Science.gov

Sample records for aerobic dynamic feeding

  1. Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions.

    PubMed

    Serafim, Luísa S; Lemos, Paulo C; Oliveira, Rui; Reis, Maria A M

    2004-07-20

    Activated sludge submitted to aerobic dynamic feeding conditions showed a good and stable capacity to store polyhydroxybutyrate (PHB). The system, working for 2 years, selected a microbial population with a high PHB storage capacity. The influence of carbon and nitrogen concentrations on the PHB accumulation yield was studied in a range of 15-180 Cmmol/l for acetate and 0-2.8 Nmmol/l for ammonia. Low ammonia concentrations favored PHB accumulation. The maximum PHB content, 67.5%, was obtained for 180 Cmmol/l of acetate supplied in one pulse. However, such high substrate concentration proved to be inhibitory for the storage mechanism, causing a slowdown of the specific PHB storage rate. In order to avoid substrate inhibition, 180 Cmmol/l of acetate was supplied in different ways: continuously fed and in three pulses of 60 Cmmol/l each. In both cases the specific PHB storage rate increased and the PHB content obtained were 56.2% and 78.5%, respectively. The latter value of PHB content is similar to that obtained by pure cultures and was never reported for mixed cultures. Addition of acetate by pulses controlled by the oxygen concentration was kept for 16 days, the PHB content being always above 70% of cell dry weight.

  2. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  3. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    NASA Astrophysics Data System (ADS)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  4. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process.

    PubMed

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  5. The effect of feeding during recovery from aerobic exercise on skeletal muscle intracellular signaling.

    PubMed

    Reidy, Paul T; Konopka, Adam R; Hinkley, J Matthew; Undem, Miranda K; Harber, Matthew P

    2014-02-01

    We previously reported an increase in skeletal muscle protein synthesis during fasted and fed recovery from nonexhaustive aerobic exercise (Harber et al., 2010). The current study examined skeletal muscle intracellular signaling in the same subjects to further investigate mechanisms of skeletal muscle protein metabolism with and without feeding following aerobic exercise. Eight males (VO₂peak: 52 ± 2 ml⁻¹·kg⁻¹·min⁻¹) performed 60-min of cycle ergometry at 72 ± 1% VO₂peak on two occasions in a counter-balanced design. Exercise trials differed only in the postexercise nutritional intervention: EX-FED (5 kcal, 0.83 g carbohydrate, 0.37 g protein, 0.03 g fat per kg body weight) and EX-FAST (noncaloric, isovolumic placebo) ingested immediately and one hour after exercise. Muscle biopsies were obtained from the vastus lateralis at rest (on a separate day) and two hours postexercise to assess intracellular signaling via western blotting of p70S6K1, eEF2, 4EBP1, AMPKα and p38 MAPK. p70S6K1 phosphorylation was elevated (p < .05) in EX-FED relative to REST and EX-FAST. eEF2, 4EBP1, AMPKα and p38 MAPK signaling were unaltered at 2 h after exercise independent of feeding status when expressed as the ratio of phosphorylated to total protein normalized to actin. These data demonstrate that feeding after a nonexhaustive bout of aerobic exercise stimulates skeletal muscle p70S6K1 intracellular signaling favorable for promoting protein synthesis which may, as recent literature has suggested, better prepare the muscle for subsequent exercise bouts. These data provide further support into the role of feeding on mechanisms regulating muscle protein metabolism during recovery from aerobic exercise.

  6. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future.

    PubMed

    Sandblom, Erik; Gräns, Albin; Axelsson, Michael; Seth, Henrik

    2014-11-01

    Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations. PMID:25232133

  7. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future.

    PubMed

    Sandblom, Erik; Gräns, Albin; Axelsson, Michael; Seth, Henrik

    2014-11-01

    Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations.

  8. Aerobic and anaerobic in vitro testing of feed additives claiming to detoxify deoxynivalenol and zearalenone.

    PubMed

    Hahn, Irene; Kunz-Vekiru, Elisavet; Twarużek, Magdalena; Grajewski, Jan; Krska, Rudolf; Berthiller, Franz

    2015-01-01

    Deoxynivalenol (DON) and zearalenone (ZEN) are mycotoxins produced by fungi of the genus Fusarium which frequently contaminate maize and grain cereals. Mycotoxin-contaminated feed endangers animal health and leads to economic losses in animal production. Several mycotoxin elimination strategies, including the use of commercially available DON and ZEN detoxifying agents, have been developed. However, frequently there is no scientific proof of the efficacy of such adsorbents and degrading products. We therefore tested 20 commercially available products claiming to detoxify DON and/or ZEN either by biodegradation (4 products) or a combination of degradation and adsorption (16 products) under aerobic and anaerobic conditions at approx. pH 7. Under the applied conditions, a complete reduction of DON and consequent formation of the known non-toxic metabolite DOM-1 was exclusively observed in samples taken from the anaerobic degradation experiment of one product. For all other products, incubated under aerobic and anaerobic conditions, a maximum DON reduction of 17% after 72 h of incubation was detected. Aerobic and anaerobic incubation of only one tested product resulted in complete ZEN reduction as well as in the formation of the less-toxic metabolites DHZEN and HZEN. With this product, 68-97% of the toxin was metabolised within 3 h. After 24 h, a ZEN reduction ≥ 60% was obtained with four additional products during aerobic incubation only. Six of the 20 investigated products produced α- and/or β-ZEL, which are metabolites showing similar oestrogenic activity compared to ZEN. Aerobic and anaerobic degradation to unknown metabolites with unidentified toxicity was obtained with 10 and 3 products, respectively. The results of our study demonstrate the importance of in vitro experiments to critically screen agents claiming mycotoxin detoxification.

  9. Comparison of two different anaerobic feeding strategies to establish a stable aerobic granulated sludge bed.

    PubMed

    Rocktäschel, T; Klarmann, C; Helmreich, B; Ochoa, J; Boisson, P; Sørensen, K H; Horn, H

    2013-11-01

    Two different anaerobic feeding strategies were compared to optimize the development and performance of aerobic granules. A stable aerobic granulation of activated sludge was achieved with an anaerobic plug flow operation (PI) and a fast influent step followed by an anaerobic mixing phase (PII). Two lab scale sequencing batch reactors (SBRs) were operated to test the different operation modes. PI with plug flow and a reactor H/D (height/diameter) ratio of 9 achieved a biomass concentration of 20 g(TSS)/L and an effluent TSS concentration of 0.10 g(TSS)/L. PII with the mixed anaerobic phase directly after feeding and a reactor H/D ratio of 2 achieved a biomass concentration of 9 g(TSS)/L and an effluent quality of 0.05 g(TSS)/L. Furthermore, it is shown that the plug flow regime during anaerobic feeding together with the lower H/D ratio of 2 led to channeling effects, which resulted in lower storage of organic carbon and a general destabilization of the granulation process. Compared to the plug flow regime (PI), the anaerobic mixing (PII) provided lower substrate gradients within the biofilm. However, these disadvantages could be compensated by higher mass transfer coefficients in PII (k(L) = 0.3 m/d for PI; k(L) = 86 m/d for PII) during the anaerobic phase. PMID:24103394

  10. Cardiovascular response to dynamic aerobic exercise: a mathematical model.

    PubMed

    Magosso, E; Ursino, M

    2002-11-01

    An original mathematical model of the cardiovascular response to dynamic exercise is presented. It includes the pulsating heart, the pulmonary and systemic circulation, a separate description of the vascular bed in active tissues, the local metabolic vasodilation in these tissues and the mechanical effects of muscular contractions on venous return. Moreover, the model provides a description of the ventilatory response to exercise and various neural regulatory mechanisms working on cardiovascular parameters. These mechanisms embrace the so-called central command, the arterial baroreflex and the lung inflation reflex. All parameters in the model have been given in accordance with physiological data from the literature. In this work, the model has been used to simulate the steady-state value of the main cardiorespiratory quantities at different levels of aerobic exercise and the temporal pattern in the transient phase from rest to moderate exercise. Results suggest that, with suitable parameter values the model is able accurately to simulate the cardiorespiratory response in the overall range of aerobic exercise. This response is characterised by a moderate hypertension (10-30%) and by a conspicuous increase in systemic conductance (80-130%), heart rate (64-150%) and cardiac output (100-200%). The transient pattern exhibits three distinct phases (lasting approximately 5s, 15s and 2 min), that reflect the temporal heterogeneity of the mechanisms involved. The model may be useful to improve understanding of exercise physiology and as an educational tool to analyse the complexity of cardiovascular and respiratory regulation.

  11. Cardiovascular response to dynamic aerobic exercise: a mathematical model.

    PubMed

    Magosso, E; Ursino, M

    2002-11-01

    An original mathematical model of the cardiovascular response to dynamic exercise is presented. It includes the pulsating heart, the pulmonary and systemic circulation, a separate description of the vascular bed in active tissues, the local metabolic vasodilation in these tissues and the mechanical effects of muscular contractions on venous return. Moreover, the model provides a description of the ventilatory response to exercise and various neural regulatory mechanisms working on cardiovascular parameters. These mechanisms embrace the so-called central command, the arterial baroreflex and the lung inflation reflex. All parameters in the model have been given in accordance with physiological data from the literature. In this work, the model has been used to simulate the steady-state value of the main cardiorespiratory quantities at different levels of aerobic exercise and the temporal pattern in the transient phase from rest to moderate exercise. Results suggest that, with suitable parameter values the model is able accurately to simulate the cardiorespiratory response in the overall range of aerobic exercise. This response is characterised by a moderate hypertension (10-30%) and by a conspicuous increase in systemic conductance (80-130%), heart rate (64-150%) and cardiac output (100-200%). The transient pattern exhibits three distinct phases (lasting approximately 5s, 15s and 2 min), that reflect the temporal heterogeneity of the mechanisms involved. The model may be useful to improve understanding of exercise physiology and as an educational tool to analyse the complexity of cardiovascular and respiratory regulation. PMID:12507317

  12. Assessment of bacterial and structural dynamics in aerobic granular biofilms

    PubMed Central

    Weissbrodt, David G.; Neu, Thomas R.; Kuhlicke, Ute; Rappaz, Yoan; Holliger, Christof

    2013-01-01

    Aerobic granular sludge (AGS) is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors (SBR) fed with synthetic wastewater, namely a bubble column (BC-SBR) operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR) and Competibacter (GAO-SBR) operated at steady-state. In the BC-SBR, granules formed within 2 weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37–79%) led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80–100%), nitrogen removal (43–83%), and high but unstable dephosphatation (75–100%) were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5%) were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56 ± 10%) that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37 ± 11%). Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant

  13. Internal recycle to improve denitrification in a step feed anoxic/aerobic activated sludge system.

    PubMed

    Boyle, C A; McKenzie, C J; Morgan, S

    2009-01-01

    During periods of low load (weekends and holidays) the Mangere wastewater treatment plant effluent has breached the summer consent conditions for total nitrogen. The purpose of this research was to determine if an internal recycle would improve nitrogen removal in the anoxic/aerobic activated sludge reactors sufficient to meet the summer resource consent standard. The recycle returned nitrate rich mixed liquor from the downstream aerobic zone back to the initial anoxic zone, thus potentially improving denitrification. A full scale trial showed that installation of the internal recycle on each RC would have satisfied the resource consent for total nitrogen in most cases over the three summer resource consent periods since the upgrade. However, further modifications of the internal recycle would be required to ensure that consent conditions were satisfied at all times and to improve the consistency of the results.

  14. Feed restriction and a diet's caloric value: The influence on the aerobic and anaerobic capacity of rats

    PubMed Central

    2012-01-01

    Background The influence of feed restriction and different diet's caloric value on the aerobic and anaerobic capacity is unclear in the literature. Thus, the objectives of this study were to determine the possible influences of two diets with different caloric values and the influence of feed restriction on the aerobic (anaerobic threshold: AT) and anaerobic (time to exhaustion: Tlim) variables measured by a lactate minimum test (LM) in rats. Methods We used 40 adult Wistar rats. The animals were divided into four groups: ad libitum commercial Purina® diet (3028.0 Kcal/kg) (ALP), restricted commercial Purina® diet (RAP), ad libitum semi-purified AIN-93 diet (3802.7 Kcal/kg) (ALD) and restricted semi-purified AIN-93 diet (RAD). The animals performed LM at the end of the experiment, 48 h before euthanasia. Comparisons between groups were performed by analysis of variance (p < 0,05). Results At the end of the experiment, the weights of the rats in the groups with the restricted diets were significantly lower than those in the groups with ad libitum diet intakes. In addition, the ALD group had higher amounts of adipose tissue. With respect to energetic substrates, the groups subjected to diet restriction had significantly higher levels of liver and muscle glycogen. There were no differences between the groups with respect to AT; however, the ALD group had lower lactatemia at the AT intensity and higher Tlim than the other groups. Conclusions We conclude that dietary restriction induces changes in energetic substrates and that ad libitum intake of a semi-purified AIN-93 diet results in an increase in adipose tissue, likely reducing the density of the animals in water and favouring their performance during the swimming exercises. PMID:22448911

  15. An investigation of horizontal transfer of feed introduced DNA to the aerobic microbiota of the gastrointestinal tract of rats

    PubMed Central

    2012-01-01

    Background Horizontal gene transfer through natural transformation of members of the microbiota of the lower gastrointestinal tract (GIT) of mammals has not yet been described. Insufficient DNA sequence similarity for homologous recombination to occur has been identified as the major barrier to interspecies transfer of chromosomal DNA in bacteria. In this study we determined if regions of high DNA similarity between the genomes of the indigenous bacteria in the GIT of rats and feed introduced DNA could lead to homologous recombination and acquisition of antibiotic resistance genes. Results Plasmid DNA with two resistance genes (nptI and aadA) and regions of high DNA similarity to 16S rRNA and 23S rRNA genes present in a broad range of bacterial species present in the GIT, were constructed and added to standard rat feed. Six rats, with a normal microbiota, were fed DNA containing pellets daily over four days before sampling of the microbiota from the different GI compartments (stomach, small intestine, cecum and colon). In addition, two rats were included as negative controls. Antibiotic resistant colonies growing on selective media were screened for recombination with feed introduced DNA by PCR targeting unique sites in the putatively recombined regions. No transformants were identified among 441 tested isolates. Conclusions The analyses showed that extensive ingestion of DNA (100 μg plasmid) per day did not lead to increased proportions of kanamycin resistant bacteria, nor did it produce detectable transformants among the aerobic microbiota examined for 6 rats (detection limit < 1 transformant per 1,1 × 108 cultured bacteria). The key methodological challenges to HGT detection in animal feedings trials are identified and discussed. This study is consistent with other studies suggesting natural transformation is not detectable in the GIT of mammals. PMID:22463741

  16. Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women.

    PubMed

    Curry, Brad S; Chengkalath, Devendra; Crouch, Gordon J; Romance, Michelle; Manns, Patricia J

    2009-09-01

    The purpose of this study was to compare three warm-up protocols--static stretching, dynamic stretching, and light aerobic activity--on selected measures of range of motion and power in untrained females and to investigate the sustained effects at 5 and 30 minutes after warm-up. A total of 24 healthy females (ages 23-29 years) attended one familiarization session and three test sessions on nonconsecutive days within 2 weeks. A within-subject design protocol with the testing investigators blinded to the subjects' warm-up was followed. Each session started with 5 minutes of light aerobic cycling followed by pretest baseline measures. Another 5 minutes of light aerobic cycling was completed and followed by one of the three randomly selected warm-up interventions (static stretching, dynamic stretching, or light aerobic activity). The following posttest outcome measures were collected 5 and 30 minutes following the intervention: modified Thomas test, countermovement jump, and isometric time to peak force knee extension measured by dynamometer. Analysis of the data revealed significant time effects on range of motion and countermovement jump changes. No significant differences (p > 0.05) were found between the warm-up conditions on any of the variables. The variation in responses to warm-up conditions emphasizes the unique nature of individual reactions to different warm-ups; however, there was a tendency for warm-ups with an active component to have beneficial effects. The data suggests dynamic stretching has greater applicability to enhance performance on power outcomes compared to static stretching. PMID:19675479

  17. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

    PubMed Central

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  18. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn.

    PubMed

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  19. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    PubMed Central

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s−1) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s−1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  20. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics.

    PubMed

    Weissbrodt, David G; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  1. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition.

    PubMed

    Gabernet, Laetitia; Jadhav, Shantanu P; Feldman, Daniel E; Carandini, Matteo; Scanziani, Massimo

    2005-10-20

    The temporal features of tactile stimuli are faithfully represented by the activity of neurons in the somatosensory cortex. However, the cellular mechanisms that enable cortical neurons to report accurate temporal information are not known. Here, we show that in the rodent barrel cortex, the temporal window for integration of thalamic inputs is under the control of thalamocortical feed-forward inhibition and can vary from 1 to 10 ms. A single thalamic fiber can trigger feed-forward inhibition and contacts both excitatory and inhibitory cortical neurons. The dynamics of feed-forward inhibition exceed those of each individual synapse in the circuit and are captured by a simple disynaptic model of the thalamocortical projection. The variations in the integration window produce changes in the temporal precision of cortical responses to whisker stimulation. Hence, feed-forward inhibitory circuits, classically known to sharpen spatial contrast of tactile inputs, also increase the temporal resolution in the somatosensory cortex.

  2. Dynamic Feed Control For Injection Molding

    DOEpatents

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  3. [Modeling and dynamic simulation of the multimode anaerobic/anoxic/aerobic wastewater treatment process].

    PubMed

    Zhou, Zhen; Wu, Zhi-Chao; Wang, Zhi-Wei; Du, Xing-Zhi; Jiang, Ling-Yan; Xing, Can

    2013-04-01

    Mathematical modeling is a useful tool for professional education, process development, design evaluation, operational optimization and automatic control of the wastewater treatment system, and has been extensively applied in numerous full-scale wastewater treatment plants. The ASM2d model was calibrated by the process data, and used to simulate 15 operational test runs of the multimode anaerobic/anoxic/aerobic (AAO) process. After calibration, the model was capable of simulating the sludge concentrations and effluent data in 15 test runs of the multimode AAO system. The dynamic simulation results showed an overall good agreement between the measured and simulated data, for both effluent data and sludge concentrations, with a good reproduction of dynamic processes in AO test runs. PMID:23798127

  4. Modeling of an aerobic biofilm reactor with double-limiting substrate kinetics: bifurcational and dynamical analysis.

    PubMed

    Olivieri, Giuseppe; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero

    2011-01-01

    A mathematical model of an aerobic biofilm reactor is presented to investigate the bifurcational patterns and the dynamical behavior of the reactor as a function of different key operating parameters. Suspended cells and biofilm are assumed to grow according to double limiting kinetics with phenol inhibition (carbon source) and oxygen limitation. The model presented by Russo et al. is extended to embody key features of the phenomenology of the granular-supported biofilm: biofilm growth and detachment, gas-liquid oxygen transport, phenol, and oxygen uptake by both suspended and immobilized cells, and substrate diffusion into the biofilm. Steady-state conditions and stability, and local dynamic behavior have been characterized. The multiplicity of steady states and their stability depend on key operating parameter values (dilution rate, gas-liquid mass transfer coefficient, biofilm detachment rate, and inlet substrate concentration). Small changes in the operating conditions may be coupled with a drastic change of the steady-state scenario with transcritical and saddle-node bifurcations. The relevance of concentration profiles establishing within the biofilm is also addressed. When the oxygen level in the liquid phase is <10% of the saturation level, the biofilm undergoes oxygen starvation and the active biofilm fraction becomes independent of the dilution rate. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.

  5. Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses.

    PubMed

    Lara, Alvaro R; Taymaz-Nikerel, Hilal; Mashego, Mlawule R; van Gulik, Walter M; Heijnen, Joseph J; Ramírez, Octavio T; van Winden, Wouter A

    2009-12-15

    The response of Escherichia coli cells to transient exposure (step increase) in substrate concentration and anaerobiosis leading to mixed-acid fermentation metabolism was studied in a two-compartment bioreactor system consisting of a stirred tank reactor (STR) connected to a mini-plug-flow reactor (PFR: BioScope, 3.5 mL volume). Such a system can mimic the situation often encountered in large-scale, fed-batch bioreactors. The STR represented the zones of a large-scale bioreactor that are far from the point of substrate addition and that can be considered as glucose limited, whereas the PFR simulated the region close to the point of substrate addition, where glucose concentration is much higher than in the rest of the bioreactor. In addition, oxygen-poor and glucose-rich regions can occur in large-scale bioreactors. The response of E. coli to these large-scale conditions was simulated by continuously pumping E. coli cells from a well stirred, glucose limited, aerated chemostat (D = 0.1 h(-1)) into the mini-PFR. A glucose pulse was added at the entrance of the PFR. In the PFR, a total of 11 samples were taken in a time frame of 92 s. In one case aerobicity in the PFR was maintained in order to evaluate the effects of glucose overflow independently of oxygen limitation. Accumulation of acetate and formate was detected after E. coli cells had been exposed for only 2 s to the glucose-rich (aerobic) region in the PFR. In the other case, the glucose pulse was also combined with anaerobiosis in the PFR. Glucose overflow combined with anaerobiosis caused the accumulation of formate, acetate, lactate, ethanol, and succinate, which were also detected as soon as 2 s after of exposure of E. coli cells to the glucose and O(2) gradients. This approach (STR-mini-PFR) is useful for a better understanding of the fast dynamic phenomena occurring in large-scale bioreactors and for the design of modified strains with an improved behavior under large-scale conditions. PMID:19685524

  6. Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses.

    PubMed

    Lara, Alvaro R; Taymaz-Nikerel, Hilal; Mashego, Mlawule R; van Gulik, Walter M; Heijnen, Joseph J; Ramírez, Octavio T; van Winden, Wouter A

    2009-12-15

    The response of Escherichia coli cells to transient exposure (step increase) in substrate concentration and anaerobiosis leading to mixed-acid fermentation metabolism was studied in a two-compartment bioreactor system consisting of a stirred tank reactor (STR) connected to a mini-plug-flow reactor (PFR: BioScope, 3.5 mL volume). Such a system can mimic the situation often encountered in large-scale, fed-batch bioreactors. The STR represented the zones of a large-scale bioreactor that are far from the point of substrate addition and that can be considered as glucose limited, whereas the PFR simulated the region close to the point of substrate addition, where glucose concentration is much higher than in the rest of the bioreactor. In addition, oxygen-poor and glucose-rich regions can occur in large-scale bioreactors. The response of E. coli to these large-scale conditions was simulated by continuously pumping E. coli cells from a well stirred, glucose limited, aerated chemostat (D = 0.1 h(-1)) into the mini-PFR. A glucose pulse was added at the entrance of the PFR. In the PFR, a total of 11 samples were taken in a time frame of 92 s. In one case aerobicity in the PFR was maintained in order to evaluate the effects of glucose overflow independently of oxygen limitation. Accumulation of acetate and formate was detected after E. coli cells had been exposed for only 2 s to the glucose-rich (aerobic) region in the PFR. In the other case, the glucose pulse was also combined with anaerobiosis in the PFR. Glucose overflow combined with anaerobiosis caused the accumulation of formate, acetate, lactate, ethanol, and succinate, which were also detected as soon as 2 s after of exposure of E. coli cells to the glucose and O(2) gradients. This approach (STR-mini-PFR) is useful for a better understanding of the fast dynamic phenomena occurring in large-scale bioreactors and for the design of modified strains with an improved behavior under large-scale conditions.

  7. Vampires, Pasteur and reactive oxygen species. Is the switch from aerobic to anaerobic metabolism a preventive antioxidant defence in blood-feeding parasites?

    PubMed

    Oliveira, Pedro L; Oliveira, Marcus F

    2002-08-14

    Several species of parasites show a reduction of their respiratory activity along their developmental cycles after they start to feed on vertebrate blood, relying on anaerobic degradation of carbohydrates to achieve their energy requirements. Usually, these parasites choose not to breathe despite of living in an environment of high oxygen availability such as vertebrate blood. Absence of the 'Pasteur effect' in most of these parasites has been well documented. Interestingly, together with the switch from aerobic to anaerobic metabolism in these parasites, there is clear evidence pointing to an increase in their antioxidant defences. As the respiratory chain in mitochondria is a major site of production of reactive oxygen species (ROS), we propose here that the arrest of respiration constitutes an adaptation to avoid the toxic effects of ROS. This situation would be especially critical for blood-feeding parasites because ROS produced in mitochondria would interact with pro-oxidant products of blood digestion, such as haem and/or iron, and increase the oxidative damage to the parasite's cells.

  8. Effects of zilpaterol hydrochloride feeding duration on crossbred beef semimembranosus steak color in aerobic or modified atmosphere packaging.

    PubMed

    Gunderson, J A; Hunt, M C; Houser, T A; Boyle, E A E; Dikeman, M E; Johnson, D E; VanOverbeke, D L; Hilton, G G; Brooks, C; Killefer, J; Allen, D M; Streeter, M N; Nichols, W T; Hutcheson, J P; Yates, D A

    2009-11-01

    The objective of this research was to determine the effects of feeding zilpaterol hydrochloride (ZH) for 0, 20, 30, or 40 d before slaughter (ZH0, ZH20, ZH30, or ZH40, respectively) on semimembranosus (SM) color development and stability. A 7.62-cm-thick portion was removed from 60 beef steer SM subprimals and stored (2 degrees C) for 21 d; then two 2.54-cm-thick steaks were cut, overwrapped with polyvinyl chloride (PVC) film, and assigned to 0 or 3 d of display. Remaining portions of the subprimals were stored in a vacuum for 10 d and then enhanced 10% to a meat concentration of 0.3% sodium chloride, 0.35% phosphate, and 0.05% rosemary extract. Steaks were packaged in a high-oxygen (HO-MAP) or carbon monoxide (CO-MAP) modified atmosphere and assigned to 0, 3, or 5 d (HO-MAP) or 0 or 9 d (CO-MAP) of display. The deep (DSM) and superficial (SSM) portions of steaks were evaluated for initial color, display color, discoloration, pH, L*, a*, b*, hue angle, and saturation indices. For steaks in PVC, no differences (P > 0.05) occurred in initial or discoloration color scores because of ZH feeding duration. The enhanced SSM steaks from ZH20 in PVC were brighter red (P < 0.05) than SSM steaks from ZH40 in PVC. The DSM in PVC had less (P < 0.05) pH and paler (P < 0.05) color than the SSM. Display color scores for the DSM of PVC steaks were brighter red (P < 0.05) than the SSM initially (d 0 and 1), but the DSM discolored faster (P < 0.05) than the SSM on d 1 to 3. The SM steaks from steers fed ZH20 or ZH30 were slightly brighter and less discolored during display in PVC than the ZH40 diet. For enhanced steaks in HO-MAP, the DSM of ZH20 and ZH30 diets displayed 4 d and the DSM of ZH20 displayed 5 d was a brighter (P < 0.05) red than the DSM from ZH40. At display d 1 and 5, the SSM of ZH20 steaks in HO-MAP was a brighter (P < 0.05) red than SSM steaks from ZH40. The SSM of ZH40 HO-MAP steaks was darker (P < 0.05) red on d 3 than the SSM from other diets. For enhanced steaks

  9. A Forecasting Model for Feed Grain Demand Based on Combined Dynamic Model

    PubMed Central

    Yang, Tiejun

    2016-01-01

    In order to improve the long-term prediction accuracy of feed grain demand, a dynamic forecast model of long-term feed grain demand is realized with joint multivariate regression model, of which the correlation between the feed grain demand and its influence factors is analyzed firstly; then the change trend of various factors that affect the feed grain demand is predicted by using ARIMA model. The simulation results show that the accuracy of proposed combined dynamic forecasting model is obviously higher than that of the grey system model. Thus, it indicates that the proposed algorithm is effective.

  10. A Forecasting Model for Feed Grain Demand Based on Combined Dynamic Model

    PubMed Central

    Yang, Tiejun

    2016-01-01

    In order to improve the long-term prediction accuracy of feed grain demand, a dynamic forecast model of long-term feed grain demand is realized with joint multivariate regression model, of which the correlation between the feed grain demand and its influence factors is analyzed firstly; then the change trend of various factors that affect the feed grain demand is predicted by using ARIMA model. The simulation results show that the accuracy of proposed combined dynamic forecasting model is obviously higher than that of the grey system model. Thus, it indicates that the proposed algorithm is effective. PMID:27698661

  11. Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1.

    PubMed

    Arai, Hiroyuki; Roh, Jung Hyeob; Kaplan, Samuel

    2008-01-01

    Rhodobacter sphaeroides 2.4.1 is a facultative photosynthetic anaerobe that grows by anoxygenic photosynthesis under anaerobic-light conditions. Changes in energy generation pathways under photosynthetic and aerobic respiratory conditions are primarily controlled by oxygen tensions. In this study, we performed time series microarray analyses to investigate transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration. Major changes in gene expression profiles occurred in the initial 15 min after the shift from anaerobic-light to aerobic-dark conditions, with changes continuing to occur up to 4 hours postshift. Those genes whose expression levels changed significantly during the time series were grouped into three major classes by clustering analysis. Class I contained genes, such as that for the aa3 cytochrome oxidase, whose expression levels increased after the shift. Class II contained genes, such as those for the photosynthetic apparatus and Calvin cycle enzymes, whose expression levels decreased after the shift. Class III contained genes whose expression levels temporarily increased during the time series. Many genes for metabolism and transport of carbohydrates or lipids were significantly induced early during the transition, suggesting that those endogenous compounds were initially utilized as carbon sources. Oxidation of those compounds might also be required for maintenance of redox homeostasis after exposure to oxygen. Genes for the repair of protein and sulfur groups and uptake of ferric iron were temporarily upregulated soon after the shift, suggesting they were involved in a response to oxidative stress. The flagellar-biosynthesis genes were expressed in a hierarchical manner at 15 to 60 min after the shift. Numerous transporters were induced at various time points, suggesting that the cellular composition went through significant changes during the transition from anaerobic photosynthesis to aerobic respiration

  12. Growth dynamics of specific spoilage organisms and associated spoilage biomarkers in chicken breast stored aerobically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was performed to identify and quantify selected volatile spoilage biomarkers in a headspace over chicken breast using solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry-flame ionization detectors (GC-MS/FID). The chicken breast samples were aerobically s...

  13. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  14. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    PubMed

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  15. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    PubMed

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  16. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome.

    PubMed

    Zarrinpar, Amir; Chaix, Amandine; Yooseph, Shibu; Panda, Satchidananda

    2014-12-01

    The gut microbiome and daily feeding/fasting cycle influence host metabolism and contribute to obesity and metabolic diseases. However, fundamental characteristics of this relationship between the feeding/fasting cycle and the gut microbiome are unknown. Our studies show that the gut microbiome is highly dynamic, exhibiting daily cyclical fluctuations in composition. Diet-induced obesity dampens the daily feeding/fasting rhythm and diminishes many of these cyclical fluctuations. Time-restricted feeding (TRF), in which feeding is consolidated to the nocturnal phase, partially restores these cyclical fluctuations. Furthermore, TRF, which protects against obesity and metabolic diseases, affects bacteria shown to influence host metabolism. Cyclical changes in the gut microbiome from feeding/fasting rhythms contribute to the diversity of gut microflora and likely represent a mechanism by which the gut microbiome affects host metabolism. Thus, feeding pattern and time of harvest, in addition to diet, are important parameters when assessing the microbiome's contribution to host metabolism.

  17. Dynamics of anaerobic and aerobic energy supplies during sustained high intensity exercise on cycle ergometer.

    PubMed

    Yamamoto, M; Kanehisa, H

    1995-01-01

    Eight male subjects were examined for the transition from anaerobic to aerobic energy supplies during supramaximal pedalling for 120 s on a cycle ergometer. The O2 debt and O2 deficit were measured for anaerobic supply, while O2 intake during exercise was measured for aerobic supply. The lactic acid system was also observed through postexercise peak blood lactate concentration [la-]b,peak. Since a continuous observation of O2 debt and [la-]b,peak during a single period of pedalling is not possible, pedalling of seven varying durations (5, 15, 30, 45, 60, 90 and 120 s) were repeated. Mechanical power output reached its peak immediately after the beginning of exercise, then rapidly declined, becoming gradual after 60 s. The O2 debt and O2 deficit were highest immediately after the beginning of exercise, then rapidly decreased to nil in 60 s. The O2 intake was small at the beginning, then rapidly increased to attain a steady state in 30 s at 80%-90% of the maximal O2 intake of the subject. Energy supply from the lactic acid system indicated by the increment in [la-]b,peak reached its highest value during the period between 5 and 15 s, then rapidly decreased to nil in 60 s. The results would suggest that anaerobic supply was the principal contributor during the initial stage of exercise, but that aerobic supply gradually took over. In 60 s anaerobic supply ceased, and aerobic supply became the principal contributor. The cessation of anaerobic energy supply took place much sooner than the 2 min that is conventionally suggested.

  18. Organization of the Escherichia coli aerobic enzyme complexes of oxidative phosphorylation in dynamic domains within the cytoplasmic membrane

    PubMed Central

    Erhardt, Heiko; Dempwolff, Felix; Pfreundschuh, Moritz; Riehle, Marc; Schäfer, Caspar; Pohl, Thomas; Graumann, Peter; Friedrich, Thorsten

    2014-01-01

    The Escherichia coli cytoplasmic membrane contains the enzyme complexes of oxidative phosphorylation (OXPHOS). Not much is known about their supramolecular organization and their dynamics within the membrane in this model organism. In mitochondria and other bacteria, it was demonstrated by nondenaturing electrophoretic methods and electron microscopy that the OXPHOS complexes are organized in so-called supercomplexes, stable assemblies with a defined number of the individual enzyme complexes. To investigate the organization of the E. coli enzyme complexes of aerobic OXPHOS in vivo, we established fluorescent protein fusions of the NADH:ubiquinone oxidoreductase, the succinate:ubiquinone oxidoreductase, the cytochrome bd-I, and the cytochrome bo3 terminal oxidases, and the FoF1 ATP-synthase. The fusions were integrated in the chromosome to prevent artifacts caused by protein overproduction. Biochemical analysis revealed that all modified complexes were fully assembled, active, and stable. The distribution of the OXPHOS complexes in living cells was determined using total internal reflection fluorescence microscopy. The dynamics within the membrane were detected by fluorescence recovery after photobleaching. All aerobic OXPHOS complexes showed an uneven distribution in large mobile patches within the E. coli cytoplasmic membrane. It is discussed whether the individual OXPHOS complexes are organized as clustered individual complexes, here called “segrazones.” PMID:24729508

  19. Organization of the Escherichia coli aerobic enzyme complexes of oxidative phosphorylation in dynamic domains within the cytoplasmic membrane.

    PubMed

    Erhardt, Heiko; Dempwolff, Felix; Pfreundschuh, Moritz; Riehle, Marc; Schäfer, Caspar; Pohl, Thomas; Graumann, Peter; Friedrich, Thorsten

    2014-06-01

    The Escherichia coli cytoplasmic membrane contains the enzyme complexes of oxidative phosphorylation (OXPHOS). Not much is known about their supramolecular organization and their dynamics within the membrane in this model organism. In mitochondria and other bacteria, it was demonstrated by nondenaturing electrophoretic methods and electron microscopy that the OXPHOS complexes are organized in so-called supercomplexes, stable assemblies with a defined number of the individual enzyme complexes. To investigate the organization of the E. coli enzyme complexes of aerobic OXPHOS in vivo, we established fluorescent protein fusions of the NADH:ubiquinone oxidoreductase, the succinate:ubiquinone oxidoreductase, the cytochrome bd-I, and the cytochrome bo3 terminal oxidases, and the FoF1 ATP-synthase. The fusions were integrated in the chromosome to prevent artifacts caused by protein overproduction. Biochemical analysis revealed that all modified complexes were fully assembled, active, and stable. The distribution of the OXPHOS complexes in living cells was determined using total internal reflection fluorescence microscopy. The dynamics within the membrane were detected by fluorescence recovery after photobleaching. All aerobic OXPHOS complexes showed an uneven distribution in large mobile patches within the E. coli cytoplasmic membrane. It is discussed whether the individual OXPHOS complexes are organized as clustered individual complexes, here called "segrazones."

  20. Rapid production of organic fertilizer by dynamic high-temperature aerobic fermentation (DHAF) of food waste.

    PubMed

    Jiang, Yang; Ju, Meiting; Li, Weizun; Ren, Qingbin; Liu, Le; Chen, Yu; Yang, Qian; Hou, Qidong; Liu, Yiliang

    2015-12-01

    Keep composting matrix in continuous collision and friction under a relatively high-temperature can significantly accelerate the progress of composting. A bioreactor was designed according to the novel process. Using this technology, organic fertilizer could be produced within 96h. The electric conductivity (EC) and pH value reached to a stable value of 2.35mS/cm and 7.7 after 96h of fermentation. The total carbon/total nitrogen (TC/TN) and dissolved carbon/dissolved nitrogen (DC/DN) ratio was decrease from 27.3 and 36.2 to 17.4 and 7.6 respectively. In contrast, it needed 24days to achieve the similar result in traditional static composting (TSC). Compost particles with different size were analyzed to explore the rapid degradation mechanism of food waste. The evidence of anaerobic fermentation was firstly discovered in aerobic composting.

  1. Microbial Dynamics during Aerobic Exposure of Corn Silage Stored under Oxygen Barrier or Polyethylene Films▿

    PubMed Central

    Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio

    2011-01-01

    The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm3 m−2 per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log10 CFU g−1, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure. PMID:21821764

  2. Sodium sulfate impacts feeding, specific dynamic action, and growth rate in the freshwater bivalve Corbicula fluminea.

    PubMed

    Soucek, David John

    2007-08-01

    Sodium sulfate is a ubiquitous salt that reaches toxic concentrations due to mining and other industrial activities, yet is currently unregulated at the Federal level in the United States. Previous studies have documented reduced growth of clams downstream of sulfate-dominated effluents, altered bioenergetics in filter-feeding invertebrates, and interactions between sulfate and other toxicants. Therefore, the purpose of this study was to determine if sodium sulfate affects the bioenergetics of the filter-feeding, freshwater bivalve, Corbicula fluminea, and the mechanism by which the effects are elicited. In addition to measuring effects on feeding, respiration and growth rates, I evaluated the relative sensitivity of a green algae consumed by clams to determine if top-down or bottom-up effects might be exhibited under field conditions. This study demonstrated that sodium sulfate had no effect on basal metabolic rates, but significantly reduced the feeding, post-feeding metabolic, and growth rates of C. fluminea. The proposed mechanism for these impacts is that filtering rates are reduced upon exposure, resulting in reduced food consumption and therefore, preventing increased metabolic rates normally associated with post-feeding specific dynamic action (SDA). In the field, these effects may cause changes in whole stream respiration rates and organic matter dynamics, as well as alter uptake rates of other food-associated contaminants like selenium, the toxicity of which is known to be antagonized by sulfate, in filter-feeding bivalves.

  3. Dynamic Modeling of Aerobic Growth of Shewanella oneidensis. Predicting Triauxic Growth, Flux Distributions and Energy Requirement for Growth

    SciTech Connect

    Song, Hyun-Seob; Ramkrishna, Doraiswami; Pinchuk, Grigoriy E.; Beliaev, Alex S.; Konopka, Allan; Fredrickson, Jim K.

    2013-01-01

    A model-based analysis is conducted to investigate metabolism of Shewanella oneidensis MR-1 strain in aerobic batch culture, which exhibits an intriguing growth pattern by sequentially consuming substrate (i.e., lactate) and by-products (i.e., pyruvate and acetate). A general protocol is presented for developing a detailed network-based dynamic model for S. oneidensis based on the Lumped Hybrid Cybernetic Model (LHCM) framework. The L-HCM, although developed from only limited data, is shown to accurately reproduce exacting dynamic metabolic shifts, and provide reasonable estimates of energy requirement for growth. Flux distributions in S. oneidensis predicted by the L-HCM compare very favorably with 13C-metabolic flux analysis results reported in the literature. Predictive accuracy is enhanced by incorporating measurements of only a few intracellular fluxes, in addition to extracellular metabolites. The L-HCM developed here for S. oneidensis is consequently a promising tool for the analysis of intracellular flux distribution and metabolic engineering.

  4. Aerobic Interval Training Attenuates Mitochondrial Dysfunction in Rats Post-Myocardial Infarction: Roles of Mitochondrial Network Dynamics

    PubMed Central

    Jiang, Hong-Ke; Wang, You-Hua; Sun, Lei; He, Xi; Zhao, Mei; Feng, Zhi-Hui; Yu, Xiao-Jiang; Zang, Wei-Jin

    2014-01-01

    Aerobic interval training (AIT) can favorably affect cardiovascular diseases. However, the effects of AIT on post-myocardial infarction (MI)—associated mitochondrial dysfunctions remain unclear. In this study, we investigated the protective effects of AIT on myocardial mitochondria in post-MI rats by focusing on mitochondrial dynamics (fusion and fission). Mitochondrial respiratory functions (as measured by the respiratory control ratio (RCR) and the ratio of ADP to oxygen consumption (P/O)); complex activities; dynamic proteins (mitofusin (mfn) 1/2, type 1 optic atrophy (OPA1) and dynamin-related protein1 (DRP1)); nuclear peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); and the oxidative signaling of extracellular signal-regulated kinase (ERK) 1/2, c-Jun NH2-terminal protein kinase (JNK) and P53 were observed. Post-MI rats exhibited mitochondrial dysfunction and adverse mitochondrial network dynamics (reduced fusion and increased fission), which was associated with activated ERK1/2-JNK-P53 signaling and decreased nuclear PGC-1α. After AIT, MI-associated mitochondrial dysfunction was improved (elevated RCR and P/O and enhanced complex I, III and IV activities); in addition, increased fusion (mfn2 and OPA1), decreased fission (DRP1), elevated nuclear PGC-1α and inactivation of the ERK1/2-JNK-P53 signaling were observed. These data demonstrate that AIT may restore the post-MI mitochondrial function by inhibiting dynamics pathological remodeling, which may be associated with inactivation of ERK1/2-JNK-P53 signaling and increase in nuclear PGC-1α expression. PMID:24675698

  5. Thunniform swimming: muscle dynamics and mechanical power production of aerobic fibres in yellowfin tuna (Thunnus albacares).

    PubMed

    Shadwick, Robert E; Syme, Douglas A

    2008-05-01

    We studied the mechanical properties of deep red aerobic muscle of yellowfin tuna (Thunnus albacares), using both in vivo and in vitro methods. In fish swimming in a water tunnel at 1-3 L s(-1) (where L is fork length), muscle length changes were recorded by sonomicrometry, and activation timing was quantified by electromyography. In some fish a tendon buckle was also implanted on the caudal tendon to measure instantaneous muscle forces transmitted to the tail. Between measurement sites at 0.45 to 0.65 L, the wave of muscle shortening progressed along the body at a relatively high velocity of 1.7 L per tail beat period, and a significant phase shift (31+/-4 degrees ) occurred between muscle shortening and local midline curvature, both suggesting red muscle power is directed posteriorly, rather than causing local body bending, which is a hallmark of thunniform swimming. Muscle activation at 0.53 L was initiated at about 50 degrees of the tail beat period and ceased at about 160 degrees , where 90 degrees is peak muscle length and 180 degrees is minimum length. Strain amplitude in the deep red fibres at 0.5 L was +/-5.4%, double that predicted from midline curvature analysis. Work and power production were measured in isolated bundles of red fibres from 0.5 L by the work loop technique. Power was maximal at 3-4 Hz and fell to less than 50% of maximum after 6 Hz. Based on the timing of activation, muscle strain, tail beat frequencies and forces in the caudal tendon while swimming, we conclude that yellowfin tuna, like skipjack, use their red muscles under conditions that produce near-maximal power output while swimming. Interestingly, the red muscles of yellowfin tuna are slower than those of skipjack, which corresponds with the slower tail beat frequencies and cruising speeds in yellowfin. PMID:18456888

  6. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  7. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    PubMed

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  8. Rationale and design of the Feeding Dynamic Intervention (FDI) study for self-regulation of energy intake in preschoolers.

