Science.gov

Sample records for aerobic denitrifying bacterium

  1. Evaluation of nitrate removal by continuous culturing of an aerobic denitrifying bacterium, Paracoccus pantotrophus.

    PubMed

    Hasegawa-Kurisu, K; Otani, Y; Hanaki, K

    2006-01-01

    Nitrate removal under aerobic conditions was investigated using pure cultures of Paracoccus pantotrophus, which is a well-known aerobic-denitrifying (AD) bacterium. When a high concentration of cultures with a high carbon/nitrogen (C/N) ratio was preserved at the beginning of batch experiments, subsequently added nitrate was completely removed. When continuous culturing was perpetuated, a high nitrate removal rate (66.5%) was observed on day 4 post-culture, although gradual decreases in AD ability with time were observed. The attenuation in AD ability was probably caused by carbon limitation, because when carbon concentration of inflow water was doubled, nitrate removal efficiency improved from 18.1% to 59.6%. Bacterial community analysis using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method showed that P. pantotrophus disappeared in the suspended medium on day 8 post-culture, whereas other bacterial communities dominated by Acidovorax sp. appeared. Interestingly, this replaced bacterial community also showed AD ability. As P. pantotrophus was detected as attached colonies around the membrane and bottom of the reactor, this bacterium can therefore be introduced in a fixed form for treatment of wastewater containing nitrate with a high C/N ratio. PMID:17163031

  2. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium

    USGS Publications Warehouse

    Visscher, P.T.; Taylor, B.F.

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.

  3. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium.

    PubMed Central

    Visscher, P T; Taylor, B F

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters. PMID:8285707

  4. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions.

  5. Differential Isotopic Fractionation during Cr(VI) Reduction by an Aquifer-Derived Bacterium under Aerobic versus Denitrifying Conditions

    SciTech Connect

    Han, R.; Qin, L.; Brown, S. T.; Christensen, J. N.; Beller, H. R.

    2012-01-27

    We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Finally, despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).

  6. Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa.

    PubMed

    Su, Jun-feng; Shao, Si-cheng; Huang, Ting-lin; Ma, Fang; Zhang, Kai; Wen, Gang; Zheng, Sheng-chen

    2016-01-01

    Recently, algicidal bacteria have attracted attention as possible agents for the inhibition of algal water blooms. In this study, an aerobic denitrifying bacterium, R11, with high algicidal activity against the toxic Microcystis aeruginosa was isolated from lake sediments. Based on its physiological characteristics and 16S rRNA gene sequence, it was identified as Raoultella, indicating that the bacterium R11 has a good denitrifying ability at 30 °C and can reduce the concentration of nitrate-N completely within 36 h. Additionally, different algicidal characteristics against Microcystis aeruginosa were tested. The results showed that the initial bacterial cell density and algal cell densities strongly influence the removal rates of chlorophyll a. Algicidal activity increased with an increase in the bacterial cell density. With densities of bacterial culture at over 2.4 × 10(5) cell/mL, algicidal activity of up to 80% was obtained in 4 days. We have demonstrated that, with the low initial algal cell density (OD680 less than 0.220), the algicidal activity reached was higher than 90% after 6 days. PMID:27232395

  7. Respiration and respiratory enzyme activity in aerobic and anaerobic cultures of the marine denitrifying bacterium, Pseudomonas perfectomarinus

    NASA Astrophysics Data System (ADS)

    Packard, T. T.; Garfield, P. C.; Martinez, R.

    1983-03-01

    Oxygen consumption, nitrate reduction, respiratory electron transport activity, and nitrate reductase activity were measured in aerobic and anaerobic cultures of the marine bacterium, Pseudomonas perfectomarinus. The respiratory electron transport activity was closely correlated with oxygen consumption ( r = 0.98) in aerobic cultures and nearly as well correlated with nitrate reductase activity ( r = 0.91) and nitrate reduction ( r = 0.85) in anaerobic cultures. It was also well correlated with biomass in both aerobic ( r = 0.99) and anaerobic ( r = 0.94) cultures supporting the use of tetrazolium reduction as an index of living biomass. Time courses of nitrate and nitrate in the anaerobic cultures demonstrated that at nitrate concentrations above 1 mM, denitrification proceeds stepwise. Time courses of pH in anaerobic cultures revealed a rise from 7 to 8.5 during nitrite reduction indicating net proton utilization. This proton utilization is predicted by the stoichiometry of denitrification. Although the experiments were not under 'simulated in situ' conditions, the results are relevant to studies of denitrification, to bacterial ATP production, and to the respiratory activity of marine plankton in the ocean.

  8. A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium.

    PubMed

    Lei, Yu; Wang, Yangqing; Liu, Hongjie; Xi, Chuanwu; Song, Liyan

    2016-05-01

    A novel heterotrophic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from ammonium contaminated landfill leachate and physiochemical and phylogenetically identified as Zobellella taiwanensis DN-7. DN-7 converted nitrate, nitrate, and ammonium to N2 as the primary end product. Single factor experiments suggested that the optimal conditions for ammonium removal were trisodium citrate as carbon source, C/N ratio 8, pH 8.0-10.0, salinity less than 3 %, temperature 30 °C, and rotation speed more than 150 rpm. Specifically, DN-7 could remove 1000.0 and 2000.0 mg/L NH4 (+)-N completely within 96 and 216 h, with maximum removal rates of 19.6 and 17.3 mg L(-1) h(-1), respectively. These results demonstrated that DN-7 is a promising candidate for application of high-strength ammonium wastewater treatments.

  9. A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium.

    PubMed

    Lei, Yu; Wang, Yangqing; Liu, Hongjie; Xi, Chuanwu; Song, Liyan

    2016-05-01

    A novel heterotrophic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from ammonium contaminated landfill leachate and physiochemical and phylogenetically identified as Zobellella taiwanensis DN-7. DN-7 converted nitrate, nitrate, and ammonium to N2 as the primary end product. Single factor experiments suggested that the optimal conditions for ammonium removal were trisodium citrate as carbon source, C/N ratio 8, pH 8.0-10.0, salinity less than 3 %, temperature 30 °C, and rotation speed more than 150 rpm. Specifically, DN-7 could remove 1000.0 and 2000.0 mg/L NH4 (+)-N completely within 96 and 216 h, with maximum removal rates of 19.6 and 17.3 mg L(-1) h(-1), respectively. These results demonstrated that DN-7 is a promising candidate for application of high-strength ammonium wastewater treatments. PMID:26762390

  10. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas.

    PubMed

    Zheng, Maosheng; Li, Can; Liu, Shufeng; Gui, Mengyao; Ni, Jinren

    2016-11-15

    Conventional biological removal of nitrogen oxides (NOx) from flue gas has been severely restricted by the presence of oxygen. This paper presents an efficient alternative for NOx removal at varying oxygen levels using the newly isolated bacterial strain Pseudomonas aeruginosa PCN-2 which was capable of aerobic and anoxic denitrification. Interestingly, nitric oxide (NO), as the obligatory intermediate, was negligibly accumulated during nitrate and nitrite reduction. Moreover, normal nitrate reduction with decreasing NO accumulation was realized under O2 concentration ranging from 0 to 100%. Reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed that high efficient NO removal was attributed to the coordinate regulation of gene expressions including napA (for periplasmic nitrate reductase), nirS (for cytochrome cd1 nitrite reductase) and cnorB (for NO reductase). Further batch experiments demonstrated the immobilized strain PCN-2 possessed high capability of removing NO and nitrogen dioxide (NO2) at O2 concentration of 0-10%. A biotrickling filter established with present strain achieved high NOx removal efficiencies of 91.94-96.74% at inlet NO concentration of 100-500ppm and O2 concentration of 0-10%, which implied promising potential applications in purifying NOx contaminated flue gas.

  11. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas.

    PubMed

    Zheng, Maosheng; Li, Can; Liu, Shufeng; Gui, Mengyao; Ni, Jinren

    2016-11-15

    Conventional biological removal of nitrogen oxides (NOx) from flue gas has been severely restricted by the presence of oxygen. This paper presents an efficient alternative for NOx removal at varying oxygen levels using the newly isolated bacterial strain Pseudomonas aeruginosa PCN-2 which was capable of aerobic and anoxic denitrification. Interestingly, nitric oxide (NO), as the obligatory intermediate, was negligibly accumulated during nitrate and nitrite reduction. Moreover, normal nitrate reduction with decreasing NO accumulation was realized under O2 concentration ranging from 0 to 100%. Reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed that high efficient NO removal was attributed to the coordinate regulation of gene expressions including napA (for periplasmic nitrate reductase), nirS (for cytochrome cd1 nitrite reductase) and cnorB (for NO reductase). Further batch experiments demonstrated the immobilized strain PCN-2 possessed high capability of removing NO and nitrogen dioxide (NO2) at O2 concentration of 0-10%. A biotrickling filter established with present strain achieved high NOx removal efficiencies of 91.94-96.74% at inlet NO concentration of 100-500ppm and O2 concentration of 0-10%, which implied promising potential applications in purifying NOx contaminated flue gas. PMID:27469045

  12. Screening and identification of aerobic denitrifiers

    NASA Astrophysics Data System (ADS)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  13. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

    PubMed Central

    Takaya, Naoki; Catalan-Sakairi, Maria Antonina B.; Sakaguchi, Yasushi; Kato, Isao; Zhou, Zhemin; Shoun, Hirofumi

    2003-01-01

    Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3−) to N2 at rates of 0.9 and 0.03 μmol min−1 unit of optical density at 540 nm−1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 μmol liter−1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3− with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the β subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem. PMID:12788710

  14. Atypical Polyphosphate Accumulation by the Denitrifying Bacterium Paracoccus denitrificans

    PubMed Central

    Barak, Yoram; van Rijn, Jaap

    2000-01-01

    Polyphosphate accumulation by Paracoccus denitrificans was examined under aerobic, anoxic, and anaerobic conditions. Polyphosphate synthesis by this denitrifier took place with either oxygen or nitrate as the electron acceptor and in the presence of an external carbon source. Cells were capable of poly-β-hydroxybutyrate (PHB) synthesis, but no polyphosphate was produced when PHB-rich cells were incubated under anoxic conditions in the absence of an external carbon source. By comparison of these findings to those with polyphosphate-accumulating organisms thought to be responsible for phosphate removal in activated sludge systems, it is concluded that P. denitrificans is capable of combined phosphate and nitrate removal without the need for alternating anaerobic/aerobic or anaerobic/anoxic switches. Studies on additional denitrifying isolates from a denitrifying fluidized bed reactor suggested that polyphosphate accumulation is widespread among denitrifiers. PMID:10698794

  15. Halobacterium denitrificans sp. nov. - An extremely halophilic denitrifying bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.

    1986-01-01

    Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.

  16. Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.

    1986-01-01

    Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.

  17. Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. [Pseudomonas sp

    SciTech Connect

    Nozawa, T.; Maruyama, Y. )

    1988-12-01

    The anaerobic metabolism of phthalate and other aromatic compounds by the denitrifying bacterium Pseudomonas sp. strain P136 was studied. Benzoate, cyclohex-1-ene-carboxylate, 2-hydroxycyclohexanecarboxylate, and pimelate were detected as predominant metabolic intermediates during the metabolism of three isomers of phthalate, m-hydroxybenzoate, p-hydroxybenzoate, and cyclohex-3-ene-carboxylate. Inducible acyl-coeznyme A synthetase activities for phthalates, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were detected in the cells grown on aromatic compounds. Simultaneous adaptation to these aromatic compounds also occurred. A similar phenomenon was observed in the aerobic metabolism of aromatic compounds by this strain. A new pathway for the anaerobic metabolism of phthalate and a series of other aromatic compounds by this strain was proposed. Some properties of the regulation of this pathway were also discussed.

  18. Anaerobic degradation of toluene by a denitrifying bacterium.

    PubMed Central

    Evans, P J; Mang, D T; Kim, K S; Young, L Y

    1991-01-01

    A denitrifying bacterium, designated strain T1, that grew with toluene as the sole source of carbon under anaerobic conditions was isolated. The type of agar used in solid media and the toxicity of toluene were determinative factors in the successful isolation of strain T1. Greater than 50% of the toluene carbon was oxidized to CO2, and 29% was assimilated into biomass. The oxidation of toluene to CO2 was stoichiometrically coupled to nitrate reduction and denitrification. Strain T1 was tolerant of and grew on 3 mM toluene after a lag phase. The rate of toluene degradation was 1.8 mumol min-1 liter-1 (56 nmol min-1 mg of protein-1) in a cell suspension. Strain T1 was distinct from other bacteria that oxidize toluene anaerobically, but it may utilize a similar biochemical pathway of oxidation. In addition, o-xylene was transformed to a metabolite in the presence of toluene but did not serve as the sole source of carbon for growth of strain T1. This transformation was dependent on the degradation of toluene. Images PMID:2059037

  19. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources.

    PubMed

    Otani, Y; Hasegawa, K; Hanaki, K

    2004-01-01

    Abilities of three aerobic denitrifiers such as Alcaligenes faecalis, Microvirgula aerodenitrificans and Paracoccus pantotrophus were compared from the viewpoints of nitrate removal efficiency and organic matter utilization. First, the effect of carbon source was investigated. Although nitrate reduction was observed in all strains under aerobic conditions, a change of carbon source considerably affected the denitrification ability. In the case of P. pantotrophus, nitrate and nitrite were completely removed in three days under sodium acetate or leucine as a carbon source. In the case of A. faecalis, sufficient nitrate removal was observed only when sodium acetate or ethanol was added. P. pantotrophus and A. faecalis showed a higher ability of nitrate removal than that of M. aerodenitrificans. Therefore, P. pantotrophus was selected in order to investigate the effects of concentration and repetitive addition of carbon. Sodium acetate was used as a sole carbon source. Nitrate was not reduced when the carbon concentration was below 500 mgC/L. However, when carbon source was added repeatedly, nitrate was reduced under 100 mgC/L after the optical density of the bacterium reached above 1.0. This result indicated that a high enough level of bacterial density was necessary to express aerobic denitrification activity. PMID:15566182

  20. Cr(VI) reduction under aerobic and denitrifying conditions by an aquifer-derived Pseudomonad

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Han, R.; Geller, J. T.

    2009-12-01

    Chromium contamination of groundwater is widespread within the Department of Energy (DOE) complex. For example, at DOE’s Hanford 100 Area in Washington state, the volume of Cr-contaminated groundwater is estimated to be 1.5 billion gallons. Bioremediation (in situ reductive immobilization) studies involving injection of a lactate-containing polymer have been conducted in the Hanford 100H area, where we have observed sequential use of the dissolved electron acceptors present in groundwater, namely, oxygen, nitrate, and sulfate. As part of an effort to explore Cr(VI) reduction under relevant electron-accepting conditions and with relevant bacteria, we have conducted studies with strain RCH2, a denitrifying bacterium similar to Pseudomonas stutzeri that was isolated from the Hanford 100H aquifer. Cell suspension studies with lactate demonstrated that Cr(VI) reduction could occur under either denitrifying or aerobic conditions (at comparable rates), and that reduction was much more rapid when the terminal electron acceptor (i.e., nitrate or O2) was present. It appears that, under both aerobic and denitrifying conditions, the chromate reductase gene(s) are not inducible by Cr; this conclusion is based on the fact that these cell suspension studies were conducted with cells grown in the absence of Cr and resuspended in a buffer that included chloramphenicol, which inhibits protein synthesis. As our studies indicate that anaerobic Cr(VI) reduction by strain RCH2 is much more rapid in the presence of nitrate (i.e., during denitrification) than in its absence, we explored molecular methods that could readily assess in situ denitrification. Specifically, we investigated whether the gene and transcript copy number of diagnostic denitrification genes (nirS and narG) in groundwater could be used to estimate in situ denitrification rates. Continuous culture (chemostat) studies showed strong correlations (r2 values > 0.93) between denitrification rate and either nirS or nar

  1. Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission.

    PubMed

    Liu, Ying; Ai, Guo-Min; Miao, Li-Li; Liu, Zhi-Pei

    2016-04-01

    An efficient aerobic denitrification bacterium, strain NNA5, was isolated and identified as Marinobacter sp. NNA5. NNA5 did not perform heterotrophic nitrification. GC/IRMS analysis revealed that (15)N2 was produced from Na(15)NO2 and K(15)NO3. GC/MS and quantitative analyses showed that no N2O emission occurred when nitrite or nitrate was used as substrate. Single factor experiments indicated that optimal conditions for aerobic denitrification were: sodium succinate or sodium pyruvate as carbon source, temperature 35 °C, NaCl concentration 2-4%, C/N ratio 6-8, pH 7.5, rotation speed 150 rpm (giving dissolved oxygen concentration 6.08 mg/L), NO3(-)-N concentration ranging from 140 to 700 mg/L. NNA5 displayed highly efficient aerobic denitrifying ability, with maximal NO3(-)-N removal rate 112.8 mg/L/d. In view of its ability to perform aerobic denitrification with zero N2O emission, NNA5 has great potential for future application in aerobic denitrification processes in industrial and aquaculture wastewater treatment systems. PMID:26836845

  2. INDISIM-Paracoccus, an individual-based and thermodynamic model for a denitrifying bacterium.

    PubMed

    Araujo Granda, Pablo; Gras, Anna; Ginovart, Marta; Moulton, Vincent

    2016-08-21

    We have developed an individual-based model for denitrifying bacteria. The model, called INDISIM-Paracoccus, embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM, and is designed to simulate the bacterial cell population behavior and the product dynamics within the culture. The INDISIM-Paracoccus model assumes a culture medium containing succinate as a carbon source, ammonium as a nitrogen source and various electron acceptors such as oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to simulate in continuous or batch culture the different nutrient-dependent cell growth kinetics of the bacterium Paracoccus denitrificans. The individuals in the model represent microbes and the individual-based model INDISIM gives the behavior-rules that they use for their nutrient uptake and reproduction cycle. Three previously described metabolic pathways for P. denitrificans were selected and translated into balanced chemical equations using a thermodynamic model. These stoichiometric reactions are an intracellular model for the individual behavior-rules for metabolic maintenance and biomass synthesis and result in the release of different nitrogen oxides to the medium. The model was implemented using the NetLogo platform and it provides an interactive tool to investigate the different steps of denitrification carried out by a denitrifying bacterium. The simulator can be obtained from the authors on request. PMID:27179457

  3. Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC.

    PubMed Central

    Lewis, T A; Crawford, R L

    1993-01-01

    Pseudomonas sp. strain KC was grown on a medium with a low content of transition metals in order to examine the conditions for carbon tetrachloride (CT) transformation. Several carbon sources, including acetate, glucose, glycerol, and glutamate, were able to support CT transformation. The chelators 2,2'-dipyridyl and 1,10-phenanthroline stimulated CT transformation in a rich medium that otherwise did not support this activity. Low (< 10 microM) additions of dissolved iron(II), iron(III), and cobalt(II), as well as an insoluble iron(III) compound, ferric oxyhydroxide, inhibited CT transformation. The addition of 50 microM iron to actively growing cultures resulted in delayed inhibition of CT transformation. CT transformation was seen in aerobic cultures of KC, but with reduced efficiency compared with denitrifying cultures. Inhibition of CT transformation by iron was also seen in aerobically grown cultures. Optimal conditions were used in searching for effective CT transformation activity among denitrifying enrichments grown from samples of aquifer material. No activity comparable to that of Pseudomonas sp. strain KC was found among 16 samples tested. PMID:8517754

  4. Biodegradation of three- and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions

    SciTech Connect

    McNally, D.L.; Mihelcic, J.R.; Lueking, D.R.

    1998-09-01

    PAHs are thought to be particularly persistent in environments where anaerobic conditions exist. This study presents evidence for the biodegradation of three- and four-ringed PAHs (anthracene, phenanthrene, and pyrene) under strict anaerobic, denitrifying conditions. Three pseudomonad strains, isolated from contrasting environments, were used in this study. All three strains were known PAH degraders and denitrifiers. Degradation proceeded to nondetectable levels in 12--80 h for anthracene, 12--44 h for phenanthrene, and 24--72 h for pyrene. The rates of anaerobic degradation were typically slower than under aerobic conditions in almost all cases, except for strain SAG-R which had similar removal rates for all three and four-ring PAHs. Denitrification activity was verified by monitoring nitrate utilization and nitrous oxide production. Although none of the pseudomonads were adapted to the denitrifying conditions, only the pseudomonad isolated from a noncontaminated site consistently exhibited an adaptation period which approximated 12 h. This study supports growing evidence that the degradation of aromatic hydrocarbons coupled to denitrification may be an important factor affecting the fate of these compounds in natural and engineered systems.

  5. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  6. [Identification and denitrification characteristics of a psychrotolerant facultative basophilic aerobic denitrifier].

    PubMed

    Wang, Zhao-Yang; Chen, Guo-Yao; Jiang, Ke; Xu, Pei-Ya

    2014-06-01

    An aerobic denitrifier was isolated from the activated sludge of landfill leachate through traditional microbiological methods. Based on its morphological feature, physiological and biochemical properties, and 16S rDNA sequence analysis, this strain was identified as Pseudomonas sp., named as GL19 with an accession number of KC710974 in GenBank. Its aerobic denitrification characteristics and nitrification function were studied to show that the factors including carbon source, C/N, pH and cultivation temperature were important for denitrification. The optimized condition for aerobic denitrification was as follows: sodium citrate as the carbon resource, C/N no less than 15, pH of 6-10, DO of 4.8-7.7 mg x L(-1), culture temperature of 15-34 degrees C and the initial nitrate nitrogen of 140 mg x L(-1). Combining these conditions, the removal rate of nitrate nitrogen and average removal rate of TN reached 100% and 96.5%, respectively, without the accumulation of nitrite nitrogen. The strain had the capability to utilize nitrite nitrogen or ammonia nitrogen to achieve high nitrogen removal efficiency: the nitrite nitrogen removal rate reached 100% in 20 hours with an initial nitrite nitrogen of 140 mg x L(-1); the ammonia nitrogen was efficiently removed from 280 mg x L(-1) to 3.11 mg x L(-1) in 28 hours with the removal rate of up to 98.9%. These results suggested that strain GL19 with the function of cold resistance and highly effective aerobic denitrification could achieve simultaneous nitrification and denitrification. Hence, GL19 could have high potential in practical wastewater treatment in winter of south area. PMID:25158516

  7. Characterization of Two Efficient Aerobic Denitrifying Strains Isolated from Shallow Aquifers in Suzhou City, China

    NASA Astrophysics Data System (ADS)

    Ruan, X.; Zhu, X.; Sun, H.; Li, M.

    2010-12-01

    Sixty two stains that can utilize nitrate as source of nitrogen under aerobic conditions were isolated from shallow aquifer samples in Suzhou city, China. Two of the strains, XK42 and PJ21, can convert nitrate into nitrogen gas efficiently without obvious accumulation of nitite. According to morphological, biochemical/biophysical and 16S rDNA gene sequence analysis, XK42 and PJ21 were identified as Pseudomonas Stutzeri and Pseudomonas Mendocica, respectively. The generation time, optimum pH value range and optimum growth temperature range were 4.64h, 6.5˜8.0, 25˜35°C for XK42 and 8.39h, 6.5˜8.5, 25˜35°C for PJ21. Under aerobic conditions (DO=6.9˜7.8 mg/L), the nitrate concentrations in the medium inoculated with XK42 and PJ21 decreased to 42.35 mg/L and 35.69 mg/L with initial nitrate concentration of 276.25 mg/L within 12 hours, respectively. The nitrite concentrations reached to 3.06 mg/L and 3.70 mg/L, and their nitrate removal rates reached 18.24 mg/L●h and 17.51 mg/L●h. The total nitrogen loss through denitrification of XK42 and PJ21 were 70.9% and 66.3%, respectively. The nitrate reduction efficiencies within 60 hours was up to 95.13% (strain XK42) and 95.55% (strain PJ21). The results indicate that the isolated strians XK42 and PJ21 are aerobic denitrifiers with high nitrogen removal efficiency, and can be used for in-situ bioremediation of nitrogen-contaminated shallow groundwater and biotreatment of wasterwater.

  8. Nitrogen removal from micro-polluted reservoir water by indigenous aerobic denitrifiers.

    PubMed

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Zhou, Na; Guo, Lin; Di, Shi-Yu; Zhou, Zi-Zhen

    2015-01-01

    Treatment of micro-polluted source water is receiving increasing attention because of environmental awareness on a global level. We isolated and identified aerobic denitrifying bacteria Zoogloea sp. N299, Acinetobacter sp. G107, and Acinetobacter sp. 81Y and used these to remediate samples of their native source water. We first domesticated the isolated strains in the source water, and the 48-h nitrate removal rates of strains N299, G107, and 81Y reached 33.69%, 28.28%, and 22.86%, respectively, with no nitrite accumulation. We then conducted a source-water remediation experiment and cultured the domesticated strains (each at a dry cell weight concentration of 0.4 ppm) together in a sample of source water at 20-26 °C and a dissolved oxygen concentration of 3-7 mg/L for 60 days. The nitrate concentration of the system decreased from 1.57 ± 0.02 to 0.42 ± 0.01 mg/L and that of a control system decreased from 1.63 ± 0.02 to 1.30 ± 0.01 mg/L, each with no nitrite accumulation. Total nitrogen of the bacterial system changed from 2.31 ± 0.12 to 1.09 ± 0.01 mg/L, while that of the control system changed from 2.51 ± 0.13 to 1.72 ± 0.06 mg/L. The densities of aerobic denitrification bacteria in the experimental and control systems ranged from 2.8 × 10(4) to 2 × 10(7) cfu/mL and from 7.75 × 10(3) to 5.5 × 10(5) cfu/mL, respectively. The permanganate index in the experimental and control systems decreased from 5.94 ± 0.12 to 3.10 ± 0.08 mg/L and from 6.02 ± 0.13 to 3.61 ± 0.11 mg/L, respectively, over the course of the experiment. Next, we supplemented samples of the experimental and control systems with additional bacteria or additional source water and cultivated the systems for another 35 days. The additional bacteria did little to improve the water quality. The additional source water provided supplemental carbon and brought the nitrate removal rate in the experimental system to 16.97%, while that in the control system reached only 3.01%, with no nitrite

  9. Nitrogen Removal from Micro-Polluted Reservoir Water by Indigenous Aerobic Denitrifiers

    PubMed Central

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Zhou, Na; Guo, Lin; Di, Shi-Yu; Zhou, Zi-Zhen

    2015-01-01

    Treatment of micro-polluted source water is receiving increasing attention because of environmental awareness on a global level. We isolated and identified aerobic denitrifying bacteria Zoogloea sp. N299, Acinetobacter sp. G107, and Acinetobacter sp. 81Y and used these to remediate samples of their native source water. We first domesticated the isolated strains in the source water, and the 48-h nitrate removal rates of strains N299, G107, and 81Y reached 33.69%, 28.28%, and 22.86%, respectively, with no nitrite accumulation. We then conducted a source-water remediation experiment and cultured the domesticated strains (each at a dry cell weight concentration of 0.4 ppm) together in a sample of source water at 20–26 °C and a dissolved oxygen concentration of 3–7 mg/L for 60 days. The nitrate concentration of the system decreased from 1.57 ± 0.02 to 0.42 ± 0.01 mg/L and that of a control system decreased from 1.63 ± 0.02 to 1.30 ± 0.01 mg/L, each with no nitrite accumulation. Total nitrogen of the bacterial system changed from 2.31 ± 0.12 to 1.09 ± 0.01 mg/L, while that of the control system changed from 2.51 ± 0.13 to 1.72 ± 0.06 mg/L. The densities of aerobic denitrification bacteria in the experimental and control systems ranged from 2.8 × 104 to 2 × 107 cfu/mL and from 7.75 × 103 to 5.5 × 105 cfu/mL, respectively. The permanganate index in the experimental and control systems decreased from 5.94 ± 0.12 to 3.10 ± 0.08 mg/L and from 6.02 ± 0.13 to 3.61 ± 0.11 mg/L, respectively, over the course of the experiment. Next, we supplemented samples of the experimental and control systems with additional bacteria or additional source water and cultivated the systems for another 35 days. The additional bacteria did little to improve the water quality. The additional source water provided supplemental carbon and brought the nitrate removal rate in the experimental system to 16.97%, while that in the control system reached only 3.01%, with no nitrite

  10. Novel Denitrifying Bacterium Ochrobactrum anthropi YD50.2 Tolerates High Levels of Reactive Nitrogen Oxides▿ †

    PubMed Central

    Doi, Yuki; Takaya, Naoki; Takizawa, Noboru

    2009-01-01

    Most studies of bacterial denitrification have used nitrate (NO3−) as the first electron acceptor, whereas relatively less is understood about nitrite (NO2−) denitrification. We isolated novel bacteria that proliferated in the presence of high levels of NO2− (72 mM). Strain YD50.2, among several isolates, was taxonomically positioned within the α subclass of Proteobacteria and identified as Ochrobactrum anthropi YD50.2. This strain denitrified NO2−, as well as NO3−. The gene clusters for denitrification (nar, nir, nor, and nos) were cloned from O. anthropi YD50.2, in which the nir and nor operons were linked. We confirmed that nirK in the nir-nor operon produced a functional NO2− reductase containing copper that was involved in bacterial NO2− reduction. The strain denitrified up to 40 mM NO2− to dinitrogen under anaerobic conditions in which other denitrifiers or NO3− reducers such as Pseudomonas aeruginosa and Ralstonia eutropha and nitrate-respiring Escherichia coli neither proliferated nor reduced NO2−. Under nondenitrifying aerobic conditions, O. anthropi YD50.2 and its type strain ATCC 49188T proliferated even in the presence of higher levels of NO2− (100 mM), and both were considerably more resistant to acidic NO2− than were the other strains noted above. These results indicated that O. anthropi YD50.2 is a novel denitrifier that has evolved reactive nitrogen oxide tolerance mechanisms. PMID:19542343

  11. Aerobic biodegradation of 4-methylquinoline by a soil bacterium.

    PubMed Central

    Sutton, S D; Pfaller, S L; Shann, J R; Warshawsky, D; Kinkle, B K; Vestal, J R

    1996-01-01

    Methylquinolines and related N-heterocyclic aromatic compounds are common contaminants associated with the use of hydrocarbons in both coal gasification and wood treatment processes. These compounds have been found in groundwater, and many are known mutagens. A stable, five-member bacterial consortium able to degrade 4-methylquinoline was established by selective enrichment using soil collected from an abandoned coal gasification site. The consortium was maintained for 5 years by serial transfer in a medium containing 4-methylquinoline. A gram-negative soil bacterium, strain Lep1, was isolated from the consortium and shown to utilize 4-methylquinoline as a source of carbon and energy during growth in liquid medium. A time course experiment demonstrated that both the isolate Lep1 and the consortium containing Lep1 were able to degrade 4-methylquinoline under aerobic conditions. Complete degradation of 4-methylquinoline by either strain Lep1 alone or the consortium was characterized by the production and eventual disappearance of 2-hydroxy-4-methylquinoline, followed by the appearance and persistence of a second metabolite tentatively identified as a hydroxy-4-methylcoumarin. Currently, there is no indication that 4-methylquinoline degradation proceeds differently in the consortium culture compared with Lep1 alone. This is the first report of 4-methylquinoline biodegradation under aerobic conditions. PMID:8702284

  12. Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment.

    PubMed

    Tsubouchi, Taishi; Koyama, Sumihiro; Mori, Kozue; Shimane, Yasuhiro; Usui, Keiko; Tokuda, Maki; Tame, Akihiro; Uematsu, Katsuyuki; Maruyama, Tadashi; Hatada, Yuji

    2014-11-01

    A novel Gram-stain-negative, aerobic, heterotrophic, stalked and capsulated bacterium with potential denitrification ability, designated strain TAR-002(T), was isolated from deep seafloor sediment in Japan. Colonies lacked lustre, and were viscous and translucent white. The ranges of temperature, pH and salt concentration for growth were 8-30 °C, pH 6.0-10.0 and 1-3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain TAR-002(T) belongs to the genus Brevundimonas of the class Alphaproteobacteria. Levels of similarity between the 16S rRNA gene sequence of strain TAR-002(T) and those of the type strains of species of the genus Brevundimonas were 93.5-98.9%; the most closely related species was Brevundimonas basaltis. In DNA-DNA hybridization assays between strain TAR-002(T) and its phylogenetic neighbours, Brevundimonas lenta DS-18(T), B. basaltis J22(T), Brevundimonas subvibrioides ATCC 15264(T) and Brevundimonas alba DSM 4736(T), mean hybridization levels were 6.4-27.7%. The G+C content of strain TAR-002(T) was 70.3 mol%. Q-10 was the major respiratory isoprenoid quinone. The major fatty acids were C(18:1)ω7c and C(16:0), and the presence of 1,2-di-O-acyl-3-O-[D-glucopyranosyl-(1 → 4)-α-D-glucopyranuronosyl]glycerol (DGL) indicates the affiliation of strain TAR-002(T) with the genus Brevundimonas. On the basis of biological characteristics and 16S rRNA gene sequence comparisons, strain TAR-002(T) is considered to represent a novel species of the genus Brevundimonas, for which the name Brevundimonas denitrificans sp. nov. is proposed; the type strain is TAR-002(T) ( =NBRC 110107(T) =CECT 8537(T)).

  13. Complete Genome Sequence of Hyphomicrobium nitrativorans Strain NL23, a Denitrifying Bacterium Isolated from Biofilm of a Methanol-Fed Denitrification System Treating Seawater at the Montreal Biodome.

    PubMed

    Martineau, Christine; Villeneuve, Céline; Mauffrey, Florian; Villemur, Richard

    2014-01-01

    Hyphomicrobium nitrativorans strain NL23 has been isolated from the biofilm of a denitrification system treating seawater. This strain has the capacity to denitrify using methanol as a carbon source. Here, we report the complete genome sequence of this strain in an effort to increase understanding of the function of this bacterium within the biofilm. PMID:24435868

  14. Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans Under Aerobic vs. Denitrifying Conditions

    SciTech Connect

    Beller, H R; Letain, T E; Chakicherla, A; Kane, S R; Legler, T C; Coleman, M A

    2006-04-22

    Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with ke chemolithoautotrophic functions (such as sulfur-compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately ten percent of the genome) as differentially expressed using Robust Multi-array Average statistical analysis and a 2-fold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated respectively with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur-compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription, quantitative PCR analysis was used to validate these trends.

  15. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    NASA Astrophysics Data System (ADS)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  16. Atomic resolution structure of pseudoazurin from the methylotrophic denitrifying bacterium Hyphomicrobium denitrificans: structural insights into its spectroscopic properties.

    PubMed

    Hira, Daisuke; Nojiri, Masaki; Suzuki, Shinnichiro

    2009-01-01

    The crystal structure of native pseudoazurin (HdPAz) from the methylotrophic denitrifying bacterium Hyphomicrobium denitrificans has been determined at a resolution of 1.18 A. After refinement with SHELX employing anisotropic displacement parameters and riding H atoms, R(work) and R(free) were 0.135 and 0.169, respectively. Visualization of the anisotropic displacement parameters as thermal ellipsoids provided insight into the atomic motion within the perturbed type 1 Cu site. The asymmetric unit includes three HdPAz molecules which are tightly packed by head-to-head cupredoxin dimer formation. The shape of the Cu-atom ellipsoid implies significant vibrational motion diagonal to the equatorial xy plane defined by the three ligands (two His and one Cys). The geometric parameters of the type 1 Cu site in the HdPAz structure differ unambiguously from those of other pseudoazurins. It is demonstrated that their structural aspects are consistent with the unique visible absorption spectrum. PMID:19153470

  17. Structure of a new azurin from the denitrifying bacterium Alcaligenes xylosoxidans at high resolution.

    PubMed

    Dodd, F E; Hasnain, S S; Abraham, Z H; Eady, R R; Smith, B E

    1995-11-01

    It has been reported previously that Alcaligenes xylosoxidans (NC1MB 11015) grown under denitrifying conditions produces two azurins instead of the single previously identified azurin [Dodd, Hasnain, Hunter, Abraham, Debenham, Kanzler, Eldridge, Eady, Ambler & Smith (1995). Biochemistry. In the press]. The new azurin, called azurin II, has been crystallized as blue elongated rectangular prisms with the tetragonal space group P4(1)22 and unit-cell parameters a = b = 52.65, c = 100.63 A. X-ray crystallographic data extending to 1.9 A resolution were collected by the Weissenberg method using 200 x 400 mm image plates and synchrotron X-rays of wavelength 0.97 A. The three-dimensional structure of azurin II has been solved by the molecular-replacement method using the structure of azurin from Alcaligenes denitrificans NCTC 8582 with which this new azurin shows a close homology. The quality of the initial map was sufficient to predict a number of sequence differences. The model is currently refined to an R-factor of 18.8% with X-ray data between 8.5 and 1.9 A. The final model of 961 protein atoms, one Cu atom and 50 water molecules has r.m.s. deviations from ideality of 0.009 A for bond lengths and 1.7 degrees for bond angles. The overall structure is similar to that of the azurin from A. denitrificans NCTC 8582. It has a beta-barrel structure with the Cu atom located near the top end of the molecule. The Cu atom is coordinated to Ndelta of His46 and His117 at 2.02 A and to Sgamma of Cys112 at 2.12 A, while the carbonyl O atom of Gly45 and Sdelta atom of Met121 provide the additional interactions at 2.75 and 3.26 A, respectively.

  18. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.

    PubMed

    Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M

    2015-06-01

    Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

  19. Nitrogen Removal Characteristics of a Newly Isolated Indigenous Aerobic Denitrifier from Oligotrophic Drinking Water Reservoir, Zoogloea sp. N299

    PubMed Central

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao

    2015-01-01

    Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h−1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53% ± 1.69% and 58.65% ± 0.61%, respectively. The ammonia removal rate reached 44.12% ± 1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5–9 mg/L, pH 8–9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41% ± 3.17% (sterilized) and 44.88% ± 4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p < 0.05). High C/N was beneficial for nitrate reduction (p < 0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p > 0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem. PMID:25946341

  20. Nitrogen Removal Characteristics of a Newly Isolated Indigenous Aerobic Denitrifier from Oligotrophic Drinking Water Reservoir, Zoogloea sp. N299.

    PubMed

    Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao

    2015-05-04

    Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h-1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53%±1.69% and 58.65%±0.61%, respectively. The ammonia removal rate reached 44.12%±1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5-9 mg/L, pH 8-9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41%±3.17% (sterilized) and 44.88%±4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p<0.05). High C/N was beneficial for nitrate reduction (p<0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p>0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem.

  1. Molecular phylogeny of heterotrophic nitrifiers and aerobic denitrifiers and their potential role in ammonium removal.

    PubMed

    Srivastava, Meenakshi; Kaushik, Manish Singh; Singh, Anumeha; Singh, Deepti; Mishra, Arun Kumar

    2016-08-01

    To investigate the physiology and taxonomic composition of the key players of nitrification and denitrification processes in paddy fields, culture dependent and independent studies have been carried out. A total of 28 bacterial strains have been screened in which six were capable of reducing nitrate and nitrite as well as having significant ammonium removal potential. 16S rRNA-PCR-DGGE-based molecular typing of enriched batch culture was done with time duration to explore and identify dominant and stable soil denitrifiers. Notably, three isolates namely PDN3, PDN19, PDN14 were found to be efficiently involved in the removal of 70.32, 71.46, and 81.50% of NH4 (+) and showed closest similarity (>98%) with Bacillus cereus, Bacillus subtilis, and Pseudomonas aeruginosa strains, respectively. The bacterial strain PDN14 showed maximum growth with highest ammonium removal rate (2.78 gN/(m(3) ·h) has also been characterized based on nosZ gene which showed similarity to uncultured γ- Proteobacteria, P. aeruginosa sp. B3. Median joining (MJ) network and rRNA secondary structure have been analyzed for their detailed taxonomic diversity and derived haplotype-based co-occurrence. Results demonstrated that such strains can serve as good candidate for in situ nitrogen transformation in paddy soils and improvingly characterized by physiological and detailed phylogenetic approaches. PMID:27037833

  2. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1.

    PubMed

    Rabus, Ralf; Kube, Michael; Heider, Johann; Beck, Alfred; Heitmann, Katja; Widdel, Friedrich; Reinhardt, Richard

    2005-01-01

    Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.3 Mb) and two plasmids (0.21 and 0.22 Mb) encode 4603 predicted proteins. Ten anaerobic and four aerobic aromatic degradation pathways were recognized, with the encoding genes mostly forming clusters. The presence of paralogous gene clusters (e.g., for anaerobic phenylacetate oxidation), high sequence similarities to orthologs from other strains (e.g., for anaerobic phenol metabolism) and frequent mobile genetic elements (e.g., more than 200 genes for transposases) suggest high genome plasticity and extensive lateral gene transfer during metabolic evolution of strain EbN1. Metabolic versatility is also reflected by the presence of multiple respiratory complexes. A large number of regulators, including more than 30 two-component and several FNR-type regulators, indicate a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment. The absence of genes required for nitrogen fixation and specific interaction with plants separates strain EbN1 ecophysiologically from the closely related nitrogen-fixing plant symbionts of the Azoarcus cluster. Supplementary material on sequence and annotation are provided at the Web page http://www.micro-genomes.mpg.de/ebn1/.

  3. [Heterotrophic Nitrification and Aerobic Denitrification of the Hypothermia Aerobic Denitrification Bacterium: Arthrobacter arilaitensis].

    PubMed

    He, Teng-xia; Ni, Jiu-pai; Li, Zhen-lun; Sun, Quan; Ye Qing; Xu, Yi

    2016-03-15

    High concentrations of ammonium, nitrate and nitrite nitrogen were employed to clarify the abilities of heterotrophic nitrification and aerobic denitrification of Arthrobacter arilaitensis strain Y-10. Meanwhile, by means of inoculating the strain suspension into the mixed ammonium and nitrate, ammonium and nitrite nitrogen simulated wastewater, we studied the simultaneous nitrification and denitrification ability of Arthrobacter arilaitensis strain Y-10. In addition, cell optical density was assayed in each nitrogen removal process to analyze the relationship of cell growth and nitrogen removal efficiency. The results showed that the hypothermia denitrification strain Arthrobacter arilaitensis Y-10 exhibited high nitrogen removal efficiency during heterotrophic nitrification and aerobic denitrification. The ammonium, nitrate and nitrite removal rates were 65.0%, 100% and 61.2% respectively when strain Y-10 was cultivated for 4 d at 15°C with initial ammonium, nitrate and nitrite nitrogen concentrations of 208.43 mg · L⁻¹, 201.16 mg · L⁻¹ and 194.33 mg · L⁻¹ and initial pH of 7.2. Nitrite nitrogen could only be accumulated in the medium containing nitrate nitrogen during heterotrophic nitrification and aerobic denitrification process. Additionally, the ammonium nitrogen was mainly removed in the inorganic nitrogen mixed synthetic wastewater. In short, Arthrobacter arilaitensis Y-10 could conduct nitrification and denitrification effectively under aerobic condition and the ammonium nitrogen removal rate was more than 80.0% in the inorganic nitrogen mixed synthetic wastewater. PMID:27337904

  4. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  5. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    PubMed

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment.

  6. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    PubMed

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment. PMID:25432342

  7. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  8. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  9. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  10. Screening and characterizing a denitrifying phosphorus-accumulating bacterium isolated from a circular plug-flow reactor.

    PubMed

    Xie, En; Ding, Aizhong; Zheng, Lei; Dou, Junfeng; Anderson, Bruce; Huang, Xiaolong; Jing, Ruoting

    2016-11-01

    Denitrifying phosphorus-accumulating organisms (DNPAO) are viewed as one of the most effective means to solve the removal contradiction of nitrogen and phosphorus in wastewater treatment. In this study, we isolated a DNPAO (C-17, accession number: KU745702) from activated sludge in a patented circular plug-flow reactor, physiologically to Pseudomonas sp. based on 16S rRNA sequence and phenotypic characteristics. The results of denitrifying phosphorus-accumulating experiment showed that Pseudomonas C-17 has high removal efficiencies for [Formula: see text] and NO3-N, 75% and 87%, respectively. The ratio of phosphorus release was 25.0 mg [Formula: see text] (with anabolism) and 26.8 mg [Formula: see text] (without anabolism), respectively. Our results indicated that Pseudomonas C-17 had strong capacity of phosphorus release, and its uptake is often imprecisely evaluated by ignoring the part of metabolic consumption. Pseudomonas C-17 is capable of utilizing oxygen, nitrate and nitrite as electron acceptors under experimental conditions.

  11. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    PubMed Central

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-01-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096

  12. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  13. Pseudomonas sp. strain 273, and aerobic {alpha},{omega}-dichloroalkane-degrading bacterium

    SciTech Connect

    Wischnak, C.; Mueller, R.; Loeffler, F.E. |; Li, J.; Urbance, J.W.

    1998-09-01

    A gram-negative, aerobic bacterium was isolated from soil; this bacterium grew in 50% (vol/vol) suspensions of 1,10-dichlorodecane (1,10-DCD) as the sole source of carbon and energy. Phenotypic and small-subunit ribosomal RNA characterizations identified the organism, designated strain 273, as a member of the genus Pseudomonas. After induction with 1,10-DCD, Pseudomonas sp. strain 273 released stoichiometric amounts of chloride from C{sub 5} to C{sub 12} {alpha},{omega}-dichloroalkanes in the presence of oxygen. No dehalogenation occurred under anaerobic conditions. The best substrates for dehalogenation and growth were C{sub 9} to C{sub 12} chloroalkanes. The isolate also grew with nonhalogenated aliphatic compounds, and decane-grown cells dechlorinated 1,10-DCD without a lag phase. In addition, cells grown on decane dechlorinated 1,10-DCD in the presence of chloramphenicol, indicating that the 1,10-DCD-dechlorinating enzyme system was also induced by decane. Other known alkane-degrading Pseudomonas species did not grow with 1,10-DCD as a carbon source. Dechlorination of 1,10-DCD was demonstrated in cell extracts of Pseudomonas sp. strain 273. Cell-free activity was strictly oxygen dependent, and NADH stimulated dechlorination, whereas EDTA had an inhibitory effect.

  14. [Characteristics of Nitrogen Removal by a Heterotrophic Nitrification-Aerobic Denitrification Bacterium YL].

    PubMed

    Liang, Xian; Ren, Yong-xiang; Yang, Lei; Zhao, Si-qi; Xia, Zhi-hong

    2015-05-01

    Traditional process of autotrophic nitrification-anaerobic denitrification usually has problems of long procedure and low efficiency. To overcome these problems, a heterotrophic nitrification-aerobic denitrification bacterium YL was isolated from a domesticated mature SBR reactor with efficient simultaneous nitrification and denitrification ability, and was identified as Pseudomonas aeruginosa YL. Meanwhile, the characteristics of the nitrogen removal of strain YL was investigated through single-factor experiments and an orthogonal experiment. The results showed that the preferred conditions were: succinate as the carbon source, C/N ratio of 10, pH of 7.0, temperature of 30°C, and the shaking speed of 160-200 r · min(-1), while the removal rate of ammonia oxidation was 5. 05 mg · (g · h)(-1), the transformation rate of TOC was 45.95 mg · (g · h)(-1), and the removal rates of nitrogen and TOC were 100% and 90.8%, respectively. Nitrite, nitrate and hydroxylamine could also be metabolized by strain YL, and the removal rates were 92.7%, 93.6% and 94.8%, respectively. The most important influencing factor on aerobic denitrification of strain YL was C/N ratio. Under the optimal conditions (C/N = 10, T = 30°C , r = 200 r · min(-1), pH = 7), the removal rates of nitrate and total nitrogen were 94.6% and 76.3%, respectively. Hence, strain YL could remove nitrogen by heterotrophic nitrification-aerobic denitrification independently, quickly, and effectively.

  15. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h−1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene−1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  16. Degradation of vinyl acetate by soil, sewage, sludge, and the newly isolated aerobic bacterium V2.

    PubMed Central

    Nieder, M; Sunarko, B; Meyer, O

    1990-01-01

    Vinyl acetate is subject to microbial degradation in the environment and by pure cultures. It was hydrolyzed by samples of soil, sludge, and sewage at rates of up to 6.38 and 1 mmol/h per g (dry weight) under aerobic and anaerobic conditions, respectively. Four yeasts and thirteen bacteria that feed aerobically on vinyl acetate were isolated. The pathway of vinyl acetate degradation was studied in bacterium V2. Vinyl acetate was degraded to acetate as follows: vinyl acetate + NAD(P)+----2 acetate + NAD(P)H + H+. The acetate was then converted to acetyl coenzyme A and oxidized through the tricarboxylic acid cycle and the glyoxylate bypass. The key enzyme of the pathway is vinyl acetate esterase, which hydrolyzed the ester to acetate and vinyl alcohol. The latter isomerized spontaneously to acetaldehyde and was then converted to acetate. The acetaldehyde was disproportionated into ethanol and acetate. The enzymes involved in the metabolism of vinyl acetate were studied in extracts. Vinyl acetate esterase (Km = 6.13 mM) was also active with indoxyl acetate (Km = 0.98 mM), providing the basis for a convenient spectrophotometric test. Substrates of aldehyde dehydrogenase were formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde. The enzyme was equally active with NAD+ or NADP+. Alcohol dehydrogenase was active with ethanol (Km = 0.24 mM), 1-propanol (Km = 0.34 mM), and 1-butanol (Km = 0.16 mM) and was linked to NAD+. The molecular sizes of aldehyde dehydrogenase and alcohol dehydrogenase were 145 and 215 kilodaltons, respectively. PMID:2285314

  17. Genome sequence of aerobic anoxygenic phototrophic bacterium Erythrobacter sp. JL475, isolated from the South China Sea.

    PubMed

    Zheng, Qiang; Liu, Yanting; Sun, Jia; Jiao, Nianzhi

    2015-06-01

    Erythrobacter sp. JL475 is a bacteriochlorophyll a-containing aerobic anoxygenic photo-heterotrophic bacterium. Here, we report the draft genome sequence of Erythrobacter sp. JL475 isolated from the South China Sea. It comprises ~3.26Mbp in 7 contigs with the G+C content of 61.7%. A total of 3042 protein-coding genes were obtained, and one complete photosynthetic gene cluster (~38Kbp) was found.

  18. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium

    SciTech Connect

    Lobos, J.H.; Leib, T.K. ); Tahmun Su )

    1992-06-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichmet takes from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4[prime]-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO[sub 2], 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified as 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes.

  19. Cr(VI) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals.

    PubMed

    Li, Han; Huang, Shaobin; Zhang, Yongqing

    2016-09-01

    Cr(VI) pollution is increasing continuously as a result of ongoing industrialization. In this study, we investigated the thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1, isolated from the biofilm of a biotrickling filter used in nitrogen oxides (NOX) removal, with respect to its ability to remove Cr(VI) from an aqueous solution. TAD1 was capable of reducing Cr(VI) from an initial concentration of 10 mg/L to non-detectable levels over a pH range of 7-9 and at a temperature range of 30-50°C. TAD1 simultaneously removed both Cr(VI) and NO3 (-)-N at 50°C, when the pH was 7 and the initial Cr(VI) concentration was 15 mg/L. The reduction of Cr(VI) to Cr(III) correlated with the growth metabolic activity of TAD1. The presence of other heavy metals (Cu, Zn, and Ni) inhibited the ability of TAD1 to remove Cr(VI). The metals each individually inhibited Cr(VI) removal, and the extent of inhibition increased in a cooperative manner in the presence of a combination of the metals. The addition of biodegradable cellulose acetate microspheres (an adsorption material) weakened the toxicity of the heavy metals; in their presence, the Cr(VI) removal efficiency returned to a high level. The feasibility and applicability of simultaneous nitrate removal and Cr(VI) reduction by strain TAD1 is promising, and may be an effective biological method for the clean-up of wastewater.

  20. Cr(VI) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals.

    PubMed

    Li, Han; Huang, Shaobin; Zhang, Yongqing

    2016-09-01

    Cr(VI) pollution is increasing continuously as a result of ongoing industrialization. In this study, we investigated the thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1, isolated from the biofilm of a biotrickling filter used in nitrogen oxides (NOX) removal, with respect to its ability to remove Cr(VI) from an aqueous solution. TAD1 was capable of reducing Cr(VI) from an initial concentration of 10 mg/L to non-detectable levels over a pH range of 7-9 and at a temperature range of 30-50°C. TAD1 simultaneously removed both Cr(VI) and NO3 (-)-N at 50°C, when the pH was 7 and the initial Cr(VI) concentration was 15 mg/L. The reduction of Cr(VI) to Cr(III) correlated with the growth metabolic activity of TAD1. The presence of other heavy metals (Cu, Zn, and Ni) inhibited the ability of TAD1 to remove Cr(VI). The metals each individually inhibited Cr(VI) removal, and the extent of inhibition increased in a cooperative manner in the presence of a combination of the metals. The addition of biodegradable cellulose acetate microspheres (an adsorption material) weakened the toxicity of the heavy metals; in their presence, the Cr(VI) removal efficiency returned to a high level. The feasibility and applicability of simultaneous nitrate removal and Cr(VI) reduction by strain TAD1 is promising, and may be an effective biological method for the clean-up of wastewater. PMID:27572509

  1. Halopeptonella vilamensis gen. nov, sp. nov., a halophilic strictly aerobic bacterium of the family Ectothiorhodospiraceae.

    PubMed

    Menes, Rodolfo Javier; Viera, Claudia Elizabeth; Farías, María Eugenia; Seufferheld, Manfredo J

    2016-01-01

    A Gram-negative, halophilic, heterotrophic, rod-shaped, non-spore-forming bacterium (SV525T) was isolated from the sediment of a hypersaline lake located at 4600 m above sea level (Laguna Vilama, Argentina). Strain SV525T was strictly aerobic and formed pink-to-magenta colonies. Growth occurred at 10–35 °C (optimum 25–30 °C), at pH levels 6.0–8.5 (optimum 7.0) and at NaCl concentrations of 7.5–25 % (w/v) with an optimum at 10–15 % (w/v). The strain required sodium and magnesium but not potassium ions for growth. Grows with tryptone, or Bacto Peptone as sole carbon and energy source and requires yeast extract for growth. It produced catalase and oxidase. The predominant ubiquinone was Q-8 and the major fatty acids comprised C18:1 ω7c, C16:0 and C18:0. The DNA G+C content was 60.4 mol% and its polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and a phosphoglycolipid. Phylogenetic analysis based on 16S rRNA gene indicated that strain SV525T belongs to the family Ectothiorhodospiraceae within the class Gammaproteobacteria. On the basis of phylogenetic and phenotypic data, SV525T represents a novel genus and species, for which the name Halopeptonella vilamensis gen. nov., sp. nov. is proposed. The type strain is SV525T (=DSM 21056T =JCM 16388T =NCIMB 14596T). PMID:26475627

  2. Methylopila musalis sp. nov., an aerobic, facultatively methylotrophic bacterium isolated from banana fruit.

    PubMed

    Doronina, Nina V; Kaparullina, Elena N; Bykova, Tatjana V; Trotsenko, Yuri A

    2013-05-01

    A newly isolated, facultatively methylotrophic bacterium (strain MUSA(T)) was investigated. The isolate was strictly aerobic, Gram-stain-negative, asporogenous, motile, rod-shaped and multiplied by binary fission. The strain utilized methanol, methylamine and an apparently narrow range of multi-carbon compounds, but not methane, dichloromethane or CO2/H2, as the carbon and energy sources. Growth occurred at pH 5.5-9.5 (optimum, pH 7.0) and 16-40 °C (optimum, 28-30 °C). The major fatty acids of methanol-grown cells were C18 : 1ω7c, C18 : 0 and 11-methyl-C18 : 1ω7c . The predominant phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and phosphatidylmonomethylethanolamine. The major ubiquinone was Q-10. The strain had methanol and methylamine dehydrogenases as well as the enzymes of the N-methylglutamate pathway (lyases of γ-glutamylmethylamide and N-methylglutamate). C1 assimilation occurs via the isocitrate lyase-negative serine pathway. Ammonium was assimilated by glutamate dehydrogenase and the glutamate cycle (glutamate synthase/glutamine synthetase). The DNA G+C content of the strain was 64.5 mol% (determined from the melting temperature). Based on 16S rRNA gene sequence similarity (97.0-98.9 %) and DNA-DNA relatedness (36-38 %) with representatives of the genus Methylopila (Methylopila capsulata IM1(T) and Methylopila jiangsuensis JZL-4(T)) the isolate was classified as a novel species of the genus Methylopila, for which the name Methylopila musalis sp. nov. is proposed. The type strain is MUSA(T) ( = VKM B-2646(T) = DSM 24986(T) = CCUG 61696(T)). PMID:22984139

  3. Aerobic mineralization of vinyl chlorides by a bacterium of the order Actinomycetales

    SciTech Connect

    Phelps, T.J.; Malachowsky, K.; Schram, R.M. ); White, D.C. Oak Ridge National Lab., TN )

    1991-04-01

    A gram-positive branched bacterium isolated from a trichloroethylene-degrading consortium mineralized vinyl chloride in growing cultures and cell suspensions. Greater than 67% of the (1,2-{sup 14}C)vinyl chloride was mineralized to carbon dioxide, with approximately 10% of the radioactivity appearing in {sup 14}C-aqueous-phase products.

  4. [Photosynthetic activity and components of the electron transport chain in the aerobic bacteriochlorophyll A-containing bacterium Roseinatronobacter thiooxidans].

    PubMed

    Stadnichuk, I N; Ianiushin, M F; Boĭchenko, V A; Lukashev, E P; Boldareva, E N; Solov'ev, A A; Gorlenko, V M

    2009-01-01

    Bioenergetics of the aerobic bacteriochlorophyll a-containing (BCl a) bacterium (ABC bacterium) Roseinatronobacter thiooxidans is a combination of photosynthesis, oxygen respiration, and oxidation of sulfur compounds under alkaliphilic conditions. The photosynthetic activity of Rna. thiooxidans cells was established by the photoinhibition of cell respiration and reversible photobleaching discoloration of the BCl a of reaction centers (RC), connected by the chain of electron transfer with cytochrome c551 oxidation. The species under study, like many purple bacteria and some of the known ABC bacteria, possesses a light-harvesting pigment-protein (LHI) complex with the average number of 30 molecules of antenna BCl a per one photosynthetic RC. Under microaerobic growth conditions, the cells contained bc1 complex and two terminal oxidases: cbb3-cytochrome oxidase and the alternative cytochrome oxidase of the a3 type. Besides, Rna. thiooxidans was shown to have several different soluble low- and high-potential cytochromes c, probably associated with the ability of utilizing sulfur compounds as additional electron donors.

  5. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater.

    PubMed

    Duan, Jinming; Fang, Hongda; Su, Bing; Chen, Jinfang; Lin, Jinmei

    2015-03-01

    A novel halophilic bacterium capable of heterotrophic nitrification-aerobic denitrification was isolated from marine sediments and identified as Vibrio diabolicus SF16. It had ability to remove 91.82% of NH4(+)-N (119.77 mg/L) and 99.71% of NO3(-)-N (136.43 mg/L). The nitrogen balance showed that 35.83% of initial NH4(+)-N (119.77 mg/L) was changed to intracellular nitrogen, and 53.98% of the initial NH4(+)-N was converted to gaseous denitrification products. The existence of napA gene further proved the aerobic denitrification ability of strain SF16. The optimum culture conditions were salinity 1-5%, sodium acetate as carbon source, C/N 10, and pH 7.5-9.5. When an aerated biological filter system inoculated with strain SF16 was employed to treat saline wastewater, the average removal efficiency of NH4(+)-N and TN reached 97.14% and 73.92%, respectively, indicating great potential of strain SF16 for future full-scale applications. PMID:25557251

  6. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24.

    PubMed

    Li, Chune; Yang, Jinshui; Wang, Xin; Wang, Entao; Li, Baozhen; He, Ruoxue; Yuan, Hongli

    2015-04-01

    Phosphate accumulating bacterium Pseudomonas stutzeri YG-24 exhibited efficient heterotrophic nitrification and aerobic denitrification ability. Single factor experiments showed that both heterotrophic nitrification and aerobic denitrification occurred with sodium citrate as carbon source and lower C/N ratio of 8. High average NH4(+)-N, NO2(-)-N and NO3(-)-N removal rates of 8.75, 7.51 and 7.73 mg L(-1)h(-1) were achieved. The application of strain YG-24 in wastewater samples resulted in TN, NH4(+)-N, NO2(-)-N, NO3(-)-N and P removal efficiencies of 85.28%, 88.13%, 86.15%, 70.83% and 51.21%. Sequencing and quantitative amplification by real-time PCR of napA, nirS and ppk showed that nitrogen removal pathway of strain YG-24 was achieved through heterotrophic ammonium nitrification coupled with fast nitrite denitrification (NH4(+)-N to NO2(-)-N and then to gaseous nitrogen) directly. These results demonstrated the strain as a suitable candidate to simultaneously remove both nitrogen and phosphate in wastewater treatment.

