that in the anaerobic-aerobic combined process, decolorization occurred in the anaerobic unit and chemical oxygen demand (COD) was mainly removed in the aerobic one. Inoculation of fungus QQ in the anaerobic unit was important for mineralization of X-3B. Besides, the divided anaerobic-aerobic process showed better performance of COD removal than the integrated one. It was suggested that the combined anaerobic-aerobic process which was inoculated with co-culture was potentially useful for the field application.

  16. Culture Conditions stimulating high γ-Linolenic Acid accumulation by Spirulina platensis

    PubMed Central

    Ronda, Srinivasa Reddy; Lele, S.S.

    2008-01-01

    Gamma-linolenic acid (GLA) production by Spirulina platensis under different stress-inducing conditions was studied. Submerged culture studies showed that low temperature (25°C), strong light intensity (6 klux) and primrose oil supplement (0.8%w/v) induced 13.2 mg/g, 14.6 mg/g and 13.5 mg linolenic acid per gram dry cell weight respectively. A careful observation of fatty acid profile of the cyanobacteria shows that, oleic acid and linoleic acid, in experiments with varying growth temperature and oil supplements respectively, helped in accumulating excess γ-linolenic acid. In addition, cultures grown at increasing light regimes maintained the γ-linolenic acid to the total fatty acid ratio(GLA/TFA) constant, despite any change in γ-linolenic acid content of the cyanobacteria. PMID:24031291

  17. Optimization of Culturing Conditions for Improved Production of Bioactive Metabolites by Pseudonocardia sp. VUK-10

    PubMed Central

    Usha Kiranmayi, Mangamuri; Sudhakar, Poda; Sreenivasulu, Kamma

    2011-01-01

    The purpose of the present study was to investigate the influence of cultural and environmental parameters affecting the growth and bioactive metabolite production of the rare strain VUK-10 of actinomycete Pseudonocardia, which exhibits a broad spectrum of in vitro antimicrobial activity against bacteria and fungi. Production of bioactive metabolites by the strain was high the in modified yeast extract-malt extract-dextrose (ISP-2) broth, as compared to other tested media. Glucose (1%) and tryptone (0.25%) were found to be the most suitable carbon and nitrogen sources, respectively, for optimum production of growth and bioactive metabolites. Maximum production of bioactive metabolites was found in the culture medium with initial pH 7 incubated with the strain for four days at 30℃, under shaking conditions. This is the first report on the optimization of bioactive metabolites by Pseudonocardia sp. VUK-10. PMID:22783100

  18. Effect of culture conditions on tremorgen production by some Penicillium species.

    PubMed Central

    di Menna, M E; Lauren, D R; Wyatt, P A

    1986-01-01

    Four strains each of seven tremorgenic Penicillium species were grown under various conditions and tested for tremorgen production by intraperitoneal injection of mice and by chemical analysis. Half of the strains had previously been found to be tremorgenic on bioassay after growth on Czapek Dox yeast extract broth or potato-milk-sucrose broth for 3 weeks at 26 degrees C. In the tests reported here nearly all previously nontremorgenic strains were either tremorgenic to mice or produced tremorgens detectable by chemical analysis but did so after longer incubation periods than used in the original screening. Bioassay was not suitable for the estimation of absolute levels but was preferable to chemical analysis when the identity of the tremorgens was not known. Species and strains within species gave different responses to changes in culture medium, incubation temperature, light irradiation, and shaking. Overall, tremorgen production was maximal at 20 or 26 degrees C, increased with time, and was reduced in shaken culture. PMID:3707124

  19. Effect of culture conditions on tremorgen production by some Penicillium species.

    PubMed

    di Menna, M E; Lauren, D R; Wyatt, P A

    1986-04-01

    Four strains each of seven tremorgenic Penicillium species were grown under various conditions and tested for tremorgen production by intraperitoneal injection of mice and by chemical analysis. Half of the strains had previously been found to be tremorgenic on bioassay after growth on Czapek Dox yeast extract broth or potato-milk-sucrose broth for 3 weeks at 26 degrees C. In the tests reported here nearly all previously nontremorgenic strains were either tremorgenic to mice or produced tremorgens detectable by chemical analysis but did so after longer incubation periods than used in the original screening. Bioassay was not suitable for the estimation of absolute levels but was preferable to chemical analysis when the identity of the tremorgens was not known. Species and strains within species gave different responses to changes in culture medium, incubation temperature, light irradiation, and shaking. Overall, tremorgen production was maximal at 20 or 26 degrees C, increased with time, and was reduced in shaken culture.

  20. Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli.

    PubMed

    Ying, Hanxiao; He, Xun; Li, Yan; Chen, Kequan; Ouyang, Pingkai

    2014-04-01

    In this study, culture conditions, including dissolved oxygen