    PubMed

    Eneli, Ihuoma U; Tylka, Tracy L; Hummel, Jessica; Watowicz, Rosanna P; Perez, Susana A; Kaciroti, Niko; Lumeng, Julie C

    2015-03-01

    In 2011, the Institute of Medicine Early Childhood Prevention Policies Report identified feeding dynamics as an important focus area for childhood obesity prevention and treatment. Feeding dynamics includes two central components: (1) caregiver feeding practices (i.e., determining how, when, where, and what they feed their children) and (2) child eating behaviors (i.e., determining how much and what to eat from what food caregivers have provided). Although there has been great interest in overweight and obesity prevention and treatment in young children, they have not focused comprehensively on feeding dynamics. Interventions on feeding dynamics that reduce caregivers' excessive controlling and restrictive feeding practices and encourage the development of children's self-regulation of energy intake may hold promise for tackling childhood obesity especially in the young child but currently lack an evidence base. This manuscript describes the rationale and design for a randomized controlled trial designed to compare a group of mothers and their 3-to 5-year old children who received an intervention focused primarily on feeding dynamics called the Feeding Dynamic Intervention (FDI) with a Wait-list Control Group (WLC). The primary aim of the study will be to investigate the efficacy of the FDI for decreasing Eating in the Absence of Hunger (EAH) and improving energy compensation (COMPX). The secondary aim will be to examine the effect of the FDI in comparison to the WLC on maternal self-reported feeding practices and child satiety responsiveness.

  9. Rationale and Design of the Feeding Dynamic Intervention (FDI) Study for Self-Regulation of Energy Intake in Preschoolers

    PubMed Central

    Eneli, Ihuoma U.; Tylka, Tracy L.; Hummel, Jessica; Watowicz, Rosanna P.; Perez, Susana A.; Kaciroti, Niko; Lumeng, Julie C.

    2015-01-01

    In 2011, the Institute of Medicine Early Childhood Prevention Policies Report identified feeding dynamics as an important focus area for childhood obesity prevention and treatment. Feeding dynamics include two central components: (1) caregiver feeding practices (i.e., determining how, when, where, and what they feed their children) and (2) child eating behaviors (i.e., determining how much and what to eat from what food caregivers have provided). Although there has been great interest in overweight and obesity prevention and treatment in young children, they have not focused comprehensively on feeding dynamics. Interventions on feeding dynamics that reduce caregivers’ excessive controlling and restrictive feeding practices and encourage the development of children’s self-regulation of energy intake may hold promise for tackling childhood obesity especially in the young child but currently lack an evidence base. This manuscript describes the rationale and design for a randomized controlled trial designed to compare a group of mothers and their 3-to 5-year old children who received an intervention focused primarily on feeding dynamics called the Feeding Dynamic Intervention (FDI) with a Wait-list Control Group (WLC). The primary aim of the study will be to investigate the efficacy of the FDI for decreasing Eating in the Absence of Hunger (EAH) and improving energy compensation (COMPX). The secondary aim will be to examine the effect of the FDI in comparison to the WLC on maternal self-reported feeding practices and child satiety responsiveness. PMID:25616192

  10. Targeting Feeding and Eating Behaviors: Development of the Feeding Dynamic Intervention for Caregivers of 2- to 5-Year-Old Children.

    PubMed

    Eneli, Ihuoma U; Tylka, Tracy L; Watowicz, Rosanna P; Hummel, Jessica; Ritter, Jan; Lumeng, Julie C

    2015-01-01

    Targeting feeding dynamics, a concept centered on the roles and interaction of the caregiver and child in a feeding relationship, may have significant potential for obesity intervention. The aim of this paper is to describe the 3-phase development of the Feeding Dynamics Intervention (FDI), an acceptability and feasibility study on implementing the feeding dynamic roles (Study 1), development of the FDI content (Study 2), and a pilot study on use of the 6-lesson FDI to promote behaviors consistent with a feeding dynamic approach (Study 3). Sample population was mothers with young children, 2-5 years old. An effect size (Hedges' g) greater than 0.20 was seen in more than half (57%) of maternal feeding behaviors, with the largest effect sizes (Hedges' g ≥ 0.8) occurring with behaviors that represent the mother adopting her roles of determining what food is served, not using food as a reward, and not controlling her child's intake. There was a significant decline in Pressure to Eat behaviors (2.9 versus 2.2, p < 0.01) and Monitoring (4.1 versus 3.5, p < 0.001). The FDI emerged as an acceptable and implementable intervention. Future studies need to investigate effects of the FDI on the child's eating behaviors, self-regulation of energy intake, and anthropometrics.

  11. Targeting Feeding and Eating Behaviors: Development of the Feeding Dynamic Intervention for Caregivers of 2- to 5-Year-Old Children

    PubMed Central

    Eneli, Ihuoma U.; Tylka, Tracy L.; Watowicz, Rosanna P.; Hummel, Jessica; Ritter, Jan; Lumeng, Julie C.

    2015-01-01

    Targeting feeding dynamics, a concept centered on the roles and interaction of the caregiver and child in a feeding relationship, may have significant potential for obesity intervention. The aim of this paper is to describe the 3-phase development of the Feeding Dynamics Intervention (FDI), an acceptability and feasibility study on implementing the feeding dynamic roles (Study 1), development of the FDI content (Study 2), and a pilot study on use of the 6-lesson FDI to promote behaviors consistent with a feeding dynamic approach (Study 3). Sample population was mothers with young children, 2–5 years old. An effect size (Hedges' g) greater than 0.20 was seen in more than half (57%) of maternal feeding behaviors, with the largest effect sizes (Hedges' g ≥ 0.8) occurring with behaviors that represent the mother adopting her roles of determining what food is served, not using food as a reward, and not controlling her child's intake. There was a significant decline in Pressure to Eat behaviors (2.9 versus 2.2, p < 0.01) and Monitoring (4.1 versus 3.5, p < 0.001). The FDI emerged as an acceptable and implementable intervention. Future studies need to investigate effects of the FDI on the child's eating behaviors, self-regulation of energy intake, and anthropometrics. PMID:26199741

  12. Targeting Feeding and Eating Behaviors: Development of the Feeding Dynamic Intervention for Caregivers of 2- to 5-Year-Old Children.

    PubMed

    Eneli, Ihuoma U; Tylka, Tracy L; Watowicz, Rosanna P; Hummel, Jessica; Ritter, Jan; Lumeng, Julie C

    2015-01-01

    Targeting feeding dynamics, a concept centered on the roles and interaction of the caregiver and child in a feeding relationship, may have significant potential for obesity intervention. The aim of this paper is to describe the 3-phase development of the Feeding Dynamics Intervention (FDI), an acceptability and feasibility study on implementing the feeding dynamic roles (Study 1), development of the FDI content (Study 2), and a pilot study on use of the 6-lesson FDI to promote behaviors consistent with a feeding dynamic approach (Study 3). Sample population was mothers with young children, 2-5 years old. An effect size (Hedges' g) greater than 0.20 was seen in more than half (57%) of maternal feeding behaviors, with the largest effect sizes (Hedges' g ≥ 0.8) occurring with behaviors that represent the mother adopting her roles of determining what food is served, not using food as a reward, and not controlling her child's intake. There was a significant decline in Pressure to Eat behaviors (2.9 versus 2.2, p < 0.01) and Monitoring (4.1 versus 3.5, p < 0.001). The FDI emerged as an acceptable and implementable intervention. Future studies need to investigate effects of the FDI on the child's eating behaviors, self-regulation of energy intake, and anthropometrics. PMID:26199741

  13. House Infestation Dynamics and Feeding Sources of Triatoma dimidiata in Central Veracruz, Mexico

    PubMed Central

    Torres-Montero, Jesús; López-Monteon, Aracely; Dumonteil, Eric; Ramos-Ligonio, Angel

    2012-01-01

    Chagas disease is endemic in the state of Veracruz, Mexico, and we investigated here the dynamics of house infestation by Chagas disease vectors to understand disease transmission and design effective control interventions. Bug collections in 42 rural villages confirmed the widespread distribution of Triatoma dimidiata in central Veracruz. Unexpectedly, collection data further indicated a clear pattern of seasonal infestation by mostly adult bugs. Analysis of feeding sources with a polymerase chain reaction-heteroduplex assay indicated a frequent feeding on humans, in agreement with the high seroprevalence previously observed. Feeding sources also confirmed a significant dispersal of bugs between habitats. High dispersal capabilities and seasonal infestation may thus be a shared characteristic of several of the T. dimidiata sibling species from this complex. It would thus be critical to adapt vector control interventions to this behavior to improve their efficacy and sustainability, as the control of T. dimidiata has been notoriously challenging. PMID:22492153

  14. MILKY WAY SUPERMASSIVE BLACK HOLE: DYNAMICAL FEEDING FROM THE CIRCUMNUCLEAR ENVIRONMENT

    SciTech Connect

    Liu, Hauyu Baobab; Hsieh, Pei-Ying; Ho, Paul T. P.; Su, Yu-Nung; Wright, Melvyn; Sun, Ai-Lei; Minh, Young Chol

    2012-09-10

    The supermassive black hole (SMBH), Sgr A*, at the Galactic center is surrounded by a molecular circumnuclear disk (CND) lying between 1.5 and 4 pc radii. The irregular and clumpy structures of the CND suggest dynamical evolution and episodic feeding of gas toward the central SMBH. New sensitive data from the Submillimeter Array and Green Bank Telescope reveal several >5-10 pc scale molecular arms, which either directly connect to the CND or may penetrate inside the CND. The CND appears to be the convergence of the innermost parts of large-scale gas streamers, which are responding to the central gravitational potential well. Rather than being a quasi-stationary structure, the CND may be dynamically evolving, incorporating inflow via streamers, and feeding gas toward the center.

  15. Milky Way Supermassive Black Hole: Dynamical Feeding from the Circumnuclear Environment

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Hsieh, Pei-Ying; Ho, Paul T. P.; Su, Yu-Nung; Wright, Melvyn; Sun, Ai-Lei; Minh, Young Chol

    2012-09-01

    The supermassive black hole (SMBH), Sgr A*, at the Galactic center is surrounded by a molecular circumnuclear disk (CND) lying between 1.5 and 4 pc radii. The irregular and clumpy structures of the CND suggest dynamical evolution and episodic feeding of gas toward the central SMBH. New sensitive data from the Submillimeter Array and Green Bank Telescope reveal several >5-10 pc scale molecular arms, which either directly connect to the CND or may penetrate inside the CND. The CND appears to be the convergence of the innermost parts of large-scale gas streamers, which are responding to the central gravitational potential well. Rather than being a quasi-stationary structure, the CND may be dynamically evolving, incorporating inflow via streamers, and feeding gas toward the center.

  16. Identification and Quantification of Volatile Chemical Spoilage Indexes Associated with Bacterial Growth Dynamics in Aerobically Stored Chicken.

    PubMed

    Mikš-Krajnik, Marta; Yoon, Yong-Jin; Ukuku, Dike O; Yuk, Hyun-Gyun

    2016-08-01

    Volatile organic compounds (VOCs) as chemical spoilage indexes (CSIs) of raw chicken breast stored aerobically at 4, 10, and 21 °C were identified and quantified using solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS). The growth dynamics of total viable count (TVC), psychrotrophs, Pseudomonas spp., lactic acid bacteria (LAB), Brochothrix thermosphacta and H2 S producing bacteria were characterized based on maximum growth rates (μmax ), maximal microbial concentration (Nmax ) and at the moment of microbial shelf life (Svalues ), calculated from Gompertz-fitted growth curves. Pseudomonas spp. was predominant species, while B. thermosphacta was characterized by the highest μmax . The microbiological and sensory shelf lives were estimated based on TVC, Pseudomonas spp., and B. thermosphacta counts and sensory evaluation, respectively. Among 27 VOCs identified by GC-MS in spoiled chicken samples, ethanol (EtOH), 1-butanol-3-methyl (1But-3M), and acetic acid (C2 ) achieved the highest Pearson's correlation coefficients of 0.66, 0.61, and 0.59, respectively, with TVC, regardless of storage temperature. Partial least squares (PLS) regression revealed that the synthesis of 1But-3M and C2 was most likely induced by the metabolic activity of B. thermosphacta and LAB, while EtOH was attributed to Pseudomonas spp. The increase in concentration of selected volatile spoilage markers (EtOH, 1But-3M, and C2 ) in the headspace over spoiled chicken breast was found to be statistically significant (P < 0.05) with TVC growth. These findings highlight the possibility of analyzing the combination of 3 selected spoilage markers: EtOH, 1But-3M, and C2 as rapid evaluation for poultry quality testing using SPME-GC-MS.

  17. Identification and Quantification of Volatile Chemical Spoilage Indexes Associated with Bacterial Growth Dynamics in Aerobically Stored Chicken.

    PubMed

    Mikš-Krajnik, Marta; Yoon, Yong-Jin; Ukuku, Dike O; Yuk, Hyun-Gyun

    2016-08-01

    Volatile organic compounds (VOCs) as chemical spoilage indexes (CSIs) of raw chicken breast stored aerobically at 4, 10, and 21 °C were identified and quantified using solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS). The growth dynamics of total viable count (TVC), psychrotrophs, Pseudomonas spp., lactic acid bacteria (LAB), Brochothrix thermosphacta and H2 S producing bacteria were characterized based on maximum growth rates (μmax ), maximal microbial concentration (Nmax ) and at the moment of microbial shelf life (Svalues ), calculated from Gompertz-fitted growth curves. Pseudomonas spp. was predominant species, while B. thermosphacta was characterized by the highest μmax . The microbiological and sensory shelf lives were estimated based on TVC, Pseudomonas spp., and B. thermosphacta counts and sensory evaluation, respectively. Among 27 VOCs identified by GC-MS in spoiled chicken samples, ethanol (EtOH), 1-butanol-3-methyl (1But-3M), and acetic acid (C2 ) achieved the highest Pearson's correlation coefficients of 0.66, 0.61, and 0.59, respectively, with TVC, regardless of storage temperature. Partial least squares (PLS) regression revealed that the synthesis of 1But-3M and C2 was most likely induced by the metabolic activity of B. thermosphacta and LAB, while EtOH was attributed to Pseudomonas spp. The increase in concentration of selected volatile spoilage markers (EtOH, 1But-3M, and C2 ) in the headspace over spoiled chicken breast was found to be statistically significant (P < 0.05) with TVC growth. These findings highlight the possibility of analyzing the combination of 3 selected spoilage markers: EtOH, 1But-3M, and C2 as rapid evaluation for poultry quality testing using SPME-GC-MS. PMID:27332555

  18. Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network.

    PubMed

    Vavoulis, Dimitris V; Straub, Volko A; Kemenes, Ildikó; Kemenes, György; Feng, Jianfeng; Benjamin, Paul R

    2007-05-01

    Central pattern generators (CPGs) are networks underlying rhythmic motor behaviours and they are dynamically regulated by neuronal elements that are extrinsic or intrinsic to the rhythmogenic circuit. In the feeding system of the pond snail, Lymnaea stagnalis, the extrinsic slow oscillator (SO) interneuron controls the frequency of the feeding rhythm and the N3t (tonic) has a dual role; it is an intrinsic CPG interneuron, but it also suppresses CPG activity in the absence of food, acting as a decision-making element in the feeding circuit. The firing patterns of the SO and N3t neurons and their synaptic connections with the rest of the CPG are known, but how these regulate network function is not well understood. This was investigated by building a computer model of the feeding network based on a minimum number of cells (N1M, N2v and N3t) required to generate the three-phase motor rhythm together with the SO that was used to activate the system. The intrinsic properties of individual neurons were represented using two-compartment models containing currents of the Hodgkin-Huxley type. Manipulations of neuronal activity in the N3t and SO neurons in the model produced similar quantitative effects to food and electrical stimulation in the biological network indicating that the model is a useful tool for studying the dynamic properties of the feeding circuit. The model also predicted novel effects of electrical stimulation of two CPG interneurons (N1M and N2v). When tested experimentally, similar effects were found in the biological system providing further validation of our model.

  19. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    PubMed

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  20. Impact of Feed Injection Strategies on Fluidization Dynamics for Biomass Thermochemical Conversion

    SciTech Connect

    Malhotra, K. N.; Pepiot, P.; Capecelatro, J. S.; Desjardins, O.; Grout, R.; Nimlos, M. R.

    2012-01-01

    To better understand some of the key parameters that control biomass conversion processes in dense granular beds, an efficient computational framework for large-scale simulations of dense, reactive particulate flows using a Lagrange-Euler approach has been developed. This framework is applied here to the investigation of feed injection in a hot fluidized bed reactor, and how it may impact the biomass conversion dynamics. A simple, pseudo-two dimensional configuration is adopted to facilitate the parametric study. Chemical processes are modeled using global kinetics that accurately reproduce particle mass loss and gas release. A posteriori analysis of particle heating rate, mixing and segregation, along with products distribution and residence time inside the reactor is performed for different injection strategies, and compared to non-reactive cases. Results highlight some non-trivial coupling between chemistry and flow dynamics.

  1. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process.

    PubMed

    Ge, Shijian; Peng, Yongzhen; Qiu, Shuang; Zhu, Ao; Ren, Nanqi

    2014-05-15

    This study assessed the technical feasibility of removing nitrogen from municipal wastewater by partial nitrification (nitritation) in a continuous plug-flow step feed process. Nitrite in the effluent accumulated to over 81.5  ± 9.2% but disappeared with the transition of process operation from anoxic/oxic mode to the anaerobic/anoxic/oxic mode. Batch tests showed obvious ammonia oxidizing bacteria (AOB) stimulation (advanced ammonia oxidation rate) and nitrite (NOB) oxidizing bacteria inhibition (reduced nitrite oxidation rate) under transient anoxic conditions. Two main factors contributed to nitritation in this continuous plug-flow process: One was the alternating anoxic and oxic operational condition; the step feed strategy guaranteed timely denitrification in anoxic zones, allowing a reduction in energy supply (nitrite) to NOB. Fluorescence in Situ Hybridization and quantitative real-time polymerase chain reaction analysis indicated that NOB population gradually decreased to 1.0  ± 0.1% of the total bacterial population (dominant Nitrospira spp., 1.55 × 10(9) copies/L) while AOB increased approximately two-fold (7.4  ± 0.9%, 1.25 × 10(10) copies/L) during the above anoxic to anaerobic transition. Most importantly, without addition of external carbon sources, the above wastewater treatment process reached 86.0  ± 4.2% of total nitrogen (TN) removal with only 7.23 ± 2.31 mg/L of TN in the effluent, which met the discharge requirements. PMID:24602864

  2. Development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions.

    PubMed

    Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E

    2016-05-01

    The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (μmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the μmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken.

  3. Top-level dynamics and the regulated gene response of feed-forward loop transcriptional motifs

    NASA Astrophysics Data System (ADS)

    Mayo, Michael; Abdelzaher, Ahmed; Perkins, Edward J.; Ghosh, Preetam

    2014-09-01

    Feed-forward loops are hierarchical three-node transcriptional subnetworks, wherein a top-level protein regulates the activity of a target gene via two paths: a direct-regulatory path, and an indirect route, whereby the top-level proteins act implicitly through an intermediate transcription factor. Using a transcriptional network of the model bacterium Escherichia coli, we confirmed that nearly all types of feed-forward loop were significantly overrepresented in the bacterial network. We then used mathematical modeling to study their dynamics by manipulating the rise times of the top-level protein concentration, termed the induction time, through alteration of the protein destruction rates. Rise times of the regulated proteins exhibited two qualitatively different regimes, depending on whether top-level inductions were "fast" or "slow." In the fast regime, rise times were nearly independent of rapid top-level inductions, indicative of biological robustness, and occurred when RNA production rate-limits the protein yield. Alternatively, the protein rise times were dependent upon slower top-level inductions, greater than approximately one bacterial cell cycle. An equation is given for this crossover, which depends upon three parameters of the direct-regulatory path: transcriptional cooperation at the DNA-binding site, a protein-DNA dissociation constant, and the relative magnitude of the top-level protien concentration.

  4. Top-level dynamics and the regulated gene response of feed-forward loop transcriptional motifs.

    PubMed

    Mayo, Michael; Abdelzaher, Ahmed; Perkins, Edward J; Ghosh, Preetam

    2014-09-01

    Feed-forward loops are hierarchical three-node transcriptional subnetworks, wherein a top-level protein regulates the activity of a target gene via two paths: a direct-regulatory path, and an indirect route, whereby the top-level proteins act implicitly through an intermediate transcription factor. Using a transcriptional network of the model bacterium Escherichia coli, we confirmed that nearly all types of feed-forward loop were significantly overrepresented in the bacterial network. We then used mathematical modeling to study their dynamics by manipulating the rise times of the top-level protein concentration, termed the induction time, through alteration of the protein destruction rates. Rise times of the regulated proteins exhibited two qualitatively different regimes, depending on whether top-level inductions were "fast" or "slow." In the fast regime, rise times were nearly independent of rapid top-level inductions, indicative of biological robustness, and occurred when RNA production rate-limits the protein yield. Alternatively, the protein rise times were dependent upon slower top-level inductions, greater than approximately one bacterial cell cycle. An equation is given for this crossover, which depends upon three parameters of the direct-regulatory path: transcriptional cooperation at the DNA-binding site, a protein-DNA dissociation constant, and the relative magnitude of the top-level protien concentration.

  5. Modelling Transmission of Vector-Borne Pathogens Shows Complex Dynamics When Vector Feeding Sites Are Limited

    PubMed Central

    Kershenbaum, Arik; Stone, Lewi; Ostfeld, Richard S.; Blaustein, Leon

    2012-01-01

    The relationship between species richness and the prevalence of vector-borne disease has been widely studied with a range of outcomes. Increasing the number of host species for a pathogen may decrease infection prevalence (dilution effect), increase it (amplification), or have no effect. We derive a general model, and a specific implementation, which show that when the number of vector feeding sites on each host is limiting, the effects on pathogen dynamics of host population size are more complex than previously thought. The model examines vector-borne disease in the presence of different host species that are either competent or incompetent (i.e. that cannot transmit the pathogen to vectors) as reservoirs for the pathogen. With a single host species present, the basic reproduction ratio R0 is a non-monotonic function of the population size of host individuals (H), i.e. a value exists that maximises R0. Surprisingly, if a reduction in host population size may actually increase R0. Extending this model to a two-host species system, incompetent individuals from the second host species can alter the value of which may reverse the effect on pathogen prevalence of host population reduction. We argue that when vector-feeding sites on hosts are limiting, the net effect of increasing host diversity might not be correctly predicted using simple frequency-dependent epidemiological models. PMID:22590597

  6. A novel approach for determining the minimum feed in nanochannels processing via molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Ren, Jiaqi; Dong, Zeguang; Zhao, Jinsheng; Liu, Pinkuan

    2016-04-01

    A novel approach based on molecular dynamics (MD) simulation has been proposed for the first time with the focus on quantifying the minimum feed (MF) in atomic force microscope (AFM) based nanochannel fabrication. This approach involves a coarse-to-fine criterion to determine MF so that regular nanochannel patterns can be obtained. The method is first introduced step by step and then confirmatory test is performed to demonstrate the capability of this contour-based method. MF judging studies are also performed systematically in which they vary in the aspects of scratching depth, tip angles, and tip shapes. Dislocations generation, surface quality, and scratching forces in the initial and subsequent scratches are investigated in detail. This method can overcome the drawbacks of high cost and low efficiency in experimental studies. Furthermore, our method sheds light on the manufacturing technique of nanochannels, which can help to obtain the surface morphologies with higher quality than traditional approaches.

  7. Dynamics of Microbial Community Structure of and Enhanced Biological Phosphorus Removal by Aerobic Granules Cultivated on Propionate or Acetate▿

    PubMed Central

    Gonzalez-Gil, Graciela; Holliger, Christof

    2011-01-01

    Aerobic granules are dense microbial aggregates with the potential to replace floccular sludge for the treatment of wastewaters. In bubble-column sequencing batch reactors, distinct microbial populations dominated propionate- and acetate-cultivated aerobic granules after 50 days of reactor operation when only carbon removal was detected. Propionate granules were dominated by Zoogloea (40%), Acidovorax, and Thiothrix, whereas acetate granules were mainly dominated by Thiothrix (60%). Thereafter, an exponential increase in enhanced biological phosphorus removal (EBPR) activity was observed in the propionate granules, but a linear and erratic increase was detected in the acetate ones. Besides Accumulibacter and Competibacter, other bacterial populations found in both granules were associated with Chloroflexus and Acidovorax. The EBPR activity in the propionate granules was high and stable, whereas EBPR in the acetate granules was erratic throughout the study and suffered from a deterioration period that could be readily reversed by inducing hydrolysis of polyphosphate in presumably saturated Accumulibacter cells. Using a new ppk1 gene-based dual terminal-restriction fragment length polymorphism (T-RFLP) approach revealed that Accumulibacter diversity was highest in the floccular sludge inoculum but that when granules were formed, propionate readily favored the dominance of Accumulibacter type IIA. In contrast, acetate granules exhibited transient shifts between type I and type II before the granules were dominated by Accumulibacter type IIA. However, ppk1 gene sequences from acetate granules clustered separately from those of propionate granules. Our data indicate that the mere presence of Accumulibacter is not enough to have consistently high EBPR but that the type of Accumulibacter determines the robustness of the phosphate removal process. PMID:21926195

  8. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    PubMed

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. PMID:26686008

  9. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    PubMed

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications.

  10. A global comparative analysis of the feeding dynamics and environmental conditions of larval tunas, mackerels, and billfishes

    NASA Astrophysics Data System (ADS)

    Llopiz, Joel K.; Hobday, Alistair J.

    2015-03-01

    Scombroid fishes, including tunas, mackerels, and billfishes, constitute some of the most important fisheries in lower latitudes around the world. Though the early life stages of these taxa are relatively well-studied, worldwide patterns in larval feeding dynamics and how such patterns relate to environmental conditions are poorly resolved. We present a synthesis of feeding success (i.e. feeding incidences) and diets of larval scombroids from around the world, and relate these results to water column and sea surface properties for the several regions in which larval feeding studies have been conducted. Feeding success of larval tunas was shown to be distinctly different among regions. In some locations (the Straits of Florida and the Mediterranean Sea), nearly no larvae had empty guts, whereas in other locations (the Gulf of California and off NW Australia) ~40-60% of larvae were empty. Diets were consistently narrow in each region (dominated by cyclopoid copepods, appendicularians, nauplii, and other fish larvae), and were usually, but not always, similar for a given scombroid taxon among regions (though diets differed among taxa). Larval habitat conditions were often similar among the 9 regions examined, but some clear differences included low levels of eddy kinetic energy and cooler waters (at the surface and at depth) in the Mediterranean, and lower chlorophyll concentrations around the Nansei Islands, Japan and off NW Australia where feeding success was low. When observed zooplankton abundances are also taken into account, the compiled results on feeding and environmental conditions indicate a bottom-up influence on feeding success. Moreover, the variability among regions highlights the potential for region-specific mechanisms regulating larval survival and, ultimately, levels of adult recruitment.

  11. Dynamics and thermal sensitivity of ballistic and non-ballistic feeding in salamanders.

    PubMed

    Deban, Stephen M; Scales, Jeffrey A

    2016-02-01

    Low temperature reduces the performance of muscle-powered movements, but in movements powered by elastic recoil mechanisms, this effect can be mitigated and performance can be increased. To better understand the morphological basis of high performance and thermal robustness of elastically powered movements, we compared feeding dynamics at a range of temperatures (5-25°C) in two species of terrestrial plethodontid salamanders, Plethodon metcalfi and Ensatina eschscholtzii, which differ in tongue muscle architecture and the mechanism of tongue projection. We found that Ensatina is capable of ballistic projection with a mean muscle mass-specific power of 2100 W kg(-1), revealing an elastic mechanism. Plethodon, in contrast, projected its tongue non-ballistically with a mean power of only 18 W kg(-1), indicating it is muscle powered. Ensatina projected its tongue significantly farther than Plethodon and with dynamics that had significantly lower thermal sensitivity at temperatures below 15°C. These performance differences were correlated with morphological differences, namely elongated collagenous aponeuroses in the projector muscle of Ensatina as compared with Plethodon, which are likely the site of energy storage, and the absence in Ensatina of projector muscle fibers attaching to the tongue skeleton that allows projection to be truly ballistic. These findings demonstrate that, in these otherwise similar species, the presence in one species of elaborated connective tissue in series with myofibers confers not only 10-fold greater absolute performance but also greater thermal robustness of performance. We conclude that changes in muscle and connective tissue architecture are sufficient to alter significantly the mechanics, performance and thermal robustness of musculoskeletal systems.

  12. Feeding dynamics in European Seabass (Dicentrarchus labrax) post-larvae in turbulence

    NASA Astrophysics Data System (ADS)

    Mahjoub, Mohamed-Sofiane; Kumar, Ram; Souissi, Sami; Schmitt, Francois; Hwang, Jiang-Shiou

    2010-05-01

    A wide consensus exists that turbulence, unless reaching a threshold level, enhances ingestion rates in larval fish by increasing encounters with preys. This consensus, mainly derived from modeling exercises, relies on the two following assumptions: i) prey densities should be below saturating level, and ii) maximum intake rates by larval fish are independent of the turbulence level. While fine-scale studies within the feeding areas of larval fish showed that the first assumption is only seldomly met, the second assumption has yet to be validated. In this study, we experimentally investigated the effect of turbulence (Re ranging from 0 to 150000) on the ingestion rates in European Seabass (Dicentrarchus labrax) post-larvae exposed to realistic prey densities consistent with those observed in the natural environment. Contrarly to what was predicted by models in the case of a limiting prey density, our results revealed that increasing turbulence hampers the ingestion rates when food densities are realistic (i.e., high). The dynamics of food intake across three different flow levels (Re=0, Re=60000 and Re=120000) showed that maximum ingestion levels are turbulence-dependent; thus invalidating the above cited second assumption. On the light of these results, we draw the attention to the fact that our knowledge of the factors governing the plankton-turbulence coupling is still incomplete, especially as regards empirical results.

  13. Climate-driven diversity dynamics in plants and plant-feeding insects.

    PubMed

    Nyman, Tommi; Linder, Hans Peter; Peña, Carlos; Malm, Tobias; Wahlberg, Niklas

    2012-08-01

    The origin of species-rich insect-plant food webs has traditionally been explained by diversifying antagonistic coevolution between plant defences and herbivore counter-defences. However, recent studies combining paleoclimatic reconstructions with time-calibrated phylogenies suggest that variation in global climate determines the distribution, abundance and diversity of plant clades and, hence, indirectly influences the balance between speciation and extinction in associated herbivore groups. Extant insect communities tend to be richest on common plant species that have many close relatives. This could be explained either by climate-driven diffuse cospeciation between plants and insects, or by elevated speciation and reduced extinction in herbivore lineages associated with expanding host taxa (resources). Progress in paleovegetation reconstructions in combination with the rapidly increasing availability of fossil-calibrated phylogenies provide means to discern between these alternative hypotheses. In particular, the 'Diffuse cospeciation' scenario predicts closely matching main diversification periods in plants and in the insects that feed upon them, while the 'Resource abundance-dependent diversification' hypothesis predicts that both positive and negative responses of insect diversity are lagged in relation to host-plant availability. The dramatic Cenozoic changes in global climate provide multiple possibilities for studying the mechanisms by which climatic shifts may drive diversity dynamics in plants and insect herbivores.

  14. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  15. The Dynamics of Parenting and Early Feeding--Constructs and Controversies: A Viewpoint

    ERIC Educational Resources Information Center

    Jansen, Elena; Daniels, Lynne A.; Nicholson, Jan M.

    2012-01-01

    There is increasing evidence that parenting and feeding interact to influence children's eating behaviour and weight status. Interpretation of existing research is complicated by the lack of consensus in the conceptualisation and measurement of both "parenting" and "feeding", particularly the distinction between "styles", "dimensions" and…

  16. Spatial-temporal feeding dynamics of benthic communities in an estuary-marine gradient

    NASA Astrophysics Data System (ADS)

    Antonio, Emily S.; Kasai, Akihide; Ueno, Masahiro; Ishihi, Yuka; Yokoyama, Hisashi; Yamashita, Yoh

    2012-10-01

    We investigated the fluctuations of carbon and nitrogen stable isotope ratios in benthic consumers and their potential food sources to determine the spatial and temporal variations in the utilization of available organic matter, indicating the origin and pathways of energy from Yura Estuary to Tango Sea, Japan. Field samplings were conducted from the upper estuary to offshore with sampling frequency of twice per season from April (spring) 2006 to February (winter) 2007. The δ13C signatures of the upper and lower estuary benthos showed depleted and in wide range (-28.9‰ to -13.5‰) compared to the enriched and within narrow range signatures of marine benthos (-20.6‰ to -14.0‰) in all seasons. On the contrary, the δ15N signatures of benthic communities showed decreasing trend seaward and summer values were different from the other seasons. Using the dual isotope and multisource mixing models, we estimated the relative contributions of potential food sources to the benthos diet. River POM played an important source of energy for the estuarine benthos, especially in winter when river discharge was high. Marine POM served as an important alternative food for the estuarine benthos from spring to autumn when seawater intruded the bottom estuary. Benthic microalgae were the major food source at the shallow coast throughout the year, while marine POM fueled the deep coast and offshore benthic food webs. Spatial and temporal feeding variations in estuarine benthic communities were driven by the hydrology of the estuary, whereas primary production and transport of food source dictated diet variations of marine benthic communities. The elucidation of the dynamic energy subsidy among aquatic systems highlights the importance of the land-sea transition zones that is crucial for benthic secondary productions.

  17. Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow.

    PubMed

    Ortega-Cisneros, Kelly; Scharler, Ursula M

    2015-01-01

    This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine

  18. Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow

    PubMed Central

    Ortega-Cisneros, Kelly; Scharler, Ursula M.

    2015-01-01

    This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine

  19. Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow.

    PubMed

    Ortega-Cisneros, Kelly; Scharler, Ursula M

    2015-01-01

    This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine

  20. Variational approach for two-component condensates dynamics with two- and three-body interactions and external feeding

    NASA Astrophysics Data System (ADS)

    Mboumba, Maïk Delon; Moubissi, Alain Brice; Ekogo, Thierry Blanchard; Ben-Bolie, Germain Hubert; Kofane, Timoléon Crépin

    2015-10-01

    We study theoretically and numerically the dynamical behavior of two-component condensates with two- and three-body interactions in variable shape optical lattices and external feeding. By means of the variational approach, the evolution of the condensate amplitudes, widths and number of particles are investigated. The stability of stationary two-component solitons are derived through the Vakhitov-Kolokolov criterion which depends on the cubic and quintic nonlinearities. Direct numerical results of the two coupled Gross-Piteavskii equations (GPEs) which describe the dynamics of the two-component condensates are found to be in good agreement with the analytical predictions.

  1. Centaur feedline dynamics study using power spectral methods. [fundamental mode resonant frequencies of RL-10 oxygen and hydrogen feed lines

    NASA Technical Reports Server (NTRS)

    Lorenzo, C. F.

    1974-01-01

    Tests were conducted to determine the dynamic characteristics of the Centaur/RL-10 oxygen and hydrogen feedlines. The fundamental-mode resonant frequencies were determined by applying power spectral methods to noise-generated data from hot firings of the RL-10 engine. The effect of net positive suction pressure of the main feed pumps on resonant frequency characteristics was determined to be a straight-line relation. Power spectral methods were also used to determine the dynamic characteristics of the boost pumps.

  2. Fuel sensor-less control of a liquid feed fuel cell under dynamic loading conditions for portable power sources (II)

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.

    This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.

  3. Determining Suction Feeding Efficiency in the Bowfin fish (Amia) using Particle Image Velocimery and Computaional Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Rua, Yenny; Kharbouch, Karim; Sanford, Christopher; Reckinger, Shanon

    2014-11-01

    Suction feeding is the most common form of prey capture in aquatic vertebrates. During the early evolution of fishes there was a major change in shape of the mouth, from a wedge shaped mouth opening in more primitive fishes to a more circular and planar mouth. This change in shape resulted from increased mobility of a key upper jaw bone, the maxilla. It has been suggested that this change in shape dramatically increased suction feeding efficiency. This study examines the hydrodynamic effects of these two mouth shapes in the same animal, the bowfin fish (Amia calva). 2D Particle Image Velocimetry (PIV) is used to analyze suction feeding events. Post-processing algorithms have been developed to determine the flow rate of water into the mouth of the fish; the area of fluid, the velocity of fluid and the volume of fluid affected by the fish; the velocity of the fluid at the mouth, as well as the velocity of the fluid as a function of the distance from the mouth, finally the force exerted on the fluid by the fish is also determined. Lastly, a numerical model has been developed for comparison using a non-uniform mesh, which adapts dynamically in space and time to the fish feeding event. The realistic geometry of the fish's head is modeled in CAD.

  4. Using grounded theory methodology to conceptualize the mother-infant communication dynamic: potential application to compliance with infant feeding recommendations.

    PubMed

    Waller, Jennifer; Bower, Katherine M; Spence, Marsha; Kavanagh, Katherine F

    2015-10-01

    Excessive, rapid weight gain in early infancy has been linked to risk of later overweight and obesity. Inappropriate infant feeding practices associated with this rapid weight gain are currently of great interest. Understanding the origin of these practices may increase the effectiveness of interventions. Low-income populations in the Southeastern United States are at increased risk for development of inappropriate infant feeding practices, secondary to the relatively low rates of breastfeeding reported from this region. The objective was to use grounded theory methodology (GTM) to explore interactions between mothers and infants that may influence development of feeding practices, and to do so among low-income, primiparous, Southeastern United States mothers. Analysis of 15 in-depth phone interviews resulted in development of a theoretical model in which Mother-Infant Communication Dynamic emerged as the central concept. The central concept suggests a communication pattern developed over the first year of life, based on a positive feedback loop, which is harmonious and results in the maternal perception of mother and infant now speaking the same language. Importantly, though harmonious, this dynamic may result from inaccurate maternal interpretation of infant cues and behaviours, subsequently leading to inappropriate infant feeding practices. Future research should test this theoretical model using direct observation of mother-infant communication, to increase the understanding of maternal interpretation of infant cues. Subsequently, interventions targeting accurate maternal interpretation of and response to infant cues, and impact on rate of infant weight gain could be tested. If effective, health care providers could potentially use these concepts to attenuate excess rapid infant weight gain.

  5. Fluid dynamics of feeding behaviour in white-spotted bamboo sharks.

    PubMed

    Nauwelaerts, Sandra; Wilga, Cheryl D; Lauder, George V; Sanford, Christopher P

    2008-10-01

    Although the motor control of feeding is presumed to be generally conserved, some fishes are capable of modulating the feeding behaviour in response to prey type and or prey size. This led to the 'feeding modulation hypothesis', which states that rapid suction strikes are pre-programmed stereotyped events that proceed to completion once initiated regardless of sensory input. If this hypothesis holds true, successful strikes should be indistinguishable from unsuccessful strikes owing to a lack of feedback control in specialized suction feeding fishes. The hydrodynamics of suction feeding in white-spotted bamboo sharks (Chiloscyllium plagiosum) was studied in three behaviours: successful strikes, intraoral transports of prey and unsuccessful strikes. The area of the fluid velocity region around the head of feeding sharks was quantified using time-resolved digital particle image velocimetry (DPIV). The maximal size of the fluid velocity region is 56% larger in successful strikes than unsuccessful strikes (10.79 cm2 vs 6.90 cm2), but they do not differ in duration, indicating that strikes are modulated based on some aspect of the prey or simply as a result of decreased effort on the part of the predator. The hydrodynamic profiles of successful and unsuccessful strikes differ after 21 ms, a period probably too short to provide time to react through feedback control. The predator-to-prey distance is larger in missed strikes compared with successful strikes, indicating that insufficient suction is generated to compensate for the increased distance. An accuracy index distinguishes unsuccessful strikes (-0.26) from successful strikes (0.45 to 0.61). Successful strikes occur primarily between the horizontal axis of the mouth and the dorsal boundary of the ingested parcel of water, and missed prey are closer to the boundary or beyond. Suction transports are shorter in duration than suction strikes but have similar maximal fluid velocity areas to move the prey through the

  6. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.

    PubMed

    Harb, Moustapha; Wei, Chun-Hai; Wang, Nan; Amy, Gary; Hong, Pei-Ying

    2016-10-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  7. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.

    PubMed

    Harb, Moustapha; Wei, Chun-Hai; Wang, Nan; Amy, Gary; Hong, Pei-Ying

    2016-10-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower. PMID:27441825

  8. Feed-forward and its role in conditional linear optical quantum dynamics

    SciTech Connect

    Scheel, S.; Munro, W. J.; Kok, P.; Eisert, J.; Nemoto, K.

    2006-03-15

    Nonlinear optical quantum gates can be created probabilistically using only single-photon sources, linear optical elements, and photon-number-resolving detectors. These gates are heralded but operate with probabilities much less than 1. There is currently a large gap between the performance of the known circuits and the established upper bounds on their success probabilities. One possibility for increasing the probability of success of such gates is feed-forward, where one attempts to correct certain failure events that occurred in the gate's operation. In this Brief Report we examine the role of feed-forward in improving the success probability. In particular, for the nonlinear sign-shift gate, we find that in a three-mode implementation with a single round of feed-forward the optimal average probability of success is approximately given by p{sub success}=0.272. This value is only slightly larger than the general optimal success probability without feed-forward, p{sub success}=0.25.

  9. Computational fluid dynamics simulations on a Devonian spiriferid Paraspirifer bownockeri (Brachiopoda): generating mechanism of passive feeding flows.

    PubMed

    Shiino, Yuta; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2009-07-01

    A mechanism of generating passive feeding flow for the Devonian spiriferide brachiopod Paraspirifer bownockeri was theoretically elucidated through fluid dynamics simulations for flow around rigid shells. The RANS equations were used as a turbulence model, and the unsteady incompressible flow was solved using the finite volume method. Two directions of ventral and dorsal flows were investigated as typical cases where little exchange flow occurs inside the shells. The digital model of the shell was constructed using image processing of X-ray CT images of a shell replica made by molding a polycarbonate plate to a well-preserved fossil specimen of Paraspirifer. To examine the effect of flow velocity, three conditions of ambient flow velocity were adopted for both the ventral and dorsal flows. The pressure distribution along the gape showed that a relatively high pressure occurred around the sulcus in all simulated cases. This high pressure generated inflow from the sulcus and subsequent spiral internal flow, especially in fast ambient flows. This means that the sulcus generated the considerable pressure gradient around the gape passively and generated the stable intake of seawater and a spiral flow of water inside the shell for feeding. We conclude that the shell form of certain spiriferides could generate spiral flows so as to promote passive feeding, and the sulcus is interpreted as an important form for the passive intake of water. PMID:19269296

  10. Computational fluid dynamics analysis of a wire-feed, high-velocity oxygen-fuel (HVOF) thermal spray torch

    SciTech Connect

    Lopez, A.R.; Hassan, B.; Oberkampf, W.L.; Neiser, R.A.; Roemer, T.J.

    1996-09-01

    The fluid and particle dynamics of a High-Velocity Oxygen-Fuel Thermal Spray torch are analyzed using computational and experimental techniques. Three-dimensional Computational Fluid Dynamics (CFD) results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco Diamond Jet Rotating Wire (DJRW) torch. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Premixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled using a single-step finite-rate chemistry model with a total of 9 gas species which includes dissociation of combustion products. A continually-fed steel wire passes through the center of the nozzle and melting occurs at a conical tip near the exit of the aircap. Wire melting is simulated computationally by injecting liquid steel particles into the flow field near the tip of the wire. Experimental particle velocity measurements during wire feed were also taken using a Laser Two-Focus (L2F) velocimeter system. Flow fields inside and outside the aircap are presented and particle velocity predictions are compared with experimental measurements outside of the aircap.