  7. Isolation and Characterization of a Facultatively Aerobic Bacterium That Reductively Dehalogenates Tetrachloroethene to cis-1,2-Dichloroethene

    PubMed Central

    Sharma, P. K.; McCarty, P. L.

    1996-01-01

    A rapidly-growing facultatively aerobic bacterium that transforms tetrachloroethene (PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-1,2-DCE) at high rates in a defined medium was isolated from a contaminated site. Metabolic characterization, cellular fatty acid analysis, and partial sequence analysis of 16S rRNA showed that the new isolate, strain MS-1, has characteristics matching those of the members of the family Enterobacteriaceae. Strain MS-1 can oxidize about 58 substrates including many carbohydrates, short-chain fatty acids, amino acids, purines, and pyrimidines. It can transform up to 1 mM PCE (aqueous) at a rate of about 0.5 (mu)mol of PCE(middot) h(sup-1)(middot)mg (dry weight) of cell(sup-1). PCE transformation occurs following growth on or with the addition of single carbon sources such as glucose, pyruvate, formate, lactate, or acetate or with complex nutrient sources such as yeast extract or a mixture of amino acids. PCE dehalogenation requires the absence of oxygen, nitrate, and high concentrations of fermentable compounds such as glucose. Enterobacter agglomerans biogroup 5 (ATCC 27993), a known facultative bacterium that is closely related to strain MS-1, also reductively dehalogenated PCE to cis-1,2-DCE. To our knowledge, this is the first report on isolation of a facultative bacterium that can reductively transform PCE to cis-1,2-DCE under defined physiological conditions. Also, this is the first report of the ability of E. agglomerans to dehalogenate PCE. PMID:16535267

  8. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7.

    PubMed

    Zhang, Qing-Ling; Liu, Ying; Ai, Guo-Min; Miao, Li-Li; Zheng, Hai-Yan; Liu, Zhi-Pei

    2012-03-01

    Bacillus methylotrophicus strain L7, exhibited efficient heterotrophic nitrification-aerobic denitrification ability, with maximum NH(4)(+)-N and NO(2)(-)-N removal rate of 51.58 mg/L/d and 5.81 mg/L/d, respectively. Strain L7 showed different gaseous emitting patterns from those strains ever described. When (15)NH(4)Cl, or Na(15)NO(2), or K(15)NO(3) was used, results of GC-MS indicated that N(2)O was emitted as the intermediate of heterotrophic nitrification or aerobic denitrification, while GC-IRMS results showed that N(2) was produced as end product when nitrite was used. Single factor experiments suggested that the optimal conditions for heterotrophic nitrification were sodium succinate as carbon source, C/N 6, pH 7-8, 0 g/L NaCl, 37 °C and a wide range of NH(4)(+)-N from 80 to 1000 mg/L. Orthogonal tests showed that the optimal conditions for aerobic denitrification were C/N 20, pH 7-8, 10 g/L NaCl and DO 4.82 mg/L (shaking speed 50 r/min) when nitrite was served as substrate.

  9. Physiology of Resistant Deinococcus geothermalis Bacterium Aerobically Cultivated in Low-Manganese Medium

    PubMed Central

    Peltola, Minna; Bernhardt, Jörg; Neubauer, Peter

    2012-01-01

    This dynamic proteome study describes the physiology of growth and survival of Deinococcus geothermalis, in conditions simulating paper machine waters being aerobic, warm, and low in carbon and manganese. The industrial environment of this species differs from its natural habitats, geothermal springs and deep ocean subsurfaces, by being highly exposed to oxygen. Quantitative proteome analysis using two-dimensional gel electrophoresis and bioinformatic tools showed expression change for 165 proteins, from which 47 were assigned to a function. We propose that D. geothermalis grew and survived in aerobic conditions by channeling central carbon metabolism to pathways where mainly NADPH rather than NADH was retrieved from the carbon source. A major part of the carbon substrate was converted into succinate, which was not a fermentation product but likely served combating reactive oxygen species (ROS). Transition from growth to nongrowth resulted in downregulation of the oxidative phosphorylation observed as reduced expression of V-type ATPase responsible for ATP synthesis in D. geothermalis. The battle against oxidative stress was seen as upregulation of superoxide dismutase (Mn dependent) and catalase, as well as several protein repair enzymes, including FeS cluster assembly proteins of the iron-sulfur cluster assembly protein system, peptidylprolyl isomerase, and chaperones. Addition of soluble Mn reinitiated respiration and proliferation with concomitant acidification, indicating that aerobic metabolism was restricted by access to manganese. We conclude that D. geothermalis prefers to combat ROS using manganese-dependent enzymes, but when manganese is not available central carbon metabolism is used to produce ROS neutralizing metabolites at the expense of high utilization of carbon substrate. PMID:22228732

  10. Involvement of NarK1 and NarK2 Proteins in Transport of Nitrate and Nitrite in the Denitrifying Bacterium Pseudomonas aeruginosa PAO1

    PubMed Central

    Sharma, Vandana; Noriega, Chris E.; Rowe, John J.

    2006-01-01

    Two transmembrane proteins were tentatively classified as NarK1 and NarK2 in the Pseudomonas genome project and hypothesized to play an important physiological role in nitrate/nitrite transport in Pseudomonas aeruginosa. The narK1 and narK2 genes are located in a cluster along with the structural genes for the nitrate reductase complex. Our studies indicate that the transcription of all these genes is initiated from a single promoter and that the gene complex narK1K2GHJI constitutes an operon. Utilizing an isogenic narK1 mutant, a narK2 mutant, and a narK1K2 double mutant, we explored their effect on growth under denitrifying conditions. While the ΔnarK1::Gm mutant was only slightly affected in its ability to grow under denitrification conditions, both the ΔnarK2::Gm and ΔnarK1K2::Gm mutants were found to be severely restricted in nitrate-dependent, anaerobic growth. All three strains demonstrated wild-type levels of nitrate reductase activity. Nitrate uptake by whole-cell suspensions demonstrated both the ΔnarK2::Gm and ΔnarK1K2::Gm mutants to have very low yet different nitrate uptake rates, while the ΔnarK1::Gm mutant exhibited wild-type levels of nitrate uptake. Finally, Escherichia coli narK rescued both the ΔnarK2::Gm and ΔnarK1K2::Gm mutants with respect to anaerobic respiratory growth. Our results indicate that only the NarK2 protein is required as a nitrate/nitrite transporter by Pseudomonas aeruginosa under denitrifying conditions. PMID:16391109

  11. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    PubMed Central

    2014-01-01

    Background Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium that is less toxic. Results A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain molybdenum as co-factor. Strain S44 was resistant to multiple heavy and transition metal(loid)s such as Se(IV), As(III), Cu(II), and Cd(II) with minimal inhibitory concentrations (MIC) of 100 mM, 20 mM, 4 mM, and 0.5 mM, respectively. Disruption of iscR encoding a transcriptional regulator negatively impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. Conclusions C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions and to tolerate multiple heavy and transition metals. IscR appears to be an activator to regulate genes involved in resistance to heavy or transition metal(loid)s but not for genes responsible for Se(IV) reduction. PMID:25098921

  12. Humitalea rosea gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium of the family Acetobacteraceae isolated from soil.

    PubMed

    Margesin, Rosa; Zhang, De-Chao

    2013-04-01

    A Gram-staining-negative, pale-pink-pigmented, non-motile, obligately aerobic and rod-shaped bacterium, designated strain W37(T), was isolated from soil and subjected to a taxonomic investigation using a polyphasic approach. The strain grew at 1-30 °C, oxidized thiosulfate and accumulated polyhydroxyalkanoates. Photosynthetic pigments were represented by bacteriochlorophyll a and carotenoids. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain W37(T) was most closely related to members of the genera Roseococcus and Rubritepida (with sequence similarities of <92.8 %) but formed a distinct lineage in the family Acetobacteraceae. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, three unidentified aminolipids and one other unidentified lipid. The predominant cellular fatty acids were C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The DNA G+C content of strain W37(T) was 68.2 mol%. On the basis of phenotypic characteristics and phylogenetic analysis, strain W37(T) represents a novel species of a new genus in the family Acetobacteraceae, for which the name Humitalea rosea gen. nov., sp. nov. is proposed. The type strain of the type species is W37(T) ( = CIP 110261(T) = LMG 26243(T)).

  13. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1.

    PubMed

    Sun, Zhiyi; Lv, Yongkang; Liu, Yuxiang; Ren, Ruipeng

    2016-11-01

    A novel heterotrophic nitrifying and metal resistant bacterium was isolated and identified as Cupriavidus sp. S1. The utilization of ammonium, nitrate and nitrite as well as the production of N2 proved the heterotrophic nitrification and aerobic denitrification ability of S1. The ammonium, nitrate and nitrite removal efficiencies were 99.68%, 98.03% and 99.81%, with removal rates of 10.43, 8.64 and 8.36mg/L/h, respectively. A multiple regression equation well described the relationship between carbon source utilization, cell growth and nitrification. Keeping the shaking speed at 120rpm was beneficial for denitrification. Moreover, different forms of nitrogen source could be utilize in simultaneous nitrification and denitrification. Additionally, the efficient removal of ammonium occurred at 20.0mg/LZn(2+), or 10.0mg/LNi(2+) or 8.0mg/LCu(2+) or 5.0mg/LCr(6+), 33.35mmol/L sodium pyruvate, C/N 12-28. These findings demonstrate that S1 was effective for nitrogen removal in industrial wastewater containing heavy metal. PMID:27566522

  14. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440

    PubMed Central

    Schmitz, Simone; Nies, Salome; Wierckx, Nick; Blank, Lars M.; Rosenbaum, Miriam A.

    2015-01-01

    Pseudomonas putida strains are being developed as microbial production hosts for production of a range of amphiphilic and hydrophobic biochemicals. P. putida's obligate aerobic growth thereby can be an economical and technical challenge because it requires constant rigorous aeration and often causes reactor foaming. Here, we engineered a strain of P. putida KT2440 that can produce phenazine redox-mediators from Pseudomonas aeruginosa to allow partial redox balancing with an electrode under oxygen-limited conditions. P. aeruginosa is known to employ its phenazine-type redox mediators for electron exchange with an anode in bioelectrochemical systems (BES). We transferred the seven core phenazine biosynthesis genes phzA-G and the two specific genes phzM and phzS required for pyocyanin synthesis from P. aeruginosa on two inducible plasmids into P. putida KT2440. The best clone, P. putida pPhz, produced 45 mg/L pyocyanin over 25 h of growth, which was visible as blue color formation and is comparable to the pyocyanin production of P. aeruginosa. This new strain was then characterized under different oxygen-limited conditions with electrochemical redox control and changes in central energy metabolism were evaluated in comparison to the unmodified P. putida KT2440. In the new strain, phenazine synthesis with supernatant concentrations up to 33 μg/mL correlated linearly with the ability to discharge electrons to an anode, whereby phenazine-1-carboxylic acid served as the dominating redox mediator. P. putida pPhz sustained strongly oxygen-limited metabolism for up to 2 weeks at up to 12 μA/cm2 anodic current density. Together, this work lays a foundation for future oxygen-limited biocatalysis with P. putida strains. PMID:25914687

  15. Anaerobic degradation of nitrilotriacetate (NTA) in a denitrifying bacterium: purification and characterization of the NTA dehydrogenase-nitrate reductase enzyme complex.

    PubMed Central

    Jenal-Wanner, U; Egli, T

    1993-01-01

    The initial step in the anoxic metabolism of nitrilotriacetate (NTA) was investigated in a denitrifying member of the gamma subgroup of the Proteobacteria. In membrane-free cell extracts, the first step of NTA oxidation was catalyzed by a protein complex consisting of two enzymes, NTA dehydrogenase (NTADH) and nitrate reductase (NtR). The products formed were iminodiacetate and glyoxylate. Electrons derived from the oxidation of NTA were transferred to nitrate only via the artificial dye phenazine methosulfate, and nitrate was stoichiometrically reduced to nitrite. NTADH activity could be measured only in the presence of NtrR and vice versa. The NTADH-NtrR enzyme complex was purified and characterized. NTADH and NtrR were both alpha 2 dimers and had molecular weights of 170,000 and 105,000, respectively. NTADH contained covalently bound flavin cofactor, and NtrR contained a type b cytochrome. Optimum NTA-oxidizing activity was achieved at a molar ratio of NTADH to NtrR of approximately 1:1. So far, NTA is the only known substrate for NTADH. This is the first report of a redox enzyme complex catalyzing the oxidation of a substrate and concomitantly reducing nitrate. Images PMID:8250558

  16. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13.

    PubMed

    Sun, Yilu; Li, Ang; Zhang, Xuening; Ma, Fang

    2015-04-01

    The nitrogen-removing characteristics of Pseudomonas stutzeri T13, a heterotrophic nitrifying-aerobic denitrifying bacterium, were investigated. The ammonium and nitrate removal of the bacterium was found to reach nearly 100 % at 15 h. However, the total nitrogen (TN) removal rate reached only about 23.47 % because of the dramatic accumulation of nitrite at a high dissolved oxygen (DO) level (160 rpm). The process of nitrite reduction was found to be the bottleneck for the efficiency of aerobic denitrification. Decreasing the shaking speed from 160 to 50 rpm to lower the DO concentration during cultivation was an effective method of improving nitrite utilization because nitrite removal increased from 62.37 to 100 %. The 99.21 % capability of simultaneous heterotrophic nitrification and aerobic denitrification with TN removal was achieved at a relatively low DO level (50 rpm). PMID:25417744

  17. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka.

    PubMed

    Kevbrin, Vadim V; Zengler, Karsten; Lysenko, Anatolii M; Wiegel, Juergen

    2005-10-01

    A facultative aerobic, moderately thermophilic, spore forming bacterium, strain JW/VK-KG4 was isolated from an enrichment culture obtained from the Geyser valley, a geo-thermally heated environment located in the Kamchatka peninsula (Far East region of Russia). The cells were rod shaped, motile, peritrichous flagellated stained Gram positive and had a Gram positive type cell wall. Aerobically, the strain utilized a range of carbohydrates including glucose, fructose, trehalose, proteinuous substrates, and pectin as well. Anaerobically, only carbohydrates are utilized. When growing on carbohydrates, the strain required yeast extract and vitamin B(12). Anaerobically, glucose was fermented to lactate as main product and acetate, formate, ethanol as minor products. Aerobically, even in well-aerated cultures (agitated at 500 rpm), glucose oxidation was incomplete and lactate and acetate were found in culture supernatants as by-products. Optimal growth of the isolate was observed at pH(25 C) 6.8-8.5 and 60 degrees C. The doubling times on glucose at optimal growth conditions were 34 min (aerobically) and 40 min (anaerobically). The G+C content was 42.3 mol% as determined by T(m) assay. Sequence analysis of the 16S rRNA gene indicated an affiliation of strain JW/VK-KG4 with Anoxybacillus species. Based on its morphology, physiology, phylogenetic relationship and its low DNA-DNA homology with validly published species of Anoxybacillus, it is proposed that strain JW/VK-KG4 represents a new species in the genus Anoxybacillus as A. kamchatkensis sp. nov. The type strain for the novel species is JW/VK-KG4(T) (=DSM 14988, =ATCC BAA-549). The GenBank accession number for the 16S rDNA sequence is AF510985.

  18. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka.

    PubMed

    Kevbrin, Vadim V; Zengler, Karsten; Lysenko, Anatolii M; Wiegel, Juergen

    2005-10-01

    A facultative aerobic, moderately thermophilic, spore forming bacterium, strain JW/VK-KG4 was isolated from an enrichment culture obtained from the Geyser valley, a geo-thermally heated environment located in the Kamchatka peninsula (Far East region of Russia). The cells were rod shaped, motile, peritrichous flagellated stained Gram positive and had a Gram positive type cell wall. Aerobically, the strain utilized a range of carbohydrates including glucose, fructose, trehalose, proteinuous substrates, and pectin as well. Anaerobically, only carbohydrates are utilized. When growing on carbohydrates, the strain required yeast extract and vitamin B(12). Anaerobically, glucose was fermented to lactate as main product and acetate, formate, ethanol as minor products. Aerobically, even in well-aerated cultures (agitated at 500 rpm), glucose oxidation was incomplete and lactate and acetate were found in culture supernatants as by-products. Optimal growth of the isolate was observed at pH(25 C) 6.8-8.5 and 60 degrees C. The doubling times on glucose at optimal growth conditions were 34 min (aerobically) and 40 min (anaerobically). The G+C content was 42.3 mol% as determined by T(m) assay. Sequence analysis of the 16S rRNA gene indicated an affiliation of strain JW/VK-KG4 with Anoxybacillus species. Based on its morphology, physiology, phylogenetic relationship and its low DNA-DNA homology with validly published species of Anoxybacillus, it is proposed that strain JW/VK-KG4 represents a new species in the genus Anoxybacillus as A. kamchatkensis sp. nov. The type strain for the novel species is JW/VK-KG4(T) (=DSM 14988, =ATCC BAA-549). The GenBank accession number for the 16S rDNA sequence is AF510985. PMID:16142505

  19. Acquisition of Fe from Natural Organic Matter by an Aerobic Pseudomonas Bacterium: Siderophores and Cellular Fe Status

    NASA Astrophysics Data System (ADS)

    Koehn, K.; Dehner, C.; Dubois, J.; Maurice, P. A.

    2010-12-01

    Aerobic microorganisms have evolved various strategies to acquire nutrient Fe, including release of Fe-chelating siderophores. The potential importance of siderophores in Fe acquisition from natural organic matter (NOM) (reverse osmosis, RO; and XAD-8 samples with naturally associated Fe) was investigated using a wild type strain (WT) of aerobic Pseudomonas mendocina that produces siderophore(s) and an engineered mutant that cannot. Microbial growth under Fe-limited batch conditions was monitored via optical density, and a β-galactosidase biosensor assay was used to quantify cellular Fe status. Both WT and mutant strains acquired Fe from NOM. Fe ‘stress’ in the presence of the RO sample decreased with increasing [Fe] (as determined by different [DOC]s) and was consistently less for the WT. For both WT and mutant, maximum growth in the presence of RO sample increased as: 1 mgC/L (0.2μM Fe) < 100 mgC/L (20μM Fe) < 10 mgC/L (2μM Fe). Comparison of XAD-8 and RO samples ([DOC] varied to give 2μM [Fe]total for each), showed that although there were no apparent differences in internal Fe status, growth was better on the XAD-8 sample. Chelex treatment to partially remove metals associated with the RO sample increased Fe stress but did not substantially affect growth. Results demonstrated that: (1) siderophores are useful but not necessary for Fe acquisition from NOM by P. mendocina and (2) NOM may have complex effects on microbial growth, related not just to Fe content but potentially to the presence of other (trace)metals such as Al and/or to effects on biofilm development.

  20. [Analysis of the Microbial Community Structure in Continuous Flow Reactor Enhanced by Heterotrophic Nitrification and Aerobic Denitrification Bacterium Burkholderia sp. YX02].

    PubMed

    Shao, Ji-lun; Cao, Gang; Li, Zi-hui; Huang, Zheng-zheng; Luo, Kai; Mo, Ce-hui

    2016-02-15

    To reveal the dynamic succession of microbial community structure along with time in bio-denitrification reactor, a continuous flow reactor containing immobilized heterotrophic nitrification-aerobic denitrification bacterium Burkholderia sp. YX02 was taken as a model. The microbial community structure in the bioreactor was analyzed by PCR-DCGE, and its correlations with environmental factors such as pH, NH4+ -N, NO2- -N, NO3- -N and COD were simultaneously investigated. The results showed that the microbial community was relatively rich during the early stage of 18 days. The similarity of community structure in different stages was not orderly declining with the operation. In addition, the structural similarity in adjacent stages firstly increased, then decreased, and eventually tended to be stable. Shannon-Wiener index firstly descended significantly, and then ascended with new microbial community emerging at the later stage. UPGMA clustering analysis roughly divided the process into three periods with certain relationship. Principal component analysis showed that during the operation of the bioreactor predominant bacterial community formed steadily and new microbial community dominated by Burkholderia sp. YX02 emerged at the later stage of the operation. Canonical correspondence analysis certificated that the structure of microbial community was most obviously affected by NO2- -N, followed by NO3- -N, NH4+ -N and COD, and pH had the least effect. PMID:27363154

  1. Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane-degrading bacterium isolated from oilfield soils.

    PubMed

    Bogan, Bill W; Sullivan, Wendy R; Kayser, Kevin J; Derr, K D; Aldrich, Henry C; Paterek, J Robert

    2003-09-01

    An alkane-degrading bacterium, designated GTI MVAB Hex1(T), was isolated from chronically crude oil-contaminated soil from an oilfield in southern Illinois. The isolate grew very weakly or not at all in minimal or rich media without hydrocarbons. Straight-chain aliphatic hydrocarbons, such as hexadecane and heptadecane, greatly stimulated growth; shorter-chain (

  2. Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems.

    PubMed

    Prasad, A S Arun; Rao, K V Bhaskara

    2013-08-01

    An obligate alkaliphilic bacterium Bacillus cohnii MTCC 3616 aerobically decolorized a textile azo dye Direct Red-22 (5,000 mg l⁻¹) with 95 % efficiency at 37 °C and pH 9 in 4 h under static conditions. The decolorization of Direct Red-22 (DR-22) was possible through a broad pH (7-11), temperature (10-45 °C), salinity (1-7 %), and dye concentration (5-10 g l⁻¹) range. Decolorization of dye was assessed by UV-vis spectrophotometer with reduction of peak intensity at 549 nm (λ(max)). Biodegradation of dye was analyzed by Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC). The FTIR spectrum revealed that B. cohnii specifically targeted azo bond (N=N) at 1,614.42 cm⁻¹ to break down Direct Red-22. Formation of metabolites with different retention times in HPLC analysis further confirmed the degradation of dye. The phytotoxicity test with 5,000 mg l⁻¹ of untreated dye showed 80 % germination inhibition in Vigna mungo, 70 % in Sorghum bicolor and 80 % in Vigna radiata. No germination inhibition was noticed in all three plants by DR-22 metabolites at 5,000 mg l⁻¹. Biotoxicity test with Artemia salina proved the lethality of the azo dye at LC₅₀ of 4 and 8 % for degraded metabolites by causing death of its nauplii compared to its less toxic-degraded metabolites. Bioaccumulation of dye was observed in the mid-gut of A. salina. The cytogenotoxicity assay on the meristematic root tip cells of Allium cepa further confirmed the cytotoxic nature of azo dye (DR-22) with decrease in mitotic index (0.5 % at 500 ppm) and increase in aberrant index (4.56 %) over 4-h exposure period. Genotoxic damages (lagging chromosome, metaphase cluster, chromosome bridges, and dye accumulation in cytoplasm) were noticed at different stages of cell cycle. The degraded metabolites had negligible cytotoxic and genotoxic effects.

  3. Isolation and Characterization of Diverse Halobenzoate-Degrading Denitrifying Bacteria from Soils and Sediments

    PubMed Central

    Song, Bongkeun; Palleroni, Norberto J.; Häggblom, Max M.

    2000-01-01

    Denitrifying bacteria capable of degrading halobenzoates were isolated from various geographical and ecological sites. The strains were isolated after initial enrichment on one of the monofluoro-, monochloro-, or monobromo-benzoate isomers with nitrate as an electron acceptor, yielding a total of 33 strains isolated from the different halobenzoate-utilizing enrichment cultures. Each isolate could grow on the selected halobenzoate with nitrate as the terminal electron acceptor. The isolates obtained on 2-fluorobenzoate could use 2-fluorobenzoate under both aerobic and denitrifying conditions, but did not degrade other halobenzoates. In contrast, the 4-fluorobenzoate isolates degraded 4-fluorobenzoate under denitrifying conditions only, but utilized 2-fluorobenzoate under both aerobic and denitrifying conditions. The strains isolated on either 3-chlorobenzoate or 3-bromobenzoate could use 3-chlorobenzoate, 3-bromobenzoate, and 2- and 4-fluorobenzoates under denitrifying conditions. The isolates were identified and classified on the basis of 16S rRNA gene sequence analysis and their cellular fatty acid profiles. They were placed in nine genera belonging to either the α-, β-, or γ-branch of the Proteobacteria, namely, Acidovorax, Azoarcus, Bradyrhizobium, Ochrobactrum, Paracoccus, Pseudomonas, Mesorhizobium, Ensifer, and Thauera. These results indicate that the ability to utilize different halobenzoates under denitrifying conditions is ubiquitously distributed in the Proteobacteria and that these bacteria are widely distributed in soils and sediments. PMID:10919805

  4. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil.

    PubMed

    Zhang, Jun; Zhou, Wuxian; Liu, Bingbing; He, Jian; Shen, Qirong; Zhao, Fang-Jie

    2015-05-19

    Microbe-mediated arsenic (As) redox reactions play an important role in the biogeochemical cycling of As. Reduction of arsenate [As(V)] generally leads to As mobilization in paddy soils and increased As availability to rice plants, whereas oxidation of arsenite [As(III)] results in As immobilization. A novel chemoautotrophic As(III)-oxidizing bacterium, designated strain SY, was isolated from an As-contaminated paddy soil. The isolate was able to derive energy from the oxidation of As(III) to As(V) under both aerobic and anaerobic conditions using O2 or NO3(-) as the respective electron acceptor. Inoculation of the washed SY cells into a flooded soil greatly enhanced As(III) oxidation to As(V) both in the solution and adsorbed phases of the soil. Strain SY is phylogenetically closely related to Paracoccus niistensis with a 16S rRNA gene similarity of 96.79%. The isolate contains both the denitrification and ribulose 1,5-bisphosphate carboxylase/oxygenase gene clusters, underscoring its ability to denitrify and to fix CO2 while coupled to As(III) oxidation. Deletion of the aioA gene encoding the As(III) oxidase subunit A abolished the As(III) oxidation ability of strain SY and led to increased sensitivity to As(III), suggesting that As(III) oxidation is a detoxification mechanism in this bacterium under aerobic and heterotrophic growth conditions. Analysis of the aioA gene clone library revealed that the majority of the As(III)-oxidizing bacteria in the soil were closely related to the genera Paracoccus of α-Proteobacteria. Our results provide direct evidence for As(III) oxidation by Paracoccus species and suggest that these species may play an important role in As(III) oxidation in paddy soils under both aerobic and denitrifying conditions. PMID:25905768

  5. [New Strains of an Aerobic Anoxygenic Phototrophic Bacterium Porphyrobacter donghaensis Isolated from a Siberian Thermal Spring and a Low-Mineralization Lake].

    PubMed

    Nuyanzina-Boldareva, E N; Akimova, V N; Takaiche, S; Gorlenko, V M

    2016-01-01

    A strain of aerobic anoxygenic phototrophic bacteria (AAPB) isolated from the surface of a cyano- bacterial mat of an Eastern Siberian thermal spring (40 C) and designated Se 4 was identified as Porphyro- bacter donghaensis according to its 16S rRNA gene sequence. A DNA-DNA hybridization level of 95% was determined between strain Se-4 and the type strain of this species; SW-132@T. The isolate was an obligate aerobe,. forming orange round colonies on solid media, which turn red in the course of growth. The cells were motile rods capable of branching. The cells divided by uniform fission by constriction. Optimal growth was observed at pH 7.5 and NaCl concentrations from 0 to 1 g/L. The pigments present were carotenoids and bacteriochlorophyll a. Another Porphyrobacter donghaensis strain, Noj- 1, isolated from a purple mat developing on the surface of a coastal set-up in a steppe low-mineralization (1.5 g/L) soda lake Nozhii (Eastern Siberia) possessed similar characteristics. Thus, the AAPB species Porphyrobacter donghaensis was shown to-occur, apart from its known habitat, marine environments, in low-mineralization soda lakes and freshwater thermal springs. Description of the species Porphyrobacter donghaensis was amended. PMID:27301129

  6. Nitrification and denitrifying phosphorus removal in an upright continuous flow reactor.

    PubMed

    Reza, Maryam; Alvarez Cuenca, Manuel

    2016-01-01

    Simultaneous nitrification and denitrifying phosphorus removal was achieved in a single-sludge continuous flow bioreactor. The upright bioreactor was aligned with a biomass fermenter (BF) and operated continuously for over 350 days. This study revealed that unknown bacteria of the Saprospiraceae class may have been responsible for the successful nutrient removal in this bioreactor. The successive anoxic-aerobic stages of the bioreactor with upright alignment along with a 60 L BF created a unique ecosystem for the growth of nitrifier, denitrifiers, phosphorus accumulating organisms and denitrifying phosphorus accumulating organisms. Furthermore, total nitrogen to chemical oxygen demand (COD) ratio and total phosphorus to COD ratio of 0.6 and 0.034, respectively, confirmed the comparative advantages of this advanced nutrient removal process relative to both sequencing batch reactors and activated sludge processes. The process yielded 95% nitrogen removal and over 90% phosphorus removal efficiencies. PMID:27148710

  7. Nitrification and denitrifying phosphorus removal in an upright continuous flow reactor.

    PubMed

    Reza, Maryam; Alvarez Cuenca, Manuel

    2016-01-01

    Simultaneous nitrification and denitrifying phosphorus removal was achieved in a single-sludge continuous flow bioreactor. The upright bioreactor was aligned with a biomass fermenter (BF) and operated continuously for over 350 days. This study revealed that unknown bacteria of the Saprospiraceae class may have been responsible for the successful nutrient removal in this bioreactor. The successive anoxic-aerobic stages of the bioreactor with upright alignment along with a 60 L BF created a unique ecosystem for the growth of nitrifier, denitrifiers, phosphorus accumulating organisms and denitrifying phosphorus accumulating organisms. Furthermore, total nitrogen to chemical oxygen demand (COD) ratio and total phosphorus to COD ratio of 0.6 and 0.034, respectively, confirmed the comparative advantages of this advanced nutrient removal process relative to both sequencing batch reactors and activated sludge processes. The process yielded 95% nitrogen removal and over 90% phosphorus removal efficiencies.

  8. Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes.

    PubMed

    Vollack, K U; Härtig, E; Körner, H; Zumft, W G

    1999-03-01

    Pseudomonas stutzeri is a facultative anaerobic bacterium with the capability of denitrification. In searching for regulators that control the expression of this trait in response to oxygen withdrawal, we have found an unprecedented multiplicity of four genes encoding transcription factors of the FNR family. The fnrA gene encodes a genuine FNR-type regulator, which is expressed constitutively and controls the cytochrome cbb3-type terminal oxidase (the cco operon), cytochrome c peroxidase (the ccp gene) and the oxygen-independent coproporphyrinogen III oxidase (the hemN gene), in addition to its previously demonstrated role in arginine catabolism (the arc operon). The fnr homologues dnrD, dnrE and dnrS encode regulators of a new subgroup within the FNR family. Their main distinctive feature is the lack of cysteine residues for complexing the [4Fe-4S] centre of redox-active FNR-type regulators. However, they form a phylogenetic lineage separate from the FixK branch of FNR proteins, which also lack this cysteine signature. We have studied the expression of the dnr genes under aerobic, oxygen-limited and denitrifying conditions. DnrD is a key regulator of denitrification by selective activation of the genes for cytochrome cd1 nitrite reductase and NO reductase. The dnrD gene is part of the 30 kb region carrying denitrification genes of P. stutzeri. Transcription of dnrD was activated in O2-limited cells and particularly strongly in denitrifying cells, but was not under the control of FnrA. In response to denitrifying growth conditions, dnrD was transcribed as part of an operon together with genes downstream and upstream of dnrD. dnrS was found about 9 kb upstream of dnrD, next to the nrdD gene for anaerobic ribonucleotide reductase. The transcription of dnrS required FnrA in O2-limited cells. Mutation of dnrS affected nrdD and the expression of ferredoxin I as an element of the oxidative stress response. The dnrE gene is part of the nar region encoding functions for

  9. A marine inducible prophage vB_CibM-P1 isolated from the aerobic anoxygenic phototrophic bacterium Citromicrobium bathyomarinum JL354

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Zhang, Rui; Xu, Yongle; , Richard Allen White, III; Wang, Yu; Luo, Tingwei; Jiao, Nianzhi

    2014-11-01

    A prophage vB_CibM-P1 was induced by mitomycin C from the epipelagic strain Citromicrobium bathyomarinum JL354, a member of the alpha-IV subcluster of marine aerobic anoxygenic phototrophic bacteria (AAPB). The induced bacteriophage vB_CibM-P1 had Myoviridae-like morphology and polyhedral heads (approximately capsid 60-100 nm) with tail fibers. The vB_CibM-P1 genome is ~38 kb in size, with 66.0% GC content. The genome contains 58 proposed open reading frames that are involved in integration, DNA packaging, morphogenesis and bacterial lysis. VB_CibM-P1 is a temperate phage that can be directly induced in hosts. In response to mitomycin C induction, virus-like particles can increase to 7 × 109 per ml, while host cells decrease an order of magnitude. The vB_CibM-P1 bacteriophage is the first inducible prophage from AAPB.

  10. Assessing the Impact of Denitrifier-Produced Nitric Oxide on Other Bacteria

    PubMed Central

    Choi, Peter S.; Naal, Zeki; Moore, Charles; Casado-Rivera, Emerilis; Abruña, Hector D.; Helmann, John D.; Shapleigh, James P.

    2006-01-01

    A series of experiments was undertaken to learn more about the impact on other bacteria of nitric oxide (NO) produced during denitrification. The denitrifier Rhodobacter sphaeroides 2.4.3 was chosen as a denitrifier for these experiments. To learn more about NO production by this bacterium, NO levels during denitrification were measured by using differential mass spectrometry. This revealed that NO levels produced during nitrate respiration by this bacterium were in the low μM range. This concentration of NO is higher than that previously measured in denitrifiers, including Achromobacter cycloclastes and Paracoccus denitrificans. Therefore, both 2.4.3 and A. cycloclastes were used in this work to compare the effects of various NO levels on nondenitrifying bacteria. By use of bacterial overlays, it was found that the NO generated by A. cycloclastes and 2.4.3 cells during denitrification inhibited the growth of both Bacillus subtilis and R. sphaeroides 2.4.1 but that R. sphaeroides 2.4.3 caused larger zones of inhibition in the overlays than A. cycloclastes. Both R. sphaeroides 2.4.3 and A. cycloclastes induced the expression of the NO stress response gene hmp in B. subtilis. Taken together, these results indicate that there is variability in the NO concentrations produced by denitrifiers, but, irrespective of the NO levels produced, microbes in the surrounding environment were responsive to the NO produced during denitrification. PMID:16517672

  11. Metagenomic analysis of the sludge microbial community in a lab-scale denitrifying phosphorus removal reactor.

    PubMed

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Ji; Li, Chao-Lin

    2015-04-01

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. In the present study, the metagenome of denitrifying phosphorus removal sludge from a lab-scale anaerobic-anoxic SBR was generated by Illumina sequencing to study the microbial community. Compared with the aerobic phosphorus removal sludge, the denitrifying phosphorus removal sludge demonstrated quite similar microbial community profile and microbial diversity with sludge from Aalborg East EBPR WWTP. Proteobacteria was the most dominant phylum; within Proteobacteria, β-Proteobacteria was the most dominant class, followed by α-, γ-, δ-, and ε-Proteobacteria. The genes involved in phosphate metabolism and biofilm formation reflected the selective pressure of the phosphorus removal process. Moreover, ppk sequence from DPAO was outside the Accumulibacter clusters, which suggested different core phosphorus removal bacteria in denitrifying and aerobic phosphorus removal systems. In a summary, putative DPAO might be a novel genus that is closely related between Accumulibacter and Dechloromonas within Rhodocyclus. The microbial community and metabolic profiles achieved in this study will eventually help to improve the understanding of key microorganisms and the entire community in order to improve the phosphorus removal efficiency of EBPR processes.

  12. Microbial and metabolic characterization of a denitrifying phosphorus-uptake/side stream phosphorus removal system for treating domestic sewage.

    PubMed

    Jin, Zhan; Ji, Fang-Ying; Xu, Xuan; Xu, Xiao-Yi; Chen, Qing-Kong; Li, Qi

    2014-11-01

    In this study, an advanced wastewater treatment process, the denitrifying phosphorus/side stream phosphorus removal system (DPR-Phostrip), was developed for the purpose of enhancing denitrifying phosphorus removal. The enrichment of denitrifying phosphorus-accumulating organisms (DPAOs) and the microbial community structure of DPR-Phostrip were evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the metabolic activity of seed sludge and activated sludge collected after 55 days of operation were evaluated by Biolog™ analysis. This experimental study of DPR-Phostrip operation showed that nutrients were removed effectively, and denitrifying phosphorus removal was observed during the pre-anoxic period. PCR-DGGE analysis indicated that DPR-Phostrip supported DPAO growth while inhibiting PAOs and GAOs. The major dominant species in DPR-Phostrip were Bacteroidetes bacterium, Saprospiraceae bacterium, and Chloroflexi bacterium. Moreover, the functional diversity indices calculated on the basis of Biolog analysis indicated that DPR-Phostrip had almost no effect on microbial community diversity but was associated with a shift in the dominant species, which confirms the results of the PCR-DGGE analysis. The results for average well color development, calculated via Biolog analysis, showed that DPR-Phostrip had a little impact on the metabolic activity of sludge. Further principal component analysis suggested that the ability to utilize low-molecular-weight organic compounds was reduced in DPR-Phostrip.

  13. Microbial and metabolic characterization of a denitrifying phosphorus-uptake/side stream phosphorus removal system for treating domestic sewage.

    PubMed

    Jin, Zhan; Ji, Fang-Ying; Xu, Xuan; Xu, Xiao-Yi; Chen, Qing-Kong; Li, Qi

    2014-11-01

    In this study, an advanced wastewater treatment process, the denitrifying phosphorus/side stream phosphorus removal system (DPR-Phostrip), was developed for the purpose of enhancing denitrifying phosphorus removal. The enrichment of denitrifying phosphorus-accumulating organisms (DPAOs) and the microbial community structure of DPR-Phostrip were evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and the metabolic activity of seed sludge and activated sludge collected after 55 days of operation were evaluated by Biolog™ analysis. This experimental study of DPR-Phostrip operation showed that nutrients were removed effectively, and denitrifying phosphorus removal was observed during the pre-anoxic period. PCR-DGGE analysis indicated that DPR-Phostrip supported DPAO growth while inhibiting PAOs and GAOs. The major dominant species in DPR-Phostrip were Bacteroidetes bacterium, Saprospiraceae bacterium, and Chloroflexi bacterium. Moreover, the functional diversity indices calculated on the basis of Biolog analysis indicated that DPR-Phostrip had almost no effect on microbial community diversity but was associated with a shift in the dominant species, which confirms the results of the PCR-DGGE analysis. The results for average well color development, calculated via Biolog analysis, showed that DPR-Phostrip had a little impact on the metabolic activity of sludge. Further principal component analysis suggested that the ability to utilize low-molecular-weight organic compounds was reduced in DPR-Phostrip. PMID:25073616

  14. Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007.

    PubMed

    Ben Ali Gam, Zouhaier; Abdelkafi, Slim; Casalot, Laurence; Tholozan, Jean Luc; Oueslati, Ridha; Labat, Marc

    2007-10-01

    An aerobic, moderately halophilic, Gram-negative, motile, non-sporulating bacterium, strain LIT2(T), was isolated from an oilfield-water injection after enrichment on crude oil. Strain LIT2(T) grew between 15 and 45 degrees C and optimally at 37 degrees C. It grew in the presence of 1-25 % (w/v) NaCl, with an optimum at 10 % (w/v) NaCl. Predominant fatty acids were C(16 : 0) (26.9 %), C(18 : 1)omega7c (22.6 %), C(16 : 1)omega7c (20.4 %) C(19 : 0) cyclo omega8c (10.9 %) and C(17 : 0) (8 %). Interestingly, the relative percentages of these last two fatty acids were intermediate compared with most species among the family Halomonadaceae for which fatty acid composition has been determined. The DNA G+C content was 53.7 mol%, which is very low among the family Halomonadaceae. Strain LIT2(T) exhibited 16S rRNA gene sequence similarity values of 94.06-95.15 % to members of the genus Chromohalobacter, 94.21-94.65 % to members of the genus Halomonas and 93.57 % with the single species representative of the genus Cobetia. Based on the phylogenetic and phenotypic evidence presented in this paper, we propose the name Modicisalibacter tunisiensis gen. nov., sp. nov. to accommodate strain LIT2(T). The type strain of Modicisalibacter tunisiensis is LIT2(T) (=CCUG 52917(T) =CIP 109206(T)). A reassignment of the descriptive 16S rRNA signature characteristics of the family Halomonadaceae permitted placement of the new genus Modicisalibacter into the family.

  15. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov.

    PubMed

    Nakai, Ryosuke; Nishijima, Miyuki; Tazato, Nozomi; Handa, Yutaka; Karray, Fatma; Sayadi, Sami; Isoda, Hiroko; Naganuma, Takeshi

    2014-10-01

    A phylogenetically novel proteobacterium, strain Shr3(T), was isolated from sand gravels collected from the eastern margin of the Sahara Desert. The isolation strategy targeted bacteria filterable through 0.2-µm-pore-size filters. Strain Shr3(T) was determined to be a Gram-negative, aerobic, non-motile, filamentous bacterium. Oxidase and catalase reactions were positive. Strain Shr3(T) showed growth on R2A medium, but poor or no growth on nutrient agar, trypticase soy agar and standard method agar. The major isoprenoid quinone was menaquinone-7. The dominant cellular fatty acids detected were C16:1ω5c and C16:0, and the primary hydroxy acid present was C12:0 3-OH. The DNA G+C content was 54.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Shr3(T) was affiliated with an uncultivated lineage of the phylum Proteobacteria; the nearest known type strain, with 83% sequence similarity, was Desulfomicrobium orale DSM 12838(T) in the class Deltaproteobacteria. The isolate and closely related environmental clones formed a novel class-level clade in the phylum Proteobacteria with high bootstrap support (96-99%). Based on these results, the novel class Oligoflexia classis nov. in the phylum Proteobacteria and the novel genus and species Oligoflexus tunisiensis gen. nov., sp. nov. are proposed for strain Shr3(T), the first cultivated representative of the Oligoflexia. The type strain of Oligoflexus tunisiensis is Shr3(T) ( = JCM 16864(T) = NCIMB 14846(T)). We also propose the subordinate taxa Oligoflexales ord. nov. and Oligoflexaceae fam. nov. in the class Oligoflexia.

  16. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov.

    PubMed Central

    Nakai, Ryosuke; Nishijima, Miyuki; Tazato, Nozomi; Handa, Yutaka; Karray, Fatma; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    A phylogenetically novel proteobacterium, strain Shr3T, was isolated from sand gravels collected from the eastern margin of the Sahara Desert. The isolation strategy targeted bacteria filterable through 0.2-µm-pore-size filters. Strain Shr3T was determined to be a Gram-negative, aerobic, non-motile, filamentous bacterium. Oxidase and catalase reactions were positive. Strain Shr3T showed growth on R2A medium, but poor or no growth on nutrient agar, trypticase soy agar and standard method agar. The major isoprenoid quinone was menaquinone-7. The dominant cellular fatty acids detected were C16 : 1ω5c and C16 : 0, and the primary hydroxy acid present was C12 : 0 3-OH. The DNA G+C content was 54.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Shr3T was affiliated with an uncultivated lineage of the phylum Proteobacteria; the nearest known type strain, with 83 % sequence similarity, was Desulfomicrobium orale DSM 12838T in the class Deltaproteobacteria. The isolate and closely related environmental clones formed a novel class-level clade in the phylum Proteobacteria with high bootstrap support (96–99 %). Based on these results, the novel class Oligoflexia classis nov. in the phylum Proteobacteria and the novel genus and species Oligoflexus tunisiensis gen. nov., sp. nov. are proposed for strain Shr3T, the first cultivated representative of the Oligoflexia. The type strain of Oligoflexus tunisiensis is Shr3T ( = JCM 16864T = NCIMB 14846T). We also propose the subordinate taxa Oligoflexales ord. nov. and Oligoflexaceae fam. nov. in the class Oligoflexia. PMID:25013226

  17. Dynamic Metabolic Modeling of Denitrifying Bacterial Growth: The Cybernetic Approach

    SciTech Connect

    Song, Hyun-Seob; Liu, Chongxuan

    2015-06-29

    Denitrification is a multistage reduction process converting nitrate ultimately to nitrogen gas, carried out mostly by facultative bacteria. Modeling of the denitrification process is challenging due to the complex metabolic regulation that modulates sequential formation and consumption of a series of nitrogen oxide intermediates, which serve as the final electron acceptors for denitrifying bacteria. In this work, we examined the effectiveness and accuracy of the cybernetic modeling framework in simulating the growth dynamics of denitrifying bacteria in comparison with kinetic models. In four different case studies using the literature data, we successfully simulated diauxic and triauxic growth patterns observed in anoxic and aerobic conditions, only by tuning two or three parameters. In order to understand the regulatory structure of the cybernetic model, we systematically analyzed the effect of cybernetic control variables on simulation accuracy. The results showed that the consideration of both enzyme synthesis and activity control through u- and v-variables is necessary and relevant and that uvariables are of greater importance in comparison to v-variables. In contrast, simple kinetic models were unable to accurately capture dynamic metabolic shifts across alternative electron acceptors, unless an inhibition term was additionally incorporated. Therefore, the denitrification process represents a reasonable example highlighting the criticality of considering dynamic regulation for successful metabolic modeling.

  18. Isolation and characterization of phenol-degrading denitrifying bacteria.

    PubMed

    van Schie, P M; Young, L Y

    1998-07-01

    Phenol is a man-made as well as a naturally occurring aromatic compound and an important intermediate in the biodegradation of natural and industrial aromatic compounds. Whereas many microorganisms that are capable of aerobic phenol degradation have been isolated, only a few phenol-degrading anaerobic organisms have been described to date. In this study, three novel nitrate-reducing microorganisms that are capable of using phenol as a sole source of carbon were isolated and characterized. Phenol-degrading denitrifying pure cultures were obtained by enrichment culture from anaerobic sediments obtained from three different geographic locations, the East River in New York, N.Y., a Florida orange grove, and a rain forest in Costa Rica. The three strains were shown to be different from each other based on physiologic and metabolic properties. Even though analysis of membrane fatty acids did not result in identification of the organisms, the fatty acid profiles were found to be similar to those of Azoarcus species. Sequence analysis of 16S ribosomal DNA also indicated that the phenol-degrading isolates were closely related to members of the genus Azoarcus. The results of this study add three new members to the genus Azoarcus, which previously comprised only nitrogen-fixing species associated with plant roots and denitrifying toluene degraders.

  19. Isolation and characterization of phenol-degrading denitrifying bacteria

    SciTech Connect

    Schie, P.M. van; Young, L.Y.

    1998-07-01

    Phenol is a man-made as well as a naturally occurring aromatic compound and an important intermediate in the biodegradation of natural and industrial aromatic compounds. Whereas many microorganisms that are capable of aerobic phenol degradation have been isolated, only a few phenol-degrading anaerobic organisms have been described to date. In this study, three novel nitrate-reducing microorganisms that are capable of using phenol as a sole source of carbon were isolated and characterized. Phenol-degrading denitrifying pure cultures were obtained by enrichment culture from anaerobic sediments obtained from three different geographic locations, the East River in New York, NY, a Florida orange grove, and a rain forest in Costa Rica. The three strains were shown to be different from each other based on physiologic and metabolic properties. Even though analysis of membrane fatty acids did not result in identification of the organisms, the fatty acid profiles were found to be similar to those of Azoarcus species. Sequence analysis of 16S ribosomal DNA also indicated that the phenol-degrading isolates were closely related to members of the genus Azoarcus. The results of this study add three new members to the genus Azoarcus, which previously comprised only nitrogen-fixing species associated with plant roots and denitrifying toluene degraders.

  20. Antibacterial Activity of Gamma-irradiated Chitosan Against Denitrifying Bacteria

    NASA Astrophysics Data System (ADS)

    Vilcáez, Javier; Watanabe, Tomohide

    2010-11-01

    In order to find an environmentally benign substitute to hazardous inhibitory agents, the inhibitory effect of γ-irradiated chitosans against a mixed culture of denitrifying bacteria was experimentally evaluated. Unlike other studies using pure aerobic cultures, the observed effect was not a complete inhibition but a transient inhibition reflected by prolonged lag phases and reduced growth rates. Raw chitosan under acid conditions (pH 6.3) exerted the strongest inhibition followed by the 100 kGy and 500 kGy irradiated chitosans respectively. Therefore because the molecular weight of chitosan decreases with the degree of γ-irradiation, the inhibitory properties of chitosan due to its high molecular weight were more relevant than the inhibitory properties gained due to the modification of the surface charge and/or chemical structure by γ-irradiation. High dosage of γ-irradiated appeared to increase the growth of mixed denitrifying bacteria in acid pH media. However, in neutral pH media, high dosage of γ-irradiation appeared to enhance the inhibitory effect of chitosan.

  1. Performance of Denitrifying Microbial Fuel Cell with Biocathode over Nitrite

    PubMed Central

    Zhao, Huimin; Zhao, Jianqiang; Li, Fenghai; Li, Xiaoling

    2016-01-01

    Microbial fuel cell (MFC) with nitrite as an electron acceptor in cathode provided a new technology for nitrogen removal and electricity production simultaneously. The influences of influent nitrite concentration and external resistance on the performance of denitrifying MFC were investigated. The optimal effectiveness were obtained with the maximum total nitrogen (TN) removal rate of 54.80 ± 0.01 g m−3 d−1. It would be rather desirable for the TN removal than electricity generation at lower external resistance. Denaturing gradient gel electrophoresis suggested that Proteobacteria was the predominant phylum, accounting for 35.72%. Thiobacillus and Afipia might benefit to nitrite removal. The presence of nitrifying Devosia indicated that nitrite was oxidized to nitrate via a biochemical mechanism in the cathode. Ignavibacterium and Anaerolineaceae was found in the cathode as a heterotrophic bacterium with sodium acetate as substrate, which illustrated that sodium acetate in anode was likely permeated through proton exchange membrane to the cathode. PMID:27047462

  2. OPTIMIZING BTEX BIODEGRADATION UNDER DENITRIFYING CONDITIONS

    EPA Science Inventory

    Laboratory tests were conducted to determine optimum conditions for benzene, toluene, ethylbenzene, and xylene (collectively known as BTEX) biodegradation by aquifer microorganisms under denitrifying conditions. Microcosms, constructed with aquifer samples from Traverse City, Mic...

  3. [Analysis on Diversity of Denitrifying Microorganisms in Sequential Batch Bioreactor Landfill].

    PubMed

    Li, Wei-Hua; Sun, Ying-Jie; Liu, Zi-Liang; Ma, Qiang; Yang, Qiang

    2016-01-15

    A denitrification functional microorganism gene clone library (amoA, nosZ) and the PCR-RFLP technology was constructed to investigate the microbial diversity of denitrifying microorganisms in the late period of stabilization of sequential batch bioreactor landfill. The results indicated that: the bacterial diversity of ammonia oxidizing bacteria in the aged refuse reactor was very high, and most of them were unknown groups, also, all bacteria were unculturable or had not been isolated. The phylogenetic analysis suggested that the dominant ammonia oxidizing bacteria were presumably Nitrosomonas of 6-Proteobacteria. The diversity of denitrifying bacteria in fresh refuse reactor was abundant, which mainly included Thauera and Thiobacillus of 6-Proteobacteria. As Thauera sp. has the denitrification characteristics under the condition of aerobic while Thiobacillus denitrificans has the autotrophic denitrification characteristics, it was speculated that aerobic denitrification and autotrophic denitrification might be the main pathways for nitrogen removal in the fresh refuse reactor at the late period of stabilization. Additionally, another group in the gene clone library of denitrifying bacteria may be classified as Bradyrhizobiaceae of alpha-Proteobacteria.

  4. [Analysis on Diversity of Denitrifying Microorganisms in Sequential Batch Bioreactor Landfill].

    PubMed

    Li, Wei-Hua; Sun, Ying-Jie; Liu, Zi-Liang; Ma, Qiang; Yang, Qiang

    2016-01-15

    A denitrification functional microorganism gene clone library (amoA, nosZ) and the PCR-RFLP technology was constructed to investigate the microbial diversity of denitrifying microorganisms in the late period of stabilization of sequential batch bioreactor landfill. The results indicated that: the bacterial diversity of ammonia oxidizing bacteria in the aged refuse reactor was very high, and most of them were unknown groups, also, all bacteria were unculturable or had not been isolated. The phylogenetic analysis suggested that the dominant ammonia oxidizing bacteria were presumably Nitrosomonas of 6-Proteobacteria. The diversity of denitrifying bacteria in fresh refuse reactor was abundant, which mainly included Thauera and Thiobacillus of 6-Proteobacteria. As Thauera sp. has the denitrification characteristics under the condition of aerobic while Thiobacillus denitrificans has the autotrophic denitrification characteristics, it was speculated that aerobic denitrification and autotrophic denitrification might be the main pathways for nitrogen removal in the fresh refuse reactor at the late period of stabilization. Additionally, another group in the gene clone library of denitrifying bacteria may be classified as Bradyrhizobiaceae of alpha-Proteobacteria. PMID:27078976

  5. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    NASA Technical Reports Server (NTRS)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  6. Numerically dominant denitrifying bacteria from world soils.

    PubMed

    Gamble, T N; Betlach, M R; Tiedje, J M

    1977-04-01

    Nineteen soils, three freshwater lake sediments, and oxidized poultry manure were examined to determine the dominant denitrifier populations. The samples, most shown or expected to support active denitrification, were from eight countries and included rice paddy, temperate agricultural, rain forest, organic, and waste-treated soils. Over 1,500 organisms that could grow anaerobically on nitrate agar were isolated. After purification, 146 denitrifiers were obtained, as verified by production of N(2) from NO(3) (-). These isolates were characterized by 52 properties appropriate for the Pseudomonas-Alcaligenes group. Numerical taxonomic procedures were used to group the isolates and compare them with nine known denitrifier species. The major group isolated was representative of Pseudonomas fluorescens biotype II. The second most prevalent group was representative of Alcaligenes. Other Pseudomonas species as well as members of the genus Flavobacterium, the latter previously not known to denitrify, also were identified. One-third of the isolates could not utilize glucose or other carbohydrates as sole carbon sources. Significantly, none of the numerically dominant denitrifiers we isolated resembled the most studied species: Pseudomonas denitrificans, Pseudomonas perfectomarinus, and Paracoccus denitrificans. Denitrification appears to be a property of a very diverse group of gram-negative, motile bacteria, as shown by the large number (22.6%) of ungrouped organisms. The diversity of denitrifiers from a given sample was usually high, with at least two groups present. Denitrifiers, nitrite accumulators, and organisms capable of anaerobic growth were present in the ratio of 0.20+/-0.23:0.81+/-0.23:1. There were few correlations between their numbers and the sample characteristics measured. However, the temperatures at which isolates could grow were significantly related to the temperatures of the environments from which they were isolated. Regression analysis revealed few

  7. Degradation of n-Hexadecane and Its Metabolites by Pseudomonas aeruginosa under Microaerobic and Anaerobic Denitrifying Conditions

    PubMed Central

    Chayabutra, Chawala; Ju, Lu-Kwang

    2000-01-01

    A strategy for sequential hydrocarbon bioremediation is proposed. The initial O2-requiring transformation is effected by aerobic resting cells, thus avoiding a high oxygen demand. The oxygenated metabolites can then be degraded even under anaerobic conditions when supplemented with a highly water-soluble alternative electron acceptor, such as nitrate. To develop the new strategy, some phenomena were studied by examining Pseudomonas aeruginosa fermentation. The effects of dissolved oxygen (DO) concentration on n-hexadecane biodegradation were investigated first. Under microaerobic conditions, the denitrification rate decreased as the DO concentration decreased, implying that the O2-requiring reactions were rate limiting. The effects of different nitrate and nitrite concentrations were examined next. When cultivated aerobically in tryptic soy broth supplemented with 0 to 0.35 g of NO2−-N per liter, cells grew in all systems, but the lag phase was longer in the presence of higher nitrite concentrations. However, under anaerobic denitrifying conditions, even 0.1 g of NO2−-N per liter totally inhibited cell growth. Growth was also inhibited by high nitrate concentrations (>1 g of NO3−-N per liter). Cells were found to be more sensitive to nitrate or nitrite inhibition under denitrifying conditions than under aerobic conditions. Sequential hexadecane biodegradation by P. aeruginosa was then investigated. The initial fermentation was aerobic for cell growth and hydrocarbon oxidation to oxygenated metabolites, as confirmed by increasing dissolved total organic carbon (TOC) concentrations. The culture was then supplemented with nitrate and purged with nitrogen (N2). Nitrate was consumed rapidly initially. The live cell concentration, however, also decreased. The aqueous-phase TOC level decreased by about 40% during the initial active period but remained high after this period. Additional experiments confirmed that only about one-half of the derived TOC was readily

  8. Natural attenuation of perchlorate in denitrified groundwater.

    PubMed

    Robertson, William D; Roy, James W; Brown, Susan J; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Monitoring of a well-defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4⁻) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4⁻ from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3⁻ -N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4⁻ natural attenuation occurs at the site only when NO3⁻ -N concentrations are <0.3 mg/L, after which ClO4⁻ concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3⁻ -N and ClO4⁻ was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4⁻ may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4⁻ contaminated groundwater. PMID:23448242

  9. Sulfide oxidation under chemolithoautotrophic denitrifying conditions.

    PubMed

    Cardoso, Ricardo Beristain; Sierra-Alvarez, Reyes; Rowlette, Pieter; Flores, Elias Razo; Gómez, Jorge; Field, Jim A

    2006-12-20

    Chemolithoautotrophic denitrifying microorganisms oxidize reduced inorganic sulfur compounds coupled to the reduction of nitrate as an electron acceptor. These denitrifiers can be applied to the removal of nitrogen and/or sulfur contamination from wastewater, groundwater, and gaseous streams. This study investigated the physiology and kinetics of chemolithotrophic denitrification by an enrichment culture utilizing hydrogen sulfide, elemental sulfur, or thiosulfate as electron donor. Complete oxidation of sulfide to sulfate was observed when nitrate was supplemented at concentrations equal or exceeding the stoichiometric requirement. In contrast, sulfide was only partially oxidized to elemental sulfur when nitrate concentrations were limiting. Sulfide was found to inhibit chemolithotrophic sulfoxidation, decreasing rates by approximately 21-fold when the sulfide concentration increased from 2.5 to 10.0 mM, respectively. Addition of low levels of acetate (0.5 mM) enhanced denitrification and sulfate formation, suggesting that acetate was utilized as a carbon source by chemolithotrophic denitrifiers. The results of this study indicate the potential of chemolithotrophic denitrification for the removal of hydrogen sulfide. The sulfide/nitrate ratio can be used to control the fate of sulfide oxidation to either elemental sulfur or sulfate.

  10. Natural attenuation of perchlorate in denitrified groundwater.

    PubMed

    Robertson, William D; Roy, James W; Brown, Susan J; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Monitoring of a well-defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4⁻) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4⁻ from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3⁻ -N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4⁻ natural attenuation occurs at the site only when NO3⁻ -N concentrations are <0.3 mg/L, after which ClO4⁻ concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3⁻ -N and ClO4⁻ was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4⁻ may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4⁻ contaminated groundwater.

  11. Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil.

    PubMed

    Huang, Ying; Long, Xi-En; Chapman, Stephen J; Yao, Huaiying

    2015-03-01

    Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.

  12. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions.

    PubMed

    Suarez, Sonia; Lema, Juan M; Omil, Francisco

    2010-05-01

    The contribution of volatilization, sorption and transformation to the removal of 16 Pharmaceutical and Personal Care Products (PPCPs) in two lab-scale conventional activated sludge reactors, working under nitrifying (aerobic) and denitrifying (anoxic) conditions for more than 1.5 years, have been assessed. Pseudo-first order biological degradation rate constants (k(biol)) were calculated for the selected compounds in both reactors. Faster degradation kinetics were measured in the nitrifying reactor compared to the denitrifying system for the majority of PPCPs. Compounds could be classified according to their k(biol) into very highly (k(biol)>5Lg(SS)(-1)d(-1)), highly (1aerobic (>75%) and anoxic (>65%) conditions, whereas naproxen (NPX), ethinylestradiol (EE2), roxithromycin (ROX) and erythromycin (ERY) were only significantly transformed in the aerobic reactor (>80%). The anti-depressant citalopram (CTL) was moderately biotransformed under both, aerobic and anoxic conditions (>60% and >40%, respectively). Some compounds, as carbamazepine (CBZ), diazepam (DZP), sulfamethoxazole (SMX) and trimethoprim (TMP), manifested high resistance to biological transformation. Solids Retention Time (SRT(aerobic) >50d and <50d; SRT(anoxic) >20d and <20d) had a slightly positive effect on the removal of FLX, NPX, CTL, EE2 and natural estrogens (increase in removal efficiencies <10%). Removal of diclofenac (DCF) in the aerobic reactor was positively affected by the development of nitrifying biomass and increased from 0% up to 74%. Similarly, efficient anoxic transformation of ibuprofen (75%) was observed after an adaptation period of 340d. Temperature (16-26 degrees C) only had a slight effect on the removal of

  13. Relationship between Nitrite Reduction and Active Phosphate Uptake in the Phosphate-Accumulating Denitrifier Pseudomonas sp. Strain JR 12

    PubMed Central

    Barak, Yoram; van Rijn, Jaap

    2000-01-01

    Phosphate uptake by the phosphate-accumulating denitrifier Pseudomonas sp. JR12 was examined with different combinations of electron and carbon donors and electron acceptors. Phosphate uptake in acetate-supplemented cells took place with either oxygen or nitrate but did not take place when nitrite served as the final electron acceptor. Furthermore, nitrite reduction rates by this denitrifier were shown to be significantly reduced in the presence of phosphate. Phosphate uptake assays in the presence of the H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), in the presence of the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or with osmotic shock-treated cells indicated that phosphate transport over the cytoplasmic membrane of this bacterium was mediated by primary and secondary transport systems. By examining the redox transitions of whole cells at 553 nm we found that phosphate addition caused a significant oxidation of a c-type cytochrome. Based on these findings, we propose that this c-type cytochrome serves as an intermediate in the electron transfer to both nitrite reductase and the site responsible for active phosphate transport. In previous studies with this bacterium we found that the oxidation state of this c-type cytochrome was significantly higher in acetate-supplemented, nitrite-respiring cells (incapable of phosphate uptake) than in phosphate-accumulating cells incubated with different combinations of electron donors and acceptors. Based on the latter finding and results obtained in the present study it is suggested that phosphate uptake in this bacterium is subjected to a redox control of the active phosphate transport site. By means of this mechanism an explanation is provided for the observed absence of phosphate uptake in the presence of nitrite and inhibition of nitrite reduction by phosphate in this organism. The implications of these findings regarding denitrifying, phosphate removal wastewater plants is discussed. PMID

  14. Site-specific variability in BTEX biodegradation under denitrifying conditions

    SciTech Connect

    Kao, C.M.; Borden, R.C.

    1997-03-01

    Laboratory microcosm experiments were conducted to evaluate the feasibility of benzene, toluene, ethylbenzene, m-xylene, and o-xylene (BTEX) biodegradation under denitrifying conditions. Nine different sources of inocula, including contaminated and uncontaminated soil cores from four different sites and activated sludge, were used to establish microcosms. BTEX was not degraded under denitrifying conditions in microcosms inoculated with aquifer material from Rocky Point and Traverse City. However, rapid depletion of glucose under denitrifying conditions was observed in microcosms containing Rocky Point aquifer material. TEX degradation was observed in microcosms containing Rocky Point aquifer material. TEX degradation was observed in microcosms containing aquifer material from Fort Bragg and Sleeping Bear Dunes and sewage sludge. Benzene was recalcitrant in all microcosms tested. The degradation of o-xylene ceased after toluene, ethylbenzene, and m-xylene were depleted in the Fort Bragg and sludge microcosms, but o-xylene continued to degrade in microcosms with contaminated Sleeping Bear Dunes soil. The most probable number (MPN) of denitrifiers in these nine different inocula were measured using a microtiter technique. There was no correlation between the MPN of denitrifiers and the TEX degradation rate under denitrifying conditions. Experimental results indicate that the degradation sequence and TEX degradation rate under denitrifying conditions may differ among sites. Results also indicate that denitrification alone may not be a suitable bioremediation technology for gasoline-contaminated aquifers because of the inability of denitrifiers to degrade benzene.

  15. Comparative Analysis of Denitrifying Activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii.

    PubMed

    Martineau, Christine; Mauffrey, Florian; Villemur, Richard

    2015-08-01

    Hyphomicrobium spp. are commonly identified as major players in denitrification systems supplied with methanol as a carbon source. However, denitrifying Hyphomicrobium species are poorly characterized, and very few studies have provided information on the genetic and physiological aspects of denitrification in pure cultures of these bacteria. This is a comparative study of three denitrifying Hyphomicrobium species, H. denitrificans ATCC 51888, H. zavarzinii ZV622, and a newly described species, H. nitrativorans NL23, which was isolated from a denitrification system treating seawater. Whole-genome sequence analyses revealed that although they share numerous orthologous genes, these three species differ greatly in their nitrate reductases, with gene clusters encoding a periplasmic nitrate reductase (Nap) in H. nitrativorans, a membrane-bound nitrate reductase (Nar) in H. denitrificans, and one Nap and two Nar enzymes in H. zavarzinii. Concurrently with these differences observed at the genetic level, important differences in the denitrification capacities of these Hyphomicrobium species were determined. H. nitrativorans grew and denitrified at higher nitrate and NaCl concentrations than did the two other species, without significant nitrite accumulation. Significant increases in the relative gene expression levels of the nitrate (napA) and nitrite (nirK) reductase genes were also noted for H. nitrativorans at higher nitrate and NaCl concentrations. Oxygen was also found to be a strong regulator of denitrification gene expression in both H. nitrativorans and H. zavarzinii, although individual genes responded differently in these two species. Taken together, the results presented in this study highlight the potential of H. nitrativorans as an efficient and adaptable bacterium that is able to perform complete denitrification under various conditions. PMID:25979892

  16. Comparative Analysis of Denitrifying Activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii

    PubMed Central

    Martineau, Christine; Mauffrey, Florian

    2015-01-01

    Hyphomicrobium spp. are commonly identified as major players in denitrification systems supplied with methanol as a carbon source. However, denitrifying Hyphomicrobium species are poorly characterized, and very few studies have provided information on the genetic and physiological aspects of denitrification in pure cultures of these bacteria. This is a comparative study of three denitrifying Hyphomicrobium species, H. denitrificans ATCC 51888, H. zavarzinii ZV622, and a newly described species, H. nitrativorans NL23, which was isolated from a denitrification system treating seawater. Whole-genome sequence analyses revealed that although they share numerous orthologous genes, these three species differ greatly in their nitrate reductases, with gene clusters encoding a periplasmic nitrate reductase (Nap) in H. nitrativorans, a membrane-bound nitrate reductase (Nar) in H. denitrificans, and one Nap and two Nar enzymes in H. zavarzinii. Concurrently with these differences observed at the genetic level, important differences in the denitrification capacities of these Hyphomicrobium species were determined. H. nitrativorans grew and denitrified at higher nitrate and NaCl concentrations than did the two other species, without significant nitrite accumulation. Significant increases in the relative gene expression levels of the nitrate (napA) and nitrite (nirK) reductase genes were also noted for H. nitrativorans at higher nitrate and NaCl concentrations. Oxygen was also found to be a strong regulator of denitrification gene expression in both H. nitrativorans and H. zavarzinii, although individual genes responded differently in these two species. Taken together, the results presented in this study highlight the potential of H. nitrativorans as an efficient and adaptable bacterium that is able to perform complete denitrification under various conditions. PMID:25979892

  17. Characterization of a novel extremely alkalophilic bacterium

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Deal, P. H.

    1977-01-01

    A new alkalophilic bacterium, isolated from a natural spring of high pH is characterized. It is a Gram-positive, non-sporulating, motile rod requiring aerobic and alkaline conditions for growth. The characteristics of this organism resemble those of the coryneform group of bacteria; however, there are no accepted genera within this group with which this organism can be closely matched. Therefore, a new genus may be warranted.

  18. Molecular characterization of denitrifying bacteria isolated from the anoxic reactor of a modified DEPHANOX plant performing enhanced biological phosphorus removal.

    PubMed

    Zafiriadis, Ilias; Ntougias, Spyridon; Mirelis, Paraskevi; Kapagiannidis, Anastasios G; Aivasidis, Alexander

    2012-06-01

    Enhanced Biological Phosphorus Removal (EBPR) under anoxic conditions was achieved using a Biological Nutrient Removal (BNR) system based on a modification of the DEPHANOX configuration. Double-probe Fluorescence in Situ Hybridization (FISH) revealed that Polyphosphate Accumulating Organisms (PAOs) comprised 12.3 +/- 3.2% of the total bacterial population in the modified DEPHANOX plant. The growing bacterial population on blood agar and Casitone Glycerol Yeast Autolysate agar (CGYA) medium was 16.7 +/- 0.9 x 10(5) and 3.0 +/- 0.6 x 10(5) colony forming units (cfu) mL(-1) activated sludge, respectively. A total of 121 bacterial isolates were characterized according to their denitrification ability, with 26 bacterial strains being capable of reducing nitrate to gas. All denitrifying isolates were placed within the alpha-, beta-, and gamma-subdivisions of Proteobacteria and the family Flavobacteriaceae. Furthermore, a novel denitrifying bacterium within the genus Pseudomonas was identified. This is the first report on the isolation and molecular characterization of denitrifying bacteria from EBPR sludge using a DEPHANOX-type plant.

  19. [Effects of different fertilization regimes on abundance and community structure of the nirK-type denitrifying bacteria in greenhouse vegetable soils].

    PubMed

    Zeng, Xi-Bai; Wang, Ya-Nan; Wang, Yu-Zhong; Bai, Ling-Yu; Li, Lian-Fang; Duan, Ran; Su, Shi-Ming; Wu, Cui-Xia

    2014-02-01

    The community structure and abundance of nirK-type denitrifying bacteria in different soil layers (0-20 cm and 20-40 cm) under various fertilization regimes in Wuwei, Gansu Province were investigated by the combination of terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR. Results showed that the nirK-type denitrifying bacteria community structure was significantly affected by fertilization regimes, especially for 70, 156 and 190 bp T-RFs that represented the dominant populations in greenhouse soil. Fertilization regimes significantly influenced the abundance of nirK gene in the 0-20 cm soil layer with the highest abundance of nirK gene copy number (2.16 x 10(7) copies x g(-1) soil) detected in the manure treatment (M), which was 2.04 and 2.02 times of that in the control (CK) and chemical fertilizer (NPK) treatments, respectively. Both the dominant population and abundance of nirK-type denitrifying bacteria in the greenhouse soil were significantly different between the 0-20 cm and 20-40 cm soil layers, and the nirK-type denitrifying bacteria community structure and abundance in the greenhouse soil were obviously different from that in the field. Soil pH, soil organic matter content and nitrate-N content had the greatest influence on the bacterial community composition. Phylogenetic analysis indicated that there were not only anaerobic nirK-type denitrifying bacteria in greenhouse soil, but also aerobic denitrifying bacteria, such as Rhizobium, Ochrobactrum, Agrobacterium. PMID:24830252

  20. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    SciTech Connect

    Dees, C.; Ringleberg, D.; Scott, T.C.; Phelps, T.

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  1. D/H fractionation in lipids of facultative and obligate denitrifying and sulfate reducing bacteria

    NASA Astrophysics Data System (ADS)

    Osburn, M. R.; Sessions, A. L.

    2012-12-01

    The hydrogen isotopic composition of lipids has been shown to vary broadly in both cultured bacteria and in environmental samples. Culturing studies have indicated that this variability may primarily reflect metabolism; however, the limited number of organisms studied thus far prevents application of these trends to interpretation of environmental samples. Here we report D/H fractionations in anaerobic bacteria, including both facultative and obligate anaerobic organisms with a range of electron donors, acceptors, and metabolic pathways. Experiments using the metabolically flexible alphaproteobacterium Paracoccus denitrificans probe particular central metabolic pathways using a range of terminal electron acceptors. While a large range of δD values has been observed during aerobic metabolism, denitrifying cultures produce a more limited range in δD values that are more similar to each other than the corresponding aerobic culture. Data from the sulfate reducing bacteria Desulfobacterium autotrophicum and Desulfobacter hydrogenophilus indicate that chemolithoautotrophy and anaerobic heterotrophy can produce similar δD values, and are similar between bacteria despite differing metabolic pathways. These results suggest that the fractionation of D/H depends both on the specific metabolic pathway and the electron acceptor. While this is not inconsistent with previous studies, it suggests the simple correspondence between δD and metabolism previously understood from aerobic bacteria is not universally applicable.

  2. Biodegradation of toluene and xylenes under microaerophilic and denitrifying conditions by Pseudomonas maltophilia

    SciTech Connect

    Su, J.J.

    1994-01-01

    Aerobic biodegradation of aromatic hydrocarbons has been well studied. Under aerobic conditions, aerobes or facultative anaerobes can utilize aromatic hydrocarbons as sole carbon and energy sources by using oxygen as the cosubstrate of oxygenase enzymes for the initial attack of the aromatic ring and as the terminal electron acceptor for aerobic respiration. However, some facultative or obligate anaerobes can degrade these hydrocarbons by using alternate electron acceptors, such as nitrate, sulfate, carbon dioxide, or iron for anaerobic respiration. Among the potential alternate electron acceptors available, nitrate is the most common one used by microorganisms under oxygen-limited conditions. The first objective of this project was to explore hydrocarbon utilization under anoxic or low oxygen conditions. A microorganism that can utilize the petroleum hydrocarbons, toluene and xylene, as sole carbon and energy sources under microaerophilic (2% oxygen) and denitrifying conditions was isolated and characterized. Since oxygen may repress microbial denitrification, it was of interest to monitor the effects of low oxygen levels on aromatic hydrocarbon biodegradation coupled to denitrification. We isolated a Gram-negative rod, Pseudomonas maltophilia from anaerobic sewage digester sludge. The patterns of biodegradations of toluene and two isomers of xylenes, m- and p-xylene, were very similar under either microaerophilic or anaerobic conditions. Nitrate reduction was also observed during time course experiments under aerobic conditions. The final objective was to test the feasibility of an immobilized cell reactor to treat waste streams. Therefore, a bench-scale bioreactor was built to treat a waste stream contaminated with both toluene and nitrate without aeration. The utilization of toluene and nitrate was monitored periodically in a continuous system under anaerobic conditions.

  3. Role of chemotaxis in the ecology of denitrifiers

    NASA Technical Reports Server (NTRS)

    Kennedy, M. J.; Lawless, J. G.

    1985-01-01

    It has been recognized that the process of denitrification represents a major sequence in the nitrogen cycle. It involves the anaerobic reduction of nitrate or nitrite to nitrous oxide or elemental nitrogen. This process is responsible for significant losses of nitrogen from agricultural soils. Up to now, little attention has been paid to the ecology of the organisms responsible for denitrification. It is pointed out that chemotaxis would probably offer a strong competitive mechanism for denitrifiers, since chemotaxis would allow denitrifiers to actively reach nitrate by directed motility, rather than by random movement or diffusion of nitrate. The present investigation was initiated to examine the chemotactic responses of several denitrifiers to nitrate and nitrite. Attention is given to bacterial strains, culture media and cell preparation, chemotaxis assays, and competition experiments. It was found that several denitrifiers, including P. aeruginosa, P. fluorescens, and P. Stutzeri, were strongly attracted to NO3(-) and NO2(-).

  4. Integration of denitrifying phosphorus removal via nitrite pathway, simultaneous nitritation-denitritation and anammox treating carbon-limited municipal sewage.

    PubMed

    Zeng, Wei; Li, Boxiao; Wang, Xiangdong; Bai, Xinlong; Peng, Yongzhen

    2014-11-01

    High nutrients removal above 90% from carbon-limited municipal sewage was obtained without adding external carbon source. Achieving nitritation was a prerequisite to improve nutrients removal. Denitrifying phosphorus (P) removal using nitrite as electron acceptor was the key pathway in anoxic zone, where nitrogen removal reached above 60% and average denitrifying P removal was 88%. Simultaneous nitritation/denitritation and anaerobic ammonia oxidation (anammox) possibly contributed to nitrogen removal of 26-36% in aerobic zone. Quantitative PCR assays presented that the abundance of anammox bacteria under nitritation was more than that under complete nitrification. The largest amount of anammox bacteria was 1.32×10(6)copies/gVSS, about 5.6 times increase over a period of 255days. Nitrite concentration of 17mg/L in aerobic zone inhibited anammox bacteria. Quantitative results suggested possible occurrence of anammox. Based on performance of nitritation, combining heterotrophic denitrification with autotrophic nitrogen removal is an effective strategy to improve nutrients removal from carbon-limited wastewater.

  5. Genome sequence of Citrobacter sp. strain A1, a dye-degrading bacterium.

    PubMed

    Chan, Giek Far; Gan, Han Ming; Rashid, Noor Aini Abdul

    2012-10-01

    Citrobacter sp. strain A1, isolated from a sewage oxidation pond, is a facultative aerobe and mesophilic dye-degrading bacterium. This organism degrades azo dyes efficiently via azo reduction and desulfonation, followed by the successive biotransformation of dye intermediates under an aerobic environment. Here we report the draft genome sequence of Citrobacter sp. A1.

  6. Abundance and Diversity of Bacterial Nitrifiers and Denitrifiers and Their Functional Genes in Tannery Wastewater Treatment Plants Revealed by High-Throughput Sequencing

    PubMed Central

    Wang, Zhu; Zhang, Xu-Xiang; Lu, Xin; Liu, Bo; Li, Yan; Long, Chao; Li, Aimin

    2014-01-01

    Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs) due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB) amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment. PMID:25420093

  7. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing.

    PubMed

    Wang, Zhu; Zhang, Xu-Xiang; Lu, Xin; Liu, Bo; Li, Yan; Long, Chao; Li, Aimin

    2014-01-01

    Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs) due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB) amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment. PMID:25420093

  8. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. [Pseudomonas fluorescens; Serratia marcescens; Alcaligenes faecalis

    SciTech Connect

    Anderson, I.C.; Levine, J.S.

    1986-05-01

    The authors investigated the effect of the partial pressure of oxygen (pO/sub 2/) on the production of NO and N/sub 2/O by a wide variety of common soil nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The production of NO per cell was highest by autotrophic nitrifiers and was independent of pO/sub 2/ in the range tested (0.5 to 10%), whereas N/sub 2/O production was inversely proportional to pO/sub 2/. Nitrous oxide production was highest in the denitrifier Pseudomonas fluorescens, but only under anaerobic conditions. The molar ratio of NO/N/sub 2/O produced was usually greater than unity for nitrifiers and much less than unity for denitrifiers. Chemodenitrification was the major source of both the NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of No and N/sub 2/O in nitrifier cultures but only when high concentrations of nitrite had accumulated or were added to the medium. Although most of the denitrifiers produced NO and N/sub 2/O only under anaerobic conditions, chemostat cultures of Alcaligenes faecalis continued to emit these gases even when the cultures were sprayed with air. Based upon these results, we predict that aerobic soils are primary sources of NO and that N/sub 2/O is produced only when there is sufficient soil moisture to provide the anaerobic microsites necessary for denitrification by either denitrifiers or nitrifiers.

  9. Effects of ethanol on benzene degradation under denitrifying conditions.

    PubMed

    Wu, Yaoguo; Li, Yunfeng; Hui, Lin; Tan, Ying; Jin, Song

    2009-02-01

    As a popular fuel oxygenate, ethanol frequently co-occurs with petroleum hydrocarbons, including benzene, in groundwater that is contaminated by gasoline. Anaerobic pathways have been identified in benzene biodegradation. Limited reports focus on denitrifying degradation of benzene; however, the role of ethanol in this pathway is unknown. This study investigated the effects of ethanol on benzene degradation under denitrifying condition by using groundwater and sediment samples collected from locations with known history of benzene contamination. Results indicate that benzene can be biodegraded under denitrifying conditions. When concentrations of nitrate were in the range of 480-920 mg/L, there is a critical value in ethanol concentration:Ethanol at concentration less than the critical value enhanced the denitrifying degradation of benzene over a period of time; in contrast, ethanol at concentration higher than the critical value, which was degraded before benzene, demonstrated an inhibitory effect. And the critical value varied with nitrate concentration. It appears that the role of ethanol may be closely associated with its own and nitrate concentrations. Two mathematical equations were established based on the data and may be used to determine if ethanol presents an enhancing or inhibitory effect on denitrification of benzene. The roles of ethanol in COD/NO(3) (-)-N and the subsequent denitrification of benzene were also studied. An optimal COD/NO(3) (-)-N ratio of 1.32 was obtained for this testing system, in which the highest rate of benzene degradation can be achieved under denitrifying conditions.

  10. Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC

    SciTech Connect

    Lewis, T.A.; Crawford, R.L. )

    1993-05-01

    Carbon tetrachloride (CT) is a carcinogenic, ozone-depleting, toxic, xenobiotic compound found in ground water, listed as a priority pollutant by the US EPA. In aqueous solution, CT is not readily hydrolyzed and has an estimated half-life of 7,000 years. Since CT resists spontaneous degradation, conditions favorable for dehalogenation must be created to effect remediation of CT contamination. This paper describes studies of CT transformation aimed at determining the potential of Pseudomonas sp. strain KC as a bioaugmentation strain and describes a search for KC-type CT transformation activity in samples from regional aquifers. 11 refs., 9 figs., 1 tab.

  11. Anoxic Androgen Degradation by the Denitrifying Bacterium Sterolibacterium denitrificans via the 2,3-seco Pathway

    PubMed Central

    Wang, Po-Hsiang; Yu, Chang-Ping; Lee, Tzong-Huei; Lin, Ching-Wen; Ismail, Wael; Wey, Shiaw-Pyng; Kuo, An-Ti

    2014-01-01

    The biodegradation of steroids is a crucial biochemical process mediated exclusively by bacteria. So far, information concerning the anoxic catabolic pathways of androgens is largely unknown, which has prevented many environmental investigations. In this work, we show that Sterolibacterium denitrificans DSMZ 13999 can anaerobically mineralize testosterone and some C19 androgens. By using a 13C-metabolomics approach and monitoring the sequential appearance of the intermediates, we demonstrated that S. denitrificans uses the 2,3-seco pathway to degrade testosterone under anoxic conditions. Furthermore, based on the identification of a C17 intermediate, we propose that the A-ring cleavage may be followed by the removal of a C2 side chain at C-5 of 17-hydroxy-1-oxo-2,3-seco-androstan-3-oic acid (the A-ring cleavage product) via retro-aldol reaction. The androgenic activities of the bacterial culture and the identified intermediates were assessed using the lacZ-based yeast androgen assay. The androgenic activity in the testosterone-grown S. denitrificans culture decreased significantly over time, indicating its ability to eliminate androgens. The A-ring cleavage intermediate (≤500 μM) did not exhibit androgenic activity, whereas the sterane-containing intermediates did. So far, only two androgen-degrading anaerobes (Sterolibacterium denitrificans DSMZ 13999 [a betaproteobacterium] and Steroidobacter denitrificans DSMZ 18526 [a gammaproteobacterium]) have been isolated and characterized, and both of them use the 2,3-seco pathway to anaerobically degrade androgens. The key intermediate 2,3-seco-androstan-3-oic acid can be used as a signature intermediate for culture-independent environmental investigations of anaerobic degradation of C19 androgens. PMID:24657867

  12. Modeling of Cr(VI) Bioreduction Under Fermentative and Denitrifying Conditions

    NASA Astrophysics Data System (ADS)

    Molins, S.; Steefel, C.; Yang, L.; Beller, H. R.

    2011-12-01

    The mechanisms of bioreductive immobilization of Cr(VI) were investigated by reactive transport modeling of a set of flow-through column experiments performed using natural Hanford 100H aquifer sediment. The columns were continuously eluted with 5 μM Cr(VI), 5 mM lactate as the electron donor, and selected electron acceptors (tested individually). Here we focus on the two separate experimental conditions that showed the most removal of Cr(VI) from solution: fermentation and denitrification. In each case, a network of enzymatic and abiotic reaction pathways was considered to interpret the rate of chromate reduction. The model included biomass growth and decay, and thermodynamic limitations on reaction rates, and was constrained by effluent concentrations measured by IC and ICP-MS and additional information from bacterial isolates from column effluent. Under denitrifying conditions, Cr(VI) reduction was modeled as co-metabolic with nitrate reduction based on experimental observations and previous studies on a denitrifying bacterium derived from the Hanford 100H aquifer. The reactive transport model results supported this interpretation of the reaction mechanism and were used to quantify the efficiency of the process. The models results also suggest that biomass growth likely relied on a nitrogen source other than ammonium (e.g. nitrate). Under fermentative conditions and based on cell suspension studies performed on a bacterial isolate from the columns, the model assumes that Cr(VI) reduction is carried out directly by fermentative bacteria that convert lactate into acetate and propionate. The evolution to complete lactate fermentation and Cr(VI) reduction took place over a week's time and simulations were used to determine an estimate for a lower limit of the rate of chromate reduction by calibration with the flow-through column experimental results. In spite of sulfate being added to these columns, sulfate reduction proceeded at a slow rate and was not well

  13. Continuous nitrous oxide abatement in a novel denitrifying off-gas bioscrubber.

    PubMed

    Frutos, Osvaldo D; Arvelo, Ilan A; Pérez, Rebeca; Quijano, Guillermo; Muñoz, Raúl

    2015-04-01

    The potential of a bioscrubber composed of a packed bed absorption column coupled to a stirred tank denitrification bioreactor (STR) was assessed for 95 days for the continuous abatement of a diluted air emission of N2O at different liquid recycling velocities. N2O removal efficiencies of up to 40 ± 1 % were achieved at the highest recirculation velocity (8 m h(-1)) at an empty bed residence time of 3 min using a synthetic air emission containing N2O at 104 ± 12 ppmv. N2O was absorbed in the packed bed column and further reduced in the STR at efficiencies >80 % using methanol as electron donor. The long-term operation of the bioscrubber suggested that the specialized N2O degrading community established was not able to use N2O as nitrogen source. Additional nitrification assays showed that the activated sludge used as inoculum was not capable of aerobically oxidizing N2O to nitrate or nitrite, regardless of the inorganic carbon concentration tested. Denitrification assays confirmed the ability of non-acclimated activated sludge to readily denitrify N2O at a specific rate of 3.9 mg N2O g VSS h(-1) using methanol as electron donor. This study constitutes, to the best of our knowledge, the first systematic assessment of the continuous abatement of N2O in air emission. A characterization of the structure of the microbial population in the absorption column by DGGE-sequencing revealed a high microbial diversity and the presence of heterotrophic denitrifying methylotrophs. PMID:25547842

  14. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms.

    PubMed

    Ribera-Guardia, Anna; Marques, Ricardo; Arangio, Corrado; Carvalheira, Monica; Oehmen, Adrian; Pijuan, Maite

    2016-11-01

    This study aims at investigating the denitrification kinetics in two separate enriched cultures of denitrifying polyphosphate accumulating organisms (dPAO) and denitrifying glycogen accumulating organisms (dGAO) and compare their N2O accumulation potential under different conditions. Two sequencing batch reactors were inoculated to develop dPAO and dGAO enriched microbial communities separately. Seven batch tests with different combinations of electron acceptors (nitrate, nitrite and/or nitrous oxide) were carried out with the enriched biomass from both reactors. Results indicate that in almost all batch tests, N2O accumulated for both cultures, however dPAOs showed a higher denitrification capacity compared to dGAOs due to their higher nitrogen oxides reduction rates. Additionally, the effect of the simultaneous presence of several electron acceptors in the reduction rates of the different nitrogen oxides was also assessed in dPAOs and dGAOs. PMID:27479801

  15. Hydraulic flow characteristics of agricultural residues for denitrifying bioreactor media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrifying bioreactors are a promising technology to mitigate agricultural subsurface drainage nitrate-nitrogen losses, a critical water quality goal for the Upper Mississippi River Basin. This study was conducted to evaluate the hydraulic properties of agricultural residues that are potential bio...

  16. Denitrifying bioreactors for nitrate removal from tile drained cropland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Researchers in Iowa found that for ...

  17. Effect of the C:N:P ratio on the denitrifying dephosphatation in a sequencing batch biofilm reactor (SBBR).

    PubMed

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Thornton, Arthur J; Jóźwiak, Tomasz; Szymczyk, Paula

    2015-12-01

    A series of investigations were conducted using sequencing batch biofilm reactor (SBBR) to explore the influence of C:N:P ratio on biological dephosphatation including the denitrifying dephosphatation and the denitrification process. Biomass in the reactor occurred mainly in the form of a biofilm attached to completely submerged disks. Acetic acid was used as the source of organic carbon. C:N:P ratios have had a significant effect on the profiles of phosphate release and phosphate uptake and nitrogen removal. The highest rates of phosphate release and phosphate uptake were recorded at the C:N:P ratio of 140:70:7. The C:N ratio of 2.5:1 ensured complete denitrification. The highest rate of denitrification was achieved at the C:N:P ratio of 140:35:7. The increase of nitrogen load caused an increase in phosphates removal until a ratio C:N:P of 140:140:7. Bacteria of the biofilm exposed to alternate conditions of mixing and aeration exhibited enhanced intracellular accumulation of polyphosphates. Also, the structure of the biofilm encouraged anaerobic-aerobic as well as anoxic-anaerobic and absolutely anaerobic conditions in a SBBR. These heterogeneous conditions in the presence of nitrates may be a significant factor determining the promotion of denitrifying polyphosphate accumulating organism (DNPAO) development. PMID:26702975

  18. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  19. Trace Gas Emission from in-Situ Denitrifying Bioreactors

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2014-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication. A primary process for removing excess NO3- from water is denitrification, where denitrifying bacteria use NO3- for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas. A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs). DNBRs provide conditions ideal for denitrifiers: an anaerobic environment, sufficient organic matter, and excess NO3-. These conditions are also ideal for methanogens, which produce methane (CH4), another harmful trace gas. While initial results from bioreactor studies show that they can cost-effectively remove NO3-, trace gas emissions are an unintended consequence. This study's goal was to determine how bioreactor design promotes denitrification while limiting trace gas production. Reactor inflow and outflow water samples were tested for nutrients, including NO3-, and dissolved inflow and outflow gas samples were tested for N2O and CH4. NO3- reduction and trace gas production were evaluated at various residence times, pHs, and inflow NO3- concentrations in field and lab-scale reactors. Low NO3- reduction indicated conditions that stressed denitrifying bacteria while high reductions indicated designs that optimized pollutant treatment for water quality. Several factors influenced high N2O, suggesting non-ideal conditions for the final step of complete denitrification. High CH4 emissions pointed to reactor media choice for discouraging methanogens, which may remove competition with denitrifiers. It is critical to understand all of potential impacts that DNBRs may have, which means identifying processes and design specifications that may affect them.

  20. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    PubMed Central

    Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products. Images PMID:16347616

  1. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    PubMed Central

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852

  2. High-efficient nitrogen removal by coupling enriched autotrophic-nitrification and aerobic-denitrification consortiums at cold temperature.

    PubMed

    Zou, Shiqiang; Yao, Shuo; Ni, Jinren

    2014-06-01

    This study paid particular attention to total nitrogen removal at low temperature (10°C) by excellent coupling of enriched autotrophic nitrifying and heterotrophic denitrifying consortiums at sole aerobic condition. The maximum specific nitrifying rate of the nitrifying consortium reached 8.85mgN/(gSSh). Further test in four identical lab-scale sequencing batch reactors demonstrated its excellent performance for bioaugmentation in potential applications. On the other hand, the aerobic denitrifying consortium could achieve a specific denitrifying rate of 32.93mgN/(gSSh) under dissolved oxygen of 1.0-1.5mg/L at 10°C. Coupling both kinds of consortiums was proved very successful for a perfect total nitrogen (TN) removal at COD/N of 4 and dissolved oxygen of 1.5-4.5mg/L, which was hardly reached by any single consortium reported previously. The encouraging results from coupling aerobic consortiums implied a huge potential in practical treatment of low-strength domestic wastewater (200-300mg/L COD) during wintertime.

  3. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions.

    PubMed

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD.

  4. Interactions of methanogens and denitrifiers in degradation of phenols

    SciTech Connect

    Fang, H.H.P.; Zhou, G.M.

    1999-01-01

    Experiments were conducted at 37 C in an upflow anaerobic sludge blanket reactor treating wastewater containing phenol, m-cresol, and nitrate at various concentrations. Results show that anaerobic sludge was able to conduct denitrification without much acclimation. Denitrifiers outcompeted methanogens for substrates for carbon and electron supplies. They were able to use phenol and m-cresol as substrate without a carbohydrate cosubstrate. Denitrifying 1 g of NO{sub 3}{sup {minus}}-N ratios greater than 3.34. At the ratio of 5.23, over 98% of phenol but only 60% of m-cresol were degraded jointly by denitrifiers and methanogens with 1 day of hydraulic retention. At ratios less than 3.34, methanogenesis ceased to take place and denitrification became incomplete because of insufficient supply of substrate. Batch tests further confirmed that degradation of m-cresol was enhanced not only by the presence of nitrate, but also by the presence of either sucrose or phenol as cosubstrate.

  5. Characteristics of Biological Nitrogen Removal in a Multiple Anoxic and Aerobic Biological Nutrient Removal Process

    PubMed Central

    Wang, Huoqing; Guan, Yuntao; Li, Li; Wu, Guangxue

    2015-01-01

    Two sequencing batch reactors, one with the conventional anoxic and aerobic (AO) process and the other with the multiple AO process, were operated to examine characteristics of biological nitrogen removal, especially of the multiple AO process. The long-term operation showed that the total nitrogen removal percentage of the multiple AO reactor was 38.7% higher than that of the AO reactor. In the multiple AO reactor, at the initial SBR cycle stage, due to the occurrence of simultaneous nitrification and denitrification, no nitrite and/or nitrate were accumulated. In the multiple AO reactor, activities of nitrite oxidizing bacteria were inhibited due to the multiple AO operating mode applied, resulting in the partial nitrification. Denitrifiers in the multiple AO reactor mainly utilized internal organic carbon for denitrification, and their activities were lower than those of denitrifiers in the AO reactor utilizing external organic carbon. PMID:26491676

  6. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    PubMed Central

    Langone, Michela; Yan, Jia; Haaijer, Suzanne C. M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Andreottola, Gianni

    2014-01-01

    Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale sequencing batch reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8–8.0, respectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high NH3-N (1.9–10 mg NH3-N/L) and low nitrite (3–8 mg TNN/L) are required conditions during the whole SBR cycle. Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α–subunit (amoA) gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the “Ca. Brocadia fulgida” type, able to grow in presence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS) gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus Nitrobacter was detected

  7. Agrobacterium tumefaciens Is a Diazotrophic Bacterium

    PubMed Central

    Kanvinde, Lalita; Sastry, G. R. K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grow on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15N supplied as 15N2. As with most other well-characterized diazotrophic bacteria, the presence of NH4+ in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship. Images PMID:16348237

  8. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  9. Effects of elevated CO2 concentrations on denitrifying and nitrifying popualtions at terrestrial CO2 leakeage analogous sites

    NASA Astrophysics Data System (ADS)

    Christine, Dictor Marie; Catherine, Joulian; Valerie, Laperche; Stephanie, Coulon; Dominique, Breeze

    2010-05-01

    CO2 capture and geological storage (CCS) is recognized to be an important option for carbon abatement in Europe. One of the risks of CCS is the leakage from storage site. A laboratory was conducted on soil samples sampled near-surface from a CO2 leakage analogous site (Latera, Italy) in order to evaluate the impact of an elevated soil CO2 concentration on terrestrial bacterial ecosystems form near surface terrestrial environments and to determine a potential bacterial indicator of CO2 leakage from storage site. Surveys were conducted along a 50m long transect across the vent centre, providing a spectrum of CO2 flux rates, soil gas concentrations and compositions (Beaubien et al., 2007). A bacterial diversity studies, performed by CE-SSCP technique, on a soil profile with increasing CO2 soil concentrations (from 0.3% to 100%) showed that a change on bacterial diversity was noted when CO2 concentration was above 50 % of CO2. From this result, 3 soil samples were taken at 70 cm depth in 3 distinct zones (background soil CO2 content, soil CO2 content of 20% and soil CO2 content of 50%). Then theses soil samples were incubated under closed jars flushed with different air atmospheres (20, 50 and 90 % of CO2) during 18 months. At initial, 3, 6, 12 and 18 months, some soil samples were collected in order to estimate the denitrifying, nitrifying activities as a function of CO2 concentration content and times. Theses enzymatic activities were chosen because one occurs under anaerobic conditions (denitrification) and the other occurs under aerobic conditions (nitrification). Both of them were involved in the nitrogen cycle and are major actors of soil function and groundwater quality preservation. Metabolic diversity using BIOLOG Ecoplates was determined on every soil samples. Physico-chemical parameters (e.g. pH, bulk chemistry, mineralogy) were analyzed to have some information about the evolution of the soil during the incubation with increasing soil CO2 concentrations

  10. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.

    PubMed

    Gangadharan Puthiya Veetil, Prajeesh; Vijaya Nadaraja, Anupama; Bhasi, Arya; Khan, Sudheer; Bhaskaran, Krishnakumar

    2012-07-01

    Triclosan (2, 4, 4'-trichloro-2'-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1 g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10 mg/L level triclosan, 95 ± 1.2% was degraded in 5 days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1 g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).

  11. Draft Genome Sequence of the Novel Agar-Digesting Marine Bacterium HQM9▿

    PubMed Central

    Du, Zongjun; Zhang, Zhewen; Miao, Tingting; Wu, Jiayan; Lü, Guoqiang; Yu, Jun; Xiao, Jingfa; Chen, Guanjun

    2011-01-01

    Strain HQM9, an aerobic, rod-shaped marine bacterium from red algae, can produce agarases and liquefy solid plating media efficiently when agar is used as a coagulant. Here we report the draft genome sequence and the initial findings from a preliminary analysis of strain HQM9, which should be a novel species of Flavobacteriaceae. PMID:21725015

  12. Effect of oxygen on thermophilic denitrifying populations in biofilters treating nitric oxide containing off-gas streams

    SciTech Connect

    Lee, B.D.; Apel, W.A.; Smith, W.

    1999-07-01

    Electricity generation from coal has increased by an average of 51 billion kWh per year over the past 3 years. For this reason cost effective NO{sub x} control strategies must be developed. Compost biofilters operated at 55 C at an empty bed contact time (EBCT) of 13 seconds have been shown to be feasible for removal of nitric oxide (NO) from synthetic flue gas. Denitrifying microbial populations in these biofilters have been shown to reduce influent NO feeds by 90 to 95% at inlet NO concentrations of 500 ppmv. Oxygen has been shown to have a significant effect on the NO removal efficiency demonstrated by these biofilters. Two biofilters were set up under identical conditions for the purpose of monitoring NO removal as well as changes in the microbial population in the bed medium under anaerobic and aerobic conditions. Understanding changes in the microbial population will allow for determination of maximum oxygen tolerance of a denitrifying biofilter as well as methods of optimizing microbial populations capable of denitrification in the presence of low oxygen concentrations. Both biofilters showed NO removal efficiency greater than 50% once steady anaerobic operation was achieved. One biofilter was supplied with 2% oxygen after 22 days of anaerobic operation. NO removal dropped to between 10 and 20% when oxygen was present in the influent stream. Incomplete conversion of lactate to carbon dioxide was hypothesized to be the cause for the decreased NO removal efficiency in the anaerobic biofilter compared to previous biofiltration experiments. Bed medium microbes converted the bulk of the lactate to acetate, not fully utilizing reducing equivalents present in the carbon source. The inactive compost used to pack the biofilters may have also caused the decreased NO removal efficiency compared to previous biofiltration experiments.

  13. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  14. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite.

  15. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats.

    PubMed Central

    Fries, M R; Zhou, J; Chee-Sanford, J; Tiedje, J M

    1994-01-01

    Enrichments capable of toluene degradation under O2-free denitrifying conditions were established with diverse inocula including agricultural soils, compost, aquifer material, and contaminated soil samples from different geographic regions of the world. Successful enrichment was strongly dependent on the initial use of relatively low toluene concentrations, typically 5 ppm. From the enrichments showing positive activity for toluene degradation, 10 bacterial isolates were obtained. Fingerprints generated by PCR-amplified DNA, with repetitive extragenic palindromic sequence primers, showed that eight of these isolates were different. Under aerobic conditions, all eight isolates degraded toluene, five degraded ethylbenzene, three consumed benzene, and one degraded chlorobenzene, meta-Xylene was the only other substrate used anaerobically and was used by only one isolate. All isolates were motile gram-negative rods, produced N2 from denitrification, and did not hydrolyze starch. All strains but one fixed nitrogen as judged by ethylene production from acetylene, but only four strains hybridized to the nifHDK genes. All strains appeared to have heme nitrite reductase since their DNA hybridized to the heme (nirS) but not to the Cu (nirU) genes. Five strains hybridized to a toluene ortho-hydroxylase catabolic probe, and two of those also hybridized to a toluene meta-hydroxylase probe. Partial sequences of the 16S rRNA genes of all isolates showed substantial similarity to 16S rRNA sequences of Azoarcus sp. Physiological, morphological, fatty acid, and 16S rRNA analyses indicated that these strains were closely related to each other and that they belong to the genus Azoarcus.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8085824

  16. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors.

    PubMed

    Luo, Guozhi; Xu, Guimei; Gao, Jinfang; Tan, Hongxin

    2016-05-01

    Nitrate-nitrogen (NO3(-)-N) always accumulates in commercial recirculating aquaculture systems (RASs) with aerobic nitrification units. The ability to reduce NO3(-)-N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen (DO) content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO3(-)-N from RASs. The effect of dissolved oxygen (DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone (PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group (Group A, average DO concentration of 0.28±0.05mg/L), the low-oxygen treatment DO group (Group B, average DO concentration of 2.50±0.24mg/L) and the aerated treatment group (Group C, average DO concentration of 5.63±0.57mg/L). Feeding with 200mg/L of NO3(-)-N, the NO3(-)-N removal rates were 1.53, 1.60 and 1.42kg/m(3) PCL/day in Groups A, B and C, respectively. No significant difference in NO3(-)-N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated. PMID:27155419

  17. Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture.

    PubMed

    Wang, Ru; Zheng, Ping; Xing, Ya-Juan; Zhang, Meng; Ghulam, Abbas; Zhao, Zhi-Qing; Li, Wei; Wang, Lan

    2014-05-01

    Heterotrophic denitrifying enriched culture (DEC) from a lab-scale high-rate denitrifying reactor was discovered to perform nitrate-dependent anaerobic ferrous oxidation (NAFO). The DEC was systematically investigated to reveal their denitrification activity, their NAFO activity, and the predominant microbial population. The DEC was capable of heterotrophic denitrification with methanol as the electron donor, and autotrophic denitrification with ferrous salt as the electron donor named NAFO. The conversion ratios of ferrous-Fe and nitrate-N were 87.41 and 98.74 %, and the consumption Fe/N ratio was 2.3:1 (mol/mol). The maximum reaction velocity and half saturation constant of Fe were 412.54 mg/(l h) and 8,276.44 mg/l, and the counterparts of N were 20.87 mg/(l h) and 322.58 mg/l, respectively. The predominant bacteria were Hyphomicrobium, Thauera, and Flavobacterium, and the predominant archaea were Methanomethylovorans, Methanohalophilus, and Methanolobus. The discovery of NAFO by heterotrophic DEC is significant for the development of wastewater treatment and the biogeochemical iron cycle and nitrogen cycle. PMID:24619339

  18. Habitat specialization along a wetland moisture gradient differs between ammonia-oxidizing and denitrifying microorganisms.

    PubMed

    Peralta, Ariane L; Matthews, Jeffrey W; Kent, Angela D

    2014-08-01

    Gradients in abiotic parameters, such as soil moisture,can strongly influence microbial community structure and function. Denitrifying and ammonia-oxidizing microorganisms,in particular, have contrasting physiological responses to abiotic factors such as oxygen concentration and soil moisture. Identifying abiotic factors that govern the composition and activity of denitrifying and ammonia-oxidizing communities is critical for understanding the nitrogen cycle.The objectives of this study were to (i) examine denitrifier andarchaeal ammonia oxidizer community composition and (ii) assess the taxa occurring within each functional group related to soil conditions along an environmental gradient. Soil was sampled across four transects at four locations along a dry to saturated environmental gradient at a restored wetland. Soil pH and soil organic matter content increased from dry to saturated plots. Composition of soil denitrifier and ammonia oxidizer functional groups was assessed by terminal restriction fragment length polymorphism (T-RFLP) community analysis, and local soil factors were also characterized. Microbial community composition of denitrifiers and ammonia oxidizers differed along the moisture gradient (denitrifier:ANOSIM R = 0.739, P < 0.001; ammonia oxidizers: ANOSIMR = 0.760, P < 0.001). Individual denitrifier taxa were observed over a larger range of moisture levels than individual archaeal ammonia oxidizer taxa (Wilcoxon rank sum, W = 2413, P value = 0.0002). Together, our data suggest that variation in environmental tolerance of microbial taxa have potential to influence nitrogen cycling in terrestrial ecosystems.

  19. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea

    PubMed Central

    Chistoserdova, Ludmila; Vorholt, Julia A; Lidstrom, Mary E

    2005-01-01

    Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis. PMID:15693955

  20. Greenhouse Gas Emission from In-situ Denitrifying Bioreactors

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2013-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication, which continues to be a serious and chronic problem. Two primary processes for removing excess NO3- from water are biological assimilation and denitrification. Denitrifying bacteria use NO3- as the electron acceptor for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas (GHG). A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs), though research has been limited to NO3- level reduction and omitted process mechanisms. DNBRs work by providing an anaerobic environment with plenty of organic matter (commonly woodchips) for denitrifying bacteria to flourish. While, initial results from bioreactor studies show that they can cost-effectively remove NO3-, GHG emission could be an unintended consequence. The study's goal is to determine how bioreactor design promotes microbial denitrification while limiting N2O production. It specifically focuses on expanding the body of knowledge concerning DNBRs in the areas of design implications and internal processes by measuring intermediate compounds and not solely NO3-. Nutrient samples are collected at inflow and outflow structures and tested for NO3- and nitrite (NO2-). Dissolved and headspace gas samples are collected and tested for N2O. Additional gas samples will be analyzed for naturally-occurring isotopic N2 to support proposed pathways. Designs will be analyzed both through the N2O/N2 production ratio and NO2- production caused by various residence times and inflow NO3- concentrations. High GHG ratios and NO2- production suggest non-ideal conditions or flow patterns for complete denitrification. NO3- reduction is used for comparison with previous studies. Few

  1. Denitrification and nitric oxide reduction in an aerobic toluene-treating biofilter

    SciTech Connect

    Plessis, C.A. du; Kinney, K.A.; Schroeder, E.D.; Chang, D.P.Y.; Scow, K.M.

    1998-05-20

    The presence of significant denitrification activity in an aerobic toluene-treating biofilter was demonstrated under batch and flow-through conditions. N{sub 2}O concentrations of 9.2 ppm{sub v} were produced by denitrifying bacteria in the presence of 15% acetylene, in a flow-through system with a bulk gas phase O{sub 2} concentration of >17%. The carbon source for denitrification was not toluene but a byproduct or metabolite of toluene catabolism. Denitrification conditions were successfully used for the reduction of 60 ppm{sub v} nitric oxide to 15 ppm{sub v} at a flow rate of 3 L/min (EBRT of 3 min) in a fully aerated, 17%/v/v O{sub 2} (superficially aerobic) biofilter. Higher NO removal efficiency (97%) was obtained by increasing the toluene supply to the biofilter.

  2. Nitrogen removal from wastewater by anaerobic methane-driven denitrification in a lab-scale reactor: heterotrophic denitrifiers associated with denitrifying methanotrophs.

    PubMed

    He, Zhanfei; Wang, Jiaqi; Zhang, Xu; Cai, Chaoyang; Geng, Sha; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-12-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered bioprocess that reduces nitrite to dinitrogen with methane as electron donor, which has promising potential to remove nitrogen from wastewater. In this work, a lab-scale sequencing batch reactor (SBR) was operated for 609 days with methane as the sole external electron donor. In the SBR, nitrite in synthetic wastewater was removed continuously; the final volumetric nitrogen removal rate was 12.22±0.02 mg N L(-1) day(-1) and the percentage of nitrogen removal was 98.5 ± 0.2 %. Microbial community analysis indicated that denitrifying methanotrophs dominated (60-70 %) the population of the final sludge. Notably, activity testing and microbial analysis both suggested that heterotrophic denitrifiers existed in the reactor throughout the operation period. After 609 days, the activity testing indicated the nitrogen removal percentage of heterotrophic denitrification was 17 ± 2 % and that of n-damo was 83 ± 2 %. A possible mutualism may be developed between the dominated denitrifying methanotrophs and the associated heterotrophs through cross-feed. Heterotrophs may live on the microbial products excreted by denitrifying methanotrophs and provide growth factors that are required by denitrifying methanotrophs.

  3. Nitrogen removal from wastewater by anaerobic methane-driven denitrification in a lab-scale reactor: heterotrophic denitrifiers associated with denitrifying methanotrophs.

    PubMed

    He, Zhanfei; Wang, Jiaqi; Zhang, Xu; Cai, Chaoyang; Geng, Sha; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-12-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered bioprocess that reduces nitrite to dinitrogen with methane as electron donor, which has promising potential to remove nitrogen from wastewater. In this work, a lab-scale sequencing batch reactor (SBR) was operated for 609 days with methane as the sole external electron donor. In the SBR, nitrite in synthetic wastewater was removed continuously; the final volumetric nitrogen removal rate was 12.22±0.02 mg N L(-1) day(-1) and the percentage of nitrogen removal was 98.5 ± 0.2 %. Microbial community analysis indicated that denitrifying methanotrophs dominated (60-70 %) the population of the final sludge. Notably, activity testing and microbial analysis both suggested that heterotrophic denitrifiers existed in the reactor throughout the operation period. After 609 days, the activity testing indicated the nitrogen removal percentage of heterotrophic denitrification was 17 ± 2 % and that of n-damo was 83 ± 2 %. A possible mutualism may be developed between the dominated denitrifying methanotrophs and the associated heterotrophs through cross-feed. Heterotrophs may live on the microbial products excreted by denitrifying methanotrophs and provide growth factors that are required by denitrifying methanotrophs. PMID:26342737

  4. Denitrifying sulfide removal process on high-tetracycline wastewater.

    PubMed

    Liu, Chunshuang; Xu, Jian; Lee, Duu-Jong; Yu, Daoyong; Liu, Lihong

    2016-04-01

    Antibiotics wastewater from tetracycline (TC) production unit can have high levels of chemical oxygen demand, ammonium and sulfate and up to a few hundreds of milligrams per liter of TC. Denitrifying sulfide removal (DSR) process is set up for simultaneously removal of sulfur, carbon and nitrogen from waters. The DSR process was for the first time studied for treating TC wastewaters. The TC stress has no adverse effects on removal rates of nitrate and acetate; however, it moderately deteriorated sulfide removal rates and S(0) accumulation rates when the concentration is higher than 100mgL(-1) TC. The Thauera sp., and Pseudomonas sp. present the heterotrophs and Sulfurovum sp. presented the autotroph for the present DSR reactions. The high tolerance of TC stress by the tested consortium was explained by the excess production of extracellular polymeric substances at high TC concentration, which can bind with TC for minimizing its inhibition effects. PMID:26810146

  5. Removal of pharmaceutically active compounds in nitrifying-denitrifying plants.

    PubMed

    Suárez, S; Ramil, M; Omil, F; Lema, J M

    2005-01-01

    The behaviour of nine pharmaceutically active compounds (PhACs) of different diagnostic groups is studied during a nitrifying-denitrifying process in an activated sludge system. The compounds selected cover a wide range of frequently used substances such as anti-epileptics (carbamazepine), tranquillisers (diazepam), anti-depressants (fluoxetine and citalopram), anti-inflammatories (ibuprofen, naproxen and diclofenac) and estrogens (estradiol and ethinylestradiol). The main objective of this research is to investigate the effect of acclimation of biomass on the removal rates of these compounds, either by maintaining a high sludge retention time or at long-term operation. The removal rates achieved for nitrogen and carbon in the experimental unit exceed 90% and were not affected by the addition of PhACs. Carbamazepine, diazepam and diclofenac were only removed to a small extent. On the other hand, higher removal rates have been observed for naproxen and ibuprofen (68% and 82%), respectively. PMID:16312946

  6. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater.

    PubMed

    Merzouki, M; Bernet, N; Delgenès, J P; Benlemlih, M

    2005-08-01

    An anaerobic-anoxic sequencing batch reactor (A2 SBR) coupled with a fixed-bed nitrification reactor for simultaneous carbon, nitrogen and phosphorus removal was evaluated using slaughterhouse wastewater. Whereas the treatment could not be successfully carried out on the raw wastewater, the process showed very good nutrient removal performances after prefermentation. The removals of COD, N-NH4 and P-PO4 achieved were 99%, 85% and 99%, respectively. The increase in volatile fatty acid (VFA) and phosphate concentrations in the effluent after prefermentation may explain the high levels of biological carbon, nitrogen and phosphorus removal observed. A simple prefermentation is, therefore, necessary but sufficient to ensure good performances of the denitrifying enhanced biological phosphorus removal (EBPR) process.

  7. Imprint of denitrifying bacteria on the global terrestrial biosphere.

    PubMed

    Houlton, Benjamin Z; Bai, Edith

    2009-12-22

    Loss of nitrogen (N) from land limits the uptake and storage of atmospheric CO(2) by the biosphere, influencing Earth's climate system and myriads of the global ecological functions and services on which humans rely. Nitrogen can be lost in both dissolved and gaseous phases; however, the partitioning of these vectors remains controversial. Particularly uncertain is whether the bacterial conversion of plant available N to gaseous forms (denitrification) plays a major role in structuring global N supplies in the nonagrarian centers of Earth. Here, we use the isotope composition of N ((15)N/(14)N) to constrain the transfer of this nutrient from the land to the water and atmosphere. We report that the integrated (15)N/(14)N of the natural terrestrial biosphere is elevated with respect to that of atmospheric N inputs. This cannot be explained by preferential loss of (14)N to waterways; rather, it reflects a history of low (15)N/(14)N gaseous N emissions to the atmosphere owing to denitrifying bacteria in the soil. Parameterizing a simple model with global N isotope data, we estimate that soil denitrification (including N(2)) accounts for approximately 1/3 of the total N lost from the unmanaged terrestrial biosphere. Applying this fraction to estimates of N inputs, N(2)O and NO(x) fluxes, we calculate that approximately 28 Tg of N are lost annually via N(2) efflux from the natural soil. These results place isotopic constraints on the widely held belief that denitrifying bacteria account for a significant fraction of the missing N in the global N cycle.

  8. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    PubMed Central

    Linchangco, Richard

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed. PMID:25580463

  9. The bacterivorous soil flagellate Heteromita globosa reduces bacterial clogging under denitrifying conditions in sand-filled aquifer columns.

    PubMed

    Mattison, Richard G; Taki, Hironori; Harayama, Shigeaki

    2002-09-01

    An exopolymer (slime)-producing soil bacterium Pseudomonas sp. (strain PS+) rapidly clogged sand-filled columns supplied with air-saturated artificial groundwater containing glucose (500 mg liter(-1)) as a sole carbon source and nitrate (300 mg liter(-1)) as an alternative electron acceptor. After 80 days of operation under denitrifying conditions, the effective porosity and saturated hydraulic conductivity (permeability) of sand in these columns had fallen by 2.5- and 26-fold, respectively. Bacterial biofilms appeared to induce clogging by occluding pore spaces with secreted exopolymer, although there may also have been a contribution from biogas generated during denitrification. The bacterivorous soil flagellate Heteromita globosa minimized reductions in effective porosity (1.6-fold) and permeability (13-fold), presumably due to grazing control of biofilms. Grazing may have limited growth of bacterial biomass and hence the rate of exopolymer and biogas secretion into pore spaces. Evidence for reduction in biogas production is suggested by increased nitrite efflux from columns containing flagellates, without a concomitant increase in nitrate consumption. There was no evidence that flagellates could improve flow conditions if added once clogging had occurred (60 days). Presumably, bacterial biofilms and their secretions were well established at that time. Nevertheless, this study provides evidence that bacterivorous flagellates may play a positive role in maintaining permeability in aquifers undergoing remediation treatments.

  10. BIODEGRADATION OF AROMATIC COMPOUNDS UNDER MIXED OXYGEN/DENITRIFYING CONDITIONS: A REVIEW

    EPA Science Inventory

    Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria...

  11. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  12. Urban stormwater runoff drives denitrifying community composition through changes in sediment texture and carbon content.

    PubMed

    Perryman, Shane E; Rees, Gavin N; Walsh, Christopher J; Grace, Michael R

    2011-05-01

    The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be

  13. Methyl t-Butyl Ether Mineralization in Surface-Water Sediment Microcosms under Denitrifying Conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    Mineralization of [U-14C] methyl t-butyl ether (MTBE) to 14CO2 without accumulation of t-butyl alcohol (TBA) was observed in surface-water sediment microcosms under denitrifying conditions. Methanogenic activity and limited transformation of MTBE to TBA were observed in the absence of denitrification. Results indicate that bed sediment microorganisms can effectively degrade MTBE to nontoxic products under denitrifying conditions.

  14. Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify.

    PubMed

    Boulêtreau, Stéphanie; Lyautey, Emilie; Dubois, Sophie; Compin, Arthur; Delattre, Cécile; Touron-Bodilis, Aurélie; Mastrorillo, Sylvain; Garabetian, Frédéric

    2014-01-01

    Microbial denitrification is the main nitrogen removing process in freshwater ecosystems. The aim of this study was to show whether and how water warming (+2.5 °C) drives bacterial diversity and structuring and how bacterial diversity affects denitrification enzymatic activity in phototrophic river biofilms (PRB). We used water warming associated to the immediate thermal release of a nuclear power plant cooling circuit to produce natural PRB assemblages on glass slides while testing 2 temperatures (mean temperature of 17 °C versus 19.5 °C). PRB were sampled at 2 sampling times during PRB accretion (6 and 21days) in both temperatures. Bacterial community composition was assessed using ARISA. Denitrifier community abundance and denitrification gene mRNA levels were estimated by q-PCR and qRT-PCR, respectively, of 5 genes encoding catalytic subunits of the denitrification key enzymes. Denitrification enzyme activity (DEA) was measured by the acetylene-block assay at 20 °C. A mean water warming of 2.5 °C was sufficient to produce contrasted total bacterial and denitrifier communities and, therefore, to affect DEA. Indirect temperature effect on DEA may have varied between sampling time, increasing by up to 10 the denitrification rate of 6-day-old PRB and decreasing by up to 5 the denitrification rate of 21-day-old PRB. The present results suggest that indirect effects of warming through changes in bacterial community composition, coupled to the strong direct effect of temperature on DEA already demonstrated in PRB, could modulate dissolved nitrogen removal by denitrification in rivers and streams.

  15. [Rapid enrichment and cultivation of denitrifying phosphate-removal bacteria and its identification by fluorescence in situ hybridization technology].

    PubMed

    Liu, Li; Tang, Bing; Huang, Shao-Song; Fu, Feng-Lian; Zhang, Qi-Qin; Li, Jian-Bin; Luo, Jian-Zhong

    2013-07-01

    The present work focused on a rapid enrichment and cultivation of denitrifying phosphate-removal bacteria (DPB) in a membrane bio-reactor(MBR) by using A2/O anaerobic sludge from a wastewater treatment plant as seed, as well as providing an identification method. In the experiments, sodium acetate was used as the carbon source and a certain amount of nitrate was added to the MBR in the anoxic stage. Results showed that, with the efficient trap of the hollow-fiber membrane module, the proportion of DPB in all the phosphate-accumulating organisms (PAOs) increased from 24% to 93% within 35 days after two-stage's cultivation including anaerobic/aerobic and anaerobic/anoxic, during which the removal efficiency of nitrogen and phosphorus reached more than 90%. The activated sludge was identified by combining a regular method and the fluorescence in situ hybridization (FISH) technique, which demonstrated that Pseudomonas sp. and Rhodocyclus sp. were the dominant bacteria in the used bioreactor.

  16. Cultivation of Denitrifying Bacteria: Optimization of Isolation Conditions and Diversity Study†

    PubMed Central

    Heylen, Kim; Vanparys, Bram; Wittebolle, Lieven; Verstraete, Willy; Boon, Nico; De Vos, Paul

    2006-01-01

    An evolutionary algorithm was applied to study the complex interactions between medium parameters and their effects on the isolation of denitrifying bacteria, both in number and in diversity. Growth media with a pH of 7 and a nitrogen concentration of 3 mM, supplemented with 1 ml of vitamin solution but not with sodium chloride or riboflavin, were the most successful for the isolation of denitrifiers from activated sludge. The use of ethanol or succinate as a carbon source and a molar C/N ratio of 2.5, 20, or 25 were also favorable. After testing of 60 different medium parameter combinations and comparison with each other as well as with the standard medium Trypticase soy agar supplemented with nitrate, three growth media were highly suitable for the cultivation of denitrifying bacteria. All evaluated isolation conditions were used to study the cultivable denitrifier diversity of activated sludge from a municipal wastewater treatment plant. One hundred ninety-nine denitrifiers were isolated, the majority of which belonged to the Betaproteobacteria (50.4%) and the Alphaproteobacteria (36.8%). Representatives of Gammaproteobacteria (5.6%), Epsilonproteobacteria (2%), and Firmicutes (4%) and one isolate of the Bacteroidetes were also found. This study revealed a much more diverse denitrifying community than that previously described in cultivation-dependent research on activated sludge. PMID:16597968

  17. nirS-containing denitrifier communities in the water column and sediment of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Falk, S.; Hannig, M.; Gliesche, C.; Wardenga, R.; Köster, M.; Jürgens, K.; Braker, G.