  11. Approaches for evaluating the effects of bivalve filter feeding on nutrient dynamics in Puget Sound, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.

    2014-01-01

    Marine bivalves such as clams, mussels, and oysters are an important component of the food web, which influence nutrient dynamics and water quality in many estuaries. The role of bivalves in nutrient dynamics and, particularly, the contribution of commercial shellfish activities, are not well understood in Puget Sound, Washington. Numerous approaches have been used in other estuaries to quantify the effects of bivalves on nutrient dynamics, ranging from simple nutrient budgeting to sophisticated numerical models that account for tidal circulation, bioenergetic fluxes through food webs, and biochemical transformations in the water column and sediment. For nutrient management in Puget Sound, it might be possible to integrate basic biophysical indicators (residence time, phytoplankton growth rates, and clearance rates of filter feeders) as a screening tool to identify places where nutrient dynamics and water quality are likely to be sensitive to shellfish density and, then, apply more sophisticated methods involving in-situ measurements and simulation models to quantify those dynamics.

  12. Hedgehog signaling mediates adaptive variation in a dynamic functional system in the cichlid feeding apparatus

    PubMed Central

    Hu, Yinan; Albertson, R. Craig

    2014-01-01

    Adaptive variation in the craniofacial skeleton is a key component of resource specialization and habitat divergence in vertebrates, but the proximate genetic mechanisms that underlie complex patterns of craniofacial variation are largely unknown. Here we demonstrate that the Hedgehog (Hh) signaling pathway mediates widespread variation across a complex functional system that affects the kinematics of lower jaw depression—the opercular four-bar linkage apparatus—among Lake Malawi cichlids. By using a combined quantitative trait locus mapping and population genetics approach, we show that allelic variation in the Hh receptor, ptch1, affects the development of distinct bony elements in the head that represent two of three movable links in this functional system. The evolutionarily derived allele is found in species that feed from the water column, and is associated with shifts in anatomy that translate to a four-bar system capable of faster jaw rotation. Alternatively, the ancestral allele is found in species that feed on attached algae, and is associated with the development of a four-bar system that predicts slower jaw movement. Experimental manipulation of the Hh pathway during cichlid development recapitulates functionally salient natural variation in craniofacial geometry. In all, these results significantly extend our understanding of the mechanisms that fine-tune the craniofacial skeletal complex during adaptation to new foraging niches. PMID:24912175

  13. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  14. Trophic Dynamics of Filter Feeding Bivalves in the Yangtze Estuarine Intertidal Marsh: Stable Isotope and Fatty Acid Analyses.

    PubMed

    Wang, Sikai; Jin, Binsong; Qin, Haiming; Sheng, Qiang; Wu, Jihua

    2015-01-01

    Benthic bivalves are important links between primary production and consumers, and are essential intermediates in the flow of energy through estuarine systems. However, information on the diet of filter feeding bivalves in estuarine ecosystems is uncertain, as estuarine waters contain particulate matter from a range of sources and as bivalves are opportunistic feeders. We surveyed bivalves at different distances from the creek mouth at the Yangtze estuarine marsh in winter and summer, and analyzed trophic dynamics using stable isotope (SI) and fatty acid (FA) techniques. Different bivalve species had different spatial distributions in the estuary. Glauconome chinensis mainly occurred in marshes near the creek mouth, while Sinonovacula constricta preferred the creek. Differences were found in the diets of different species. S. constricta consumed more diatoms and bacteria than G. chinensis, while G. chinensis assimilated more macrophyte material. FA markers showed that plants contributed the most (38.86 ± 4.25%) to particular organic matter (POM) in summer, while diatoms contributed the most (12.68 ± 1.17%) during winter. Diatoms made the largest contribution to the diet of S. constricta in both summer (24.73 ± 0.44%) and winter (25.51 ± 0.59%), and plants contributed no more than 4%. This inconsistency indicates seasonal changes in food availability and the active feeding habits of the bivalve. Similar FA profiles for S. constricta indicated that the bivalve had a similar diet composition at different sites, while different δ13C results suggested the diet was derived from different carbon sources (C4 plant Spartina alterniflora and C3 plant Phragmites australis and Scirpus mariqueter) at different sites. Species-specific and temporal and/or spatial variability in bivalve feeding may affect their ecological functions in intertidal marshes, which should be considered in the study of food webs and material flows in estuarine ecosystems.

  15. Trophic Dynamics of Filter Feeding Bivalves in the Yangtze Estuarine Intertidal Marsh: Stable Isotope and Fatty Acid Analyses

    PubMed Central

    Wang, Sikai; Jin, Binsong; Qin, Haiming; Sheng, Qiang; Wu, Jihua

    2015-01-01

    Benthic bivalves are important links between primary production and consumers, and are essential intermediates in the flow of energy through estuarine systems. However, information on the diet of filter feeding bivalves in estuarine ecosystems is uncertain, as estuarine waters contain particulate matter from a range of sources and as bivalves are opportunistic feeders. We surveyed bivalves at different distances from the creek mouth at the Yangtze estuarine marsh in winter and summer, and analyzed trophic dynamics using stable isotope (SI) and fatty acid (FA) techniques. Different bivalve species had different spatial distributions in the estuary. Glauconome chinensis mainly occurred in marshes near the creek mouth, while Sinonovacula constricta preferred the creek. Differences were found in the diets of different species. S. constricta consumed more diatoms and bacteria than G. chinensis, while G. chinensis assimilated more macrophyte material. FA markers showed that plants contributed the most (38.86 ± 4.25%) to particular organic matter (POM) in summer, while diatoms contributed the most (12.68 ± 1.17%) during winter. Diatoms made the largest contribution to the diet of S. constricta in both summer (24.73 ± 0.44%) and winter (25.51 ± 0.59%), and plants contributed no more than 4%. This inconsistency indicates seasonal changes in food availability and the active feeding habits of the bivalve. Similar FA profiles for S. constricta indicated that the bivalve had a similar diet composition at different sites, while different δ13C results suggested the diet was derived from different carbon sources (C4 plant Spartina alterniflora and C3 plant Phragmites australis and Scirpus mariqueter) at different sites. Species-specific and temporal and/or spatial variability in bivalve feeding may affect their ecological functions in intertidal marshes, which should be considered in the study of food webs and material flows in estuarine ecosystems. PMID:26261984

  16. Ruminal Bacterial Community Composition in Dairy Cows Is Dynamic over the Course of Two Lactations and Correlates with Feed Efficiency.

    PubMed

    Jewell, Kelsea A; McCormick, Caroline A; Odt, Christine L; Weimer, Paul J; Suen, Garret

    2015-07-01

    Fourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows were Bacteroidetes (49.42%), Firmicutes (39.32%), Proteobacteria (5.67%), and Tenericutes (2.17%), and the most abundant genera included Prevotella (40.15%), Butyrivibrio (2.38%), Ruminococcus (2.35%), Coprococcus (2.29%), and Succiniclasticum (2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles.

  17. Ruminal Bacterial Community Composition in Dairy Cows Is Dynamic over the Course of Two Lactations and Correlates with Feed Efficiency.

    PubMed

    Jewell, Kelsea A; McCormick, Caroline A; Odt, Christine L; Weimer, Paul J; Suen, Garret

    2015-07-01

    Fourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows were Bacteroidetes (49.42%), Firmicutes (39.32%), Proteobacteria (5.67%), and Tenericutes (2.17%), and the most abundant genera included Prevotella (40.15%), Butyrivibrio (2.38%), Ruminococcus (2.35%), Coprococcus (2.29%), and Succiniclasticum (2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles. PMID:25934629

  18. Ruminal Bacterial Community Composition in Dairy Cows Is Dynamic over the Course of Two Lactations and Correlates with Feed Efficiency

    PubMed Central

    Jewell, Kelsea A.; McCormick, Caroline A.; Odt, Christine L.; Weimer, Paul J.

    2015-01-01

    Fourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows were Bacteroidetes (49.42%), Firmicutes (39.32%), Proteobacteria (5.67%), and Tenericutes (2.17%), and the most abundant genera included Prevotella (40.15%), Butyrivibrio (2.38%), Ruminococcus (2.35%), Coprococcus (2.29%), and Succiniclasticum (2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles. PMID:25934629

  19. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity.

    PubMed

    Zhang, Zhenhua; Zhao, Juan; Yu, Cigang; Dong, Shanshan; Zhang, Dini; Yu, Ran; Wang, Changyong; Liu, Yan

    2015-12-01

    Improper treatment of penicillin fermentation fungi residue (PFFR), one of the by-products of penicillin production process, may result in environmental pollution due to the high concentration of penicillin. Aerobic co-composting of PFFR with pig manure was determined to degrade penicillin in PFFR. Results showed that co-composting of PFFR with pig manure can significantly reduce the concentration of penicillin in PFFR, make the PFFR-compost safer as organic fertilizer for soil application. More than 99% of penicillin in PFFR were removed after 7-day composting. PFFR did not affect the composting process and even promote the activity of the microorganisms in the compost. Quantitative PCR (qPCR) indicated that the bacteria and actinomycetes number in the AC samples were 40-80% higher than that in the pig-manure compost (CK) samples in the same composting phases. This research indicated that the aerobic co-composting was a feasible PFFR treatment method. PMID:26409851

  20. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    PubMed

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery.

  1. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    PubMed

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. PMID:25682477

  2. Novel Feed-through Richtmyer-Meshkov Instability (RMI) Experiment for Characterization of Dynamic Material Response

    NASA Astrophysics Data System (ADS)

    Opie, Saul; Gautam, Sudrishti; Fortin, Elizabeth; Lynch, Jenna; Loomis, Eric; Peralta, Pedro

    Hydrodynamic instabilities occur often in applications where forces act across a bimaterial interface. In Rayleigh-Taylor (RT) instabilities, surface perturbations grow exponentially under opposing pressure and density gradients. In the closely related Richtmyer-Meshkov (RM) instability, the same perturbations grow linearly due to an impulsive acceleration, e.g., a passing shock wave. These effects are often analyzed with linear fluid theory, but it is well known that for materials possessing shear strength the perturbation evolution can be significantly affected. A challenge in modeling these effects is that existing knowledge of the interplay between strength and hydrodynamic instabilities in solids is limited for the loads and strain rates that are typically used to study them. We have developed novel feed-through RM instability experiments that are useful to understand and model this interplay. We will describe the experimental setup and show simulations that agree well with experimental results in two materials, one-phase copper, and iron loaded above and below the alpha-epsilon phase boundary, where modeling used a phase-aware strength model. In copper, the growth of surface perturbations is quite sensitive to strength model parameters, and so is the amplitude of the shock front perturbations. This is also observed in iron, along with an additional sensitivity in the modeling results to the parameters used to describe phase change kinetics. Work supported by Department of Energy (DOE) [Grant Number DE-SC0008683] from the Office of Fusion Energy Science.

  3. Feeding dynamics and ecomorphology of Oligosarcus jenynsii (Gunther, 1864) and Oligosarcus robustus (Menezes, 1969) in the Lagoa Fortaleza, southern Brazil.

    PubMed

    Nunes, D M; Hartz, S M

    2006-02-01

    Oligosarcus jenynsii and Oligosarcus robustus are fishes of Characidae family that occur in Rio Grande do Sul, Uruguay and northern Argentina. This work purported to study the feeding dynamics (repletion and hepatosomatic indexes and condition factor) over time, and to investigate the coexistence of these two species by evaluating the partition of resources using qualitative and quantitative analyses of diet, temporal and spatial segregation throughout the water column and some ecomorphological aspects of the species in the Lagoa Fortaleza. Specimens were sampled monthly, from May 2000 to April 2001 during 24 h/month, using stationary gill nets of different mesh sizes. The records of each individual included total and standard length; total, stomach and liver weight; sex and stomach repletion. The variation of the mean values of repletion index and relative frequencies of stomach repletion stages indicate that O. jenynsii and O. robustus do not present seasonal differences in feeding intensity. The hepatosomatic index shows an allocation of energy to the liver during every period except reproduction, when part of the energy is used for gonad maturation. The estimated condition factor for both species reveals an increase in the reproductive period, evidencing the influence of gonads upon the condition of the fish. The diet analysis revealed that O. robustus is piscivorous, whereas O. jenynsii is a generalist carnivore, tending to piscivory as well. The active period of O. robustus is more concentrated at sunrise and sunset, whereas O. jenynsii is continually active, a characteristic related to hunting for prey. The ecomorphological analysis revealed differences between the two species in the dimensions of the mouth. Evidence suggests that the species coexist, sharing food sources, differing in oral morphology but ingesting similar prey, possibly because food is not a limiting factor in the environment. PMID:16680315

  4. Thermal effects on the performance, motor control and muscle dynamics of ballistic feeding in the salamander Eurycea guttolineata.

    PubMed

    Anderson, Christopher V; Larghi, Nicholas P; Deban, Stephen M

    2014-09-01

    Temperature strongly affects muscle contractile rate properties and thus may influence whole-organism performance. Movements powered by elastic recoil, however, are known to be more thermally robust than muscle-powered movements. We examined the whole-organism performance, motor control and muscle contractile physiology underlying feeding in the salamander Eurycea guttolineata. We compared elastically powered tongue projection with the associated muscle-powered retraction to determine the thermal robustness of each of these functional levels. We found that tongue-projection distance in E. guttolineata was unaffected by temperature across the entire 4-26°C range, tongue-projection dynamics were significantly affected by temperature across only the 4-11°C interval, and tongue retraction was affected to a higher degree across the entire temperature range. The significant effect of temperature on projection dynamics across the 4-11°C interval corresponds to a significant decline in projector muscle burst intensity and peak contractile force of the projector muscle across the same interval. Across the remaining temperature range, however, projection dynamics were unaffected by temperature, with muscle contractile physiology showing typical thermal effects and motor patterns showing increased activity durations and latencies. These results reveal that elastically powered tongue-projection performance in E. guttolineata is maintained to a higher degree than muscle-powered tongue retraction performance across a wide temperature range. These results further indicate that thermal robustness of the elastically powered movement is dependent on motor control and muscle physiology that results in comparable energy being stored in elastic tissues across a range of temperatures.

  5. Influence of Seasonal Food Availability on the Dynamics of Seabird Feeding Flocks at a Coastal Upwelling Area

    PubMed Central

    Anguita, Cristóbal; Simeone, Alejandro

    2015-01-01

    The formation of multi-species feeding flocks (MSFFs) through visual recruitment is considered an important strategy for obtaining food in seabirds and its functionality has been ascribed to enhanced foraging efficiency. Its use has been demonstrated in much of the world's oceans and includes numerous species. However, there is scant information on the temporal stability of the composition and abundance of MSFFs as well as the effect of seasonal food availability on their dynamics. Between July 2006 and September 2014, we conducted monthly at-sea seabird counts at Valparaiso Bay (32°56′ to 33°01′S, 71°36′ to 71°46′W) within the area of influence of the Humboldt Current in central Chile. This area is characterized by a marked seasonality in primary and secondary production associated with upwelling, mainly during austral spring-summer. Based on studies that provide evidence that flocking is most frequent when food is both scarce and patchy, we hypothesized that seabird MSFF attributes (i.e. frequency of occurrence, abundance and composition) will be modified according to the seasonal availability of food. Using generalized linear models (GLMs), our results show that the contrasting seasonality in food availability of the study area (using chlorophyll-a concentration as a proxy) had no significant influence on MSFF attributes, sparsely explaining their variations (P>0.05). Rather than seasonal food availability, the observed pattern for MSFF attributes at Valparaiso Bay suggests a substantial influence of reproductive and migratory (boreal and austral migrants) habits of birds that modulates MSFF dynamics consistently throughout the whole year in this highly variable and patchy environment. We highlight the importance of visual recruitment as a mechanism by which migratory and resident birds interact. This would allow them to reduce resource unpredictability, which in turn has a major impact on structuring seabird’s MSFF dynamics. PMID:26125630

  6. Influence of Seasonal Food Availability on the Dynamics of Seabird Feeding Flocks at a Coastal Upwelling Area.

    PubMed

    Anguita, Cristóbal; Simeone, Alejandro

    2015-01-01

    The formation of multi-species feeding flocks (MSFFs) through visual recruitment is considered an important strategy for obtaining food in seabirds and its functionality has been ascribed to enhanced foraging efficiency. Its use has been demonstrated in much of the world's oceans and includes numerous species. However, there is scant information on the temporal stability of the composition and abundance of MSFFs as well as the effect of seasonal food availability on their dynamics. Between July 2006 and September 2014, we conducted monthly at-sea seabird counts at Valparaiso Bay (32°56' to 33°01'S, 71°36' to 71°46'W) within the area of influence of the Humboldt Current in central Chile. This area is characterized by a marked seasonality in primary and secondary production associated with upwelling, mainly during austral spring-summer. Based on studies that provide evidence that flocking is most frequent when food is both scarce and patchy, we hypothesized that seabird MSFF attributes (i.e. frequency of occurrence, abundance and composition) will be modified according to the seasonal availability of food. Using generalized linear models (GLMs), our results show that the contrasting seasonality in food availability of the study area (using chlorophyll-a concentration as a proxy) had no significant influence on MSFF attributes, sparsely explaining their variations (P>0.05). Rather than seasonal food availability, the observed pattern for MSFF attributes at Valparaiso Bay suggests a substantial influence of reproductive and migratory (boreal and austral migrants) habits of birds that modulates MSFF dynamics consistently throughout the whole year in this highly variable and patchy environment. We highlight the importance of visual recruitment as a mechanism by which migratory and resident birds interact. This would allow them to reduce resource unpredictability, which in turn has a major impact on structuring seabird's MSFF dynamics. PMID:26125630

  7. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  8. Do ecohydrology and community dynamics feed back to banded-ecosystem structure and productivity?

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Ursino, Nadia

    2016-04-01

    Mixed communities including grass, shrubs and trees are often reported to populate self-organized vegetation patterns. Patterns of survey data suggest that species diversity and complementarity strengthen the dynamics of banded environments. Resource scarcity and local facilitation trigger self organization, whereas coexistence of multiple species in vegetated self-organizing patches, implying competition for water and nutrients and favorable reproduction sites, is made possible by differing adaptation strategies. Mixed community spatial self-organization has so far received relatively little attention, compared with local net facilitation of isolated species. We assumed that soil moisture availability is a proxy for the environmental niche of plant species according to Ursino and Callegaro (2016). Our modelling effort was focused on niche differentiation of coexisting species within a tiger bush type ecosystem. By minimal numerical modelling and stability analysis we try to answer a few open scientific questions: Is there an adaptation strategy that increases biodiversity and ecosystem functioning? Does specific adaptation to environmental niches influence the structure of self-organizing vegetation pattern? What specific niche distribution along the environmental gradient gives the highest global productivity?

  9. Control of Groundwater Pollution from Animal Feeding Operations: A Farm-Level Dynamic Model for Policy Analysis

    NASA Astrophysics Data System (ADS)

    Wang, J.; Baerenklau, K.

    2012-12-01

    Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being

  10. Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats

    PubMed Central

    Coulon, Frédéric; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Païssé, Sandrine; Goñi-Urriza, Marisol; Peperzak, Louis; Acuña Alvarez, Laura; McKew, Boyd A.; Brussaard, Corina P. D.; Underwood, Graham J. C.; Timmis, Kenneth N.; Duran, Robert

    2012-01-01

    Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

  11. Cardioprotective Properties of Aerobic and Resistance Training Against Myocardial Infarction.

    PubMed

    Barboza, C A; Souza, G I H; Oliveira, J C M F; Silva, L M; Mostarda, C T; Dourado, P M M; Oyama, L M; Lira, F S; Irigoyen, M C; Rodrigues, B

    2016-06-01

    We evaluated the effects of aerobic and resistance exercise training on ventricular morphometry and function, physical capacity, autonomic function, as well as on ventricular inflammatory status in trained rats prior to myocardial infarction. Male Wistar rats were divided into the following groups: sedentary+Sham, sedentary+myocardial infarction, aerobic trained+myocardial infarction, and resistance trained+myocardial infarction. Sham and myocardial infarction were performed after training periods. In the days following the surgeries, evaluations were performed. Aerobic training prevents aerobic (to a greater extent) and resistance capacity impairments, ventricular dysfunction, baroreflex sensitivity and autonomic disorders (vagal tonus decrease and sympathetic tonus increase) triggered by myocardial infarction. Resistance training was able to prevent negative changes to aerobic and resistance capacity (to a greater extent) but not to ventricular dysfunction, and it prevented cardiovascular sympathetic increments. Additionally, both types of training reduced left ventricle inflammatory cytokine concentration. Our results suggest that aerobic and, for the first time, dynamic resistance training were able to reduce sympathetic tonus to the heart and vessels, as well as preventing the increase in pro-inflammatory cytokine concentrations in the left ventricle of trained groups. These data emphasizes the positive effects of aerobic and dynamic resistance training on the prevention of the negative changes triggered by myocardial infarction.

  12. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin.

    PubMed

    Amorim, Catarina L; Maia, Alexandra S; Mesquita, Raquel B R; Rangel, António O S S; van Loosdrecht, Mark C M; Tiritan, Maria Elizabeth; Castro, Paula M L

    2014-03-01

    A granular sludge sequencing batch reactor (SBR) was operated for 340 days for treating a synthetic wastewater containing fluoroquinolones (FQs), namely ofloxacin, norfloxacin and ciprofloxacin. The SBR was intermittently fed with FQs, at concentrations of 9 and 32 μM. No evidence of FQ biodegradation was observed but the pharmaceutical compounds adsorbed to the aerobic granular sludge, being gradually released into the medium in successive cycles after stopping the FQ feeding. Overall COD removal was not affected during the shock loadings. Activity of ammonia oxidizing bacteria and nitrite oxidizing bacteria did not seem to be inhibited by the presence of FQs (maximum of 0.03 and 0.01 mM for ammonium and nitrite in the effluent, respectively). However, during the FQs feeding, nitrate accumulation up to 1.7 mM was observed at the effluent suggesting that denitrification was inhibited. The activity of phosphate accumulating organisms was affected, as indicated by the decrease of P removal capacity during the aerobic phase. Exposure to the FQs also promoted disintegration of the granules leading to an increase of the effluent solid content, nevertheless the solid content at the bioreactor effluent returned to normal levels within ca. 1 month after removing the FQs in the feed allowing recovery of the bedvolume. Denaturing gradient gel electrophoresis revealed a dynamic bacterial community with gradual changes due to FQs exposure. Bacterial isolates retrieved from the granules predominantly belonged to α- and γ-branch of the Proteobacteria phylum. The capacity of the system to return to its initial conditions after withdrawal of the FQ compounds in the inlet stream, reinforced its robustness to deal with wastewaters containing organic pollutants.

  13. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate.

    PubMed

    Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M

    2015-09-01

    The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251

  14. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate

    PubMed Central

    Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251

  15. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  16. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  18. Low-Impact Aerobics: Better than Traditional Aerobic Dance?

    ERIC Educational Resources Information Center

    Koszuta, Laurie Einstein

    1986-01-01

    A form of dance exercise called low-impact aerobics is being touted as a misery-free form of aerobic dance. Because this activity is relatively new, the exact kinds and frequencies of injuries are not known and the fitness benefits have not been examined. (MT)

  19. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  20. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  1. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  2. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A group of 14 Holstein cows of similar age were followed through the course of their first two lactation cycles. During each lactation cycle, ruminal solids and liquids, milk samples and production data, and feed consumption data were collected for each cow during Early (76-82 days in milk, DIM), Mi...

  3. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental

  4. Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling.

    PubMed

    Yazdani, Ramin; Mostafid, M Erfan; Han, Byunghyun; Imhoff, Paul T; Chiu, Pei; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2010-08-15

    A bioreactor landfill cell at Yolo County, California was operated aerobically for six months to quantify the extent of aerobic degradation and mechanisms limiting aerobic activity during air injection and liquid addition. The portion of the solid waste degraded anaerobically was estimated and tracked through time. From an analysis of in situ aerobic respiration and gas tracer data, it was found that a large fraction of the gas-filled pore space was in immobile zones where it was difficult to maintain aerobic conditions, even at relatively moderate landfill cell-average moisture contents of 33-36%. Even with the intentional injection of air, anaerobic activity was never less than 13%, and sometimes exceeded 65%. Analyses of gas tracer and respiration data were used to quantify rates of respiration and rates of mass transfer to immobile gas zones. The similarity of these rates indicated that waste degradation was influenced significantly by rates of oxygen transfer to immobile gas zones, which comprised 32-92% of the gas-filled pore space. Gas tracer tests might be useful for estimating the size of the mobile/immobile gas zones, rates of mass transfer between these regions, and the difficulty of degrading waste aerobically in particular waste bodies. PMID:20704218

  5. Avian Plasmodium in Culex and Ochlerotatus Mosquitoes from Southern Spain: Effects of Season and Host-Feeding Source on Parasite Dynamics

    PubMed Central

    Ferraguti, Martina; Martínez-de la Puente, Josué; Muñoz, Joaquín; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2013-01-01

    Haemosporidians, a group of vector-borne parasites that include Plasmodium, infect vertebrates including birds. Although mosquitoes are crucial elements in the transmission of avian malaria parasites, little is known of their ecology as vectors. We examined the presence of Plasmodium and Haemoproteus lineages in five mosquito species belonging to the genera Culex and Ochlerotatus to test for the effect of vector species, season and host-feeding source on the transmission dynamics of these pathogens. We analyzed 166 blood-fed individually and 5,579 unfed mosquitoes (grouped in 197 pools) from a locality in southern Spain. In all, 15 Plasmodium and two Haemoproteus lineages were identified on the basis of a fragment of 478 bp of the mitochondrial cytochrome b gene. Infection prevalence of blood parasites in unfed mosquitoes varied between species (range: 0–3.2%) and seasons. The feeding source was identified in 91 mosquitoes where 78% were identified as bird. We found that i) several Plasmodium lineages are shared among different Culex species and one Plasmodium lineage is shared between Culex and Ochlerotatus genera; ii) mosquitoes harboured Haemoproteus parasites; iii) pools of unfed females of mostly ornithophilic Culex species had a higher Plasmodium prevalence than the only mammophylic Culex species studied. However, the mammophylic Ochlerotatus caspius had in pool samples the greatest Plasmodium prevalence. This relative high prevalence may be determined by inter-specific differences in vector survival, susceptibility to infection but also the possibility that this species feeds on birds more frequently than previously thought. Finally, iv) infection rate of mosquitoes varies between seasons and reaches its maximum prevalence during autumn and minimum prevalence in spring. PMID:23823127

  6. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays1[OPEN

    PubMed Central

    Tzin, Vered; Fernandez-Pozo, Noe; Richter, Annett; Schmelz, Eric A.; Schoettner, Matthias; Schäfer, Martin; Ahern, Kevin R.; Meihls, Lisa N.; Kaur, Harleen; Huffaker, Alisa; Mori, Naoki; Degenhardt, Joerg; Mueller, Lukas A.; Jander, Georg

    2015-01-01

    As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions. PMID:26378100

  7. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed

    SciTech Connect

    Kovacik, William P.; Scholten, Johannes C.; Culley, David E.; Hickey, Robert; Zhang, Weiwen; Brockman, Fred J.

    2010-08-01

    The complexity and diversity of the microbial communities in biogranules from an upflow anaerobic sludge blanket (UASB) bioreactor were determined in response to short-term changes in substrate feeds. The reactor was fed simulated brewery wastewater (SBWW) (70% ethanol, 15% acetate, 15% propionate) for 1.5 months (phase 1), acetate / sulfate for 2 months (phase 2), acetate-alone for 3 months (phase 3), and then a return to SBWW for 2 months (phase 4). Performance of the reactor remained relatively stable throughout the experiment as shown by COD removal and gas production. 16S rDNA, methanogen-associated mcrA and sulfate reducer-associated dsrAB genes were PCR amplified, then cloned and sequenced. Sequence analysis of 16S clone libraries showed a relatively simple community composed mainly of the methanogenic Archaea (Methanobacterium and Methanosaeta), members of the Green Non-Sulfur (Chloroflexi) group of Bacteria, followed by fewer numbers of Syntrophobacter, Spirochaeta, Acidobacteria and Cytophaga-related Bacterial sequences. Methanogen-related mcrA clone libraries were dominated throughout by Methanobacter and Methanospirillum related sequences. Although not numerous enough to be detected in our 16S rDNA libraries, sulfate reducers were detected in dsrAB clone libraries, with sequences related to Desulfovibrio and Desulfomonile. Community diversity levels (Shannon-Weiner index) generally decreased for all libraries in response to a change from SBWW to acetate-alone feed. But there was a large transitory increase noted in 16S diversity at the two-month sampling on acetate-alone, entirely related to an increase in Bacterial diversity. Upon return to SBWW conditions in phase 4, all diversity measures returned to near phase 1 levels.

  8. Craving Ravens: Individual ‘haa’ Call Rates at Feeding Sites as Cues to Personality and Levels of Fission-Fusion Dynamics?

    PubMed Central

    Szipl, Georgine; Bugnyar, Thomas

    2015-01-01

    Common ravens aggregate in large non-breeder flocks for roosting and foraging until they achieve the status of territorial breeders. When discovering food, they produce far-reaching yells or ‘haa’ calls, which attract conspecifics. Due to the high levels of fission-fusion dynamics in non-breeders’ flocks, assemblies of feeding ravens were long thought to represent anonymous aggregations. Yet, non-breeders vary in their degree of vagrancy, and ‘haa’ calls convey individually distinct acoustic features, which are perceived by conspecifics. These findings give rise to the assumption that raven societies are based on differential social relationships on an individual level. We investigated the occurrence of ‘haa’ calling and individual call rates in a group of individually marked free-ranging ravens. Calling mainly occurred in subadult and adult females, which showed low levels of vagrancy. Call rates differed significantly between individuals and with residency status, and were correlated with calling frequency and landing frequency. Local ravens called more often and at higher rates, and were less likely to land at the feeding site than vagrant birds. The results are discussed with respect to individual degrees of vagrancy, which may have an impact on social knowledge and communication in this species. PMID:25984563

  9. Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Saylor, J. R.; Beasley, D. E.; DeRosset, W. S.; Helfritch, D.

    2003-12-01

    The cold-gas dynamic-spray process is analyzed by numerical modeling of the impact between a single spherical feed-powder particle and a semi-infinite substrate. The numerical modeling approach is applied to the copper-aluminum system to help explain experimentally observed higher deposition efficiencies of the copper deposition on aluminum than the ones associated with the aluminum deposition on copper. To properly account for the high strain, high strain-rate deformation behavior of the two materials, the appropriate linear-elastic rate-dependent, temperature-dependent, strain-hardening materials constitutive models are used. The results obtained indicate that the two main factors contributing to the observed higher deposition efficiency in the case of copper deposition on aluminum are larger particle/substrate interfacial area and higher contact pressures. Both of these are the result of a larger kinetic energy associated with a heavier copper feed-powder particle. The character of the dominant particle/substrate bonding mechanism is also discussed in the present paper. It is argued that an interfacial instability which can lead to the formation of interfacial roll-ups and vortices can play a significant role in attaining the high strength of interfacial bonding.

  10. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  11. Feeding Tubes

    MedlinePlus

    ... administer the TPN. Tubes Used for Enteral Feeds NG (Nasogastric Tube) A flexible tube is placed via ... down through the esophagus into the stomach. The NG tube can be used to empty the stomach ...

  12. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  13. Membrane thickening aerobic digestion processes.

    PubMed

    Woo, Bryen

    2014-01-01

    Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.

  14. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  15. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  16. Breast Feeding.

    ERIC Educational Resources Information Center

    International Children's Centre, Paris (France).

    This set of documents consists of English, French, and Spanish translations of four pamphlets on breast-feeding. The pamphlets provide information designed for lay persons, academics and professionals, health personnel and educators, and policy-makers. The contents cover health-related differences between breast and bottle milk; patterns of…

  17. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  18. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process

    SciTech Connect

    Hashimoto, S.; Fujita, M.; Terai, K.

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.

  19. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  20. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  1. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  2. Hydrodynamics of Choanoflagellate Feeding

    NASA Astrophysics Data System (ADS)

    Andersen, Anders; Nielsen, Lasse Tor; Kiorboe, Thomas

    2013-11-01

    Choanoflagellate filter feeding is a poorly understood process. Studies indicate that the pressure differences created by the beating of the flagellum are insufficient to produce an adequate water flow through the collar filter, the mechanism believed to ultimately transport food particles to the cell. The collar is composed of numerous microvilli arranged as a palisade, and the low porosity of the filter provides high resistance to the water flow. Additionally, ultrastructural studies often show signs of mucus-like substances in and around the collar, potentially further hampering water flow. We present high-speed video of live material showing the particle retention and the beating of the flagellum in the choanoflagellate species Diaphanoeca grandis. We use the observations as input to model the low Reynolds number fluid dynamics of the fluid force produced by the flagellum and the resulting feeding flow.

  3. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  4. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  5. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  6. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  7. The effect of aerobic exercise training on growth performance, digestive enzyme activities and postprandial metabolic response in juvenile qingbo (Spinibarbus sinensis).

    PubMed

    Li, Xiu-Ming; Yu, Li-Juan; Wang, Chuan; Zeng, Ling-Qing; Cao, Zhen-Dong; Fu, Shi-Jian; Zhang, Yao-Guang

    2013-09-01

    Continual swimming exercise usually promotes growth in fish at a moderate water velocity. We hypothesized that the improvement in growth in exercise-trained fish may be accompanied by increases in digestive enzyme activity, respiratory capacity and, hence, postprandial metabolism. Juvenile qingbo fish (Spinibarbus sinensis) were subjected to aerobic training for 8weeks at a water velocity of control (3cms(-1)), 1, 2 and 4 body length (bl)s(-1) at a constant temperature of 25°C. The feed intake (FI), food conversion rate (FCR), specific growth rate (SGR), whole-body composition, trypsin and lipase activities, maximal oxygen consumption (M˙O2max) and postprandial M˙O2 response were measured at the end of the training period. Aerobic exercise training induced a significant increase in FI compared with the control group, while the FCR of the 4bls(-1) group was significantly lower than for the other three groups (P<0.05). The 1 and 2bls(-1) groups showed a significantly higher SGR over the control group (P<0.05). The whole-body fat and protein contents were significantly altered after aerobic exercise training (P<0.05). Furthermore, aerobic exercise training elevated the activity of both trypsin and lipase in the hepatopancreas and intestinal tract of juvenile S. sinensis. The M˙O2max of the 4bls(-1) training group was significantly higher than for the control group. The resting M˙O2 (M˙O2rest) and peak postprandial M˙O2 (M˙O2peak) in the three training groups were significantly higher than in the control group (P<0.05). Time to M˙O2peak was significantly shorter in the 1, 2 and 4bls(-1) training groups compared with the control group, while exercise training showed no effect on SDA (specific dynamic action) duration, factorial metabolic scope, energy expended on SDA and the SDA coefficient when compared to the control group. These data suggest that (1) the optimum water velocity for the growth of juvenile S. sinensis occurred at approximately 2.4bls(-1); (2

  8. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  9. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    PubMed

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation.

  10. Identification of trigger factors selecting for polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge sequencing batch reactors.

    PubMed

    Weissbrodt, David G; Schneiter, Guillaume S; Fürbringer, Jean-Marie; Holliger, Christof

    2013-12-01

    Nutrient removal performances of sequencing batch reactors using granular sludge for intensified biological wastewater treatment rely on optimal underlying microbial selection. Trigger factors of bacterial selection and nutrient removal were investigated in these novel biofilm systems with specific emphasis on polyphosphate- (PAO) and glycogen-accumulating organisms (GAO) mainly affiliated with Accumulibacter and Competibacter, respectively. In a first dynamic reactor operated with stepwise changes in concentration and ratio of acetate and propionate (Ac/Pr) under anaerobic feeding and aerobic starvation conditions and without wasting sludge periodically, propionate favorably selected for Accumulibacter (35% relative abundance) and stable production of granular biomass. A Plackett-Burman multifactorial experimental design was then used to screen in eight runs of 50 days at stable sludge retention time of 15 days for the main effects of COD concentration, Ac/Pr ratio, COD/P ratio, pH, temperature, and redox conditions during starvation. At 95% confidence level, pH was mainly triggering direct Accumulibacter selection and nutrient removal. The overall PAO/GAO competition in granular sludge was statistically equally impacted by pH, temperature, and redox factors. High Accumulibacter abundances (30-47%), PAO/GAO ratios (2.8-8.4), and phosphorus removal (80-100%) were selected by slightly alkaline (pH > 7.3) and lower mesophilic (<20 °C) conditions, and under full aeration during fixed 2-h starvation. Nitrogen removal by nitrification and denitrification (84-97%) was positively correlated to pH and temperature. In addition to alkalinity, non-limited organic conditions, 3-carbon propionate substrate, sludge age control, and phase length adaptation under alternating aerobic-anoxic conditions during starvation can lead to efficient nutrient-removing granular sludge biofilm systems.

  11. Nasogastric feeding tube

    MedlinePlus

    Feeding - nasogastric tube; NG tube; Bolus feeding; Continuous pump feeding; Gavage tube ... A nasogastric tube (NG tube) is a special tube that carries food and medicine to the stomach through the nose. It can be ...

  12. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  13. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  14. Neuromodulation of Aerobic Exercise-A Review.

    PubMed

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S

    2015-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  15. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  16. Zonal expression of the glucokinase gene in rat liver. Dynamics during the daily feeding rhythm and starvation-refeeding cycle demonstrated by in situ hybridization.

    PubMed

    Eilers, F; Bartels, H; Jungermann, K

    1993-02-01

    The abundance and zonal distribution of glucokinase (GK) mRNA were studied in rat liver during a normal 12 h day/12 h night rhythm (dark from 1900 to 0700 hours) and during refeeding after 60 h of starvation. Zonation of GK gene expression was examined by in situ hybridization with a radiolabelled cRNA probe and GK mRNA abundance was determined by Northern blot analysis with a digoxigenin-labelled cRNA probe. GK mRNA appeared to be almost homogeneously distributed throughout the whole daily feeding cycle; yet it was predominantly localized in the perivenous and intermediate zone during refeeding after 60 h of starvation. During the daily feeding rhythm, the total amount of GK mRNA increased quickly with the beginning of the feeding period at 1900 hours reaching a maximum at midnight and then decreased continuously to a basal level at noon. Virtually no GK mRNA was detected after 60 h of starvation. Refeeding caused a rapid increase in GK mRNA to a maximum at 2400 hours followed by a decrease to approximately two-thirds of the maximum value at 0700 hours. If the homogeneous distribution of GK mRNA during the daily feeding rhythm was real rather than apparent because of too low a sensitivity of the cRNA probe, the present results suggest that during the normal circadian cycle the mainly perivenous distribution of GK enzyme activity and protein is regulated preferentially at a translational level. The findings clearly show that during refeeding after 60 h of starvation the GK distribution is controlled predominantly at a pretranslational level.

  17. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  18. Long-term aerobic exercise is associated with greater muscle strength throughout the life span.

    PubMed

    Crane, Justin D; Macneil, Lauren G; Tarnopolsky, Mark A

    2013-06-01

    Aging is associated with a progressive decline in muscle strength, muscle mass, and aerobic capacity, which reduces mobility and impairs quality of life in elderly adults. Exercise is commonly employed to improve muscle function in individuals of all ages; however, chronic aerobic exercise is believed to largely impact cardiovascular function and oxidative metabolism, with minimal effects on muscle mass and strength. To study the effects of long-term aerobic exercise on muscle strength, we recruited 74 sedentary (SED) or highly aerobically active (ACT) men and women from within three distinct age groups (young: 20-39 years, middle: 40-64 years, and older: 65-86 years) and tested their aerobic capacity, isometric grip and knee extensor strength, and dynamic 1 repetition maximum knee extension. As expected, ACT subjects had greater maximal oxygen uptake and peak aerobic power output compared with SED subjects (p < .05). Grip strength relative to body weight declined with age (p < .05) and was greater in ACT compared with SED subjects in both hands (p < .05). Similarly, relative maximal isometric knee extension torque declined with age (p < .05) and was higher in ACT versus SED individuals in both legs (p < .05). Absolute and relative 1 repetition maximum knee extension declined with age (p < .05) and were greater in ACT versus SED groups (p < .05). Knee extensor strength was associated with a greater amount of leg lean mass in the ACT subjects (p < .05). In summary, long-term aerobic exercise appears to attenuate age-related reductions in muscle strength in addition to its cardiorespiratory and metabolic benefits.

  19. Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata.

    PubMed

    Benzhai, Hai; Lei, Liu; Ge, Qin; Yuwan, Peng; Ping, Li; Qingxiang, Yang; Hailei, Wang

    2014-10-01

    In the present paper, aerobic granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater, and 81 % of granular rate was obtained after 15-day cultivation. Aerobic granules have a 96 % BOD removal to the wastewater, and the reactor harbors a mount of biomass including bacteria, fungi and protozoa. In view of the complexity of kinetic behaviors of sludge and biological mechanisms of the granular SBR, a cellular automata model was established to simulate the process of wastewater treatment. The results indicate that the model not only visualized the complex adsorption and degradation process of aerobic granules, but also well described the BOD removal of wastewater and microbial growth in the reactor. Thus, CA model is suitable for simulation of synthetic wastewater treatment. This is the first report about dynamical and visual simulation of treatment process of synthetic wastewater in a granular SBR.

  20. Simple measurements reveal the feeding history, the onset of reproduction, and energy conversion efficiencies in captive bluefin tuna

    NASA Astrophysics Data System (ADS)

    Jusup, Marko; Klanjšček, Tin; Matsuda, Hiroyuki

    2014-11-01

    We present a numerical approach that, in conjunction with a fully set up Dynamic Energy Budget (DEB) model, aims at consistently approximating the feeding history of cultivated fish from the commonly measured aquaculture data (body length, body mass, or the condition factor). We demonstrate the usefulness of the approach by performing validation of a DEB-based model for Pacific bluefin tuna (Thunnus orientalis) on an independent dataset and exploring the implied bioenergetics of this species in captivity. In the context of validation, the results indicate that the model successfully accounts for more than 75% of the variance in actual fish feed. At the 5% significance level, predictions do not underestimate nor overestimate observations and there is no bias. The overall model accuracy of 87.6% is satisfactory. In the context of tuna bioenergetics, we offer an explanation as to why the first reproduction in the examined case occurred only after the fish reached seven years of age, whereas it takes five years in the wild and sometimes as little as three years in captivity. Finally, we calculate energy conversion efficiencies and the supply stress throughout the entire lifetime to theoretically underpin the relatively low contribution of growth to aerobic metabolism implied by respirometry and high feed conversion ratio observed in bluefin tuna aquaculture.

  1. Unraveling characteristics of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in an aerobic granular sequencing batch reactor.

    PubMed

    He, Qiulai; Zhang, Shilu; Zou, Zhuocheng; Zheng, Li-An; Wang, Hongyu

    2016-11-01

    An aerobic granular sequencing batch reactor (SBR) on an aerobic/oxic/anoxic (AOA) mode was operated for 50days with acetate sodium as the sole carbon source for simultaneous carbon, nitrogen and phosphorus removal. Excellent removal efficiencies for chemical oxygen demand (COD) (94.46±3.59%), nitrogen (96.56±3.44% for ammonia nitrogen (NH4(+)-N) and 93.88±6.78% for total inorganic nitrogen (TIN)) and phosphorus (97.71±3.63%) were obtained over operation. Mechanisms for simultaneous nutrients removal were explored and the results indicated that simultaneous nitrification, denitrification and phosphorus removal (SNDPR) under aerobic conditions was mainly responsible for most of nitrogen and phosphorus removal. Identification and quantification of the granular AOA SBR revealed that higher rates of nutrients removal and more potentials were to be exploited by optimizing the operating conditions including time durations for AOA mode and the feeding compositions. PMID:27599624

  2. Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: Simulation and model verification

    SciTech Connect

    Pham, H.T.B.; Larsson, G.; Enfors, S.O.

    1998-11-20

    Some yeast species are classified as being glucose sensitive, which means that they may produce ethanol also under aerobic conditions when the sugar concentration is high. A kinetic model of overflow metabolism in Saccharomyces cerevisiae was used for simulation of aerobic fed-batch cultivations. An inhibitory effect of ethanol on the maximum respiration of the yeast was observed in the experiments and included in the model. The model predicts respiration, biomass, and ethanol formation and the subsequent ethanol consumption, and was experimentally validated in fed-batch cultivations. Oscillating sugar feed with resulting oscillating carbon dioxide production did not influence the maximum respiration rate, which indicates that the pyruvate dehydrogenase complex is not involved as a bottleneck causing aerobic ethanol formation.

  3. Controlling the catalytic aerobic oxidation of phenols.

    PubMed

    Esguerra, Kenneth Virgel N; Fall, Yacoub; Petitjean, Laurène; Lumb, Jean-Philip

    2014-05-28

    The oxidation of phenols is the subject of extensive investigation, but there are few catalytic aerobic examples that are chemo- and regioselective. Here we describe conditions for the ortho-oxygenation or oxidative coupling of phenols under copper (Cu)-catalyzed aerobic conditions that give rise to ortho-quinones, biphenols or benzoxepines. We demonstrate that each product class can be accessed selectively by the appropriate choice of Cu(I) salt, amine ligand, desiccant and reaction temperature. In addition, we evaluate the effects of substituents on the phenol and demonstrate their influence on selectivity between ortho-oxygenation and oxidative coupling pathways. These results create an important precedent of catalyst control in the catalytic aerobic oxidation of phenols and set the stage for future development of catalytic systems and mechanistic investigations. PMID:24784319

  4. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  5. Aerobic Granules: Microbial Landscape and Architecture, Stages, and Practical Implications

    PubMed Central

    Holliger, Christof

    2014-01-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In “old” granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters “rooting” from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation. PMID:24657859

  6. Feeding underground: kinematics of feeding in caecilians.

    PubMed

    Herrel, Anthony; Measey, G John

    2012-11-01

    Caecilians are limbless amphibians that have evolved distinct cranial and postcranial specializations associated with a burrowing lifestyle. Observations on feeding behavior are rare and restricted to above-ground feeding in laboratory conditions. Here we report data on feeding in tunnels using both external video and X-ray recordings of caecilians feeding on invertebrate prey. Our data show feeding kinematics similar to those previously reported, including the pronounced neck bending observed during above-ground feeding. Our data illustrate, however, that caecilians may be much faster than previously suspected, with lunge speeds of up to 7 cm sec(-1). Although gape cycles are often slow (0.67 ± 0.29 sec), rapid jaw closure is observed during prey capture, with cycle times and jaw movement velocities similar to those observed in other terrestrial tetrapods. Finally, our data suggest that gape angles may be large (64.8 ± 18°) and that gape profiles are variable, often lacking distinct slow and fast opening and closing phases. These data illustrate the importance of recording naturalistic feeding behavior and shed light on how these animals are capable of capturing and processing prey in constrained underground environments. Additional data on species with divergent cranial morphologies would be needed to better understand the co-evolution between feeding, burrowing, and cranial design in caecilians.

  7. Feeding underground: kinematics of feeding in caecilians.

    PubMed

    Herrel, Anthony; Measey, G John

    2012-11-01

    Caecilians are limbless amphibians that have evolved distinct cranial and postcranial specializations associated with a burrowing lifestyle. Observations on feeding behavior are rare and restricted to above-ground feeding in laboratory conditions. Here we report data on feeding in tunnels using both external video and X-ray recordings of caecilians feeding on invertebrate prey. Our data show feeding kinematics similar to those previously reported, including the pronounced neck bending observed during above-ground feeding. Our data illustrate, however, that caecilians may be much faster than previously suspected, with lunge speeds of up to 7 cm sec(-1). Although gape cycles are often slow (0.67 ± 0.29 sec), rapid jaw closure is observed during prey capture, with cycle times and jaw movement velocities similar to those observed in other terrestrial tetrapods. Finally, our data suggest that gape angles may be large (64.8 ± 18°) and that gape profiles are variable, often lacking distinct slow and fast opening and closing phases. These data illustrate the importance of recording naturalistic feeding behavior and shed light on how these animals are capable of capturing and processing prey in constrained underground environments. Additional data on species with divergent cranial morphologies would be needed to better understand the co-evolution between feeding, burrowing, and cranial design in caecilians. PMID:22927194

  8. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  9. Breastfeeding vs. Formula Feeding

    MedlinePlus

    ... Parks EP, Shaikhkhalil A, Groleau V, Wendel D, Stallings VA. Feeding healthy infants, children, and adolescents. In: ... 2016:chap. Stettler N, Bhatia J, Parish A, Stallings VA. Feeding healthy infants, children, and adolescents. In: ...

  10. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  11. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

  12. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  13. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  14. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  15. A proposed aerobic granules size development scheme for aerobic granulation process.

    PubMed

    Dahalan, Farrah Aini; Abdullah, Norhayati; Yuzir, Ali; Olsson, Gustaf; Salmiati; Hamdzah, Myzairah; Din, Mohd Fadhil Mohd; Ahmad, Siti Aqlima; Khalil, Khalilah Abdul; Anuar, Aznah Nor; Noor, Zainura Zainon; Ujang, Zaini

    2015-04-01

    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme.

  16. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  17. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

  18. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  19. Feeding dynamics of the invasive gastropod Tarebia granifera in coastal and estuarine lakes of northern KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Miranda, Nelson A. F.; Perissinotto, Renzo; Appleton, Christopher C.

    2011-02-01

    Gut fluorescence and carbon budget techniques were applied to Tarebia granifera (shell height 10-12 mm) at the iSimangaliso Wetland Park, a UNESCO World Heritage Site. This snail has recently invaded a number of estuaries in northern KwaZulu-Natal, where it reaches densities of over 1000 ind. m -2 and becomes a dominant component of the benthic community. Its rapid establishment and spread have raised concerns about potential top-down impacts on the ecosystem. This study shows that T. granifera can utilize large amounts of microphytobenthos (MPB) in addition to detritus. In situ total available MPB pigment concentrations ranged from 11.6 to 110.5 mg pigm. m -2. T. granifera's gut pigment content ranged from 54 to 1672 μg pigm. ind -1. Gut evacuation rates ( k) ranged from 0.36 to 0.62 h -1 ( R2 range: 16.2-35.2, P < 0.05). Individual ingestion rates ranged from 6.6 to 30.4 μg pigm. ind. -1 d -1. T. granifera was estimated to consume from 0.5 to 35% of the total available MPB biomass per day, or 1.2-68% of the daily primary benthic production. The carbon component estimated from the gut fluorescence technique contributed 8.7-40.9% of the total gut organic carbon content. The average carbon daily ration contributed by microalgal biomass was ≈16% body carbon per day. Variability in the data was attributed to the complex feeding history of snails. Further studies are needed to validate these results and provide more information on the ecological impact of T. granifera on this wetland and other similar invaded ecosystems, both estuarine and freshwater.

  20. Markers of Human Skeletal Muscle Mitochondrial Biogenesis and Quality Control: Effects of Age and Aerobic Exercise Training

    PubMed Central

    2014-01-01

    Perturbations in mitochondrial health may foster age-related losses of aerobic capacity (VO2peak) and skeletal muscle size. However, limited data exist regarding mitochondrial dynamics in aging human skeletal muscle and the influence of exercise. The purpose of this study was to examine proteins regulating mitochondrial biogenesis and dynamics, VO2peak, and skeletal muscle size before and after aerobic exercise training in young men (20 ± 1 y) and older men (74 ± 3 y). Exercise-induced skeletal muscle hypertrophy occurred independent of age, whereas the improvement in VO2peak was more pronounced in young men. Aerobic exercise training increased proteins involved with mitochondrial biogenesis, fusion, and fission, independent of age. This is the first study to examine pathways of mitochondrial quality control in aging human skeletal muscle with aerobic exercise training. These data indicate normal aging does not influence proteins associated with mitochondrial health or the ability to respond to aerobic exercise training at the mitochondrial and skeletal muscle levels. PMID:23873965

  1. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training.

    PubMed

    Konopka, Adam R; Suer, Miranda K; Wolff, Christopher A; Harber, Matthew P

    2014-04-01

    Perturbations in mitochondrial health may foster age-related losses of aerobic capacity (VO2peak) and skeletal muscle size. However, limited data exist regarding mitochondrial dynamics in aging human skeletal muscle and the influence of exercise. The purpose of this study was to examine proteins regulating mitochondrial biogenesis and dynamics, VO2peak, and skeletal muscle size before and after aerobic exercise training in young men (20 ± 1 y) and older men (74 ± 3 y). Exercise-induced skeletal muscle hypertrophy occurred independent of age, whereas the improvement in VO2peak was more pronounced in young men. Aerobic exercise training increased proteins involved with mitochondrial biogenesis, fusion, and fission, independent of age. This is the first study to examine pathways of mitochondrial quality control in aging human skeletal muscle with aerobic exercise training. These data indicate normal aging does not influence proteins associated with mitochondrial health or the ability to respond to aerobic exercise training at the mitochondrial and skeletal muscle levels.

  2. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.

    PubMed Central

    Kästner, M

    1991-01-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions. PMID:1892393

  3. Reproductive and feeding spatial dynamics of the black scabbardfish, Aphanopus carbo Lowe, 1839, in NE Atlantic inferred from fatty acid and stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Farias, Inês; Figueiredo, Ivone; Janeiro, Ana Isabel; Bandarra, Narcisa Maria; Batista, Irineu; Morales-Nin, Beatriz

    2014-07-01

    The black scabbardfish (Aphanopus carbo) is a benthopelagic species widely distributed across the NE Atlantic, where it is admitted to perform a clockwise migration throughout its life cycle stimulated by feeding and reproduction. To overcome the limitations of direct observation of this species, fatty acids profile (FA) and δ15N and δ13C stable isotopes (SI) were analyzed in the muscle tissue of the black scabbardfish and related with diet and maturity. Specimens were collected in four geographic areas in the NE Atlantic: Iceland, the west of the British Isles, mainland Portugal, and Madeira. For all areas, the FA profile was related with the different phases of the reproductive cycle and with diet, whereas the SI were related with diet, environmental characteristics, such as latitude and depth, and particulate organic matter (POM). Stomach content of black scabbardfish caught off mainland Portugal was analyzed and the most frequent prey item identified was the lophogastrid crustacean Gnathophausia zoea, followed by the cephalopod Mastigotheutis spp. and the teleost Rouleina maderensis. For specimens from Iceland and the west of the British Isles, monounsaturated fatty acids (MUFA) were the most important FA, followed by polyunsaturated (PUFA) and saturated FA (SFA), whereas for specimens from mainland Portugal and from Madeira the sequences were PUFA>MUFA>SFA and PUFA>SFA>MUFA, respectively. Immature specimens from the first three areas were found to be accumulating oleic acid which is an intermediate product of the metabolic pathway that transforms SFA to MUFA and these into PUFA. Specimens caught off Madeira were mature and showed a significant prevalence of ARA and DHA which are PUFA with an important role in reproduction. δ15N was significantly higher in the muscle of black scabbardfish from Madeira, whereas δ13C was significantly lower in specimens from Iceland. The low isotopic ratios as well as the prevalence of certain fatty acid trophic markers (FATM

  4. Is gastric sham feeding really sham feeding?

    PubMed

    Sclafani, A; Nissenbaum, J W

    1985-03-01

    Rats were fitted with gastric cannulas, food deprived, and allowed to drink a sugar solution that drained out of the opened cannula; i.e., the rats sham-fed. Although this procedure is thought to prevent absorption of ingested food, it was found that the sham feeding of a 32% glucose or sucrose solution significantly elevated blood glucose levels. The addition of acarbose, a drug that inhibits the digestion of sucrose, to the 32% sucrose solution blocked the blood glucose rise, as did closing the pylorus with an inflatable pyloric cuff. Neither the drug nor the cuff, however, reduced the amount of sucrose solution consumed. These findings indicate that gastric sham feeding does not necessarily prevent the digestion and absorption of food, although absorption is not essential for the appearance of a vigorous sham-feeding response. Nevertheless the possibility that neural or hormonal feedback from the stomach contributes to the sham-feeding response cannot be excluded, and until this issue is resolved the results of gastric sham-feeding studies should be interpreted with caution.

  5. Fate of estrogen conjugate 17α-estradiol-3-sulfate in dairy wastewater: comparison of aerobic and anaerobic degradation and metabolite formation.

    PubMed

    Zheng, Wei; Zou, Yonghong; Li, Xiaolin; Machesky, Michael L

    2013-08-15

    Irrigation with concentrated animal feeding operation (CAFO) wastewater on croplands has been identified as a major source discharging steroid hormones into the environment. To assess the potential risks on this irrigation practice, the degradation kinetics and mechanisms of 17α-estradiol-3-sulfate were systematically investigated in aqueous solutions blended with dairy wastewater. Dissipation of the conjugated estrogen was dominated by biodegradation under both aerobic and anaerobic conditions. The half-lives for the biodegradation of 17α-estradiol-3-sulfate under aerobic and anaerobic conditions from 15 to 45°C varied from 1.70 to 415 d and 22.5 to 724 d, respectively. Under the same incubation conditions, anaerobic degradation rates of 17α-estradiol-3-sulfate were significantly less than aerobic degradation rates, suggesting that this hormone contaminant may accumulate in anaerobic or anoxic environments. Three degradation products were characterized under both aerobic and anaerobic conditions at 25°C, with estrone-3-sulfate and 17α-estradiol identified as primary metabolites and estrone identified as a secondary metabolite. However, the major degradation mechanisms under aerobic and anaerobic conditions were distinctly different. For aerobic degradation, oxidation at position C17 of the 17α-estradiol-3-sulfate ring was a major degradation mechanism. In contrast, deconjugation of the 17α-estradiol-3-sulfate thio-ester bond at position C3 was a major process initiating degradation under anaerobic conditions. PMID:23708453

  6. Breastfeeding is best feeding.

    PubMed

    Cutting, W

    1995-02-01

    The traditional practice of breast feeding is the best means to make sure infants grow up healthy. It costs nothing. Breast milk contains antibodies and other substances which defend against disease, especially those linked to poor food hygiene and inadequate water and sanitation. In developing countries, breast fed infants are at least 14 times less likely to die from diarrhea than those who are not breast fed. Urbanization and promotion of infant formula undermine breast feeding. Even though infants up to age 4-6 months should receive only breast milk to remain as healthy as possible, infants aged less than 4-6 months often receive other milks or gruels. Attendance of health workers at delivery and their contact with mother-infant pairs after delivery are ideal opportunities to encourage mothers to breast feed. In fact, if health workers provide mothers skilled support with breast feeding, mothers are more likely to breast feed well and for a longer time. Health workers need counseling skills and firm knowledge of techniques on breast feeding and of how to master common difficulties to help mothers with breast feeding. Listening skills and confidence building skills are also needed. Good family and work place support allows women in paid employment outside the home to continue breast feeding. Breast feeding is very important in emergency situations where access to water, sanitation, food, and health care is limited (e.g., refugee camps). In these situations, health workers should especially be aware of women's ability to breast feed and to support their breast feeding. HIV can be transmitted to nursing infants from HIV infected mothers. Yet one must balance this small risk against the possibility of contracting other serious infections (e.g., diarrhea) through alternative infant feeding, particularly if there is no access to potable water and sanitation.

  7. Mixed feed evaporator

    DOEpatents

    Vakil, Himanshu B.; Kosky, Philip G.

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  8. VLBI2010 Feed Comparison

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill

    2013-01-01

    VLBI2010 requires a feed that simultaneously has high efficiency over the full 2.2-14 GHz frequency range. The simultaneity requirement implies that the feed must operate at high efficiency over the full frequency range without the need to adjust its focal position to account for frequency dependent phase centre variations. Two feeds meet this specification: The Eleven Feed developed at Chalmers University. (For more information, contact Miroslav Pantaleev, miroslav.pantaleev@chalmers.se. The Eleven Feed, integrated with LNA's in a cryogenic receiver, is available as a product from Omnisys Instruments, info@omnisys.se). The Quadruple Ridged Flared Horn (QRFH) developed at the California Institute of Technology. (For more information please contact Ahmed Akgiray, aakgiray@ieee.org or Sander Weinreb, sweinreb@caltech.edu) Although not VLBI2010 compliant, two triband S/X/Ka feeds are also being developed for the commissioning of VLBI2010 antennas, for S/X observations during the VLBI2010 transition period, and to support X/Ka CRF observations. The two feeds are: The Twin Telescopes Wettzell (TTW) triband feed developed by Mirad Microwave. (For more information please contact Gerhard Kronschnabl, Gerhard.Kronschnabl@bkg.bund.de) The RAEGE (Spain) triband feed developed at Yebes Observatory. (For more information please contact Jose Antonio Lopez Perez, ja.lopezperez@oan.es)

  9. Infectious waste feed system

    DOEpatents

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  10. Zebra mussel filter feeding and food-limited production of Daphnia: Recent changes in lower trophic level dynamics of Oneida Lake, New York, U.S.A.

    USGS Publications Warehouse

    Horgan, M.J.; Mills, E.L.

    1999-01-01

    Exotic zebra mussels can alter lower trophic level dynamics in lakes that they colonize by consuming large quantities of phytoplankton. We simulated the indirect effects of zebra mussel grazing on Daphnia by artificially reducing phytoplankton concentration for in situ Daphnia reproduction experiments. The response of Daphnia reproduction to reduced phytoplankton was evaluated for both the in situ experiments and field observations in Oneida Lake, New York, U.S.A. Oneida Lake has had an abundant population of zebra mussels since 1992. Our experiments revealed that fecundity of individuals from two species of Daphnia was positively related to phytoplankton concentration during the spring clearwater phase, although there was no discernible effect of food concentration on fecundity in summer cyanobacteria-dominated assemblages. The experimental results suggest that Daphnia fecundity responds to chlorophyll a concentrations < 2 ??g l-1. The years since zebra mussels became abundant in Oneida Lake have been characterized by high water clarity, low chlorophyll concentrations, long clearwater phases, and low Daphnia biomass compared with the previous 17 years. The food web effects of zebra mussel grazing are complex and it will take more years for impacts at higher trophic levels to develop and be identified.

  11. Infant Feeding and Attachment.

    ERIC Educational Resources Information Center

    Ainsworth, Mary D. Salter; Tracy, Russel L.

    This paper has two major purposes: first, to consider how infant feeding behavior may fit into attachment theory; and second, to cite some evidence to show how an infant's early interaction with his mother in the feeding situation is related to subsequent development. It was found that sucking and rooting are precursor attachment behaviors that…

  12. Tube Feeding Transition Plateaus

    ERIC Educational Resources Information Center

    Klein, Marsha Dunn

    2007-01-01

    The journey children make from tube feeding to oral feeding is personal for each child and family. There is a sequence of predictable plateaus that children climb as they move toward orally eating. By better understanding this sequence, parents and children can maximize the development, learning, enjoyment and confidence at each plateau. The…

  13. Testing Feeds for Salmonella.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human salmonellosis outbreaks have been linked to contamination of animal feeds. Thus it is crucial to employ sensitive Salmonella detection methods for animal feeds. Based on a review of the literature, Salmonella sustains acid injury at about pH 4.0 to5.0. Low pH can also alter the metabolism of S...

  14. Development of Wideband Feed

    NASA Astrophysics Data System (ADS)

    Ujihara, Hideki; Takefuji, Kazuhiro; Sekido, Mamoru; Kondo, Tetsuro

    2015-08-01

    Wideband feeds have developed for Kashima 34m antenna and new 2.4m portable VLBI antennas. Prototypes of the wideband feeds are multimode horns, first one was set on 34m in the end of 2013, and then replaced next one with 6.5-15.0GHz receiving frequency. Now, a new feed for 3.2GHz-14.4GHz will be installed in 2.4m and 34m antennas in this spring, which are named NINJA feed, because of its design flexibility in beam shpae. Next, IGUANA feed is now under design and fabrication, which is aimed for 2.2-22GHz and covers VGOS(VLBI2010) specification. This has coaxial structure, the smaller "daughter feed" for 6.4-22GHz is placed in the center of the larger "Mother feed" for 2.2-6.4GHz.They are used for our project of time and frequency transfer between remote atomic clocks by wideband VLBI, named Gala-V(Garapagos VLBI), and will also be used wideband VLBI observation for astronmy and geodesy.Prototype feeds were tested in measurement of aperture efficiency, SEFD and Tsys of 34m "Super Kashima Antenna" and both 6.7/12.2GHz methanol maser detection in one reciever system, and then better one is used for wideband VLBI observations.

  15. Temperature-induced changes in fatty acid dynamics of the intertidal grazer Platychelipus littoralis (Crustacea, Copepoda, Harpacticoida): Insights from a short-term feeding experiment.

    PubMed

    Werbrouck, Eva; Van Gansbeke, Dirk; Vanreusel, Ann; Mensens, Christoph; De Troch, Marleen

    2016-04-01

    Dietary lipids, and in particular the essential fatty acids (EFA), EPA (20:5ω3) and DHA (22:6ω3), guarantee the well-being of animals and are recognized for their potential bottom-up control on animal populations. They are introduced in marine ecosystems through primary producers and when grazed upon, they are consumed, incorporated or modified by first-level consumers. As the availability of EFA in the ecosystem is affected by ambient temperature, the predicted rise in ocean temperature might alter the availability of these EFA at the basis of marine food webs. Despite the FA bioconversion capacity of certain benthic copepod species, their lipid (FA) response to varying temperatures is understudied. Therefore, the temperate, intertidal copepod Platychelipus littoralis was offered a mono and mixed diatom diet at 4, 15 °C (normal range) and at 24 °C (elevated temperature) to investigate the combined effects of temperature and resource availability on its FA content and composition. P. littoralis showed a flexible thermal acclimation response. Cold exposure increased the degree of FA unsaturation and the EPA%, and induced a shift towards shorter chain FA in the copepod's membranes. Furthermore, a mixed diet reduced the impact of heat stress on the copepod's membrane FA composition. Temperature affected the trophic transfer of EPA and DHA differently. While dietary resources could fully compensate for the temperature effects on total lipid and EPA content in the copepods, no such counterweigh was observed for the DHA dynamics. Heat stress lowered the DHA concentration in copepods regardless of the resources available and this implies negative effects for higher trophic levels. PMID:27033038

  16. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  17. Suthi feeding: an experience.

    PubMed

    Gupta, B D; Jain, P; Mandowara, S L

    1995-06-01

    In cases in which expressed breast milk is given or breast feeding cannot be done at all, a suitable alternative to breast feeding is still in question. Bottle feeding poses many hazards. Spoon and bowl have been proposed as a reasonable alternative since users can achieve better cleanliness. Yet it is impractical for staff in health facility nurseries to feed every newborn with the spoon and bowl method since it requires so much time. On average, they need to provide oral feeds to at least 10 babies a day. In India, maternal grandparents present the family of a newborn with the traditional Sindhi silver or stainless steel utensil to provide the infant drinking water. It is called Suthi. It holds either 10 or 20 cc, making it easier to quantify the amount of milk/feed. It has a long semicircular beak and curved rounded margins. Advantages of the Suthi over other alternative feeding methods include: it is a shallow container with a broad upper surface, allowing the user to clean it thoroughly and easily; its narrow beak can go directly into the mouth of the newborn, particularly premature infants and low birth weight infants, with relative ease, reducing the likelihood of spilling milk, and the Suthi feeding procedure is less messy and faster (7-10 vs. 15-20 minutes for spoon) than other procedures. The Suthi method allows nursery staff to spend less time per feed for 8-10 babies (minimum time needed, 1 vs. 3 hours). It can also be used at home. Its use will reduce the likelihood of aspiration since it cannot be used lying down. Since it is a traditional container, the community will accept Suthi. When breast feeding is not possible, the Suthi should be used. PMID:8613348

  18. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    PubMed Central

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and

  19. Skeletal myopathy in heart failure: effects of aerobic exercise training.

    PubMed

    Brum, P C; Bacurau, A V; Cunha, T F; Bechara, L R G; Moreira, J B N

    2014-04-01

    Reduced aerobic capacity, as measured by maximal oxygen uptake, is a hallmark in cardiovascular diseases and strongly predicts poor prognosis and higher mortality rates in heart failure patients. While exercise capacity is poorly correlated with cardiac function in this population, skeletal muscle abnormalities present a striking association with maximal oxygen uptake. This fact draws substantial attention to the clinical relevance of targeting skeletal myopathy in heart failure. Considering that skeletal muscle is highly responsive to aerobic exercise training, we addressed the benefits of aerobic exercise training to combat skeletal myopathy in heart failure, focusing on the mechanisms by which aerobic exercise training counteracts skeletal muscle atrophy.

  20. Effect of aerobic exercises on stuttering

    PubMed Central

    Khan, Illays; Nawaz, Irum; Amjad, Imran

    2016-01-01

    Background and Objective: Stuttering is one of the most common speech disorders in adolescents than adults. Stuttering results in depression, anxiety, behavioral problem, social isolation and communication problems in daily life. Our objective was to determine the effect of Aerobic Exercises (AE) on stuttering. Methods: A quasi trail was conducted at National Institute of Rehabilitation Medicine (NIRM) from January to June 2015. Thirty patients were selected and placed in three different groups Experimental Group A, (EG = 10 patients, age between 7-14 years), Experimental Group B (EG =10 patients age between 15-28 years) and control group –group C, (CG = 10 patients, age between 7-28 years). Patient who stutter were included in this study and those with any other pathology or comorbidity of speech disorders were excluded. The assessment tool used was Real-Time analysis of speech fluency scale. Participants in all the groups received speech therapy while only the EG – A and B received aerobic exercises (AE) using treadmill and stationary bicycle along with the speech therapy. Pre-interventional and post interventional assessments were analyzed using the SPSS 21 in order to determine the significance of new treatment approach and the effectiveness of physical therapy on speech disorders. Results: All the groups showed significant treatment effects but both the EG groups (Group A, Group B) showed high improvement in the severity level of stuttering as compared to control group C. The results also showed that AE treated group B had significant difference in p-value (p=0.027) as compared to control group (p<0.05) while experimental group A had no significant difference (p > 0.05) between these groups. Conclusion: The eclectic approach of aerobic exercises with the traditional speech therapy provides proximal rehabilitation of stuttering. PMID:27648057

  1. Effect of aerobic exercises on stuttering

    PubMed Central

    Khan, Illays; Nawaz, Irum; Amjad, Imran

    2016-01-01

    Background and Objective: Stuttering is one of the most common speech disorders in adolescents than adults. Stuttering results in depression, anxiety, behavioral problem, social isolation and communication problems in daily life. Our objective was to determine the effect of Aerobic Exercises (AE) on stuttering. Methods: A quasi trail was conducted at National Institute of Rehabilitation Medicine (NIRM) from January to June 2015. Thirty patients were selected and placed in three different groups Experimental Group A, (EG = 10 patients, age between 7-14 years), Experimental Group B (EG =10 patients age between 15-28 years) and control group –group C, (CG = 10 patients, age between 7-28 years). Patient who stutter were included in this study and those with any other pathology or comorbidity of speech disorders were excluded. The assessment tool used was Real-Time analysis of speech fluency scale. Participants in all the groups received speech therapy while only the EG – A and B received aerobic exercises (AE) using treadmill and stationary bicycle along with the speech therapy. Pre-interventional and post interventional assessments were analyzed using the SPSS 21 in order to determine the significance of new treatment approach and the effectiveness of physical therapy on speech disorders. Results: All the groups showed significant treatment effects but both the EG groups (Group A, Group B) showed high improvement in the severity level of stuttering as compared to control group C. The results also showed that AE treated group B had significant difference in p-value (p=0.027) as compared to control group (p<0.05) while experimental group A had no significant difference (p > 0.05) between these groups. Conclusion: The eclectic approach of aerobic exercises with the traditional speech therapy provides proximal rehabilitation of stuttering.

  2. The use of dissolved oxygen-controlled, fed-batch aerobic cultivation for recombinant protein subunit vaccine manufacturing.

    PubMed

    Farrell, Patrick; Sun, Jacob; Champagne, Paul-Philippe; Lau, Heron; Gao, Meg; Sun, Hong; Zeiser, Arno; D'Amore, Tony

    2015-11-27

    A simple "off-the-shelf" fed-batch approach to aerobic bacterial cultivation for recombinant protein subunit vaccine manufacturing is presented. In this approach, changes in the dissolved oxygen levels are used to adjust the nutrient feed rate (DO-stat), so that the desired dissolved oxygen level is maintained throughout cultivation. This enables high Escherichia coli cell densities and recombinant protein titers. When coupled to a kLa-matched scale-down model, process performance is shown to be consistent at the 2L, 20L, and 200L scales for two recombinant E. coli strains expressing different protein subunit vaccine candidates. Additionally, by mining historical DO-stat nutrient feeding data, a method to transition from DO-stat to a pre-determined feeding profile suitable for larger manufacturing scales without using feedback control is demonstrated at the 2L, 20L, and 200L scales.

  3. Screening and identification of aerobic denitrifiers

    NASA Astrophysics Data System (ADS)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  4. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-01

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  5. [Heterotrophic Nitrification and Aerobic Denitrification of the Hypothermia Aerobic Denitrification Bacterium: Arthrobacter arilaitensis].

    PubMed

    He, Teng-xia; Ni, Jiu-pai; Li, Zhen-lun; Sun, Quan; Ye Qing; Xu, Yi

    2016-03-15

    High concentrations of ammonium, nitrate and nitrite nitrogen were employed to clarify the abilities of heterotrophic nitrification and aerobic denitrification of Arthrobacter arilaitensis strain Y-10. Meanwhile, by means of inoculating the strain suspension into the mixed ammonium and nitrate, ammonium and nitrite nitrogen simulated wastewater, we studied the simultaneous nitrification and denitrification ability of Arthrobacter arilaitensis strain Y-10. In addition, cell optical density was assayed in each nitrogen removal process to analyze the relationship of cell growth and nitrogen removal efficiency. The results showed that the hypothermia denitrification strain Arthrobacter arilaitensis Y-10 exhibited high nitrogen removal efficiency during heterotrophic nitrification and aerobic denitrification. The ammonium, nitrate and nitrite removal rates were 65.0%, 100% and 61.2% respectively when strain Y-10 was cultivated for 4 d at 15°C with initial ammonium, nitrate and nitrite nitrogen concentrations of 208.43 mg · L⁻¹, 201.16 mg · L⁻¹ and 194.33 mg · L⁻¹ and initial pH of 7.2. Nitrite nitrogen could only be accumulated in the medium containing nitrate nitrogen during heterotrophic nitrification and aerobic denitrification process. Additionally, the ammonium nitrogen was mainly removed in the inorganic nitrogen mixed synthetic wastewater. In short, Arthrobacter arilaitensis Y-10 could conduct nitrification and denitrification effectively under aerobic condition and the ammonium nitrogen removal rate was more than 80.0% in the inorganic nitrogen mixed synthetic wastewater. PMID:27337904

  6. Effects of feeding and hypoxia on cardiac performance and gastrointestinal blood flow during critical speed swimming in the sea bass Dicentrarchus labrax.

    PubMed

    Dupont-Prinet, A; Claireaux, G; McKenzie, D J

    2009-10-01

    Previous studies have shown that if European sea bass are exercised after feeding, they can achieve a significantly higher maximum metabolic rate (MMR) than when fasted. They can meet combined metabolic demands of digestion (specific dynamic action, SDA) and maximal aerobic exercise, with no decline in swimming performance. If, however, exposed to mild hypoxia (50% saturation), bass no longer achieve higher MMR after feeding but they swim as well fed as fasted, due to an apparent ability to defer the SDA response. This study explored patterns of cardiac output (Q(A)) and blood flow to the gastrointestinal tract (Q(GI)) associated with the higher MMR after feeding, and with the ability to prioritise swimming in hypoxia. Sea bass (mean mass approximately 325 g, forklength approximately 27 cm) were instrumented with flow probes to measure Q(A) and Q(GI) during an incremental critical swimming speed (U(crit)) protocol in a tunnel respirometer, to compare each animal either fasted or 6h after a meal of fish fillet equal to 3% body mass. Feeding raised oxygen uptake (M(O2)) prior to exercise, an SDA response associated with increased Q(A) (+30%) and Q(GI) (+100%) compared to fasted values. As expected, when exercised the fed bass maintained the SDA load throughout the protocol and achieved 14% higher MMR than when fasted, and the same U(crit) (approximately 100 cm s(-1)). Both fed and fasted bass showed pronounced increases in Q(A) and decreases in Q(GI) during exercise and the higher MMR of fed bass was not associated with higher maximum Q(A) relative to when fasted, or to any differences in Q(GI) at maximum Q(A). In hypoxia prior to exercise, metabolic and cardiac responses to feeding were similar compared to normoxia. Hypoxia caused an almost 60% reduction to MMR and 30% reduction to U(crit), but neither of these traits differed between fed or fasted bass. Despite hypoxic limitations to MMR and U(crit), maximum Q(A) and patterns of Q(GI) during exercise in fasted and

  7. Breast-feeding multiples.

    PubMed

    Flidel-Rimon, O; Shinwell, E S

    2002-06-01

    Human breast milk is the best nutrition for human infants. Its advantages over the milk of other species, such as cows, include both a reduced risk for infections, allergies and chronic diseases, together with the full nutritional requirements for growth and development. Breast-feeding is as important for multiples as for singletons. Despite the advantages, multiples receive less breast-feeding than singletons. Common reasons for not breast-feeding multiples include the fear of not fulfilling the infants' needs and the difficulty of coping with the demands on the mother's time. In addition, many multiples are delivered prematurely and by Caesarean section. Maternal pain and discomfort together with anxiety over the infants' condition are not conducive to successful breast-feeding. During lactation, the mother needs to add calories to her daily diet. It has been recommended to add approximately 500-600 kcal/day for each infant. Thus, between eating, nursing and sleeping, life is very busy for the mother of multiples. However, there is evidence that, with appropriate nutrition, one mother can nourish more than one infant. Also, simultaneous breast-feeding can save much time. Combined efforts of parents, close family, friends and the medical team can help to make either full or partial breast-feeding of multiples possible. However, when breast-feeding is not possible, health care workers need to carefully avoid judgmental approaches that may induce feelings of guilt.

  8. Clearing obstructed feeding tubes.

    PubMed

    Marcuard, S P; Stegall, K L; Trogdon, S

    1989-01-01

    This is a report of an in vitro study evaluating the ability of six solutions to dissolve clotted enteral feeding, which can cause feeding tube occlusion. The following clotted enteral feeding products were tested: Ensure Plus, Ensure Plus with added protein (Promod 20 g/liter), Osmolite, Enrich, and Pulmocare. Clot dissolution was then tested by adding Adolf's Meat Tenderizer, Viokase, Sprite, Pepsi, Coke, or Mountain Dew. Distilled water served as control. Dissolution score for each mixture was assessed blindly. Best dissolution was observed with Viokase in pH 7.9 solution (p less than 0.01). Similar results were obtained when feeding tube patency was restored in eight in vitro occluded feeding tubes (Dobbhoff, French size 8) by using first Pepsi (two/eight successful) and then Viokase in pH 7.9 (six/six successful). We also report our experience in the first 10 patients with occluded feeding tubes using this Viokase solution injected through a Drum catheter into the feeding tube. In seven patients, this method proved to be successful, and the reasons for failure in three patients include a knotted tube, impacted tablet powder, and a formula clot fo 24 hr duration and 45 cm in length. PMID:2494372

  9. Clearing obstructed feeding tubes.

    PubMed

    Marcuard, S P; Stegall, K L; Trogdon, S

    1989-01-01

    This is a report of an in vitro study evaluating the ability of six solutions to dissolve clotted enteral feeding, which can cause feeding tube occlusion. The following clotted enteral feeding products were tested: Ensure Plus, Ensure Plus with added protein (Promod 20 g/liter), Osmolite, Enrich, and Pulmocare. Clot dissolution was then tested by adding Adolf's Meat Tenderizer, Viokase, Sprite, Pepsi, Coke, or Mountain Dew. Distilled water served as control. Dissolution score for each mixture was assessed blindly. Best dissolution was observed with Viokase in pH 7.9 solution (p less than 0.01). Similar results were obtained when feeding tube patency was restored in eight in vitro occluded feeding tubes (Dobbhoff, French size 8) by using first Pepsi (two/eight successful) and then Viokase in pH 7.9 (six/six successful). We also report our experience in the first 10 patients with occluded feeding tubes using this Viokase solution injected through a Drum catheter into the feeding tube. In seven patients, this method proved to be successful, and the reasons for failure in three patients include a knotted tube, impacted tablet powder, and a formula clot fo 24 hr duration and 45 cm in length.

  10. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  11. Coal feed lock

    DOEpatents

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  12. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

    PubMed Central

    Hao, W.; Wang, H. L.; Ning, T. T.; Yang, F. Y.; Xu, C. C.

    2015-01-01

    The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 107 to 1010 cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 109 cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR. PMID:25925059

  13. Settling behaviour of aerobic granular sludge.

    PubMed

    Nor Anuar, A; Ujang, Z; van Loosdrecht, M C M; de Kreuk, M K

    2007-01-01

    Aerobic granular sludge (AGS) technology has been extensively studied recently to improve sludge settling and behaviour in activated sludge systems. The main advantage is that aerobic granular sludge (AGS) can settle very fast in a reactor or clarifier because AGS is compact and has strong structure. It also has good settleability and a high capacity for biomass retention. Several experimental works have been conducted in this study to observe the settling behaviours of AGS. The study thus has two aims: (1) to compare the settling profile of AGS with other sludge flocs and (2) to observe the influence of mechanical mixing and design of the reactor to the settleability of AGS. The first experimental outcome shows that AGS settles after less than 5 min in a depth of 0.4 m compared to other sludge flocs (from sequencing batch reactor, conventional activated sludge and extended aeration) which takes more than 30 min. This study also shows that the turbulence from the mixing mechanism and shear in the reactor provides an insignificant effect on the AGS settling velocity.

  14. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  15. Aerobic growth at nanomolar oxygen concentrations

    PubMed Central

    Stolper, Daniel A.; Revsbech, Niels Peter; Canfield, Donald E.

    2010-01-01

    Molecular oxygen (O2) is the second most abundant gas in the Earth’s atmosphere, but in many natural environments, its concentration is reduced to low or even undetectable levels. Although low-oxygen-adapted organisms define the ecology of low-oxygen environments, their capabilities are not fully known. These capabilities also provide a framework for reconstructing a critical period in the history of life, because low, but not negligible, atmospheric oxygen levels could have persisted before the “Great Oxidation” of the Earth’s surface about 2.3 to 2.4 billion years ago. Here, we show that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history of aerobic organisms. PMID:20974919

  16. Acute effects of aerobic exercise promote learning

    PubMed Central

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  17. Validity of critical frequency test for measuring table tennis aerobic endurance through specific protocol

    PubMed Central

    Zagatto, Alessandro M.; Papoti, Marcelo; Gobatto, Claudio A.

    2008-01-01

    The aim of this study was to validate critical frequency specific test (critf) for the estimation of the aerobic endurance in table tennis players. Methods: Eight male international-level table tennis players participated of this study. Specific tests were applied by using a mechanical ball thrower to control the intensity of the exercise. The critf was determined by applying three or four series of exercises to exhaustion (Tlim). The critf was evaluated by using lactate steady state test (90, 100, and 106 % of critf intensity). The other specific test was an incremental protocol used to determine the anaerobic threshold (AnTBI) and the onset of blood lactate accumulation (OBLA) using a ball thrower. Results: The critf (39.87 ± 3.31 balls·min-1) was not significantly different among AnTBI (48.11 ± 7.36 balls·min- 1) and OBLA3.5 (49.36 ± 12.04 balls·min-1) frequencies and it was correlated with AnTBI parameter (r = 0.78). At frequencies of the 90 and 100% of critf a dynamic equilibrium was verified in lactate concentration between the eighth and twentieth minutes. However, this dynamic equilibrium was not found at 106% intensity. Conclusion: The data indicate that in table tennis the critf model can be used for measuring the aerobic endurance. Key pointsIn table tennis is need the use of a specific protocol for evaluation of the aerobic endurance.The critical frequency test in table tennis seems to represent the intensity of maximal equilibrium of lactatemia.The critical frequency test can be used for measuring table tennis aerobic endurance through specific protocol. PMID:24149951

  18. Tube Feeding Troubleshooting Guide

    MedlinePlus

    ... profile tube also has a stem length). Note: NG and NJ tubes (that go through a person’s ... Immediate Action: • Discontinue feeding. • If you have an NG or NJ tube, and the tube is curled ...

  19. Breastfeeding vs. Formula Feeding

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Breastfeeding vs. Formula Feeding KidsHealth > For Parents > Breastfeeding vs. ... for you and your baby. continue All About Breastfeeding Nursing can be a wonderful experience for both ...

  20. Feeding Your Newborn

    MedlinePlus

    ... you choose to breastfeed or formula feed. About Breastfeeding Breastfeeding your newborn has many advantages. Perhaps most ... to care for her newborn. continue Limitations of Breastfeeding With all the good things known about breastfeeding, ...

  1. Feeding tube - infants

    MedlinePlus

    ... tube is misplaced and not in the proper position, the baby may have problems with: An abnormally slow heart rate (bradycardia) Breathing Spitting up Rarely, the feeding tube can puncture the stomach.

  2. Aerobic Dance Exercise Programs: Maintaining Quality and Effectiveness.

    ERIC Educational Resources Information Center

    Russell, Pamela J.

    1983-01-01

    A study of the effectiveness of Washington State University's aerobic dance program showed that participation in the program did not improve students' cardiovascular fitness. Aerobics instructors should be trained to use pulse rate and other principles of exercise physiology to make their work more effective. (PP)

  3. The Effectiveness of Aerobic Exercise Instruction for Totally Blind Women.

    ERIC Educational Resources Information Center

    Ponchillia, S. V.; And Others

    1992-01-01

    A multifaceted method (involving verbal and hands-on training) was used to teach aerobic exercises to 3 totally blind women (ages 24-37). All three women demonstrated positive gains in their performance, physical fitness, and attitudes toward participating in future mainstream aerobic exercise classes. (DB)

  4. [Value of aerobic rehabilitation in the management of fibromyalgia].

    PubMed

    Maquet, D; Croisier, J L; Demoulin, C; Faymonville, M; Crielaard, J M

    2006-02-01

    This study assesses the influence of a muscular aerobic revalidation program on the management of the fibromyalgia syndrome. After 3 months, benefits consisting of increased muscle performances associated with a reduction of pain and an improvement of quality of life were documented. This study confirms the value of aerobic muscle exercise in fibromyalgia patients. PMID:16566119

  5. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  6. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  7. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  8. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  9. Biodegradation of industrial-strength 2,4-dichlorophenoxyacetic acid wastewaters in the presence of glucose in aerobic and anaerobic sequencing batch reactors.

    PubMed

    Elefsiniotis, Panagiotis; Wareham, David G

    2013-01-01

    This research explored the biodegradability of 2,4-dichlorophenoxyacetic acid (2,4-D) in two laboratory-scale sequencing batch reactors (SBRs) that operated under aerobic and anaerobic conditions. The potential limit of 2,4-D degradation was investigated at a hydraulic retention time of 48 h, using glucose as a supplemental substrate and increasing feed concentrations of 2,4-D; namely 100 to 700 mg/L (i.e. industrial strength) for the aerobic system and 100 to 300 mg/L for the anaerobic SBR. The results revealed that 100 mg/L of 2,4-D was completely degraded following an acclimation period of 29 d (aerobic SBR) and 70 d (anaerobic SBR). The aerobic system achieved total 2,4-D removal at feed concentrations up to 600 mg/L which appeared to be a practical limit, since a further increase to 700 mg/L impaired glucose degradation while 2,4-D biodegradation was non-existent. In all cases, glucose was consumed before the onset of 2,4-D degradation. In the anaerobic SBR, 2,4-D degradation was limited to 120 mg/L.