    2007-05-01

    The aim of this study was to compare structural differences in the nirS-type denitrifying microbial communities along the environmental gradients observed in the water column and coastal sediments of the Baltic Sea. To link community structure and environmental gradients, denitrifier communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP) based on nirS as a functional marker gene for denitrification. nirS-type denitrifier community composition was further evaluated by phylogenetic analysis of nirS sequences from clone libraries. T-RFLP analysis indicated some overlap but also major differences between communities from the water column and the sediment. Shifts in community composition along the biogeochemical gradients were observed only in the water column while denitrifier communities were rather uniform within the upper 30 mm of the sediment. Specific terminal restriction fragments (T-RFs) indicative of the sulfidic zone suggest the presence of nitrate-reducing and sulfide-oxidizing microorganisms that were previously shown to be important at the suboxic-sulfidic interface in the water column of the Baltic Sea. Phylogenetic analysis of nirS genes from the Baltic Sea and of sequences from marine habitats all over the world indicated distinct denitrifier communities that grouped mostly according to their habitats. We suggest that these subgroups of denitrifiers had developed after selection through several factors, i.e. their habitats (water column or sediment), impact by prevalent environmental conditions and isolation by large geographic distances between habitats.

  18. nirS-Encoding denitrifier community composition, distribution, and abundance along the coastal wetlands of China.

    PubMed

    Gao, Juan; Hou, Lijun; Zheng, Yanling; Liu, Min; Yin, Guoyu; Li, Xiaofei; Lin, Xianbiao; Yu, Chendi; Wang, Rong; Jiang, Xiaofen; Sun, Xiuru

    2016-10-01

    For the past few decades, human activities have intensively increased the reactive nitrogen enrichment in China's coastal wetlands. Although denitrification is a critical pathway of nitrogen removal, the understanding of denitrifier community dynamics driving denitrification remains limited in the coastal wetlands. In this study, the diversity, abundance, and community composition of nirS-encoding denitrifiers were analyzed to reveal their variations in China's coastal wetlands. Diverse nirS sequences were obtained and more than 98 % of them shared considerable phylogenetic similarity with sequences obtained from aquatic systems (marine/estuarine/coastal sediments and hypoxia sea water). Clone library analysis revealed that the distribution and composition of nirS-harboring denitrifiers had a significant latitudinal differentiation, but without a seasonal shift. Canonical correspondence analysis showed that the community structure of nirS-encoding denitrifiers was significantly related to temperature and ammonium concentration. The nirS gene abundance ranged from 4.3 × 10(5) to 3.7 × 10(7) copies g(-1) dry sediment, with a significant spatial heterogeneity. Among all detected environmental factors, temperature was a key factor affecting not only the nirS gene abundance but also the community structure of nirS-type denitrifiers. Overall, this study significantly enhances our understanding of the structure and dynamics of denitrifying communities in the coastal wetlands of China. PMID:27311565

  19. Reducing NO and N₂O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1.

    PubMed

    Zheng, Maosheng; He, Da; Ma, Tao; Chen, Qian; Liu, Sitong; Ahmad, Muhammad; Gui, Mengyao; Ni, Jinren

    2014-06-01

    As two obligatory intermediates of denitrification, both NO and N2O had harmful environmental and biological impacts. An aerobic denitrifying bacterial strain PCN-1 was newly isolated and identified as Pseudomonas stutzeri, which was capable of high efficient nitrogen removal under aerobic condition with maximal NO and N2O accumulation as low as 0.003% and 0.33% of removed NO3(-)-N, respectively. Further experiment taking nitrite as denitrifying substrate indicated similar low NO and N2O emission of 0.006% and 0.29% of reduced NO2(-)-N, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that the coordinate expression of denitrification gene nirS (for cytochrome cd1 nitrite reductase), cnorB (for NO reductase) and nosZ (for N2O reductase) was the fundamental reason of low NO and N2O accumulation. Activated sludge system bioaugmented by strain PCN-1 demonstrated a significant reduction of NO and N2O emission from wastewater during aerobic denitrification, implied great potential of PCN-1 in practical applications.

  20. Genome Sequence of Virgibacillus pantothenticus DSM 26T (ATCC 14576), a Mesophilic and Halotolerant Bacterium Isolated from Soil

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Chen, De-ju; Zhu, Yu-jing; Chen, Zheng; Che, Jian-mei

    2015-01-01

    Virgibacillus pantothenticus DSM 26T is a Gram-positive, spore-forming, aerobic, mesophilic, and halotolerant bacterium. Here, we report its 4.76-Mb draft genome sequence, which is the first genome information of V. pantothenticus and will promote biological research and biotechnological application for the species. PMID:26383648

  1. Genome Sequence of Virgibacillus pantothenticus DSM 26T (ATCC 14576), a Mesophilic and Halotolerant Bacterium Isolated from Soil.

    PubMed

    Wang, Jie-Ping; Liu, Bo; Liu, Guo-Hong; Chen, De-Ju; Zhu, Yu-Jing; Chen, Zheng; Che, Jian-Mei

    2015-01-01

    Virgibacillus pantothenticus DSM 26(T) is a Gram-positive, spore-forming, aerobic, mesophilic, and halotolerant bacterium. Here, we report its 4.76-Mb draft genome sequence, which is the first genome information of V. pantothenticus and will promote biological research and biotechnological application for the species. PMID:26383648

  2. Simultaneous nitrification and denitrification by EPSs in aerobic granular sludge enhanced nitrogen removal of ammonium-nitrogen-rich wastewater.

    PubMed

    Yan, Lilong; Zhang, Shaoliang; Hao, Guoxin; Zhang, Xiaolei; Ren, Yuan; Wen, Yan; Guo, Yihan; Zhang, Ying

    2016-02-01

    In this study, role of extracellular polymeric substances (EPSs) in enhancing nitrogen-removal from ammonium-nitrogen-rich wastewater using aerobic granular sludge (AGS) technology were analyzed. AGS enabled ammonium oxidation and denitrification to occur simultaneously. Air stripping and simultaneous nitrification-denitrification contributed to total-nitrogen removal. Clone-library analysis revealed that close relatives of Nitrosomonas eutropha and heterotrophic denitrifiers were dominant in the AGS, whereas anammox bacteria were not detected. EPSs adsorption of ammonium, nitrite, and nitrate nitrogen results in improved removal of nitrogen in batch experiments.

  3. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    SciTech Connect

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy s Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  4. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination.

    PubMed

    Green, Stefan J; Prakash, Om; Gihring, Thomas M; Akob, Denise M; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony V; Kostka, Joel E

    2010-05-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface. PMID:20305024

  5. Denitrifier Community in the Oxygen Minimum Zone of a Subtropical Deep Reservoir

    PubMed Central

    Yu, Zheng; Yang, Jun; Liu, Lemian

    2014-01-01

    Denitrification is an important pathway for nitrogen removal from aquatic systems and this could benefit water quality. However, little is known about the denitrifier community composition and key steps of denitrification in the freshwater environments, and whether different bacteria have a role in multiple processes of denitrification reduction. In this study, quantitative PCR, quantitative RT-PCR, clone library and 454 pyrosequencing were used together to investigate the bacterial and denitrifier community in a subtropical deep reservoir during the strongly stratified period. Our results indicated that the narG gene recorded the highest abundance among the denitrifying genes (2.76×109 copies L−1 for DNA and 4.19×108 copies L−1 for RNA), and the lowest value was nosZ gene (7.56×105 copies L−1 for DNA and undetected for RNA). The RNA: DNA ratios indicated that narG gene was the most active denitrifying gene in the oxygen minimum zone of Dongzhen Reservoir. Further, α-, β- and γ- Proteobacteria were the overwhelmingly dominant classes of denitrifier communities. Each functional gene had its own dominant groups which were different at the genus level: the narG gene was dominated by Albidiferax, while nirS gene was dominated by Dechloromonas. The main OTU of nirK gene was Rhodopseudomonas palustris, but for norB and nosZ genes, they were Bacillus and Bradyrhizobium, respectively. These results contribute to the understanding of linkages between denitrifier community, function and how they work together to complete the denitrification process. Studies on denitrifier community and activity may be useful in managing stratified reservoirs for the ecosystem services and aiding in constructing nitrogen budgets. PMID:24664112

  6. Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination.

    PubMed

    Green, Stefan J; Prakash, Om; Gihring, Thomas M; Akob, Denise M; Jasrotia, Puja; Jardine, Philip M; Watson, David B; Brown, Steven D; Palumbo, Anthony V; Kostka, Joel E

    2010-05-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  7. Denitrifying Bacteria Isolated from Terrestrial Subsurface Sediments Exposed to Mixed-Waste Contamination▿ †

    PubMed Central

    Green, Stefan J.; Prakash, Om; Gihring, Thomas M.; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven D.; Palumbo, Anthony V.; Kostka, Joel E.

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface. PMID:20305024

  8. Denitrifier community in the oxygen minimum zone of a subtropical deep reservoir.

    PubMed

    Yu, Zheng; Yang, Jun; Liu, Lemian

    2014-01-01

    Denitrification is an important pathway for nitrogen removal from aquatic systems and this could benefit water quality. However, little is known about the denitrifier community composition and key steps of denitrification in the freshwater environments, and whether different bacteria have a role in multiple processes of denitrification reduction. In this study, quantitative PCR, quantitative RT-PCR, clone library and 454 pyrosequencing were used together to investigate the bacterial and denitrifier community in a subtropical deep reservoir during the strongly stratified period. Our results indicated that the narG gene recorded the highest abundance among the denitrifying genes (2.76×109 copies L-1 for DNA and 4.19×108 copies L-1 for RNA), and the lowest value was nosZ gene (7.56×105 copies L-1 for DNA and undetected for RNA). The RNA: DNA ratios indicated that narG gene was the most active denitrifying gene in the oxygen minimum zone of Dongzhen Reservoir. Further, α-, β- and γ- Proteobacteria were the overwhelmingly dominant classes of denitrifier communities. Each functional gene had its own dominant groups which were different at the genus level: the narG gene was dominated by Albidiferax, while nirS gene was dominated by Dechloromonas. The main OTU of nirK gene was Rhodopseudomonas palustris, but for norB and nosZ genes, they were Bacillus and Bradyrhizobium, respectively. These results contribute to the understanding of linkages between denitrifier community, function and how they work together to complete the denitrification process. Studies on denitrifier community and activity may be useful in managing stratified reservoirs for the ecosystem services and aiding in constructing nitrogen budgets.

  9. In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column.

    PubMed Central

    Hess, A; Zarda, B; Hahn, D; Häner, A; Stax, D; Höhener, P; Zeyer, J

    1997-01-01

    A diesel fuel-contaminated aquifer was bioremediated in situ by the injection of oxidants (O2 and NO3-) and nutrients in order to stimulate microbial activity. After 3.5 years of remediation, an aquifer sample was excavated and the material was used (i) to isolate bacterial strains able to grow on selected hydrocarbons under denitrifying conditions and (ii) to construct a laboratory aquifer column in order to simulate the aerobic and denitrifying remediation processes. Five bacterial strains isolated from the aquifer sample were able to grow on toluene (strains T2 to T4, T6, and T10), and nine bacterial strains grew on toluene and m-xylene (strains M3 to M7 and M9 to M12). Strains T2 to T4, T6, and T10 were cocci, and strains M3 to M7 and M9 to M12 were rods. The morphological and physiological differences were also reflected in small sequence variabilities in domain III of the 23S rRNA and in the 16S rRNA. Comparative sequence analyses of the 16S rRNA of one isolate (T3 and M3) of each group revealed a close phylogenetic relationship for both groups of isolates to organisms of the genus Azoarcus. Two 16S rRNA-targeted oligonucleotide probes (Azo644 and Azo1251) targeting the experimental isolates, bacteria of the Azoarcus tolulyticus group, and Azoarcus evansii were used to investigate the significance of hydrocarbon-degrading Azoarcus spp. in the laboratory aquifer column. The number of bacteria in the column determined after DAPI (4',6-diamidino-2-phenylindole) staining was 5.8 x 10(8) to 1.1 x 10(9) cells g of aquifer material-1. About 1% (in the anaerobic zone of the column) to 2% (in the aerobic zone of the column) of these bacteria were detectable by using a combination of probes Azo644 and Azo1251, demonstrating that hydrocarbon-degrading Azoarcus spp. are significant members of the indigenous microbiota. More than 90% of the total number of bacteria were detectable by using probes targeting higher phylogenetic groups. Approximately 80% of these bacteria

  10. In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column.

    PubMed

    Hess, A; Zarda, B; Hahn, D; Häner, A; Stax, D; Höhener, P; Zeyer, J

    1997-06-01

    A diesel fuel-contaminated aquifer was bioremediated in situ by the injection of oxidants (O2 and NO3-) and nutrients in order to stimulate microbial activity. After 3.5 years of remediation, an aquifer sample was excavated and the material was used (i) to isolate bacterial strains able to grow on selected hydrocarbons under denitrifying conditions and (ii) to construct a laboratory aquifer column in order to simulate the aerobic and denitrifying remediation processes. Five bacterial strains isolated from the aquifer sample were able to grow on toluene (strains T2 to T4, T6, and T10), and nine bacterial strains grew on toluene and m-xylene (strains M3 to M7 and M9 to M12). Strains T2 to T4, T6, and T10 were cocci, and strains M3 to M7 and M9 to M12 were rods. The morphological and physiological differences were also reflected in small sequence variabilities in domain III of the 23S rRNA and in the 16S rRNA. Comparative sequence analyses of the 16S rRNA of one isolate (T3 and M3) of each group revealed a close phylogenetic relationship for both groups of isolates to organisms of the genus Azoarcus. Two 16S rRNA-targeted oligonucleotide probes (Azo644 and Azo1251) targeting the experimental isolates, bacteria of the Azoarcus tolulyticus group, and Azoarcus evansii were used to investigate the significance of hydrocarbon-degrading Azoarcus spp. in the laboratory aquifer column. The number of bacteria in the column determined after DAPI (4',6-diamidino-2-phenylindole) staining was 5.8 x 10(8) to 1.1 x 10(9) cells g of aquifer material-1. About 1% (in the anaerobic zone of the column) to 2% (in the aerobic zone of the column) of these bacteria were detectable by using a combination of probes Azo644 and Azo1251, demonstrating that hydrocarbon-degrading Azoarcus spp. are significant members of the indigenous microbiota. More than 90% of the total number of bacteria were detectable by using probes targeting higher phylogenetic groups. Approximately 80% of these bacteria

  11. Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Striebich, Richard C.

    2016-01-01

    Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.16 Mb in size, with 3,686 coding sequences and 68.1% G+C content. Alkane monooxygenase and P-450 cytochrome genes required for alkane degradation are predicted in G. sihwensis S9. PMID:27340079

  12. Draft Genome Sequence of Pseudomonas frederiksbergensis SI8, a Psychrotrophic Aromatic-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Striebich, Richard C.; Mueller, Susan S.; Gunasekera, Thusitha S.

    2015-01-01

    Pseudomonas frederiksbergensis strain SI8 is a psychrotrophic bacterium capable of efficient aerobic degradation of aromatic hydrocarbons. The draft genome of P. frederiksbergensis SI8 is 6.57 Mb in size, with 5,904 coding sequences and 60.5% G+C content. The isopropylbenzene (cumene) degradation pathway is predicted to be present in P. frederiksbergensis SI8. PMID:26184950

  13. Phosphorus removal and N₂O production in anaerobic/anoxic denitrifying phosphorus removal process: long-term impact of influent phosphorus concentration.

    PubMed

    Wang, Zhen; Meng, Yuan; Fan, Ting; Du, Yuneng; Tang, Jie; Fan, Shisuo

    2015-03-01

    This study was conducted to investigate the long-term impact of influent phosphorus concentration on denitrifying phosphorus removal and N2O production during denitrifying phosphorous removal process. The results showed that, denitrifying phosphate accumulating organisms (DPAOs) could become dominant populations quickly in anaerobic/anoxic SBR by providing optimum cultivating conditions, and the reactor performed well for denitrifying phosphorus removal. The influent phosphorus concentration significantly affected anaerobic poly-β-hydroxyalkanoates (PHA) synthesis, denitrifying phosphorus removal, and N2O production during the denitrifying phosphorus removal process. As the influent phosphorus concentration was more than 20 mg L(-1), the activity of DPAOs began to be inhibited due to the transformation of the available carbon source type. Meanwhile, N2O production was inhibited with the mitigation of anoxic NO2(-)-N accumulation. Adoption of a modified feeding could enhance denitrifying phosphorus removal and inhibit N2O production during denitrifying phosphorous removal processes.

  14. Impact of Land Use Management and Soil Properties on Denitrifier Communities of Namibian Savannas.

    PubMed

    Braker, Gesche; Matthies, Diethart; Hannig, Michael; Brandt, Franziska Barbara; Brenzinger, Kristof; Gröngröft, Alexander

    2015-11-01

    We studied potential denitrification activity and the underlying denitrifier communities in soils from a semiarid savanna ecosystem of the Kavango region in NE Namibia to help in predicting future changes in N(2)O emissions due to continuing changes of land use in this region. Soil type and land use (pristine, fallow, and cultivated soils) influenced physicochemical characteristics of the soils that are relevant to denitrification activity and N(2)O fluxes from soils and affected potential denitrification activity. Potential denitrification activity was assessed by using the denitrifier enzyme activity (DEA) assay as a proxy for denitrification activity in the soil. Soil type and land use influenced C and N contents of the soils. Pristine soils that had never been cultivated had a particularly high C content. Cultivation reduced soil C content and the abundance of denitrifiers and changed the composition of the denitrifier communities. DEA was strongly and positively correlated with soil C content and was higher in pristine than in fallow or recently cultivated soils. Soil type and the composition of both the nirK- and nirS-type denitrifier communities also influenced DEA. In contrast, other soil characteristics like N content, C:N ratio, and pH did not predict DEA. These findings suggest that due to greater availability of soil organic matter, and hence a more effective N cycling, the natural semiarid grasslands emit more N(2)O than managed lands in Namibia.

  15. Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage.

    PubMed

    Porter, Matthew D; Andrus, J Malia; Bartolerio, Nicholas A; Rodriguez, Luis F; Zhang, Yuanhui; Zilles, Julie L; Kent, Angela D

    2015-10-01

    Denitrifying bioreactors, consisting of water flow control structures and a woodchip-filled trench, are a promising approach for removing nitrate from agricultural subsurface or tile drainage systems. To better understand the seasonal dynamics and the ecological drivers of the microbial communities responsible for denitrification in these bioreactors, we employed microbial community "fingerprinting" techniques in a time-series examination of three denitrifying bioreactors over 2 years, looking at bacteria, fungi, and the denitrifier functional group responsible for the final step of complete denitrification. Our analysis revealed that microbial community composition responds to depth and seasonal variation in moisture content and inundation of the bioreactor media, as well as temperature. Using a geostatistical analysis approach, we observed recurring temporal patterns in bacterial and denitrifying bacterial community composition in these bioreactors, consistent with annual cycling. The fungal communities were more stable, having longer temporal autocorrelations, and did not show significant annual cycling. These results suggest a recurring seasonal cycle in the denitrifying bioreactor microbial community, likely due to seasonal variation in moisture content.

  16. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  18. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  19. Low-Impact Aerobics: Better than Traditional Aerobic Dance?

    ERIC Educational Resources Information Center

    Koszuta, Laurie Einstein

    1986-01-01

    A form of dance exercise called low-impact aerobics is being touted as a misery-free form of aerobic dance. Because this activity is relatively new, the exact kinds and frequencies of injuries are not known and the fitness benefits have not been examined. (MT)

  20. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  1. Tillage Management and Seasonal Effects on Denitrifier Community Abundance, Gene Expression and Structure over Winter.

    PubMed

    Tatti, Enrico; Goyer, Claudia; Burton, David L; Wertz, Sophie; Zebarth, Bernie J; Chantigny, Martin; Filion, Martin

    2015-10-01

    Tillage effects on denitrifier communities and nitrous oxide (N2O) emissions were mainly studied during the growing season. There is limited information for the non-growing season, especially in northern countries where winter has prolonged periods with sub-zero temperatures. The abundance and structure of the denitrifier community, denitrification gene expression and N2O emissions in fields under long-term tillage regimes [no-tillage (NT) vs conventional tillage (CT)] were assessed during two consecutive winters. NT exerted a positive effect on nirK and nosZ denitrifier abundance in both winters compared to CT. Moreover, the two contrasting managements had an opposite influence on nirK and nirS RNA/DNA ratios. Tillage management resulted in different denitrifier community structures during both winters. Seasonal changes were observed in the abundance and the structure of denitrifiers. Interestingly, the RNA/DNA ratios were greater in the coldest months for nirK, nirS and nosZ. N2O emissions were not influenced by management but changed over time with two orders of magnitude increase in the coldest month of both winters. In winter of 2009-2010, emissions were mainly as N2O, whereas in 2010-2011, when soil temperatures were milder due to persistent snow cover, most emissions were as dinitrogen. Results indicated that tillage management during the growing season induced differences in denitrifier community structure that persisted during winter. However, management did not affect the active cold-adapted community structure.

  2. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils.

    PubMed

    Barrett, M; Khalil, M I; Jahangir, M M R; Lee, C; Cardenas, L M; Collins, G; Richards, K G; O'Flaherty, V

    2016-04-01

    The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth.

  3. Abundance and composition of denitrifiers in response to Spartina alterniflora invasion in estuarine sediment.

    PubMed

    Zhang, Qiufang; Peng, Jingjing; Chen, Qian; Yang, Xiaoru; Hong, Youwei; Su, Jianqiang

    2013-12-01

    Nitrite reduction is regulated by nitrite reductase encoded by nirK and nirS genes. This study aimed to investigate the abundance and composition of nirK- and nirS-containing denitrifiers in response to Spartina alterniflora invasion at the Jiulong River estuary, China. The sediment samples (depth: 0-5.0 and 5.1-20 cm) were collected from 3 vegetation zones, 1 dominated by the exotic plant S. alterniflora, 1 dominated by the native plant Kandelia candel, and 1 dominated by the native plant Cyperus malaccensis, and from an unvegetated flat zone. nirK- and nirS-containing denitrifier population sizes were lower in the invaded and nonvegetated zones than in those dominated by native K. candel and C. malaccensis, which were impacted by depth - vegetation species interaction. The ratios of nirS to nirK abundance ranged from 42.10 to 677.27, with the lowest ratio found for the upper layer in the invaded zone. The nirK-containing denitrifier compositions showed a 35% similarity between invaded zone and others. Most of the sequences of nirK genes recovered from the S. alterniflora zone were specific and distinct from those of nirK genes recovered from other vegetation types; nirS genes in the invaded zone were highly divergent. These results reveal that S. alterniflora invasion has a significant effect on the abundance and composition of both nirK- and nirS-containing denitrifiers, and nirS-containing denitrifiers were less responsive to invasion than nirK-containing denitrifiers. PMID:24313455

  4. Concurrent activity of anammox and denitrifying bacteria in the Black Sea

    PubMed Central

    Kirkpatrick, John B.; Fuchsman, Clara A.; Yakushev, Evgeniy; Staley, James T.; Murray, James W.

    2012-01-01

    After the discovery of ANaerobic AMMonium OXidation (anammox) in the environment, the role of heterotrophic denitrification as the main marine pathway for fixed N loss has been questioned. A 3 part, 15 month time series investigating nitrite reductase (nirS) mRNA transcripts at a single location in the Black Sea was conducted in order to better understand the activity of anammox and denitrifying bacteria. Here we show that both of these groups were active, as well as being concurrent in the lower suboxic zone over this time span. Their distributions, however, differed in that only expression of denitrification-type nirS was seen in the upper suboxic zone, where geochemistry was variable. Depth profiles covering the suboxic zone showed that the four groups of anammox-type sequences were expressed consistently in the lower suboxic zone, and were consistent with anammox 16 S rDNA gene profiles. By contrast, denitrifier-type nirS sequence groups were mixed; some groups exhibited consistent expression in the lower suboxic zone, while others appeared less consistent. Co-occurrence of both anammox and denitrifier expression was common and ongoing. Both types of transcripts were also found in samples with low concentrations of sulfide (>2 μM). Six major groups of denitrifier-type nirS transcripts were identified, and several groups of denitrifier-type nirS transcripts were closely related to sequences from the Baltic Sea. An increase in denitrifier-type nirS transcript diversity and depth range in October 2007 corresponded to a small increase in mixed layer net community productivity (NCP) as measured by O2/Ar gas ratios, as well as to an increase in N2 concentrations in the suboxic zone. Taken together, the variations in expression patterns between anammox and denitrification provide one possible explanation as to how near instantaneous rate measurements, such as isotope spike experiments, may regularly detect anammox activity but underreport denitrification. PMID

  5. Concurrent activity of anammox and denitrifying bacteria in the Black Sea.

    PubMed

    Kirkpatrick, John B; Fuchsman, Clara A; Yakushev, Evgeniy; Staley, James T; Murray, James W

    2012-01-01

    After the discovery of ANaerobic AMMonium OXidation (anammox) in the environment, the role of heterotrophic denitrification as the main marine pathway for fixed N loss has been questioned. A 3 part, 15 month time series investigating nitrite reductase (nirS) mRNA transcripts at a single location in the Black Sea was conducted in order to better understand the activity of anammox and denitrifying bacteria. Here we show that both of these groups were active, as well as being concurrent in the lower suboxic zone over this time span. Their distributions, however, differed in that only expression of denitrification-type nirS was seen in the upper suboxic zone, where geochemistry was variable. Depth profiles covering the suboxic zone showed that the four groups of anammox-type sequences were expressed consistently in the lower suboxic zone, and were consistent with anammox 16 S rDNA gene profiles. By contrast, denitrifier-type nirS sequence groups were mixed; some groups exhibited consistent expression in the lower suboxic zone, while others appeared less consistent. Co-occurrence of both anammox and denitrifier expression was common and ongoing. Both types of transcripts were also found in samples with low concentrations of sulfide (>2 μM). Six major groups of denitrifier-type nirS transcripts were identified, and several groups of denitrifier-type nirS transcripts were closely related to sequences from the Baltic Sea. An increase in denitrifier-type nirS transcript diversity and depth range in October 2007 corresponded to a small increase in mixed layer net community productivity (NCP) as measured by O(2)/Ar gas ratios, as well as to an increase in N(2) concentrations in the suboxic zone. Taken together, the variations in expression patterns between anammox and denitrification provide one possible explanation as to how near instantaneous rate measurements, such as isotope spike experiments, may regularly detect anammox activity but underreport denitrification. PMID

  6. Toxicity of TiO₂ nanoparticle to denitrifying strain CFY1 and the impact on microbial community structures in activated sludge.

    PubMed

    Li, Dapeng; Li, Bin; Wang, Qiaoruo; Hou, Ning; Li, Chunyan; Cheng, Xiaosong

    2016-02-01

    The antibacterial activity of titanium dioxide nanoparticles (TiO2 NPs) is well described, but little is known of their impact on specific microbial functions such as denitrification, nor on microbial community structure. In this study, a denitrifier (named as Pseudomonas stutzeri CFY1), which was isolated from the activated sludge and could remove up to 111.68 mg/L of NO3(-)-N under aerobic conditions, was utilized to evaluate the influences of TiO2 NPs on its nitrogen removal ability and associated gene expression under aerobic conditions. The variations of the bacterial diversity of activated sludge were also observed. The results showed that antibacterial activity increased with increasing concentrations of TiO2 NPs. Increased production of reactive oxygen species was responsible for TiO2 NPs toxicity. An up-regulation of denitrification genes was observed with increasing concentrations of TiO2 NPs under aerobic conditions. Accordingly, denitrification by P. stutzeri was accelerated when the concentration of TiO2 NPs was increased to 50 mg/L. However, the denitrification of CFY1 was inhibited at low concentrations of TiO2 NPs (5-25 mg/L), indicating that assimilatory and dissimilatory denitrification were synchronized in P. stutzeri CFY1; the latter process plays a major role in denitrification. Further study of the community using 454 pyrosequencing showed that after 7 days of exposure to 50 mg/L TiO2 NPs, the microbial composition of the activated sludge was significantly different and had a lower diversity compared to the controls. PMID:26479452

  7. Biodegradation of a surrogate naphthenic acid under denitrifying conditions.

    PubMed

    Gunawan, Yetty; Nemati, Mehdi; Dalai, Ajay

    2014-03-15

    Extraction of bitumen from the shallow oil sands generates extremely large volumes of waters contaminated by naphthenic acid which pose severe environmental and ecological risks. Aerobic biodegradation of NA in properly designed bioreactors has been investigated in our earlier works. In the present work, anoxic biodegradation of trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA) coupled to denitrification was investigated as a potential ex situ approach for the treatment of oil sand process waters in bioreactors whereby excessive aeration cost could be eliminated, or as an in situ alternative for the treatment of these waters in anoxic stabilization ponds amended with nitrate. Using batch and continuous reactors (CSTR and biofilm), effects of NA concentration (100-750mgL(-1)), NA loading rate (up to 2607.9mgL(-1)h(-1)) and temperature (10-35°C) on biodegradation and denitrification processes were evaluated. In the batch system biodegradation of trans-4MCHCA coupled to denitrification occurred even at the highest concentration of 750mgL(-1). Consistent with the patterns reported for aerobic biodegradation, increase in initial concentration of NA led to higher biodegradation and denitrification rates and the optimum temperature was determined as 23-24°C. In the CSTR, NA removal and nitrate reduction rates passed through a maximum due to increases in NA loading rate. NA loading rate of 157.8mgL(-1)h(-1) at which maximum anoxic NA and nitrate removal rates (105.3mgL(-1)h(-1) and 144.5mgL(-1)h(-1), respectively) occurred was much higher than those reported for the aerobic alternative (NA loading and removal rates: 14.2 and 9.6mgL(-1)h(-1), respectively). In the anoxic biofilm reactor removal rates of NA and nitrate were dependent on NA loading rate in a linear fashion for the entire range of applied loading rates. The highest loading and removal rates for NA were 2607.9 and 2028.1mgL(-1)h(-1), respectively which were at least twofold higher than the values

  8. Feasibility of enhanced biodegradation of petroleum compounds in groundwater under denitrifying conditions.

    PubMed

    Jin, Song; Fallgren, Paul; Luo, Haiping

    2010-03-01

    Groundwater was collected from a petroleum hydrocarbon contaminated site and characterized for microbial and physiochemical properties to assess the feasibility of enhanced natural attenuation. Results demonstrate the depletion of nitrate and dominance of denitrifying bacteria in the groundwater. Microcosm studies of amending nitrate and nutrients were attempted to enhanced biodegradation of petroleum compounds under denitrifying condition. Results show that 75% of petroleum compounds was degraded within 152-day in microcosms amended with nitrate, compared to 25% removal in the non-amended controls. Data indicate that nitrate amendment to groundwater may offer a viable remedy for enhanced natural attenuation of petroleum compounds.

  9. Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Stark, J. M.; Bugbee, B.

    1997-01-01

    We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity.

  10. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  11. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  12. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  13. Effects of earthworms and substrate on diversity and abundance of denitrifying genes (nirS and nirK) and denitrifying rate during rural domestic wastewater treatment.

    PubMed

    Wang, Longmian; Zhang, Yimin; Luo, Xingzhang; Zhang, Jibiao; Zheng, Zheng

    2016-07-01

    This study investigated the performance of an ecological filter (EF) and vermifiltration (VF) system, the effects of substrate and earthworms on the diversity and abundance of denitrifying genes coding for nitrite (nirS and nirK) reductases and on denitrifying rate, and the factors influencing denitrification. The majority of organic matter, ammonia nitrogen and total nitrogen from sewage was removed by the soil layer in both reactors, and their total removal efficiencies increased in VF compared with those in EF. Additionally, substrate in the reactors significantly influenced the Shannon diversity index and abundance of nirS and nirK, as well as the denitrifying rate. However, the earthworms only significantly influenced nirS diversity. Furthermore, evaluation of the factors controlling denitrification implied that increasing NH3-N availability, diversity and abundance of nirS and nirK or decreasing available NO3-N might be responsible for the enhanced denitrification activity obtained using VF for rural domestic wastewater treatment. PMID:27099942

  14. Effects of earthworms and substrate on diversity and abundance of denitrifying genes (nirS and nirK) and denitrifying rate during rural domestic wastewater treatment.

    PubMed

    Wang, Longmian; Zhang, Yimin; Luo, Xingzhang; Zhang, Jibiao; Zheng, Zheng

    2016-07-01

    This study investigated the performance of an ecological filter (EF) and vermifiltration (VF) system, the effects of substrate and earthworms on the diversity and abundance of denitrifying genes coding for nitrite (nirS and nirK) reductases and on denitrifying rate, and the factors influencing denitrification. The majority of organic matter, ammonia nitrogen and total nitrogen from sewage was removed by the soil layer in both reactors, and their total removal efficiencies increased in VF compared with those in EF. Additionally, substrate in the reactors significantly influenced the Shannon diversity index and abundance of nirS and nirK, as well as the denitrifying rate. However, the earthworms only significantly influenced nirS diversity. Furthermore, evaluation of the factors controlling denitrification implied that increasing NH3-N availability, diversity and abundance of nirS and nirK or decreasing available NO3-N might be responsible for the enhanced denitrification activity obtained using VF for rural domestic wastewater treatment.

  15. Continuous flow aerobic granular sludge reactor for dairy wastewater treatment.

    PubMed

    Bumbac, C; Ionescu, I A; Tiron, O; Badescu, V R

    2015-01-01

    The focus of this study was to assess the treatment performance and granule progression over time within a continuous flow reactor. A continuous flow airlift reactor was seeded with aerobic granules from a laboratory scale sequencing batch reactor (SBR) and fed with dairy wastewater. Stereomicroscopic investigations showed that the granules maintained their integrity during the experimental period. Laser diffraction investigation showed proof of new granules formation with 100-500 μm diameter after only 2 weeks of operation. The treatment performances were satisfactory and more or less similar to the ones obtained from the SBR. Thus, removal efficiencies of 81-93% and 85-94% were observed for chemical oxygen demand and biological oxygen demand, respectively. The N-NH(+)(4) was nitrified with removal efficiencies of 83-99% while the nitrate produced was simultaneously denitrified - highest nitrate concentration determined in the effluent was 4.2 mg/L. The removal efficiency of total nitrogen was between 52 and 80% depending on influent nitrogen load (39.3-76.2 mg/L). Phosphate removal efficiencies ranged between 65 and above 99% depending on the influent phosphate concentration, which varied between 11.2 and 28.3 mg/L.

  16. Continuous flow aerobic granular sludge reactor for dairy wastewater treatment.

    PubMed

    Bumbac, C; Ionescu, I A; Tiron, O; Badescu, V R

    2015-01-01

    The focus of this study was to assess the treatment performance and granule progression over time within a continuous flow reactor. A continuous flow airlift reactor was seeded with aerobic granules from a laboratory scale sequencing batch reactor (SBR) and fed with dairy wastewater. Stereomicroscopic investigations showed that the granules maintained their integrity during the experimental period. Laser diffraction investigation showed proof of new granules formation with 100-500 μm diameter after only 2 weeks of operation. The treatment performances were satisfactory and more or less similar to the ones obtained from the SBR. Thus, removal efficiencies of 81-93% and 85-94% were observed for chemical oxygen demand and biological oxygen demand, respectively. The N-NH(+)(4) was nitrified with removal efficiencies of 83-99% while the nitrate produced was simultaneously denitrified - highest nitrate concentration determined in the effluent was 4.2 mg/L. The removal efficiency of total nitrogen was between 52 and 80% depending on influent nitrogen load (39.3-76.2 mg/L). Phosphate removal efficiencies ranged between 65 and above 99% depending on the influent phosphate concentration, which varied between 11.2 and 28.3 mg/L. PMID:25714645

  17. [Performance Recoverability of Denitrifying Granular Sludge Under the Stressing Effect of Nanoscale Zero-valent Iron].

    PubMed

    Wang, Fan-fan; Qian, Fei-yue; Shen, Yao-liang; Wang, Jian-fang; Zhang, Yue-ru; Liu, Guo-xun

    2016-04-15

    To explore the potential stressing effect of nanoscale zero-valent iron (nZVI) on denitrifying granular sludge (DGS), the evolution of DGS denitrifying performance under different C/N ratios was investigated in this study, by carrying out batch tests of eight successive periods with the nZVI shock-loading. The results showed that the specific denitrification rate of µ value decreased when the nZVI dosage was higher than 5 mg · L⁻¹. Meanwhile, a positive correlation between the inhibition ratio (IR) of µ value and substrate C/N ratios or nZVI dosage was observed. When the nZVI dosage reached 100 mg · L⁻¹, both extracellular protein and polysaccharides concentrations decreased obviously. It would be beneficial to promote the recovery of DGS denitrifying activity and reduce the COD demanding to remove unit mass of nitrate, by increasing external carbon source with C/N ratios of higher than 4. On the basis of Freundlich and Langmuir adsorption isotherms, when higher C/N ratio was provided, stronger bioadsorption of nZVI would be achieved. During the recovery period, a significant improvement of DCS denitrifying performance under the high C/N ratio was expected, due to the continuous washout of total iron in sludge phase (Qe), while the µ value would reach or approach the one of the control group when Qe was lower than 0.4 mg · g⁻¹. PMID:27548972

  18. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of wood-based denitrifying bioreactors to treat high-nitrate wastewaters from aquaculture systems has not previously been demonstrated. Four pilot-scale woodchip bioreactors (approximately 1:10 scale) were constructed and operated for 268 d to determine the optimal range of design hy...

  19. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer.

    PubMed

    Santoro, Alyson E; Boehm, Alexandria B; Francis, Christopher A

    2006-03-01

    Nitrogen flux into the coastal environment via submarine groundwater discharge may be modulated by microbial processes such as denitrification, but the spatial scales at which microbial communities act and vary are not well understood. In this study, we examined the denitrifying community within the beach aquifer at Huntington Beach, California, where high-nitrate groundwater is a persistent feature. Nitrite reductase-encoding gene fragments (nirK and nirS), responsible for the key step in the denitrification pathway, were PCR amplified, cloned, and sequenced from DNAs extracted from aquifer sediments collected along a cross-shore transect, where groundwater ranged in salinity from 8 to 34 practical salinity units and in nitrate concentration from 0.5 to 330 muM. We found taxonomically rich and novel communities, with all nirK clones exhibiting <85% identity and nirS clones exhibiting <92% identity at the amino acid level to those of cultivated denitrifiers and other environmental clones in the database. Unique communities were found at each site, despite being located within 40 m of each other, suggesting that the spatial scale at which denitrifier diversity and community composition vary is small. Statistical analyses of nir sequences using the Monte Carlo-based program integral-Libshuff confirmed that some populations were indeed distinct, although further sequencing would be required to fully characterize the highly diverse denitrifying communities at this site. PMID:16517659

  20. Denitrifier Community Composition along a Nitrate and Salinity Gradient in a Coastal Aquifer

    PubMed Central

    Santoro, Alyson E.; Boehm, Alexandria B.; Francis, Christopher A.

    2006-01-01

    Nitrogen flux into the coastal environment via submarine groundwater discharge may be modulated by microbial processes such as denitrification, but the spatial scales at which microbial communities act and vary are not well understood. In this study, we examined the denitrifying community within the beach aquifer at Huntington Beach, California, where high-nitrate groundwater is a persistent feature. Nitrite reductase-encoding gene fragments (nirK and nirS), responsible for the key step in the denitrification pathway, were PCR amplified, cloned, and sequenced from DNAs extracted from aquifer sediments collected along a cross-shore transect, where groundwater ranged in salinity from 8 to 34 practical salinity units and in nitrate concentration from 0.5 to 330 μM. We found taxonomically rich and novel communities, with all nirK clones exhibiting <85% identity and nirS clones exhibiting <92% identity at the amino acid level to those of cultivated denitrifiers and other environmental clones in the database. Unique communities were found at each site, despite being located within 40 m of each other, suggesting that the spatial scale at which denitrifier diversity and community composition vary is small. Statistical analyses of nir sequences using the Monte Carlo-based program ∫-Libshuff confirmed that some populations were indeed distinct, although further sequencing would be required to fully characterize the highly diverse denitrifying communities at this site. PMID:16517659

  1. Optimization of denitrifying bioreactor performance with agricultural residue-based filter media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Columns were packed with wood chips...

  2. [Effect of carbon source and nitrate concentration on denitrifying dephosphorus removal and variation of ORP].

    PubMed

    Wang, Ya-yi; Peng, Yong-zhen; Wagn, Shu-ying; Song, Xue-qi; Wagn, Shao-po

    2004-07-01

    Effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by SBR process was systematicaly studied, at the same time the variation of oxidation reductiun potential (ORP) was investigated. The results showed the phosphate release rate and the denitrifying and dephosphorus uptake rate in anoxic phase increased with the high carbon source concentration under anaerobic condition (100-300mg/L). However when the carbon source added in anaerobic phase was high to 300mg/L, the residual COD inhibited the succeed denitrifying dephosphorus uptake. High nitrate concentration (5, 15, 40mg/L) in anoxic phase increased the initial denitrifying dephosphorus rate. Once the nitrate depletes, phosphate uptake changed to phosphate release. Moreover, the time of the turning point occurred later with the higher nitrate addition. ORP can be used as a control parameter of phosphorus release, and it can also indicate the denitrificaiton react degree during the anoxic phosphorus removal but can't be used as control parameter of phosphorus uptake.

  3. Denitrifying Bioreactors – An Approach for Reducing Nitrate Loads to Receiving Waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-cost and simple technologies are needed to reduce watershed export of excess nitrogen to sensitive aquatic ecosystems. Denitrifying bioreactors are an approach where solid carbon substrates are added into the flow path of contaminated water. These carbon substrates (often fragmented wood-product...

  4. Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer.

    PubMed

    Santoro, Alyson E; Boehm, Alexandria B; Francis, Christopher A

    2006-03-01

    Nitrogen flux into the coastal environment via submarine groundwater discharge may be modulated by microbial processes such as denitrification, but the spatial scales at which microbial communities act and vary are not well understood. In this study, we examined the denitrifying community within the beach aquifer at Huntington Beach, California, where high-nitrate groundwater is a persistent feature. Nitrite reductase-encoding gene fragments (nirK and nirS), responsible for the key step in the denitrification pathway, were PCR amplified, cloned, and sequenced from DNAs extracted from aquifer sediments collected along a cross-shore transect, where groundwater ranged in salinity from 8 to 34 practical salinity units and in nitrate concentration from 0.5 to 330 muM. We found taxonomically rich and novel communities, with all nirK clones exhibiting <85% identity and nirS clones exhibiting <92% identity at the amino acid level to those of cultivated denitrifiers and other environmental clones in the database. Unique communities were found at each site, despite being located within 40 m of each other, suggesting that the spatial scale at which denitrifier diversity and community composition vary is small. Statistical analyses of nir sequences using the Monte Carlo-based program integral-Libshuff confirmed that some populations were indeed distinct, although further sequencing would be required to fully characterize the highly diverse denitrifying communities at this site.

  5. EFFECTS OF MICROCOSM PREPARATION ON RATES OF TOLUENE BIODEGRADATION UNDER DENITRIFYING CONDITIONS

    EPA Science Inventory

    Microcosms were prepared with subsurface material from two aquifers to examine the effects of preparation methods on rates of toluene biodegradation under denitrifying conditions. In both cases, the data fit a zero-order kinetics plot. However, rates of removal were generally pro...

  6. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean.

    PubMed

    Garvin, Jessica; Buick, Roger; Anbar, Ariel D; Arnold, Gail L; Kaufman, Alan J

    2009-02-20

    The nitrogen cycle provides essential nutrients to the biosphere, but its antiquity in modern form is unclear. In a drill core though homogeneous organic-rich shale in the 2.5-billion-year-old Mount McRae Shale, Australia, nitrogen isotope values vary from +1.0 to +7.5 per mil (per thousand) and back to +2.5 per thousand over approximately 30 meters. These changes evidently record a transient departure from a largely anaerobic to an aerobic nitrogen cycle complete with nitrification and denitrification. Complementary molybdenum abundance and sulfur isotopic values suggest that nitrification occurred in response to a small increase in surface-ocean oxygenation. These data imply that nitrifying and denitrifying microbes had already evolved by the late Archean and were present before oxygen first began to accumulate in the atmosphere.

  7. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    PubMed Central

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J. R.; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments. PMID:27812355

  8. Adaptation of Aerobically Growing Pseudomonas aeruginosa to Copper Starvation▿ †

    PubMed Central

    Frangipani, Emanuela; Slaveykova, Vera I.; Reimmann, Cornelia; Haas, Dieter

    2008-01-01

    Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA′-′lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases. PMID:18708503

  9. Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation.

    PubMed

    Frangipani, Emanuela; Slaveykova, Vera I; Reimmann, Cornelia; Haas, Dieter

    2008-10-01

    Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases. PMID:18708503

  10. Draft Genome Sequence of Geobacillus subterraneus Strain K, a Hydrocarbon-Oxidizing Thermophilic Bacterium Isolated from a Petroleum Reservoir in Kazakhstan.

    PubMed

    Poltaraus, Andrey B; Sokolova, Diyana S; Grouzdev, Denis S; Ivanov, Timophey M; Malakho, Sophia G; Korshunova, Alena V; Tourova, Tatiyana P; Nazina, Tamara N

    2016-01-01

    The draft genome sequence of Geobacillus subterraneus strain K, a thermophilic aerobic oil-oxidizing bacterium isolated from production water of the Uzen high-temperature oil field in Kazakhstan, is presented here. The genome is annotated for elucidation of the genomic and phenotypic diversity of thermophilic alkane-oxidizing bacteria. PMID:27491973

  11. Savagea faecisuis gen. nov., sp. nov., a tylosin- and tetracycline-resistant bacterium isolated from a swine-manure storage pit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A polyphasic taxonomic study using morphological, biochemical, chemotaxonomic and molecular methods was performed on three strains of an unknown Gram-positive staining, nonspore-forming, motile aerobic rod-shaped bacterium resistant to tetracycline and tylosin isolated from a swine-manure storage pi...

  12. Draft Genome Sequence of Geobacillus subterraneus Strain K, a Hydrocarbon-Oxidizing Thermophilic Bacterium Isolated from a Petroleum Reservoir in Kazakhstan

    PubMed Central

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Geobacillus subterraneus strain K, a thermophilic aerobic oil-oxidizing bacterium isolated from production water of the Uzen high-temperature oil field in Kazakhstan, is presented here. The genome is annotated for elucidation of the genomic and phenotypic diversity of thermophilic alkane-oxidizing bacteria. PMID:27491973

  13. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China)

    PubMed Central

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Rozanov, Aleksey S.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. PMID:27284131

  14. Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling.

    PubMed

    Yazdani, Ramin; Mostafid, M Erfan; Han, Byunghyun; Imhoff, Paul T; Chiu, Pei; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2010-08-15

    A bioreactor landfill cell at Yolo County, California was operated aerobically for six months to quantify the extent of aerobic degradation and mechanisms limiting aerobic activity during air injection and liquid addition. The portion of the solid waste degraded anaerobically was estimated and tracked through time. From an analysis of in situ aerobic respiration and gas tracer data, it was found that a large fraction of the gas-filled pore space was in immobile zones where it was difficult to maintain aerobic conditions, even at relatively moderate landfill cell-average moisture contents of 33-36%. Even with the intentional injection of air, anaerobic activity was never less than 13%, and sometimes exceeded 65%. Analyses of gas tracer and respiration data were used to quantify rates of respiration and rates of mass transfer to immobile gas zones. The similarity of these rates indicated that waste degradation was influenced significantly by rates of oxygen transfer to immobile gas zones, which comprised 32-92% of the gas-filled pore space. Gas tracer tests might be useful for estimating the size of the mobile/immobile gas zones, rates of mass transfer between these regions, and the difficulty of degrading waste aerobically in particular waste bodies. PMID:20704218

  15. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes

    PubMed Central

    Braker, Gesche; Ayala-del-Río, Héctor L.; Devol, Allan H.; Fesefeldt, Andreas; Tiedje, James M.

    2001-01-01

    Steep vertical gradients of oxidants (O2 and NO3−) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The suitablility of T-RFLP analysis for investigating communities of nirS-containing denitrifiers was established by the correspondence of dominant terminal restriction fragments (T-RFs) of nirS to computer-simulated T-RFs of nirS clones. These clones belonged to clusters II, III, and IV from the same cores and were analyzed in a previous study (G. Braker, J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje, Appl. Environ. Microbiol. 66:2096–2104, 2000). T-RFLP analysis of nirS and bacterial rDNA revealed a high level of functional and phylogenetic diversity, whereas the level of diversity of Archaea was lower. A comparison of T-RFLPs based on the presence or absence of T-RFs and correspondence analysis based on the frequencies and heights of T-RFs allowed us to group sediment samples according to the sampling location and thus clearly distinguish Puget Sound and the Washington margin populations. However, changes in community structure within sediment core sections during the transition from aerobic to anaerobic conditions were minor. Thus, within the top layers of marine sediments, redox gradients seem to result from the differential metabolic activities of populations of similar communities, probably through mixing by marine invertebrates rather than from the development of distinct communities. PMID:11282647

  16. Improved Assessment of Denitrifying, N2-Fixing, and Total-Community Bacteria by Terminal Restriction Fragment Length Polymorphism Analysis Using Multiple Restriction Enzymes

    PubMed Central

    Rösch, Christopher; Bothe, Hermann

    2005-01-01

    A database of terminal restriction fragments (tRFs) of the 16S rRNA gene was set up utilizing 13 restriction enzymes and 17,327 GenBank sequences. A computer program, termed TReFID, was developed to allow identification of any of these 17,327 sequences by means of polygons generated from the specific tRFs of each bacterium. The TReFID program complements and exceeds in its data content the Web-based phylogenetic assignment tool recently described by A. D. Kent, D. J. Smith, B. J. Benson, and E. W. Triplett (Appl. Environ. Microb. 69:6768-6766, 2003). The method to identify bacteria is different, as is the region of the 16S rRNA gene employed in the present program. For the present communication the software of the tRF profiles has also been extended to allow screening for genes coding for N2 fixation (nifH) and denitrification (nosZ) in any bacterium or environmental sample. A number of controls were performed to test the reliability of the TReFID program. Furthermore, the TReFID program has been shown to permit the analysis of the bacterial population structure of bacteria by means of their 16S rRNA, nifH, and nosZ gene content in an environmental habitat, as exemplified for a sample from a forest soil. The use of the TReFID program reveals that noncultured denitrifying and dinitrogen-fixing bacteria might play a more dominant role in soils than believed hitherto. PMID:15812035

  17. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    PubMed

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. PMID:26086561

  18. RELATIONSHIP BETWEEN THE CONCENTRATION OF DENITRIFIERS AND PSEUDOMONAS SPP. IN SOILS: IMPLICATIONS FOR BTX BIOREMEDIATION (R823420)

    EPA Science Inventory

    Aquifer microcosms were used to investigate the effect of stimulating denitrification on microbial population shifts and BTX degradation potential. Selective pressure
    for facultative denitrifiers was applied to a treatment set by feeding acetate and nitrate, and cycling electr...

  19. Nitrous oxide production by organisms other than nitrifiers or denitrifiers.

    PubMed

    Bleakley, B H; Tiedje, J M

    1982-12-01

    Heterotrophic bacteria, yeasts, fungi, plants, and animal breath were investigated as possible sources of N(2)O. Microbes found to produce N(2)O from NO(3) but not consume it were: (i) all of the nitrate-respiring bacteria examined, including strains of Escherichia, Serratia, Klebsiella, Enterobacter, Erwinia, and Bacillus; (ii) one of the assimilatory nitrate-reducing bacteria examined, Azotobacter vinelandii, but not Azotobacter macrocytogenes or Acinetobacter sp.; and (iii) some but not all of the assimilatory nitrate-reducing yeasts and fungi, including strains of Hansenula, Rhodotorula, Aspergillus, Alternaria, and Fusarium. The NO(3)-reducing obligate anaerobe Clostridium KDHS2 did not produce N(2)O. Production of N(2)O occurred only in stationary phase. The nitrate-respiring bacteria produced much more N(2)O than the other organisms, with yields of N(2)O ranging from 3 to 36% of 3.5 mM NO(3). Production of N(2)O was apparently not regulated by ammonium and was not restricted to aerobic or anaerobic conditions. Plants do not appear to produce N(2)O, although N(2)O was found to arise from some damaged plant tops, probably due to microbial growth. Concentrations of N(2)O above the ambient level in the atmosphere were found in human breath and appeared to increase after a meal of high-nitrate food.

  20. Response of Spatial Patterns of Denitrifying Bacteria Communities to Water Properties in the Stream Inlets at Dianchi Lake, China.

    PubMed

    Yi, Neng; Gao, Yan; Zhang, Zhenhua; Wang, Yan; Liu, Xinhong; Zhang, Li; Yan, Shaohua

    2015-01-01

    Streams are an important sink for anthropogenic N owing to their hydrological connections with terrestrial systems, but main factors influencing the community structure and abundance of denitrifiers in stream water remain unclear. To elucidate the potential impact of varying water properties of different streams on denitrifiers, the abundance and community of three denitrifying genes coding for nitrite (nirK, nirS) and nitrous oxide (nosZ) reductase were investigated in 11 streams inlets at the north part of Dianchi Lake. The DGGE results showed the significant pairwise differences in community structure of nirK, nirS, and nosZ genes among different streams. The results of redundancy analysis (RDA) confirmed that nitrogen and phosphorus concentrations, pH, and temperature in waters were the main environmental factors leading to a significant alteration in the community structure of denitrifiers among different streams. The denitrifying community size was assessed by quantitative PCR (qPCR) of the nirS, nirK, and nosZ genes. The abundance of nirK, nirS, and nosZ was positively associated with concentrations of total N (TN) and PO4 (3-) (p < 0.001). The difference in spatial patterns between nirK and nirS community diversity, in combination with the spatial distribution of the nirS/nirK ratio, indicated the occurrence of habitat selection for these two types of denitrifiers in the different streams. The results indicated that the varying of N species and PO4 (3-) together with pH and temperature would be the main factors shaping the community structure of denitrifiers. Meanwhile, the levels of N in water, together with PO4 (3-), tend to affect the abundance of denitrifiers. PMID:26504771

  1. Response of Spatial Patterns of Denitrifying Bacteria Communities to Water Properties in the Stream Inlets at Dianchi Lake, China

    PubMed Central

    Yi, Neng; Gao, Yan; Zhang, Zhenhua; Wang, Yan; Liu, Xinhong; Zhang, Li; Yan, Shaohua

    2015-01-01

    Streams are an important sink for anthropogenic N owing to their hydrological connections with terrestrial systems, but main factors influencing the community structure and abundance of denitrifiers in stream water remain unclear. To elucidate the potential impact of varying water properties of different streams on denitrifiers, the abundance and community of three denitrifying genes coding for nitrite (nirK, nirS) and nitrous oxide (nosZ) reductase were investigated in 11 streams inlets at the north part of Dianchi Lake. The DGGE results showed the significant pairwise differences in community structure of nirK, nirS, and nosZ genes among different streams. The results of redundancy analysis (RDA) confirmed that nitrogen and phosphorus concentrations, pH, and temperature in waters were the main environmental factors leading to a significant alteration in the community structure of denitrifiers among different streams. The denitrifying community size was assessed by quantitative PCR (qPCR) of the nirS, nirK, and nosZ genes. The abundance of nirK, nirS, and nosZ was positively associated with concentrations of total N (TN) and PO43− (p < 0.001). The difference in spatial patterns between nirK and nirS community diversity, in combination with the spatial distribution of the nirS/nirK ratio, indicated the occurrence of habitat selection for these two types of denitrifiers in the different streams. The results indicated that the varying of N species and PO43− together with pH and temperature would be the main factors shaping the community structure of denitrifiers. Meanwhile, the levels of N in water, together with PO43−, tend to affect the abundance of denitrifiers. PMID:26504771

  2. Metabolic Profiles and Genetic Diversity of Denitrifying Communities in Activated Sludge after Addition of Methanol or Ethanol†

    PubMed Central

    Hallin, Sara; Throbäck, Ingela Noredal; Dicksved, Johan; Pell, Mikael

    2006-01-01

    External carbon sources can enhance denitrification rates and thus improve nitrogen removal in wastewater treatment plants. The effects of adding methanol and ethanol on the genetic and metabolic diversity of denitrifying communities in activated sludge were compared using a pilot-scale plant with two parallel lines. A full-scale plant receiving the same municipal wastewater, but without external carbon source addition, was the reference. Metabolic profiles obtained from potential denitrification rates with 10 electron donors showed that the denitrifying communities altered their preferences for certain compounds after supplementation with methanol or ethanol and that methanol had the greater impact. Clone libraries of nirK and nirS genes, encoding the two different nitrite reductases in denitrifiers, revealed that methanol also increased the diversity of denitrifiers of the nirS type, which indicates that denitrifiers favored by methanol were on the rise in the community. This suggests that there might be a niche differentiation between nirS and nirK genotypes during activated sludge processes. The composition of nirS genotypes also varied greatly among all samples, whereas the nirK communities were more stable. The latter was confirmed by denaturing gradient gel electrophoresis of nirK communities on all sampling occasions. Our results support earlier hypotheses that the compositions of denitrifier communities change during predenitrification processes when external carbon sources are added, although no severe effect could be observed from an operational point of view. PMID:16885297

  3. Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil.

    PubMed

    Yin, Chang; Fan, Fenliang; Song, Alin; Cui, Peiyuan; Li, Tingqiang; Liang, Yongchao

    2015-07-01

    Preferable inorganic fertilization over the last decades has led to fertility degradation of black soil in Northeast China. However, how fertilization regimes impact denitrification and its related bacterial community in this soil type is still unclear. Here, taking advantage of a suit of molecular ecological tools in combination of assaying the potential denitrification (DP), we explored the variation of activity, community structure, and abundance of nirS and nirK denitrifiers under four different fertilization regimes, namely no fertilization control (N0M0), organic pig manure (N0M1), inorganic fertilization (N1M0), and combination of inorganic fertilizer and pig manure (N1M1). The results indicated that organic fertilization increased DP, but inorganic fertilization had no impacts. The increase of DP was mirrored by the shift of nirS denitrifiers' community structure but not by that of nirK denitrifiers'. Furthermore, the change of DP coincided with the variation of abundances of both denitrifiers. Shifts of community structure and abundance of nirS and nirK denitrifiers were correlated with the change of soil pH, total nitrogen (TN), organic matter (OM), C:P, total phosphorus (TP), and available phosphorus (Olsen P). Our results suggest that the change of DP under these four fertilization regimes was closely related to the shift of denitrifying bacteria communities resulting from the variation of properties in the black soil tested.

  4. Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil.

    PubMed

    Yin, Chang; Fan, Fenliang; Song, Alin; Cui, Peiyuan; Li, Tingqiang; Liang, Yongchao

    2015-07-01

    Preferable inorganic fertilization over the last decades has led to fertility degradation of black soil in Northeast China. However, how fertilization regimes impact denitrification and its related bacterial community in this soil type is still unclear. Here, taking advantage of a suit of molecular ecological tools in combination of assaying the potential denitrification (DP), we explored the variation of activity, community structure, and abundance of nirS and nirK denitrifiers under four different fertilization regimes, namely no fertilization control (N0M0), organic pig manure (N0M1), inorganic fertilization (N1M0), and combination of inorganic fertilizer and pig manure (N1M1). The results indicated that organic fertilization increased DP, but inorganic fertilization had no impacts. The increase of DP was mirrored by the shift of nirS denitrifiers' community structure but not by that of nirK denitrifiers'. Furthermore, the change of DP coincided with the variation of abundances of both denitrifiers. Shifts of community structure and abundance of nirS and nirK denitrifiers were correlated with the change of soil pH, total nitrogen (TN), organic matter (OM), C:P, total phosphorus (TP), and available phosphorus (Olsen P). Our results suggest that the change of DP under these four fertilization regimes was closely related to the shift of denitrifying bacteria communities resulting from the variation of properties in the black soil tested. PMID:25715781

  5. Effect of temperature on denitrifying methanotrophic activity of 'Candidatus Methylomirabilis oxyfera'.

    PubMed

    Kampman, Christel; Piai, Laura; Hendrickx, Tim L G; Temmink, Hardy; Zeeman, Grietje; Buisman, Cees J N

    2014-01-01

    The activity of denitrifying methanotrophic bacteria at 11-30 °C was assessed in short-term experiments. The aim was to determine the feasibility of applying denitrifying methanotrophic bacteria in low-temperature anaerobic wastewater treatment. This study showed that biomass enriched at 21 °C had an optimum temperature of 20-25 °C and that activity dropped as temperature was increased to 30 °C. Biomass enriched at 30 °C had an optimum temperature of 25-30 °C. These results indicated that biomass from low-temperature inocula adjusted to the enrichment temperature and that low-temperature enrichment is suitable for applications in low-temperature wastewater treatment. Biomass growth at ≤20 °C still needs to be studied. PMID:25429458

  6. Effect of temperature on denitrifying methanotrophic activity of 'Candidatus Methylomirabilis oxyfera'.

    PubMed

    Kampman, Christel; Piai, Laura; Hendrickx, Tim L G; Temmink, Hardy; Zeeman, Grietje; Buisman, Cees J N

    2014-01-01

    The activity of denitrifying methanotrophic bacteria at 11-30 °C was assessed in short-term experiments. The aim was to determine the feasibility of applying denitrifying methanotrophic bacteria in low-temperature anaerobic wastewater treatment. This study showed that biomass enriched at 21 °C had an optimum temperature of 20-25 °C and that activity dropped as temperature was increased to 30 °C. Biomass enriched at 30 °C had an optimum temperature of 25-30 °C. These results indicated that biomass from low-temperature inocula adjusted to the enrichment temperature and that low-temperature enrichment is suitable for applications in low-temperature wastewater treatment. Biomass growth at ≤20 °C still needs to be studied.

  7. Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments.

    PubMed

    Ballarini, E; Beyer, C; Bauer, R D; Griebler, C; Bauer, S

    2014-06-01

    The influence of transverse mixing on competitive aerobic and anaerobic biodegradation of a hydrocarbon plume was investigated using a two-dimensional, bench-scale flow-through laboratory tank experiment. In the first part of the experiment aerobic degradation of increasing toluene concentrations was carried out by the aerobic strain Pseudomonas putida F1. Successively, ethylbenzene (injected as a mixture of unlabeled and fully deuterium-labeled isotopologues) substituted toluene; nitrate was added as additional electron acceptor and the anaerobic denitrifying strain Aromatoleum aromaticum EbN1 was inoculated to study competitive degradation under aerobic /anaerobic conditions. The spatial distribution of anaerobic degradation was resolved by measurements of compound-specific stable isotope fractionation induced by the anaerobic strain as well as compound concentrations. A fully transient numerical reactive transport model was employed and calibrated using measurements of electron donors, acceptors and isotope fractionation. The aerobic phases of the experiment were successfully reproduced using a double Monod kinetic growth model and assuming an initial homogeneous distribution of P. putida F1. Investigation of the competitive degradation phase shows that the observed isotopic pattern cannot be explained by transverse mixing driven biodegradation only, but also depends on the inoculation process of the anaerobic strain. Transient concentrations of electron acceptors and donors are well reproduced by the model, showing its ability to simulate transient competitive biodegradation. PMID:24122285

  8. Community structures and activities of nitrifying and denitrifying bacteria in industrial wastewater-treating biofilms.

    PubMed

    Satoh, Hisashi; Yamakawa, Takeshi; Kindaichi, Tomonori; Ito, Tsukasa; Okabe, Satoshi

    2006-07-01

    The bacterial community structure, in situ spatial distributions and activities of nitrifying and denitrifying bacteria in biofilms treating industrial wastewater were investigated by combination of the 16S rRNA gene clone analysis, fluorescence in situ hybridization (FISH) and microelectrodes. These results were compared with the nitrogen removal capacity of the industrial wastewater treatment plant (IWTP). Both nitrification and denitrification occurred in the primary denitrification (PD) tank and denitrification occurred in the secondary denitrification (SD) tank. In contrast, nitrification and denitrification rates were very low in the nitrification (N) tank. 16S rRNA gene clone sequence analysis revealed that the bacteria affiliated with Alphaproteobacteria, followed by Betaproteobacteria, were numerically important microbial groups in three tanks. The many clones affiliated with Alphaproteobacteria were closely related to the denitrifying bacteria (e.g., Hyphomicrobium spp., Rhodopseudomonas palustris, and Rhodobacter spp.). In addition, Methylophilus leisingeri affiliated with Betaproteobacteria, which favorably utilized methanol, was detected only in the SD-tank to which methanol was added. Nitrosomonas europaea and Nitrosomonas marina were detected as the ammonia-oxidizing bacteria affiliated with Betaproteobacteria throughout this plant, although the dominant species of them was different among three tanks. Nitrifying bacteria were mainly detected in the upper parts of the PD-biofilm whereas their populations were low in the upper parts of the N-biofilm. The presence of denitrifying bacteria affiliated with Hyphomicrobium spp. in SD- and N-biofilms was verified by FISH analysis. Microelectrode measurements showed that the nitrifying bacteria present in the N- and PD-biofilms were active and the bacteria present in the SD-biofilm could denitrify. PMID:16477661

  9. Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil

    SciTech Connect

    Rabus, R.; Widdel, F.

    1996-04-01

    Leakage from oil pipelines and underground fuel tanks may result in contamination of soils and deeper horizons. Even though the equilibrium partitioning of BTEX (benzene, toluene, ethylbenzene, and xylenes) between oil and water is largely on the side of the hydrophobic phase, BTEX exhibit a certain water solubility higher than other oil hydrocarbons. This study evaluates the growth of four strains of denitrifying bacteria on crude oil and the resulting, strain-specific depletion of alkylbenzenes.

  10. Adaptation of Denitrifying Populations to Low Soil pH †

    PubMed Central

    Parkin, Timothy B.; Sexstone, Alan J.; Tiedje, James M.

    1985-01-01

    Natural denitrification rates and activities of denitrifying enzymes were measured in an agricultural soil which had a 20-year past history of low pH (pH ca. 4) due to fertilization with acid-generating ammonium salts. The soil adjacent to this site had been limed and had a pH of ca. 6.0. Natural denitrification rates of these areas were of similar magnitude: 158 ng of N g−1 of soil day−1 for the acid soil and 390 ng of N g−1 of soil day−1 at the neutral site. Estimates of in situ denitrifying enzyme activity were higher in the neutral soil, but substantial enzyme activity was also detected in the acid soil. Rates of nitrous oxide reduction were very low, even when NO3− and NO2− were undetectable, and were ca. 400 times lower than the rates of N2O production from NO3−. Denitrification rates measured in slurries of the acid and neutral soil showed distinctly different pH optima (pH 3.9 and pH 6.3) which were near the pH values of the two soils. This suggests that an acid-tolerant denitrifying population had been selected during the 20-year period of low pH. PMID:16346780

  11. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  12. Isolation and Physiological Characterization of Psychrophilic Denitrifying Bacteria from Permanently Cold Arctic Fjord Sediments (Svalbard, Norway)

    NASA Technical Reports Server (NTRS)

    Canion, Andy; Prakash, Om; Green, Stefan J.; Jahnke, Linda; Kuypers, Marcel M. M.; Kostka, Joel E.

    2013-01-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(sup 3)-10(sup 6) cells of psychrophilic nitrate-respiring bacteria g(sup -1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40 degC demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15 degC, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  13. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes.

    PubMed

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-Lei; Sun, Fei-Yun

    2014-09-17

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus "Accumulibacter" clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus "Accumulibacter" dominated in A-O sludge.

  14. Formation of diclofenac and sulfamethoxazole reversible transformation products in aquifer material under denitrifying conditions: batch experiments.

    PubMed

    Barbieri, Manuela; Carrera, Jesús; Ayora, Carlos; Sanchez-Vila, Xavier; Licha, Tobias; Nödler, Karsten; Osorio, Victoria; Pérez, Sandra; Köck-Schulmeyer, Marianne; López de Alda, Miren; Barceló, Damià

    2012-06-01

    Soil-aquifer processes have proven to work as a natural treatment for the attenuation of numerous contaminants during artificial recharge of groundwater. Nowadays, significant scientific effort is being devoted to understanding the fate of pharmaceuticals in subsurface environments, and to verify if such semipersistent organic micropollutants could also be efficiently removed from water. In this context we carried out a series of batch experiments involving aquifer material, selected drugs (initial concentration of 1 μg/L and 1 mg/L), and denitrifying conditions. Diclofenac and sulfamethoxazole exhibited an unreported and peculiar behavior. Their concentrations consistently dropped in the middle of the tests but recovered toward the end, which suggest a complex effect of denitrifying conditions on aromatic amines. The transformation products Nitro-Diclofenac and 4-Nitro-Sulfamethoxazole were detected in the biotic experiments, while nitrite was present in the water. Their concentrations developed almost opposite to those of their respective parent compounds. We conjecture that this temporal and reversible effect of denitrifying conditions on the studied aromatic amines could have significant environmental implications, and could explain at least partially the wide range of removals in subsurface environments reported in literature for DCF and SMX, as well as some apparent discrepancies on SMX behavior. PMID:22534360

  15. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  16. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes.

    PubMed

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-Lei; Sun, Fei-Yun

    2014-09-17

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus "Accumulibacter" clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus "Accumulibacter" dominated in A-O sludge. PMID:24964811

  17. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates.

    PubMed

    Henry, S; Texier, S; Hallet, S; Bru, D; Dambreville, C; Chèneby, D; Bizouard, F; Germon, J C; Philippot, L

    2008-11-01

    To determine to which extent root-derived carbon contributes to the effects of plants on nitrate reducers and denitrifiers, four solutions containing different proportions of sugar, organic acids and amino acids mimicking maize root exudates were added daily to soil microcosms at a concentration of 150 microg C g(-1) of soil. Water-amended soils were used as controls. After 1 month, the size and structure of the nitrate reducer and denitrifier communities were analysed using the narG and napA, and the nirK, nirS and nosZ genes as molecular markers respectively. Addition of artificial root exudates (ARE) did not strongly affect the structure or the density of nitrate reducer and denitrifier communities whereas potential nitrate reductase and denitrification activities were stimulated by the addition of root exudates. An effect of ARE composition was also observed on N(2)O production with an N(2)O:(N(2)O + N(2)) ratio of 0.3 in microcosms amended with ARE containing 80% of sugar and of 1 in microcosms amended with ARE containing 40% of sugar. Our study indicated that ARE stimulated nitrate reduction or denitrification activity with increases in the range of those observed with the whole plant. Furthermore, we demonstrated that the composition of the ARE affected the nature of the end-product of denitrification and could thus have a putative impact on greenhouse gas emissions.

  18. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  19. [Isolation and characterization of a facultative anaerobic aniline-degrading bacterium].

    PubMed

    Zeng, Guo-Qu; Ren, Sui-Zhou; Cao, Wei; Hu, Jin-Cai; Lin, Lu-Jing; Sun, Guo-Ping

    2006-08-01

    An aniline-degrading bacterium (designated strain AN29) was isolated from dyeing wastewater process (anaerobic baffled reactor, ABR) with the capability of utilizing aniline as sole carbon source and nitrogen source. It was identified as Pseudomonas sp. based upon the phenotypic properties and a partial analysis of the 16S rDNA. The strain could degrade aniline under the aerobic and anaerobic conditions, the optimal initial pH 6.5 - 8.0, a temperature of 37 degrees C, and initial aniline concentrations of 500 - 2 000 mg/L with maximum concentration of 4 000 mg/L respectively.

  20. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell.

    PubMed

    Huang, Jianjian; Zhu, Nengwu; Cao, Yanlan; Peng, Yue; Wu, Pingxiao; Dong, Wenhao

    2015-02-01

    An electrogenic bacterium, named Citrobacter freundii Z7, was isolated from the anodic biofilm of microbial fuel cell (MFC) inoculated with aerobic sewage sludge. Cyclic voltammetry (CV) analysis exhibited that the strain Z7 had relatively high electrochemical activity. When the strain Z7 was inoculated into MFC, the maximum power density can reach 204.5 mW/m(2) using citrate as electron donor. Series of substrates including glucose, glycerol, lactose, sucrose, and rhammose could be utilized to generate power. CV tests and the addition of anode solution as well as AQDS experiments indicated that the strain Z7 might transfer electrons indirectly via secreted mediators.

  1. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    SciTech Connect

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga; Dalin, Eileen; Han, Cliff; Hauser, Loren John; Honchak, Barbara M; Karbach, Lauren E; Land, Miriam L; Lapidus, Alla L.; Larimer, Frank W; Mikhailova, Natalia; Pitluck, Sam; Pierson, Beverly K

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  2. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  3. Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium

    SciTech Connect

    Wada, M.; Fukunaga, N.; Sasaki, S. )

    1989-08-01

    Biosynthesis of palmitic, palmitoleic, and cis-vaccenic acids in Pseudomonas sp. strain E-3 was investigated with in vitro and in vivo systems. (1-{sup 14}C)palmitic acid was aerobically converted to palmitoleate and cis-vaccenate, and the radioactivities on their carboxyl carbons were 100 and 43%, respectively, of the total radioactivity in the fatty acids. Palmitoyl coenzyme A desaturase activity was found in the membrane fraction. (1-{sup 14}C)stearic acid was converted to octadecenoate and C16 fatty acids. The octadecenoate contained oleate and cis-vaccenate, but only oleate was produced in the presence of cerulenin. (1-{sup 14}C)lauric acid was aerobically converted to palmitate, palmitoleate, and cis-vaccenate. Under anaerobic conditions, palmitate (62%), palmitoleate (4%), and cis-vaccenate (34%) were produced from (1-{sup 14}C)acetic acid, while they amounted to 48, 39, and 14%, respectively, under aerobic conditions. In these incorporation experiments, 3 to 19% of the added radioactivity was detected in released {sup 14}CO{sub 2}, indicating that part of the added fatty acids were oxidatively decomposed. Partially purified fatty acid synthetase produced saturated and unsaturated fatty acids with chain lengths of C10 to C18. These results indicated that both aerobic and anaerobic mechanisms for the synthesis of unsaturated fatty acid are operating in this bacterium.

  4. Stable Nitrogen and Oxygen Isotope Analysis of Nitrate using Denitrifying Bacteria

    NASA Astrophysics Data System (ADS)

    Edenburn, L.; Michalski, G. M.

    2009-12-01

    The total isotopic composition of nitrate is used for identifying the origin and fate of nitrate in atmospheric, terrestrial and aquatic systems. The analysis of δ 18O, δ15N, and Δ17O values each give important and unique information about the sources and sinks of nitrate in these systems. Currently, there is no published method that allows for the simultaneous determination of δ18O, δ15N, and Δ17O of nitrate. Cascotti designed a novel method for measurement of δ18O and δ15N in nitrate but not Δ17O. This denitrifier method is based on the isotope ratio analysis of nitrous oxide generated by reduction of nitrate by cultured denitrifying bacteria. Kaiser then altered Cascotti's denitrifier method by converting N2O into O2 followed by the quantitative measurement δ18O and Δ17O, however δ15N was not measured. Here we present preliminary data on δ15N, δ18O, Δ17O values of N2 and O2 generated by the disproportionation of bacterial produced N2O. During the process of denitrification, nitrates are converted to nitrogen gas via a series of intermediate gaseous nitrogen oxide products. This is possible due to the presence of heterotrophic bacteria or autotrophic denitrifiers in select bacteria. Thus, we have chosen three distinct bacteria for the investigation of nitrate reduction for this study: Pseudomonas aureofaciens, Bacillus halodenitrificans, and Achromobacter cycloclastes. They each contain the copper-containing nitrite reductase necessary for the catalyzation of nitrate in order to complete the nitrogen cycle by returning N2 to the atmosphere. Bacillus halodenitrificans has the advantage of being an anaerobic halotolerant (salt-tolerant) denitrifier. Many of our samples have a high saline content; also, pre-concentration techniques using anion resin require elution using high ionic strength solutions. Further, high saline growth solutions limit contamination from other bacteria or organisms. Our efforts also focus on the conversion of N2O over a gold

  5. Characteristics of nitrate removal in a bio-ceramsite reactor by aerobic denitrification.

    PubMed

    Chen, Dan; Yang, Kai; Wang, Hongyu; Lv, Bin; Ma, Fang

    2015-01-01

    A newly aerobic denitrifying bacterial strain, Pseudomonas sp. X31, which was isolated from activated sludge, was added to a newly developed aerobic denitrification bio-ceramsite reactor as an inoculum to treat nitrate-polluted water and the denitrification activities of this system under different air-water ratio, hydraulic loading, and C/N (carbon/nitrogen ratio) conditions were investigated. It demonstrated excellent capability for denitrification in the bio-ceramsite reactor at air-water ratios that varied from 6.5:1 to 8:1. The optimal hydraulic loading for the bio-ceramsite reactor was 0.75 m/h with the optimum denitrification efficiency of 95.18%. The optimal C/N was 4.5:1 with a maximum nitrate removal efficiency of 98.48%. COD could be completely removed under the most appropriate condition (air-water ratio 6.5:1-8:1, hydraulic loading 0.75 m/h, and C/N 4.5:1). The quantity of the biomass in the reactor decreased along with flow, which was in accordance with the variety of the available substrate concentrations in the water. However, the biofilm activity was not proportional to the biomass in the bio-ceramsite reactor, but increased with the quantity of the biomass up to a peak value and then decreased.

  6. Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification.

    PubMed

    Ma, Fang; Sun, Yilu; Li, Ang; Zhang, Xuening; Yang, Jixian

    2015-01-01

    The excellent removal efficiency of nitrate by the aerobic denitrifier, Pseudomonas stutzeri T13, was achieved in free cells system. However, poor nitrite reduction prevents efficient aerobic denitrification because of the nitrite accumulation. This problem could be conquered by immobilizing the cells on supports. In this study, strain T13 was immobilized by mycelial pellets (MPs), polyurethane foam cubes (PFCs) and sodium alginate beads (SABs). Higher removal percentages of TN in MP (43.78%), PFC (42.31%) and SAB (57.25%) systems were achieved compared with the free cell system (29.7%). Furthermore, the optimal condition for immobilized cell systems was as follows: 30°C, 100rpm shaking speed and pH 7. The shock-resistance of SAB system was relatively poor, which could collapse under either alkaline (pH=9) or high rotating (200rpm) conditions. The recycling experiments demonstrated that the high steady TN removal rate could be maintained for seven cycles in both MP and PFC systems. PMID:25827250

  7. Membrane thickening aerobic digestion processes.

    PubMed

    Woo, Bryen

    2014-01-01

    Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.

  8. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  9. Denitrifying phosphorus removal from municipal wastewater and dynamics of "Candidatus Accumulibacter" and denitrifying bacteria based on genes of ppk1, narG, nirS and nirK.

    PubMed

    Zeng, Wei; Zhang, Jie; Wang, Anqi; Peng, Yongzhen

    2016-05-01

    Relevance of clade-level population dynamics of "Candidatus Accumulibacter" to performance of denitrifying phosphorus (P) removal from municipal wastewater was investigated. Stable denitrifying P removal in anoxic zone of continuous-flow reactor was achieved, accounting for 90% of total P removal. Clades IIC and IIF affiliated with Accumulibacter lineage were the dominant clades during denitrifying P removal, reaching 90% of ppk1 clone library. NarG gene library indicated Gamma and Beta-proteobacteria played an important role in nitrate reduction. Diversity and abundance of nirS library was much more than nirK, and thus became the main functional gene to execute nitrite reduction. Based on abundance of nirS, nirK and ppk1, the ratio of Accumulibacter capable of denitrifying P removal to total Accumulibacter was 22%. No matter whether Accumulibacter had narG gene or not, high abundance of narG at a level of 10(9)cells/(g dried-sludge) promoted nitrate reduced to nitrite, ensuring performance of denitrifying P removal. PMID:26896717

  10. Vertical Distribution of Soil Denitrifying Communities in a Wet Sclerophyll Forest under Long-Term Repeated Burning.

    PubMed

    Liu, Xian; Chen, Chengrong; Wang, Weijin; Hughes, Jane M; Lewis, Tom; Hou, Enqing; Shen, Jupei

    2015-11-01

    Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH(4)(+)), and nitrate (NO(3)(-)), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.

  11. Vertical Distribution of Soil Denitrifying Communities in a Wet Sclerophyll Forest under Long-Term Repeated Burning.

    PubMed

    Liu, Xian; Chen, Chengrong; Wang, Weijin; Hughes, Jane M; Lewis, Tom; Hou, Enqing; Shen, Jupei

    2015-11-01

    Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH(4)(+)), and nitrate (NO(3)(-)), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime. PMID:26066514

  12. Denitrifying bacteria in bulk and maize-rhizospheric soil: diversity and N2O-reducing abilities.

    PubMed

    Chèneby, D; Perrez, S; Devroe, C; Hallet, S; Couton, Y; Bizouard, F; Iuretig, G; Germon, J C; Philippot, L

    2004-07-01

    The aim of this study was to determine the effect of the rhizosphere of maize on the diversity of denitrifying bacteria. Community structure comparison was performed by constructing a collection of isolates recovered from bulk and maize planted soil. A total of 3240 nitrate-reducing isolates were obtained and 188 of these isolates were identified as denitrifiers based on their ability to reduce nitrate to N2O or N2. 16S rDNA fragments amplified from the denitrifying isolates were analysed by restriction fragment length polymorphism. Isolates were grouped according to their restriction patterns, and 16S rDNA of representatives from each group were sequenced. A plant dependent enrichment of Agrobacterium-related denitrifiers has been observed resulting in a modification of the structure of the denitrifying community between planted and bulk soil. In addition, the predominant isolates in the rhizosphere soil were not able to reduce N2O while dominant isolates in the bulk soil evolve N2 as a denitrification product. PMID:15381970

  13. Genome sequence of the aerobic bacterium Bacillus sp. strain FJAT-13831.

    PubMed

    Liu, Guohong; Liu, Bo; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-12-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%.

  14. Genome Sequence of the Aerobic Bacterium Bacillus sp. Strain FJAT-13831

    PubMed Central

    Liu, Guohong; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-01-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%. PMID:23144388

  15. Genome Sequence of Chthoniobacter flavus Ellin428, an aerobic heterotrophic soil bacterium

    SciTech Connect

    Kant, Ravi; Van Passel, Mark W.J.; Palva, Airi; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; De Vos, Willem M.; Janssen, Peter H.; Smidt, Hauke

    2011-01-01

    Chthoniobacter flavusis Ellin428 is the first isolate from subdivision 2 of the bacterial phylum Verrucomicrobia. C. flavusis Ellin428 can metabolize many of the saccharide components of plant biomass but does not grow with amino acids or organic acids other than pyruvate.

  16. Are Isotopologue Signatures of N2O from Bacterial Denitrifiers Indicative of NOR Type?

    NASA Astrophysics Data System (ADS)

    Well, R.; Braker, G.; Giesemann, A.; Flessa, H.

    2010-12-01

    Nitrous oxide (N2O) fluxes from soils result from its production by nitrification and denitrification and reduction during denitrification. The structure of the denitrifying microbial community contributes to the control of net N2O fluxes. Although molecular techniques are promising for identifying the active community of N2O producers, there are few data until now because methods to explore gene expression of N2O production are laborious and disregard regulation of activity at the enzyme level. The isotopologue signatures of N2O including δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) have been used to estimate the contribution of partial processes to net N2O fluxes to the atmosphere. However, the use of this approach to study N2O dynamics in soils requires knowledge of isotopic signatures of N2O precursors and isotopologue fractionation factors (ɛ) of all processes of N2O production and consumption. In contrast to δ18O and δ15Nbulk, SP is independent of precursor signatures and hence is a promising parameter here. It is assumed that SP of produced N2O is almost exclusively controlled by the enzymatic isotope effects of NO reductases (NOR). These enzymes are known to be structurally different between certain classes of N2O producers with each class causing different isotope effects (Schmidt et al., 2004). The NH2OH-to-N2O step of nitrifiers and the NO3-to-N2O step of fungal denitrifiers are associated with large site-specific 15N effects with SP of 33 to 37 ‰ (Sutka et al., 2006, 2008) while the few tested species of gram-negative bacterial denitrifiers (cNOR group) exhibited low SP of -5 to 0‰ (Sutka et al., 2006; Toyoda et al., 2005). The aim of our study was to determine site-specific fractionation factors of the NO3-to-N2O step (ɛSP) for several species of denitrifiers representing each of the known NOR-types of bacteria, i.e. cNOR, q

  17. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  18. Role of the denitrifying Haloarchaea in the treatment of nitrite-brines.

    PubMed

    Nájera-Fernández, Cindy; Zafrilla, Basilio; Bonete, María José; Martínez-Espinosa, Rosa María

    2012-09-01

    Haloferax mediterranei is a denitrifying halophilic archaeon able to reduce nitrate and nitrite under oxic and anoxic conditions. In the presence of oxygen, nitrate and nitrite are used as nitrogen sources for growth. Under oxygen scarcity, this haloarchaeon uses both ions as electron acceptors via a denitrification pathway. In the present work, the maximal nitrite concentration tolerated by this organism was determined by studying the growth of H. mediterranei in minimal medium containing 30, 40 and 50 mM nitrite as sole nitrogen source and under initial oxic conditions at 42 degrees C. The results showed the ability of H. mediterranei to withstand nitrite concentrations up to 50 mM. At the beginning of the incubation, nitrate was detected in the medium, probably due to the spontaneous oxidation of nitrite under the initial oxic conditions. The complete removal of nitrite and nitrate was accomplished in most of the tested conditions, except in culture medium containing 50 mM nitrite, suggesting that this concentration compromised the denitrification capacity of the cells. Nitrite and nitrate reductases activities were analyzed at different growth stages of H. mediterranei. In all cases, the activities of the respiratory enzymes were higher than their assimilative counterparts; this was especially the case for NirK. The denitrifying and possibly detoxifying role of this enzyme might explain the high nitrite tolerance of H. mediterranei. This archaeon was also able to remove 60% of the nitrate and 75% of the nitrite initially present in brine samples collected from a wastewater treatment facility. These results suggest that H. mediterranei, and probably other halophilic denitrifying Archaea, are suitable candidates for the bioremediation of brines with high nitrite and nitrate concentrations.

  19. Selective Pressure of Temperature on Competition and Cross-Feeding within Denitrifying and Fermentative Microbial Communities.

    PubMed

    Hanke, Anna; Berg, Jasmine; Hargesheimer, Theresa; Tegetmeyer, Halina E; Sharp, Christine E; Strous, Marc

    2015-01-01

    In coastal marine sediments, denitrification and fermentation are important processes in the anaerobic decomposition of organic matter. Microbial communities performing these two processes were enriched from tidal marine sediments in replicated, long term chemostat incubations at 10 and 25°C. Whereas denitrification rates at 25°C were more or less stable over time, at 10°C denitrification activity was unstable and could only be sustained either by repeatedly increasing the amount of carbon substrates provided or by repeatedly decreasing the dilution rate. Metagenomic and transcriptomic sequencing was performed at different time points and provisional whole genome sequences (WGS) and gene activities of abundant populations were compared across incubations. These analyses suggested that a temperature of 10°C selected for populations related to Vibrionales/Photobacterium that contributed to both fermentation (via pyruvate/formate lyase) and nitrous oxide reduction. At 25°C, denitrifying populations affiliated with Rhodobacteraceae were more abundant. The latter performed complete denitrification, and may have used carbon substrates produced by fermentative populations (cross-feeding). Overall, our results suggest that a mixture of competition-for substrates between fermentative and denitrifying populations, and for electrons between both pathways active within a single population -, and cross feeding-between fermentative and denitrifying populations-controlled the overall rate of denitrification. Temperature was shown to have a strong selective effect, not only on the populations performing either process, but also on the nature of their ecological interactions. Future research will show whether these results can be extrapolated to the natural environment. PMID:26779132

  20. Moving Denitrifying Bioreactors beyond Proof of Concept: Introduction to the Special Section.

    PubMed

    Christianson, Laura E; Schipper, Louis A

    2016-05-01

    Denitrifying bioreactors are organic carbon-filled excavations designed to enhance the natural process of denitrification for the simple, passive treatment of nitrate-nitrogen. Research on and installation of these bioreactors has accelerated within the past 10 years, particularly in watersheds concerned about high nonpoint-source nitrate loads and also for tertiary wastewater treatment. This special section, inspired by the meeting of the Managing Denitrification in Agronomic Systems Community at the 2014 Annual Meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, aims to firmly establish that denitrifying bioreactors for treatment of nitrate in drainage waters, groundwater, and some wastewaters have moved beyond the proof of concept. This collection of 14 papers expands the peer-reviewed literature of denitrifying bioreactors into new locations, applications, and environmental conditions. There is momentum behind the pairing of wood-based bioreactors with other media (biochar, corn cobs) and in novel designs (e.g., use within treatment trains or use of baffles) to broaden applicability into new kinds of waters and pollutants and to improve performance under challenging field conditions such as cool early season agricultural drainage. Concerns about negative bioreactor by-products (nitrous oxide and hydrogen sulfide emissions, start-up nutrient flushing) are ongoing, but this translates into a significant research opportunity to develop more advanced designs and to fine tune management strategies. Future research must think more broadly to address bioreactor impacts on holistic watershed health and greenhouse gas balances and to facilitate collaborations that allow investigation of mechanisms within the bioreactor "black box." PMID:27136139

  1. Selective Pressure of Temperature on Competition and Cross-Feeding within Denitrifying and Fermentative Microbial Communities

    PubMed Central

    Hanke, Anna; Berg, Jasmine; Hargesheimer, Theresa; Tegetmeyer, Halina E.; Sharp, Christine E.; Strous, Marc

    2016-01-01

    In coastal marine sediments, denitrification and fermentation are important processes in the anaerobic decomposition of organic matter. Microbial communities performing these two processes were enriched from tidal marine sediments in replicated, long term chemostat incubations at 10 and 25°C. Whereas denitrification rates at 25°C were more or less stable over time, at 10°C denitrification activity was unstable and could only be sustained either by repeatedly increasing the amount of carbon substrates provided or by repeatedly decreasing the dilution rate. Metagenomic and transcriptomic sequencing was performed at different time points and provisional whole genome sequences (WGS) and gene activities of abundant populations were compared across incubations. These analyses suggested that a temperature of 10°C selected for populations related to Vibrionales/Photobacterium that contributed to both fermentation (via pyruvate/formate lyase) and nitrous oxide reduction. At 25°C, denitrifying populations affiliated with Rhodobacteraceae were more abundant. The latter performed complete denitrification, and may have used carbon substrates produced by fermentative populations (cross-feeding). Overall, our results suggest that a mixture of competition—for substrates between fermentative and denitrifying populations, and for electrons between both pathways active within a single population –, and cross feeding—between fermentative and denitrifying populations—controlled the overall rate of denitrification. Temperature was shown to have a strong selective effect, not only on the populations performing either process, but also on the nature of their ecological interactions. Future research will show whether these results can be extrapolated to the natural environment. PMID:26779132

  2. Moving Denitrifying Bioreactors beyond Proof of Concept: Introduction to the Special Section.

    PubMed

    Christianson, Laura E; Schipper, Louis A

    2016-05-01

    Denitrifying bioreactors are organic carbon-filled excavations designed to enhance the natural process of denitrification for the simple, passive treatment of nitrate-nitrogen. Research on and installation of these bioreactors has accelerated within the past 10 years, particularly in watersheds concerned about high nonpoint-source nitrate loads and also for tertiary wastewater treatment. This special section, inspired by the meeting of the Managing Denitrification in Agronomic Systems Community at the 2014 Annual Meeting of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, aims to firmly establish that denitrifying bioreactors for treatment of nitrate in drainage waters, groundwater, and some wastewaters have moved beyond the proof of concept. This collection of 14 papers expands the peer-reviewed literature of denitrifying bioreactors into new locations, applications, and environmental conditions. There is momentum behind the pairing of wood-based bioreactors with other media (biochar, corn cobs) and in novel designs (e.g., use within treatment trains or use of baffles) to broaden applicability into new kinds of waters and pollutants and to improve performance under challenging field conditions such as cool early season agricultural drainage. Concerns about negative bioreactor by-products (nitrous oxide and hydrogen sulfide emissions, start-up nutrient flushing) are ongoing, but this translates into a significant research opportunity to develop more advanced designs and to fine tune management strategies. Future research must think more broadly to address bioreactor impacts on holistic watershed health and greenhouse gas balances and to facilitate collaborations that allow investigation of mechanisms within the bioreactor "black box."

  3. Changes in Bacterial Denitrifier Community Abundance over Time in an Agricultural Field and Their Relationship with Denitrification Activity▿

    PubMed Central

    Dandie, Catherine E.; Burton, David L.; Zebarth, Bernie J.; Henderson, Sherri L.; Trevors, Jack T.; Goyer, Claudia

    2008-01-01

    This study measured total bacterial and denitrifier community abundances over time in an agricultural soil cropped to potatoes (Solanum tuberosum L.) by using quantitative PCR. Samples were collected on 10 dates from spring to autumn and from three spatial locations: in the potato “hill” between plants (H), close to the plant (Hp), and in the “furrow” (F). The denitrification rates, N2O emissions, and environmental parameters were also measured. Changes in denitrifier abundance over time and spatial location were small (1.7- to 2.7-fold for the nirK, nosZ, and cnorBB guilds), whereas the cnorBP community (Pseudomonas mandelii and closely related spp.) showed an ∼4.6-fold change. The seasonal patterns of denitrifier gene numbers varied with the specific community: lower nosZ gene numbers in April and May than in June and July, higher cnorBP gene numbers in May and June than in March and April and September and November, higher nirK gene numbers in early spring than in late autumn, and no change in cnorBB gene numbers. Gene numbers were higher for the Hp than the H location for the nosZ and nirK communities and for the cnorBP community on individual dates, presumably indicating an effect of the plant on denitrifier abundance. Higher cnorBP gene numbers for the H location than the F location and for nosZ and cnorBB on individual dates reflect the effect of spatial location on abundance. Denitrifier abundance changes were not related to any environmental parameter, although a weak relationship exists between cnorBP gene numbers, extractable organic carbon values, and temperature. Denitrification and N2O emissions were mostly regulated by inorganic nitrogen availability and water-filled pore space but were uncoupled from denitrifier community abundances measured in this system. PMID:18689522

  4. Development of Denitrifying and Nitrifying Bacteria and Their Co-occurrence in Newly Created Biofilms in Urban Streams

    NASA Astrophysics Data System (ADS)

    Vaessen, T. N.; Martí Roca, E.; Pinay, G.; Merbt, S. N.

    2015-12-01

    Biofilms play a pivotal role on nutrient cycling in streams, which ultimately dictates the export of nutrients to downstream ecosystems. The extent to which biofilms influence the concentration of dissolved nutrients, oxygen and pH in the water column may be determined by the composition of the microbial assemblages and their activity. Evidence of biological interactions among bacteria and algae are well documented. However, the development, succession and co-occurence of nitrifying and denitrifying bacteria remain poorly understood. These bacteria play a relevant role on the biogeochemical process associated to N cycling, and their relative abundance can dictate the fate of dissolved inorganic nitrogen in streams. In particular, previous studies indicated that nitrifiers are enhanced in streams receiving inputs from wastewater treatment plant (WWTP) effluents due to both increases in ammonium concentration and inputs of nitrifiers. However, less is known about the development of denitrifiers in receiving streams, although environmental conditions seem to favor it. We conducted an in situ colonization experiment in a stream receiving effluent from a WWTP to examine how this input influences the development and co-occurrence of nitrifying and denitrifying bacteria. We placed artificial substrata at different locations relative to the effluent and sampled them over time to characterize the developed biofilm in terms of bulk measurements (organic matter content and algae) as well as in terms of abundance of nitrifiers and denitrifiers (using qPCR). The results of this study contribute to a better understanding of the temporal dynamics of denitrifiers and nitrifiers in relation to the developed organic matter, dissolved oxygen and pH and the biomass accrual in stream biofilms under the influence of nutrients inputs from WWTP effluent. Ultimately, the results provide insights on the potential role of nitrifiers and denitrifiers on N cycling in WWTP effluent receiving

  5. Denitrification by a soil bacterium with phthalate and other aromatic compounds as substrates.

    PubMed Central

    Nozawa, T; Maruyama, Y

    1988-01-01

    A soil bacterium, Pseudomonas sp. strain P136, was isolated by selective enrichment for anaerobic utilization of o-phthalate through nitrate respiration. o-Phthalate, m-phthalate, p-phthalate, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were utilized by this strain under both aerobic and anaerobic conditions. m-Hydroxybenzoate and p-hydroxybenzoate were utilized only under anaerobic conditions. Protocatechuate and catechol were neither utilized nor detected as metabolic intermediates during the metabolism of these aromatic compounds under both aerobic and anaerobic conditions. Cells grown anaerobically on one of these aromatic compounds also utilized all other aromatic compounds as substrates for denitrification without a lag period. On the other hand, cells grown on succinate utilized aromatic compounds after a lag period. Anaerobic growth on these substrates was dependent on the presence of nitrate and accompanied by the production of molecular nitrogen. The reduction of nitrite to nitrous oxide and the reduction of nitrous oxide to molecular nitrogen were also supported by anaerobic utilization of these aromatic compounds in this strain. Aerobically grown cells showed a lag period in denitrification with all substrates tested. Cells grown anaerobically on aromatic compounds also consumed oxygen. No lag period was observed for oxygen consumption during the transition period from anaerobic to aerobic conditions. Cells grown aerobically on one of these aromatic compounds were also adapted to utilize other aromatic compounds as substrates for respiration. However, cells grown on succinate showed a lag period during respiration with aromatic compounds. Some other characteristic properties on metabolism and regulation of this strain are also discussed for their physiological aspects. PMID:3372476

  6. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  7. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    SciTech Connect

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  8. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    PubMed

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Choi, Hak-Jong

    2016-09-01

    A novel halophilic bacterium, strain K7(T), was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0-25.0% (w/v) NaCl (optimum 10-15% NaCl), pH 5.5-8.5 (optimum pH 7.0-7.5), and 15-42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7(T) and Gracilibacillus orientalis XH-63(T) (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7(T) is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7(T) (KACC 18669(T); JCM 31344(T)).

  9. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi.

    PubMed

    Oh, Young Joon; Lee, Hae-Won; Lim, Seul Ki; Kwon, Min-Sung; Lee, Jieun; Jang, Ja-Young; Park, Hae Woong; Nam, Young-Do; Seo, Myung-Ji; Choi, Hak-Jong

    2016-09-01

    A novel halophilic bacterium, strain K7(T), was isolated from kimchi, a traditional Korean fermented food. The strain is Gram-positive, motile, and produces terminal endospores. The isolate is facultative aerobic and grows at salinities of 0.0-25.0% (w/v) NaCl (optimum 10-15% NaCl), pH 5.5-8.5 (optimum pH 7.0-7.5), and 15-42°C (optimum 37°C). The predominant isoprenoid quinone in the strain is menaquinone-7 and the peptidoglycan of the strain is meso-diaminopimelic acid. The major fatty acids of the strain are anteisio-C15:0, iso-C15:0, and, C16:0 (other components were < 10.0%), while the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and three unidentified lipids. A phylogenetic analysis of 16S rRNA gene sequence similarity showed that the isolated strain was a cluster of the genus Gracilibacillus. High levels of gene sequence similarity were observed between strain K7(T) and Gracilibacillus orientalis XH-63(T) (96.5%), and between the present strain and Gracilibacillus xinjiangensis (96.5%). The DNA G+C content of this strain is 37.7 mol%. Based on these findings, strain K7(T) is proposed as a novel species: Gracilibacillus kimchii sp. nov. The type strain is K7(T) (KACC 18669(T); JCM 31344(T)). PMID:27572507

  10. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater.

    PubMed

    Wang, Qibin; Chen, Qiuwen

    2016-01-01

    Performance of a full-scale anoxic-oxic activated sludge treatment plant (4.0×10(5) m(3)/day for the first-stage project) was followed during a year. The plant performed well for the removal of carbon, nitrogen and phosphorus in the process of treating domestic wastewater within a temperature range of 10.8°C to 30.5°C. Mass balance calculations indicated that COD utilization mainly occurred in the anoxic phase, accounting for 88.2% of total COD removal. Ammonia nitrogen removal occurred 13.71% in the anoxic zones and 78.77% in the aerobic zones. The contribution of anoxic zones to total nitrogen (TN) removal was 57.41%. Results indicated that nitrogen elimination in the oxic tanks was mainly contributed by simultaneous nitrification and denitrification (SND). The reduction of phosphorus mainly took place in the oxic zones, 61.46% of the total removal. Denitrifying phosphorus removal was achieved biologically by 11.29%. Practical experience proved that adaptability to gradually changing temperature of the microbial populations was important to maintain the plant overall stability. Sudden changes in temperature did not cause paralysis of the system just lower removal efficiency, which could be explained by functional redundancy of microorganisms that may compensate the adverse effects of temperature changes to a certain degree. Anoxic-oxic process without internal recycling has great potential to treat low strength wastewater (i.e., TN<35 mg/L) as well as reducing operation costs. PMID:26899656

  11. Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp. strain FA1.

    PubMed

    Bhushan, Bharat; Paquet, Louise; Spain, Jim C; Hawari, Jalal

    2003-09-01

    The microbial and enzymatic degradation of a new energetic compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), is not well understood. Fundamental knowledge about the mechanism of microbial degradation of CL-20 is essential to allow the prediction of its fate in the environment. In the present study, a CL-20-degrading denitrifying strain capable of utilizing CL-20 as the sole nitrogen source, Pseudomonas sp. strain FA1, was isolated from a garden soil. Studies with intact cells showed that aerobic conditions were required for bacterial growth and that anaerobic conditions enhanced CL-20 biotransformation. An enzyme(s) involved in the initial biotransformation of CL-20 was shown to be membrane associated and NADH dependent, and its expression was up-regulated about 2.2-fold in CL-20-induced cells. The rates of CL-20 biotransformation by the resting cells and the membrane-enzyme preparation were 3.2 +/- 0.1 nmol h(-1) mg of cell biomass(-1) and 11.5 +/- 0.4 nmol h(-1) mg of protein(-1), respectively, under anaerobic conditions. In the membrane-enzyme-catalyzed reactions, 2.3 nitrite ions (NO(2)(-)), 1.5 molecules of nitrous oxide (N(2)O), and 1.7 molecules of formic acid (HCOOH) were produced per reacted CL-20 molecule. The membrane-enzyme preparation reduced nitrite to nitrous oxide under anaerobic conditions. A comparative study of native enzymes, deflavoenzymes, and a reconstituted enzyme(s) and their subsequent inhibition by diphenyliodonium revealed that biotransformation of CL-20 is catalyzed by a membrane-associated flavoenzyme. The latter catalyzed an oxygen-sensitive one-electron transfer reaction that caused initial N denitration of CL-20. PMID:12957905

  12. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater.

    PubMed

    Wang, Qibin; Chen, Qiuwen

    2016-01-01

    Performance of a full-scale anoxic-oxic activated sludge treatment plant (4.0×10(5) m(3)/day for the first-stage project) was followed during a year. The plant performed well for the removal of carbon, nitrogen and phosphorus in the process of treating domestic wastewater within a temperature range of 10.8°C to 30.5°C. Mass balance calculations indicated that COD utilization mainly occurred in the anoxic phase, accounting for 88.2% of total COD removal. Ammonia nitrogen removal occurred 13.71% in the anoxic zones and 78.77% in the aerobic zones. The contribution of anoxic zones to total nitrogen (TN) removal was 57.41%. Results indicated that nitrogen elimination in the oxic tanks was mainly contributed by simultaneous nitrification and denitrification (SND). The reduction of phosphorus mainly took place in the oxic zones, 61.46% of the total removal. Denitrifying phosphorus removal was achieved biologically by 11.29%. Practical experience proved that adaptability to gradually changing temperature of the microbial populations was important to maintain the plant overall stability. Sudden changes in temperature did not cause paralysis of the system just lower removal efficiency, which could be explained by functional redundancy of microorganisms that may compensate the adverse effects of temperature changes to a certain degree. Anoxic-oxic process without internal recycling has great potential to treat low strength wastewater (i.e., TN<35 mg/L) as well as reducing operation costs.

  13. Biotransformation of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane (CL-20) by Denitrifying Pseudomonas sp. Strain FA1

    PubMed Central

    Bhushan, Bharat; Paquet, Louise; Spain, Jim C.; Hawari, Jalal

    2003-01-01

    The microbial and enzymatic degradation of a new energetic compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), is not well understood. Fundamental knowledge about the mechanism of microbial degradation of CL-20 is essential to allow the prediction of its fate in the environment. In the present study, a CL-20-degrading denitrifying strain capable of utilizing CL-20 as the sole nitrogen source, Pseudomonas sp. strain FA1, was isolated from a garden soil. Studies with intact cells showed that aerobic conditions were required for bacterial growth and that anaerobic conditions enhanced CL-20 biotransformation. An enzyme(s) involved in the initial biotransformation of CL-20 was shown to be membrane associated and NADH dependent, and its expression was up-regulated about 2.2-fold in CL-20-induced cells. The rates of CL-20 biotransformation by the resting cells and the membrane-enzyme preparation were 3.2 ± 0.1 nmol h−1 mg of cell biomass−1 and 11.5 ± 0.4 nmol h−1 mg of protein−1, respectively, under anaerobic conditions. In the membrane-enzyme-catalyzed reactions, 2.3 nitrite ions (NO2−), 1.5 molecules of nitrous oxide (N2O), and 1.7 molecules of formic acid (HCOOH) were produced per reacted CL-20 molecule. The membrane-enzyme preparation reduced nitrite to nitrous oxide under anaerobic conditions. A comparative study of native enzymes, deflavoenzymes, and a reconstituted enzyme(s) and their subsequent inhibition by diphenyliodonium revealed that biotransformation of CL-20 is catalyzed by a membrane-associated flavoenzyme. The latter catalyzed an oxygen-sensitive one-electron transfer reaction that caused initial N denitration of CL-20. PMID:12957905

  14. Selenite Reduction by a Denitrifying Culture: Batch- and Packed-Bed- Reactor Studies

    SciTech Connect

    William A. Apel; Sridhar Viamajala; Yared Bereded-Samuel; James N. Petersen

    2006-08-01

    Selenite reduction by a bacterial consortium enriched from an oil refinery waste sludge was studied under denitrifying conditions using acetate as the electron donor. Fed-batch studies with nitrate as the primary electron acceptor showed that accumulation of nitrite led to a decrease in the extent of selenite reduction. Also, when nitrite was added as the primary electron acceptor, rapid selenite reduction was observed only after nitrite was significantly depleted from the medium. These results indicate that selenite reduction was inhibited at high nitrite concentrations. In addition to batch experiments, continuous flow selenite reduction experiments were performed in packed-bed columns using immobilized enrichment cultures. These experiments were carried out in three phases: In phase-I, a continuous nitrate feed with different inlet selenite concentration was applied; in phase-II, nitrate was fed in a pulsed fashion; and in phase-III, nitrate was fed in a continuous mode but at much lower concentrations than the other two phases. During the phase-I experiments, little selenite was removed from the influent. However, when the column was operated in the pulse feed strategy (phase II), or in the continuous mode with low nitrate levels (phase-III), significant quantities of selenium was removed from solution and retained in the immobilization matrix in the column. Thus, immobilized denitrifying cultures can be effective in removing selenium from waste streams, but nitrate-limited operating conditions might be required.

  15. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination

    USGS Publications Warehouse

    Smith, R.L.; Ceazan, M.L.; Brooks, M.H.

    1994-01-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 ??M and a V(max) of 18.7 nmol cm-3 h-1 at 30??C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 ??M, with V(max)s of 1.85 to 13.29 fmol cell-1 h-1. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.

  16. High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria.

    PubMed

    Isaka, Kazuichi; Kimura, Yuya; Osaka, Toshifumi; Tsuneda, Satoshi

    2012-10-15

    This study evaluated the nitrogen removal performance of polyethylene glycol (PEG) gel carriers containing entrapped heterotrophic denitrifying bacteria. A laboratory-scale denitrification reactor was operated for treatment of synthetic nitrate wastewater. The nitrogen removal activity gradually increased in continuous feed experiments, reaching 4.4 kg N m(-3) d(-1) on day 16 (30 °C). A maximum nitrogen removal rate of 5.1 kg N m(-3) d(-1) was observed. A high nitrogen removal efficiency of 92% on average was observed at a high loading rate. In batch experiments, the denitrifying gel carriers were characterized by temperature. Nitrate and total nitrogen removal activities both increased with increasing temperature, reaching a maximum at 37 and 43 °C, respectively. Apparent activation energies for nitrate and nitrite reduction were 52.1 and 71.9 kJ mol(-1), respectively. Clone library analysis performed on the basis of the 16S rRNA gene revealed that Hyphomicrobium was mainly involved in denitrification in the methanol-fed denitrification reactors. PMID:22828382

  17. Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria.

    PubMed

    Baytshtok, Vladimir; Lu, Huijie; Park, Hongkeun; Kim, Sungpyo; Yu, Ran; Chandran, Kartik

    2009-04-15

    The goal of this study was to identify bacterial populations that assimilated methanol in a denitrifying sequencing batch reactor (SBR), using stable isotope probing (SIP) of (13)C labeled DNA and quantitatively track changes in these populations upon changing the electron donor from methanol to ethanol in the SBR feed. Based on SIP derived (13)C 16S rRNA gene clone libraries, dominant SBR methylotrophic bacteria were related to Methyloversatilis spp. and Hyphomicrobium spp. These methylotrophic populations were quantified via newly developed real-time PCR assays. Upon switching the electron donor from methanol to ethanol, Hyphomicrobium spp. concentrations decreased significantly in accordance with their obligately methylotrophic nutritional mode. In contrast, Methyloversatilis spp. concentrations were relatively unchanged, in accordance with their ability to assimilate both methanol and ethanol. Direct assimilation of ethanol by Methyloversatilis spp. but not Hyphomicrobium spp. was also confirmed via SIP. The reduction in methylotrophic bacterial concentration upon switching to ethanol was paralleled by a significant decrease in the methanol supported denitrification biokinetics of the SBR on nitrate. In sum, the results of this study demonstrate that the metabolic capabilities (methanol assimilation and metabolism) and substrate specificity (obligately or facultatively methylotrophic) of two distinct methylotrophic bacterial populations contributed to their survival or washout in denitrifying bioreactors. PMID:19097144

  18. Efficiency and detrimental side effects of denitrifying bioreactors for nitrate reduction in drainage water.

    PubMed

    Weigelhofer, Gabriele; Hein, Thomas

    2015-09-01

    A laboratory column experiment was conducted to test the efficiency of denitrifying bioreactors for the nitrate (NO3-N) removal in drainage waters at different flow rates and after desiccation. In addition, we investigated detrimental side effects in terms of the release of nitrite (NO2-N), ammonium (NH4-N), phosphate (PO4-P), dissolved organic carbon (DOC), methane (CH4), and dinitrogen oxide (N2O). The NO3-N removal efficiency decreased with increasing NO3-N concentrations, increasing flow rates, and after desiccation. Bioreactors with purely organic fillings showed higher NO3-N removal rates (42.6-55.7 g NO3-N m(-3) day(-1)) than those with organic and inorganic fillings (6.5-21.4 g NO3-N m(-3) day(-1)). The release of NO2-N and DOC was considerable and resulted in concentrations of up to 800 μg NO2-N L(-1)and 25 mg DOC L(-1) in the effluent water. N2O concentrations increased by 4.0 to 15.3 μg N2O-N L(-1) between the influent and the effluent, while CH4 production rates were low. Our study confirms the high potential of denitrifying bioreactors to mitigate NO3-N pollution in drainage waters, but highlights also the potential risks for the environment.

  19. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination.

    PubMed

    Smith, R L; Ceazan, M L; Brooks, M H

    1994-06-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 muM and a V(max) of 18.7 nmol cm h at 30 degrees C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 muM, with V(max)s of 1.85 to 13.29 fmol cell h. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.

  20. Full-scale post denitrifying biofilters: sinks of dissolved N2O?

    PubMed

    Bollon, Julien; Filali, Ahlem; Fayolle, Yannick; Guerin, Sabrina; Rocher, Vincent; Gillot, Sylvie

    2016-09-01

    In this study, nitrous oxide (N2O) emissions from a full-scale denitrifying biofilter plant were continuously monitored over two periods (summer campaign in September 2014 and winter campaign in February 2015). Results of the summer campaign showed that the major part (>99%) of N2O flux was found in the liquid phase and was discharged with the effluent. N2O emissions were highly variable and represented in average 1.28±1.99% and 0.22±0.31% of the nitrate uptake rate during summer and winter campaigns, respectively. Denitrification was able to consume a large amount of dissolved N2O coming from the upstream nitrification stage. In the absence of methanol injection failure and with an influent BOD/NO3-N ratio higher than 3, average reduction of N2O was estimated to be of 93%. The control of exogenous carbon dosage is essential to minimize N2O production from denitrifying biofilters, in correlation to NO2-N concentrations in the filter.

  1. Efficiency and detrimental side effects of denitrifying bioreactors for nitrate reduction in drainage water.

    PubMed

    Weigelhofer, Gabriele; Hein, Thomas

    2015-09-01

    A laboratory column experiment was conducted to test the efficiency of denitrifying bioreactors for the nitrate (NO3-N) removal in drainage waters at different flow rates and after desiccation. In addition, we investigated detrimental side effects in terms of the release of nitrite (NO2-N), ammonium (NH4-N), phosphate (PO4-P), dissolved organic carbon (DOC), methane (CH4), and dinitrogen oxide (N2O). The NO3-N removal efficiency decreased with increasing NO3-N concentrations, increasing flow rates, and after desiccation. Bioreactors with purely organic fillings showed higher NO3-N removal rates (42.6-55.7 g NO3-N m(-3) day(-1)) than those with organic and inorganic fillings (6.5-21.4 g NO3-N m(-3) day(-1)). The release of NO2-N and DOC was considerable and resulted in concentrations of up to 800 μg NO2-N L(-1)and 25 mg DOC L(-1) in the effluent water. N2O concentrations increased by 4.0 to 15.3 μg N2O-N L(-1) between the influent and the effluent, while CH4 production rates were low. Our study confirms the high potential of denitrifying bioreactors to mitigate NO3-N pollution in drainage waters, but highlights also the potential risks for the environment. PMID:25943519

  2. Fate of aniline and sulfanilic acid in UASB bioreactors under denitrifying conditions.

    PubMed

    Pereira, Raquel; Pereira, Luciana; van der Zee, Frank P; Madalena Alves, M

    2011-01-01

    Two upflow anaerobic sludge blanket (UASB) reactors were operated to investigate the fate of aromatic amines under denitrifying conditions. The feed consisted of synthetic wastewater containing aniline and/or sulfanilic acid and a mixture of volatile fatty acids (VFA) as the primary electron donors. Reactor 1 (R1) contained a stoichiometric concentration of nitrate and Reactor 2 (R2) a stoichiometric nitrate and nitrite mixture as terminal electron acceptors. The R1 results demonstrated that aniline could be degraded under denitrifying conditions while sulfanilic acid remains. The presence of nitrite in the influent of R2, caused a chemical reaction that led to immediate disappearance of both aromatic amines and the formation of an intense yellow coloured solution. HPLC analysis of the influent solution, revealed the emergence of three product peaks: the major one at retention time (R(t)) 14.3 min and two minor at R(t) 17.2 and 21.5 min. In the effluent, the intensity of the peaks at R(t) 14.3 and 17.2 min was very low and of that at R(t) 21.5 min increased (∼3-fold). Based on the mass spectrometry analysis, we propose the structures of some possible products, mainly azo compounds. Denitrification activity tests suggest that biomass needed to adapt to the new coloured compounds, but after a 3 days lag phase, activity is recovered and the final (N(2) + N(2)O) is even higher than that of the control.

  3. Correlating denitrifying catabolic genes with N2O and N2 emissions from swine slurry composting.

    PubMed

    Angnes, G; Nicoloso, R S; da Silva, M L B; de Oliveira, P A V; Higarashi, M M; Mezzari, M P; Miller, P R M

    2013-07-01

    This work evaluated N dynamics that occurs over time within swine slurry composting piles. Real-time quantitative PCR (qPCR) analyzes were conducted to estimate concentrations of bacteria community harboring specific catabolic nitrifying-ammonium monooxygenase (amoA), and denitrifying nitrate- (narG), nitrite- (nirS and nirG), nitric oxide- (norB) and nitrous oxide reductases (nosZ) genes. NH3-N, N2O-N, N2-N emissions represented 15.4 ± 1.9%, 5.4 ± 0.9%, and 79.1 ± 2.0% of the total nitrogen losses, respectively. Among the genes tested, temporal distribution of narG, nirS, and nosZ concentration correlated significantly (p<0.05) with the estimated N2 emissions. Denitrifying catabolic gene ratio (cnorB+qnorB)/nosZ ≥ 100 was indicative of N2O emission potential from the compost pile. Considering our current empirical limitations to accurately measure N2 emissions from swine slurry composting at field scale the use of these catabolic genes could represent a promising monitoring tool to aid minimize our uncertainties on biological N mass balances in these systems.

  4. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate

    PubMed Central

    Zhang, Songhe; Pang, Si; Wang, Peifang; Wang, Chao; Guo, Chuan; Addo, Felix Gyawu; Li, Yi

    2016-01-01

    Submerged macrophytes play important roles in constructed wetlands and natural water bodies, as these organisms remove nutrients and provide large surfaces for biofilms, which are beneficial for nitrogen removal, particularly from submerged macrophyte-dominated water columns. However, information on the responses of biofilms to submerged macrophytes and nitrogen molecules is limited. In the present study, bacterial community structure and denitrifiers were investigated in biofilms on the leaves of four submerged macrophytes and artificial plants exposed to two nitrate concentrations. The biofilm cells were evenly distributed on artificial plants but appeared in microcolonies on the surfaces of submerged macrophytes. Proteobacteria was the most abundant phylum in all samples, accounting for 27.3–64.8% of the high-quality bacterial reads, followed by Chloroflexi (3.7–25.4%), Firmicutes (3.0–20.1%), Acidobacteria (2.7–15.7%), Actinobacteria (2.2–8.7%), Bacteroidetes (0.5–9.7%), and Verrucomicrobia (2.4–5.2%). Cluster analysis showed that bacterial community structure can be significantly different on macrophytes versus from those on artificial plants. Redundancy analysis showed that electrical conductivity and nitrate concentration were positively correlated with Shannon index and operational taxonomic unit (OTU) richness (log10 transformed) but somewhat negatively correlated with microbial density. The relative abundances of five denitrifying genes were positively correlated with nitrate concentration and electrical conductivity but negatively correlated with dissolved oxygen. PMID:27782192

  5. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  6. Complete Genome Sequence of Raoultella ornithinolytica Strain B6, a 2,3-Butanediol-Producing Bacterium Isolated from Oil-Contaminated Soil.

    PubMed

    Shin, Sang Heum; Um, Youngsoon; Beak, Jeong Hun; Kim, Sehwan; Lee, Soojin; Oh, Min-Kyu; Kim, Young-Rok; Lee, Jinwon; Yang, Kap-Seok

    2013-06-27

    Here we report the full genome sequence of Raoultella ornithinolytica strain B6, a Gram-negative aerobic bacillus belonging to the family Enterobacteriaceae. This 2,3-butanediol-producing bacterium was isolated from oil-contaminated soil on Backwoon Mountain in South Korea. Strain B6 contains 5,398,151 bp with 4,909 protein-coding genes, 104 structural RNAs, and 55.88% G+C content.

  7. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  8. Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat.

    PubMed

    Jonkers, H M; Koh, I-O; Behrend, P; Muyzer, G; de Beer, D

    2005-02-01

    The sulfate-reducing bacterium strain SRB D2 isolated from the photic zone of a hypersaline microbial mat, from Lake Chiprana, NE Spain, respired pyruvate, alanine, and alpha-ketoglutarate but not formate, lactate, malate, succinate, and serine at significant rates under fully oxic conditions. Dehydrogenase enzymes of only the former substrates are likely oxygen-tolerant as all substrates supported anaerobic sulfate reduction. No indications were found, however, that aerobic respiration supported growth. Although strain SRB D2 appeared phylogenetically closely related to the oxygen-tolerant sulfate-reducing bacterium Desulfovibrio oxyclinae, substrate spectra were markedly different. Most-probable-number (MPN) estimates of sulfate-reducing bacteria and aerobic heterotrophic bacteria indicated that the latter were numerically dominant in both the photic and aphotic zones of the mat. Moreover, substrate spectra of representative isolates showed that the aerobic heterotrophic bacteria are metabolically more diverse. These findings indicate that sulfate-reducing bacteria in the fully oxic photic zone of mats have to compete with aerobic heterotrophic bacteria for organic substrates. Porewater analysis revealed that total carbohydrates and low-molecular-weight carbon compounds (LMWC) made up substantial fractions of the total dissolved organic carbon (DOC) pool and that nighttime degradation of the former was concomitant with increased concentration of the latter. Our findings indicate that aerobic respiration by sulfate-reducing bacteria contributes to organic carbon mineralization in the oxic zone of microbial mats as daytime porewater LMWC concentrations are above typical half-saturation constants.