  10. Heart rate during aerobics classes in women with different previous experience of aerobics.

    PubMed

    Laukkanen, R M; Kalaja, M K; Kalaja, S P; Holmala, E B; Paavolainen, L M; Tummavuori, M; Virtanen, P; Rusko, H K

    2001-01-01

    This study measured heart rate during floor and step aerobic classes at three intensity levels. A group of 20 female occasional exercisers [mean age 33 (SD 8) years, mean body mass index 21 (SD 2) kg.m-2 volunteered to participate in six aerobic classes (three floor classes, three step classes) and in a laboratory test as members of one of two groups according to their prestudy regular participation in aerobics classes. Subjects in group A had participated four or more times a week and those of group B less than twice a week. The characteristics of the groups were as follows: group A, n = 10, mean maximal oxygen uptake (VO2max) 38.7 (SD 3.6) ml.kg-1.min-1, mean maximal heart rate (HRmax) 183 (SD 8) beats.min-1; group B, n = 10, VO2max 36.1 (SD 3.6) ml.kg-1.min-1, HRmax 178 (SD 7) beats.min-1. Each class consisted of a warm-up, a 20 min period of structured aerobic exercise (cardiophase) and a cool-down. The cardiophase was planned and guided as light, (rate of perceived exertion, RPE 11-12), moderate (RPE 13-14) or heavy (RPE 15-17) by an experienced instructor. The mean heart rates during the light classes were 72 (step) and 74 (floor) %HRmax in group A and 75 (step) and 79 (floor) %HRmax in group B; during the moderate classes, 84 (step) and 80 (floor) %HRmax in group A and 82 (step) and 83 (floor) %HRmax in group B, and during the heavy classes 89 (step and floor) %HRmax in group A and 88 (step) and 92 (floor) %HRmax in group B. Differences in heart rate and %HRmax were not statistically significant between the groups. However, differences in heart rate and %HRmax between the intensities (light vs moderate, moderate vs heavy and light vs heavy) were significant within both groups (all, P < 0.01). Based on the results, we conclude that intensity management during the aerobics classes was generally successful regardless of the participants' prior participation in aerobics. However, some individuals who were older and/or had less prior participation tended to

  11. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed....

  12. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed....

  13. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed....

  14. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed....

  15. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed....

  16. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (= 95 ...

  17. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  18. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  19. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  20. Maximal strength training improves aerobic endurance performance.

    PubMed

    Hoff, J; Gran, A; Helgerud, J

    2002-10-01

    The aim of this experiment was to examine the effects of maximal strength training with emphasis on neural adaptations on strength- and endurance-performance for endurance trained athletes. Nineteen male cross-country skiers about 19.7 +/- 4.0 years of age and a maximal oxygen uptake (VO(2 max)) of 69.4 +/- 2.2 mL x kg(-1) x min(-1) were randomly assigned to a training group (n = 9) or a control group (n = 10). Strength training was performed, three times a week for 8 weeks, using a cable pulley simulating the movements in double poling in cross-country skiing, and consisted of three sets of six repetitions at a workload of 85% of one repetition maximum emphasizing maximal mobilization of force in the concentric movement. One repetition maximum improved significantly from 40.3 +/- 4.5 to 44.3 +/- 4.9 kg. Time to peak force (TPF) was reduced by 50 and 60% on two different submaximal workloads. Endurance performance measured as time to exhaustion (TTE) on a double poling ski ergometer at maximum aerobic velocity, improved from 6.49 to 10.18 min; 20.5% over the control group. Work economy changed significantly from 1.02 +/- 0.14 to 0.74 +/- 0.10 mL x kg(-0.67) x min(-1). Maximal strength training with emphasis on neural adaptations improves strength, particularly rate of force development, and improves aerobic endurance performance by improved work economy.

  1. [Enteral tube feeding].

    PubMed

    Haller, Alois

    2014-03-01

    Tube feeding is an integral part of medical therapies, and can be easily managed also in the outpatient setting. Tube feeding by the stomach or small intestine with nasogastral or nasojejunal tubes is common in clinical practice. Long-term nutrition is usually provided through a permanent tube, i. e. a percutaneous endoscopic gastrostomy (PEG). Modern portable nutrition pumps are used to cover the patient's nutritional needs. Enteral nutrition is always indicated if patients can not or should not eat or if nutritional requirements cannot be covered within 3 days after an intervention, e. g. after abdominal surgery. Industrially produced tube feedings with defined substrate concentrations are being used; different compositions of nutrients, such as glutamine fish oil etc., are used dependent on the the condition of the patient. Enteral nutrition may be associated with complications of the tube, e. g. dislocation, malposition or obstruction, as well as the feeding itself, e. g.hyperglycaemia, electrolyte disturbances, refeeding syndrome diarrhea or aspiration). However, the benefit of tube feeding usually exceeds the potential harm substantially.

  2. Isolation of an aerobic vinyl chloride oxidizer from anaerobic groundwater.

    PubMed

    Fullerton, Heather; Rogers, Rebecca; Freedman, David L; Zinder, Stephen H

    2014-11-01

    Vinyl chloride (VC) is a known human carcinogen and common groundwater contaminant. Reductive dechlorination of VC to non-toxic ethene under anaerobic conditions has been demonstrated at numerous hazardous waste sites. However, VC disappearance without stoichiometric production of ethene has also been observed at some sites and in microcosms. In this study we identify an organism responsible for this observation in presumably anaerobic microcosms and conclude that oxygen was not detectable based on a lack of color change from added resazurin. This organism, a Mycobacterium sp. closely related to known VC oxidizing strains, was present in high numbers in 16S rRNA gene clone libraries from a groundwater microcosm. Although the oxidation/reduction indicator resazurin remained in the clear reduced state in these studies, these results suggest inadvertent oxygen contamination occurred. This study helps to elucidate the dynamic behavior of chlorinated ethenes in contaminated groundwater, through the isolation of a strictly aerobic organism that may be responsible for at least some disappearance of VC without the concomitant production of ethene in groundwater considered anaerobic.

  3. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  4. Low Volume Aerobic Training Heightens Muscle Deoxygenation in Early Post-Angina Pectoris Patients.

    PubMed

    Takagi, Shun; Murase, Norio; Kime, Ryotaro; Niwayama, Masatsugu; Osada, Takuya; Katsumura, Toshihito

    2016-01-01

    The aim of this study was to investigate the effect of low volume aerobic exercise training on muscle O2 dynamics during exercise in early post-angina pectoris (AP) patients, as a pilot study. Seven AP patients (age: 72 ± 6 years) participated in aerobic exercise training for 12 weeks. Training consisted of continuous cycling exercise for 30 min at the individual's estimated lactate threshold, and the subjects trained for 15 ± 5 exercise sessions over 12 weeks. Before and after training, the subjects performed ramp cycling exercise until exhaustion. Muscle O2 saturation (SmO2) and relative changes from rest in deoxygenated hemoglobin concentration (∆Deoxy-Hb) and total hemoglobin concentration (∆Total-Hb) were monitored at the vastus lateralis by near infrared spatial resolved spectroscopy during exercise. The SmO2 was significantly lower and ∆Deoxy-Hb was significantly higher after training than before training, while there were no significant changes in ∆Total-Hb. These results indicated that muscle deoxygenation and muscle O2 extraction were potentially heightened by aerobic exercise training in AP patients, even though the exercise training volume was low. PMID:27526151

  5. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back.

    PubMed

    Melo, Ana M P; Teixeira, Miguel

    2016-03-01

    Aerobic respiratory chains from all life kingdoms are composed by several complexes that have been deeply characterized in their isolated form. These membranous complexes link the oxidation of reducing substrates to the reduction of molecular oxygen, in a process that conserves energy by ion translocation between both sides of the mitochondrial or prokaryotic cytoplasmatic membranes. In recent years there has been increasing evidence that those complexes are organized as supramolecular structures, the so-called supercomplexes and respirasomes, being available for eukaryotes strong data namely obtained by electron microscopy and single particle analysis. A parallel study has been developed for prokaryotes, based on blue native gels and mass spectrometry analysis, showing that in these more simple unicellular organisms such supercomplexes also exist, involving not only typical aerobic-respiration associated complexes, but also anaerobic-linked enzymes. After a short overview of the data on eukaryotic supercomplexes, we will analyse comprehensively the different types of prokaryotic aerobic respiratory supercomplexes that have been thus far suggested, in both bacteria and archaea. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. PMID:26546715

  6. Mathematical modeling of the effects of aerobic and anaerobic chelate bioegradation on actinide speciation.

    SciTech Connect

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-03-19

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems.

  7. Mutagenicity of anaerobic fenitrothion metabolites after aerobic biodegradation.

    PubMed

    Matsushita, Taku; Matsui, Yoshihiko; Saeki, Ryo; Inoue, Takanobu

    2005-12-01

    Previous studies have revealed that the mutagenicity of fenitrothion increases during anaerobic biodegradation, suggesting that this insecticide's mutagenicity could effectively increase after it pollutes anaerobic environments such as lake sediments. To investigate possible changes to the mutagenicity of fenitrothion under aerobic conditions after it had already been increased by anaerobic biodegradation, batch incubation cultures were maintained under aerobic conditions. The mutagenicity, which had increased during anaerobic biodegradation, decreased under aerobic conditions with aerobic or facultative bacteria, but did not disappear completely in 22 days. In contrast, it did not change under aerobic conditions without bacteria or under continued anaerobic conditions. These observations suggest that the mutagenicity of anaerobically metabolized fenitrothion would not necessarily decrease after it arrives in an aerobic environment: this would depend on the presence of suitable bacteria. Therefore, fenitrothion-derived mutagenic compounds may pollute the water environment, including our drinking water sources, after accidental pollution of aerobic waters. Although amino-fenitrothion generated during anaerobic biodegradation of fenitrothion was the principal mutagen, non-trivial contributions of other, unidentified metabolites to the mutagenicity were also observed. PMID:16263383

  8. Comparison of aerobic and anaerobic biotreatment of municipal solid waste.

    PubMed

    Borglin, Sharon E; Hazen, Terry C; Oldenburg, Curtis M; Zawislanski, Peter T

    2004-07-01

    To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.

  9. Upper limb aerobic training improves aerobic fitness and all-out performance of America's Cup grinders.

    PubMed

    Adami, Paolo Emilio; Delussu, Anna Sofia; Rodio, Angelo; Squeo, Maria Rosaria; Corsi, Loretta; Quattrini, Filippo Maria; Fattorini, Luigi; Bernardi, Marco

    2015-01-01

    This research on "America's Cup" grinders investigated the effects of a specific eight-week long-arm cranking ergometer (ACE) training on upper body (UB) aerobic fitness (ventilatory threshold - Tvent, respiratory compensation point- RCP, -oxygen uptake peak - VO₂peak) and high intensity working capacity. The training consisted of sessions carried out for 20-30 mins, three times per week, at an intensity between the UB-Tvent and UB-RCP, and replaced part of a typical lower limb aerobic training whilst maintaining the usual weekly schedule of callisthenics, resistance training and sailing. Seven sailors, including four grinders and three mastmen (age 30 ± 5.5 years, height 1.9 ± 0.04 m, body mass 102 ± 3.6 kg), were evaluated through both an ACE cardiopulmonary maximal exercise test (CPET) and an ACE all-out up to exhaustion exercise test, before and after the ACE training. UB aerobic fitness improved significantly: UB-VO₂peak increased from 4.29 ± 0.442 to 4.52 ± 0.522 l·min(-1) (6.4 ± 3.66%), VO₂ at UB-Tvent from 2.42 ± 0.282 to 2.97 ± 0.328 l·min(-1) (22.8 ± 5.09%) and VO₂ at UB-RCP from 3.25 ± 0.402 to 3.75 ± 0.352 l·min(-1) (16.1 ± 10.83%). Peak power at the ACE CPET increased from 351 ± 27.5 to 387 ± 33.5 W (10.5 ± 6.93%). The all-out test total mechanical work increased from 28.9 ± 2.35 to 40.1 ± 3.76 kJ (72.1 ± 4.67%). In conclusion, a high intensity aerobic ACE training can be effective in improving grinding performance by increasing UB aerobic fitness and all-out working capacity. PMID:25357134

  10. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma.

    PubMed

    Pavlides, Stephanos; Whitaker-Menezes, Diana; Castello-Cros, Remedios; Flomenberg, Neal; Witkiewicz, Agnieszka K; Frank, Philippe G; Casimiro, Mathew C; Wang, Chenguang; Fortina, Paolo; Addya, Sankar; Pestell, Richard G; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica; Lisanti, Michael P

    2009-12-01

    Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse

  11. Environmental control on aerobic methane oxidation in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  12. Anaerobic digestion of dairy cattle manure autoheated by aerobic pretreatment

    SciTech Connect

    Achkari-Begdouri, A.

    1989-01-01

    A novel way to heat anaerobic digesters was investigated. Dairy cattle manure was autoheated by an aerobic pretreatment process and then fed to the anaerobic digester. Important physical properties of the dairy cattle manure were determined. These included bulk density, specific heat, thermal conductivity and the rheological properties; consistency coefficient, behavior index and apparent viscosity. These parameters were used to calculate the overall heat transfer coefficients, and to estimate the heat losses from the aerobic reactor to the outside environment. The total energy balance of the aerobic treatment system was then established. An optimization study of the main parameters influencing the autoheating process showed that the total solids, the air flow rate and the stirring speed for operation of the aerobic pretreatment should be approximately 7%, 70 L/H and 1,400 rpm respectively. Temperatures as high as 65C were reached in 40 hours of aerobic treatment. At the above recommended levels of total solids, the air flow rate and the stirring speed, there was little difference in the energy requirements for heating the influent by aeration and heating the influent by a conventional heating system. In addition to the temperature increase, the aerobic pretreatment assisted in balancing the anaerobic digestion process and increased the methanogenesis of the dairy cattle manure. Despite the 8% decomposition of organic matter that occurred during the aerobic pretreatment process, methane production of the digester started with the aerobically heated manure was significantly higher (at least 20% higher) than of the digester started with conventionally heated manure. The aerobic system successfully autoheated the dairy cattle manure with an energy cost equal to that of conventionally heated influent.

  13. Xanthophylls in Poultry Feeding

    NASA Astrophysics Data System (ADS)

    Breithaupt, Diemar R.

    Since most consumers associate an intense colour of food with healthy animals and high food quality, xanthophylls are widely used as feed additives to generate products that meet consumers' demands. An important large-scale application is in poultry farming, where xanthophylls are added to feed to give the golden colour of egg yolk that is so much appreciated. Now, with numerous new applications in human food, in the pharmaceutical industry, and in cosmetic products, there is an increasing demand for xanthophylls on the international market (Volume 5, Chapter 4).

  14. High efficiency multifrequency feed

    NASA Technical Reports Server (NTRS)

    Ajioka, J. S.; Tsuda, G. I.; Leeper, W. A. (Inventor)

    1974-01-01

    Antenna systems and particularly compact and simple antenna feeds which can transmit and receive simultaneously in at least three frequency bands, each with high efficiency and polarization diversity are described. The feed system is applicable for frequency bands having nominal frequency bands with the ratio 1:4:6. By way of example, satellite communications telemetry bands operate in frequency bands 0.8 - 1.0 GHz, 3.7 - 4.2 GHz and 5.9 - 6.4 GHz. In addition, the antenna system of the invention has monopulse capability for reception with circular or diverse polarization at frequency band 1.

  15. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  16. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  17. Heritability of aerobic power of individuals in northeast Brazil.

    PubMed

    Alonso, L; Souza, Ec; Oliveira, Mv; do Nascimento, Lfe; Dantas, Pms

    2014-12-01

    The objective of this study was to evaluate the genetic and environmental contribution to variation in aerobic power in monozygotic (MZ) and dizygotic (DZ) twins. The sample consisted of 20 MZ individuals (12 females and 8 males) and 16 DZ individuals (12 females and 4 males), aged from 8 to 26 years, residents in Natal, Rio Grande do Norte. The twins were assessed by a multistage fitness test. The rate of heritability found for aerobic power was 77%. Based on the results, the estimated heritability was largely responsible for the differences in aerobic power. This implies that such measures are under strong genetic influence.

  18. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  19. Modeling the fate of particulate components in aerobic sludge stabilization--performance limitations.

    PubMed

    Özdemir, S; Çokgör, E U; Orhon, D

    2014-07-01

    The study investigated the effect of sludge composition on the limitations of aerobic stabilization. It was designed with the foresight that the stabilization mechanism could only be elucidated if the observed volatile suspended solids reduction were correlated with the fate of particulate components in sludge. Biomass sustained at sludge ages of 2 and 10 days were used in the stabilization reactors. Particulate components were determined by model evaluation of corresponding oxygen uptake rate profiles. Interpretation of the experimental data by modeling, based on death-regeneration mechanism without external substrate, could simulate the fate and evolution of major components in sludge during stabilization. It showed that both microbial decay and hydrolysis of non viable cellular material proceeded at much slower rates as compared with biological systems sustained with substrate feeding. Modeling also indicated that particulate metabolic products generated by sludge acclimated to high sludge age undergo slow biodegradation under prolonged stabilization.

  20. Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing.

    PubMed

    Deng, Yongcui; Cui, Xiaoyong; Dumont, Marc G

    2016-08-01

    Sedge-dominated wetlands on the Qinghai-Tibetan Plateau are methane emission centers. Methanotrophs at these sites play a role in reducing methane emissions, but relatively little is known about the composition of active methanotrophs in these wetlands. Here, we used DNA stable isotope probing to identify the key active aerobic methanotrophs in three sedge-dominated wetlands on the plateau. We found that Methylocystis species were active in two peatlands, Hongyuan and Dangxiong. Methylobacter species were found to be active only in Dangxiong peat. Hongyuan peat had the highest methane oxidation rate, and cross-feeding of carbon from methanotrophs to methylotrophic Hyphomicrobium species was observed. Owing to a low methane oxidation rate during the incubation, the labeling of methanotrophs in Maduo wetland samples was not detected. Our results indicate that there are large differences in the activity of methanotrophs in the wetlands of this region. PMID:27369086

  1. Dietary citrus pulp improves protein stability in lamb meat stored under aerobic conditions.

    PubMed

    Gravador, Rufielyn S; Jongberg, Sisse; Andersen, Mogens L; Luciano, Giuseppe; Priolo, Alessandro; Lund, Marianne N

    2014-06-01

    The antioxidant effects of dried citrus pulp on proteins in lamb meat, when used as a replacement of concentrate in the feed, was studied using meat from 26 male Comisana lambs. The lambs of age 90 days had been grouped randomly to receive one of the three dietary treatments: (1) commercial concentrate with 60% barley (Control, n=8), (2) concentrate with 35% barley and 24% citrus pulp (Cp24, n=9), or (3) concentrate with 23% barley and 35% citrus pulp (Cp35, n=9). Slices from the longissimus thoracis et lomborum muscle were packed aerobically and stored for up to 6days at 4°C in the dark. The citrus pulp groups, Cp24 and Cp35, significantly decreased protein radicals and carbonyls, and preserved more thiols within six days of storage compared to the Control group. The citrus pulp groups significantly slowed down the rate of protein oxidation, indicating that dietary citrus pulp reduced oxidative changes in meat proteins.

  2. Feed Your Brain!

    ERIC Educational Resources Information Center

    Failmezger, Tammie L.

    2006-01-01

    Language arts teachers and library media specialists bear the responsibility of teaching students how to properly feed their brains. In this article, the author describes how she teaches her students to make wise choices when selecting books. Furthermore, she presents the "Brain Food Pyramid" model that looks similar to the food pyramid but it…

  3. Feeding of Diarmis Proboscis

    ERIC Educational Resources Information Center

    Young, Jocelyn

    2005-01-01

    The feeding of Diarmis proboscis is an exciting outdoor laboratory activity that demonstrates a single concept of adaptations--cryptic colorations. The students are "transformed" into D. proboscis (no Harry Potter magic needed) in order to learn how adaptations work in the natural world. Prior to beginning this activity, students should have a…

  4. Infant feeding and vision

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past several years, a number of randomized controlled trials have compared the effects of breastfeeding and formula feeding and the effects of docosahexaenoic acid (DHA)–supplemented and non-supplemented formulas on visual function in both preterm and term infants. Some studies have shown b...

  5. ASDC RSS Feeds

    Atmospheric Science Data Center

    2013-03-08

    ... having to visit each one of them to see what's new. When you sign up, you receive breaking news on your computer as soon as it is released. How can I sign up? Select the link(s) above to view our "raw" RSS feed. In ...

  6. Gastrostomy feeding tube - bolus

    MedlinePlus

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... Your child's gastrostomy tube (G-tube) is a special tube in your child's stomach that will help deliver food and medicines until your ...

  7. Dust feed mechanism

    DOEpatents

    Milliman, Edward M.

    1984-01-01

    The invention is a dust feed device for delivery of a uniform supply of dust for long periods of time to an aerosolizing means for production of a dust suspension. The device utilizes at least two tandem containers having spiral brushes within the containers which transport the dust from a supply to the aerosolizer means.

  8. Issues of Health, Appearance and Physical Activity in Aerobic Classes for Women

    ERIC Educational Resources Information Center

    D'Abundo, Michelle Lee

    2009-01-01

    The purpose of this research was to explore what appearance-focused messages were conveyed by aerobic instructors in aerobic classes for women. This qualitative research was influenced by the concept of wellness and how feminist pedagogy can be applied to promote individuals' well-being in aerobic classes. The practices of five aerobic instructors…

  9. Breast feeding: religious influences.

    PubMed

    Levin, S

    1979-01-01

    In Orthodox Jewish communities, mothers are expected to breast-feed their infants and this expectation is to some extent based on religious beliefs. The degree to which this expectation promotes breast-feeding success was assessed by comparing a group of 50 Orthodox Jewish mothers with a group of 50 secular Jewish mothers in regard to infant feeding practices. All of the women lived in the Yeoville suburb of Jahannesburg, South Africa. An effort was made to interview all Orthodox mothers with at least 1 child under the age of 5 living in the area and it was assumed that the 50 mothers in the study constituted all or most of that population. A group of 50 secular mothers, comparable in age, education, and general living conditions, was also interviewed. The 50 Orthodox mothers had a total of 155 children and the secular mothers had a total of 119 children. Despite the quasi-religious motivation of the Orthodox mothers to breast-feed, there were few differences in the infant feeding practices of the 2 groups. At the age of 1 month the ratio of breast-fed to bottle-fed infants was 2.5:1 for the infants of Orthodox mothers and 2.3:1 for the infants of secular mothers. At age 6 months the ratio was 1:3 for both groups. At age 9 months the ratio was 1:6.4 for Orthodox mothers and 1:6 for secular mothers. The children of Orthodox mothers were breast-fed for an average of 5 months while the children of mothers of secular children were breast-fed for 4-1/2 months.

  10. Effect of feeding food waste-broiler litter and bakery by-product mixture to pigs.

    PubMed

    Kwak, W S; Kang, J S

    2006-01-01

    This study was conducted to evaluate the effects of feeding aerobically processed and vacuum-dried food waste-broiler litter and bakery by-product mixture to finishing pigs on performance, carcass characteristics, meat quality and taste panel test. A corn-soy diet (Control) was replaced with food waste mixture (FWM) at dietary levels of 25% (25% FWM) and 50% (50% FWM) on a dry matter (DM) basis. Diets were fed to a total of 45 pigs (mean body weight 69.4kg) during the eight wk of finishing period. After slaughtering, longissmus muscle at 24h postmortem was used for meat quality analysis. Restaurant food waste was high in protein (22.0%) and fat (23.9%). Supplementing a corn-soy diet with FWM increased (P<0.05) feed DM intake, did not alter (P>0.05) average daily gain, decreased (P<0.05) feed efficiency especially for 50% FWM treatment, and substantially reduced (P<0.05) feed cost, compared with feeding a corn-soy diet only. Feeding FWM up to 50% did not affect (P>0.05) carcass characteristics (carcass weight, dressing percentage, backfat thickness and carcass grade), meat fatty acid composition, meat quality (marbling score, pH, water holding capacity, drip loss, L*, a*, b* values, Warner-Bratzler shear force, cooking loss), and taste panel test (flavor, taste, tenderness, juiciness, and overall acceptance) compared with feeding a corn-soy diet. However, meat color was paler (P<0.05) for 50% FWM fed animals than a corn-soy diet fed animals. Meat color was the only limiting factor when FWM was fed to finishing pigs. In conclusion, aerobically processed and vacuum-dried food waste-broiler litter and bakery by-product mixture was similar to a corn-soy diet in feed value for finishing pigs. PMID:16171681

  11. Prediction of Maximum Aerobic Power in Untrained Females

    ERIC Educational Resources Information Center

    Dolgener, Forrest A.

    1978-01-01

    The author presents an equation for predicting maximum aerobic power in untrained females from values of percent body fat, weight, and submaximal values of heart rate, respiratory quotient, and expired gas. (MJB)

  12. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation. PMID:24211486

  13. Mental Aerobics: Exercises for the Mind in Later Life.

    ERIC Educational Resources Information Center

    Paggi, Kay; Hayslip, Bert, Jr.

    1999-01-01

    Reports observations of the use of mental aerobics with 48 adults whose median age was 70. Provides examples of the group puzzles and logic, math, and word problems used to enhance cognitive functioning and creative thinking. (SK)

  14. Saline storage of aerobic granules and subsequent reactivation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Lin, Lin

    2014-11-01

    Loss of structural stability and bioactivity during long-term storage and operation is primary challenge to field applications of aerobic granular processes. This study for the first time stored aerobic granules in 5%w/w NaCl solution at 4°C for 187d. The stored granules were then successfully reactivated and used for 85d in sequencing batch reactors (SBR) and continuous-flow reactors (CFR) at varying levels of chemical oxygen demand (COD). High-throughput sequencing results reveal that Thauera sp., Paracoccus sp., and Nitrosomonas sp. were the predominant in the stored aerobic granules, and Pseudoxanthomonas sp. accumulated during the reactivation process. Saline storage, in which cells are in an unculturable state by saline stress, is a promising storage process for aerobic granules. PMID:25270079

  15. Enhanced aerobic nitrifying granulation by static magnetic field.

    PubMed

    Wang, Xin-Hua; Diao, Mu-He; Yang, Ying; Shi, Yi-Jing; Gao, Ming-Ming; Wang, Shu-Guang

    2012-04-01

    One of the main challenging issues for aerobic nitrifying granules in treating high strength ammonia wastewater is the long granulation time required for activated sludge to transform into aerobic granules. The present study provides a novel strategy for enhancing aerobic nitrifying granulation by applying an intensity of 48.0mT static magnetic field. The element analysis showed that the applied magnetic field could promote the accumulation of iron compounds in the sludge. And then the aggregation of iron decreased the full granulation time from 41 to 25days by enhancing the setting properties of granules and stimulating the secretion of extracellular polymeric substances (EPS). Long-term, cycle experiments and fluorescence in-situ hybridization (FISH) analysis proved that an intensity of 48.0mT magnetic field could enhance the activities and growth of nitrite-oxidizing bacteria (NOB). These findings suggest that magnetic field is helpful and reliable for accelerating the aerobic nitrifying granulation.

  16. [Aerobic microbial degradation of polybrominated diphenyl ethers].

    PubMed

    Ding, Juan; Zhou, Juan; Jiang, Wei-Ying; Gao, Shi-Xiang

    2008-11-01

    The biodegradation of 4, 4'-dibromodipheny ether (BDE15) and decabromodiphenyl ether (BDE209) by white rot fungi under aerobic conditions was studied. Effects of non-ionic surfactant Tween 80 and beta-cyclodextrin as solubilizers on the apparent solubilities and biodegradation rates of BDE15 and BDE209 were also evaluated. The results showed that both BDE15 and BDE209 were efficiently degraded by white rot fungi. The degradation rates were 43.0% and 62.5% for BDE209 and BDE15, respectively, after 10 d incubation. The degradation of BDE209 was greatly enhanced by addition of Tween 80 (< or = 700 mg/L) and beta-cyclodextrin, which may own to their solubilization effects on BDE209. However, Tween 80 at a high concentration (900 mg/L) would restrain the fungal growth, thereby decrease the degradation of BDE209. Addition of Tween 80 and beta-cyclodextrin exhibited some negative effects on the degradation of BDE15, which may due to decreased concentration of free BDE15 in water solution resulted from inclusion function of Tween 80 micelles and beta-cyclodextrin cavity, although the apparent solubility of BDE15 was drastically increased by both of them. PMID:19186824

  17. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  18. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  19. Dancing the aerobics ''hearing loss'' choreography

    NASA Astrophysics Data System (ADS)

    Pinto, Beatriz M.; Carvalho, Antonio P. O.; Gallagher, Sergio

    2002-11-01

    This paper presents an overview of gymnasiums' acoustic problems when used for aerobics exercises classes (and similar) with loud noise levels of amplified music. This type of gymnasium is usually a highly reverberant space, which is a consequence of a large volume surrounded by hard surfaces. A sample of five schools in Portugal was chosen for this survey. Noise levels in each room were measured using a precision sound level meter, and analyzed to calculate the standardized daily personal noise exposure levels (LEP,d). LEP,d values from 79 to 91 dB(A) were found to be typical values in this type of room, inducing a health risk for its occupants. The reverberation time (RT) values were also measured and compared with some European legal requirements (Portugal, France, and Belgium) for nearly similar situations. RT values (1 kHz) from 0.9 s to 2.8 s were found. These reverberation time values clearly differentiate between good and acoustically inadequate rooms. Some noise level and RT limits for this type of environment are given and suggestions for the improvement of the acoustical environment are shown. Significant reductions in reverberation time values and noise levels can be obtained by simple measures.

  20. Aerobic training in children with cerebral palsy.

    PubMed

    Nsenga, A L; Shephard, R J; Ahmaidi, S; Ahmadi, S

    2013-06-01

    Rehabilitation is a major goal for children with cerebral palsy, although the potential to enhance cardio-respiratory fitness in such individuals remains unclear. This study thus compared current cardio-respiratory status between children with cerebral palsy and able-bodied children, and examined the ability to enhance the cardio-respiratory fitness of children with cerebral palsy by cycle ergometer training. 10 children with cerebral palsy (Gross Motor Function Classification System levels I and II) participated in thrice-weekly 30 min cycle ergometer training sessions for 8 weeks (mean age: 14.2±1.9 yrs). 10 additional subjects with cerebral palsy (mean age: 14.2±1.8 yrs) and 10 able-bodied subjects (mean age: 14.1±2.1 yrs) served as controls, undertaking no training. All subjects undertook a progressive cycle ergometer test of cardio-respiratory fitness at the beginning and end of the 8-week period. Cardio-respiratory parameters [oxygen intake V˙O2), ventilation V ˙ E) and heart rate (HR)] during testing were measured by Cosmed K4 b gas analyzer. The children with cerebral palsy who engaged in aerobic training improved their peak oxygen consumption, heart rate and ventilation significantly (p<0.05) and they also showed a non-significant trend to increased peak power output. In conclusion, children with cerebral palsy can benefit significantly from cardio-respiratory training, and such training should be included in rehabilitation programs.

  1. Late Archean rise of aerobic microbial ecosystems

    PubMed Central

    Eigenbrode, Jennifer L.; Freeman, Katherine H.

    2006-01-01

    We report the 13C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a 13C enrichment of ≈10‰ in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon 13C content has a 29‰ range in values (−57 to −28‰), and it contrasts with the less variable but strongly 13C-depleted (−40 to −45‰) organic carbon in deepwater sediments. The 13C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, 13C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago. PMID:17043234

  2. Mathematical modelling of autothermal thermophilic aerobic digesters.

    PubMed

    Gomez, J; de Gracia, M; Ayesa, E; Garcia-Heras, J L

    2007-03-01

    This paper presents a new mathematical model for Autothermal Thermophilic Aerobic Digesters. The reactor has been modelled as two completely mixed volumes to separately predict the behaviour of the liquid and gaseous phases as well as the interrelation between them. The model includes biochemical transformations based on the standard Activated Sludge Models of IWA, as well as physico-chemical transformations associated with the chemical equilibria and the mass transfer between the liquid and the gaseous phases similar to those proposed in the ADM1 of IWA. An energy balance has also been included in the model in order to predict the temperature of the system. This thermal balance takes into account all those biochemical and physico-chemical transformations that entail the most relevant heat interchanges. Reactor performance has been explored by simulation in two different scenarios: in the first where it acts as the initial stage in a Dual system, and in the second where it acts as a single-stage treatment. Each scenario enabled the identification of the relevance of the different parameters. PMID:17258787

  3. Continuous feeding of low-dose APIs via periodic micro dosing.

    PubMed

    Besenhard, M O; Karkala, S K; Faulhammer, E; Fathollahi, S; Ramachandran, R; Khinast, J G

    2016-07-25

    Precise and effective feeding of small powder quantities remains a challenge in many fields, including pharmaceutical development and production. This paper demonstrates that a simple feeding principle can be applied to accomplish stable micro feeding (<100mg/s) and describes a gravimetric powder feeding system with a vibratory sieve mounted on a chute. Feeding was induced via vertical vibrations that can be adjusted within a broad range of frequencies and amplitudes. The feeding system was studied using different frequencies, amplitudes, sieves and powder properties. Feeding was characterized by means of a dynamic scale and high-speed camera recordings. The feeding system provided effective powder feeding even in a range of 1-2mg/s. It was shown that powder properties require special attention when the vibratory sieve-chute system operates at higher feed rates (or feeding times >30min), i.e., feeding at a higher throughput. A combination of discrete element method (DEM) simulations and compartment population balance model (PBM) was used to incorporate the proposed micro feed system into a continuous powder mixer (Gerike GCM250; Gerike Holding LTD., Regensdorf, Switzerland). It illustrates how oscillating feeding rates (the latter is a characteristic of the studied micro feeding system) affect the content uniformity of low dose blends, i.e., powder mixtures with a relatively low fraction of active pharmaceutical ingredient. PMID:27210736

  4. The mechanistic basis of aerobic performance variation in red junglefowl.

    PubMed

    Hammond, K A; Chappell, M A; Cardullo, R A; Lin, R; Johnsen, T S

    2000-07-01

    We examined aerobic performance, organ and muscle mass and enzymatic activity in red junglefowl (Gallus gallus). We tested three models of performance limitation (central limits, peripheral limits, symmorphosis) and explored relationships between basal metabolic rate (BMR), aerobic capacity ( V (O2max)) and social rank. Males had a lower BMR, a higher V (O2max) and a greater aerobic scope than females. Females possessed larger peritoneal and reproductive organs, while males had larger hearts, lungs and leg muscles. In females, BMR was correlated with spleen mass and V (O2max) was correlated with hematocrit and large intestine mass. Male BMR was correlated with intestinal tract and lung mass, and V (O2max) was correlated with heart and pectoralis mass. Male citrate synthase activity averaged 57 % higher than that of females and was correlated with V (O2max) (this correlation was not significant in females). Female social status was not correlated with any variable, but male dominance was associated with higher aerobic scope, larger heart and lungs, smaller peritoneal organs and greater leg citrate synthase activity. We conclude that aerobic capacity is controlled by system-wide limitations (symmorphosis) in males, while in females it is controlled by central organs. In neither sex is elevated aerobic capacity associated with increased maintenance costs. PMID:10851122

  5. Nutrient Transformations in Soils Under Aerobic and Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Owens, P.; Lee, L.

    2003-12-01

    Poultry litter is most commonly land applied as a fertilizer for pastures. Soils vary according to landscape position and the biogeochemistry changes within the soils depending on the landscape position. This research focuses on nutrient speciation in aerobic and anaerobic environments. A 3.4 kg Ha-1 chicken litter application rate was used to determine the speciation of nutrients in these two environments. A 50 g sample of Ruston soil was placed in 250 mL centrifuge tubes and continuously stirred in anaerobic and aerobic environments. The Eh and pH were measured daily and a sample was collected at 0, 3, 7, 14 and 21 days. The Eh decreased from around 600 mV at day 0 to near 100 at day 2; whereas the aerobic sample had a decrease to around 450 mV. The pH increased from 6.5 to 7.0 in the anaerobic soil and from 6.5 to around 8.0 in the aerobic soil. The anaerobic soils had a rapid decrease in NO3- and a sharp increase in NH4+ to around 100 mg NH4+ kg-1 soil at day 7. The aerobic soil had an increase in NH4+ to 70 mg Nh4+ kg-1 soil at day 7 then decrease in NH4+ with a corresponding increase in NO3-. Both the anaerobic and aerobic soil had a rapid decrease in PO42- concentrations and remained low for 21 d.

  6. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  7. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  8. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge.

    PubMed

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-09-15

    Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1-0.2 mgL(-1)) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH4/hg VSS) and aerobic activity (SOUR: 2.21 mMO2/hg VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and PCP on microbial community. Furthermore, nucleotide sequencing indicated that the main microorganisms for PCP degradation might be related to Actinobacterium and Sphingomonas. These results provided insights into situ bioremediation of environments contaminated by PCP and had practical implications for the strategies of PCP degradation.

  9. Aerobic exercise training increases circulating IGFBP-1 concentration, but does not attenuate the reduction in circulating IGFBP-1 after a high-fat meal

    PubMed Central

    Prior, Steven J.; Jenkins, Nathan T.; Brandauer, Josef; Weiss, Edward P.; Hagberg, James M.

    2011-01-01

    Rationale Insulin-like growth factor binding protein-1 (IGFBP-1) has metabolic effects throughout the body and its expression is regulated in part by insulin. Circulating IGFBP-1 predicts development of cardiometabolic diseases in longitudinal studies and low IGFBP-1 concentrations are associated with insulin resistance and consumption of a high-fat diet. Because of the favorable metabolic effects of regular aerobic exercise, we hypothesized that aerobic exercise training would increase plasma IGFBP-1 concentrations and attenuate the reduction in IGFBP-1 after a high-fat meal. Methods Ten overweight (BMI=28.7±0.9kg/m2), older (61±2yr) men and women underwent high-fat feeding and oral glucose tolerance tests (OGTT) at baseline and after 6 months of aerobic exercise training. Results In response to aerobic exercise training, subjects increased cardiorespiratory fitness 13% (p<0.05) and insulin sensitivity index 28% (p<0.05). Basal plasma concentrations of IGFBP-1 increased 41% after aerobic exercise training (p<0.05). The insulin response to an OGTT was a significant predictor of fasting plasma IGFBP-1 concentrations at baseline and after exercise training (p=0.02). In response to the high-fat meal at baseline, plasma IGFBP-1 concentrations decreased 58% (p<0.001); a 61% decrease to similar postprandial concentrations was observed after exercise training (p<0.001). Plasma insulin response to the high-fat meal was inversely associated with postprandial IGFBP-1 concentrations at baseline and after exercise training (p=0.06 and p<0.05, respectively). Conclusion While aerobic exercise training did not attenuate the response to a high-fat meal, the increase in IGFBP-1 concentrations after exercise training may be one mechanism by which exercise reduces risk for cardiometabolic diseases in older adults. PMID:21872284

  10. Feeding gastrostomy. Assistant or assassin?

    PubMed

    Burtch, G D; Shatney, C H

    1985-04-01

    Following several deaths from pulmonary aspiration in severely ill or chronically debilitated patients receiving nasogastric tube feedings, a study was undertaken to determine the incidence of aspiration pneumonitis in patients with feeding gastrostomies. During a 15-month interval, 22 feeding gastrostomies and nine feeding jejunostomies were performed. In the former group, eight patients experienced aspiration pneumonitis, with two deaths. Six patients with Stamm gastrostomies and two patients with permanent mucosal-lined gastrostomies experienced pulmonary aspiration. In contrast, aspiration pneumonia did not occur in our small series of patients with feeding jejunostomies. The high incidence of pulmonary aspiration in patients with feeding gastrostomies strongly suggests that, for chronic enteral nutrition in patients who are unable to protect their airway, a feeding jejunostomy is preferable to a feeding gastrostomy. PMID:3920939

  11. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    PubMed

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  12. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    PubMed

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  13. Composite antenna feed

    NASA Technical Reports Server (NTRS)

    Jakstys, V. J. (Inventor)

    1973-01-01

    A composite antenna feed subsystem concentrated in a small area at the prime focus of the parabola of a satellite parabolic reflector accomodates a plurality of frequency bands. The arrays comprising the subsystem are mounted on the top cover of a communication module. A multimode horn is arranged at the center of the subsystem axis which functions at X- And C-band frequencies, and a cross array consisting of individual elements form the S-band feed, with one arm of the S-band array containing an element mutually shared with the L-band array. Provision is also made for UHF frequencies, and a dipole arrangement for VHF frequencies is arranged around the S-band arms.

  14. Corrugated waveguide monopulse feed

    NASA Astrophysics Data System (ADS)

    Elliott, R. D.; Clarricoats, P. J. B.

    1980-04-01

    The excitation coefficients of modes in a circular corrugated waveguide that arise when dominant modes are incident from a cluster of four square waveguides are calculated. Monopulse-like radiation patterns arise when modes in the input guides are appropriately phased. Factors influencing the crosspolar performance of the feed are discussed, and the dependence of the excitation coefficients on waveguide and junction parameters is predicted.

  15. Feeding Behavior of a Crab According to Cheliped Number.

    PubMed

    de Oliveira, Diogo Nunes; Christofoletti, Ronaldo Adriano; Barreto, Rodrigo Egydio

    2015-01-01

    Cheliped loss through autotomy is a common reflexive response in decapod crustaceans. Cheliped loss has direct and indirect effects on feeding behavior which can affect population dynamics and the role of species in the community. In this study, we assessed the impact of autotomy (0, 1, or 2 cheliped loss) on feeding behavior in the crab Pachygrapsus transversus, an omnivorous and abundant species that inhabits subtropical intertidal rocky shores along the South Atlantic Ocean. Autotomy altered crab feeding patterns and foraging behavior; however, the time spent foraging on animal prey or algae was not affected. These results indicate a plasticity of feeding behavior in P. transversus, allowing them to maintain feeding when injured. PMID:26682546

  16. Feeding Behavior of a Crab According to Cheliped Number

    PubMed Central

    de Oliveira, Diogo Nunes; Christofoletti, Ronaldo Adriano; Barreto, Rodrigo Egydio

    2015-01-01

    Cheliped loss through autotomy is a common reflexive response in decapod crustaceans. Cheliped loss has direct and indirect effects on feeding behavior which can affect population dynamics and the role of species in the community. In this study, we assessed the impact of autotomy (0, 1, or 2 cheliped loss) on feeding behavior in the crab Pachygrapsus transversus, an omnivorous and abundant species that inhabits subtropical intertidal rocky shores along the South Atlantic Ocean. Autotomy altered crab feeding patterns and foraging behavior; however, the time spent foraging on animal prey or algae was not affected. These results indicate a plasticity of feeding behavior in P. transversus, allowing them to maintain feeding when injured. PMID:26682546

  17. Aerobic and anaerobic enzymatic activity of orange roughy (Hoplostethus atlanticus) and alfonsino (Beryx splendens) from the Juan Fernandez seamounts area.