  9. Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat.

    PubMed

    Jonkers, H M; Koh, I-O; Behrend, P; Muyzer, G; de Beer, D

    2005-02-01

    The sulfate-reducing bacterium strain SRB D2 isolated from the photic zone of a hypersaline microbial mat, from Lake Chiprana, NE Spain, respired pyruvate, alanine, and alpha-ketoglutarate but not formate, lactate, malate, succinate, and serine at significant rates under fully oxic conditions. Dehydrogenase enzymes of only the former substrates are likely oxygen-tolerant as all substrates supported anaerobic sulfate reduction. No indications were found, however, that aerobic respiration supported growth. Although strain SRB D2 appeared phylogenetically closely related to the oxygen-tolerant sulfate-reducing bacterium Desulfovibrio oxyclinae, substrate spectra were markedly different. Most-probable-number (MPN) estimates of sulfate-reducing bacteria and aerobic heterotrophic bacteria indicated that the latter were numerically dominant in both the photic and aphotic zones of the mat. Moreover, substrate spectra of representative isolates showed that the aerobic heterotrophic bacteria are metabolically more diverse. These findings indicate that sulfate-reducing bacteria in the fully oxic photic zone of mats have to compete with aerobic heterotrophic bacteria for organic substrates. Porewater analysis revealed that total carbohydrates and low-molecular-weight carbon compounds (LMWC) made up substantial fractions of the total dissolved organic carbon (DOC) pool and that nighttime degradation of the former was concomitant with increased concentration of the latter. Our findings indicate that aerobic respiration by sulfate-reducing bacteria contributes to organic carbon mineralization in the oxic zone of microbial mats as daytime porewater LMWC concentrations are above typical half-saturation constants. PMID:15965719

  10. Using T-RFLP data on denitrifier community composition to inform understanding of denitrification in stream sediments (Invited)

    NASA Astrophysics Data System (ADS)

    Wang, S.; Somers, K.; Sudduth, E.; Hassett, B.; Bernhardt, E. S.; Urban, D. L.

    2010-12-01

    We used terminal restriction fragment length polymorphism (T-RFLP), a molecular fingerprinting method, to characterize denitrifier communities in sediments taken from 48 study streams in North Carolina, USA. In addition to characterizing denitrifier communities, we also used denitrification enzyme activity (DEA) assays to measure potential denitrification rates. Due to differences in watershed land-use, study streams covered a gradient of nitrogen and carbon concentrations, as well as a gradient of contaminant loading from stormwater and sanitary sewers. Nitrogen and carbon (i.e., substrate) concentrations are commonly used to make predictions about denitrification rates in streams. Such models do not take into account denitrifier community composition, which may be an important, independent control of denitrification rates, particularly under stressful conditions (e.g., high contaminant loading) that prevent communities from capitalizing on high substrate availability. Our results indicate that substrate availability by itself was a weak predictor of denitrification rates; the same was also true for denitrifier community composition. However, when both factors were incorporated in a multiple regression model, the percent variation explained increased substantially. These findings suggest that T-RFLP, a relatively cost-effective method, can be used to improve our understanding of controls on denitrification rates in streams with varying watershed land-uses.

  11. Effectiveness of heat treatment to protect introduced denitrifying bacteria from eukaryotic predatory microorganisms in a pilot-scale bioreactor.

    PubMed

    Ikeda-Ohtsubo, Wakako; Miyahara, Morio; Yamada, Takeshi; Watanabe, Akira; Fushinobu, Shinya; Wakagi, Takayoshi; Shoun, Hirofumi; Miyauchi, Keisuke; Endo, Ginro

    2013-12-01

    Bioaugmentation of bioreactor systems with pre-cultured bacteria has proven difficult because inoculated bacteria are easily eliminated by predatory eukaryotic-microorganisms. Here, we demonstrated an intermediate thermal treatment was effective for protecting introduced denitrifying bacteria from eukaryotic predators and consequently allowed the inoculated bacteria to survive longer in a denitrification reactor.

  12. Genome sequences for three denitrifying bacterial strains isolated from a uranium- and nitrate-contaminated subsurface environment.

    PubMed

    Venkatramanan, Raghavee; Prakash, Om; Woyke, Tanja; Chain, Patrick; Goodwin, Lynne A; Watson, David; Brooks, Scott; Kostka, Joel E; Green, Stefan J

    2013-01-01

    Genome sequences for three strains of denitrifying bacteria (Alphaproteobacteria-Afipia sp. strain 1NLS2 and Hyphomicrobium denitrificans strain 1NES1; Firmicutes-Bacillus sp. strain 1NLA3E) isolated from the nitrate- and uranium-contaminated subsurface of the Oak Ridge Integrated Field Research Challenge (ORIFRC) site, Oak Ridge Reservation, TN, are reported. PMID:23833140

  13. Draft genome sequence of Bacillus azotoformans MEV2011, a (Co-) denitrifying strain unable to grow with oxygen

    PubMed Central

    2014-01-01

    Bacillus azotoformans MEV2011, isolated from soil, is a microaerotolerant obligate denitrifier, which can also produce N2 by co-denitrification. Oxygen is consumed but not growth-supportive. The draft genome has a size of 4.7 Mb and contains key genes for both denitrification and dissimilatory nitrate reduction to ammonium. PMID:25685261

  14. Water Properties Influencing the Abundance and Diversity of Denitrifiers on Eichhornia crassipes Roots: A Comparative Study from Different Effluents around Dianchi Lake, China

    PubMed Central

    Yi, Neng; Gao, Yan; Zhang, Zhenhua; Shao, Hongbo; Yan, Shaohua

    2015-01-01

    To evaluate effects of environmental conditions on the abundance and communities of three denitrifying genes coding for nitrite (nirK, nirS) reductase and nitrous oxide (nosZ) reductase on the roots of Eichhornia crassipes from 11 rivers flowing into the northern part of Dianchi Lake. The results showed that the abundance and community composition of denitrifying genes on E. crassipes root varied with different rivers. The nirK gene copies abundance was always greater than that of nirS gene on the roots of E. crassipes, suggesting that the surface of E. crassipes roots growth in Dianchi Lake was more suitable for the growth of nirK-type denitrifying bacteria. The DGGE results showed significant differences in diversity of denitrifying genes on the roots of E. crassipes among the 11 rivers. Using redundancy analysis (RDA), the correlations of denitrifying microbial community compositions with environmental factors revealed that water temperature (T), dissolved oxygen (DO), and pH were relatively important environmental factors to modifying the community structure of the denitrifying genes attached to the root of E. crassipes. The results indicated that the specific environmental conditions related to different source of rivers would have a stronger impact on the development of denitrifier communities on E. crassipes roots. PMID:26495277

  15. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments

    PubMed Central

    Kong, Angela Y. Y.; Hristova, Krassimira; Scow, Kate M.; Six, Johan

    2011-01-01

    Real-time quantitative PCR assays, targeting part of the ammonia-monooxygenase (amoA), nitrous oxide reductase (nosZ), and 16S rRNA genes were coupled with 15N pool dilution techniques to investigate the effects of long-term agricultural management practices on potential gross N mineralization and nitrification rates, as well as ammonia-oxidizing bacteria (AOB), denitrifier, and total bacterial community sizes within different soil microenvironments. Three soil microenvironments [coarse particulate organic matter (cPOM; >250 μm), microaggregate (53–250 μm), and silt-and-clay fraction (<53 μm)] were physically isolated from soil samples collected across the cropping season from conventional, low-input, and organic maize-tomato systems (Zea mays L.- Lycopersicum esculentum L.). We hypothesized that (i) the higher N inputs and soil N content of the organic system foster larger AOB and denitrifier communities than in the conventional and low-input systems, (ii) differences in potential gross N mineralization and nitrification rates across the systems correspond with AOB and denitrifier abundances, and (iii) amoA, nosZ, and 16S rRNA gene abundances are higher in the microaggregates than in the cPOM and silt-and-clay microenvironments. Despite 13 years of different soil management and greater soil C and N content in the organic compared to the conventional and low-input systems, total bacterial communities within the whole soil were similar in size across the three systems (~5.15×108 copies g−1 soil). However, amoA gene densities were ~2 times higher in the organic (1.75×108 copies g−1 soil) than the other systems at the start of the season and nosZ gene abundances were ~2 times greater in the conventional (7.65×107 copies g−1 soil) than in the other systems by the end of the season. Because organic management did not consistently lead to larger AOB and denitrifier communities than the other two systems, our first hypothesis was not corroborated. Our second

  16. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  17. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  18. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals. PMID:12238371

  19. Actinobacterial Nitrate Reducers and Proteobacterial Denitrifiers Are Abundant in N2O-Metabolizing Palsa Peat

    PubMed Central

    Palmer, Katharina

    2012-01-01

    Palsa peats are characterized by elevated, circular frost heaves (peat soil on top of a permanently frozen ice lens) and are strong to moderate sources or even temporary sinks for the greenhouse gas nitrous oxide (N2O). Palsa peats are predicted to react sensitively to global warming. The acidic palsa peat Skalluvaara (approximate pH 4.4) is located in the discontinuous permafrost zone in northwestern Finnish Lapland. In situ N2O fluxes were spatially variable, ranging from 0.01 to −0.02 μmol of N2O m−2 h−1. Fertilization with nitrate stimulated in situ N2O emissions and N2O production in anoxic microcosms without apparent delay. N2O was subsequently consumed in microcosms. Maximal reaction velocities (vmax) of nitrate-dependent denitrification approximated 3 and 1 nmol of N2O per h per gram (dry weight [gDW]) in soil from 0 to 20 cm and below 20 cm of depth, respectively. vmax values of nitrite-dependent denitrification were 2- to 5-fold higher than the vmax nitrate-dependent denitrification, and vmax of N2O consumption was 1- to 6-fold higher than that of nitrite-dependent denitrification, highlighting a high N2O consumption potential. Up to 12 species-level operational taxonomic units (OTUs) of narG, nirK and nirS, and nosZ were retrieved. Detected OTUs suggested the presence of diverse uncultured soil denitrifiers and dissimilatory nitrate reducers, hitherto undetected species, as well as Actino-, Alpha-, and Betaproteobacteria. Copy numbers of nirS always outnumbered those of nirK by 2 orders of magnitude. Copy numbers of nirS tended to be higher, while copy numbers of narG and nosZ tended to be lower in 0- to 20-cm soil than in soil below 20 cm. The collective data suggest that (i) the source and sink functions of palsa peat soils for N2O are associated with denitrification, (ii) actinobacterial nitrate reducers and nirS-type and nosZ-harboring proteobacterial denitrifiers are important players, and (iii) acidic soils like palsa peats represent

  20. Long-term effect of temperature on N2O emission from the denitrifying activated sludge.

    PubMed

    Wang, Xiaojun; Yang, Xiaoru; Zhang, Zhaoji; Ye, Xin; Kao, Chih Ming; Chen, Shaohua

    2014-03-01

    The long-term effect of various temperature (4°C, 12°C, 20°C, 25°C and 34°C) on nitrous oxide (N2O) emission from lab-scale denitrifying activated sludge was studied in terms of activation energy, abundance of functional gene nosZ and its transcription. Results showed that temperature had a positive effect on N2O emissions as well as the maximum biomass-specific reduction rates of N2O and NO3(-), ranging from 0.006% to 0.681% of (N2O + N2), 17.3-116.2 and 5.2-66.2 mg N g(-1) VSS h(-1), respectively. The activation energies (Ea) for N2O and NO3(-) reduction of 44.1 kJ mol(-1) and 54.9 kJ mol(-1), shed light on differences in denitrifying rate variation. The maximum NO3(-) reduction rates were more sensitive to temperature variation than the corresponding N2O reduction rates under long-term acclimation. As a result, the ratio between N2O and NO3(-) reduction rates declined to 1.87 at 34°C from 3.31 at 4°C, suggesting great potential capacity for N2O losses at high temperature. The copy numbers of denitrifiers as nosZ gene (×10(8) copies mL(-1)) and total bacteria as 16S rRNA gene (×10(10) copies mL(-1)) did not show obvious relationship with temperature, having relative abundance of 0.42% on average. The transcriptional regulation of nosZ gene, in the range of 10(8)-10(5) copies mL(-1), was affected by reductase activity, substrate concentration as well as its duration. The active nosZ gene expression was accompanied with low reductase capacity, high dissolved N2O and the duration of N2O accumulation. These results provide insights into activation energy and gene expression responsible for N2O emission.

  1. Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat.

    PubMed

    Palmer, Katharina; Horn, Marcus A

    2012-08-01

    Palsa peats are characterized by elevated, circular frost heaves (peat soil on top of a permanently frozen ice lens) and are strong to moderate sources or even temporary sinks for the greenhouse gas nitrous oxide (N(2)O). Palsa peats are predicted to react sensitively to global warming. The acidic palsa peat Skalluvaara (approximate pH 4.4) is located in the discontinuous permafrost zone in northwestern Finnish Lapland. In situ N(2)O fluxes were spatially variable, ranging from 0.01 to -0.02 μmol of N(2)O m(-2) h(-1). Fertilization with nitrate stimulated in situ N(2)O emissions and N(2)O production in anoxic microcosms without apparent delay. N(2)O was subsequently consumed in microcosms. Maximal reaction velocities (v(max)) of nitrate-dependent denitrification approximated 3 and 1 nmol of N(2)O per h per gram (dry weight [g(DW)]) in soil from 0 to 20 cm and below 20 cm of depth, respectively. v(max) values of nitrite-dependent denitrification were 2- to 5-fold higher than the v(max) nitrate-dependent denitrification, and v(max) of N(2)O consumption was 1- to 6-fold higher than that of nitrite-dependent denitrification, highlighting a high N(2)O consumption potential. Up to 12 species-level operational taxonomic units (OTUs) of narG, nirK and nirS, and nosZ were retrieved. Detected OTUs suggested the presence of diverse uncultured soil denitrifiers and dissimilatory nitrate reducers, hitherto undetected species, as well as Actino-, Alpha-, and Betaproteobacteria. Copy numbers of nirS always outnumbered those of nirK by 2 orders of magnitude. Copy numbers of nirS tended to be higher, while copy numbers of narG and nosZ tended to be lower in 0- to 20-cm soil than in soil below 20 cm. The collective data suggest that (i) the source and sink functions of palsa peat soils for N(2)O are associated with denitrification, (ii) actinobacterial nitrate reducers and nirS-type and nosZ-harboring proteobacterial denitrifiers are important players, and (iii) acidic soils like

  2. Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat.

    PubMed

    Palmer, Katharina; Horn, Marcus A

    2012-08-01

    Palsa peats are characterized by elevated, circular frost heaves (peat soil on top of a permanently frozen ice lens) and are strong to moderate sources or even temporary sinks for the greenhouse gas nitrous oxide (N(2)O). Palsa peats are predicted to react sensitively to global warming. The acidic palsa peat Skalluvaara (approximate pH 4.4) is located in the discontinuous permafrost zone in northwestern Finnish Lapland. In situ N(2)O fluxes were spatially variable, ranging from 0.01 to -0.02 μmol of N(2)O m(-2) h(-1). Fertilization with nitrate stimulated in situ N(2)O emissions and N(2)O production in anoxic microcosms without apparent delay. N(2)O was subsequently consumed in microcosms. Maximal reaction velocities (v(max)) of nitrate-dependent denitrification approximated 3 and 1 nmol of N(2)O per h per gram (dry weight [g(DW)]) in soil from 0 to 20 cm and below 20 cm of depth, respectively. v(max) values of nitrite-dependent denitrification were 2- to 5-fold higher than the v(max) nitrate-dependent denitrification, and v(max) of N(2)O consumption was 1- to 6-fold higher than that of nitrite-dependent denitrification, highlighting a high N(2)O consumption potential. Up to 12 species-level operational taxonomic units (OTUs) of narG, nirK and nirS, and nosZ were retrieved. Detected OTUs suggested the presence of diverse uncultured soil denitrifiers and dissimilatory nitrate reducers, hitherto undetected species, as well as Actino-, Alpha-, and Betaproteobacteria. Copy numbers of nirS always outnumbered those of nirK by 2 orders of magnitude. Copy numbers of nirS tended to be higher, while copy numbers of narG and nosZ tended to be lower in 0- to 20-cm soil than in soil below 20 cm. The collective data suggest that (i) the source and sink functions of palsa peat soils for N(2)O are associated with denitrification, (ii) actinobacterial nitrate reducers and nirS-type and nosZ-harboring proteobacterial denitrifiers are important players, and (iii) acidic soils like

  3. Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent.

    PubMed

    Raguénès, G H; Peres, A; Ruimy, R; Pignet, P; Christen, R; Loaec, M; Rougeaux, H; Barbier, G; Guezennec, J G

    1997-04-01

    A deep-sea, aerobic, mesophilic and heterotrophic new bacterium was isolated from a sample of fluid collected among a dense population of Riftia pachyptila, in the vicinity of an active hydrothermal vent of the Southern depression of the Guaymas basin (Gulf of California). On the basis of phenotypic and phylogenetic analyses and DNA/DNA relatedness, the strain GY785 was recognized as a new species of the genus Alteromonas and the name of Alteromonas infernus is proposed. During the stationary phase in batch cultures in the presence of glucose, this bacterium secreted two unusual polysaccharides. The water-soluble exopolysaccharide-1 produced contained glucose, galactose, galacturonic and glucuronic acids as monosaccharides. The gel-forming exopolysaccharide-2 was separated from the bacterial cells by dialysis against distilled water and partially characterized. PMID:9134716

  4. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  5. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  6. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  7. Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces

    PubMed Central

    Takasuka, Taichi E.; Book, Adam J.; Lewin, Gina R.; Currie, Cameron R.; Fox, Brian G.

    2013-01-01

    Streptomyces are best known for producing antimicrobial secondary metabolites, but they are also recognized for their contributions to biomass utilization. Despite their importance to carbon cycling in terrestrial ecosystems, our understanding of the cellulolytic ability of Streptomyces is currently limited to a few soil-isolates. Here, we demonstrate the biomass-deconstructing capability of Streptomyces sp. SirexAA-E (ActE), an aerobic bacterium associated with the invasive pine-boring woodwasp Sirex noctilio. When grown on plant biomass, ActE secretes a suite of enzymes including endo- and exo-cellulases, CBM33 polysaccharide-monooxygenases, and hemicellulases. Genome-wide transcriptomic and proteomic analyses, and biochemical assays have revealed the key enzymes used to deconstruct crystalline cellulose, other pure polysaccharides, and biomass. The mixture of enzymes obtained from growth on biomass has biomass-degrading activity comparable to a cellulolytic enzyme cocktail from the fungus Trichoderma reesei, and thus provides a compelling example of high cellulolytic capacity in an aerobic bacterium. PMID:23301151

  8. Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10.

    PubMed

    Fukuoka, Kimiko; Ozeki, Yasuhiro; Kanaly, Robert A

    2015-09-01

    3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants. PMID:26126873

  9. Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10.

    PubMed

    Fukuoka, Kimiko; Ozeki, Yasuhiro; Kanaly, Robert A

    2015-09-01

    3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants.

  10. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  11. Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus.

    PubMed

    Willows, Robert D; Lake, Vanessa; Roberts, Thomas Hugh; Beale, Samuel I

    2003-06-01

    The facultative photosynthetic bacterium Rhodobacter capsulatus can adapt from an anaerobic photosynthetic mode of growth to aerobic heterotrophic metabolism. As this adaptation occurs, the cells must rapidly halt bacteriochlorophyll synthesis to prevent phototoxic tetrapyrroles from accumulating, while still allowing heme synthesis to continue. A likely control point is Mg chelatase, the enzyme that diverts protoporphyrin IX from heme biosynthesis toward the bacteriochlorophyll biosynthetic pathway by inserting Mg(2+) to form Mg-protoporphyrin IX. Mg chelatase is composed of three subunits that are encoded by the bchI, bchD, and bchH genes in R. capsulatus. We report that BchH is the rate-limiting component of Mg chelatase activity in cell extracts. BchH binds protoporphyrin IX, and BchH that has been expressed and purified from Escherichia coli is red in color due to the bound protoporphyrin IX. Recombinant BchH is rapidly inactivated by light in the presence of O(2), and the inactivation results in the formation of a covalent adduct between the protein and the bound protoporphyrin IX. When photosynthetically growing R. capsulatus cells are transferred to aerobic conditions, Mg chelatase is rapidly inactivated, and BchH is the component that is most rapidly inactivated in vivo when cells are exposed to aerobic conditions. The light- and O(2)-stimulated inactivation of BchH could account for the rapid inactivation of Mg chelatase in vivo and provide a mechanism for inhibiting the synthesis of bacteriochlorophyll during adaptation of photosynthetically grown cells to aerobic conditions while still allowing heme synthesis to occur for aerobic respiration.

  12. Complete genome of Zhongshania aliphaticivorans SM-2(T), an aliphatic hydrocarbon-degrading bacterium isolated from tidal flat sediment.

    PubMed

    Jia, Baolei; Jeong, Hye Im; Kim, Kyung Hyun; Jeon, Che Ok

    2016-05-20

    Zhongshania aliphaticivorans SM-2(T), a degrader of aliphatic hydrocarbons, is a Gram-negative, rod-shaped, flagellated, facultatively aerobic bacterium. Here, we report the genome sequence of strain SM-2(T), which has a size of 4,204,359bp with 44 tRNAs, 9 rRNAs, and 3664 protein-coding genes. In addition, several genes encoding aliphatic hydrocarbon degraders (alkane 1-monooxygenase, haloalkane dehalogenase, and cytochrome P450) were detected in the genome shedding light on the function of pollutants degradation.

  13. Laboratory simulation of the successive aerobic and anaerobic degradation of oil products in oil-contaminated high-moor peat

    NASA Astrophysics Data System (ADS)

    Tolpeshta, I. I.; Trofimov, S. Ya.; Erkenova, M. I.; Sokolova, T. A.; Stepanov, A. L.; Lysak, L. V.; Lobanenkov, A. M.

    2015-03-01

    A model experiment has been performed on the successive aerobic and anaerobic degradation of oil products in samples of oil-contaminated peat sampled from a pine-subshrub-sphagnum bog near the Sutormin oilfield pipeline in the Yamal-Nenets autonomous district. During the incubation of oil-contaminated peat with lime and mineral fertilizers under complete flooding, favorable conditions are created for the aerobic oxidation of oil products at the beginning of the experiment and, as the redox potential decreases, for the anaerobic degradation of oil products conjugated with the reduction of N5+ and S+6 and methanogenesis. From the experimental data on the dynamics of the pH; Eh; and the NO{3/-}, NO{2/-}, and SO{4/2-} concentrations in the liquid phase of the samples, it has been found that denitrifiers significantly contributed to the biodegradation of oil products under the experimental conditions. After the end of the experiment, the content of oil products in the contaminated samples decreased by 21-26%.

  14. Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water.

    PubMed

    Ginige, Maneesha P; Kaksonen, Anna H; Morris, Christina; Shackelton, Mark; Patterson, Bradley M

    2013-09-01

    Managed aquifer recharge offers the opportunity to manage groundwater resources by storing water in aquifers when in surplus and thus increase the amount of groundwater available for abstraction during high demand. The Water Corporation of Western Australia (WA) is undertaking a Groundwater Replenishment Trial to evaluate the effects of recharging aerobic recycled water (secondary treated wastewater subjected to ultrafiltration, reverse osmosis, and ultraviolet disinfection) into the anaerobic Leederville aquifer in Perth, WA. Using culture-independent methods, this study showed the presence of Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, Cytophaga, Flavobacteria, Gammaproteobacteria, and Sphingobacteria, and a decrease in microbial diversity with an increase in depth of aquifer. Assessment of physico-chemical and microbiological properties of groundwater before and after recharge revealed that recharging the aquifer with aerobic recycled water resulted in elevated redox potentials in the aquifer and increased bacterial numbers, but reduced microbial diversity. The increase in bacterial numbers and reduced microbial diversity in groundwater could be a reflection of an increased denitrifier and sulfur-oxidizing populations in the aquifer, as a result of the increased availability of nitrate, oxygen, and residual organic matter. This is consistent with the geochemical data that showed pyrite oxidation and denitrification within the aquifer after recycled water recharge commenced.

  15. Optimization of hard clams, polychaetes, physical disturbance and denitrifying bacteria of removing nutrients in marine sediment.

    PubMed

    Shen, Hui; Thrush, Simon F; Wan, Xihe; Li, Hui; Qiao, Yi; Jiang, Ge; Sun, Ruijian; Wang, LiBao; He, Peimin

    2016-09-15

    Marine organisms are known to play important roles in transforming nutrients in sediments, however, guidelines to optimize sediment restoration are not available. We conducted a laboratory mesocosm experiment to investigate the role of hard clams, polychaetes, the degree of physical disturbance and denitrifying bacterial concentrations in removing total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in marine sediments. Response surface methodology was employed to analyze the results of initial experiments and in a subsequent experiment identified optimal combinations of parameters. Balancing the TN, TP, TOC removal efficiency, our model predicted 39% TN removal, 33% TP removal, and 42% TOC removal for a 14-day laboratory bioremediation trial using hard clams biomass of 1.2kgm(-2), physical disturbance depth of 16.4cm, bacterial density of 0.18Lm(-2), and polychaetes biomass of 0.16kgm(-2), respectively. These results emphasize the value of combining different species in field-based bioremediation.

  16. Maintaining granulation in a denitrifying upflow sludge-blanket reactor treating groundwater with low hardness.

    PubMed

    Rouse, Joseph D; Nakashima, Takahiro; Furukawa, Kenji

    2003-01-01

    Maintenance of denitrifying granular sludge for treating soft groundwater (total hardness = 75 mg calcium carbonate/L) in an upflow sludge-blanket reactor was demonstrated with complete removal of applied nitrate (20 mg N/L) over extended operation and a hydraulic residence time of 34 minutes. A high pH of approximately 9.0 was shown to be important for generation of mineral precipitation needed for production of heavy granular sludge with good retention characteristics. As a method of increasing precipitation potential, pH adjustment was determined to be more economically favorable than calcium or alkalinity supplementation. In addition, temporary increases in substrate loading were shown to be effective for enhancing biomass levels in a manageable granular sludge. The significance of biomass in promoting mineral precipitation was discussed.

  17. Optimization of hard clams, polychaetes, physical disturbance and denitrifying bacteria of removing nutrients in marine sediment.

    PubMed

    Shen, Hui; Thrush, Simon F; Wan, Xihe; Li, Hui; Qiao, Yi; Jiang, Ge; Sun, Ruijian; Wang, LiBao; He, Peimin

    2016-09-15

    Marine organisms are known to play important roles in transforming nutrients in sediments, however, guidelines to optimize sediment restoration are not available. We conducted a laboratory mesocosm experiment to investigate the role of hard clams, polychaetes, the degree of physical disturbance and denitrifying bacterial concentrations in removing total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) in marine sediments. Response surface methodology was employed to analyze the results of initial experiments and in a subsequent experiment identified optimal combinations of parameters. Balancing the TN, TP, TOC removal efficiency, our model predicted 39% TN removal, 33% TP removal, and 42% TOC removal for a 14-day laboratory bioremediation trial using hard clams biomass of 1.2kgm(-2), physical disturbance depth of 16.4cm, bacterial density of 0.18Lm(-2), and polychaetes biomass of 0.16kgm(-2), respectively. These results emphasize the value of combining different species in field-based bioremediation. PMID:27371956

  18. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    PubMed

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity. PMID:26454867

  19. Floatation of granular sludge and its mechanism: a key approach for high-rate denitrifying reactor.

    PubMed

    Li, Wei; Zheng, Ping; Ji, Junyuan; Zhang, Meng; Guo, Jun; Zhang, Jiqiang; Abbas, Ghulam

    2014-01-01

    A high-rate denitrifying automatic circulate (DAC) reactor has been developed recently, and it is promising to become an alternative in nitrogen removal from wastewaters. However, the performance of DAC reactor was disturbed by the floatation of granular sludge at high-loads. The results showed that: the floatation of granular sludge led to a serious biomass washout and a sharp decrease of biomass concentration. The floatation of granular sludge was ascribed to a low sludge density originated from the holdup of gaseous products. The average density and average gas holdup ratio of floated granular sludge were 913 kg m(-3) and 11.8% (by volume), respectively. The floatation of granular sludge could disappear by releasing gas when sludge was in the state of elastic expansion, but it would become worse by holding gas when it entered the plastic expansion state. The plastic expansion of granules was significantly correlated with the less content of extracellular polymeric substances. PMID:24316483

  20. Nitrate removal by nitrate-dependent Fe(II) oxidation in an upflow denitrifying biofilm reactor.

    PubMed

    Zhou, Jun; Wang, Hongyu; Yang, Kai; Sun, Yuchong; Tian, Jun

    2015-01-01

    A continuous upflow biofilm reactor packed with ceramsite was constructed for nitrate removal under an anaerobic atmosphere without an organic carbon source. Denitrifying bacteria, Pseudomonas sp. W1, Pseudomonas sp. W2 and Microbacterium sp. W5, were added to the bioreactor as inocula. Nitrate concentration, nitrite accumulation and nitrogen removal efficiency in the effluent were investigated under various conditions set by several parameters including pH, hydraulic retention time (HRT), ratios of carbon to nitrogen (C/N) and temperature. The results illustrated that the maximum removal efficiency of nitrogen was 85.39%, under optimum reaction parameters, approximately pH 6.5-7, HRT = 48 hours and C/N = 13.1:1 at temperature of 30 °C, which were determined by experiment. PMID:26204069

  1. Denitrification by a soil bacterium with phthalate and other aromatic compounds as substrates. [Pseudomonas sp. strain P136

    SciTech Connect

    Nozawa, T.; Maruyama, Y.

    1988-06-01

    A soil bacterium, Pseudomonas sp. strain P136, was isolated by selective enrichment for anaerobic utilization of o-phthalate through nitrate respiration. o-Phthalate, m-phthalate, p-phthalate, benzoate, cyclohex-1-ene-carboxylate, and cyclohex-3-ene-carboxylate were utilized by this strain under both aerobic and anaerobic conditions. m-Hydroxybenzoate and p-hydroxybenzoate were utilized only under anaerobic conditions. Cells grown anaerobically on one of these aromatic compounds also utilized all other aromatic compounds as substrates for denitrification without a lag period. On the other hand, cells grown on succinate utilized aromatic compounds after a lag period. Anaerobic growth on these substrates was dependent on the presence of nitrate and accompanied by the production of molecular nitrogen. The reduction of nitrite to nitrous oxide and the reduction of nitrous oxide to molecular nitrogen were also supported by anaerobic utilization of these aromatic compounds in this strain. Aerobically grown cells showed a lag period in denitrification with all substrates tested. Cells grown anaerobically on aromatic compounds also consumed oxygen. No lag period was observed for oxygen consumption during the transition period from anaerobic to aerobic conditions. Cells grown aerobically on one of these aromatic compounds were also adapted to utilize other aromatic compounds as substrates for respiration. However, cells grown on succinate showed a lag period during respiration with aromatic compounds.

  2. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils.

    PubMed

    Kramer, Sasha B; Reganold, John P; Glover, Jerry D; Bohannan, Brendan J M; Mooney, Harold A

    2006-03-21

    Conventional agriculture has improved in crop yield but at large costs to the environment, particularly off-site pollution from mineral N fertilizers. In response to environmental concerns, organic agriculture has become an increasingly popular option. One component of organic agriculture that remains in question is whether it can reduce agricultural N losses to groundwater and the atmosphere relative to conventional agriculture. Here we report reduced N pollution from organic and integrated farming systems compared with a conventional farming system. We evaluated differences in denitrification potential and a suite of other soil biological and chemical properties in soil samples taken from organic, integrated, and conventional treatments in an experimental apple orchard. Organically farmed soils exhibited higher potential denitrification rates, greater denitrification efficiency, higher organic matter, and greater microbial activity than conventionally farmed soils. The observed differences in denitrifier function were then assessed under field conditions after fertilization. N(2)O emissions were not significantly different among treatments; however, N(2) emissions were highest in organic plots. Annual nitrate leaching was 4.4-5.6 times higher in conventional plots than in organic plots, with the integrated plots in between. This study demonstrates that organic and integrated fertilization practices support more active and efficient denitrifier communities, shift the balance of N(2) emissions and nitrate losses, and reduce environmentally damaging nitrate losses. Although this study specifically examines a perennial orchard system, the ecological and biogeochemical processes we evaluated are present in all agroecosystems, and the reductions in nitrate loss in this study could also be achievable in other cropping systems. PMID:16537377

  3. Drivers of the dynamics of diazotrophs and denitrifiers in North Sea bottom waters and sediments

    PubMed Central

    Fan, Haoxin; Bolhuis, Henk; Stal, Lucas J.

    2015-01-01

    The fixation of dinitrogen (N2) and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pelagic nitrogen fixation by using the stable isotope technique. Alongside, we measured the diversity, abundance, and activity of nitrogen-fixing and denitrifying microorganisms at three stations in the southern North Sea. Nitrogen fixation ranged from undetectable to 2.4 nmol N L−1 d−1 and from undetectable to 8.2 nmol N g−1 d−1 in the water column and seafloor, respectively. The highest rates were measured in August at Doggersbank, both for the water column and for the seafloor. Denitrification ranged from 1.7 to 208.8 μmol m−2 d−1 and the highest rates were measured in May at the Oyster Grounds. DNA sequence analysis showed sequences of nifH, a structural gene for nitrogenase, related to sequences from anaerobic sulfur/iron reducers and sulfate reducers. Sequences of the structural gene for nitrite reductase, nirS, were related to environmental clones from marine sediments. Quantitative polymerase chain reaction (qPCR) data revealed the highest abundance of nifH and nirS genes at the Oyster Grounds. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) data revealed the highest nifH expression at Doggersbank and the highest nirS expression at the Oyster Grounds. The distribution of the diazotrophic and denitrifying communities seems to be subject to different selecting factors, leading to spatial and temporal separation of nitrogen fixation and denitrification. These selecting factors include temperature, organic matter availability, and oxygen

  4. Rate of denitrification and the accumulation of intermediates in a denitrifying bioreactor

    NASA Astrophysics Data System (ADS)

    Parsignault, D. R.; Gursky, H.; Kellogg, E. M.; Matilsky, T.; Murray, S.; Schreier, E.; Tananbaum, H.; Giacconi, R.; Brinkman, A. C.

    2012-12-01

    Denitrifying bioreactors (DNBRs) are an emerging mechanism to mitigate the impact of excess reactive nitrogen by harnessing the activity of ubiquitous denitrifying soil microbes. DNBRs fundamentally consist of an organic carbon energy source sufficiently saturated to develop anaerobic conditions and support heterotrophic reduction of nitrate to dinitrogen. Although recent research has well established achievable nitrate removal in DNBRs upwards of 90%, few studies experimentally determine the fate of nitrogen in these systems. This study differentiates between denitrification to inert nitrogen gas, which permanently removes reactive nitrogen from an enriched ecosystem, and transformation of nitrate to another bioavailable form (such as N2O or NOX, powerful greenhouse gases). Previous research has failed to make this distinction and as both are perceived as a reduction in nitrate concentration at the outlet, the utility of DNBRs in reducing downstream reactive nitrogen has not been sufficiently established. In order to quantify the rate of nitrate removal and the products produced, dissolved gas samples are collected from the DNBR with passive diffusion gas samplers while the influent and effluent nitrate concentration and chemical oxygen demand are monitored in real time with spectrometer probes. Nitrate removal is compared with the denitrification rate and the ratio of dinitrogen to nitrous oxide is reported. Denitrification is quantified from the proportion of nitrogen gas products produced from the nitrate pool, indicated by the negative congruence of the regression of 15N enrichment in the nitrate pool and temporal depletion in the gaseous products. The proportion of nitrous oxide to dinitrogen is examined with respect to saturation and redox potential. This research informs the interpretation of previous studies as well as advises the focus of long-term system level monitoring that will provide further information on the design and application of DNBRs to

  5. Quantity-activity relationship of denitrifying bacteria and environmental scaling in streams of a forested watershed

    USGS Publications Warehouse

    O'Connor, B.L.; Hondzo, Miki; Dobraca, D.; LaPara, T.M.; Finlay, J.A.; Brezonik, P.L.

    2006-01-01

    The spatial variability of subreach denitrification rates in streams was evaluated with respect to controlling environmental conditions, molecular examination of denitrifying bacteria, and dimensional analysis. Denitrification activities ranged from 0 and 800 ng-N gsed-1 d-1 with large variations observed within short distances (<50 m) along stream reaches. A log-normal probability distribution described the range in denitrification activities and was used to define low (16% of the probability distributibn), medium (68%), and high (16%) denitrification potential groups. Denitrifying bacteria were quantified using a competitive polymerase chain reaction (cPCR) technique that amplified the nirK gene that encodes for nitrite reductase. Results showed a range of nirK quantities from 103 to 107 gene-copy-number gsed.-1 A nonparametric statistical test showed no significant difference in nirK quantifies among stream reaches, but revealed that samples with a high denitrification potential had significantly higher nirK quantities. Denitrification activity was positively correlated with nirK quantities with scatter in the data that can be attributed to varying environmental conditions along stream reaches. Dimensional analysis was used to evaluate denitrification activities according to environmental variables that describe fluid-flow properties, nitrate and organic material quantities, and dissolved oxygen flux. Buckingham's pi theorem was used to generate dimensionless groupings and field data were used to determine scaling parameters. The resulting expressions between dimensionless NO3- flux and dimensionless groupings of environmental variables showed consistent scaling, which indicates that the subreach variability in denitrification rates can be predicted by the controlling physical, chemical, and microbiological conditions. Copyright 2006 by the American Geophysical Union.

  6. In vivo emission of dinitrogen by earthworms via denitrifying bacteria in the gut.

    PubMed

    Horn, Marcus A; Mertel, Ralph; Gehre, Matthias; Kästner, Matthias; Drake, Harold L

    2006-02-01

    Earthworms emit the greenhouse gas nitrous oxide (N2O), and ingested denitrifiers in the gut appear to be the main source of this N2O. The primary goal of this study was to determine if earthworms also emit dinitrogen (N2), the end product of complete denitrification. When [15N]nitrate was injected into the gut, the earthworms Aporrectodea caliginosa and Lumbricus terrestris emitted labeled N2 (and also labeled N2O) under in vivo conditions; emission of N2 by these two earthworms was relatively linear and approximated 1.2 and 6.6 nmol N2 per h per g (fresh weight), respectively. Isolated gut contents also produced [15N]nitrate-derived N2 and N2O under anoxic conditions. N2 is formed by N2O reductase, and acetylene, an inhibitor of this enzyme, inhibited the emission of [15N]nitrate-derived N2 by living earthworms. Standard gas chromatographic analysis demonstrated that the amount of N2O emitted was relatively linear during initial incubation periods and increased in response to acetylene. The calculated rates for the native emissions of N2 (i.e., without added nitrate) by A. caliginosa and L. terrestris were 1.1 and 1.5 nmol N2 per h per g (fresh weight), respectively; these emission rates approximated that of N2O. These collective observations indicate that (i) earthworms emit N2 concomitant with the emission of N2O via the in situ activity of denitrifying bacteria in the gut and (ii) N2O is quantitatively an important denitrification-derived end product under in situ conditions.

  7. Drivers of the dynamics of diazotrophs and denitrifiers in North Sea bottom waters and sediments.

    PubMed

    Fan, Haoxin; Bolhuis, Henk; Stal, Lucas J

    2015-01-01

    The fixation of dinitrogen (N2) and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pelagic nitrogen fixation by using the stable isotope technique. Alongside, we measured the diversity, abundance, and activity of nitrogen-fixing and denitrifying microorganisms at three stations in the southern North Sea. Nitrogen fixation ranged from undetectable to 2.4 nmol N L(-1) d(-1) and from undetectable to 8.2 nmol N g(-1) d(-1) in the water column and seafloor, respectively. The highest rates were measured in August at Doggersbank, both for the water column and for the seafloor. Denitrification ranged from 1.7 to 208.8 μmol m(-2) d(-1) and the highest rates were measured in May at the Oyster Grounds. DNA sequence analysis showed sequences of nifH, a structural gene for nitrogenase, related to sequences from anaerobic sulfur/iron reducers and sulfate reducers. Sequences of the structural gene for nitrite reductase, nirS, were related to environmental clones from marine sediments. Quantitative polymerase chain reaction (qPCR) data revealed the highest abundance of nifH and nirS genes at the Oyster Grounds. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) data revealed the highest nifH expression at Doggersbank and the highest nirS expression at the Oyster Grounds. The distribution of the diazotrophic and denitrifying communities seems to be subject to different selecting factors, leading to spatial and temporal separation of nitrogen fixation and denitrification. These selecting factors include temperature, organic matter availability, and oxygen

  8. Isolation and functional analysis of denitrifiers in an aquifer with high potential for denitrification.

    PubMed

    Bellini, M Inés; Gutiérrez, Lucía; Tarlera, Silvana; Scavino, Ana Fernández

    2013-10-01

    Aquifers are among the main freshwater sources. The Raigón aquifer is susceptible to contamination, mainly by nitrate and pesticides, such as atrazine, due to increasing agricultural activities in the area. The capacity of indigenous bacteria to attenuate nitrate contamination in different wells of this aquifer was assessed by measuring denitrification rates with either acetate plus succinate or nitrate amendments. Denitrification activity in nitrate-amended assays was significantly higher than in unamended assays, particularly in groundwater from wells where nitrate concentration was 33.5 mg L(-1) or lower. Furthermore, groundwater denitrifiers capable of using acetate or succinate as electron donors were isolated, identified by 16S rRNA gene sequencing and evaluated for functional denitrification genes (nirS, nirK and nosZ). Phylogenetic affiliation of 54 isolates showed that all members belonged to nine different genera within the Proteobacteria (Bosea, Ochrobactrum, Azospira, Zoogloea, Acidovorax, Achromobacter, Vogesella, Stenotrophomonas and Pseudomonas). In addition, isolate AR28 that clustered separately from validly described species could potentially belong to a new genus. The majority of the isolates were related to species belonging to previously reported denitrifying genera. However, the phylogeny of the nirS and nosZ genes revealed new sequences of these functional genes. To our knowledge, this is the first isolation and sequencing of the nirS gene from the genus Vogesella, as well as the nosZ gene from the genera Acidovorax and Zoogloea. The results indicated that indigenous bacteria in the Raigón aquifer had the capacity to overcome high nitrate contamination and exhibited functional gene diversity.

  9. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    PubMed

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  10. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea.

    PubMed

    Yang, Shan; Sun, Wei; Zhang, Fengli; Li, Zhiyong

    2013-10-01

    To date, the association of coral-bacteria and the ecological roles of bacterial symbionts in corals remain largely unknown. In particular, little is known about the community components of bacterial symbionts of corals involved in the process of denitrification and ammonia oxidation. In this study, the nitrite reductase (nirS and nirK) and ammonia monooxygenase subunit A (amoA) genes were used as functional markers. Diverse bacteria with the potential to be active as denitrifiers and ammonia-oxidizing bacteria (AOB) were found in two East China Sea corals: stony coral Alcyonium gracillimum and soft coral Tubastraea coccinea. The 16S rRNA gene library analysis demonstrated different communities of bacterial symbionts in these two corals of the same location. Nitrite reductase nirK gene was found only in T. coccinea, while both nirK and nirS genes were detected in A. gracillimum, which might be the result of the presence of different bacterial symbionts in these two corals. AOB rather than ammonia-oxidizing archaea were detected in both corals, suggesting that AOB might play an important role in the ammonia oxidation process of the corals. This study indicates that the coral bacterial symbionts with the potential for nitrite reduction and ammonia oxidation might have multiple ecological roles in the coral holobiont, which promotes our understanding of bacteria-mediated nitrogen cycling in corals. To our knowledge, this study is the first assessment of the community structure and phylogenetic diversity of denitrifying bacteria and AOB in corals based on nirK, nirS, and amoA gene library analysis. PMID:23564007

  11. Enhanced nitrate and phosphate removal in a denitrifying bioreactor with biochar.

    PubMed

    Bock, Emily; Smith, Nick; Rogers, Mark; Coleman, Brady; Reiter, Mark; Benham, Brian; Easton, Zachary M

    2015-03-01

    Denitrifying bioreactors (DNBRs) are an emerging technology used to remove nitrate-nitrogen (NO) from enriched waters by supporting denitrifying microorganisms with organic carbon in an anaerobic environment. Field-scale investigations have established successful removal of NO from agricultural drainage, but the potential for DNBRs to remediate excess phosphorus (P) exported from agricultural systems has not been addressed. We hypothesized that biochar addition to traditional woodchip DNBRs would enhance NO and P removal and reduce nitrous oxide (NO) emissions based on previous research demonstrating reduced leaching of NO and P and lower greenhouse gas production associated with biochar amendment of agricultural soils. Nine laboratory-scale DNBRs, a woodchip control, and eight different woodchip-biochar treatments were used to test the effect of biochar on nutrient removal. The biochar treatments constituted a full factorial design of three factors (biochar source material [feedstock], particle size, and application rate), each with two levels. Statistical analysis by repeated measures ANOVA showed a significant effect of biochar, time, and their interaction on NO and dissolved P removal. Average P removal of 65% was observed in the biochar treatments by 18 h, after which the concentrations remained stable, compared with an 8% increase in the control after 72 h. Biochar addition resulted in average NO removal of 86% after 18 h and 97% after 72 h, compared with only 13% at 18 h and 75% at 72 h in the control. Biochar addition also resulted in significantly lower NO production. These results suggest that biochar can reduce the design residence time by enhancing nutrient removal rates. PMID:26023979

  12. Quantity-activity relationship of denitrifying bacteria and environmental scaling in streams of a forested watershed

    NASA Astrophysics Data System (ADS)

    O'Connor, Ben L.; Hondzo, Miki; Dobraca, Dina; Lapara, Timothy M.; Finlay, Jacques C.; Brezonik, Patrick L.

    2006-12-01

    The spatial variability of subreach denitrification rates in streams was evaluated with respect to controlling environmental conditions, molecular examination of denitrifying bacteria, and dimensional analysis. Denitrification activities ranged from 0 and 800 ng-N gsed-1 d-1 with large variations observed within short distances (<50 m) along stream reaches. A log-normal probability distribution described the range in denitrification activities and was used to define low (16% of the probability distribution), medium (68%), and high (16%) denitrification potential groups. Denitrifying bacteria were quantified using a competitive polymerase chain reaction (cPCR) technique that amplified the nirK gene that encodes for nitrite reductase. Results showed a range of nirK quantities from 103 to 107 gene-copy-number gsed-1. A nonparametric statistical test showed no significant difference in nirK quantities among stream reaches, but revealed that samples with a high denitrification potential had significantly higher nirK quantities. Denitrification activity was positively correlated with nirK quantities with scatter in the data that can be attributed to varying environmental conditions along stream reaches. Dimensional analysis was used to evaluate denitrification activities according to environmental variables that describe fluid-flow properties, nitrate and organic material quantities, and dissolved oxygen flux. Buckingham's pi theorem was used to generate dimensionless groupings and field data were used to determine scaling parameters. The resulting expressions between dimensionless NO3- flux and dimensionless groupings of environmental variables showed consistent scaling, which indicates that the subreach variability in denitrification rates can be predicted by the controlling physical, chemical, and microbiological conditions.

  13. Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell

    PubMed Central

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  14. In vivo emission of dinitrogen by earthworms via denitrifying bacteria in the gut.

    PubMed

    Horn, Marcus A; Mertel, Ralph; Gehre, Matthias; Kästner, Matthias; Drake, Harold L

    2006-02-01

    Earthworms emit the greenhouse gas nitrous oxide (N2O), and ingested denitrifiers in the gut appear to be the main source of this N2O. The primary goal of this study was to determine if earthworms also emit dinitrogen (N2), the end product of complete denitrification. When [15N]nitrate was injected into the gut, the earthworms Aporrectodea caliginosa and Lumbricus terrestris emitted labeled N2 (and also labeled N2O) under in vivo conditions; emission of N2 by these two earthworms was relatively linear and approximated 1.2 and 6.6 nmol N2 per h per g (fresh weight), respectively. Isolated gut contents also produced [15N]nitrate-derived N2 and N2O under anoxic conditions. N2 is formed by N2O reductase, and acetylene, an inhibitor of this enzyme, inhibited the emission of [15N]nitrate-derived N2 by living earthworms. Standard gas chromatographic analysis demonstrated that the amount of N2O emitted was relatively linear during initial incubation periods and increased in response to acetylene. The calculated rates for the native emissions of N2 (i.e., without added nitrate) by A. caliginosa and L. terrestris were 1.1 and 1.5 nmol N2 per h per g (fresh weight), respectively; these emission rates approximated that of N2O. These collective observations indicate that (i) earthworms emit N2 concomitant with the emission of N2O via the in situ activity of denitrifying bacteria in the gut and (ii) N2O is quantitatively an important denitrification-derived end product under in situ conditions. PMID:16461643

  15. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer.

    PubMed

    Critchley, K; Rudolph, D L; Devlin, J F; Schillig, P C

    2014-12-15

    A preliminary trial of a cross-injection system (CIS) was designed to stimulate in situ denitrification in an aquifer servicing an urban community in southern Ontario. It was hypothesized that this remedial strategy could be used to reduce groundwater nitrate in the aquifer such that it could remain in use as a municipal supply until the beneficial effects of local reduced nutrient loadings lead to long-term water quality improvement at the wellfield. The CIS application involved injecting a carbon source (acetate) into the subsurface using an injection-extraction well pair positioned perpendicular to the regional flow direction, up-gradient of the water supply wells, with the objective of stimulating native denitrifying bacteria. The pilot remedial strategy was targeted in a high nitrate flux zone within an aerobic and heterogeneous section of the glacial sand and gravel aquifer. Acetate injections were performed at intervals ranging from daily to bi-daily. The carbon additions led to general declines in dissolved oxygen concentrations; decreases in nitrate concentration were localized in aquifer layers where velocities were estimated to be less than 0.5m/day. NO3-(15)N and NO3-(18)O isotope data indicated the nitrate losses were due to denitrification. Relatively little nitrate was removed from groundwater in the more permeable strata, where velocities were estimated to be on the order of 18 m/day or greater. Overall, about 11 percent of the nitrate mass passing through the treatment zone was removed. This work demonstrates that stimulating in situ denitrification in an aerobic, highly conductive aquifer is challenging but achievable. Further work is needed to increase rates of denitrification in the most permeable units of the aquifer.

  16. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer

    NASA Astrophysics Data System (ADS)

    Critchley, K.; Rudolph, D. L.; Devlin, J. F.; Schillig, P. C.

    2014-12-01

    A preliminary trial of a cross-injection system (CIS) was designed to stimulate in situ denitrification in an aquifer servicing an urban community in southern Ontario. It was hypothesized that this remedial strategy could be used to reduce groundwater nitrate in the aquifer such that it could remain in use as a municipal supply until the beneficial effects of local reduced nutrient loadings lead to long-term water quality improvement at the wellfield. The CIS application involved injecting a carbon source (acetate) into the subsurface using an injection-extraction well pair positioned perpendicular to the regional flow direction, up-gradient of the water supply wells, with the objective of stimulating native denitrifying bacteria. The pilot remedial strategy was targeted in a high nitrate flux zone within an aerobic and heterogeneous section of the glacial sand and gravel aquifer. Acetate injections were performed at intervals ranging from daily to bi-daily. The carbon additions led to general declines in dissolved oxygen concentrations; decreases in nitrate concentration were localized in aquifer layers where velocities were estimated to be less than 0.5 m/day. NO3-15N and NO3-18O isotope data indicated the nitrate losses were due to denitrification. Relatively little nitrate was removed from groundwater in the more permeable strata, where velocities were estimated to be on the order of 18 m/day or greater. Overall, about 11 percent of the nitrate mass passing through the treatment zone was removed. This work demonstrates that stimulating in situ denitrification in an aerobic, highly conductive aquifer is challenging but achievable. Further work is needed to increase rates of denitrification in the most permeable units of the aquifer.

  17. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  18. Effect of Mn2+ augmentation on reinforcing aerobic sludge granulation in a sequencing batch reactor.

    PubMed

    Huang, Lihui; Yang, Tao; Wang, Weiliang; Zhang, Bo; Sun, Yuanyuan

    2012-03-01

    Two sequencing batch reactors were synchronously operated to investigate the effect of manganese (II) (Mn(2+)) augmentation on aerobic granulation. Reactor 1 (R1) was added with 10 mg/L Mn(2+), while there was no Mn(2+) augmentation in reactor 2 (R2). Results showed that R1 had a faster granulation process than R2 and R1 performed better in chemical oxygen demand (COD) and ammonium nitrogen (NH(4)(+)-N) removal efficiencies. Moreover, the mature granules augmented with Mn(2+) behaved better on their physical characteristics and size distributions, and they also had higher production of extracellular polymeric substances (EPS) content. The result of three-dimensional excitation and emission matrix fluorescence showed that Mn(2+) had the function of causing organic material diversity (especially proteins diversity) in EPS fraction from granules. Polymerase chain reaction and denaturing gradient gel electrophoresis techniques were employed to analyze the microbial and genetic characteristics in mature granules. The results exhibited that Mn(2+) augmentation was mainly responsible for the higher microbial diversity of granules from R1 compared with that from R2. Uncultured sludge bacterium A16 (AF234726) and Rhodococcus sp. WTZ-R2 (HM004214) were the major species in R1, while only uncultured sludge bacterium A16 (AF234726) in R2. Moreover, there were eight species of organisms found in both two aerobic granules, and three species were found only in aerobic granules from R1. It could be concluded that Mn(2+) could enhance the sludge granulation process and have a key effect role on the biological properties during the sludge granulation. PMID:21894480

  19. Drying-Rewetting and Flooding Impact Denitrifier Activity Rather than Community Structure in a Moderately Acidic Fen

    PubMed Central

    Palmer, Katharina; Köpp, Julia; Gebauer, Gerhard; Horn, Marcus A.

    2016-01-01

    Wetlands represent sources or sinks of the greenhouse gas nitrous oxide (N2O). The acidic fen Schlöppnerbrunnen emits denitrification derived N2O and is also capable of N2O consumption. Global warming is predicted to cause more extreme weather events in future years, including prolonged drought periods as well as heavy rainfall events, which may result in flooding. Thus, the effects of prolonged drought and flooding events on the abundance, community composition, and activity of fen denitrifiers were investigated in manipulation experiments. The water table in the fen was experimentally lowered for 8 weeks in 2008 and raised for 5.5 months in 2009 on three treatment plots, while three plots were left untreated and served as controls. In situ N2O fluxes were rather unaffected by the drought treatment and were marginally increased by the flooding treatment. Samples were taken before and after treatment in both years. The structural gene markers narG and nosZ were used to assess possible changes in the nitrate reducer and denitrifier community in response to water table manipulations. Detected copy numbers of narG and nosZ were essentially unaffected by the experimental drought and flooding. Terminal restriction fragment length polymorphism (TRFLP) patterns of narG and nosZ were similar before and after experimental drought or experimental flooding, indicating a stable nitrate reducer and denitrifier community in the fen. However, certain TRFs of narG and nosZ transcripts responded to experimental drought or flooding. Nitrate-dependent Michaelis-Menten kinetics were assessed in anoxic microcosms with peat samples taken before and 6 months after the onset of experimental flooding. Maximal reaction velocities vmax were higher after than before flooding in samples from treament but not in those from control plots taken at the same time. The ratio of N2O to N2O + N2 was lower in soil from treatment plots after flooding than in soil from control plots, suggesting

  20. Drying-Rewetting and Flooding Impact Denitrifier Activity Rather than Community Structure in a Moderately Acidic Fen.

    PubMed

    Palmer, Katharina; Köpp, Julia; Gebauer, Gerhard; Horn, Marcus A

    2016-01-01

    Wetlands represent sources or sinks of the greenhouse gas nitrous oxide (N2O). The acidic fen Schlöppnerbrunnen emits denitrification derived N2O and is also capable of N2O consumption. Global warming is predicted to cause more extreme weather events in future years, including prolonged drought periods as well as heavy rainfall events, which may result in flooding. Thus, the effects of prolonged drought and flooding events on the abundance, community composition, and activity of fen denitrifiers were investigated in manipulation experiments. The water table in the fen was experimentally lowered for 8 weeks in 2008 and raised for 5.5 months in 2009 on three treatment plots, while three plots were left untreated and served as controls. In situ N2O fluxes were rather unaffected by the drought treatment and were marginally increased by the flooding treatment. Samples were taken before and after treatment in both years. The structural gene markers narG and nosZ were used to assess possible changes in the nitrate reducer and denitrifier community in response to water table manipulations. Detected copy numbers of narG and nosZ were essentially unaffected by the experimental drought and flooding. Terminal restriction fragment length polymorphism (TRFLP) patterns of narG and nosZ were similar before and after experimental drought or experimental flooding, indicating a stable nitrate reducer and denitrifier community in the fen. However, certain TRFs of narG and nosZ transcripts responded to experimental drought or flooding. Nitrate-dependent Michaelis-Menten kinetics were assessed in anoxic microcosms with peat samples taken before and 6 months after the onset of experimental flooding. Maximal reaction velocities v max were higher after than before flooding in samples from treament but not in those from control plots taken at the same time. The ratio of N2O to N2O + N2 was lower in soil from treatment plots after flooding than in soil from control plots, suggesting

  1. Drying-Rewetting and Flooding Impact Denitrifier Activity Rather than Community Structure in a Moderately Acidic Fen.

    PubMed

    Palmer, Katharina; Köpp, Julia; Gebauer, Gerhard; Horn, Marcus A

    2016-01-01

    Wetlands represent sources or sinks of the greenhouse gas nitrous oxide (N2O). The acidic fen Schlöppnerbrunnen emits denitrification derived N2O and is also capable of N2O consumption. Global warming is predicted to cause more extreme weather events in future years, including prolonged drought periods as well as heavy rainfall events, which may result in flooding. Thus, the effects of prolonged drought and flooding events on the abundance, community composition, and activity of fen denitrifiers were investigated in manipulation experiments. The water table in the fen was experimentally lowered for 8 weeks in 2008 and raised for 5.5 months in 2009 on three treatment plots, while three plots were left untreated and served as controls. In situ N2O fluxes were rather unaffected by the drought treatment and were marginally increased by the flooding treatment. Samples were taken before and after treatment in both years. The structural gene markers narG and nosZ were used to assess possible changes in the nitrate reducer and denitrifier community in response to water table manipulations. Detected copy numbers of narG and nosZ were essentially unaffected by the experimental drought and flooding. Terminal restriction fragment length polymorphism (TRFLP) patterns of narG and nosZ were similar before and after experimental drought or experimental flooding, indicating a stable nitrate reducer and denitrifier community in the fen. However, certain TRFs of narG and nosZ transcripts responded to experimental drought or flooding. Nitrate-dependent Michaelis-Menten kinetics were assessed in anoxic microcosms with peat samples taken before and 6 months after the onset of experimental flooding. Maximal reaction velocities v max were higher after than before flooding in samples from treament but not in those from control plots taken at the same time. The ratio of N2O to N2O + N2 was lower in soil from treatment plots after flooding than in soil from control plots, suggesting

  2. The role of plant type and salinity in the selection for the denitrifying community structure in the rhizosphere of wetland vegetation.

    PubMed

    Bañeras, Luís; Ruiz-Rueda, Olaya; López-Flores, Rocío; Quintana, Xavier D; Hallin, Sara

    2012-06-01

    Coastal wetlands, as transient links from terrestrial to marine environments, are important for nitrogen removal by denitrification. Denitrification strongly depends on both the presence of emergent plants and the denitrifier communities selected by different plant species. In this study, the effects of vegetation and habitat heterogeneity on the community of denitrifying bacteria were investigated in nine coastal wetlands in two preserved areas of Spain. Sampling locations were selected to cover a range of salinity (0.81 to 31.3 mS/cm) and nitrate concentrations (0.1 to 303 μM NO3-), allowing the evaluation of environmental variables that select for denitrifier communities in the rhizosphere of Phragmites sp., Ruppia sp., and Paspalum sp. Potential nitrate reduction rates were found to be dependent on the sampling time and plant species and related to the denitrifier community structure, which was assessed by terminal restriction fragment length polymorphism analysis of the functional genes nirS, nirK and nosZ. The results showed that denitrifier community structure was also governed by plant species and salinity, with significant influences of other variables, such as sampling time and location. Ruppia sp. and Phragmites sp. selected for certain communities, whereas this was not the case for Paspalum sp. The plant species effect was strongest on nirK-type denitrifiers, whereas water carbon content was a significant factor defining the structure of the nosZ-harboring community. The differences recognized using the three functional gene markers indicated that different drivers act on denitrifying populations capable of complete denitrification, compared to the overall denitrifier community. This finding may have implications for emissions of the greenhouse gas nitrous oxide. PMID:22847270

  3. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  4. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    PubMed

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

  5. Volatile dimethyl polonium produced by aerobic marine microorganisms.

    PubMed

    Bahrou, Andrew S; Ollivier, Patrick R L; Hanson, Thomas E; Tessier, Emmanuel; Amouroux, David; Church, Thomas M

    2012-10-16

    The production of volatile polonium (Po(v)), a naturally occurring radioactive element, by pure cultures of aerobic marine tellurite-resistant microorganisms was investigated. Rhodotorula mucilaginosa, a carotogenic yeast, and a Bacillus sp. strain, a Gram-positive bacterium, generated approximately one and 2 orders of magnitude, respectively, greater amounts of Po(v) compared to the other organisms tested. Gas chromatography-inductively coupled plasma-mass spectrometry (GC-ICP-MS) analysis identified dimethyl polonide (DMPo) as the predominant volatile Po compound in culture headspace of the yeast. This species assignment is based on the exact relation between GC retention times and boiling points of this and other Group VI B analogues (S, Se, and Te). The extent of the biotic Po(v) production correlates exponentially with elevated particulate Po (Po(p)): dissolved Po (Po(aq)) ratios in the cultures, consistent with efficient Po bioaccumulation. Further experimentation demonstrated that some abiotic Po(v) generation is possible. However, high-level Po(v) generation in these cultures is predominantly biotic.

  6. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium.

    PubMed

    Bogdanova, Tat'yana I; Tsaplina, Iraida A; Kondrat'eva, Tamara F; Duda, Vitalii I; Suzina, Natalya E; Melamud, Vitalii S; Tourova, Tat'yana P; Karavaiko, Grigorii I

    2006-05-01

    A thermotolerant, Gram-positive, aerobic, endospore-forming, acidophilic bacterium (strain Kr1T) was isolated from the pulp of a gold-containing sulfide concentrate processed at 40 degrees C in a gold-recovery plant (Siberia). Cells of strain Kr1(T) were straight to slightly curved rods, 0.8-1.2 microm in diameter and 1.5-4.5 microm in length. Strain Kr1T formed spherical and oval, refractile, subterminally located endospores. The temperature range for growth was 20-60 degrees C, with an optimum at 40 degrees C. The pH range for growth on medium containing ferrous iron was 1.2-2.4, with an optimum at pH 2.0; the pH range for growth on medium containing S0 was 2.0-5.0, with an optimum at pH 2.5. Strain Kr1T was mixotrophic, oxidizing ferrous iron, S0, tetrathionate or sulfide minerals as energy sources in the presence of 0.02 % yeast extract or other organic substrates. The G+C content of the DNA of strain Kr1T was 48.2+/-0.5 mol%. Strain Kr1T showed a low level of DNA-DNA reassociation with the known Sulfobacillus species (11-44 %). 16S rRNA gene sequence analysis revealed that Kr1T formed a separate phylogenetic group with a high degree of similarity between the nucleotide sequences (98.3-99.6 %) and 100 % bootstrap support within the phylogenetic Sulfobacillus cluster. On the basis of its physiological properties and the results of phylogenetic analyses, strain Kr1T can be affiliated to a novel species of the genus Sulfobacillus, for which the name Sulfobacillus thermotolerans sp. nov. is proposed. The type strain is Kr1T (=VKM B-2339T=DSM 17362T).

  7. Energy coupling to K+ transport in a marine bacterium.

    PubMed

    Sedgwick, E G; MacLeod, R A

    1980-10-01

    Cells of the marine bacterium Alteromonas haloplanktis 214 ATCC 19855 (previously referred to as marine pseudomonad B-16) were depleted of K+ by washing with 0.1 M MgSO4. Washing with 0.05 M MgSO4 lowered the Vmax for K+ transport compared with washing with 0.1 M with 0.05 but did not change the Km, while washing with lower concentrations of MgSO4 caused loss of ultraviolet-absorbing material from the cells. K+ uptake was a strictly aerobic process and was accompanied by proton release. When an anaerobic suspension of cells was added to incubation mixtures containing increasing amounts of O2, intracellular ATP concentrations increased as the O2 concentration increased and reached near maximum values before K+ transport began. The O2 concentration initiating K+ transport caused transport to proceed at its maximum rate. For these experiments A. haloplanktis was depleted of ATP by incubating under anaerobic conditions. Incubating with either N,N'-dicyclohexyl carbodiimide (DCCD) or arsenate failed to deplete intact cells of ATP or prevent K+ transport. The inhibitory activity of DCCD for ATPase in membrane preparations was higher at 5 mM than at other MgSO4 concentrations and increased with time. Cyanide and the uncoupling agents tetrachloro-salicylanide (TCS) and carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) prevented K+ uptake while TSC and FCCP though not cyanide caused K+ to be released from K+-containing cells. It is concluded that the driving force for K+ transport in these cells is likely to be the membrane potential and that K+ transport may be gated.

  8. Idiomarina maris sp. nov., a marine bacterium isolated from sediment.

    PubMed

    Zhang, Yan-Jiao; Zhang, Xi-Ying; Zhao, Hui-Lin; Zhou, Ming-Yang; Li, Hui-Juan; Gao, Zhao-Ming; Chen, Xiu-Lan; Dang, Hong-Yue; Zhang, Yu-Zhong

    2012-02-01

    A protease-producing marine bacterium, designated CF12-14(T), was isolated from sediment of the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain CF12-14(T) formed a separate lineage within the genus Idiomarina (Gammaproteobacteria). The isolate showed the highest 16S rRNA gene sequence similarity with Idiomarina salinarum ISL-52(T) (94.7 %), Idiomarina seosinensis CL-SP19(T) (94.6 %) and other members of the genus Idiomarina (91.9-94.6 %). Cells were gram-negative, aerobic, flagellated, straight or slightly curved, and often formed buds and prosthecae. Strain CF12-14(T) grew at 4-42 °C (optimum 30-35 °C) and with 0.1-15 % (w/v) NaCl (optimum 2-3 %). The isolate reduced nitrate to nitrite and hydrolysed DNA, but did not produce acids from sugars. The predominant cellular fatty acids were iso-C(15 : 0) (27.4 %), iso-C(17 : 0) (16.0 %) and iso-C(17 : 1)ω9c (15.8 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was ubiquinone 8. The DNA G+C content was 50.4 mol%. The phylogenetic, phenotypic and chemotaxonomic data supported the conclusion that CF12-14(T) represents a novel species of the genus Idiomarina, for which the name Idiomarina maris sp. nov. is proposed. The type strain is CF12-14(T) ( = CCTCC AB 208166(T) = KACC 13974(T)).

  9. Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification.

    PubMed

    Chen, Qian; Ni, Jinren

    2012-05-01

    Characteristics of ammonium removal by a newly isolated heterotrophic nitrification-aerobic denitrification bacterium Agrobacterium sp. LAD9 were systematically investigated. Succinate and acetate were found to be the most favorable carbon sources for LAD9. Response surface methodology (RSM) analysis demonstrated that maximum removal of ammonium occurred under the conditions with an initial pH of 8.46, C/N ratio of 8.28, temperature of 27.9°C and shaking speed of 150rpm, where temperature and shaking speed produced the largest effect. Further nitrogen balance analysis revealed that 50.1% of nitrogen was removed as gas products and 40.8% was converted to the biomass. Moreover, the occurrence of aerobic denitrification was evidenced by the utilization of nitrite and nitrate as nitrogen sources, and the successful amplifications of membrane bound nitrate reductase and cytochrome cd(1) nitrite reductase genes from strain LAD9. Thus, the nitrogen removal in strain LAD9 was speculated to comply with the mechanism of heterotrophic nitrification coupled with aerobic denitrification (NH(4)(+)-NH(2)OH-NO(2)(-)-N(2)O-N(2)), in which also accompanied with the mutual transformation of nitrite and nitrate. The findings can help in applying appropriate controls over operational parameters in systems involving the use of this kind of strain.

  10. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    PubMed Central

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and

  11. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree.

    PubMed

    Rivas, Raúl; Trujillo, Martha E; Mateos, P F; Martínez-Molina, E; Velázquez, Encarna

    2004-03-01

    A Gram-positive, aerobic, non-motile bacterium was isolated from a decayed elm tree. Phylogenetic analysis based on 16S rDNA sequences revealed 99.0 % similarity to Cellulomonas humilata. Chemotaxonomic data that were determined for this isolate included cell-wall composition, fatty acid profiles and polar lipids; the results supported the placement of strain XIL11(T) in the genus Cellulomonas. The DNA G+C content was 73 mol%. The results of DNA-DNA hybridization with C. humilata ATCC 25174(T), in combination with chemotaxonomic and physiological data, demonstrated that isolate XIL11(T) should be classified as a novel Cellulomonas species. The name Cellulomonas xylanilytica sp. nov. is proposed, with strain XIL11(T) (=LMG 21723(T)=CECT 5729(T)) as the type strain.

  12. [Effect of short-time drought process on denitrifying bacteria abundance and N2O emission in paddy soil].

    PubMed

    Lu, Jing; Liu, Jin-Bo; Sheng, Rong; Liu, Yi; Chen, An-Lei; Wei, Wen-Xue

    2014-10-01

    In order to investigate the impact of drying process on greenhouse gas emissions and denitrifying microorganisms in paddy soil, wetting-drying process was simulated in laboratory conditions. N2O flux, redox potential (Eh) were monitored and narG- and nosZ-containing denitrifiers abundances were determined by real-time PCR. N2O emission was significantly increased only 4 h after drying process began, and it was more than 6 times of continuous flooding (CF) at 24 h. In addition, narG and nosZ gene abundances were increased rapidly with the drying process, and N2O emission flux was significantly correlated with narG gene abundance (P < 0.01). Our results indicated that the narG-containing deniteifiers were the main driving microorganisms which caused the N2O emission in the short-time drought process in paddy soil. PMID:25796895

  13. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  14. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  15. Neuromodulation of Aerobic Exercise-A Review.

    PubMed

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S

    2015-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  16. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  17. Effect of earthworm feeding guilds on ingested dissimilatory nitrate reducers and denitrifiers in the alimentary canal of the earthworm.

    PubMed

    Depkat-Jakob, Peter S; Hilgarth, Maik; Horn, Marcus A; Drake, Harold L

    2010-09-01

    The earthworm gut is an anoxic nitrous oxide (N(2)O)-emitting microzone in aerated soils. In situ conditions of the gut might stimulate ingested nitrate-reducing soil bacteria linked to this emission. The objective of this study was to determine if dissimilatory nitrate reducers and denitrifiers in the alimentary canal were affected by feeding guilds (epigeic [Lumbricus rubellus], anecic [Lumbricus terrestris], and endogeic [Aporrectodea caliginosa]). Genes and gene transcripts of narG (encodes a subunit of nitrate reductase and targets both dissimilatory nitrate reducers and denitrifiers) and nosZ (encodes a subunit of N(2)O reductase and targets denitrifiers) were detected in guts and soils. Gut-derived sequences were similar to those of cultured and uncultured soil bacteria and to soil-derived sequences obtained in this study. Gut-derived narG sequences and narG terminal restriction fragments (TRFs) were affiliated mainly with Gram-positive organisms (Actinobacteria). The majority of gut- and uppermost-soil-derived narG transcripts were affiliated with Mycobacterium (Actinobacteria). In contrast, narG sequences indicative of Gram-negative organisms (Proteobacteria) were dominant in mineral soil. Most nosZ sequences and nosZ TRFs were affiliated with Bradyrhizobium (Alphaproteobacteria) and uncultured soil bacteria. TRF profiles indicated that nosZ transcripts were more affected by earthworm feeding guilds than were nosZ genes, whereas narG transcripts were less affected by earthworm feeding guilds than were narG genes. narG and nosZ transcripts were different and less diverse in the earthworm gut than in mineral soil. The collective results indicate that dissimilatory nitrate reducers and denitrifiers in the earthworm gut are soil derived and that ingested narG- and nosZ-containing taxa were not uniformly stimulated in the guts of worms from different feeding guilds.

  18. Effect of earthworm feeding guilds on ingested dissimilatory nitrate reducers and denitrifiers in the alimentary canal of the earthworm.

    PubMed

    Depkat-Jakob, Peter S; Hilgarth, Maik; Horn, Marcus A; Drake, Harold L

    2010-09-01

    The earthworm gut is an anoxic nitrous oxide (N(2)O)-emitting microzone in aerated soils. In situ conditions of the gut might stimulate ingested nitrate-reducing soil bacteria linked to this emission. The objective of this study was to determine if dissimilatory nitrate reducers and denitrifiers in the alimentary canal were affected by feeding guilds (epigeic [Lumbricus rubellus], anecic [Lumbricus terrestris], and endogeic [Aporrectodea caliginosa]). Genes and gene transcripts of narG (encodes a subunit of nitrate reductase and targets both dissimilatory nitrate reducers and denitrifiers) and nosZ (encodes a subunit of N(2)O reductase and targets denitrifiers) were detected in guts and soils. Gut-derived sequences were similar to those of cultured and uncultured soil bacteria and to soil-derived sequences obtained in this study. Gut-derived narG sequences and narG terminal restriction fragments (TRFs) were affiliated mainly with Gram-positive organisms (Actinobacteria). The majority of gut- and uppermost-soil-derived narG transcripts were affiliated with Mycobacterium (Actinobacteria). In contrast, narG sequences indicative of Gram-negative organisms (Proteobacteria) were dominant in mineral soil. Most nosZ sequences and nosZ TRFs were affiliated with Bradyrhizobium (Alphaproteobacteria) and uncultured soil bacteria. TRF profiles indicated that nosZ transcripts were more affected by earthworm feeding guilds than were nosZ genes, whereas narG transcripts were less affected by earthworm feeding guilds than were narG genes. narG and nosZ transcripts were different and less diverse in the earthworm gut than in mineral soil. The collective results indicate that dissimilatory nitrate reducers and denitrifiers in the earthworm gut are soil derived and that ingested narG- and nosZ-containing taxa were not uniformly stimulated in the guts of worms from different feeding guilds. PMID:20656855

  19. Evidence of Carbon Fixation Pathway in a Bacterium from Candidate Phylum SBR1093 Revealed with Genomic Analysis

    PubMed Central

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere. PMID:25310003

  20. NLOSS: A mechanistic model of denitrified N{sub 2}O and N{sub 2} evolution from soil

    SciTech Connect

    Riley, W.J.; Matson, P.A.

    2000-03-01

    Soil microbial denitrification is a significant source of atmospheric nitrous oxide (N{sub 2}O), a trace gas important in global climate change and stratospheric ozone depletion. In this paper the authors describe a mechanistic submodel, which is incorporated in the model NLOSS, designed to predict the soil biogenic source and efflux of N{sub 2}O and N{sub 2} during denitrification. NLOSS simulates transient soil moisture and temperature, decomposition, soil anaerobicity, denitrifying bacterial biomass, rates of soil nitrogen transformations, soil trace-gas transport, and gas efflux to the atmosphere. Uncertainty in predicted N gas effluxes is computed using a Monte Carlo approach. The authors test NLOSS's denitrification estimates by comparing predictions with results from a {sup 15}N tracer experiment in a Mexican agricultural system. The model accurately predicted the measured soil moisture and denitrified N{sub 2}O and N{sub 2} fluxes during the experiment. They also apply NLOSS to compute denitrified N trace-gas speciation curves as a function of soil hydrologic properties and moisture content. These speciation curves will be used in future work to extrapolate the plot-scale modeling results presented here to field and regional estimates of N trace-gas emissions. The results presented here suggest that NLOSS can be used to identify the processes most important for trace-gas losses and to facilitate efforts to scale plot-level modeling results to regional estimates of N trace-gas emissions.

  1. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens. PMID:25768227

  2. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    PubMed

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  3. The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers.

    PubMed

    Heylen, Kim; Gevers, Dirk; Vanparys, Bram; Wittebolle, Lieven; Geets, Joke; Boon, Nico; De Vos, Paul

    2006-11-01

    Gene sequence analysis of nirS and nirK, both encoding nitrite reductases, was performed on cultivated denitrifiers to assess their incidence in different bacterial taxa and their taxonomical value. Almost half of the 227 investigated denitrifying strains did not render an nir amplicon with any of five previously described primers. NirK and nirS were found to be prevalent in Alphaproteobacteria and Betaproteobacteria, respectively, nirK was detected in the Firmicutes and Bacteroidetes and nirS and nirK with equal frequency in the Gammaproteobacteria. These observations deviated from the hitherto reported incidence of nir genes in bacterial taxa. NirS gene phylogeny was congruent with the 16S rRNA gene phylogeny on family or genus level, although some strains did group within clusters of other bacterial classes. Phylogenetic nirK gene sequence analysis was incongruent with the 16S rRNA gene phylogeny. NirK sequences were also found to be significantly more similar to nirK sequences from the same habitat than to nirK sequences retrieved from highly related taxa. This study supports the hypothesis that horizontal gene transfer events of denitrification genes have occurred and underlines that denitrification genes should not be linked with organism diversity of denitrifiers in cultivation-independent studies.

  4. Metabolic Engineering of an Aerobic Sulfate Reduction Pathway and Its Application to Precipitation of Cadmium on the Cell Surface

    PubMed Central

    Wang, Clifford L.; Maratukulam, Priya D.; Lum, Amy M.; Clark, Douglas S.; Keasling, J. D.

    2000-01-01

    The conversion of sulfate to an excess of free sulfide requires stringent reductive conditions. Dissimilatory sulfate reduction is used in nature by sulfate-reducing bacteria for respiration and results in the conversion of sulfate to sulfide. However, this dissimilatory sulfate reduction pathway is inhibited by oxygen and is thus limited to anaerobic environments. As an alternative, we have metabolically engineered a novel aerobic sulfate reduction pathway for the secretion of sulfides. The assimilatory sulfate reduction pathway was redirected to overproduce cysteine, and excess cysteine was converted to sulfide by cysteine desulfhydrase. As a potential application for this pathway, a bacterium was engineered with this pathway and was used to aerobically precipitate cadmium as cadmium sulfide, which was deposited on the cell surface. To maximize sulfide production and cadmium precipitation, the production of cysteine desulfhydrase was modulated to achieve an optimal balance between the production and degradation of cysteine. PMID:11010904

  5. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids.

    PubMed

    Rudolf, Christiane; Grammel, Hartmut

    2012-04-01

    During fermentative metabolism, carbon dioxide fixation plays a key role in many bacteria regarding growth and production of organic acids. The present contribution, dealing with the facultative photosynthetic bacterium Rhodospirillum rubrum, reveals not only the strong influence of ambient carbon dioxide on the fermentative break-down of fructose but also a high impact on aerobic growth with fructose as sole carbon source. Both growth rates and biomass yield increased with increasing carbon dioxide supply in chemoheterotrophic aerobic cultures. Furthermore, intracellular metabolite concentration measurements showed almost negligible concentrations of the tricarboxylic acid cycle intermediates succinate, fumarate and malate under aerobic growth, in contrast to several metabolites of the glycolysis. In addition, we present a dual phase fed-batch process, where an aerobic growth phase is followed by an anaerobic production phase. The biosynthesis of bacteriochlorophyll and the secretion of organic acids were both affected by the carbon dioxide supply, the pH value and by the cell density at the time of switching from aerobic to anaerobic conditions. The formation of pigmented photosynthetic membranes and the amount of bacteriochlorophyll were inversely correlated to the secretion of succinate. Accounting the high biotechnological potential of R. rubrum, optimization of carbon dioxide supply is important because of the favored application of fructose-containing fermentable feedstock solutions in bio-industrial processes.

  6. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    PubMed

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria.

  7. Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae.

    PubMed

    Nedashkovskaya, Olga I; Kim, Seung Bum; Lysenko, Anatoly M; Kalinovskaya, Nataliya I; Mikhailov, Valery V; Kim, In Seop; Bae, Kyung Sook

    2005-12-01

    A novel heterotrophic, yellow pigmented, aerobic, Gram-negative, nonmotile, oxidase- and catalase-positive bacterium KMM 3,938(T) was isolated from sea water collected in the Sea of Japan, Russia. The strain grew at mesophilic temperature range, and required the presence of NaCl for growth. 16S rRNA gene sequence analysis revealed that strain KMM 3,938(T) is a member of the family Flavobacteriaceae. The predominant fatty acids were C13:0 iso, C14:0 iso, C15:0 iso, C15:0, C15:1Delta6, 3OH-C15:0:3 iso, and 3OH-C15:0. The G + C content of the DNA of KMM 3938(T) was 32.4 mol%. On the basis of phenotypic, chemotaxonomic, genotypic, and phylogenetic characteristics, the novel bacterium was assigned to the genus Polaribacter as Polaribacter butkevichii sp. nov. The type strain is KMM 3938(T )(= KCTC 12100(T) = CCUG 48005(T)).

  8. The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403

    PubMed Central

    Bolotin, Alexander; Wincker, Patrick; Mauger, Stéphane; Jaillon, Olivier; Malarme, Karine; Weissenbach, Jean; Ehrlich, S. Dusko; Sorokin, Alexei

    2001-01-01

    Lactococcus lactis is a nonpathogenic AT-rich gram-positive bacterium closely related to the genus Streptococcus and is the most commonly used cheese starter. It is also the best-characterized lactic acid bacterium. We sequenced the genome of the laboratory strain IL1403, using a novel two-step strategy that comprises diagnostic sequencing of the entire genome and a shotgun polishing step. The genome contains 2,365,589 base pairs and encodes 2310 proteins, including 293 protein-coding genes belonging to six prophages and 43 insertion sequence (IS) elements. Nonrandom distribution of IS elements indicates that the chromosome of the sequenced strain may be a product of recent recombination between two closely related genomes. A complete set of late competence genes is present, indicating the ability of L. lactis to undergo DNA transformation. Genomic sequence revealed new possibilities for fermentation pathways and for aerobic respiration. It also indicated a horizontal transfer of genetic information from Lactococcus to gram-negative enteric bacteria of Salmonella-Escherichia group. [The sequence data described in this paper has been submitted to the GenBank data library under accession no. AE005176.] PMID:11337471

  9. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.

    PubMed

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater.

  10. Formation of Aerobic Granular Sludge in Sequencing Batch Reactor: Comparison of Different Divalent Metal Ions as Cofactors

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Gao, Dawen; Zhang, Min

    2010-11-01

    The two sequencing batch reactors (SBRs) were operated to investigate the different effect of Ca2+ and Mg2+ augmentation on aerobic granulation. R1 was augmented with Ca2+ at 40 mg/L, while Mg+ was added to R2 with 40 mg/L. Results indicated that R1 had a faster granulation process, and aerobic granulation reached the steady state after 60 cycles in R1 but 80 cycles in R2. The mean diameter of the mature granules in R1 was 1.6 mm which was consistently larger than that (0.8 mm) in R2, and aerobic granules in R1 also showed a higher physical strength. However, the mature granules in R2 had the higher production yield of polysaccharides and proteins, and aerobic granules in R2 experienced a faster substrate biodegradation. Microbial and genetic characteristics in mature granules were analyzed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results revealed that Mg2+ addition led to higher microbial diversity in mature granules. In addition, the uncultured bacterium (AB447697) was major specie in R1, and β-proteobacterium was dominant in R2.

  11. Aerobic Degradation of N-Methyl-4-Nitroaniline (MNA) by Pseudomonas sp. Strain FK357 Isolated from Soil

    PubMed Central

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway. PMID:24116023

  12. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons.

    PubMed

    Yakimov, Michail M; Giuliano, Laura; Denaro, Renata; Crisafi, Ermanno; Chernikova, Tatiana N; Abraham, Wolf-Rainer; Luensdorf, Heinrich; Timmis, Kenneth N; Golyshin, Peter N

    2004-01-01

    An aerobic, heterotrophic, Gram-negative, curved bacterial strain, designated MIL-1T, was isolated by extinction dilution from an n-tetradecane enrichment culture that was established from sea water/sediment samples collected in the harbour of Milazzo, Italy. In the primary enrichment, the isolate formed creamy-white, medium-sized colonies on the surface of the agar. The isolate did not grow in the absence of NaCl; growth was optimal at 2.7% NaCl. Only a narrow spectrum of organic compounds, including aliphatic hydrocarbons (C7-C20), their oxidized derivatives and acetate, were used as growth substrates. The isolate was not able to grow under denitrifying conditions. The DNA G+C content and genome size of strain MIL-1T were estimated to be 53.2 mol% and 2.2 Mbp, respectively. The major cellular and phospholipid fatty acids were palmitoleic, palmitic and oleic acids (33.5, 29.5 and 11.0% and 18, 32 and 31%, respectively). 3-hydroxy lauric acid was the only hydroxy fatty acid detected. Thirteen different compounds that belonged to two types of phospholipid (phosphatidylethylamine and phosphatidylglycerol) were identified. 16S rRNA gene sequence analysis revealed that this isolate represents a distinct phyletic lineage within the gamma-Proteobacteria and has about 94.4% sequence similarity to Oceanobacter kriegii (the closest bacterial species with a validly published name). The deduced protein sequence of the putative alkane hydrolase, AlkB, of strain MIL-1T is related to the corresponding enzymes of Alcanivorax borkumensis and Pseudomonas oleovorans (81 and 80% similarity, respectively). On the basis of the analyses performed, Thalassolituus oleivorans gen. nov., sp. nov. is described. Strain MIL-1T (=DSM 14913T=LMG 21420T) is the type and only strain of T. oleivorans. PMID:14742471

  13. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    PubMed Central

    Abdallah, Rehab Z.; Adel, Mustafa; Ouf, Amged; Sayed, Ahmed; Ghazy, Mohamed A.; Alam, Intikhab; Essack, Magbubah; Lafi, Feras F.; Bajic, Vladimir B.; El-Dorry, Hamza; Siam, Rania

    2014-01-01

    The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces. PMID:25295031

  14. Denitrification Activity of a Remarkably Diverse Fen Denitrifier Community in Finnish Lapland Is N-Oxide Limited

    PubMed Central

    Palmer, Katharina; Horn, Marcus A.

    2015-01-01

    Peatlands cover more than 30% of the Finnish land area and impact N2O fluxes. Denitrifiers release N2O as an intermediate or end product. In situ N2O emissions of a near pH neutral pristine fen soil in Finnish Lapland were marginal during gas chamber measurements. However, nitrate and ammonium fertilization significantly stimulated in situ N2O emissions. Stimulation with nitrate was stronger than with ammonium. N2O was produced and subsequently consumed in gas chambers. In unsupplemented anoxic microcosms, fen soil produced N2O only when acetylene was added to block nitrous oxide reductase, suggesting complete denitrification. Nitrate and nitrite stimulated denitrification in fen soil, and maximal reaction velocities (vmax) of nitrate or nitrite dependent denitrification where 18 and 52 nmol N2O h-1 gDW-1, respectively. N2O was below 30% of total produced N gases in fen soil when concentrations of nitrate and nitrite were <500 μM. vmax for N2O consumption was up to 36 nmol N2O h-1 gDW-1. Denitrifier diversity was assessed by analyses of narG, nirK/nirS, and nosZ (encoding nitrate-, nitrite-, and nitrous oxide reductases, respectively) by barcoded amplicon pyrosequencing. Analyses of ~14,000 quality filtered sequences indicated up to 25 species-level operational taxonomic units (OTUs), and up to 359 OTUs at 97% sequence similarity, suggesting diverse denitrifiers. Phylogenetic analyses revealed clusters distantly related to publicly available sequences, suggesting hitherto unknown denitrifiers. Representatives of species-level OTUs were affiliated with sequences of unknown soil bacteria and Actinobacterial, Alpha-, Beta-, Gamma-, and Delta-Proteobacterial sequences. Comparison of the 4 gene markers at 97% similarity indicated a higher diversity of narG than for the other gene markers based on Shannon indices and observed number of OTUs. The collective data indicate (i) a high denitrification and N2O consumption potential, and (ii) a highly diverse, nitrate limited

  15. Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds.

    PubMed

    Warneke, Sören; Schipper, Louis A; Matiasek, Michael G; Scow, Kate M; Cameron, Stewart; Bruesewitz, Denise A; McDonald, Ian R

    2011-11-01

    Denitrification beds are containers filled with wood by-products that serve as a carbon and energy source to denitrifiers, which reduce nitrate (NO(3)(-)) from point source discharges into non-reactive dinitrogen (N(2)) gas. This study investigates a range of alternative carbon sources and determines rates, mechanisms and factors controlling NO(3)(-) removal, denitrifying bacterial community, and the adverse effects of these substrates. Experimental barrels (0.2 m(3)) filled with either maize cobs, wheat straw, green waste, sawdust, pine woodchips or eucalyptus woodchips were incubated at 16.8 °C or 27.1 °C (outlet temperature), and received NO(3)(-) enriched water (14.38 mg N L(-1) and 17.15 mg N L(-1)). After 2.5 years of incubation measurements were made of NO(3)(-)-N removal rates, in vitro denitrification rates (DR), factors limiting denitrification (carbon and nitrate availability, dissolved oxygen, temperature, pH, and concentrations of NO(3)(-), nitrite and ammonia), copy number of nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes, and greenhouse gas production (dissolved nitrous oxide (N(2)O) and methane), and carbon (TOC) loss. Microbial denitrification was the main mechanism for NO(3)(-)-N removal. Nitrate-N removal rates ranged from 1.3 (pine woodchips) to 6.2 g N m(-3) d(-1) (maize cobs), and were predominantly limited by C availability and temperature (Q(10) = 1.2) when NO(3)(-)-N outlet concentrations remained above 1 mg L(-1). The NO(3)(-)-N removal rate did not depend directly on substrate type, but on the quantity of microbially available carbon, which differed between carbon sources. The abundance of denitrifying genes (nirS, nirK and nosZ) was similar in replicate barrels under cold incubation, but varied substantially under warm incubation, and between substrates. Warm incubation enhanced growth of nirS containing bacteria and bacteria that lacked the nosZ gene, potentially explaining the greater N(2)O emission in

  16. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  17. Proton translocation during denitrification by a nitrifying--denitrifying Alcaligenes sp.

    PubMed

    Castignetti, D; Hollocher, T C

    1983-04-01

    A heterotrophic nitrifying Alcaligenes sp. from soil was grown as a denitrifier on nitrate and subjected to oxidant pulse experiments to ascertain the apparent efficiencies of proton translocations during O2 and nitrogen-oxide respirations. With endogenous substrate as the reducing agent the leads to H+/2e- ratios, extrapolated to zero amount of oxidant per pulse, were 9.4, 3.7, 4.3 and 3.5 for O2, nitrate, nitrite and N2O, respectively. The value for O2 and those for the N-oxides are, respectively, somewhat larger and smaller than corresponding values for Paracoccus denitrificans. None of the three permeant ions employed with the Alcaligenes sp. (valinomycin-K+, thiocyanate and triphenylmethylphosphonium) was ideal for all purposes. Thiocyanate provided highest ratios for O2 but abolished the oxidant pulse response for nitrate and N2O. Valinomycin was slow to penetrate to the cytoplasmic membrane and relatively high concentrations were required for optimal performance. Triphenylmethylphosphonium enhanced passive proton permeability and diminished proton translocation at concentrations required to realize the maximal oxidant pulse response. PMID:6311094

  18. Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure.

    PubMed

    Kjellin, Johan; Hallin, Sara; Wörman, Anders

    2007-12-01

    We determined spatial variations in potential denitrification activity and the controlling hydrological as well as biochemical processes in the sediments of a Swedish treatment wetland. Hydrological processes, including water residence times, were analyzed using a 2D depth-averaged flow model and the denitrifier community structure was analyzed using denaturing gradient gel electrophoreses (DGGE) of nosZ genes, encoding nitrous oxide reductase. In addition, we provide a theoretical basis for evaluation of denitrification rates useful in nitrate-limited conditions. The results demonstrate that potential denitrification rates differed significantly between the sampling locations (CV=0.34). The variations were best described by concentration of nitrogen in sediments and water residence time. DGGE analyses indicated that a few key populations dominated and that the community diversity increased with decreasing nutrient levels and increasing water residence times. Moreover, we found that denitrification rates in terms of Menten and first-order kinetics can be evaluated by fitting a mathematical expression, comparing denitrification and other nitrogen-transforming processes to measured product formation in nitrate-limited experiments.

  19. Habitat partitioning of marine benthic denitrifier communities in response to oxygen availability.

    PubMed

    Wittorf, Lea; Bonilla-Rosso, Germán; Jones, Christopher M; Bäckman, Ola; Hulth, Stefan; Hallin, Sara

    2016-08-01

    Denitrification is of global significance for the marine nitrogen budget and the main process for nitrogen loss in coastal sediments. This facultative anaerobic respiratory pathway is modular in nature and the final step, the reduction of nitrous oxide (N2 O), is performed by microorganisms with a complete denitrification pathway as well as those only capable of N2 O reduction. Fluctuating oxygen availability is a significant driver of denitrification in sediments, but the effects on the overall N2 O-reducing community that ultimately controls the emission of N2 O from marine sediments is not well known. To investigate the effects of different oxygen regimes on N2 O reducing communities, coastal marine surface sediment was incubated in microcosms under oxic, anoxic or oscillating oxygen conditions in the overlying water for 137 days. Quantification of the genetic potential for denitrification, anammox and respiratory ammonification indicated that denitrification supported nitrogen removal in these sediments. Furthermore, denitrifiers with a complete pathway were identified as the dominant community involved in N2 O reduction, rather than organisms that are only N2 O reducers. Specific lineages within each group were associated with different oxygen regimes suggesting that oxygen availability in the overlying water is associated with habitat partitioning of N2 O reducers in coastal marine surface sediments.

  20. Use of vegetable oil in a pilot-scale denitrifying barrier.

    PubMed

    Hunter, W J

    2001-12-01

    Nitrate in drinking water is a hazard to both humans and animals. Contaminated water can cause methemoglobinemia and may pose a cancer risk. Permeable barriers containing innocuous oils, which stimulate denitrification, can remove nitrate from flowing groundwater. For this study, a sand tank (1.1 x 2.0 x 0.085 m in size) containing sand was used as a one-dimensional open-top scale model of an aquifer. A meter-long area near the center of the tank contained sand coated with soybean oil. This region served as a permeable denitrifying barrier. Water containing 20 mg l(-1) nitrate-N was pumped through the barrier at a high flow rate, 1112 l week(-1), for 30 weeks. During the 30-week study, the barrier removed 39% of the total nitrate-N present in the water. The barrier was most efficient during the first 10 weeks of the study when almost all of the nitrate and nitrogen was removed. Efficiency declined with time so that by week 30 almost no nitrate was removed by the system. Nitrite levels in the effluent water remained low throughout the study. Barriers could be used to protect groundwater from nitrate contamination or for the in situ treatment of contaminated water. At the low flow rates that exist in most aquifers, such barriers should be effective at removing nitrate from groundwater for a much longer period of time.

  1. Enrichment of Denitrifying Methane-Oxidizing Microorganisms Using Up-Flow Continuous Reactors and Batch Cultures

    PubMed Central

    Hatamoto, Masashi; Kimura, Masafumi; Sato, Takafumi; Koizumi, Masato; Takahashi, Masanobu; Kawakami, Shuji; Araki, Nobuo; Yamaguchi, Takashi

    2014-01-01

    Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L−1·day−1 was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89–91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia. PMID:25545013

  2. Biodegradation of select organic pollutants in soil columns under denitrifying conditions

    SciTech Connect

    Ramanand, K.; Balba, M.T.; Duffy, J.

    1995-12-31

    The majority of the biotreatability studies has been confined to laboratory flask assay level. However, these studies may not provide sufficient information for extrapolation to full-scale bioremediation. In this study, laboratory soil columns were used to closely simulate in-situ field conditions and predict the fate of certain aromatic compounds under denitrifying conditions. The soil columns, after sufficient acclimation period, metabolized toluene rapidly with concomitant nitrate consumption. Approximately 6.48 moles of nitrate was utilized per mole of toluene metabolized. This stoichiometry suggested that about 90% of the substrate was mineralized. Increasing the toluene loading rate from 23.4 to 93.5 mg/kg soil/day had no detrimental influence on the microbial degradative capabilities. When sufficient time was allowed for acclimation, the soil microbiota was able to cross-adapt to degrade other aromatic substrates including ethylbenzene, 2-, and 3-fluorobenzoic acid, and 2-, and 3- chlorophenol but was ineffective for degrading o-xylene, 2,3-dichlorophenol (DCP), 3,4-DCP and 3,5-DCP. These findings help explain the fate of these organic contaminants in anoxic environments. 17 refs., 7 figs., 1 tab.

  3. Kinetics of p-aminoazobenzene degradation by Bacillus subtilis under denitrifying conditions

    SciTech Connect

    Zissi, U.S.; Kornaros, M.E.; Lyberatos, G.C.

    1999-05-01

    Bacillus subtilis is an organism capable of degrading an azo dye, such as p-aminoazobenzene (pAAB), under both aerobic and anoxic conditions. In both cases, pAAB is co-metabolized with a main carbon source and under anoxic conditions denitrification is observed. Kinetic experiments were carried out with a pure culture of B. subtilis and a mathematical model that accurately describes both biodegradation of pAAB under anoxic conditions and the denitrification process under both carbon- and nitrate- or nitrite-limited conditions is developed. Presence of pAAB in culture medium causes an inhibition of bacterial growth and of nitrite accumulation. Bacterial growth and pAAB degradation rates are found to be slower under anoxic conditions compared to the corresponding rates under aerobic conditions.

  4. Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group

    PubMed Central

    Kadnikov, Vitaly V.; Mardanov, Andrey V.; Podosokorskaya, Olga A.; Gavrilov, Sergey N.; Kublanov, Ilya V.; Beletsky, Alexey V.; Bonch-Osmolovskaya, Elizaveta A.; Ravin, Nikolai V.

    2013-01-01

    Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi. PMID:23301019

  5. Controlling the catalytic aerobic oxidation of phenols.

    PubMed

    Esguerra, Kenneth Virgel N; Fall, Yacoub; Petitjean, Laurène; Lumb, Jean-Philip

    2014-05-28

    The oxidation of phenols is the subject of extensive investigation, but there are few catalytic aerobic examples that are chemo- and regioselective. Here we describe conditions for the ortho-oxygenation or oxidative coupling of phenols under copper (Cu)-catalyzed aerobic conditions that give rise to ortho-quinones, biphenols or benzoxepines. We demonstrate that each product class can be accessed selectively by the appropriate choice of Cu(I) salt, amine ligand, desiccant and reaction temperature. In addition, we evaluate the effects of substituents on the phenol and demonstrate their influence on selectivity between ortho-oxygenation and oxidative coupling pathways. These results create an important precedent of catalyst control in the catalytic aerobic oxidation of phenols and set the stage for future development of catalytic systems and mechanistic investigations. PMID:24784319

  6. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  7. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  8. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils.

    PubMed

    Pajares, Silvia; Bohannan, Brendan J M

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  9. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    DOE PAGES

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; Cole, James R.; Wu, Liyou; Luo, Yiqi; Schuur, E. A. G.; Zhou, Jizhong; Tiedje, James M.

    2015-07-21

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less

  10. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    SciTech Connect

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; Cole, James R.; Wu, Liyou; Luo, Yiqi; Schuur, E. A. G.; Zhou, Jizhong; Tiedje, James M.

    2015-07-21

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.

  11. [Distribution Characteristics of Nitrifiers and Denitrifiers in the River Sediments of Tongling City].

    PubMed

    Cheng, Jian-hua; Dou, Zhi-yong; Sun, Qing-ye

    2016-04-15

    Rivers in mining areas were influenced by contaminants such as nitrogen, phosphorus and organic matter due to domestic and agricultural wastewater discharge in addition to pollutants caused by mining activities. In this study, surface sediment samples of rivers in Tongling city were collected to address the effect of season and pollution type on the abundance of nitrifiers and denitrifiers using quantitative polymerase chain reaction (QPCR) technique targeting at the ammonia monooxygenase (amoA) and nitrite reductase (nir) genes. The results showed that the average ahundance of ammonia oxidizing archaea (AGA) (ranging from 1.74 x 10⁵ to 1.45 x 10⁸ copies · g⁻¹) was 4.39 times that of ammonia oxidizing hacteria (AGH) (ranging from 1.39 x 10⁵ to 3.39 x 10⁷ copies · g⁻¹); and the average abundance of nirK gene (ranging from 4.45 x 10⁶ to 1.51 x 10⁸ copies · g) was almost a thirtieth part of nirS gene (ranging from 1.69 x 10⁷ to 8.55 x 10⁹ copies · g⁻¹). The abundance of AOA was higher in spring and autumn, and lower in summer and winter. And sediment AOB abundance was higher in spring and winter than in summer and autumn. Meanwhile, the abundance of nir genes was in the order of spring (nirS )/autumn (nirK) > summer > winter > autumn (nirS )/spring (nirK). Moreover, the abundance of bacterial and archaeal arnoA and nirS genes in sediments influenced by mine pollution was generally higher than that in sediments influenced by agricultural non-point pollution, whereas the abundance of nirK gene showed an opposite trend. PMID:27548957

  12. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    PubMed Central

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; Cole, James R.; Wu, Liyou; Luo, Yiqi; Schuur, E. A. G.; Zhou, Jizhong; Tiedje, James M.

    2015-01-01

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations. PMID:26284038

  13. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    PubMed Central

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  14. Molecular Characterization of Diazotrophic and Denitrifying Bacteria Associated with Mangrove Roots▿

    PubMed Central

    Flores-Mireles, Ana L.; Winans, Stephen C.; Holguin, Gina

    2007-01-01

    An analysis of the molecular diversity of N2 fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N2 fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments. PMID:17827324

  15. Impact of mercury on denitrification and denitrifying microbial communities in nitrate enrichments of subsurface sediments.

    PubMed

    Wang, Yanping; Wiatrowski, Heather A; John, Ria; Lin, Chu-Ching; Young, Lily Y; Kerkhof, Lee J; Yee, Nathan; Barkay, Tamar

    2013-02-01

    The contamination of groundwater with mercury (Hg) is an increasing problem worldwide. Yet, little is known about the interactions of Hg with microorganisms and their processes in subsurface environments. We tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge Integrated Field Research Challenge site, where nitrate is a major contaminant and where bioremediation efforts are in progress. We observed an inverse relationship between Hg concentrations and onset and rates of denitrification in nitrate enrichment cultures containing between 53 and 1.1 μM of inorganic Hg; higher Hg concentrations increasingly extended the time to onset of denitrification and inhibited denitrification rates. Microbial community complexity, as indicated by terminal restriction fragment length polymorphism (tRFLP) analysis of the 16S rRNA genes, declined with increasing Hg concentrations; at the 312 nM Hg treatment, a single tRFLP peak was detected representing a culture of Bradyrhizobium sp. that possessed the merA gene indicating a potential for Hg reduction. A culture identified as Bradyrhizobium sp. strain FRC01 with an identical 16S rRNA sequence to that of the enriched peak in the tRFLP patterns, reduced Hg(II) to Hg(0) and carried merA whose amino acid sequence has 97 % identity to merA from the Proteobacteria and Firmicutes. This study demonstrates that in subsurface sediment incubations, Hg may inhibit denitrification and that inhibition may be alleviated when Hg resistant denitrifying Bradyrhizobium spp. detoxify Hg by its reduction to the volatile elemental form.

  16. The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes.

    PubMed

    Fu, Liang; Ding, Zhao-Wei; Ding, Jing; Zhang, Fang; Zeng, Raymond J

    2015-10-01

    Methane is sparingly soluble in water, resulting in a slow reaction rate in the denitrifying anaerobic methane oxidation (DAMO) process. The slow rate limits the feasibility of research to examine the interaction between the DAMO and the anaerobic ammonium oxidation (Anammox) process. In this study, optimized 5 % (v/v) paraffin oil was added as a second liquid phase to improve methane solubility in a reactor containing DAMO and Anammox microbes. After just addition, methane solubility was found to increase by 25 % and DAMO activity was enhanced. After a 100-day cultivation, the paraffin reactor showed almost two times higher consumption rates of NO3 (-) (0.2268 mmol/day) and NH4 (+) (0.1403 mmol/day), compared to the control reactor without paraffin oil. The microbes tended to distribute in the oil-water interface. The quantitative (q) PCR result showed the abundance of gene copies of DAMO archaea, DAMO bacteria, and Anammox bacteria in the paraffin reactor were higher than those in the control reactor after 1 month. Fluorescence in situ hybridization revealed that the percentages of the three microbes were 55.5 and 77.6 % in the control and paraffin reactors after 100 days, respectively. A simple model of mass balance was developed to describe the interactions between DAMO and Anammox microbes and validate the activity results. A mechanism was proposed to describe the possible way that paraffin oil enhanced DAMO activity. It is quite clear that paraffin oil enhances not only DAMO activity but also Anammox activity via the interaction between them; both NO3 (-) and NH4 (+) consumption rates were about two times those of the control.

  17. Anaerobic Activation of p-Cymene in Denitrifying Betaproteobacteria: Methyl Group Hydroxylation versus Addition to Fumarate

    PubMed Central

    Strijkstra, Annemieke; Trautwein, Kathleen; Jarling, René; Wöhlbrand, Lars; Dörries, Marvin; Reinhardt, Richard; Drozdowska, Marta; Golding, Bernard T.; Wilkes, Heinz

    2014-01-01

    The betaproteobacteria “Aromatoleum aromaticum” pCyN1 and “Thauera” sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted “A. aromaticum” pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with “Thauera” sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. “A. aromaticum” pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of “Thauera” sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA. PMID:25261521

  18. Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate.

    PubMed

    Cai, Chen; Hu, Shihu; Guo, Jianhua; Shi, Ying; Xie, Guo-Jun; Yuan, Zhiguo

    2015-12-15

    Methane in biogas has been proposed to be an electron donor to facilitate complete nitrogen removal using denitrifying anaerobic methane oxidizing (DAMO) microorganisms in an anaerobic ammonium oxidation (anammox) reactor, by reducing the nitrate produced. However, the slow growth and the low activity of DAMO microorganisms cast a serious doubt about the practical usefulness of such a process. In this study, a previously established lab-scale membrane biofilm reactor (MBfR), with biofilms consisting of a coculture of DAMO and anammox microorganisms, was operated to answer if the DAMO reactor can achieve a nitrate reduction rate that can potentially be applied for wastewater treatment. Through progressively increasing nitrate and ammonium loading rates to the reactor, a nitrate removal rate of 684 ± 10 mg-N L(-1) d(-1) was achieved after 453 days of operation. This rate is, to our knowledge, by far the highest reported for DAMO reactors, and far exceeds what is predicted to be required for nitrate removal in a sidestream (5.6-135 mg-N L(-1) d(-1)) or mainstream anammox reactor (3.2-124 mg-N L(-1) d(-1)). Mass balance analysis showed that the nitrite produced by nitrate reduction was jointly reduced by anammox bacteria at a rate of 354 ± 3 mg-N L(-1) d(-1), accompanied by an ammonium removal rate of 268 ± 2 mg-N L(-1) d(-1), and DAMO bacteria at a rate of 330 ± 9 mg-N L(-1) d(-1). This study shows that the nitrate reduction rate achieved by the DAMO process can be high enough for removing nitrate produced by anammox process, which would enable complete nitrogen removal from wastewater. PMID:26414889

  19. Effect of various sources of organic carbon and high nitrite and nitrate concentrations on the selection of denitrifying bacteria. II. Continuous cultures in packed bed reactors.

    PubMed

    Błaszczyk, M

    1983-01-01

    The effect of different organic compounds, nitrites and nitrates at the concentration of 1,000 mg N/l on the quantitative and strain-specific selection of denitrifying bacteria was determined in anaerobic packed bed reactors. Both the source of carbon and nitrogen form influenced strain specificity and the frequency of occurrence of denitrifying bacteria. The frequency of denitrifying bacteria within packed bed reactor ranged in different media from 11% (glucose and nitrates) to 100% (methanol and ethanol with nitrates). A single species selection was observed in the presence of nitrites within packed bed reactor: Pseudomonas aeruginosa in medium with acetate. Pseudomonas stutzeri in medium with ethanol, Pseudomonas mendocina in medium with methanol and Pseudomonas fluorescens in medium with glucose. When nitrates were present in packed bed reactor, the dominating bacteria were: P. stutzeri in medium with acetate, P. fluorescens in medium with ethanol, Paracoccus denitrificans in medium with methanol and Alcaligenes faecalis in medium with glucose. PMID:6194668

  20. Different response of nitrifiers and denitrifiers to re-wetting shape the NO release from soils in laboratory incubation experiments

    NASA Astrophysics Data System (ADS)

    Behrendt, Thomas; Wu, Dianming; Song, Guozheng; Pommerenke, Bianca; Braker, Gesche

    2014-05-01

    Laboratory incubation studies incubating soils at a wide range of soil moistures, soil temperatures and mixing ratios of NO in the headspace and inorganic nutrient contents (NH4+,NO3-, NO2-) showed that release rates of NO follow an exponential function with increasing soil temperature and an optimum function for soil moisture. This approach assumes that environmental factors play the dominant role in shaping an ecosystem and thereby microbial communities and control the NO release from soil. We determined the NO release rate for a dryland farming soil under flooding irrigation in Xinjiang, China, a mid-latitude agricultural soil (Mainz, Germany), and a rice paddy (Ambai, India) upon wetting and subsequent drying out of soils. Only the release rate for the mid-latitude agricultural soil followed an optimum function for soil moisture. Release rates for the dryland farming soil and rice paddy, however, followed a two maxima function with distinct maxima at higher and lower soil moisture. Acknowledgement of two distinct maxima is critical for more accurately assessing regional biogenic NO emissions of soils under field conditions. To analyse the response of nitrifiers and denitrifiers involved in NO turnover in more detail we linked molecular analysis of functional gene expression (nirK and nirS, bacterial and archaeal amoA) and microbial community composition to NO release rates. We could show that the maximal transcriptional activity of denitrifiers and ammonia oxidizers differs with soil moisture and that higher transcriptional activity of nirS-type denitrifiers at higher soil moisture and of archaeal ammonia oxidizers at lower soil moisture may explain the two maxima for NO release.

  1. [Shortcut Nitrosation-Denitrifying Phosphorus Removal Based on High-quality Carbon Source in Combined Process of CAMBR].

    PubMed

    Cheng, Ji-hui; Wu, Peng; Cheng, Chao-yang; Shen, Yao-liang

    2015-12-01

    The volatile fatty acids (VFAs) are high-quality carbon source which can be utilized in the process of denitrifying phosphorus removal. Therefore, a combined process of anaerobic baffled reactor (ABR) with microbial phase separation and membrane bioreactor (MBR), i. e. CAMBR, with high-quality effluent was investigated in this experiment for highly efficient denitrifying phosphorus removal through providing high-quality carbon source by optimizing operational conditions such as hydraulic retention time (HRT) in the ABR. The results indicated that sufficient high-quality carbon source VFA could be acquired when the HRT of ABR was 4.8 h. The consumption of VFA was 56. 1 mg · L⁻¹ while the release of phosphorus was 10.43 mg · L⁻¹ showing that 5.38 mg of VFA was required to release 1 mg PO₄³⁻-P. Meanwhile, the uptake of phosphorus was 12. 35 mg · L⁻¹, while the uptake of phosphorus of MBR tank was 1.33 mg · L⁻¹. In the process of shortcut nitrification, 0.62 mg NOx⁻-N was needed when 1 mg PO₄³⁻-P was taken up, and 1.67 to 2.04 mg NO₂⁻-N was required when 1 mg PO₄³⁻-P was taken up, and the combined system achieved stable effluent quality. The average removal rates of COD, TN and soluble PO₄³⁻-P were 91%, 84% and 93%, respectively, correspondingly the average effluent concentrations were 30, 7.15 and 0.55 mg · L⁻¹, respectively. The results stated that the CAMBR achieved stable and highly efficient denitrifying phosphorus removal in domestic sewage treatment. PMID:27011991

  2. [Shortcut Nitrosation-Denitrifying Phosphorus Removal Based on High-quality Carbon Source in Combined Process of CAMBR].

    PubMed

    Cheng, Ji-hui; Wu, Peng; Cheng, Chao-yang; Shen, Yao-liang

    2015-12-01

    The volatile fatty acids (VFAs) are high-quality carbon source which can be utilized in the process of denitrifying phosphorus removal. Therefore, a combined process of anaerobic baffled reactor (ABR) with microbial phase separation and membrane bioreactor (MBR), i. e. CAMBR, with high-quality effluent was investigated in this experiment for highly efficient denitrifying phosphorus removal through providing high-quality carbon source by optimizing operational conditions such as hydraulic retention time (HRT) in the ABR. The results indicated that sufficient high-quality carbon source VFA could be acquired when the HRT of ABR was 4.8 h. The consumption of VFA was 56. 1 mg · L⁻¹ while the release of phosphorus was 10.43 mg · L⁻¹ showing that 5.38 mg of VFA was required to release 1 mg PO₄³⁻-P. Meanwhile, the uptake of phosphorus was 12. 35 mg · L⁻¹, while the uptake of phosphorus of MBR tank was 1.33 mg · L⁻¹. In the process of shortcut nitrification, 0.62 mg NOx⁻-N was needed when 1 mg PO₄³⁻-P was taken up, and 1.67 to 2.04 mg NO₂⁻-N was required when 1 mg PO₄³⁻-P was taken up, and the combined system achieved stable effluent quality. The average removal rates of COD, TN and soluble PO₄³⁻-P were 91%, 84% and 93%, respectively, correspondingly the average effluent concentrations were 30, 7.15 and 0.55 mg · L⁻¹, respectively. The results stated that the CAMBR achieved stable and highly efficient denitrifying phosphorus removal in domestic sewage treatment.

  3. Abundance, Composition and Activity of Ammonia Oxidizer and Denitrifier Communities in Metal Polluted Rice Paddies from South China

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang

    2014-01-01

    While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg−1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils. PMID:25058658

  4. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  5. Functional diversity in the denitrifying biofilm of the methanol-fed marine denitrification system at the Montreal Biodome.

    PubMed

    Auclair, Julie; Parent, Serge; Villemur, Richard

    2012-05-01

    Nitrate is a serious problem in closed-circuit public aquariums because its accumulation rapidly becomes toxic to many lifeforms. A moving bed biofilm denitrification reactor was installed at the Montreal Biodome to treat its 3,250-m(3) seawater system. Naturally occurring microorganisms from the seawater affluent colonized the reactor carriers to form a denitrifying biofilm. Here, we investigated the functional diversity of this biofilm by retrieving gene sequences related to narG, napA, nirK, nirS, cnorB, and nosZ. A total of 25 sequences related to these genes were retrieved from the biofilm. Among them, the corresponding napA1, nirK1, cnorB9, and nosZ3 sequences were identical to the corresponding genes found in Hyphomicrobium sp. NL23 while the narG1 and narG2 sequences were identical to the two corresponding narG genes found in Methylophaga sp. JAM1. These two bacterial strains were previously isolated from the denitrifying biofilm. To assess the abundance of denitrifiers and nitrate respirers in the biofilm, the gene copy number of all the narG, napA, nirS, and nirK sequences found in biofilm was determined by quantitative PCR. napA1, nirK1, narG1, and narG2, which were all associated with either Methylophaga sp. JAM1 or Hyphomicrobium sp. NL23, were the most abundant genes. The other genes were 10 to 10,000 times less abundant. nirK, cnorB, and nosZ but not napA transcripts from Hyphomicrobium sp. NL23 were detected in the biofilm, and only the narG1 transcripts from Methylophaga sp. JAM1 were detected in the biofilm. Among the 19 other genes, the transcripts of only two genes were detected in the biofilm. Our results show the predominance of Methylophaga sp. JAM1 and Hyphomicrobium sp. NL23 among the denitrifiers detected in the biofilm. The results suggest that Hyphomicrobium sp. NL23 could use the nitrite present in the biofilm generated by nitrate respirers such as Methylophaga sp. JAM1. PMID:22006549

  6. Denitrifier communities in tank bromeliads and prospected N2O emissions from tank substrate upon increasing N-deposition

    NASA Astrophysics Data System (ADS)

    Suleiman, Marcel; Brandt, Franziska; Brenzinger, Kristof; Martinson, Guntars; Braker, Gesche

    2014-05-01

    It is well known that tropical rainforest soils with total emissions of 1.34 Tg N/yr from the tropics, play a significant role in the global N2O emissions scenarios. Significant contributions were reported particularly for tropical rainforest soils in South and Central America due to the large areas covered by rainforest in this region. In tropical rainforests of the Americas tank bromeliads constitute a prominent group of plants and were shown to significantly contribute to the production of the greenhouse gas methane from tropical forests. It is, however, essentially unknown whether and how bromeliads may contribute to the production of N2O, another important greenhouse gas. It is also unknown whether N2O emissions relate to atmospheric N-deposition and whether an increase in emissions is to be expected upon the prospected increase in N-deposition. We studied the propensity of tank substrate of the bromeliad Werauhia gladioliflora to emit N2O and how this potential is related to the underlying denitrifier communities. In tropical forests of Costa Rica Werauhia gladioliflora is very abundant with 9.85 specimen m-2. Incubation of the tank substrate with increasing amounts of fertilizer to reflect predicted N-deposition scenarios resulted in proportionally increasing net N2O production. Based on the abundance of Werauhia gladioliflora we estimated annual emissions of 395 µg N2O-N m-2 day-1 for N-deposition levels to date which is in the range of tropical soils. At a surplus of N 70% of N2O produced were not reduced leading to accumulation of N2O which agreed well with the finding that 95% of the denitrifiers detected lacked a gene encoding a N2O-reductase and are therefore unable to reduce N2O to dinitrogen. Generally, denitrifiers were highly abundant and ready to denitrify immediately after provision of a nitrogen source because carbon is non-limiting in tank substrate. Our results suggest that tank bromeliad substrate may be a significant source of N2O in

  7. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  8. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

  9. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  10. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  11. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  12. A proposed aerobic granules size development scheme for aerobic granulation process.

    PubMed

    Dahalan, Farrah Aini; Abdullah, Norhayati; Yuzir, Ali; Olsson, Gustaf; Salmiati; Hamdzah, Myzairah; Din, Mohd Fadhil Mohd; Ahmad, Siti Aqlima; Khalil, Khalilah Abdul; Anuar, Aznah Nor; Noor, Zainura Zainon; Ujang, Zaini

    2015-04-01

    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme.

  13. pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil

    PubMed Central

    Brenzinger, Kristof; Dörsch, Peter; Braker, Gesche

    2015-01-01

    Soil pH is a strong regulator for activity as well as for size and composition of denitrifier communities. Low pH not only lowers overall denitrification rates but also influences denitrification kinetics and gaseous product stoichiometry. N2O reductase is particularly sensitive to low pH which seems to impair its activity post-transcriptionally, leading to higher net N2O production. Little is known about how complex soil denitrifier communities respond to pH change and whether their ability to maintain denitrification over a wider pH range relies on phenotypic redundancy. In the present study, we followed the abundance and composition of an overall and transcriptionally active denitrifier community extracted from a farmed organic soil in Sweden (pHH2O = 7.1) when exposed to pH 5.4 and drifting back to pH 6.6. The soil was previously shown to retain much of its functioning (low N2O/N2 ratios) over a wide pH range, suggesting a high functional versatility of the underlying community. We found that denitrifier community composition, abundance and transcription changed throughout incubation concomitant with pH change in the medium, allowing for complete reduction of nitrate to N2 with little accumulation of intermediates. When exposed to pH 5.4, the denitrifier community was able to grow but reduced N2O to N2 only when near-neutral pH was reestablished by the alkalizing metabolic activity of an acid-tolerant part of the community. The genotypes proliferating under these conditions differed from those dominant in the control experiment run at neutral pH. Denitrifiers of the nirS-type appeared to be severely suppressed by low pH and nirK-type and nosZ-containing denitrifiers showed strongly reduced transcriptional activity and growth, even after restoration of neutral pH. Our study suggests that low pH episodes alter transcriptionally active populations which shape denitrifier communities and determine their gas kinetics. PMID:26441895

  14. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  15. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

  16. Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process.

    PubMed

    Tang, Shaoyu; Yin, Hua; Chen, Shuona; Peng, Hui; Chang, Jingjing; Liu, Zehua; Dang, Zhi

    2016-05-01

    Decabromodiphenyl ether (BDE-209) is one of the most commonly used brominated flame retardants that have contaminated the environment worldwide. Microbial bioremediation has been considered as an effective technique to remove these sorts of persistent organic pollutants. Enterococcus casseliflavus, a gram-positive bacterium capable of aerobically transforming BDE-209, was isolated by our team from sediments in Guiyu, an e-waste dismantling area in Guangdong Province, China. To promote microbial bioremediation of BDE-209 and elucidate the mechanism behind its aerobic degradation, the effects of BDE-209 on the cell changes of E. casseliflavus were examined in this study. The experimental results demonstrated that the high cell surface hydrophobicity (CSH) of E. casseliflavus made the bacteria absorb hydrophobic BDE-209 more easily. E. casseliflavus responded to BDE-209 stress, resulting in an increase in cell membrane permeability and accumulation of BDE-209 inside the cell. The differential expression of intracellular protein was analyzed through two-dimensional gel electrophoresis (2-DE). More than 50 differentially expressed protein spots were reproducibly detected, including 25 up, and 25 down regulated after a 4 days exposure. Moreover, the apoptotic-like cell changes were observed during E. casseliflavus mediated degradation of BDE-209 by means of flow cytometry. PMID:26852209

  17. [Long-Term Inhibition of FNA on Aerobic Phosphate Uptake and Variation of Phosphorus Uptake Properties of the Sludge].