    PubMed

    Saavedra, L M; Quiñones, R A; Gonzalez-Saldía, R R; Niklitschek, E J

    2016-06-01

    The aerobic and anaerobic enzymatic activity of two important commercial bathypelagic species living in the Juan Fernández seamounts was analyzed: alfonsino (Beryx splendens) and orange roughy (Hoplostethus atlanticus). These seamounts are influenced by the presence of an oxygen minimum zone (OMZ) located between 160 and 250 m depth. Both species have vertical segregation; alfonsino is able to stay in the OMZ, while orange roughy remains at greater depths. In this study, we compare the aerobic and anaerobic capacity of these species, measuring the activity of key metabolic enzymes in different body tissues (muscle, heart, brain and liver). Alfonsino has higher anaerobic potential in its white muscle due to greater lactate dehydrogenase (LDH) activity (190.2 μmol NADH min(-1) g ww(-1)), which is related to its smaller body size, but it is also a feature shared with species that migrate through OMZs. This potential and the higher muscle citrate synthase and electron transport system activities indicate that alfonsino has greater swimming activity level than orange roughy. This species has also a high MDH/LDH ratio in its heart, brain and liver, revealing a potential capacity to conduct aerobic metabolism in these organs under prolonged periods of environmental low oxygen conditions, preventing lactic acid accumulation. With these metabolic characteristics, alfonsino may have increased swimming activity to migrate and also could stay for a period of time in the OMZ. The observed differences between alfonsino and orange roughy with respect to their aerobic and anaerobic enzymatic activity are consistent with their characteristic vertical distributions and feeding behaviors. PMID:26687132

  18. Aerobic and anaerobic enzymatic activity of orange roughy (Hoplostethus atlanticus) and alfonsino (Beryx splendens) from the Juan Fernandez seamounts area.

    PubMed

    Saavedra, L M; Quiñones, R A; Gonzalez-Saldía, R R; Niklitschek, E J

    2016-06-01

    The aerobic and anaerobic enzymatic activity of two important commercial bathypelagic species living in the Juan Fernández seamounts was analyzed: alfonsino (Beryx splendens) and orange roughy (Hoplostethus atlanticus). These seamounts are influenced by the presence of an oxygen minimum zone (OMZ) located between 160 and 250 m depth. Both species have vertical segregation; alfonsino is able to stay in the OMZ, while orange roughy remains at greater depths. In this study, we compare the aerobic and anaerobic capacity of these species, measuring the activity of key metabolic enzymes in different body tissues (muscle, heart, brain and liver). Alfonsino has higher anaerobic potential in its white muscle due to greater lactate dehydrogenase (LDH) activity (190.2 μmol NADH min(-1) g ww(-1)), which is related to its smaller body size, but it is also a feature shared with species that migrate through OMZs. This potential and the higher muscle citrate synthase and electron transport system activities indicate that alfonsino has greater swimming activity level than orange roughy. This species has also a high MDH/LDH ratio in its heart, brain and liver, revealing a potential capacity to conduct aerobic metabolism in these organs under prolonged periods of environmental low oxygen conditions, preventing lactic acid accumulation. With these metabolic characteristics, alfonsino may have increased swimming activity to migrate and also could stay for a period of time in the OMZ. The observed differences between alfonsino and orange roughy with respect to their aerobic and anaerobic enzymatic activity are consistent with their characteristic vertical distributions and feeding behaviors.

  19. Overview of FEED, the feeding experiments end-user database.

    PubMed

    Wall, Christine E; Vinyard, Christopher J; Williams, Susan H; Gapeyev, Vladimir; Liu, Xianhua; Lapp, Hilmar; German, Rebecca Z

    2011-08-01

    The Feeding Experiments End-user Database (FEED) is a research tool developed by the Mammalian Feeding Working Group at the National Evolutionary Synthesis Center that permits synthetic, evolutionary analyses of the physiology of mammalian feeding. The tasks of the Working Group are to compile physiologic data sets into a uniform digital format stored at a central source, develop a standardized terminology for describing and organizing the data, and carry out a set of novel analyses using FEED. FEED contains raw physiologic data linked to extensive metadata. It serves as an archive for a large number of existing data sets and a repository for future data sets. The metadata are stored as text and images that describe experimental protocols, research subjects, and anatomical information. The metadata incorporate controlled vocabularies to allow consistent use of the terms used to describe and organize the physiologic data. The planned analyses address long-standing questions concerning the phylogenetic distribution of phenotypes involving muscle anatomy and feeding physiology among mammals, the presence and nature of motor pattern conservation in the mammalian feeding muscles, and the extent to which suckling constrains the evolution of feeding behavior in adult mammals. We expect FEED to be a growing digital archive that will facilitate new research into understanding the evolution of feeding anatomy.

  20. Overview of FEED, the Feeding Experiments End-user Database

    PubMed Central

    Wall, Christine E.; Vinyard, Christopher J.; Williams, Susan H.; Gapeyev, Vladimir; Liu, Xianhua; Lapp, Hilmar; German, Rebecca Z.

    2011-01-01

    The Feeding Experiments End-user Database (FEED) is a research tool developed by the Mammalian Feeding Working Group at the National Evolutionary Synthesis Center that permits synthetic, evolutionary analyses of the physiology of mammalian feeding. The tasks of the Working Group are to compile physiologic data sets into a uniform digital format stored at a central source, develop a standardized terminology for describing and organizing the data, and carry out a set of novel analyses using FEED. FEED contains raw physiologic data linked to extensive metadata. It serves as an archive for a large number of existing data sets and a repository for future data sets. The metadata are stored as text and images that describe experimental protocols, research subjects, and anatomical information. The metadata incorporate controlled vocabularies to allow consistent use of the terms used to describe and organize the physiologic data. The planned analyses address long-standing questions concerning the phylogenetic distribution of phenotypes involving muscle anatomy and feeding physiology among mammals, the presence and nature of motor pattern conservation in the mammalian feeding muscles, and the extent to which suckling constrains the evolution of feeding behavior in adult mammals. We expect FEED to be a growing digital archive that will facilitate new research into understanding the evolution of feeding anatomy. PMID:21700574

  1. Aerobic and anaerobic performances in tethered swimming.

    PubMed

    Papoti, M; da Silva, A S R; Araujo, G G; Santiago, V; Martins, L E B; Cunha, S A; Gobatto, C A

    2013-08-01

    The purpose of this study was to investigate whether the critical force (CritF) and anaerobic impulse capacity (AIC) - estimated by tethered swimming - reflect the aerobic and anaerobic performance of swimmers. 12 swimmers performed incremental test in tethered swimming to determine lactate anaerobic threshold (AnTLAC), maximal oxygen uptake ( ˙VO2MAX) and force associated with the ˙VO2MAX (i ˙VO2MAX). The swimmers performed 4 exhaustive (tlim) exercise bouts (100, 110, 120 and 130% i ˙VO2MAX) to compute the CritF and AIC (F vs. 1/tlim model); a 30-s all-out tethered swimming bout to determine their anaerobic fitness (ANF); 100, 200, and 400-m time-trials to determine the swimming performance. CritF (57.09±11.77 N) did not differ from AnTLAC (53.96±11.52 N, (P>0.05) but was significantly lower than i ˙VO2MAX (71.02±8.36 N). In addition, CritF presented significant correlation with AnTLAC (r=0.76; P<0.05) and i ˙VO2MAX (r=0.74; P<0.05). On the other hand, AIC (286.19±54.91 N.s) and ANF (116.10±13.66 N) were significantly correlated (r=0.81, p<0.05). In addition, CritF and AIC presented significant correlations with all time-trials. In summary, this study demonstrates that CritF and AIC can be used to evaluate AnTLAC and ANF and to predict 100, 200, and 400-m free swimming.

  2. Field tests for evaluating the aerobic work capacity of firefighters.

    PubMed

    Lindberg, Ann-Sofie; Oksa, Juha; Gavhed, Désirée; Malm, Christer

    2013-01-01

    Working as a firefighter is physically strenuous, and a high level of physical fitness increases a firefighter's ability to cope with the physical stress of their profession. Direct measurements of aerobic capacity, however, are often complicated, time consuming, and expensive. The first aim of the present study was to evaluate the correlations between direct (laboratory) and indirect (field) aerobic capacity tests with common and physically demanding firefighting tasks. The second aim was to give recommendations as to which field tests may be the most useful for evaluating firefighters' aerobic work capacity. A total of 38 subjects (26 men and 12 women) were included. Two aerobic capacity tests, six field tests, and seven firefighting tasks were performed. Lactate threshold and onset of blood lactate accumulation were found to be correlated to the performance of one work task (r(s) = -0.65 and -0.63, p<0.01, respectively). Absolute (mL · min(-1)) and relative (mL · kg(-1) · min(-1)) maximal aerobic capacity was correlated to all but one of the work tasks (r(s) = -0.79 to 0.55 and -0.74 to 0.47, p<0.01, respectively). Aerobic capacity is important for firefighters' work performance, and we have concluded that the time to row 500 m, the time to run 3000 m relative to body weight (s · kg(-1)), and the percent of maximal heart rate achieved during treadmill walking are the most valid field tests for evaluating a firefighter's aerobic work capacity. PMID:23844153

  3. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  4. Effects of Aerobic Exercise Training on Fitness and Walking Related Outcomes in Ambulatory Individuals with Chronic Incomplete Spinal Cord Injury

    PubMed Central

    DiPiro, Nicole D.; Embry, Aaron E.; Fritz, Stacy L.; Middleton, Addie; Krause, James S.; Gregory, Chris M.

    2015-01-01

    Study Design Single group, pretest-posttest study. Objectives To determine the effects of a non-task-specific, voluntary, progressive aerobic exercise training (AET) intervention on fitness and walking-related outcomes in ambulatory adults with chronic motor-incomplete SCI. Setting Rehabilitation research center. Methods Ten ambulatory individuals (50% female; 57.94 ± 9.33 years old; 11.11 ± 9.66 years post injury) completed voluntary, progressive moderate-to-vigorous intensity AET on a recumbent stepper three days per week for six weeks. The primary outcome measures were aerobic capacity (VO2peak) and self-selected overground walking speed (OGWS). Secondary outcome measures included: walking economy, six-minute walk test (6MWT), daily step counts, Walking Index for Spinal Cord Injury (WISCI-II), Dynamic Gait Index (DGI), and Berg Balance Scale (BBS). Results Nine participants completed all testing and training. Significant improvements in aerobic capacity (P=0.011), OGWS (P=0.023), the percentage of VO2peak utilized while walking at self-selected speed (P=0.03), and daily step counts (P=0.025) resulted following training. Conclusions The results indicate that total-body, voluntary, progressive AET is safe, feasible, and effective for improving aerobic capacity, walking speed, and select walking-related outcomes in an exclusively ambulatory SCI sample. This study suggests the potential for non-task-specific aerobic exercise to improve walking following incomplete SCI and builds a foundation for further investigation aimed at the development of exercise based rehabilitation strategies to target functionally limiting impairments in ambulatory individuals with chronic SCI. PMID:26666508

  5. Gut colonization by aerobic microorganisms is associated with route and type of nutrition in premature neonates.

    PubMed

    Parm, Ülle; Metsvaht, Tuuli; Ilmoja, Mari-Liis; Lutsar, Irja

    2015-06-01

    We hypothesized that the beneficial effects of early enteral compared with parenteral feeding are related to the increased variety of aerobic microorganisms that colonize the gut. Our aim was to describe the relationship, first, between the type of feeding and mucosal colonization and, second, between the type of feeding and the development of late-onset sepsis (LOS) and necrotizing enterocolitis (NEC) in preterm neonates. In total, 159 neonates aged 72 hours or less with risk factors for early-onset sepsis were recruited to a prospective 2-center study. Rectal swabs were collected on admission and twice per week thereafter. The feeding regimen was recorded for the first 7 days and categorized into total parenteral nutrition (TPN) and 2 regimens of enteral nutrition, that is, breast milk containing regimen (BMCR), for which breast milk constituted at least 11% of the enteral diet, or formula. Herein, 70 neonates received formula, 48 received BMCR, and 41 received TPN; 69 cases of LOS and 15 cases of NEC were observed in 50 neonates. A multiple logistic regression analysis indicated that formula and BMCR were associated with 4- to 5-fold increases in colonization by Gram-negative bacteria (odds ratio [OR], 4.52; 1.87-10.95, and OR, 4.95; 1.90-12.87, respectively) and 5 to 9 times higher odds of colonization by Gram-positive microorganisms (OR, 5.75; 1.89-16.72, and OR, 8.61; 2.52-29.36, respectively) compared with TPN. The only difference between BMCR and the other feeding groups was the higher colonization with Staphylococcus haemolyticus in the latter (formula-OR, 6.24; 1.73-22.50; TPN-OR, 2.75; 1.08-6.97). Compared with BMCR, TPN was associated with an increased odds of LOS (OR, 3.04; 1.02-9.07) and an increased odds of death (19.75; 3.64-107.12) compared with formula. Although early enteral feeding is associated with a higher odds of colonization with opportunistic microorganisms, it should be preferred over TPN whenever feasible, due to the favorable effect on

  6. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  7. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  8. Feeding performance of king Mackerel, Scomberomorus cavalla.

    PubMed

    Ferguson, Amber R; Huber, Daniel R; Lajeunesse, Marc J; Motta, Philip J

    2015-08-01

    Feeding performance is an organism's ability to capture and handle prey. Although bite force is a commonly used metric of feeding performance, other factors such as bite pressure and strike speed are also likely to affect prey capture. Therefore, this study investigated static bite force, dynamic speeds, and predator and prey forces resulting from ram strikes, as well as bite pressure of the king mackerel, Scomberomorus cavalla, in order to examine their relative contributions to overall feeding performance. Theoretical posterior bite force ranged from 14.0-318.7 N. Ram speed, recorded with a rod and reel incorporated with a line counter and video camera, ranged from 3.3-15.8B L/s. Impact forces on the prey ranged from 0.1-1.9 N. Bite pressure, estimated using theoretical bite forces at three gape angles and tooth cross-sectional areas, ranged from 1.7-56.9 MPa. Mass-specific bite force for king mackerel is relatively low in comparison with other bony fishes and sharks, with relatively little impact force applied to the prey during the strike. This suggests that king mackerel rely on high velocity chases and high bite pressure generated via sharp, laterally compressed teeth to maximize feeding performance.

  9. Feeding performance of king Mackerel, Scomberomorus cavalla.

    PubMed

    Ferguson, Amber R; Huber, Daniel R; Lajeunesse, Marc J; Motta, Philip J

    2015-08-01

    Feeding performance is an organism's ability to capture and handle prey. Although bite force is a commonly used metric of feeding performance, other factors such as bite pressure and strike speed are also likely to affect prey capture. Therefore, this study investigated static bite force, dynamic speeds, and predator and prey forces resulting from ram strikes, as well as bite pressure of the king mackerel, Scomberomorus cavalla, in order to examine their relative contributions to overall feeding performance. Theoretical posterior bite force ranged from 14.0-318.7 N. Ram speed, recorded with a rod and reel incorporated with a line counter and video camera, ranged from 3.3-15.8B L/s. Impact forces on the prey ranged from 0.1-1.9 N. Bite pressure, estimated using theoretical bite forces at three gape angles and tooth cross-sectional areas, ranged from 1.7-56.9 MPa. Mass-specific bite force for king mackerel is relatively low in comparison with other bony fishes and sharks, with relatively little impact force applied to the prey during the strike. This suggests that king mackerel rely on high velocity chases and high bite pressure generated via sharp, laterally compressed teeth to maximize feeding performance. PMID:25845956

  10. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    PubMed

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency. PMID:23656940

  11. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    PubMed

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  12. Predominant periportal expression of the phosphoenolpyruvate carboxykinase and tyrosine aminotransferase genes in rat liver. Dynamics during the daily feeding rhythm and starvation-refeeding cycle demonstrated by in situ hybridization.

    PubMed

    Bartels, H; Herbort, H; Jungermann, K

    1990-01-01

    The zonal distribution of phosphoenolpyruvate carboxykinase (PCK) and tyrosine aminotransferase (TAT) mRNA in liver was studied by in situ hybridization with radiolabelled cRNA probes and the abundance of PCK and TAT mRNA was quantified by Northern blot analysis of total RNA with biotinylated cRNA probes. Livers were taken from rats during a normal 12 h day/night rhythm, when they had access to food only during the dark period from 7 pm to 7 am, or during refeeding, when they had access to food after having been starved for 60 h. 1. Daily feeding rhythm: High levels of PCK mRNA were distributed mainly in the periportal and intermediate zone during the fasting period at noon and 6 pm. Feeding caused a rapid decrease in PCK mRNA level and a restriction of PCK mRNA localization to the periportal area within the first 2 h. No further alterations were observed during the following hours of the feeding period. TAT mRNA was distributed also in the periportal and intermediate zone during the fasting period. Feeding first reduced the mRNA level without changing the distribution pattern. Then towards the end of the feeding period TAT mRNA increased again to half-maximal levels and became restricted mainly to the periportal area. 2. Starvation-refeeding cycle: High amounts of PCK mRNA as well as of TAT mRNA were localized predominantly in the periportal and intermediate zone after 60 h of starvation. PCK and TAT mRNA both decreased markedly during the first 2 h of refeeding and then remained almost constant.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Fermented liquid feed for pigs.

    PubMed

    Missotten, Joris A M; Michiels, Joris; Ovyn, Anneke; De Smet, Stefaan; Dierick, Noël A

    2010-12-01

    Since the announcement of the ban on the use of antibiotics as antimicrobial growth promoters in the feed of pigs in 2006 the investigation towards alternative feed additives has augmented considerably. Although fermented liquid feed is not an additive, but a feeding strategy, the experimental work examining its possible advantages also saw a rise. The use of fermented liquid feed (FLF) has two main advantages, namely that the simultaneous provision of feed and water may result in an alleviation of the transition from the sow milk to solid feed and may also reduce the time spent to find both sources of nutrients, and secondly, that offering FLF with a low pH may strengthen the potential of the stomach as a first line of defence against possible pathogenic infections. Because of these two advantages, FLF is often stated as an ideal feed for weaned piglets. The results obtained so far are rather variable, but in general they show a better body weight gain and worse feed/gain ratio for the piglets. However, for growing-finishing pigs on average a better feed/gain ratio is found compared to pigs fed dry feed. This better performance is mostly associated with less harmful microbiota and better gut morphology. This review provides an overview of the current knowledge of FLF for pigs,dealing with the FLF itself as well as its effect on the gastrointestinal tract and animal performance. PMID:21214019

  14. Fermented liquid feed for pigs.

    PubMed

    Missotten, Joris A M; Michiels, Joris; Ovyn, Anneke; De Smet, Stefaan; Dierick, Noël A

    2010-12-01

    Since the announcement of the ban on the use of antibiotics as antimicrobial growth promoters in the feed of pigs in 2006 the investigation towards alternative feed additives has augmented considerably. Although fermented liquid feed is not an additive, but a feeding strategy, the experimental work examining its possible advantages also saw a rise. The use of fermented liquid feed (FLF) has two main advantages, namely that the simultaneous provision of feed and water may result in an alleviation of the transition from the sow milk to solid feed and may also reduce the time spent to find both sources of nutrients, and secondly, that offering FLF with a low pH may strengthen the potential of the stomach as a first line of defence against possible pathogenic infections. Because of these two advantages, FLF is often stated as an ideal feed for weaned piglets. The results obtained so far are rather variable, but in general they show a better body weight gain and worse feed/gain ratio for the piglets. However, for growing-finishing pigs on average a better feed/gain ratio is found compared to pigs fed dry feed. This better performance is mostly associated with less harmful microbiota and better gut morphology. This review provides an overview of the current knowledge of FLF for pigs,dealing with the FLF itself as well as its effect on the gastrointestinal tract and animal performance.

  15. Analysis of self-feeding in children with feeding disorders.

    PubMed

    Rivas, Kristi M; Piazza, Cathleen C; Roane, Henry S; Volkert, Valerie M; Stewart, Victoria; Kadey, Heather J; Groff, Rebecca A

    2014-01-01

    In the current investigation, we evaluated a method for increasing self-feeding with 3 children with a history of food refusal. The children never (2 children) or rarely (1 child) self-fed bites of food when the choice was between self-feeding and escape from eating. When the choice was between self-feeding 1 bite of food or being fed an identical bite of food, self-feeding was low (2 children) or variable (1 child). Levels of self-feeding increased for 2 children when the choice was between self-feeding 1 bite of food or being fed multiple bites of the same food. For the 3rd child, self-feeding increased when the choice was between self-feeding 1 bite of food or being fed multiple bites of a less preferred food. The results showed that altering the contingencies associated with being fed increased the probability of self-feeding, but the specific manipulations that produced self-feeding were unique to each child. PMID:25311615

  16. Mouthpart separation does not impede butterfly feeding.

    PubMed

    Lehnert, Matthew S; Mulvane, Catherine P; Brothers, Aubrey

    2014-03-01

    The functionality of butterfly mouthparts (proboscis) plays an important role in pollination systems, which is driven by the reward of nectar. Proboscis functionality has been assumed to require action of the sucking pump in the butterfly's head coupled with the straw-like structure. Proper proboscis functionality, however, also is dependent on capillarity and wettability dynamics that facilitate acquisition of liquid films from porous substrates. Due to the importance of wettability dynamics in proboscis functionality, we hypothesized that proboscides of eastern black swallowtail (Papilio polyxenes asterius Stoll) (Papilionidae) and cabbage butterflies (Pieris rapae Linnaeus) (Pieridae) that were experimentally split (i.e., proboscides no longer resembling a sealed straw-like tube) would retain the ability to feed. Proboscides were split either in the drinking region (distal 6-10% of proboscis length) or approximately 50% of the proboscis length 24 h before feeding trials when butterflies were fed a red food-coloring solution. Approximately 67% of the butterflies with proboscides split reassembled prior to the feeding trials and all of these butterflies displayed evidence of proboscis functionality. Butterflies with proboscides that did not reassemble also demonstrated fluid uptake capabilities, thus suggesting that wild butterflies might retain fluid uptake capabilities, even when the proboscis is partially injured.

  17. Hydrodynamic starvation in first-feeding larval fishes

    PubMed Central

    China, Victor; Holzman, Roi

    2014-01-01

    Larval fishes suffer prodigious mortality rates, eliminating 99% of the brood within a few days after first feeding. Hjort (1914) famously attributed this “critical period” of low survival to the larvae’s inability to obtain sufficient food [Hjort (1914) Rapp P-v Réun Cons Int Explor Mer 20:1–228]. However, the cause of this poor feeding success remains to be identified. Here, we show that hydrodynamic constraints on the ubiquitous suction mechanism in first-feeding larvae limit their ability to capture prey, thereby reducing their feeding rates. Dynamic-scaling experiments revealed that larval size is the primary determinant of feeding rate, independent of other ontogenetic effects. We conclude that first-feeding larvae experience “hydrodynamic starvation,” in which low Reynolds numbers mechanistically limit their feeding performance even under high prey densities. Our results provide a hydrodynamic perspective on feeding of larval fishes that focuses on the physical properties of the larvae and prey, rather than on prey concentration and the rate of encounters. PMID:24843180

  18. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  19. Comparison of Aerobic and Anaerobic Biodegradation of Sugarcane Vinasse.

    PubMed

    Mota, V T; Araújo, T A; Amaral, M C S

    2015-07-01

    Vinasse is the main liquid waste from ethanol production, and it has a considerable pollution potential. Biological treatment is a promising alternative to reduce its organic load. The aim of this study was to analyze the biodegradation of sugarcane juice vinasse in aerobic and anaerobic conditions. The content of carbohydrates, proteins and volatile fatty acids was evaluated. Vinasse samples showed a high biodegradability (>96.5 %) and low percentage of inert chemical oxygen demand (COD) (<3.2 %) in both aerobic and anaerobic conditions. The rates of substrate utilization were slightly higher in aerobic reactors, but COD stabilization occurred simultaneously in the anaerobic reactors, confirming its suitability for anaerobic digestion. Inert COD in anaerobic conditions was lower than in aerobic conditions. On the other hand, COD from metabolic products in the anaerobic reactors was higher than in the aerobic ones, indicating an increased release of soluble microbial products (SMPs) by anaerobic microorganisms. The results indicated that carbohydrates were satisfactorily degraded and protein-like substances were the major components remaining after biological degradation of vinasse. PMID:25957273

  20. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

    PubMed Central

    Takaya, Naoki; Catalan-Sakairi, Maria Antonina B.; Sakaguchi, Yasushi; Kato, Isao; Zhou, Zhemin; Shoun, Hirofumi

    2003-01-01

    Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3−) to N2 at rates of 0.9 and 0.03 μmol min−1 unit of optical density at 540 nm−1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 μmol liter−1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3− with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the β subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem. PMID:12788710

  1. Aerobic Activity in Prevention & Symptom Control of Osteoarthritis

    PubMed Central

    Semanik, Pamela; Chang, Rowland W.; Dunlop, Dorothy D.

    2014-01-01

    Almost 27 million US adults suffer from some form of osteoarthritis (OA). An epidemic of arthritis-associated disability is expected in the US over the next 2 decades, largely fueled by the aging population and the tremendous growth in the prevalence of knee osteoarthritis (OA). Regular physical activity (PA), particularly strengthening and aerobic activity, can reduce pain and improve function and health status among patients with knee and hip osteoarthritis. The focus of this review is to examine the impact of aerobic activity on OA progression and symptom control. In general, both strengthening and aerobic exercise are associated with improvements in pain, perceived physical function, and performance measures for those with lower limb OA; although comparisons of strengthening versus aerobic exercise on these outcomes is unusual. Structural disease progression in persons with established OA has been directly evaluated by a limited number of PA clinical trials in knee OA, but these protocols focused on strength training exclusively. In healthy subjects, it appears that overall PA is beneficial, rather than detrimental, to knee joint health. Possibly the most important reason for engaging in PA is to prevent obesity, which has independently been associated with many serious chronic diseases, including OA incidence and progression. More research is needed to determine the optimal types and dosing of aerobic conditioning. PMID:22632701

  2. [EPIDEMIOLOGICAL, CLINICAL AND MICROBIOLOGICAL FINDINGS IN WOMEN WITH AEROBIC VAGINITIS].

    PubMed

    Dermendjiev, T; Pehlivanov, B; Hadjieva, K; Stanev, S

    2015-01-01

    Aerobic vaginitis (AV) is an alterarion of the normal lactobacillic flora accompanied by signs of inflammation, presence of mainly aerobic microorganisms from intestinal commensals or other aerobic pathogens. Clinical symptoms may vary by type and intensity and are marked by a high tendency for recurrence and chronification. Inflammation and ulcerations in AV could increase the risk of contracting HIV or other sexually transmitted infections. The aim is to study some epidemiological, clinical and microbiological features of the aerobic vaginitis in patients of the specialized Obstetric and Gynecological Clinic in Plovdiv, Bulgaria. In a retrospective research 4687 vaginal smears have been gathered in Microbiological laboratory at "St. George" Hospital - Plovdiv. We used clinical, microbiological and statistical methods. Information processing is performed by variation, alternative, correlation and graphical analysis using specialized package SPSS v13.0. The overall prevalence rate of AV in the studied population is 11.77%. The levels of prevalence of AV in pregnant and non-pregnant women are respectively 13.08% and 4.34%. The highest frequency of AV is in the age group 21-30 years (32.3%). The results show a marked association between Escherichia coli and the cases of AV (p < 0.001). AV is a common cause of vaginal symptoms in patients of specialized ambulatory outpatient. One in ten women with vaginal complaints suffers from AV Streptococcus agalactiae and Escherichia coli are most often isolated aerobic microorganisms. PMID:26863788

  3. Aerobic activity in prevention and symptom control of osteoarthritis.

    PubMed

    Semanik, Pamela A; Chang, Rowland W; Dunlop, Dorothy D

    2012-05-01

    Almost 27 million adults in the United States experience some form of osteoarthritis (OA). An epidemic of arthritis-associated disability is expected in the United States during the next 2 decades, largely fueled by the aging population and the tremendous growth in the prevalence of knee OA. Regular physical activity (PA), particularly strengthening and aerobic activity, can reduce pain and improve function and health status among patients with knee and hip OA. The focus of this review is on the impact of aerobic activity on the progression and symptom control of OA. In general, both strengthening and aerobic exercise are associated with improvements in pain, perceived physical function, and performance measures for persons with lower limb OA, although comparisons of strengthening versus aerobic exercise on these outcomes are unusual. Structural disease progression in persons with established OA has been directly evaluated by a limited number of PA clinical trials for persons with knee OA, but these protocols focused on strength training exclusively. In healthy subjects, it appears that overall PA is beneficial, rather than detrimental, to knee joint health. Possibly the most important reason for engaging in PA is to prevent obesity, which independently has been associated with many serious chronic diseases, including the incidence and progression of OA. More research is needed to determine the optimal types and dosing of aerobic conditioning.

  4. Feeding and circadian clocks.

    PubMed

    Pardini, Lissia; Kaeffer, Bertrand

    2006-01-01

    The mammalian genome encodes at least a dozen of genes directly involved in the regulation of the feedback loops constituting the circadian clock. The circadian system is built up on a multitude of oscillators organized according to a hierarchical model in which neurons of the suprachiasmatic nuclei of the hypothalamus may drive the central circadian clock and all the other somatic cells may possess the molecular components allowing tissues and organs to constitute peripheral clocks. Suprachiasmatic neurons are driving the central circadian clock which is reset by lighting cues captured and integrated by the melanopsin cells of the retina and define the daily rhythms of locomotor activity and associated physiological regulatory pathways like feeding and metabolism. This central clock entrains peripheral clocks which can be synchronized by non-photic environmental cues and uncoupled from the central one depending on the nature and the strength of the circadian signal. The human circadian clock and its functioning in central or peripheral tissues are currently being explored to increase the therapeutic efficacy of timed administration of drugs or radiation, and to offer better advice on lighting and meal timing useful for frequent travelers suffering from jet lag and for night workers' comfort. However, the molecular mechanism driving and coordinating the central and peripheral clocks through a wide range of synchronizers (lighting, feeding, physical or social activities) remains a mystery.

  5. Advanced Liquid Feed Experiment

    NASA Astrophysics Data System (ADS)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  6. Effects of 12 weeks of aerobic training on autonomic modulation, mucociliary clearance, and aerobic parameters in patients with COPD

    PubMed Central

    Leite, Marceli Rocha; Ramos, Ercy Mara Cipulo; Kalva-Filho, Carlos Augusto; Freire, Ana Paula Coelho Figueira; de Alencar Silva, Bruna Spolador; Nicolino, Juliana; de Toledo-Arruda, Alessandra Choqueta; Papoti, Marcelo; Vanderlei, Luiz Carlos Marques; Ramos, Dionei

    2015-01-01

    Introduction Patients with chronic obstructive pulmonary disease (COPD) exhibit aerobic function, autonomic nervous system, and mucociliary clearance alterations. These parameters can be attenuated by aerobic training, which can be applied with continuous or interval efforts. However, the possible effects of aerobic training, using progressively both continuous and interval sessions (ie, linear periodization), require further investigation. Aim To analyze the effects of 12-week aerobic training using continuous and interval sessions on autonomic modulation, mucociliary clearance, and aerobic function in patients with COPD. Methods Sixteen patients with COPD were divided into an aerobic (continuous and interval) training group (AT) (n=10) and a control group (CG) (n=6). An incremental test (initial speed of 2.0 km·h−1, constant slope of 3%, and increments of 0.5 km·h−1 every 2 minutes) was performed. The training group underwent training for 4 weeks at 60% of the peak velocity reached in the incremental test (vVO2peak) (50 minutes of continuous effort), followed by 4 weeks of sessions at 75% of vVO2peak (30 minutes of continuous effort), and 4 weeks of interval training (5×3-minute effort at vVO2peak, separated by 1 minute of passive recovery). Intensities were adjusted through an incremental test performed at the end of each period. Results The AT presented an increase in the high frequency index (ms2) (P=0.04), peak oxygen uptake (VO2peak) (P=0.01), vVO2peak (P=0.04), and anaerobic threshold (P=0.02). No significant changes were observed in the CG (P>0.21) group. Neither of the groups presented changes in mucociliary clearance after 12 weeks (AT: P=0.94 and CG: P=0.69). Conclusion Twelve weeks of aerobic training (continuous and interval sessions) positively influenced the autonomic modulation and aerobic parameters in patients with COPD. However, mucociliary clearance was not affected by aerobic training. PMID:26648712

  7. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

    PubMed Central

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-01-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism. DOI: http://dx.doi.org/10.7554/eLife.04810.001 PMID:25929283

  8. Effects of meditation and aerobic exercise on EEG patterns.

    PubMed

    Severtsen, B; Bruya, M A

    1986-08-01

    This study examined the effects of two stress-reducing wellness activities, meditation and aerobic exercise, on electroencephalogram (EEG) patterns of normal subjects. Ten nursing students completed the study: five performed meditation daily and five performed aerobic exercise daily. Stress was determined using the Stanford University Self Assessment and Holmes-Rahe Social Adjustment Rating Scales prior to the stress-reducing activities and again following the six-week study. Although neither group demonstrated a significant increase in alpha waves, self-rating scores for both measures were improved at the end of the six-week study. Meditation and aerobic activity were associated with a perception of increased ability to cope and a generally positive feeling about the value of exercise and meditation in their lives.

  9. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  10. High-intensity aerobic interval exercise in chronic heart failure.

    PubMed

    Meyer, Philippe; Gayda, Mathieu; Juneau, Martin; Nigam, Anil

    2013-06-01

    Aerobic exercise training is strongly recommended in patients with heart failure (HF) and reduced left ventricular ejection fraction (LVEF) to improve symptoms and quality of life. Moderate-intensity aerobic continuous exercise (MICE) is the best established training modality in HF patients. For about a decade, however, another training modality, high-intensity aerobic interval exercise (HIIE), has aroused considerable interest in cardiac rehabilitation. Originally used by athletes, HIIE consists of repeated bouts of high-intensity exercise interspersed with recovery periods. The rationale for its use is to increase exercise time spent in high-intensity zones, thereby increasing the training stimulus. Several studies have demonstrated that HIIE is more effective than MICE, notably for improving exercise capacity in patients with HF. The aim of the present review is to describe the general principles of HIIE prescription, the acute physiological effects, the longer-term training effects, and finally the future perspectives of HIIE in patients with HF.

  11. Acetic Acid Increases Stability of Silage under Aerobic Conditions

    PubMed Central

    Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R.

    2003-01-01

    The effects of various compounds on the aerobic stability of silages were evaluated. It has been observed that inoculation of whole-crop maize with homofermentative lactic acid bacteria leads to silages which have low stability against aerobic deterioration, while inoculation with heterofermentative lactic acid bacteria, such as Lactobacillus brevis or Lactobacillus buchneri, increases stability. Acetic acid has been proven to be the sole substance responsible for the increased aerobic stability, and this acid acts as an inhibitor of spoilage organisms. Therefore, stability increases exponentially with acetic acid concentration. Only butyric acid has a similar effect. Other compounds, like lactic acid, 1,2-propanediol, and 1-propanol, have been shown to have no effect, while fructose and mannitol reduce stability. PMID:12514042

  12. Aerobic biological activated carbon (BAC) treatment of a phenolic wastewater

    SciTech Connect

    Wei Lin; Weber, A.S. )

    1992-05-01

    Organic removal rates achieved in the aerobic BAC process were comparable to rates typically reported for traditional aerobic fixed-film systems. When operated at organic loading rates lower than 0.03 g COD/g GAC-d and air as the oxygen source, greater than 90% COD removal and 99% phenol removal was achieved. At higher organic loading rates, oxygen limitations resulted in less than optimal performance. Observed oxygen limitations were mitigated by the use of pure oxygen. Long-term stability of operation of the BAC process was excellent with one aerobic BAC column operated under the same conditions in excess of 260 days. During that time, consistent column performance was achieved without the need to provide supplemental carbon or carbon regeneration. System biomass yields ranged from 0.05 to 0.30 g VSS/g COD removed and increased with effluent COD concentration.

  13. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits.

    PubMed

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-05-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism.

  14. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands. PMID:27154570

  15. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.

    PubMed

    Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian; Velazquez, Eric M; Byndloss, Mariana X; Chávez-Arroyo, Alfredo; Lokken, Kristen L; Tsolis, Renée M; Winter, Sebastian E; Bäumler, Andreas J

    2016-09-16

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration. PMID:27634526

  16. Determinants of exercise and aerobic fitness in outpatients with arthritis.

    PubMed

    Neuberger, G B; Kasal, S; Smith, K V; Hassanein, R; DeViney, S

    1994-01-01

    Factors that influenced exercise behaviors and aerobic fitness were identified in 100 outpatients with rheumatoid arthritis or osteoarthritis. Data included perceived health status, benefits of and barriers to exercise, and impact of arthritis on health; demographic and biologic characteristics; and past exercise behavior. Exercise measures included range-of-motion and strengthening exercises, 7-day activity recall, and the exercise subscale of the Health-Promoting Lifestyle Profile. An aerobic fitness level was obtained on each subject by bicycle ergometer testing. The theoretical model predicted 20% of the variance in composite exercise scores but none of the variance in aerobic fitness levels. Perceived benefits of exercise was a significant predictor of exercise participation. Subjects with less formal education, longer duration of arthritis, and higher impact of arthritis scores perceived fewer benefits of exercise, while subjects who reported exercising in their youth perceived more benefits of exercise.

  17. Supplementary Low-Intensity Aerobic Training Improves Aerobic Capacity and Does Not Affect Psychomotor Performance in Professional Female Ballet Dancers

    PubMed Central

    Smol, Ewelina; Fredyk, Artur

    2012-01-01

    We investigated whether 6-week low-intensity aerobic training program used as a supplement to regular dance practice might improve both the aerobic capacity and psychomotor performance in female ballet dancers. To assess their maximal oxygen uptake (VO2max) and anaerobic threshold (AT), the dancers performed a standard graded bicycle ergometer exercise test until volitional exhaustion prior to and after the supplementary training. At both these occasions, the psychomotor performance (assessed as multiple choice reaction time) and number of correct responses to audio-visual stimuli was assessed at rest and immediately after cessation of maximal intensity exercise. The supplementary low-intensity exercise training increased VO2max and markedly shifted AT toward higher absolute workload. Immediately after completion of the graded exercise to volitional exhaustion, the ballerinas’ psychomotor performance remained at the pre-exercise (resting) level. Neither the resting nor the maximal multiple choice reaction time and accuracy of responses were affected by the supplementary aerobic training. The results of this study indicate that addition of low-intensity aerobic training to regular dance practice increases aerobic capacity of ballerinas with no loss of speed and accuracy of their psychomotor reaction. PMID:23485962

  18. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.

    PubMed

    Reddy, M Venkateswar; Mohan, S Venkata

    2012-01-01

    The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency.

  19. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    PubMed

    Hagman, Arne; Piškur, Jure

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.

  20. [Modeling formation of aerobic granule and influence of hydrodynamic shear forces on granule diameter].

    PubMed

    Dong, Feng; Zhang, Han-Min; Yang, Feng-Lin

    2012-01-01

    A one-dimension aerobic granule mathematical model was established, basing on mathematical biofilm model and activated sludge model. The model was used to simulate simple aerobic granule process such as nutrients removal, granule diameter evolution, cycle performance as well as depth profiles of DO and biomass. The effluent NH4(+) -N concentration decreased as the modeling processed. The simulation effluent NO3(-)-N concentration decreased to 3 mg x L(-1) as the granules grew. While the granule diameter increased from 1.1 mm on day 30 to 2.5 mm on day 100, the TN removal efficiency increased from less than 10% to 91%. The denitrification capacity was believed to enhance because the anoxic zone would be enlarged with the increasing granule diameter. The simultaneous nitrification and denitrification occurred inside the big aerobic granules. The oxygen permeating depth increased with the consumption of substrate. It was about 100-200 microm at the beginning of the aeration phase, and it turned to near 800 microm at the end of reaction. The autotrophs (AOB and NOB) were mostly located at the out layer where the DO concentration was high. The heterotrophic bacteria were distributed through the whole granule. As hydrodynamic shear coefficient k(de) increased from 0.25 (m x d)(-1) to 5 (m x d)(-1), the granule diameter under steady state decreased form 3.5 mm to 1.8 mm. The granule size under the dynamic steady-state decreased with the increasing hydrodynamic shear force. The granule size could be controlled by adjusting aeration intensity. PMID:22452208

  1. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    PubMed

    Hagman, Arne; Piškur, Jure

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi

  2. Moderate Aerobic Training Improves Cardiorespiratory Parameters in Elastase-Induced Emphysema

    PubMed Central

    Henriques, Isabela; Lopes-Pacheco, Miquéias; Padilha, Gisele A.; Marques, Patrícia S.; Magalhães, Raquel F.; Antunes, Mariana A.; Morales, Marcelo M.; Rocha, Nazareth N.; Silva, Pedro L.; Xisto, Débora G.; Rocco, Patricia R. M.

    2016-01-01

    Aim: We investigated the therapeutic effects of aerobic training on lung mechanics, inflammation, morphometry and biological markers associated with inflammation, and endothelial cell damage, as well as cardiac function in a model of elastase-induced emphysema. Methods: Eighty-four BALB/c mice were randomly allocated to receive saline (control, C) or 0.1 IU porcine pancreatic elastase (emphysema, ELA) intratracheally once weekly for 4 weeks. After the end of administration period, once cardiorespiratory impairment associated with emphysema was confirmed, each group was further randomized into sedentary (S) and trained (T) subgroups. Trained mice ran on a motorized treadmill, at moderate intensity, 30 min/day, 3 times/week for 4 weeks. Results: Four weeks after the first instillation, ELA animals, compared to C, showed: (1) reduced static lung elastance (Est,L) and levels of vascular endothelial growth factor (VEGF) in lung tissue, (2) increased elastic and collagen fiber content, dynamic elastance (E, in vitro), alveolar hyperinflation, and levels of interleukin-1β and tumor necrosis factor (TNF)-α, and (3) increased right ventricular diastolic area (RVA). Four weeks after aerobic training, ELA-T group, compared to ELA-S, was associated with reduced lung hyperinflation, elastic and collagen fiber content, TNF-α levels, and RVA, as well as increased Est,L, E, and levels of VEGF. Conclusion: Four weeks of regular and moderate intensity aerobic training modulated lung inflammation and remodeling, thus improving pulmonary function, and reduced RVA and pulmonary arterial hypertension in this animal model of elastase-induced emphysema. PMID:27536247

  3. Physiology of Resistant Deinococcus geothermalis Bacterium Aerobically Cultivated in Low-Manganese Medium

    PubMed Central

    Peltola, Minna; Bernhardt, Jörg; Neubauer, Peter

    2012-01-01

    This dynamic proteome study describes the physiology of growth and survival of Deinococcus geothermalis, in conditions simulating paper machine waters being aerobic, warm, and low in carbon and manganese. The industrial environment of this species differs from its natural habitats, geothermal springs and deep ocean subsurfaces, by being highly exposed to oxygen. Quantitative proteome analysis using two-dimensional gel electrophoresis and bioinformatic tools showed expression change for 165 proteins, from which 47 were assigned to a function. We propose that D. geothermalis grew and survived in aerobic conditions by channeling central carbon metabolism to pathways where mainly NADPH rather than NADH was retrieved from the carbon source. A major part of the carbon substrate was converted into succinate, which was not a fermentation product but likely served combating reactive oxygen species (ROS). Transition from growth to nongrowth resulted in downregulation of the oxidative phosphorylation observed as reduced expression of V-type ATPase responsible for ATP synthesis in D. geothermalis. The battle against oxidative stress was seen as upregulation of superoxide dismutase (Mn dependent) and catalase, as well as several protein repair enzymes, including FeS cluster assembly proteins of the iron-sulfur cluster assembly protein system, peptidylprolyl isomerase, and chaperones. Addition of soluble Mn reinitiated respiration and proliferation with concomitant acidification, indicating that aerobic metabolism was restricted by access to manganese. We conclude that D. geothermalis prefers to combat ROS using manganese-dependent enzymes, but when manganese is not available central carbon metabolism is used to produce ROS neutralizing metabolites at the expense of high utilization of carbon substrate. PMID:22228732

  4. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.