    PubMed

    Ma, Juan; Li, Lu; Yu, Xiao-jun; Sun, Lei-jun; Sun, Hong-wei; Chen, Yong-zhi

    2015-10-01

    An alternating anaerobic/oxic ( An/O) sequencing batch reactor (SBR) was employed to investigate the long-term inhibitory effect of free nitrous acid (FNA) on aerobic phosphorus uptake performance and variation of phosphorus uptake properties of the sludge by adding nitrite. The reactor was started up under the condition of 21-23 degrees C. The results showed that FNA had no impact on phosphate release and uptake capacities of the sludge. However, the specific phosphate release/uptake rates was found to be higher. As FNA concentration (measure by HNO2-N) was lower than 0.53 x 10(-3) mg x L(-1), phosphorus removal efficiency of the system was higher than 96.9%. When the FNA concentration was increased to 0.99 x 10(-3) mg x L(-1), 1.46 x 10(-3) mg x L(-1) and 1.94 x 10(-3) mg x L(-1), the phosphorus removal performance deteriorated rapidly. The phosphorus removal efficiency was recovered to 64.42%, 67.33% and 44.14% after 50, 12 and 30 days, respectively, which implied the deterioration of phosphorus removal performance caused by FNA inhibition could be recovered and long-term acclimation could shorten the recovery process. Notably, increasing nitrite consumption appeared during aerobic phase with the concentration of FNA below 1.46 x 10(-3) mg x L(-1). It was also observed that the phosphorus uptake properties of the sludge varied after long-term inhibition. Nitrate and nitrite type anoxic phosphorus uptake capacity was increased by 3.35 and 3.86 times, respectively, suggesting long-term dosing FNA may facilitate the denitrifying of polyphosphate in organisms utilizing nitrite as electron acceptor. Moreover, long-term acclimation favored sludge settling. PMID:26841613

  18. Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1

    SciTech Connect

    Steinle, P.; Stucki, G.; Stettler, R.; Hanselmann, K.W.

    1998-07-01

    A new aerobic bacterium was isolated from the sediment of a freshwater pond close to a contaminated site at Amponville (France). It was enriched in a fixed-bed reactor fed with 2,6-dichlorophenol (2,6-DCP) as the sole carbon and energy source at pH 7.5 and room temperature. The degradation of 2,6-DCP followed Monod kinetics at low initial concentrations. At concentrations above 300 {micro}M, 2,6-DCP increasingly inhibited its own degradation. The base sequence of the 16S ribosomal DNA allowed us to assign the bacterium to the genus Ralstonia (formerly Alcaligenes). The substrate spectrum of the bacterium includes toluene, benzene, chlorobenzene, phenol, and all four ortho- and para-substituted mono- and dichlorophenol isomers. Substituents other than chlorine prevented degradation. The capacity to degrade 2,6-DCP was examined in two fixed-bed reactors. The microbial population grew on and completely mineralized 2,6-DCP at 2,6-DCP concentrations up to 740 {micro}M in continuous reactor culture supplied with H{sub 2}O{sub 2} as an oxygen source. Lack of peroxide completely stopped further degradation of 2,6-DCP. Lowering the acid-neutralizing capacity of the medium to 1/10th the original capacity led to a decrease in the pH of the effluent from 7 to 6 and to a significant reduction in the degradation activity. A second fixed-bed reactor successfully removed low chlorophenol concentrations with hydraulic residence times of 8 to 30 min.

  19. Microbial removal of NOX at high temperature by a novel aerobic strain Chelatococcus daeguensis TAD1 in a biotrickling filter.

    PubMed

    Yang, Yunlong; Huang, Shaobin; Liang, Wei; Zhang, Yongqing; Huang, Huixing; Xu, Fuqian

    2012-02-15

    The removal of NO(X) at high temperature by Chelatococcus daeguensis TAD1 in a biotrickling filter was studied. Media components of the recycling liquid were screened using Plackett-Burman design and then were optimized using response surface methodology, which enhanced the efficiency of nitrate removal by TAD1. The optimal medium was used to perform long-term experiments of NO(X) removal in a biotrickling filter under high concentrations of O(2) and NO in simulated flue gas. Results showed that the biotrickling filter was able to consistently remove 80.2-92.3% NO(X) when the inlet NO concentration was 600ppm under the conditions of oxygen concentration ranging between 2% and 20% and empty bed residence time (EBRT) being 112.5s. Analyses by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) indicated that TAD1 was always predominant in the biofilm under a flue gas environment. Overall, the present study demonstrated that utilizing a biotrickling filter inoculated with the aerobic denitrifier TAD1 to remove NO(X) at high temperature was practically feasible.

  20. Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen.

    PubMed

    Wong, Pan Yu; Ginige, Maneesha P; Kaksonen, Anna H; Cord-Ruwisch, Ralf; Sutton, David C; Cheng, Ka Yu

    2015-01-01

    A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0-8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e(-)/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs. PMID:26398030

  1. Immobilization of the Methanogenic bacterium methanosarcina barkeri

    SciTech Connect

    Scherer, P.; Kluge, M.; Klein, J.; Sahm, H.

    1981-05-01

    Whole cells of the methanogen Methanosarcina barkeri were immobilized in an alginate network which was crosslinked with Ca/sup 2+/ calcium ions. The rates of methanol conversion to methane of entrapped cells were found to be in the same range as the corresponding rates of free cells. Furthermore, immobilized cells were active for a longer period than free cells. The particle size of the spherical alginate beads and thus diffusion has no obvious influence on the turnover of methanol. The half-value period for methanol conversion activity determined in a buffer medium was approximately 4 days at 37/degree/C for entrapped cells. The high rates of methanol degradation indicated that the immobilization technique preserved the cellular functions of this methanogenic bacterium. 24 refs.

  2. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  3. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    SciTech Connect

    Green, Stefan; Prakash, Om; Jasrotia, Puja; Overholt, Will; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka, Joel

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  4. Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat Experiment

    PubMed Central

    Clark, Ian M.; Buchkina, Natalya; Jhurreea, Deveraj; Goulding, Keith W. T.; Hirsch, Penny R.

    2012-01-01

    Bacterial denitrification results in the loss of fertilizer nitrogen and greenhouse gas emissions as nitrous oxides, but ecological factors in soil influencing denitrifier communities are not well understood, impeding the potential for mitigation by land management. Communities vary in the relative abundance of the alternative dissimilatory nitrite reductase genes nirK and nirS, and the nitrous oxide reductase gene nosZ; however, the significance for nitrous oxide emissions is unclear. We assessed the influence of different long-term fertilization and cultivation treatments in a 160-year-old field experiment, comparing the potential for denitrification by soil samples with the size and diversity of their denitrifier communities. Denitrification potential was much higher in soil from an area left to develop from arable into woodland than from a farmyard manure-fertilized arable treatment, which in turn was significantly higher than inorganic nitrogen-fertilized and unfertilized arable plots. This correlated with abundance of nirK but not nirS, the least abundant of the genes tested in all soils, showing an inverse relationship with nirK. Most genetic variation was seen in nirK, where sequences resolved into separate groups according to soil treatment. We conclude that bacteria containing nirK are most probably responsible for the increased denitrification potential associated with nitrogen and organic carbon in this soil. PMID:22451109

  5. Isolation of the epsilon-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile-butadiene-styrene resin.

    PubMed

    Wang, Chun-Chin; Lee, Chi-Mei

    2007-06-25

    epsilon-Caprolactam has high COD and toxicity, so its discharge to natural water and soil systems may lead to an adverse environmental effect on water quality, endangering public health and welfare. This investigation attempts to isolate epsilon-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile-butadiene-styrene (ABS) resin. The goal is to elucidate the effectiveness of isolated pure strain and ABS mixed strains in treating epsilon-caprolactam from synthetic wastewater. The results reveal that Paracoccus versutus MDC-3 was isolated from the wastewater treatment system manufactured with ABS resin. The ABS mixed strains and P. versutus MDC-3 can consume up to 1539mg/l epsilon-caprolactam to denitrify from synthetic wastewater. Complete epsilon-caprolactam removal depended on the supply of sufficient electron acceptors (nitrate). Strain P. versutus MDC-3, Hyphomicrobium sp. HM, Methylosinus pucelana and Magnetospirillum sp. CC-26 are related closely, according to the phylogenetic analyses of 16S rDNA sequences. PMID:17161908

  6. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology.

    PubMed

    Zhang, Meng; Zheng, Ping; Wang, Ru; Li, Wei; Lu, Huifeng; Zhang, Jiqiang

    2014-12-01

    The nitrate-dependent anaerobic ferrous oxidation (NAFO) is an important discovery in the fields of microbiology and geology, which is a valuable biological reaction since it can convert nitrate into nitrogen gas, removing nitrogen from wastewater. The research on NAFO can promote the development of novel autotrophic biotechnologies for nitrogen pollution control and get a deep insight into the biogeochemical cycles. In this work, batch experiments were conducted with denitrifying bacteria as biocatalyst to investigate the performance of nitrogen removal by NAFO. The results showed that the denitrifying bacteria were capable of chemolithotrophic denitrification with ferrous salt as electron donor, namely NAFO. And the maximum nitrate conversion rates (qmax) reached 57.89 mg (g VSS d)−1, which was the rate-limiting step in NAFO. Fe/N ratio, temperature and initial pH had significant influences on nitrogen removal by NAFO process, and their optimal values were 2.0 °C, 30.15 °C and 8.0 °C, respectively.

  7. Influence of biofilm thickness on nitrous oxide (N2O) emissions from denitrifying fluidized bed bioreactors (DFBBRs).

    PubMed

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2014-12-20

    Nitrous oxide (N2O) is a significant anthropogenic greenhouse gas emitted from biological nutrient removal (BNR) processes. This study tries to get a deeper insight into N2O emissions from denitrifying fluidized bed bioreactors (DFBBRs) and its relationship to the biofilm thickness, diffusivity, and reaction rates. The DFBBR was operated at two different organic and nitrogen loading rates of 5.9–7 kg COD/(m3 d) and 1.2–2 kg N/(m3 d), respectively. Results showed that the N2O conversion rate from the DFBBR at a biofilm thickness of 680 μm was 0.53% of the total influent nitrogen loading while at the limited COD and a biofilm thickness of 230 μm, the N2O conversion rate increased by 196–1.57% of the influent nitrogen loading concomitant with a sevenfold increase in liquid nitrite concentration. Comparing the N2O emissions at different biofilm thickness showed that the N2O emission decreased exponentially with biofilm thickness due to the retention of slow growth denitrifiers and the limited diffusivity of N2O.

  8. Shifts in the microbial community, nitrifiers and denitrifiers in the biofilm in a full-scale rotating biological contactor.

    PubMed

    Peng, Xingxing; Guo, Feng; Ju, Feng; Zhang, Tong

    2014-07-15

    The objective of this study was to investigate the microbial community shifts, especially nitrifiers and denitrifiers, in the biofilm of two rotating biological contactor (RBC) trains with different running times along the plug flowpath. The microbial consortia were profiled using multiple approaches, including 454 high-throughput sequencing of the V3-V4 region of 16S rRNA gene, clone libraries, and quantitative polymerase chain reaction (qPCR). The results demonstrated that (1) the overall microbial community at different locations had distinct patterns, that is, there were similar microbial communities at the beginnings of the two RBC trains and completely different populations at the ends of the two RBC trains; (2) nitrifiers, including ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB, Nitrosomonas) and nitrite-oxidizing bacteria (NOB, Nitrospira), increased in relative abundance in the biofilm along the flowpath, whereas denitrifiers (Rhodanobacter, Paracoccus, Thauera, and Azoarcus) markedly decreased; (3) the AOA were subdominant to the AOB in all sampled sections; and (4) strong ecological associations were shown among different bacteria. Overall, the results of this study provided more comprehensive information regarding the biofilm community composition and assemblies in full-scale RBCs.

  9. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor.

    PubMed

    Gómez-Silván, C; Vílchez-Vargas, R; Arévalo, J; Gómez, M A; González-López, J; Pieper, D H; Rodelas, B

    2014-10-01

    The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal.

  10. Removal of nitrogen and phosphorus from the secondary effluent in tertiary denitrifying biofilters combined with micro-coagulation.

    PubMed

    Wei, Nan; Shi, Yunhong; Wu, Guangxue; Hu, Hongying; Guo, Yumei; Wu, Yihui; Wen, Hui

    2016-01-01

    Effective control of nitrogen and phosphorus in secondary effluent can reduce or avoid the eutrophication of receiving water bodies. Two denitrifying biofilters (DNBFs) packed with different sizes of quartz sands combined with micro-coagulation were operated for simultaneous removal of nitrogen and phosphorus from the secondary effluent. The quartz sand size in one DNBF was 2-4 mm (DNBFS), and in the other was 4-6 mm (DNBFL). In both DNBFs, methanol was used as the electron donor and different organic carbon to nitrogen (C/N) ratios were applied. Under C/N ratios of 1.5, 1.25, and 0.75 g/g, the nitrate nitrogen (NO3(-)-N) removal percentages were 73%, 77%, and 50% in DNBFS, and 43%, 25%, and 21% in DNBFL; the effluent total phosphorus concentrations were 0.15, 0.14, and 0.18 mg/L in DNBFS, and 0.29, 0.35, and 0.24 mg/L in DNBFL. The performance of both biofilters was quite stable within a backwashing cycle. The NO3(-)-N reduction rates were 1.31, 1.10, and 0.48 mg/(L·min) in DNBFS, and 0.97, 0.27, and 0.10 mg/(L·min) in DNBFL. For biomass detached from both biofilters, their denitrifying activities were similar. Biofilm biomass in DNBFS was higher than that in DNBFL, inducing a high denitrification efficiency in DNBFS.

  11. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor.

    PubMed

    Gómez-Silván, C; Vílchez-Vargas, R; Arévalo, J; Gómez, M A; González-López, J; Pieper, D H; Rodelas, B

    2014-10-01

    The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal. PMID:25043345

  12. Passivation of zero-valent iron by denitrifying bacteria and the impact on trichloroethene reduction in groundwater.

    PubMed

    Chen, Liang; Jin, Song; Fallgren, Paul H; Liu, Fei; Colberg, Patricia J S

    2013-01-01

    Zero-valent iron (ZVI) application in groundwater remediation is limited by its vulnerability to passivation, which significantly decreases its surface reactivity. Both biological and chemical processes can potentially passivate ZVI, although the understanding of biological passivation is limited. This study was conducted in bench-scale reactors packed with fresh ZVI or ZVI pre-exposed to nitrate (NO3(-)) and in the presence or absence of a denitrifying bacterial enrichment (DNBE). The first-order rate coefficients (k) for NO3(-) reduction by ZVI in the presence and absence of DNBE were 0.20 and 0.09 s(-1), respectively, suggesting that both ZVI and microbes contribute to NO3(-) removal. Abiotic reduction of nitrate was observed in reactors with trichloroethene (TCE) if ZVI was present; however, it resulted in reduced rates of TCE reduction (k = 0.29 s(-1)) when compared to reactors with fresh ZVI and no nitrate (k = 0.55 s(-1)). The TCE reduction efficiency decreased by 49% (k = 0.15 s(-1)) in the presence of DNBE, suggesting that microbial growth on ZVI or catalyzed oxidation of ZVI surface can inhibit TCE reduction by ZVI. Contrary to the presumption that denitrification may decrease ZVI passivation by nitrate, results from this study suggest that denitrifying bacteria actually exacerbate ZVI passivation.

  13. Removal of nitrogen and phosphorus from the secondary effluent in tertiary denitrifying biofilters combined with micro-coagulation.

    PubMed

    Wei, Nan; Shi, Yunhong; Wu, Guangxue; Hu, Hongying; Guo, Yumei; Wu, Yihui; Wen, Hui

    2016-01-01

    Effective control of nitrogen and phosphorus in secondary effluent can reduce or avoid the eutrophication of receiving water bodies. Two denitrifying biofilters (DNBFs) packed with different sizes of quartz sands combined with micro-coagulation were operated for simultaneous removal of nitrogen and phosphorus from the secondary effluent. The quartz sand size in one DNBF was 2-4 mm (DNBFS), and in the other was 4-6 mm (DNBFL). In both DNBFs, methanol was used as the electron donor and different organic carbon to nitrogen (C/N) ratios were applied. Under C/N ratios of 1.5, 1.25, and 0.75 g/g, the nitrate nitrogen (NO3(-)-N) removal percentages were 73%, 77%, and 50% in DNBFS, and 43%, 25%, and 21% in DNBFL; the effluent total phosphorus concentrations were 0.15, 0.14, and 0.18 mg/L in DNBFS, and 0.29, 0.35, and 0.24 mg/L in DNBFL. The performance of both biofilters was quite stable within a backwashing cycle. The NO3(-)-N reduction rates were 1.31, 1.10, and 0.48 mg/(L·min) in DNBFS, and 0.97, 0.27, and 0.10 mg/(L·min) in DNBFL. For biomass detached from both biofilters, their denitrifying activities were similar. Biofilm biomass in DNBFS was higher than that in DNBFL, inducing a high denitrification efficiency in DNBFS. PMID:27232413

  14. Vertical distribution and characterization of aerobic phototrophic bacteria at the Juan de Fuca Ridge in the Pacific Ocean.

    PubMed

    Rathgeber, Christopher; Lince, Michael T; Alric, Jean; Lang, Andrew S; Humphrey, Elaine; Blankenship, Robert E; Verméglio, André; Plumley, F Gerald; Van Dover, Cindy L; Beatty, J Thomas; Yurkov, Vladimir

    2008-09-01

    The vertical distribution of culturable anoxygenic phototrophic bacteria was investigated at five sites at or near the Juan de Fuca Ridge in the Pacific Ocean. Twelve similar strains of obligately aerobic phototrophic bacteria were isolated in pure culture, from depths ranging from 500 to 2,379 m below the surface. These strains appear morphologically, physiologically, biochemically, and phylogenetically similar to Citromicrobium bathyomarinum strain JF-1, a bacterium previously isolated from hydrothermal vent plume waters. Only one aerobic phototrophic strain was isolated from surface waters. This strain is morphologically and physiologically distinct from the strains isolated at deeper sampling locations, and phylogenetic analysis indicates that it is most closely related to the genus Erythrobacter. Phototrophs were cultivated from three water casts taken above vents but not from two casts taken away from active vent sites. No culturable anaerobic anoxygenic phototrophs were detected. The photosynthetic apparatus was investigated in strain JF-1 and contains light-harvesting I and reaction center complexes, which are functional under aerobic conditions.

  15. Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds

    PubMed Central

    Warneke, Sören; Schipper, Louis A.; Matiasek, Michael G.; Scow, Kate M.; Cameron, Stewart; Bruesewitz, Denise A.; McDonald, Ian R.

    2012-01-01

    Denitrification beds are containers filled with wood by-products that serve as a carbon and energy source to denitrifiers, which reduce nitrate ( NO3−) from point source discharges into non-reactive dinitrogen (N2) gas. This study investigates a range of alternative carbon sources and determines rates, mechanisms and factors controlling NO3− removal, denitrifying bacterial community, and the adverse effects of these substrates. Experimental barrels (0.2 m3) filled with either maize cobs, wheat straw, green waste, sawdust, pine woodchips or eucalyptus woodchips were incubated at 16.8 °C or 27.1 °C (outlet temperature), and received NO3− enriched water (14.38 mg N L−1 and 17.15 mg N L−1). After 2.5 years of incubation measurements were made of NO3−−N removal rates, in vitro denitrification rates (DR), factors limiting denitrification (carbon and nitrate availability, dissolved oxygen, temperature, pH, and concentrations of NO3−, nitrite and ammonia), copy number of nitrite reductase (nirS and nirK ) and nitrous oxide reductase (nosZ ) genes, and greenhouse gas production (dissolved nitrous oxide (N2O) and methane), and carbon (TOC) loss. Microbial denitrification was the main mechanism for NO3−−N removal. Nitrate–N removal rates ranged from 1.3 (pine woodchips) to 6.2 g N m−3 d−1 (maize cobs), and were predominantly limited by C availability and temperature (Q10 = 1.2) when NO3−−N outlet concentrations remained above 1 mg L−1. The NO3−−N removal rate did not depend directly on substrate type, but on the quantity of microbially available carbon, which differed between carbon sources. The abundance of denitrifying genes (nirS, nirK and nosZ ) was similar in replicate barrels under cold incubation, but varied substantially under warm incubation, and between substrates. Warm incubation enhanced growth of nirS containing bacteria and bacteria that lacked the nosZ gene, potentially explaining the greater N2O emission in warmer

  16. Identification of hopanoid, sterol, and tetrahymanol production in the aerobic methanotroph Methylomicrobium alcaliphilum 20Z

    NASA Astrophysics Data System (ADS)

    Welander, P. V.; Summons, R. E.

    2013-12-01

    Correlating the occurrence of molecular biosignatures preserved in the rock record with specific microbial taxa is a compelling strategy for studying microbial life in the context of the Earth's distant past. Polycyclic triterpenoids, including the hopanes and steranes, comprise classes of biomarkers that are readily detected in a variety of ancient sediments and are clearly recognized as the diagenetic products of modern day bacterial hopanoids and eukaryotic sterols. Thus, based on the distribution of these lipids in extant microbes, the occurrence of their diagenetic products in the rock record is often utilized as evidence for the existence of specific bacterial and eukaryotic taxa in ancient ecosystems. However, questions have arisen about our understanding of the taxonomic distribution of many of these molecular biomarkers in extant microbes. This is prompting reassessments of the use of polycyclic triterpenoids as geological proxies for microbial taxa, especially in the light of the poorly defined issue of microbial diversity. Recently, significant effort has been put forth to better understand the biosynthesis, function, and regulation of these lipid molecules in a variety of modern organisms so that a more informed interpretation of their occurrence in the rock record can be reached. Here we report the unprecedented production of three different classes of polycyclic triterpenoid biomarker lipids in one bacterium. Methylomicrobium alcaliphilum 20Z, a member of the Gammaproteobacteria, is a halotolerant alkaliphilic aerobic methanotroph previously isolated from a moderately saline soda lake in Tuva (Central Asia). In this study, M. alcaliphilum is shown to produce C-3 methylated and unmethylated aminohopanoids commonly associated with other mesophilic aerobic methanotrophs. In addition, this organism is also able to produce 4,4-dimethyl sterols and surprisingly, the gammacerane triterpenoid tetrahymanol. Previously, tetrahymanol production has only been

  17. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  18. Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the Shallow Fresh Lake Taihu, China.

    PubMed

    Fan, Zhou; Han, Rui-Ming; Ma, Jie; Wang, Guo-Xiang

    2016-07-01

    nirK and nirS genes are important functional genes involved in the denitrification pathway. Recent studies about these two denitrifying genes are focusing on sediment and wastewater microbe. In this study, we conducted a comparative analysis of the abundance and diversity of denitrifiers in the epiphyton of submerged macrophytes Potamogeton malaianus and Ceratophyllum demersum as well as in bacterioplankton in the shallow fresh lake Taihu, China. Results showed that nirK and nirS genes had significant different niches in epiphyton and bacterioplankton. Bacterioplankton showed greater abundance of nirK gene in terms of copy numbers and lower abundance of nirS gene. Significant difference in the abundance of nirK and nirS genes also existed between the epiphyton from different submerged macrophytes. Similar community diversity yet different community abundance was observed between epiphytic bacteria and bacterioplankton. No apparent seasonal variation was found either in epiphytic bacteria or bacterioplankton; however, environmental parameters seemed to have direct relevancy with nirK and nirS genes. Our study suggested that submerged macrophytes have greater influence than seasonal parameters in shaping the presence and abundance of bacterial denitrifiers. Further investigation needs to focus on the potential contact and relative contribution between denitrifiers and environmental factors. PMID:27048324

  19. Alsobacter metallidurans gen. nov., sp. nov., a thallium-tolerant soil bacterium in the order Rhizobiales.

    PubMed

    Bao, Zhihua; Sato, Yoshinori; Fujimura, Reiko; Ohta, Hiroyuki

    2014-03-01

    A thallium-tolerant, aerobic bacterium, designated strain SK200a-9(T), isolated from a garden soil sample was characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that strain SK200a-9(T) was affiliated with an uncultivated lineage within the Alphaproteobacteria and the nearest cultivated neighbours were bacteria in genera in the family Methylocystaceae (93.3-94.4% 16S rRNA gene sequence similarity) and the family Beijerinckiaceae (92.3-93.1%) in the order Rhizobiales. Cells of strain SK200a-9(T) were Gram-stain-negative, non-motile, non-spore-forming, poly-β-hydroxybutyrate-accumulating rods. The strain was a chemo-organotrophic bacterium, which was incapable of growth on C1 substrates. Catalase and oxidase were positive. Atmospheric nitrogen fixation and nitrate reduction were negative. The strain contained ubiquinone Q-10 and cellular fatty acids C18 : 1ω7c, C18 : 0, C16 : 1ω7c and C16 : 0 as predominant components. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was 64.8 mol%. On the basis of the information described above, strain SK200a-9(T) is considered to represent a novel species of a new genus in the order Rhizobiales, for which the name Alsobacter metallidurans gen. nov., sp. nov. is proposed. The type strain of Alsobacter metallidurans is SK200a-9(T) ( = NBRC 107718(T) = CGMCC 1.12214(T)).

  20. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice

    PubMed Central

    Vance, Tyler D. R.; Olijve, Luuk L. C.; Campbell, Robert L.; Voets, Ilja K.; Davies, Peter L.; Guo, Shuaiqi

    2014-01-01

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches. PMID:24892750

  1. Noncontiguous finished genome sequence and description of Virgibacillus massiliensis sp. nov., a moderately halophilic bacterium isolated from human gut

    PubMed Central

    Khelaifia, S.; Croce, O.; Lagier, J.-C.; Robert, C.; Couderc, C.; Di Pinto, F.; Davoust, B.; Djossou, F.; Raoult, D.; Fournier, P.-E.

    2015-01-01

    Strain Vm-5T was isolated from the stool specimen of a 10-year-old Amazonian boy. This bacterium is a Gram-positive, strictly aerobic rod, motile by a polar flagellum. Here we describe its phenotypic characteristics and complete genome sequence. The 4 353 177 bp long genome exhibits a G + C content of 36.87% and contains 4394 protein-coding and 125 predicted RNA genes. Phylogenetically and genetically, strain Vm-c is a member of the genus Virgibacillus but is distinct enough to be classified as a new species. We propose the creation of V. massiliensis sp. nov., whose type strain is strain Vm-5T (CSUR P971 = DSM 28587). PMID:26649181

  2. Noncontiguous finished genome sequence and description of Virgibacillus massiliensis sp. nov., a moderately halophilic bacterium isolated from human gut.

    PubMed

    Khelaifia, S; Croce, O; Lagier, J-C; Robert, C; Couderc, C; Di Pinto, F; Davoust, B; Djossou, F; Raoult, D; Fournier, P-E

    2015-11-01

    Strain Vm-5(T) was isolated from the stool specimen of a 10-year-old Amazonian boy. This bacterium is a Gram-positive, strictly aerobic rod, motile by a polar flagellum. Here we describe its phenotypic characteristics and complete genome sequence. The 4 353 177 bp long genome exhibits a G + C content of 36.87% and contains 4394 protein-coding and 125 predicted RNA genes. Phylogenetically and genetically, strain Vm-c is a member of the genus Virgibacillus but is distinct enough to be classified as a new species. We propose the creation of V. massiliensis sp. nov., whose type strain is strain Vm-5(T) (CSUR P971 = DSM 28587). PMID:26649181

  3. Fabivirga thermotolerans gen. nov., sp. nov., a novel marine bacterium isolated from culture broth of a marine cyanobacterium.

    PubMed

    Tang, M; Chen, C; Li, J; Xiang, W; Wu, H; Wu, J; Dai, S; Wu, H; Li, T; Wang, G

    2016-02-01

    A Gram-stain-negative, red, non-spore-forming, strictly aerobic bacterium, designated strain A4T, was isolated from culture broth of a marine cyanobacterium. Cells were flexible rods with gliding motility. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain A4T formed a coherent cluster with members of the genera Roseivirga and Fabibacter, and represents a distinct lineage in the family Flammeovirgaceae. Thermotolerance and a distinctive cellular fatty acid profile could readily distinguish this isolate from any bacteria of the genera Roseivirga and Fabibacter with a validly published name. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain A4T is suggested to represent a novel species in a novel genus, for which the name Fabivirga thermotolerans gen. nov., sp. nov. is proposed. The type strain is A4T ( = KCTC 42507T = CGMCC 1.15111T).

  4. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    PubMed Central

    Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy

    2013-01-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960

  5. Chitoporin from the Marine Bacterium Vibrio harveyi

    PubMed Central

    Chumjan, Watcharin; Winterhalter, Mathias; Schulte, Albert; Benz, Roland; Suginta, Wipa

    2015-01-01

    VhChiP is a sugar-specific porin present in the outer membrane of the marine bacterium Vibrio harveyi. VhChiP is responsible for the uptake of chitin oligosaccharides, with particular selectivity for chitohexaose. In this study, we employed electrophysiological and biochemical approaches to demonstrate that Trp136, located at the mouth of the VhChiP pore, plays an essential role in controlling the channel's ion conductivity, chitin affinity, and permeability. Kinetic analysis of sugar translocation obtained from single channel recordings indicated that the Trp136 mutations W136A, W136D, W136R, and W136F considerably reduce the binding affinity of the protein channel for its best substrate, chitohexaose. Liposome swelling assays confirmed that the Trp136 mutations decreased the rate of bulk chitohexaose permeation through the VhChiP channel. Notably, all of the mutants show increases in the off-rate for chitohexaose of up to 20-fold compared with that of the native channel. Furthermore, the cation/anion permeability ratio Pc/Pa is decreased in the W136R mutant and increased in the W136D mutant. This demonstrates that the negatively charged surface at the interior of the protein lumen preferentially attracts cationic species, leading to the cation selectivity of this trimeric channel. PMID:26082491

  6. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  7. Gene function analysis in environmental isolates: The nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans

    PubMed Central

    Parro, Víctor; Moreno-Paz, Mercedes

    2003-01-01

    A random genomic library from an environmental isolate of the Gram-negative bacterium Leptospirillum ferrooxidans has been printed on a microarray. Gene expression analysis was carried out with total RNA extracted from L. ferrooxidans cultures in the presence or absence of ammonium as nitrogen source under aerobic conditions. Although practically nothing is known about the genome sequence of this bacterium, this approach allowed us the selection and sequencing of only those clones bearing genes that showed an altered expression pattern. By sequence comparison, we have identified most of the genes of nitrogen fixation regulon in L. ferrooxidans, like the nifHDKENX operon, encoding the structural components of Mo-Fe nitrogenase; nifSU-hesB-hscBA-fdx operon, for Fe-S cluster assembly; the amtB gene (ammonium transporter); modA (molybdenum ABC type transporter); some regulatory genes like ntrC, nifA (the specific activator of nif genes); or two glnB-like genes (encoding the PII regulatory protein). Our results show that shotgun DNA microarrays are very powerful tools to accomplish gene expression studies with environmental bacteria whose genome sequence is still unknown, avoiding the time and effort necessary for whole genome sequencing projects. PMID:12808145

  8. Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris.

    PubMed

    Valverde, Angel; Velázquez, Encarna; Gutiérrez, Carmen; Cervantes, Emilio; Ventosa, Antonio; Igual, José-Mariano

    2003-11-01

    Several bacterial strains were isolated from root nodules of Phaseolus vulgaris plants grown in a soil from Portugal. The strains were Gram-negative, aerobic, curved rod-shaped and motile. The isolates were catalase- and oxidase-positive. The TP-RAPD (two-primer randomly amplified polymorphic DNA) patterns of all strains were identical, suggesting that they belong to the same species. The complete 16S rDNA sequence of a representative strain was obtained and phylogenetic analysis based on the neighbour-joining method indicated that this bacterium belongs to the beta-Proteobacteria and that the closest related genus is Herbaspirillum. The DNA G+C content ranged from 57.9 to 61.9 mol%. Growth was observed with many different carbohydrates and organic acids including caprate, malate, citrate and phenylacetate. No growth was observed with maltose, meso-inositol, meso-erythritol or adipate as sole carbon source. According to the phenotypic and genotypic data obtained in this work, the bacterium represents a novel species of the genus Herbaspirillum, and the name Herbaspirillum lusitanum sp. nov. is proposed. The type strain is P6-12(T) (=LMG 21710(T)=CECT 5661(T)).

  9. Selection of denitrifying phosphorous accumulating organisms in IFAS systems: comparison of nitrite with nitrate as an electron acceptor.

    PubMed

    Jabari, Pouria; Munz, Giulio; Oleszkiewicz, Jan A

    2014-08-01

    Nitrite and nitrate were compared as electron acceptors to select for denitrifying phosphorous accumulating organisms (DPAO) in two integrated fixed film activated sludge (IFAS 1 and IFAS 2) systems operated as sequencing batch reactors. The bench-scale experiment lasted one year and synthetic wastewater was used as feed. During anoxic conditions 20mgNO3(-)-NL(-1) were dosed into IFAS-1 and 20mgNO2(-)-NL(-1) were dosed into IFAS-2. Long term phosphorous and ammonia removal via nitritation were achieved in both systems and both attached and suspended biomass contributed to phosphorous and ammonia removal. DPAO showed no specific adaptation to the electron acceptor as evidenced by short term switch of feeding with nitrate or nitrite. Anoxic phosphorus uptake rate was significantly higher with nitrite than with nitrate. Results showed that DPAO activity with nitrite could be integrated into attached and suspended biomass of IFAS systems in long term operation.

  10. Metabolic behavior and enzymatic aspects of denitrifying EBPR sludge in a continuous-flow anaerobic-anoxic system.

    PubMed

    Zafiriadis, Ilias; Ntougias, Spyridon; Kapagiannidis, Anastasios G; Aivasidis, Alexander

    2013-10-01

    The metabolic aspects of enhanced biological phosphorus removal (EBPR) were investigated for the first time in a continuous-flow anaerobic-anoxic plant fed with acetate, propionate, or substrates which are involved in the tricarboxylic acid and/or glyoxylate cycle, i.e., fumarate, malate, or oxaloacetate, as the sole carbon source. Although the polyphosphate-accumulating organisms (PAOs) population remained stable with any carbon source examined, no typical EBPR metabolism was observed during fumarate, malate, or oxaloacetate utilization. Specific enzymatic activities related to EBPR were determined in activated sludge homogenates and directly correlated with the nutrient metabolic rates. The experimental results indicated the direct involvement of alkaline phosphatase, pyrophosphatase, and exopolyphosphatase in the denitrifying EBPR process. Metabolic aspects of glyoxylate cycle enzymes are discussed with regard to the biomass anaerobic and anoxic activity. Process performance was highly influenced by the kind of substrate utilized, indicating that specific metabolic pathways should be followed to favor efficient EBPR.

  11. Metagenome Analysis of a Complex Community Reveals the Metabolic Blueprint of Anammox Bacterium “Candidatus Jettenia asiatica”

    PubMed Central

    Hu, Ziye; Speth, D. R.; Francoijs, Kees-Jan; Quan, Zhe-Xue; Jetten, M. S. M.

    2012-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria are key players in the global nitrogen cycle and responsible for significant global nitrogen loss. Moreover, the anammox process is widely implemented for nitrogen removal from wastewaters as a cost-effective and environment-friendly alternative to conventional nitrification-denitrification systems. Currently, five genera of anammox bacteria have been identified, together forming a deep-branching order in the Planctomycetes-Verrucomicrobium-Chlamydiae superphylum. Members of all genera have been detected in wastewater treatment plants and have been enriched in lab-scale bioreactors, but genome information is not yet available for all genera. Here we report the metagenomic analysis of a granular sludge anammox reactor dominated (∼50%) by “Candidatus Jettenia asiatica.” The metagenome was sequenced using both Illumina and 454 pyrosequencing. After de novo assembly 37,432 contigs with an average length of 571 nt were obtained. The contigs were then analyzed by BLASTx searches against the protein sequences of “Candidatus Kuenenia stuttgartiensis” and a set of 25 genes essential in anammox metabolism were detected. Additionally all reads were mapped to the genome of an anammox strain KSU-1 and de novo assembly was performed again using the reads that could be mapped on KSU-1. Using this approach, a gene encoding copper-containing nitrite reductase NirK was identified in the genome, instead of cytochrome cd1-type nitrite reductase (NirS, present in “Ca. Kuenenia stuttgartiensis” and “Ca. Scalindua profunda”). Finally, the community composition was investigated through MetaCluster analysis, 16S rRNA gene analysis and read mapping, which showed the presence of other important community members such as aerobic ammonia-oxidizing bacteria, methanogens, and the denitrifying methanotroph “Ca. Methylomirabilis oxyfera”, indicating a possible active methane and nitrogen cycle in the bioreactor under the

  12. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support.

    PubMed

    Sakano, Yuko; Pickering, Karen D; Strom, Peter F; Kerkhof, Lee J

    2002-05-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  13. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support

    NASA Technical Reports Server (NTRS)

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  14. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra

    PubMed Central

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A

    2012-01-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic microcosms, indicating denitrification as the source of N2O. Up to 500 and 10 μ nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N2O gDW−1 h−1, for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N2O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK−1 copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N2O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities. PMID:22134649

  15. Denitrifying Bacteria from the Genus Rhodanobacter Dominate Bacterial Communities in the Highly Contaminated Subsurface of a Nuclear Legacy Waste Site

    PubMed Central

    Green, Stefan J.; Prakash, Om; Jasrotia, Puja; Overholt, Will A.; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.

    2012-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233

  16. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra.

    PubMed

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A

    2012-05-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3-4) in the Russian discontinuous permafrost tundra are nitrate-rich 'hotspots' of nitrous oxide (N(2)O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N(2)O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N(2)O production of both soils in anoxic microcosms, indicating denitrification as the source of N(2)O. Up to 500 and 10 μM nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N(2)O g(DW)(-1) h(-1), for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N(2)O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK(-1) copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N(2)O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities.

  17. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site.

    PubMed

    Green, Stefan J; Prakash, Om; Jasrotia, Puja; Overholt, Will A; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M; Watson, David B; Schadt, Christopher W; Brooks, Scott C; Kostka, Joel E

    2012-02-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  18. Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary.

    PubMed

    Francis, Christopher A; O'Mullan, Gregory D; Cornwell, Jeffrey C; Ward, Bess B

    2013-01-01

    Chesapeake Bay, the largest estuary in North America, can be characterized as having steep and opposing gradients in salinity and dissolved inorganic nitrogen along the main axis of the Bay. In this study, the diversity of nirS gene fragments (encoding cytochrome cd 1-type nitrite reductase), physical/chemical parameters, and benthic N2-fluxes were analyzed in order to determine how denitrifier communities and biogeochemical activity vary along the estuary salinity gradient. The nirS gene fragments were PCR-amplified, cloned, and sequenced from sediment cores collected at five stations. Sequence analysis of 96-123 nirS clones from each station revealed extensive overall diversity in this estuary, as well as distinct spatial structure in the nirS sequence distributions. Both nirS-based richness and community composition varied among stations, with the most dramatic shifts occurring between low-salinity (oligohaline) and moderate-salinity (mesohaline) sites. For four samples collected in April, the nirS-based richness, nitrate concentrations, and N2-fluxes all decreased in parallel along the salinity gradient from the oligohaline northernmost station to the highest salinity (polyhaline) station near the mouth of the Bay. The vast majority of the 550 nirS sequences were distinct from cultivated denitrifiers, although many were closely related to environmental clones from other coastal and estuarine systems. Interestingly, 8 of the 172 OTUs identified accounted for 42% of the total nirS clones, implying the presence of a few dominant and many rare genotypes, which were distributed in a non-random manner along the salinity gradient of Chesapeake Bay. These data, comprising the largest dataset to investigate nirS clone sequence diversity from an estuarine environment, also provided information that was required for the development of nirS microarrays to investigate the interaction of microbial diversity, environmental gradients, and biogeochemical activity.

  19. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  20. Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost.

    PubMed

    Kang, Myung-Suk; Im, Wan-Taek; Jung, Hae-Min; Kim, Myung Kyum; Goodfellow, Michael; Kim, Kwang Kyu; Yang, Hee-Chan; An, Dong-Shan; Lee, Sung-Taik

    2007-06-01

    A bacterial strain, TR7-06(T), which has cellulase and beta-glucosidase activities, was isolated from compost at a cattle farm near Daejeon, Republic of Korea. It was a Gram-positive, aerobic or facultatively anaerobic, non-motile, rod-shaped bacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belongs to the genus Cellulomonas, with highest sequence similarity to Cellulomonas uda DSM 20107(T) (98.5 %). Cell wall analysis revealed the presence of type A4beta, L-orn-D-Glu peptidoglycan. The cell-wall sugars detected were mannose and glucose. The predominant menaquinone was MK-9(H(4)); MK-8(H(4)) was detected in smaller quantities. The major fatty acids were anteiso-C(15 : 0), C(16 : 0), C(14 : 0) and C(18 : 0). The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The results of DNA-DNA hybridization and physiological and biochemical tests clearly demonstrated that TR7-06(T) represents a novel species. The combined genotypic and phenotypic data show that strain TR7-06(T) (=KCTC 19030(T)=NBRC 100758(T)) merits description as the type strain of a novel Cellulomonas species, Cellulomonas composti sp. nov.

  1. Jeotgalibacillus soli sp. nov., a Gram-stain-positive bacterium isolated from soil.

    PubMed

    Cunha, Sofia; Tiago, Igor; Paiva, Gabriel; Nobre, Fernanda; da Costa, Milton S; Veríssimo, António

    2012-03-01

    A Gram-staining-positive, motile, rod-shaped, spore-forming bacterium, designated P9(T), was isolated from soil in Portugal. This organism was aerobic and catalase- and oxidase-positive. It had an optimum growth temperature of about 35 °C and an optimum growth pH of about 8.0-8.5, and grew in medium with 0-9% (w/v) NaCl. The cell-wall peptidoglycan was of the A1α type, with L-lysine as the diagnostic diamino acid. The major respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C(15:0) (45.4%), iso-C(15:0) (22.0%) and anteiso-C(17:0) (11.2%). The genomic DNA G+C content was about 39.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain P9(T) was most closely related to Jeotgalibacillus campisalis DSM 18983(T) (96.8%) and Jeotgalibacillus marinus DSM 1297(T) (96.5%). These two recognized species formed a coherent cluster with strain P9(T) that was supported by a bootstrap value of 99%. On the basis of the phylogenetic analysis and physiological and biochemical characteristics, strain P9(T) (=DSM 23228(T)=LMG 25523(T)) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus soli sp. nov. is proposed.

  2. Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium

    PubMed Central

    Payne, Rayford B; May, Harold D; Sowers, Kevin R

    2011-01-01

    Anaerobic reductive dehalogenation of commercial PCBs such as Aroclor 1260 has a critical role of transforming highly chlorinated congeners to less chlorinated congeners that are then susceptible to aerobic degradation. The efficacy of bioaugmentation with the dehalorespiring bacterium “Dehalobium chlorocoercia” DF1 was tested in 2-liter laboratory mesocosms containing sediment contaminated with weathered Aroclor 1260 (1.3 ppm) from Baltimore Harbor, MD. Total penta- and higher chlorinated PCBs decreased by approximately 56% (by mass) in bioaugmented mesocosms after 120 days compared with no activity observed in unamended controls. Bioaugmentation with DF-1 enhanced the dechlorination of doubly flanked chlorines and stimulated the dechlorination of single flanked chlorines as a result of an apparent synergistic effect on the indigenous population. Addition of granulated activated carbon had a slight stimulatory effect indicating that anaerobic reductive dechlorination of PCBs at low concentrations was not inhibited by a high background of inorganic carbon that could affect bioavailability. The total number of dehalorespiring bacteria was reduced by approximately half after 60 days. However, a steady state level was maintained that was greater than the indigenous population of putative dehalorespiring bacteria in untreated sediments and DF1 was maintained within the indigenous population after 120 days. The results of this study demonstrate that bioaugmentation with dehalorespiring bacteria has a stimulatory effect on the dechlorination of weathered PCBs and supports the feasibility of using in situ bioaugmentation as an environmentally less invasive and lower cost alternate to dredging for treatment of PCB impacted sediments. PMID:21902247

  3. Infections Caused by Actinomyces neuii: A Case Series and Review of an Unusual Bacterium

    PubMed Central

    Zelyas, Nathan; Gee, Susan; Nilsson, Barb; Bennett, Tracy; Rennie, Robert

    2016-01-01

    Background. Actinomyces neuii is a Gram-positive bacillus rarely implicated in human infections. However, its occurrence is being increasingly recognized with the use of improved identification systems. Objective. To analyse A. neuii infections in Alberta, Canada, and review the literature regarding this unusual pathogen. Methods. Cases of A. neuii were identified in 2013-2014 in Alberta. Samples were cultured aerobically and anaerobically. A predominant catalase positive Gram-positive coryneform bacillus with no branching was isolated in each case. Testing was initially done with API-CORYNE® (bioMérieux) and isolates were sent to the Provincial Laboratory for Public Health for further testing. Isolates' identities were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry microbial identification system (MALDI-TOF MS MIS; bioMérieux) and/or DNA sequencing. Results. Six cases of A. neuii infection were identified. All patients had soft tissue infections; typically, incision and drainage were done followed by a course of antibiotics. Agents used included cephalexin, ertapenem, ciprofloxacin, and clindamycin. All had favourable outcomes. Conclusions. While A. neuii is infrequently recognized, it can cause a diverse array of infections. Increased use of MALDI-TOF MS MIS is leading to increased detection; thus, understanding the pathogenicity of this bacterium and its typical susceptibility profile will aid clinical decision-making. PMID:27366175

  4. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties.

    PubMed

    Obata, H; Muryoi, N; Kawahara, H; Yamade, K; Nishikawa, J

    1999-03-01

    A novel ice-nucleating bacterium (INB) was isolated from Ross Island, Antarctica. INBs could be isolated more frequently than was generally thought. INB strain IN-74 was found in the white colony group. Strain IN-74 was identified from its taxonomic characteristics as a novel INB, Pseudomonas antarctica IN-74. When strain IN-74 was cultured aerobically in a medium consisting of the ice-nucleating broth (pH 7.0) for 6 days at 4 degrees C, the ice-nucleating activity of strain IN-74 cells was obtained. Strain IN-74 cells produced ice nuclei only at extremely low growth temperatures. The nuclei appeared to be less thermolabile than those of INB Pseudomonas fluorescens KUIN-1. The freezing difference spectra in D2O and H2O at ice-nucleating temperature for strain IN-74 cells and conventional INBs (Pseudomonas fluorescens KUIN-1, Pseudomonas viridiflava KUIN-2, and Pseudomonas syringae C-9) exhibited different curves. PMID:10191036

  5. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite.

    PubMed

    Margesin, Rosa; Schumann, Peter; Zhang, De-Chao; Redzic, Mersiha; Zhou, Yu-Guang; Liu, Hong-Can; Schinner, Franz

    2012-02-01

    A Gram-stain-positive, aerobic, non-motile, psychrophilic bacterium, designated strain Cr6-08(T), was isolated from alpine glacier cryoconite. Growth of strain Cr6-08(T) occurred at 1-25 °C. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain Cr6-08(T) is most closely related to members of the genus Arthrobacter. Strain Cr6-08(T) possessed chemotaxonomic properties consistent with those of the genus Arthrobacter, such as peptidoglycan type A3α (l-Lys-L-Ala(4)), MK-9(H(2)) as major menaquinone and anteiso- and iso-branched compounds (anteiso-C(15 : 0) and iso-C(15 : 0)) as major cellular fatty acids. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, one unknown glycolipid and three unknown polar lipids. The genomic DNA G+C content of strain Cr6-08(T) was 57.3 mol%. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA-DNA relatedness data, strain Cr6-08(T) is considered to represent a novel species of the genus Arthrobacter, for which the name Arthrobacter cryoconiti sp. nov. is proposed. The type strain is Cr6-08(T) ( = DSM 23324(T)  = LMG 26052(T)  = CGMCC 1.10698(T)).

  6. Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite.

    PubMed

    Zhang, De-Chao; Busse, Hans-Jürgen; Liu, Hong-Can; Zhou, Yu-Guang; Schinner, Franz; Margesin, Rosa

    2011-03-01

    A non-motile, rod-shaped, yellow bacterium, designated C16y(T), was isolated from alpine glacier cryoconite. Cells behaved Gram-positively, were aerobic and psychrophilic (good growth at 1-25 °C). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain C16y(T) was related to the genus Sphingomonas and had highest 16S rRNA gene sequence similarity with Sphingomonas oligophenolica JCM 12082(T) (97.6  %) and Sphingomonas echinoides DSM 1805(T) (97.2  %). DNA-DNA hybridization demonstrated that strain C16y(T) could not be considered as a member of either Sphingomonas oligophenolica or Sphingomonas echinoides. Strain C16y(T) contained Q-10 as the predominant ubiquinone and C₁₈:₁ and C₁₆:₀ were the dominant fatty acids. The polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, five unidentified glycolipids, two unidentified aminophospholipids and two unidentified lipids. The major polyamines were the triamines sym-homospermidine and spermidine. The G+C content was 67.9 mol%. Combined data from phenotypic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain C16y(T) is a representative of a novel species of the genus Sphingomonas, for which we propose the name Sphingomonas glacialis sp. nov. The type strain is C16y(T) (=DSM 22294(T) =CGMCC 1.8957(T) =CIP 110131(T) [corrected]).

  7. Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina.

    PubMed

    Kovács, Akos T; Rákhely, Gábor; Kovács, Kornél L

    2003-06-01

    A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested.

  8. Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil.

    PubMed

    Margesin, Rosa; Zhang, De-Chao; Busse, Hans-Jürgen

    2012-07-01

    An aerobic, Gram-negative-staining, motile, psychrophilic bacterium, designated strain S8-3(T), was isolated from alpine soil. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S8-3(T) was related to the genus Sphingomonas and had highest 16S rRNA gene sequence similarity with Sphingomonas oligophenolica S213(T) (98.0%). 16S RNA gene sequence similarity between strain S8-3(T) and Sphingomonas paucimobilis ATCC 29837(T) (the type species of the genus Sphingomonas) was 93.0%. Strain S8-3(T) contained Q-10 as the ubiquinone and C(18:1)ω7c (65.0%) and C(14:0) 2-OH (13.4%) as the dominant fatty acids (>10%). The major polyamines were the triamine sym-homospermidine and spermidine. The polar lipid profile contained sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The DNA G+C content was 64.1 mol%. Combined data from phenotypic, phylogenetic and DNA-DNA relatedness studies demonstrated that strain S8-3(T) is a representative of a novel species of the genus Sphingomonas, for which the name Sphingomonas alpina sp. nov. is proposed. The type strain is S8-3(T) (=DSM 22537(T)=LMG 26055(T)).

  9. Infections Caused by Actinomyces neuii: A Case Series and Review of an Unusual Bacterium.

    PubMed

    Zelyas, Nathan; Gee, Susan; Nilsson, Barb; Bennett, Tracy; Rennie, Robert

    2016-01-01

    Background. Actinomyces neuii is a Gram-positive bacillus rarely implicated in human infections. However, its occurrence is being increasingly recognized with the use of improved identification systems. Objective. To analyse A. neuii infections in Alberta, Canada, and review the literature regarding this unusual pathogen. Methods. Cases of A. neuii were identified in 2013-2014 in Alberta. Samples were cultured aerobically and anaerobically. A predominant catalase positive Gram-positive coryneform bacillus with no branching was isolated in each case. Testing was initially done with API-CORYNE® (bioMérieux) and isolates were sent to the Provincial Laboratory for Public Health for further testing. Isolates' identities were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry microbial identification system (MALDI-TOF MS MIS; bioMérieux) and/or DNA sequencing. Results. Six cases of A. neuii infection were identified. All patients had soft tissue infections; typically, incision and drainage were done followed by a course of antibiotics. Agents used included cephalexin, ertapenem, ciprofloxacin, and clindamycin. All had favourable outcomes. Conclusions. While A. neuii is infrequently recognized, it can cause a diverse array of infections. Increased use of MALDI-TOF MS MIS is leading to increased detection; thus, understanding the pathogenicity of this bacterium and its typical susceptibility profile will aid clinical decision-making. PMID:27366175

  10. Melghiribacillus thermohalophilus gen. nov., sp. nov., a novel filamentous, endospore-forming, thermophilic and halophilic bacterium.

    PubMed

    Addou, Nariman Ammara; Schumann, Peter; Spröer, Cathrin; Ben Hania, Wajdi; Hacene, Hocine; Fauque, Guy; Cayol, Jean-Luc; Fardeau, Marie-Laure

    2015-04-01

    A novel filamentous, endospore-forming, thermophilic and moderately halophilic bacterium designated strain Nari2A(T) was isolated from soil collected from an Algerian salt lake, Chott Melghir. The novel isolate was Gram-staining-positive, aerobic, catalase-negative and oxidase-positive. Optimum growth occurred at 50-55 °C, 7-10% (w/v) NaCl and pH 7-8. The strain exhibited 95.4, 95.4 and 95.2% 16S rRNA gene sequence similarity to Thalassobacillus devorans G19.1(T), Sediminibacillus halophilus EN8d(T) and Virgibacillus kekensis YIM-kkny16(T), respectively. The major menaquinone was MK-7. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, three unknown phosphoglycolipids and two unknown phospholipids. The predominant cellular fatty acids were iso-C(15 : 0) and iso-C(17 : 0). The DNA G+C content was 41.9 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain Nari2A(T) is considered to represent a novel species of a new genus in the family Bacillaceae , order Bacillales , for which the name Melghiribacillus thermohalophilus gen. nov., sp. nov. is proposed. The type strain of Melghiribacillus thermohalophilus is Nari2A(T) ( = DSM 25894(T) = CCUG 62543(T)). PMID:25604343

  11. Halomonas zhanjiangensis sp. nov., a halophilic bacterium isolated from a sea urchin.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Huang, Heng-Yu; Klenk, Hans-Peter; Tang, Shu-Kun; Huang, Ke; Chen, Qi-Hui; Cui, Xiao-Long; Li, Wen-Jun

    2009-11-01

    A novel Gram-negative, slightly halophilic, catalase-positive, oxidase-negative, obligately aerobic, non-sporulating rod-shaped bacterium, designated strain JSM 078169(T), was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from the South China Sea. Growth occurred with 1-20 % (w/v) total salts (optimum, 3-5 %), at pH 6.0-10.5 (optimum, pH 7.5) and at 4-40 degrees C (optimum, 25-30 degrees C). The major cellular fatty acids were C(18 : 1)omega7c, C(16 : 0) and C(12 : 0) 3-OH. The predominant respiratory quinone was Q-9 and the genomic DNA G+C content was 55.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 078169(T) should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range 92.4-97.0 %. The combination of phylogenetic analysis, DNA-DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078169(T) represents a novel species of the genus Halomonas, for which the name Halomonas zhanjiangensis sp. nov. is proposed, with JSM 078169(T) (=CCTCC AB 208031(T)=DSM 21076(T)=KCTC 22279(T)) as the type strain.

  12. Isolation and characterization of a denitrifying monocrotophos-degrading Paracoccus sp. M-1.

    PubMed

    Jia, Kai-zhi; Cui, Zhong-li; He, Jian; Guo, Peng; Li, Shun-peng

    2006-10-01

    A bacterium strain, which is capable of degrading monocrotophos, was isolated from sludge collected from the bottom of a wastewater treatment system of a chemical factory, and named M-1. On the basis of the results of the cellular morphology, physiological and chemotaxonomic characteristics and phylogenetic similarity of 16S rDNA gene sequences, the strain was identified as a Paracoccus sp. The ability of the strain to mineralize monocrotophos was investigated under different culture conditions. Other organophosphorus insecticides and amide herbicides were also degraded by M-1. The key enzyme (s) involved in the initial biodegradation of monocrotophos in M-1 was shown to be a constitutively expressed cytosolic protein. The addition of M-1 (10(6) CFU g(-1)) to fluvo-aquic soil and a high-sand soil containing monocrotophos (50 mg kg(-1)) resulted in a higher degradation rate than that obtained from noninoculated soil. This microbial culture has great potential utility for the bioremediation of wastewater or soil contaminated with organophosphorus pesticides and amide herbicides. PMID:16978350

  13. A Novel Denitrifying Extreme Halophile That Grows in a Simple Mineral Salts Medium

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Oremland, R. S.; Gherna, R.; Cote, R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    An extremely halophilic bacterium (strain CH-1) was isolated from a saltern adjacent to San Francisco Bay. It grew in a mineral salts medium with ammonium and glucose as sole sources of nitrogen and carbon as well as energy, respectively Cells lysed at less than 10% NaCl and growth was most rapid in medium containing 20% NaCl. Cells were pieomorphic ranging from disc to ovoid-shaved and used a variety of carbohydrates as sole carbon sources. the utilization of certain carbon sources was controlled by temperature with some used at 37 degrees but not 45 C. CH-1 grew between 30 degrees and 50 C with the optimum at 45 C in the presence of 20% NaCl. CH-1 contained 2,3-di-O-isoprenyl glcerol diethers and was sensitive to aphidicofin. The major polar lipid was glucosyl-mannosyl-alucosyl diether, which is diagnostic of the Haloarcula. Thus CH-1 is an extreme halophile and a member of this genus. Among the novel characteristics of this organism was its ability to grow anaerobically in synthetic medium when nitrate was present which was only reduced to nitrous oxide. This organism should prove useful for studying denitrification and carbohydrate metabolism in the extreme halophiles; and to be a valuable resource for generic studies.

  14. Skeletal myopathy in heart failure: effects of aerobic exercise training.

    PubMed

    Brum, P C; Bacurau, A V; Cunha, T F; Bechara, L R G; Moreira, J B N

    2014-04-01

    Reduced aerobic capacity, as measured by maximal oxygen uptake, is a hallmark in cardiovascular diseases and strongly predicts poor prognosis and higher mortality rates in heart failure patients. While exercise capacity is poorly correlated with cardiac function in this population, skeletal muscle abnormalities present a striking association with maximal oxygen uptake. This fact draws substantial attention to the clinical relevance of targeting skeletal myopathy in heart failure. Considering that skeletal muscle is highly responsive to aerobic exercise training, we addressed the benefits of aerobic exercise training to combat skeletal myopathy in heart failure, focusing on the mechanisms by which aerobic exercise training counteracts skeletal muscle atrophy.

  15. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC.

    PubMed

    Masaki, Yusei; Hirajima, Tsuyoshi; Sasaki, Keiko; Okibe, Naoko

    2015-03-01

    The extremely acidophilic, Fe(III)-reducing heterotrophic bacterium Acidocella aromatica strain PFBC was tested for its potential utility in bioreduction of highly toxic heavy metal, hexavalent chromium, Cr(VI). During its aerobic growth on fructose at pH 2.5, 20 µM Cr(VI) was readily reduced to Cr(III), achieving the final Cr(VI) concentration of 0.4 µM (0.02 mg/L), meeting the WHO drinking water guideline of 0.05 mg/L. Despite of the highly inhibitory effect of Cr(VI) on cell growth at higher concentrations, especially at low pH, Cr(VI) reduction activity was readily observed in growth-decoupled cell suspensions under micro-aerobic and anaerobic conditions. Strain PFBC was not capable of anaerobic growth via dissimilatory reduction of Cr(VI), such as reported for Fe(III). In the presence of both Cr(VI) and Fe(III) under micro-aerobic condition, microbial Fe(III) reduction occurred only upon complete disappearance of Cr(VI) by its reduction to Cr(III). Following Cr(VI) reduction, the resultant Cr(III), supposedly present in the form of cationic Cr (III) (OH2) 6 (3+) , was partially immobilized on the negatively charged cell surface through biosorption. When Cr(III) was externally provided, rather than microbially produced, it was poorly immobilized on the cell surface. Cr(VI) reducing ability was reported for the first time in Acidocella sp. in this study, and its potential role in biogeochemical cycling of Cr, as well as its possible utility in Cr(VI) bioremediation, in highly acidic environments/solutions, were discussed.

  16. Effect of aerobic exercises on stuttering

    PubMed Central

    Khan, Illays; Nawaz, Irum; Amjad, Imran

    2016-01-0