    PubMed

    Lashkarizadeh, Monireh; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2015-01-01

    The impact of carbon source variation on the physical and chemical characteristics of aerobic granular sludge and its biological nutrient (nitrogen and phosphorus) removal performance was investigated. Two identical sequencing batch reactors, R1 and R2, were set up. Granular biomass was cultivated to maturity using acetate-based synthetic wastewater. After mature granules in both reactors with simultaneous chemical oxygen demand (COD), ammonium and phosphorus removal capability were achieved, the feed of R2 was changed to municipal wastewater and R1 was continued on synthetic feed as control. Biological phosphorus removal was completely inhibited in R2 due to lack of readily biodegradable COD; however, the biomass maintained high ammonium and COD removal efficiencies. The disintegration of the granules in R2 occurred during the first two weeks after the change of feed, but it did not have significant impacts on settling properties of the sludge. Re-granulation of the biomass in R2 was then observed within 30 d after granules' disintegration when the biomass acclimated to the new substrate. The granular biomass in R1 and R2 maintained a Sludge Volume Index close to 60 and 47 mL g(-1), respectively, during the experimental period. It was concluded that changing the carbon source from readily biodegradable acetate to the more complex ones present in municipal wastewater did not have significant impacts on aerobic granular sludge characteristics; it particularly did not affect its settling properties. However, sufficient readily biodegradable carbon would have to be provided to maintain simultaneous biological nitrate and phosphorus removal.

  5. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.

    PubMed

    Lashkarizadeh, Monireh; Yuan, Qiuyan; Oleszkiewicz, Jan A

    2015-01-01

    The impact of carbon source variation on the physical and chemical characteristics of aerobic granular sludge and its biological nutrient (nitrogen and phosphorus) removal performance was investigated. Two identical sequencing batch reactors, R1 and R2, were set up. Granular biomass was cultivated to maturity using acetate-based synthetic wastewater. After mature granules in both reactors with simultaneous chemical oxygen demand (COD), ammonium and phosphorus removal capability were achieved, the feed of R2 was changed to municipal wastewater and R1 was continued on synthetic feed as control. Biological phosphorus removal was completely inhibited in R2 due to lack of readily biodegradable COD; however, the biomass maintained high ammonium and COD removal efficiencies. The disintegration of the granules in R2 occurred during the first two weeks after the change of feed, but it did not have significant impacts on settling properties of the sludge. Re-granulation of the biomass in R2 was then observed within 30 d after granules' disintegration when the biomass acclimated to the new substrate. The granular biomass in R1 and R2 maintained a Sludge Volume Index close to 60 and 47 mL g(-1), respectively, during the experimental period. It was concluded that changing the carbon source from readily biodegradable acetate to the more complex ones present in municipal wastewater did not have significant impacts on aerobic granular sludge characteristics; it particularly did not affect its settling properties. However, sufficient readily biodegradable carbon would have to be provided to maintain simultaneous biological nitrate and phosphorus removal. PMID:25719420

  6. Biomechanics of milk extraction during breast-feeding.

    PubMed

    Elad, David; Kozlovsky, Pavel; Blum, Omry; Laine, Andrew F; Po, Ming Jack; Botzer, Eyal; Dollberg, Shaul; Zelicovich, Mabel; Ben Sira, Liat

    2014-04-01

    How do infants extract milk during breast-feeding? We have resolved a century-long scientific controversy, whether it is sucking of the milk by subatmospheric pressure or mouthing of the nipple-areola complex to induce a peristaltic-like extraction mechanism. Breast-feeding is a dynamic process, which requires coupling between periodic motions of the infant's jaws, undulation of the tongue, and the breast milk ejection reflex. The physical mechanisms executed by the infant have been intriguing topics. We used an objective and dynamic analysis of ultrasound (US) movie clips acquired during breast-feeding to explore the tongue dynamic characteristics. Then, we developed a new 3D biophysical model of the breast and lactiferous tubes that enables the mimicking of dynamic characteristics observed in US imaging during breast-feeding, and thereby, exploration of the biomechanical aspects of breast-feeding. We have shown, for the first time to our knowledge, that latch-on to draw the nipple-areola complex into the infant mouth, as well as milk extraction during breast-feeding, require development of time-varying subatmospheric pressures within the infant's oral cavity. Analysis of the US movies clearly demonstrated that tongue motility during breast-feeding was fairly periodic. The anterior tongue, which is wedged between the nipple-areola complex and the lower lips, moves as a rigid body with the cycling motion of the mandible, while the posterior section of the tongue undulates in a pattern similar to a propagating peristaltic wave, which is essential for swallowing.

  7. Chemical characterization of some aerobic liquids in CELSS

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1993-01-01

    Untreated aqueous soybean and wheat leachate and aerobically treated wheat leachate prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions were compared, and a general chemical characterization was accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified; however, general composition related to the initial presence of phenol-like compounds and their disappearance during aerobic treatment was explored.

  8. Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae

    PubMed Central

    Johnson, Michael D. L.; Kehl-Fie, Thomas E.; Rosch, Jason W.

    2015-01-01

    Copper is universally toxic in excess, a feature exploited by the human immune system to facilitate bacterial clearance. The mechanism of copper intoxication remains unknown for many bacterial species. Here, we demonstrate that copper toxicity in Streptococcus pneumoniae is independent from oxidative stress but, rather, is the result of copper inhibiting the aerobic dNTP biosynthetic pathway. Furthermore, we show that copper-intoxicated S. pneumoniae is rescued by manganese, which is an essential metal in the aerobic nucleotide synthesis pathway. These data provide insight into new targets to enhance copper-mediated toxicity during bacterial clearance. PMID:25730343

  9. Development of Wide Band Feeds

    NASA Astrophysics Data System (ADS)

    Ujihara, H.; Ichikawa, R.

    2012-12-01

    Wide Band feeds are being developed at NICT, NAOJ, and some universities in Japan for VLBI2010, SKA, and MARBLE. SKA, the Square Kilometre Array, will comprise thousands of radio telescopes with square kilometer aperture size for radio astronomy. MARBLE consists of small portable VLBI stations developed at NICT and GSI in Japan. They all need wide band feeds with a greater than 1:10 frequency ratio. Thus we have been studying wide band feeds with dual linear polarization for these applications.

  10. Degradation of vinyl acetate by soil, sewage, sludge, and the newly isolated aerobic bacterium V2.

    PubMed Central

    Nieder, M; Sunarko, B; Meyer, O

    1990-01-01

    Vinyl acetate is subject to microbial degradation in the environment and by pure cultures. It was hydrolyzed by samples of soil, sludge, and sewage at rates of up to 6.38 and 1 mmol/h per g (dry weight) under aerobic and anaerobic conditions, respectively. Four yeasts and thirteen bacteria that feed aerobically on vinyl acetate were isolated. The pathway of vinyl acetate degradation was studied in bacterium V2. Vinyl acetate was degraded to acetate as follows: vinyl acetate + NAD(P)+----2 acetate + NAD(P)H + H+. The acetate was then converted to acetyl coenzyme A and oxidized through the tricarboxylic acid cycle and the glyoxylate bypass. The key enzyme of the pathway is vinyl acetate esterase, which hydrolyzed the ester to acetate and vinyl alcohol. The latter isomerized spontaneously to acetaldehyde and was then converted to acetate. The acetaldehyde was disproportionated into ethanol and acetate. The enzymes involved in the metabolism of vinyl acetate were studied in extracts. Vinyl acetate esterase (Km = 6.13 mM) was also active with indoxyl acetate (Km = 0.98 mM), providing the basis for a convenient spectrophotometric test. Substrates of aldehyde dehydrogenase were formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde. The enzyme was equally active with NAD+ or NADP+. Alcohol dehydrogenase was active with ethanol (Km = 0.24 mM), 1-propanol (Km = 0.34 mM), and 1-butanol (Km = 0.16 mM) and was linked to NAD+. The molecular sizes of aldehyde dehydrogenase and alcohol dehydrogenase were 145 and 215 kilodaltons, respectively. PMID:2285314

  11. Pentachlorophenol aerobic removal in a sequential reactor: start-up procedure and kinetic study.

    PubMed

    Angelucci, Domenica Mosca; Tomei, M Concetta

    2015-01-01

    This study has demonstrated the applicability of a simple technology such as the sequencing batch reactor (SBR), operated with suspended biomass, to the aerobic biodegradation of a highly toxic compound, the pentachlorophenol (PCP). An enrichment of a microbial consortium, originated from the biomass of an urban wastewater treatment plant, was performed and 70 days were sufficient to achieve removal efficiencies of ∼90% with the compound fed as only carbon and energy source Once completed the start-up period, the SBR was operated with the acclimatized biomass for 60 days at a feed concentration of PCP in the range of 10-20 mg L(-1). Improved performance was observed at increased influent concentration and the reached removal efficiency for the highest concentrations was stable at values≥90%. Kinetic and stoichiometric characterization of the acclimated biomass was performed with biodegradation tests carried out in the bioreactor during the reaction phase. The classical and a modified four-parameter forms of the Haldane equation were applied to model the substrate inhibited kinetics. Both models provided reliable predictions with high correlation coefficients (>0.99). The biomass characterization was completed with the evaluation of the growth yield coefficient, Y (0.075 on chemical oxygen demand base) and endogenous respiration rate, b (0.054 d(-1)). The aerobic SBR, operated in the metabolic mode with a mixed culture, showed superior performance in comparison to continuous systems applied in the same range of PCP influent loads and achieved removal rates are suitable for application.

  12. Multiple feed powder splitter

    SciTech Connect

    Lewis, Gary K.; Less, Richard M.

    2002-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  13. Multiple feed powder splitter

    SciTech Connect

    Lewis, Gary K.; Less, Richard M.

    2001-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  14. Misaligned feeding impairs memories

    PubMed Central

    Loh, Dawn H; Jami, Shekib A; Flores, Richard E; Truong, Danny; Ghiani, Cristina A; O’Dell, Thomas J; Colwell, Christopher S

    2015-01-01

    Robust sleep/wake rhythms are important for health and cognitive function. Unfortunately, many people are living in an environment where their circadian system is challenged by inappropriate meal- or work-times. Here we scheduled food access to the sleep time and examined the impact on learning and memory in mice. Under these conditions, we demonstrate that the molecular clock in the master pacemaker, the suprachiasmatic nucleus (SCN), is unaltered while the molecular clock in the hippocampus is synchronized by the timing of food availability. This chronic circadian misalignment causes reduced hippocampal long term potentiation and total CREB expression. Importantly this mis-timed feeding resulted in dramatic deficits in hippocampal-dependent learning and memory. Our findings suggest that the timing of meals have far-reaching effects on hippocampal physiology and learned behaviour. DOI: http://dx.doi.org/10.7554/eLife.09460.001 PMID:26652002

  15. Misaligned feeding impairs memories.

    PubMed

    Loh, Dawn H; Jami, Shekib A; Flores, Richard E; Truong, Danny; Ghiani, Cristina A; O'Dell, Thomas J; Colwell, Christopher S

    2015-01-01

    Robust sleep/wake rhythms are important for health and cognitive function. Unfortunately, many people are living in an environment where their circadian system is challenged by inappropriate meal- or work-times. Here we scheduled food access to the sleep time and examined the impact on learning and memory in mice. Under these conditions, we demonstrate that the molecular clock in the master pacemaker, the suprachiasmatic nucleus (SCN), is unaltered while the molecular clock in the hippocampus is synchronized by the timing of food availability. This chronic circadian misalignment causes reduced hippocampal long term potentiation and total CREB expression. Importantly this mis-timed feeding resulted in dramatic deficits in hippocampal-dependent learning and memory. Our findings suggest that the timing of meals have far-reaching effects on hippocampal physiology and learned behaviour. PMID:26652002

  16. Feeding a future world.

    PubMed

    Hinrichsen, D

    1998-01-01

    This article provides an overview of future prospects for feeding the world's growing population. The discussion focuses on obstacles such as limited agricultural land, degraded soil and water, and water shortages. The evidence suggests that sustainability is declining, especially in poor, food-deficit countries with growing populations. The world is segregated into the haves, the poor have-nots, and the rich have-nots. North America, Europe, and Australia have enough cropland to feed their populations. The poor have-nots are located mostly in sub-Saharan Africa, 7 countries each in the Middle East and Latin America, 6 in Oceania, and the rest in Central and South Asia. The poor have-nots amount to 3 billion out of 6 billion total population. The rich have-nots include countries such as Japan and Singapore, plus China, Indonesia, Peru, Chile, and Saudi Arabia and other Gulf states. The rich have-nots must import food. The world grain harvest is no longer tripling. Per person yields have declined. Increasing food productivity must rely on existing lands. The size of family farms has declined. Almost 2 billion hectares of crop and grazing land is degraded. Yields from irrigated land that are 33% of world food supply have declined. In 1990, 28 countries with 335 million people faced chronic water shortages or scarcity. Water is being polluted. Fish stocks are being depleted. Genetic diversity is being lost. In 182 food deficit countries, population growth must be slowed, and agriculture must be sustainable. Food is neither produced nor consumed equitably. Malnutrition is caused by poverty. Food security cannot be achieved if land and water become increasingly degraded or lost.

  17. Effect of aerobic training and aerobic and resistance training on the inflammatory status of hypertensive older adults.

    PubMed

    Lima, Leandra G; Bonardi, José M T; Campos, Giulliard O; Bertani, Rodrigo F; Scher, Luria M L; Louzada-Junior, Paulo; Moriguti, Júlio C; Ferriolli, Eduardo; Lima, Nereida K C

    2015-08-01

    There is a relationship between high levels of inflammatory markers and low adhesion to the practice of physical activity in the older population. The objective of the present study was to compare the effect of two types of exercise programs, i.e., aerobic training and aerobic plus resistance training on the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) of elderly hypertensive subjects. Hypertensive older volunteers in use of antihypertensive drugs were randomized to three groups: aerobic group (AG), resistance and aerobic group (RAG) and control group (CG). Training lasted 10 weeks, with sessions held three times a week. Blood samples were collected before training and 24 h after completion of the 30 sessions for the determination of serum IL-6 and TNF-α levels. Body mass index was obtained before and after 10 weeks. After intervention, BMI values were lower in AG and RAG compared to CG (p < 0.001), IL-6 was reduced in AG compared to CG (p = 0.04), and TNF-α levels were lower only in RAG compared to CG (p = 0.01). Concluding, both types of training were effective in reducing BMI values in hypertensive older subjects. Aerobic exercise produced the reduction of plasma IL-6 levels. However, the combination of aerobic and resistance exercise, which would be more indicated for the prevention of loss of functionality with aging, showed lower TNF-α mediator after training than control group and a greater fall of TNF-α levels associated to higher BMI reduction. PMID:25567682

  18. [Population development characteristics of rice crop cultivated on aerobic soil with mulching].

    PubMed

    Sheng, Haijun; Shen, Qirong; Feng, Ke

    2004-01-01

    Field experiments were carried out to study the population development characteristics of rice crop cultivated both on aerobic and waterlogged soil conditions. The results showed that the whole growth duration of rice growing on aerobic soil was one week longer than that on waterlogged soil. Shorter and narrower leaves and smaller LAI of rice population were found on aerobic soil than on waterlogged soil, which resulted in a decreased photosynthesis, smaller amount and lighter weight of rice grains on aerobic soil, compared with those on waterlogged soil. Among the aerobic treatments, more tillers, lower percentage of filled grains and shorter duration of grain forming were found on soils covered with plastic film than on soils covered with semi-decomposed straw or without mulching. The rice grain yield was decreased in the order of waterlogged soil > aerobic soil covered with plastic film > aerobic soil covered with semi-decomposed straw > aerobic soil without mulching.

  19. Helping Adults to Stay Physically Fit: Preventing Relapse Following Aerobic Exercise Training.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; And Others

    1984-01-01

    Long-term adherence to an aerobic exercise regime is a major problem among exercise program graduates. This article discusses the steps involved in developing relapse prevention treatment strategies for aerobic exercise programs. (JMK)

  20. Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09

    SciTech Connect

    Boden, Rich; Cunliffe, Michael; Scanlan, Julie; Moussard, Helene; Kits, K. Dimitri; Klotz, Martin G; Jetten, MSM; Vuilleumier, Stephane; Han, James; Peters, Lin; Mikhailova, Natalia; Teshima, Hazuki; Tapia, Roxanne; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Cheng, Jan-Fang; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Pitluck, Sam; Woyke, Tanja; Stein, Lisa Y.; Murrell, Collin

    2011-01-01

    Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.

  1. Adaptive feed-forward loop connection based on error signal

    NASA Astrophysics Data System (ADS)

    Hidaka, Koichi

    2005-12-01

    In this paper, we investigate effect of changing the connection of feed-forward loop based on error signal. Our motivation of this work is solution to progress of human skill. For the skill model, we study a human simple action such as arm motion. Many models that describe the human arm dynamics have been proposed in recent year. While one type does not need an inverse model of human dynamics, the system based on the model does not include feed-forward loop. On the other hand, another type model has a feed-forward loop and feedback loop systems. This type assumes feed-forward element includes an internal model by repeating action or training and this loop progress our skill. Then we usually have to exercise to get a good performance. This says that we design the internal motion model by training and we move on prediction for motion. Under the assumption, Kawato model is well known. The model proposed that learning of feed-forward element is promoted in brain so that the error of feedback loop decreases. Furthermore, we assume the connections in feedback loop and feed-forward loop are changed. We show numerical simulations and consider that the position error given by our vision changes the skill element and we confirm that the position error is the one of the estimate function for the improvement in our skill.

  2. Infant feeding. 5. Managing baby related feeding challenges.

    PubMed

    Marshall, Joyce

    2013-02-01

    'Infant feeding' is the 12th series of 'Midwifery basics' targeted at practising midwives. The aim of these articles is to inform and encourage readers to seek further information through a series of activities relating to the topic. In this fifth article Joyce Marshall considers a range of baby related issues that pose challenges for both mothers and midwives in relation to infant feeding.

  3. Analysis of total aerobic viable counts in raw fish by high-throughput optical oxygen respirometry.

    PubMed

    Hempel, A; Borchert, N; Walsh, H; Roy Choudhury, K; Kerry, J P; Papkovsky, D B

    2011-05-01

    A simple, miniaturized, and automated screening assay for the determination of total aerobic viable counts in fish samples is presented here. Fish tissue homogenates were prepared in peptone buffered water medium, according to standard method, and aliquots were dispensed into wells of a 96-well plate with the phosphorescent, oxygen-sensing probe GreenLight. Sample wells were covered with mineral oil (barrier for ambient oxygen), and the plate was monitored on a standard fluorescent reader at 30°C. The samples produced characteristic profiles, with a sharp increase in fluorescence above the baseline level at a certain threshold time, which could be correlated with initial microbial load. Five different fish species were analyzed: salmon, cod, plaice, mackerel, and whiting. Using a conventional agar plating method, the relationship between the threshold time and total aerobic viable counts load (in CFU per gram) was established, calibration curve generated, and the test was validated with 169 unknown fish samples. It showed a dynamic range of 10(4) to 10(7) CFU/g, accuracy of ± 1 log(CFU/g), assay time of 2 to 12 h (depending on the level of contamination), ruggedness with respect to the key assay parameters, simplicity (three pipetting steps, no serial dilutions), real-time data output, high sample throughput, and automation. With this test, quality of fish samples, CFU-per-gram levels, and their respective time profiles were determined.

  4. HIV and breast-feeding.

    PubMed

    1992-07-01

    Participants at a 1992 WHO/UNICEF consultation meeting on HIV transmission and breast feeding weigh the risk of death from AIDS with the risk of death from other causes. Breast feeding reduces the risk of death from diarrhea, pneumonia, and other infections. Artificial or inappropriate feeding contributes the most to the more than 3 million annual childhood deaths from diarrhea. The rising prevalence of HIV infection among women worldwide results in more and more cases of HIV-infected newborns. About 33% of infants born to HIV-infected. Some HIV transmission occurs through breast feeding, but breast feeding does not transmit HIV to most infants HIV-infected mothers. Participants recommend that, in areas where infectious diseases and malnutrition are the leading causes of death and infant mortality is high, health workers should advise all pregnant women, regardless of their HIV status, to breast feed. The infant's risk of HIV infection via breast milk tends to be lower than its risk of death from other causes and from not being breast fed. HIV-infected women who do have access to alternative feeding should talk to their health care providers to learn how to feed their infants safely. In areas where the leading cause of death is not infectious disease and infant mortality is low, participants recommend that health workers advise HIV-infected pregnant women to use a safe feeding alternative, e.g., bottle feeding. Yet, the women and their providers should not be influenced by commercial pressures to choose an alternative feeding method. Health care services in these areas should provide voluntary and confidential HIV testing and counseling. Participants stress the need to prevent women from becoming HIV-infected by providing them information about AIDS and how to protect themselves, increasing their participation in decision-making in sexual relationships, and improving their status in society. PMID:1477885

  5. Environmental Controls on Aerobic Methane Oxidation in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Steinle, L.; Maltby, J.; Engbersen, N.; Zopfi, J.; Bange, H. W.; Elvert, M.; Hinrichs, K. U.; Kock, A.; Lehmann, M. F.; Treude, T.; Niemann, H.

    2015-12-01

    Large quantities of the greenhouse gas CH4 are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, and later into the atmosphere. Indeed, coastal seas account for more than 75% of global oceanic CH4 emissions. Yet, aerobic CH4 oxidizing bacteria (MOB) consume an important part of CH4 in the water column, thus mitigating CH4 release to the atmosphere. Coastal oceans are highly dynamic systems, in particular with regard to the variability of temperature, salinity and oxygen concentrations, all of which are potential key environmental factors controlling MOx. To determine the most important controlling factors, we conducted a two-year time-series study with measurements of CH4, MOx, the composition of the MOB community, and physicochemical water column parameters in a coastal inlet in the Baltic Sea (Eckernförde(E-) Bay, Boknis Eck Time Series Station). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, seasonal stratification leads to hypoxia in bottom waters towards the end of the stratification period. Methane is produced year-round in the sediments, resulting in accumulation of methane in bottom waters, and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were a) perturbations of the water column caused by storm events, currents or seasonal mixing, b) temperature and c) oxygen concentration. a) Perturbations of the water column led to a sharp decrease in MOx within hours, probably caused by replacement of 'old' water with a high standing stock of MOB by 'new' waters with a lower abundance of MOB. b) An increase in temperature generally led to higher MOx rates. c) Even though CH4 was abundant at all depths, MOx was highest in bottom waters (1-5 nM/d), which usually contain the lowest O2 concentrations. Lab-based experiments with adjusted O2

  6. Waiting to inhale: HIF-1 modulates aerobic respiration.

    PubMed

    Boutin, Adam T; Johnson, Randall S

    2007-04-01

    The hypoxia-inducible factor HIF-1 is known to promote anaerobic respiration during low oxygen conditions (hypoxia). In this issue, Fukuda et al. (2007) expand the range of HIF-1's functions by showing that it modulates aerobic respiration as well.

  7. Peak Aerobic Fitness of Visually Impaired and Sighted Adolescent Girls.

    ERIC Educational Resources Information Center

    Williams, C. A.; And Others

    1996-01-01

    A study compared 10 visually impaired and 10 sighted girls on a discontinuous incremental treadmill test and found no significant difference between the peak oxygen intake of the 2 groups. The results indicate that visually impaired children can attain aerobic fitness levels similar to those of sighted children. (Author/CR)

  8. AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA

    EPA Science Inventory

    MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...

  9. Characterization of aerobically fit individuals with cardiovascular disease.

    PubMed

    Lesser, Iris A; Farias-Godoy, Alejandra; Isserow, Saul; Myers, Jonathan; Lear, Scott A

    2014-01-01

    With an ageing population there is an increased prevalence of individuals living with cardiovascular disease (CVD). Characteristics of older aerobically fit individuals with previously diagnosed CVD have not been studied. Therefore, our knowledge is limited as to how, or if, aerobically fit individuals with CVD attempt to adapt their physical activity and the intensity of their training programmes. The objective of this paper is to characterise the physical activity habits and behaviours of older aerobically fit individuals with CVD. We identified 28 aerobically fit patients with CVD from those who completed a minimum of 15 and 12 min of the Bruce treadmill protocol for men and women, respectively. Consenting participants responded to questionnaires regarding physical activity levels, competitive event participation and self-monitoring since diagnosis of heart disease. Average age and treadmill time of participants were 56 and 49 years and 15.6 and 13.0 min for males and females, respectively. Data were obtained regarding recent medical history (medical diagnoses, surgeries/procedures). Despite the majority of individuals participating in the same or more activity since their diagnosis, 25% indicated that their condition limited their activity and 39% reported having symptoms during activity. Nearly all participants (93%) indicated that they monitored their heart rate during exercise. However, only 14% of participants stated that their physician advised them on how to exercise safely. It is necessary for physicians and cardiac rehabilitation programmes to be involved in safe and effective exercise programming to allow individuals to return to sport after CVD. PMID:24433153

  10. Identification of serum analytes and metabolites associated with aerobic capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies aimed at identifying serum markers of cellular metabolism (biomarkers) that are associated at baseline with aerobic capacity (V02 max) in young, healthy individuals have yet to be reported. Therefore, the goal of the present study was to use the standard chemistry screen and untargeted mass ...

  11. Aerobic Fitness for the Severely and Profoundly Mentally Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    The booklet discusses the aerobic fitness capacities of severely/profoundly retarded students and discusses approaches for improving their fitness. An initial section describes a method for determining the student's present fitness level on the basis of computations of height, weight, blood pressure, resting pulse, and Barach Index and Crampton…

  12. In situ aerobic cometabolism of chlorinated solvents: a review.

    PubMed

    Frascari, Dario; Zanaroli, Giulio; Danko, Anthony S

    2015-01-01

    The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.

  13. Characterization of aerobic ethanol productions in a computerized auxostat

    SciTech Connect

    Fraleigh, S.P.

    1989-01-01

    For many valuable bioproducts high productivity is associated with rapid growth. However, most continuous microbial cultures become unstable when the dilution rate is fixed near the value for maximum growth rate. The auxostat culture technique employs feedback control of a nutrient or metabolite to stabilize the biomass at its maximum potential growth rate. An auxostat device is therefore ideal for study of bioprocesses involving the overproduction of primary metabolites such as ethanol. Oxidoreductive transformations involving ethanol are utilized by Saccharomyces yeasts when normal respiration cannot satisfy energy needs. When rapid growth or other stress creates oxidoreductive conditions in aerobic Saccharomyces cultures, very high specific ethanol formation rates are established and biomass yield drops to levels more typical of anaerobic fermentation. Although the physiology is favorable, the potential for large-scale aerobic ethanol processes to compete with traditional anaerobic fermentations has not previously been assessed. In this study, a fully computerized auxostat device was constructed and used to characterize the specific and volumetric aerobic ethanol productivity of the yeast Saccharomyces cerevisiae. To divert substrate away from biomass and into product formation, aerobic cultures were stressed with variations of ionic balance (via extreme K{sup +} and H{sup +} setpoints) in the auxostat device. During growth with limiting K{sup +} concentrations, the goal of very low biomass yield was attained but the rate of ethanol production was poor. However, with excess K{sup +} the volumetric productivity reached 6.1 g/I,-h, a value that is comparable to optimized, continuous anaerobic cultures.

  14. Aerobic Capacities of Early College High School Students

    ERIC Educational Resources Information Center

    Loflin, Jerry W.

    2014-01-01

    The Early College High School Initiative (ECHSI) was introduced in 2002. Since 2002, limited data, especially student physical activity data, have been published pertaining to the ECHSI. The purpose of this study was to examine the aerobic capacities of early college students and compare them to state and national averages. Early college students…

  15. Aerobic Exercise Equipment Preferences among Older Adults: A Preliminary Investigation.

    ERIC Educational Resources Information Center

    Looney, Marilyn A.; Rimmer, James H.

    2003-01-01

    Developed an instrument to measure the aerobic exercise equipment preference of a frail older population and applied many-facet Rasch analysis to study construct validity and equipment preferences. Results for 16 participants show the usefulness of many-facet Rasch analysis in guiding instrument revision. (SLD)

  16. Thirty-Three Years of Aerobic Exercise Adherence.

    ERIC Educational Resources Information Center

    Kasch, Frederick W.

    2001-01-01

    Followed 15 middle-aged men for 25-33 years while they participated in an aerobic exercise program. Adherence in the sample was 100 percent. Possible explanations for the adherence include program leadership, peer support, written evaluations and progress reports, emphasis on health, early and continued interest in sport and exercise, recognition…

  17. COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS

    EPA Science Inventory

    A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

  18. Group Aquatic Aerobic Exercise for Children with Disabilities

    ERIC Educational Resources Information Center

    Fragala-Pinkham, Maria; Haley, Stephen M.; O'Neill, Margaret E.

    2008-01-01

    The effectiveness and safety of a group aquatic aerobic exercise program on cardiorespiratory endurance for children with disabilities was examined using an A-B study design. Sixteen children (11 males, five females) age range 6 to 11 years (mean age 9y 7mo [SD 1y 4mo]) participated in this twice-per-week program lasting 14 weeks. The children's …

  19. Aerobic Capacity and Anaerobic Power Levels of the University Students

    ERIC Educational Resources Information Center

    Taskin, Cengiz

    2016-01-01

    The aim of study was to analyze aerobic capacity and anaerobic power levels of the university students. Total forty university students who is department physical education and department business (age means; 21.15±1.46 years for male and age means; 20.55±1.79 years for female in department physical education), volunteered to participate in this…

  20. Aerobic response to exercise of the fastest land crab.

    PubMed

    Full, R J; Herreid, C F

    1983-04-01

    To view the aerobic response to exercise, the ghost crab Ocypode guadichaudii was run in a treadmill respirometer at three velocities (0.13, 0.19, and 0.28 km/h) while oxygen consumption (VO2) was monitored. A steady-state VO2 that increased linearly with velocity was attained. VO2 transient periods at the beginning and end of exercise were extremely rapid with half times from 50 to 150 s. The magnitude of oxygen deficit and debt were small and both showed increases with an increase in velocity. Oxygen debt was measured at each velocity after 4-, 10-, and 20-min exercise bouts. No change in the magnitude of oxygen debt was observed with respect to exercise duration. Maximal VO2 was 11.9 times the average resting VO2. Oxygen uptake kinetics have shown only very sluggish and reduced rates in five other more sedentary crab species previously tested. The aerobic response pattern observed in the present study is more comparable to that of exercising mammals and highly aerobic ectothermic vertebrates. This suggests that the ghost crab meets the energy demand of sustained exercise by aerobic ATP production in contrast to many other crab species.

  1. Aerobic Jogging Instruction for Students in Grades 7-12.

    ERIC Educational Resources Information Center

    Nebraska State Dept. of Education, Lincoln.

    Jogging, a form of aerobic exercise, is the act of running at a slow trot. This guide describes an instructional program for high school students to jog progressively longer distances. The emphasis is on participation and gradual improvement. Training principles, teaching methods, common jogging problems, and safety precautions are listed to aid…

  2. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  3. The medically important aerobic actinomycetes: epidemiology and microbiology.

    PubMed Central

    McNeil, M M; Brown, J M

    1994-01-01

    The aerobic actinomycetes are soil-inhabiting microorganisms that occur worldwide. In 1888, Nocard first recognized the pathogenic potential of this group of microorganisms. Since then, several aerobic actinomycetes have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents. They have also been well known as potential veterinary pathogens affecting many different animal species. The medically important aerobic actinomycetes may cause significant morbidity and mortality, in particular in highly susceptible severely immunocompromised patients, including transplant recipients and patients infected with human immunodeficiency virus. However, the diagnosis of these infections may be difficult, and effective antimicrobial therapy may be complicated by antimicrobial resistance. The taxonomy of these microorganisms has been problematic. In recent revisions of their classification, new pathogenic species have been recognized. The development of additional and more reliable diagnostic tests and of a standardized method for antimicrobial susceptibility testing and the application of molecular techniques for the diagnosis and subtyping of these microorganisms are needed to better diagnose and treat infected patients and to identify effective control measures for these unusual pathogens. We review the epidemiology and microbiology of the major medically important aerobic actinomycetes. Images PMID:7923055

  4. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  5. Is Low-Impact Aerobic Dance an Effective Cardiovascular Workout?

    ERIC Educational Resources Information Center

    Williford, Henry N.; And Others

    1989-01-01

    Presents results of an investigation comparing energy cost and cardiovascular responses of aerobic dance routines performed at different intensity levels in varying amounts of energy expenditure. For low-impact dance to meet minimum guidelines suggested by the American College of Sports Medicine, it should be performed at high intensity. (SM)

  6. Teaching Aerobic Cell Respiration Using the 5Es

    ERIC Educational Resources Information Center

    Patro, Edward T.

    2008-01-01

    The 5E teaching model provides a five step method for teaching science. While the sequence of the model is strictly linear, it does provide opportunities for the teacher to "revisit" prior learning before moving on. The 5E method is described as it relates to the teaching of aerobic cell respiration.

  7. In situ aerobic cometabolism of chlorinated solvents: a review.

    PubMed

    Frascari, Dario; Zanaroli, Giulio; Danko, Anthony S

    2015-01-01

    The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed. PMID:25306537

  8. Anaerobes unleashed: Aerobic fuel cells of Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Nevin, Kelly P.; Zhang, Pei; Franks, Ashley E.; Woodard, Trevor L.; Lovley, Derek R.

    One of the limitations of power generation with microbial fuel cells is that the anode must typically be maintained under anaerobic conditions. When oxygen is present in the anode chamber microorganisms oxidize the fuel with the reduction of oxygen rather than electron transfer to the anode. A system in which fuel is provided from within a graphite anode and diffuses out to the outer surface of the anode was designed to overcome these limitations. A biofilm of Geobacter sulfurreducens strain KN400, pregrown on the surface of a graphite electrode in a traditional two-chambered system with an anaerobic anode chamber and acetate as an external fuel source, produced current just as well under aerobic conditions when acetate was provided via diffusion from an internal concentrated acetate solution. No acetate was detectable in the external medium. In contrast, aerobic systems in which acetate was provided in the external medium completely failed within 48 h. Internally fed anodes colonized by a strain of KN400 adapted to grow at marine salinities produced current in aerobic seawater as well as an anaerobic anode system. The ability to generate current with an anode under aerobic conditions increases the potential applications and design options for microbial fuel cells.

  9. Aerobic Capacity in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Verschuren, Olaf; Takken, Tim

    2010-01-01

    This study described the aerobic capacity [VO[subscript 2peak] (ml/kg/min)] in contemporary children and adolescents with cerebral palsy (CP) using a maximal exercise test protocol. Twenty-four children and adolescents with CP classified at Gross Motor Functional Classification Scale (GMFCS) level I or level II and 336 typically developing…

  10. Measurement Agreement between Estimates of Aerobic Fitness in Youth: The Impact of Body Mass Index

    ERIC Educational Resources Information Center

    Saint-Maurice, Pedro F.; Welk, Gregory J.; Laurson, Kelly R.; Brown, Dale D.

    2014-01-01

    Purpose: The purpose of this study was to examine the impact of body mass index (BMI) on the agreement between aerobic capacity estimates from different Progressive Aerobic Cardiorespiratory Endurance Run (PACER) equations and the Mile Run Test. Method: The agreement between 2 different tests of aerobic capacity was examined on a large data set…

  11. Aerobic Development of Elite Youth Ice Hockey Players.

    PubMed

    Leiter, Jeff R; Cordingley, Dean M; MacDonald, Peter B

    2015-11-01

    Ice hockey is a physiologically complex sport requiring aerobic and anaerobic energy metabolism. College and professional teams often test aerobic fitness; however, there is a paucity of information regarding aerobic fitness of elite youth players. Without this knowledge, training of youth athletes to meet the standards of older age groups and higher levels of hockey may be random, inefficient, and or effective. Therefore, the purpose of this study was to determine the aerobic fitness of elite youth hockey players. A retrospective database review was performed for 200 male AAA hockey players between the ages of 13 and 17 (age, 14.4 ± 1.2 years; height, 174.3 ± 8.5 cm; body mass, 67.2 ± 11.5 kg; body fat, 9.8 ± 3.5%) before the 2012-13 season. All subjects performed a graded exercise test on a cycle ergometer, whereas expired air was collected by either a Parvo Medics TrueOne 2400 or a CareFusion Oxycon Mobile metabolic cart to determine maximal oxygen consumption (V[Combining Dot Above]O2max). Body mass, absolute V[Combining Dot Above]O2max, and the power output achieved during the last completed stage increased in successive age groups from age 13 to 15 years (p ≤ 0.05). Ventilatory threshold (VT) expressed as a percentage of V[Combining Dot Above]O2max and the heart rate (HR) at which VT occurred decreased between the ages of 13 and 14 years (p ≤ 0.05), whereas the V[Combining Dot Above]O2 at which VT occurred increased from the age of 14-15 years. There were no changes in relative V[Combining Dot Above]O2max or HRmax between any successive age groups. The aerobic fitness levels of elite youth ice hockey players increased as players age and mature physically and physiologically. However, aerobic fitness increased to a lesser extent at older ages. This information has the potential to influence off-season training and maximize the aerobic fitness of elite amateur hockey players, so that these players can meet standards set by advanced elite age groups

  12. Effects of Aerobic Exercise on Mild Cognitive Impairment

    PubMed Central

    Baker, Laura D.; Frank, Laura L.; Foster-Schubert, Karen; Green, Pattie S.; Wilkinson, Charles W.; McTiernan, Anne; Plymate, Stephen R.; Fishel, Mark A.; Stennis Watson, G.; Cholerton, Brenna A.; Duncan, Glen E.; Mehta, Pankaj D.; Craft, Suzanne

    2011-01-01

    Objectives To examine the effects of aerobic exercise on cognition and other biomarkers associated with Alzheimer disease pathology for older adults with mild cognitive impairment, and assess the role of sex as a predictor of response. Design Six-month, randomized, controlled, clinical trial. Setting Veterans Affairs Puget Sound Health Care System clinical research unit. Participants Thirty-three adults (17 women) with amnestic mild cognitive impairment ranging in age from 55 to 85 years (mean age,70 years). Intervention Participants were randomized either to a high-intensity aerobic exercise or stretching control group. The aerobic group exercised under the supervision of a fitness trainer at 75% to 85% of heart rate reserve for 45 to 60 min/d, 4 d/wk for 6 months. The control group carried out supervised stretching activities according to the same schedule but maintained their heart rate at or below 50% of their heart rate reserve. Before and after the study, glucometabolic and treadmill tests were performed and fat distribution was assessed using dual-energy x-ray absorptiometry. At baseline, month 3, and month 6, blood was collected for assay and cognitive tests were administered. Main Outcome Measures Performance measures on Symbol-Digit Modalities, Verbal Fluency, Stroop, Trails B, Task Switching, Story Recall, and List Learning. Fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulinlike growth factor-I, and β-amyloids 40 and 42. Results Six months of high-intensity aerobic exercise had sex-specific effects on cognition, glucose metabolism, and hypothalamic-pituitary-adrenal axis and trophic activity despite comparable gains in cardiorespiratory fitness and body fat reduction. For women, aerobic exercise improved performance on multiple tests of executive function, increased glucose disposal during the metabolic clamp, and reduced fasting plasma levels of insulin, cortisol, and brain-derived neurotrophic factor. For men

  13. Aerobic Development of Elite Youth Ice Hockey Players.

    PubMed

    Leiter, Jeff R; Cordingley, Dean M; MacDonald, Peter B

    2015-11-01

    Ice hockey is a physiologically complex sport requiring aerobic and anaerobic energy metabolism. College and professional teams often test aerobic fitness; however, there is a paucity of information regarding aerobic fitness of elite youth players. Without this knowledge, training of youth athletes to meet the standards of older age groups and higher levels of hockey may be random, inefficient, and or effective. Therefore, the purpose of this study was to determine the aerobic fitness of elite youth hockey players. A retrospective database review was performed for 200 male AAA hockey players between the ages of 13 and 17 (age, 14.4 ± 1.2 years; height, 174.3 ± 8.5 cm; body mass, 67.2 ± 11.5 kg; body fat, 9.8 ± 3.5%) before the 2012-13 season. All subjects performed a graded exercise test on a cycle ergometer, whereas expired air was collected by either a Parvo Medics TrueOne 2400 or a CareFusion Oxycon Mobile metabolic cart to determine maximal oxygen consumption (V[Combining Dot Above]O2max). Body mass, absolute V[Combining Dot Above]O2max, and the power output achieved during the last completed stage increased in successive age groups from age 13 to 15 years (p ≤ 0.05). Ventilatory threshold (VT) expressed as a percentage of V[Combining Dot Above]O2max and the heart rate (HR) at which VT occurred decreased between the ages of 13 and 14 years (p ≤ 0.05), whereas the V[Combining Dot Above]O2 at which VT occurred increased from the age of 14-15 years. There were no changes in relative V[Combining Dot Above]O2max or HRmax between any successive age groups. The aerobic fitness levels of elite youth ice hockey players increased as players age and mature physically and physiologically. However, aerobic fitness increased to a lesser extent at older ages. This information has the potential to influence off-season training and maximize the aerobic fitness of elite amateur hockey players, so that these players can meet standards set by advanced elite age groups.

  14. Infant Feeding: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Crowhurst, Christine Marie, Comp.; Kumer, Bonnie Lee, Comp.

    Intended for parents, health professionals and allied health workers, and others involved in caring for infants and young children, this annotated bibliography brings together in one selective listing a review of over 700 current publications related to infant feeding. Reflecting current knowledge in infant feeding, the bibliography has as its…

  15. Feed analyses and their interpretation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compositional analysis is central to determining the nutritional value of feedstuffs. The utility of the values and how they should be used depends on how representative the feed subsample is, the nutritional relevance of the assays, analytical variability of the analyses, and whether a feed is suit...

  16. Aquaculture feed and food safety.

    PubMed

    Tacon, Albert G J; Metian, Marc

    2008-10-01

    The ultimate objective of an aquaculture feed manufacturer and aquaculture food supplier is to ensure that the feed or food produced is both safe and wholesome. Reported food safety risks, which may be associated with the use of commercial animal feeds, including compound aquaculture feeds, usually result from the possible presence of unwanted contaminants, either within the feed ingredients used or from the external contamination of the finished feed on prolonged storage. The major animal feed contaminants that have been reported to date have included Salmonellae, mycotoxins, veterinary drug residues, persistent organic pollutants, agricultural and other chemicals (solvent residues, melamine), heavy metals (mercury, lead, cadmium) and excess mineral salts (hexavalent chromium, arsenic, selenium, flourine), and transmissible spongiform encephalopathies. Apart from the direct negative effect of these possible contaminants on the health of the cultured target species, there is a risk that the feed contaminants may be passed along the food chain, via contaminated aquaculture produce, to consumers. In recent years, public concern regarding food safety has increased as a consequence of the increasing prevalence of antibiotic residues, persistent organic pollutants, and chemicals in farmed seafood. The important role played by the Food and Agriculture Organization of the United Nations (FAO) and the Codex Alimentarius Commission in the development of international standards, guidelines, and recommendations to protect the health of consumers and ensure fair practices in the food trade is discussed. PMID:18991902

  17. Enteral Tube Feeding and Pneumonia

    ERIC Educational Resources Information Center

    Gray, David Sheridan; Kimmel, David

    2006-01-01

    To determine the effects of enteral tube feeding on the incidence of pneumonia, we performed a retrospective review of all clients at our institution who had gastrostomy or jejunostomy tubes placed over a 10-year period. Ninety-three subjects had a history of pneumonia before feeding tube insertion. Eighty had gastrostomy and 13, jejunostomy…

  18. Mechanisms of aerobic performance impairment with heat stress and dehydration.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N

    2010-12-01

    Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.

  19. [Study on technological characters of anaerobic-aerobic bioreactor landfill].

    PubMed

    Chen, Zhu-Lei; Zhou, Chuan-Bin; Liu, Ting; Jiang, Juan; Cao, Li; Lü, Zhi-Zhong; Li, Xi-Kun; Li, Xiao-Bao

    2007-04-01

    A technology of anaerobic-aerobic landfill bioreactor aimed at reusing landfill site is studied, and it's based on landfill bioreactor technology. A set of stimulating equipment is designed, and the technology characters are studied. In the anaerobic period, technological conditions are controlled by the means of leachate recirculation. The main experimental results are: pH, R1 rises to 6.7 - 7.8 in 6 weeks, and R2 is under 6.8 in 17 weeks; COD concentration of leachate, R1 declines to 10 617 mg/L in 13 weeks, while R2 rises to 60 000 mg/L in 5 weeks, and keeps stabilization in long time; the cumulating methane production, R1 reaches 44% in 8 weeks, while R2 almost cannot produce methane. The stabilization can be evaluated by pH of leachate, COD and BOD5/COD decreasing ratio, and cumulating methane production. They are main evidences to transform anaerobic period to aerobic period. In the aerobic period, odor and moisture are reduced by the means of aeration. The main experimental results are: ammonia concentration reduces to 1.16 mg/m3 in 19 days, and the odor concentration reduces to 19 in 23 days; the moisture of the wastes reduces to 26% in 14 days. The technological indexes to evaluate finishing of this period can be determined by the ultimately purpose of exploited wastes. Numerical modeling has been researched with the use of experimental data. The succession of microbes in the anaerobic-aerobic course is studied by RISA (ribosomal intergenic spacer analysis) analysis. There are 4 preponderant groups in this course, and some facultative anaerobes play important roles in the transition of anaerobic period to aerobic period.

  20. Aerobic exercise attenuates pulmonary inflammation induced by Streptococcus pneumoniae.

    PubMed

    Olivo, Clarice R; Miyaji, Eliane N; Oliveira, Maria Leonor S; Almeida, Francine M; Lourenço, Juliana D; Abreu, Rodrigo M; Arantes, Petra M M; Lopes, Fernanda Dtqs; Martins, Milton A

    2014-11-01

    Aerobic exercise has been recognized as a stimulator of the immune system, but its effect on bacterial infection has not been extensively evaluated. We studied whether moderate aerobic exercise training prior to Streptococcus pneumoniae infection influences pulmonary inflammatory responses. BALB/c mice were divided into four groups: Sedentary Untreated (sedentary without infection); Sedentary Infected (sedentary with infection); Trained Untreated (aerobic training without infection); and Trained Infected (aerobic training with infection). Animals underwent aerobic training for 4 wk, and 72 h after last exercise training, animals received a challenge with S. pneumoniae and were evaluated either 12 h or 10 days after instillation. In acute phase, Sedentary Infected group had an increase in respiratory system resistance and elastance; number of neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BAL); polymorphonuclear cells in lung parenchyma; and levels of keratinocyte-derived chemokine (KC), tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β (IL-1β) in lung homogenates. Exercise training significantly attenuated the increase in all of these parameters and induced an increase in expression of antioxidant enzymes (CuZnSOD and MnSOD) in lungs. Trained Infected mice had a significant decrease in the number of colony-forming units of pneumococci in the lungs compared with Sedentary Infected animals. Ten days after infection, Trained Infected group exhibited lower numbers of macrophages in BAL, polymorphonuclear cells in lung parenchyma and IL-6 in lung homogenates compared with Sedentary Infected group. Our results suggest a protective effect of moderate exercise training against respiratory infection with S. pneumoniae. This effect is most likely secondary to an effect of exercise on oxidant-antioxidant balance.

  1. Aerobic exercise augments muscle transcriptome profile of resistance exercise.

    PubMed

    Lundberg, Tommy R; Fernandez-Gonzalo, Rodrigo; Tesch, Per A; Rullman, Eric; Gustafsson, Thomas

    2016-06-01

    Recent reports suggest that aerobic exercise may boost the hypertrophic response to short-term resistance training. This study explored the effects of an acute aerobic exercise bout on the transcriptional response to subsequent resistance exercise. Ten moderately trained men performed ∼45 min cycling on one leg followed by 4 × 7 maximal knee extensions for each leg, 15 min later. Thus, one limb performed aerobic and resistance exercise (AE + RE) while the opposing leg did resistance exercise only (RE). Biopsies were obtained from the vastus lateralis muscle of each leg 3 h after the resistance exercise bout. Using DNA microarray, we analyzed differences [≥1.5-fold, false discovery rate (FDR) ≤10%] in gene expression profiles for the two modes of exercise. There were 176 genes up (127)- or downregulated (49) by AE + RE compared with RE. Among the most significant differentially expressed genes were established markers for muscle growth and oxidative capacity, novel cytokines, transcription factors, and micro-RNAs (miRNAs). The most enriched functional categories were those linked to carbohydrate metabolism and transcriptional regulation. Upstream analysis revealed that vascular endothelial growth factor, cAMP-response element-binding protein, Tet methylcytosine dioxygenase, and mammalian target of rapamycin were regulators highly activated by AE + RE, whereas JnK, NF-κβ, MAPK, and several miRNAs were inhibited. Thus, aerobic exercise alters the skeletal muscle transcriptional signature of resistance exercise to initiate important gene programs promoting both myofiber growth and improved oxidative capacity. These results provide novel insight into human muscle adaptations to diverse exercise modes and offer the very first genomic basis explaining how aerobic exercise may augment, rather than compromise, muscle growth induced by resistance exercise. PMID:27101291

  2. Aerobic exercise augments muscle transcriptome profile of resistance exercise.

    PubMed

    Lundberg, Tommy R; Fernandez-Gonzalo, Rodrigo; Tesch, Per A; Rullman, Eric; Gustafsson, Thomas

    2016-06-01

    Recent reports suggest that aerobic exercise may boost the hypertrophic response to short-term resistance training. This study explored the effects of an acute aerobic exercise bout on the transcriptional response to subsequent resistance exercise. Ten moderately trained men performed ∼45 min cycling on one leg followed by 4 × 7 maximal knee extensions for each leg, 15 min later. Thus, one limb performed aerobic and resistance exercise (AE + RE) while the opposing leg did resistance exercise only (RE). Biopsies were obtained from the vastus lateralis muscle of each leg 3 h after the resistance exercise bout. Using DNA microarray, we analyzed differences [≥1.5-fold, false discovery rate (FDR) ≤10%] in gene expression profiles for the two modes of exercise. There were 176 genes up (127)- or downregulated (49) by AE + RE compared with RE. Among the most significant differentially expressed genes were established markers for muscle growth and oxidative capacity, novel cytokines, transcription factors, and micro-RNAs (miRNAs). The most enriched functional categories were those linked to carbohydrate metabolism and transcriptional regulation. Upstream analysis revealed that vascular endothelial growth factor, cAMP-response element-binding protein, Tet methylcytosine dioxygenase, and mammalian target of rapamycin were regulators highly activated by AE + RE, whereas JnK, NF-κβ, MAPK, and several miRNAs were inhibited. Thus, aerobic exercise alters the skeletal muscle transcriptional signature of resistance exercise to initiate important gene programs promoting both myofiber growth and improved oxidative capacity. These results provide novel insight into human muscle adaptations to diverse exercise modes and offer the very first genomic basis explaining how aerobic exercise may augment, rather than compromise, muscle growth induced by resistance exercise.

  3. Orbital maneuvering engine feed system coupled stability investigation

    NASA Technical Reports Server (NTRS)

    Kahn, D. R.; Schuman, M. D.; Hunting, J. K.; Fertig, K. W.

    1975-01-01

    A digital computer model used to analyze and predict engine feed system coupled instabilities over a frequency range of 10 to 1000 Hz was developed and verified. The analytical approach to modeling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure is described and the governing equations in each of the technical areas are presented. This is followed by a description of the generalized computer model, including formulation of the discrete subprograms and their integration into an overall engineering model structure. The operation and capabilities of the engineering model were verified by comparing the model's theoretical predictions with experimental data from an OMS-type engine with a known feed system/engine chugging history.

  4. A History of Infant Feeding

    PubMed Central

    Stevens, Emily E; Patrick, Thelma E; Pickler, Rita

    2009-01-01

    The historical evolution of infant feeding includes wet nursing, the feeding bottle, and formula use. Before the invention of bottles and formula, wet nursing was the safest and most common alternative to the natural mother's breastmilk. Society's negative view of wet nursing, combined with improvements of the feeding bottle, the availability of animal's milk, and advances in formula development, gradually led to the substitution of artificial feeding for wet nursing. In addition, the advertising and safety of formula products increased their popularity and use among society. Currently, infant formula-feeding is widely practiced in the United States and appears to contribute to the development of several common childhood illnesses, including atopy, diabetes mellitus, and childhood obesity. PMID:20190854

  5. Breast-feeding after transplantation.

    PubMed

    Constantinescu, Serban; Pai, Akshta; Coscia, Lisa A; Davison, John M; Moritz, Michael J; Armenti, Vincent T

    2014-11-01

    Transplantation affords recipients the potential for a full life and, for some, parenthood. Female transplant recipients must continue to take immunosuppression during pregnancy and breast-feeding. This article reviews case and series reports regarding breast-feeding in those taking transplant medications. Avoidance of breast-feeding has been the customary advice because of the potential adverse effects of immunosuppressive exposure on the infant. Subsequent studies have demonstrated that not all medication exposure translates to risk for the infant, that the exposure in utero is greater than via breast milk and that no lingering effects due to breast-feeding have been found to date in infants who were breast-fed while their mothers were taking prednisone, azathioprine, cyclosporine, and/or tacrolimus. Thus, except for those medications where clinical information is inadequate (mycophenolic acid products, sirolimus, everolimus, and belatacept), the recommendation for transplant recipients regarding breast-feeding has evolved into one that is cautiously optimistic.

  6. Technical note: enumeration of mesophilic aerobes in milk: evaluation of standard official protocols and Petrifilm aerobic count plates.

    PubMed

    Freitas, R; Nero, L A; Carvalho, A F

    2009-07-01

    Enumeration of mesophilic aerobes (MA) is the main quality and hygiene parameter for raw and pasteurized milk. High levels of these microorganisms indicate poor conditions in production, storage, and processing of milk, and also the presence of pathogens. Fifteen raw and 15 pasteurized milk samples were submitted for MA enumeration by a conventional plating method (using plate count agar) and Petrifilm Aerobic Count plates (3M, St. Paul, MN), followed by incubation according to 3 official protocols: IDF/ISO (incubation at 30 degrees C for 72 h), American Public Health Association (32 degrees C for 48 h), and Brazilian Ministry of Agriculture (36 degrees C for 48 h). The results were compared by linear regression and ANOVA. Considering the results from conventional methodology, good correlation indices and absence of significant differences between mean counts were observed, independent of type of milk sample (raw or pasteurized) and incubation conditions (IDF/ISO, American Public Health Association, or Ministry of Agriculture). Considering the results from Petrifilm Aerobic Count plates, good correlation indices and absence of significant differences were only observed for raw milk samples. The microbiota of pasteurized milk interfered negatively with the performance of Petrifilm Aerobic Count plates, probably because of the presence of microorganisms that poorly reduce the dye indicator of this system.

  7. Feed Structure For Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor)

    2005-01-01

    A novel feed structure, for an antenna having a resonant electric field structure, comprising a patch element, an integrated circuit attached to the patch element, at least one inner conductor electrically connected to and terminating at the integrated circuit on a first end of the at least one inner conductor, wherein the at least one inner conductor extends through and is not electrically connected to the patch element, and wherein the at least one inner conductor is available for electrical connectivity on a second end of the at least one inner conductor, and an outer conductor electrically connected to and terminating at the patch element on a first end of the outer conductor, wherein the outer conductor is available for electrical connectivity on a second end of the outer conductor, and wherein the outer conductor concentrically surrounds the at least one inner conductor from the second end of the at least one inner conductor available for electrical connectivity to the first end of the outer conductor terminating at the patch element.

  8. Feeding At-Risk Infants and Toddlers.

    ERIC Educational Resources Information Center

    Jaffe, Mata B.

    1989-01-01

    Speech-language pathologists working with infants or toddlers with feeding problems should obtain a feeding history, conduct an assessment of feeding practices, set appropriate preliminary and long-range goals, and investigate treatment options and appropriate feeding techniques. Feeding techniques for premature, neurologically impaired, Down…

  9. Characterization of tapered slot antenna feeds and feed arrays

    NASA Technical Reports Server (NTRS)

    Kim, Young-Sik; Yngvesson, K. Sigfrid

    1990-01-01

    A class of feed antennas and feed antenna arrays used in the focal plane of paraboloid reflectors and exhibiting higher than normal levels of cross-polarized radiation in the diagonal planes is addressed. A model which allows prediction of element gain and aperture efficiency of the feed/reflector system is presented. The predictions are in good agreement with experimental results. Tapered slot antenna (TSA) elements are used an example of an element of this type. It is shown that TSA arrays used in multibeam systems with small beam spacings are competitive in terms of aperture efficiency with other, more standard types of arrays incorporating waveguide type elements.

  10. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater

    PubMed Central

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein

    2013-01-01

    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  11. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process.

  12. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese.

    PubMed

    Graham, Marilynn H; Bush, Jill A; Olvera, Norma; Puyau, Maurice R; Butte, Nancy F

    2014-10-01

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (≥ 95 th body mass index [BMI] percentile) and 16 children who were considered normal weight (<85th BMI percentile) participated in this study. Performance outcomes included test duration (in minutes) and exercise heart rate (HR) (first-stage and peak HR) for each test. Ninety-five percent confidence intervals and independent t-tests were used to assess differences in primary outcomes. Mean PACER test duration was 1.6 ± 0.6 and 3.1 ± 1.3 minutes for children who were obese and normal weight, respectively. Modified PACER duration was higher than 3 minutes for the obese (3.6 ± 0.6 minutes) and normal weight (5.3 ± 1.2 minutes) groups. Children first-stage HR, expressed as a percent of peak HR, was above the predicted anaerobic threshold during the PACER, but below the anaerobic threshold during the MPACER. Relative first-stage HR was not significantly different between groups for the PACER, but they were significantly different between groups for the MPACER. In conclusion, the MPACER was a better alternative than the PACER for assessing aerobic fitness in Hispanic children who were normal weight and obese. When validated, this modified field test could be used to assess aerobic fitness in Hispanic children, particularly those who are overweight or obese. Additionally, the study provides evidence in which physical educators, personal trainers, and others most apt to assess aerobic fitness in children who are obese, should modify tests originally designed for the population who are normal weight.

  13. The effect of a silage inoculant on silage quality, aerobic stability, and meat production on farm scale.

    PubMed

    Acosta Aragón, Y; Jatkauskas, J; Vrotniakienė, V

    2012-01-01

    The effect of inoculation on nutrient content, fermentation, aerobic stability, and beef cattle performance for whole-plant corn silage treated with a commercial product (blend of homo- and heterofermentative lactic acid bacteria, BSM, blend of Enterococcus faecium, Lactobacillus plantarum, and Lactobacillus brevis, DSM numbers 3530, 19457, and 23231, resp.), was compared to a control treatment with no silage additives (CT). The material had a DM of 323 g/kg, crude protein, and water-soluble carbohydrate concentrations of 87.9 and 110.5 g/kg DM, respectively. BSM increased the fermentation rate with a significantly deeper pH (P < 0.01), a significant increase in the total organic acids concentration (P < 0.05), more lactic acid (P < 0.01), and numerically more acetic acid compared to CT. BSM significantly decreased the concentrations of butyric acid (P < 0.01), ethanol, and ammonia-N compared to the CT. BSM-treated silage decreased DM by 3.0 % (P < 0.01) and had a higher digestible energy and a higher metabolizable energy concentration by 2.3 (P < 0.01) and 1.00 % (P < 0.05), respectively, compared to untreated silage. Aerobic stability improved by more than 2 days in BSM silage. The DM intake of silage treated with BSM increased by 6.14 %, and improved weight gain and the feed conversion by 8.0 (P < 0.01) and 3.4%. PMID:23738122

  14. The Effect of a Silage Inoculant on Silage Quality, Aerobic Stability, and Meat Production on Farm Scale

    PubMed Central

    Acosta Aragón, Y.; Jatkauskas, J.; Vrotniakienė, V.

    2012-01-01

    The effect of inoculation on nutrient content, fermentation, aerobic stability, and beef cattle performance for whole-plant corn silage treated with a commercial product (blend of homo- and heterofermentative lactic acid bacteria, BSM, blend of Enterococcus faecium, Lactobacillus plantarum, and Lactobacillus brevis, DSM numbers 3530, 19457, and 23231, resp.), was compared to a control treatment with no silage additives (CT). The material had a DM of 323 g/kg, crude protein, and water-soluble carbohydrate concentrations of 87.9 and 110.5 g/kg DM, respectively. BSM increased the fermentation rate with a significantly deeper pH (P < 0.01), a significant increase in the total organic acids concentration (P < 0.05), more lactic acid (P < 0.01), and numerically more acetic acid compared to CT. BSM significantly decreased the concentrations of butyric acid (P < 0.01), ethanol, and ammonia-N compared to the CT. BSM-treated silage decreased DM by 3.0 % (P < 0.01) and had a higher digestible energy and a higher metabolizable energy concentration by 2.3 (P < 0.01) and 1.00 % (P < 0.05), respectively, compared to untreated silage. Aerobic stability improved by more than 2 days in BSM silage. The DM intake of silage treated with BSM increased by 6.14 %, and improved weight gain and the feed conversion by 8.0 (P < 0.01) and 3.4%. PMID:23738122

  15. Phenotypic and genetic relationships between growth and feed intake curves and feed efficiency and amino acid requirements in the growing pig.

    PubMed

    Saintilan, R; Brossard, L; Vautier, B; Sellier, P; Bidanel, J; van Milgen, J; Gilbert, H

    2015-01-01

    Improvement of feed efficiency in pigs has been achieved essentially by increasing lean growth rate, which resulted in lower feed intake (FI). The objective was to evaluate the impact of strategies for improving feed efficiency on the dynamics of FI and growth in growing pigs to revisit nutrient recommendations and strategies for feed efficiency improvement. In 2010, three BWs, at 35±2, 63±9 and 107±7 kg, and daily FI during this period were recorded in three French test stations on 379 Large White and 327 French Landrace from maternal pig populations and 215 Large White from a sire population. Individual growth and FI model parameters were obtained with the InraPorc® software and individual nutrient requirements were computed. The model parameters were explored according to feed efficiency as measured by residual feed intake (RFI) or feed conversion ratio (FCR). Animals were separated in groups of better feed efficiency (RFI- or FCR-), medium feed efficiency and poor feed efficiency. Second, genetic relationships between feed efficiency and model parameters were estimated. Despite similar average daily gains (ADG) during the test for all RFI groups, RFI- pigs had a lower initial growth rate and a higher final growth rate compared with other pigs. The same initial growth rate was found for all FCR groups, but FCR- pigs had significantly higher final growth rates than other pigs, resulting in significantly different ADG. Dynamic of FI also differed between RFI or FCR groups. The calculated digestible lysine requirements, expressed in g/MJ net energy (NE), showed the same trends for RFI or FCR groups: the average requirements for the 25% most efficient animals were 13% higher than that of the 25% least efficient animals during the whole test, reaching 0.90 to 0.95 g/MJ NE at the beginning of the test, which is slightly greater than usual feed recommendations for growing pigs. Model parameters were moderately heritable (0.30±0.13 to 0.56±0.13), except for the

  16. Prevalence and Factors Associated With Low Aerobic Performance Levels in Adolescents: A Systematic Review.

    PubMed

    de Andrade Gonçalves, Eliane Cristina; Augusto Santos Silva, Diego; Gimenes Nunes, Heloyse Elaine

    2015-01-01

    Low aerobic performance levels have been considered one of the risk factors for premature mortality, regardless of presence of other health problems. The critical analysis of studies on the prevalence of low aerobic performance and associated factors may contribute to the epidemiological knowledge and analysis / discussion of socio-cultural aspects that influence low aerobic performance. The aim of this systematic review was to identify studies on the prevalence of low aerobic performance levels and possible associations between low aerobic performance and demographic/ biological factors, lifestyle and excess body fat in adolescents (11-19 years). The search was conducted in PubMed and SciELO databases using descriptors "aerobic capacity" or "aerobic fitness", "cardiorespiratory capacity" or "cardiorespiratory fitness", "aerobic power" or "aerobic endurance" or "cardiorespiratory endurance" and "adolescents". After the search and exclusion criteria, 33 articles were selected. Factors that were associated with low aerobic performance levels were female gender, low income, low consumption of dairy products and/or bread/cereals, increased consumption of sweetened beverages, insufficient physical activity level, excessive screen time and excess body fat. The heterogeneity of factors related to low aerobic performance levels demonstrates the complexity of this topic and the need for further studies to obtain definitive conclusions.

  17. Treatment of packaging board whitewater in anaerobic/aerobic biokidney.

    PubMed

    Alexandersson, T; Malmqvist, A

    2005-01-01

    Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12 kg COD/m3*d on the anaerobic reactor and 6.7 kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6 COD/m3*d and between 10 and 16 COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44 kg COD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26 kg COD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step

  18. Infant feeding practices and obesity.

    PubMed

    Himes, J H

    1979-08-01

    Selected assumptions regarding associations between artificial feeding and infantile obesity are examined. Although some artificial baby foods (desserts, meats, egg yolks) have considerably greater caloric density than breast milk, a large class of baby foods and most milks and formulas are comparable to breast milk in caloric density. The intake of infant foods seems to be related more to caloric density than volume. Modern day artificial feeding in developed countries tends to produce larger weight gains than breast feeding, although no good data exist to evaluate the composition of these weight gains. Many more data from well planned studies are needed to fully elucidate possible mechanisms of infantile obesity. PMID:458075

  19. Feed analyses and their interpretation.

    PubMed

    Hall, Mary Beth

    2014-11-01

    Compositional analysis is central to determining the nutritional value of feedstuffs for use in ration formulation. The utility of the values and how they should be used depends on how representative the feed subsample is, the nutritional relevance and analytical variability of the assays, and whether an analysis is suitable to be applied to a particular feedstuff. Commercial analyses presently available for carbohydrates, protein, and fats have improved nutritionally pertinent description of feed fractions. Factors affecting interpretation of feed analyses and the nutritional relevance and application of currently available analyses are discussed.

  20. HIV and infant feeding. Breastfeeding.

    PubMed

    1995-02-01

    The human immunodeficiency virus (HIV) can be passed to the infant during pregnancy, childbirth, or breast feeding. Most infants born to HIV positive mothers do not become infected with HIV. The virus is found in breast milk; available research suggests 1 out of 7 breast fed infants of HIV positive mothers will be infected from breast milk. Mothers with recent or advanced HIV infections have more virus in their body fluids, including breast milk; therefore, a baby is more likely to be infected if the mother becomes infected during pregnancy, childbirth, or breast feeding, or if she is ill with acquired immunodeficiency syndrome (AIDS) related illnesses. If a baby is already infected, breast feeding will help the infant stay healthier longer. Health workers should discuss the benefits of breast feeding with all pregnant women. Information about the spread of HIV and sexually transmitted disease (STD) should be given; safe sex (condom use or abstinence) is important during pregnancy and breast feeding. If a woman's status is unknown, she should be encouraged to breast feed. In most communities, counselling and testing are unavailable. Where these services are available, the risk of infection through breast feeding should never be used to put pressure on a woman to take a test. Counselling prepares her for the possibility of being positive and allows her to make an informed choice about breast feeding. In some situations (especially if she herself is ill), a woman who knows she is HIV positive should not breast feed. However, alternatives may be unavailable, and the benefits may outweigh the risks. Health workers should assist the woman in making an informed choice. Issues to be considered include: 1) access to clean water and ability to pay for fuel or electricity to sterilize feeding utensils; 2) support from family or friends; 3) access to animal milk or shops that carry formula milk; and 4) ability to pay for formula or animal milk. To feed an infant for 6 months

  1. Feeding Tips For Your Baby with CHD

    MedlinePlus

    ... with a combination of breast- and bottle-feeding. Breast-Feeding Your Baby If your baby is diagnosed with ... use too. If your baby needs surgery after breast-feeding has been established, you can pump your breasts ...

  2. Intracellular Shuttle: The Lactate Aerobic Metabolism

    PubMed Central

    Cruz, Rogério Santos de Oliveira; de Aguiar, Rafael Alves; Turnes, Tiago; Penteado Dos Santos, Rafael; Fernandes Mendes de Oliveira, Mariana; Caputo, Fabrizio

    2012-01-01

    Lactate is a highly dynamic metabolite that can be used as a fuel by several cells of the human body, particularly during physical exercise. Traditionally, it has been believed that the first step of lactate oxidation occurs in cytosol; however, this idea was recently challenged. A new hypothesis has been presented based on the fact that lactate-to-pyruvate conversion cannot occur in cytosol, because the LDH enzyme characteristics and cytosolic environment do not allow the reaction in this way. Instead, the Intracellular Lactate Shuttle hypothesis states that lactate first enters in mitochondria and only then is metabolized. In several tissues of the human body this idea is well accepted but is quite resistant in skeletal muscle. In this paper, we will present not only the studies which are protagonists in this discussion, but the potential mechanism by which this oxidation occurs and also a link between lactate and mitochondrial proliferation. This new perspective brings some implications and comes to change our understanding of the interaction between the energy systems, because the product of one serves as a substrate for the other. PMID:22593684

  3. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    PubMed

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. PMID:26683700

  4. Effect of fibrolytic enzymes on the fermentation characteristics, aerobic stability, and digestibility of bermudagrass silage.

    PubMed

    Dean, D B; Adesogan, A T; Krueger, N; Littell, R C

    2005-03-01

    The aim of this study was to determine if the nutritive value and aerobic stability of bermudagrass (Cynodon dactylon) silage could be improved by addition of proprietary, exogenous cellulase/hemicellulase enzyme preparations at ensiling. A 5-wk regrowth of Tifton 85 bermudagrass was conserved without treatment (control) or after treatment with exogenous fibrolytic enzymes including Promote NET (Pr), Biocellulase X-20 (X20), Biocellulase A-20 (A20), and Enzyme CT. The respective enzymes were applied at half the recommended rate, the recommended rate, or twice the recommended rate corresponding to 0.65, 1.3, and 2.6 g/kg of DM, 7.3, 14.5, and 29 mg/kg of DM, at 7.3, 14.4, and 29 mg/kg of DM, and 89, 178, and 356 mg/kg of DM, for Pr, X20, A20, and CT, respectively. The enzymes were sprayed on the bermudagrass at ensiling (not added at feeding as suggested by the manufacturers) to test the objectives of the study. Six 1-kg replicates of chopped (5 cm) forage were ensiled for 145 d in 2.8-L mini silos. Three silos per treatment were used for chemical analysis and 3 for aerobic stability monitoring. The silage juice was analyzed for organic acids, pH, water-soluble carbohydrates (WSC), ammonia-N, and soluble N. Freeze-dried samples were analyzed for crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF). In vitro digestibility of DM (IVDMD), NDF (IVNDFD), and ADF (IVADFD) were determined after digesting the silages in buffered rumen fluid for 6 or 48 h in 2 ANKOM(II) Daisy Incubators. Compared with the other silages, those treated with Pr had lower DM losses, and lower pH and ammonia-N concentration than control silages. Residual WSC concentration was greater in Pr- and CT-treated silages than in control silages and greater in Pr-treated silages than CT-treated silages. Compared with control silages, NDF concentration was lower in silages treated with Pr, X20, and CT, and ADF concentration was lower in silages treated with Pr, X20, and A20

  5. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    SciTech Connect

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  6. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    PubMed

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  7. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    PubMed

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application

  8. Rotary powder feed through apparatus

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2001-01-01

    A device for increasing the uniformity of solids within a solids fabrication system, such as a direct light fabrication (DLF) system in which gas entrained powders are passed through the focal point of a moving high-power light which fuses the particles in the powder to a surface being built up in layers. The invention provides a feed through interface wherein gas entrained powders input from stationary input lines are coupled to a rotating head of the fabrication system. The invention eliminates the need to provide additional slack in the feed lines to accommodate head rotation, and therefore reduces feed line bending movements which induce non-uniform feeding of gas entrained powder to a rotating head.

  9. Modeling Treated LAW Feed Evaporation

    SciTech Connect

    DANIEL, WE

    2004-07-08

    This task examines the potential of the treated waste feed blends to form sodium-aluminum silicate precipitates when evaporated using the zeolite database. To investigate the behavior of the blended pretreated waste feed, an OLI Environmental Simulation Package Software (OLI ESP) model of the treated low activity waste (LAW) evaporator was built. A range of waste feed compositions representative of Envelope A, B, and C were then fed into the OLI model to predict various physical and chemical properties of the evaporator concentrates. Additional runs with treated LAW evaporator were performed to compare chemical and physical property model predictions and experimental results for small-scale radioactive tests of the treated feed evaporation process.

  10. Feeding cotton products to cattle.

    PubMed

    Rogers, Glenn M; Poore, Matthew H; Paschal, Joe C

    2002-07-01

    Despite the potential for gossypol toxicosis (particularly in pre-ruminants) and risk factors associated with impaired fertility in bulls, cottonseed products offer a safe alternative feed for cattle producers when fed at recommended levels. Beef producers seeking to lower production costs should consider using cotton byproducts in their feeding programs. If carefully incorporated, cotton byproduct feeds can reduce feed costs while maintaining or increasing the level of cattle performance. Cottonseed meal will remain a standard protein supplement for beef cattle throughout the country. Whole cottonseed has much potential for Southern producers near cotton gins if it is purchased in a timely fashion and fed according to recommendations. Cotton gin trash, cottonseed hulls, and cotton textile mill waste also have potential economic benefits, especially to producers located near cotton and cottonseed processing facilities. PMID:12235661

  11. Aerobic methane emissions from stinkweed (Thlaspi arvense) capsules

    PubMed Central

    Qaderi, Mirwais M; Reid, David M

    2014-01-01

    Aerobic methane (CH4) emission from plant vegetative parts has been confirmed by many studies. However, the origin of aerobic CH4 from plants and its emission from reproductive parts have not been well documented. We determined the effects of developmental stages (early, mid, late) and incubation conditions (darkness, dim light, bright light) on CH4 emissions from stinkweed (Thlaspi arvense) capsules. We found that CH4 emissions from capsules varied with developmental stage and incubation light. Methane emission was highest for the late harvested capsules and for those incubated under lower (dim) light condition. Our results also showed a significant negative correlation between CH4 emission and capsule moisture content. We conclude that CH4 emissions vary with capsule age and diurnal light environment. PMID:25482797

  12. Effect of media characteristics on performance of upflow aerobic biofilters.

    PubMed

    Srinikethan, G; Shrihari, S; Pradeepan, V S

    2008-01-01

    Laboratory studies were conducted to assess the influence of media related factors such as porosity, pore size, particle size and specific surface area on the performance of upflow aerobic biofilters (ABFs). Three simple models of 8 litre capacity upflow submerged ABFs packed with support media of size 40 mm, 20 mm and 10 mm respectively were installed. The hydraulic retention time (HRT) was maintained as 12 hours. The study was carried out for a period of 90 days. The reactor performance indicated that the aerobic biofilter (ABF-3), associated with media of lowest porosity, pore size, particle size and highest specific surface area, demonstrating the highest BOD and COD removal efficiency of 93.32% and 85.01% respectively.

  13. Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions.

    PubMed

    Hwang, Jae-Hoon; Kim, Hyun-Chul; Choi, Jeong-A; Abou-Shanab, R A I; Dempsey, Brian A; Regan, John M; Kim, Jung Rae; Song, Hocheol; Nam, In-Hyun; Kim, Su-Nam; Lee, Woojung; Park, Donghee; Kim, Yongje; Choi, Jaeyoung; Ji, Min-Kyu; Jung, Woosik; Jeon, Byong-Hun

    2014-01-01

    Eukaryotic algae and cyanobacteria produce hydrogen under anaerobic and limited aerobic conditions. Here we show that novel microalgal strains (Chlorella vulgaris YSL01 and YSL16) upregulate the expression of the hydrogenase gene (HYDA) and simultaneously produce hydrogen through photosynthesis, using CO2 as the sole source of carbon under aerobic conditions with continuous illumination. We employ dissolved oxygen regimes that represent natural aquatic conditions for microalgae. The experimental expression of HYDA and the specific activity of hydrogenase demonstrate that C. vulgaris YSL01 and YSL16 enzymatically produce hydrogen, even under atmospheric conditions, which was previously considered infeasible. Photoautotrophic H2 production has important implications for assessing ecological and algae-based photolysis.

  14. Degradation of 1,3-dichloropropene in aerobic soils

    SciTech Connect

    Batzer, F.; Balcer, J.L.; Wolt, J.D.

    1995-12-31

    The degradation of the soil fumigant, 1,3-dichloropropene (1,3-D), was investigated to determine its rate of degradation and the identify of metabolites in aerobic soils. Studies were conducted in the dark at 25{degrees}C with uniformly {sup 14}C-labeled 1,3-D at a concentration of approximately 100 ug/g on three soils: Wahiawa silty clay, Catlin silt loam and Fuquay loamy sand. Aerobic soil half-lives for 1,3-D were 1.8, 11.5 and 52.5 days on the Wahiawa silty clay, Catlin silt loam, and Fuquay loamy sand, respectively. Degradation of 1,3-D resulted in the formation of cis- and trans-3-chloroallyl alcohol, cis- and trans-3-chloroacrylic acid, numerous minor carboxylic acid metabolites, and carbon dioxide. In addition, there was also extensive incorporation of {sup 14}C labeled material into the soil organic matter of both soils.

  15. Anamet anaerobic-aerobic treatment of concentrated wastewaters

    SciTech Connect

    Frostell, B.

    1982-01-01

    The process, consisting of a closed anaerobic tank reactor with side mounted agitator and electric heaters to control temperature at 35-37 degrees, an external solids separator for recycle of anaerobic sludge, an open aerobic tank reactor with an air sparger at the bottom, and a conical settling clarifier to separate and recycle aerobic sludge, decreased the COD from 3-89 to 0.10-18 and the BOD5 from 1.4-26 to 0.03-0.30 g O2/L in dairy, vegetable cannery, beet sugar, wheat starch, mixed pulp and paper, citric acid, and rum distillery wastewater. Recoveries of CH4-containing gas produced by the process were 69-107% of theory. Total excess sludge production was only 0.05 kg/kg COD added or 0.06 kg/kg COD removed.

  16. Aerobic biotransformation and mineralization of 2,4,6-trinitrotoluene

    SciTech Connect

    Bae, B.H.; Autenrieth, R.L.; Bonner, J.S.

    1995-12-31

    Respirometric mineralization studies of 2,4,6-trinitrotoluene (TNT) were conducted with microorganisms isolated from a site contaminated with munitions waste in Illinois. Nine aerobic bacterial species were isolated under a carbon- and nitrogen-limited condition and tentatively identified as: one Pseudomonas species; one Enterobacter species; and seven Alcaligenes species. Experiments were performed using each of the nine organisms individually and with a consortium of all nine bacterial species. The aerobic microorganisms were cultured in a sterile nutrient solution with glucose and 20 mg/L TNT. Mineralization was determined using uniformly ring-labeled {sup 14}C-TNT in a respirometer that trapped the evolved CO{sub 2}. Biodegradation behavior was characterized based on oxygen consumption, distribution of {sup 14}C activity, and high-performance liquid chromatography (HPLC) analysis of TNT and its transformation products.

  17. A preliminary, randomized trial of aerobic exercise for alcohol dependence.

    PubMed

    Brown, Richard A; Abrantes, Ana M; Minami, Haruka; Read, Jennifer P; Marcus, Bess H; Jakicic, John M; Strong, David R; Dubreuil, Mary Ella; Gordon, Alan A; Ramsey, Susan E; Kahler, Christopher W; Stuart, Gregory L

    2014-07-01

    Interventions targeting physical activity may be valuable as an adjunct to alcohol treatment, but have been relatively untested. In the current study, alcohol dependent, physically sedentary patients were randomized to: a 12-week moderate-intensity, group aerobic exercise intervention (AE; n=25) or a brief advice to exercise intervention (BA-E; n=23). Results showed that individuals in AE reported significantly fewer drinking and heavy drinking days, relative to BA-E during treatment. Furthermore adherence to AE strengthened the beneficial effect of intervention on alcohol use outcomes. While high levels of moderate-intensity exercise appeared to facilitate alcohol recovery regardless of intervention arm, attending the group-based AE intervention seemed to further enhance the positive effects of exercise on alcohol use. Study findings indicate that a moderate intensity, group aerobic exercise intervention is an efficacious adjunct to alcohol treatment. Improving adherence to the intervention may enhance its beneficial effects on alcohol use.

  18. [Aerobic bacterial flora from the digestive tract of the common vampire bat, Desmodus rotundus (Chiroptera: Phyllostomidae)].

    PubMed

    Chaverri, Gloriana

    2006-09-01

    This study addresses the composition of microbial flora in the vampire bat (Desmodus rotundus) primarily because all available data are outdated, and because of the economical significance of this bat species. Twenty-one bats were collected and their aerobic bacteria documented separately for stomach and intestine. Bacteria were identified through the Analytical Profile Index (API), and results analyzed with the APILAB software. A total of thirty bacterial species were isolated from sixteen females and five males. The most common species were Escherichia coli and Staphylococcus aureus, although other bacteria, such as Acinetobacterjohnsonii, Enterobacter sakazakii, Staphylococcus chromogenes, S. hyicus and S. xylosus were also common. The number of species found in the stomach and intestine was significantly different, and the intestine presented a higher diversity compared to the stomach. This has previously been found in other mammals and it is attributed to a reduction of acidity. Most of the species found in this study are considered normal components of the digestive tract of mammals, although other bacteria common in the skin of mammals and from aquatic environments were found. Bacteria from the skin may invade the vampire's stomach and/or intestine when the bat has contact with its prey, and may suggest that the vampire's feeding habit facilitates the invasion of other microbes not common in its digestive tract. The fact that bacteria from aquatic environments were also found suggests that D. rotundus, as previously found by other researchers, drinks free water when available, and water may be another source of microbial invasion.

  19. Performance of anaerobic membrane bioreactor during digestion and thickening of aerobic membrane bioreactor excess sludge.

    PubMed

    Hafuka, Akira; Mimura, Kazuhisa; Ding, Qing; Yamamura, Hiroshi; Satoh, Hisashi; Watanabe, Yoshimasa

    2016-10-01

    In this study, we evaluated the performance of an anaerobic membrane bioreactor in terms of digestion and thickening of excess sludge from an aerobic membrane bioreactor. A digestion reactor equipped with an external polytetrafluoroethylene tubular microfiltration membrane module was operated in semi-batch mode. Solids were concentrated by repeated membrane filtration and sludge feeding, and their concentration reached 25,400mg/L after 92d. A high chemical oxygen demand (COD) removal efficiency, i.e., 98%, was achieved during operation. A hydraulic retention time of 34d and a pulse organic loading rate of 2200mg-COD/(L-reactor) gave a biogas production rate and biogas yield of 1.33L/(reactor d) and 0.08L/g-CODinput, respectively. The external membrane unit worked well without membrane cleaning for 90d. The transmembrane pressure reached 25kPa and the filtration flux decreased by 80% because of membrane fouling after operation for 90d. PMID:27394993

  20. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated ‘‘Pyrene Group 2’’ were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil. PMID:21369833

  1. Kinetics of organic removal in fixed-bed aerobic biological reactor.

    PubMed

    Borghei, S M; Sharbatmaleki, M; Pourrezaie, P; Borghei, G

    2008-03-01

    The process kinetics of a lab-scale upflow aerobic immobilized biomass (UAIB) reactor using simulated sugar-manufacturing wastewater as feed was investigated. The experimental unit consisted of a 22l reactor filled with high porosity pumice stone. The UAIB reactor was tested under different organic loads and different hydraulic retention times (HRT) and the substrate loading removal rate was compared with prediction of Stover-Kincannon model, second-order model and the first order substrate removal model. After obtaining steady-state conditions, organic loading rate was increased from 750 to 4500 g COD/m(3) day to resemble wastewater from sugar production lines, and hydraulic retention time was decreased from 1 to 0.5 days, stepwise. Nine different operational conditions were applied changing these two parameters in a certain program. As a result of the calculations, Stover-Kincannon model and second-order model known as "Grau" model were found to be the most appropriate models for this reactor. Stover-Kincannon model and Grau second-order model gave high correlation coefficients, which were 99.7% and 99.4%, respectively. Therefore, these models could be used in predicting the behavior or design of the UAIB reactors.

  2. Manipulating Respiratory Levels in Escherichia coli for Aerobic Formation of Reduced Chemical Products

    PubMed Central

    Zhu, Jiangfeng; Sanchez, Ailen; Bennett, George N.; San, Ka-Yiu

    2011-01-01

    Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approach based on genetic regulation may better serve this purpose. With excess oxygen supply to the culture, we efficiently manipulated Escherichia coli cell respiration by adding different amount of coenzyme Q1 to strains lacking the ubiCA genes, which encode two critical enzymes for ubiquinone synthesis. As a proof-of-concept, the metabolic effect of the ubiCA gene knockout and coenzyme Q1 supplementation were characterized, and the metabolic profiles of the experimental strains showed clear correlations with coenzyme Q1 concentrations. Further proof-of-principle experiments were performed to illustrate that the approach can be used to optimize cell respiration for the production of chemicals of interest such as ethanol. This study showed that controlled respiration through genetic manipulation can be exploited to allow much larger operating windows for reduced product formation even under fully aerobic conditions. PMID:22001430

  3. Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females.

    PubMed

    Myers, Terrence R; Schneider, Matthew G; Schmale, Matthew S; Hazell, Tom J

    2015-06-01

    This study aimed to determine whether a time-effective whole-body aerobic resistance training circuit using only body weight exercises is as effective in improving aerobic and anaerobic fitness, as well as muscular strength and endurance as a traditional concurrent style training combining resistance and endurance training. Thirty-four sedentary females (20.9 ± 3.2 years; 167.6 ± 6.4 cm; 65.0 ± 15.2 kg) were assigned to either: (a) a combined resistance and aerobic exercise group (COMBINED; n = 17) or (b) a circuit-based whole-body aerobic resistance training circuit group (CIRCUIT; n = 17). Training was 3 days per week for 5 weeks. Pre- and post-training measures included a (Equation is included in full-text article.)test, anaerobic Wingate cycling test, and muscular strength and endurance tests. After training, (Equation is included in full-text article.)improved with CIRCUIT by 11% (p = 0.015), with no change for COMBINED (p = 0.375). Both relative peak power output and relative average power output improved with CIRCUIT by 5% (p = 0.027) and 3.2% (p = 0.006), respectively, and with COMBINED by 5.3% (p = 0.025) and 5.1% (p = 0.003). Chest and hamstrings 1 repetition maximum (1RM) improved with CIRCUIT by 20.6% (p = 0.011) and 8.3% (p = 0.022) and with COMBINED by 35.6% (p < 0.001) and 10.2% (p = 0.004), respectively. Only the COMBINED group improved back (11.7%; p = 0.017) and quadriceps (9.6%; p = 0.006) 1RM. The COMBINED group performed more repetitions at 60% of their pretraining 1RM for back (10.0%; p = 0.006) and hamstring (23.3%; p = 0.056) vs. CIRCUIT. Our results suggest that a circuit-based whole-body aerobic resistance training program can elicit a greater cardiorespiratory response and similar muscular strength gains with less time commitment compared with a traditional resistance training program combined with aerobic exercise.

  4. Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system.

    PubMed

    Fernando, Eustace; Keshavarz, Taj; Kyazze, Godfrey; Fonseka, Keerthi

    2016-01-01

    The scalability of any microbial fuel cell (MFC)-based system is of vital importance if it is to be utilized for potential field applications. In this study, an integrated MFC-aerobic bioreactor system was investigated for its scalability with the purpose of treating a simulated dye wastewater and industrial wastewaters originated from textile dyebaths and leather tanning. The influent containing real wastewater was fed into the reactor in continuous mode at ambient temperature. Three MFC units were integrated to act in unison as a single module for wastewater treatment and a continuously stirred aerobic bioreactor operating downstream to the MFC module was installed in order to ensure more complete degradation of colouring agents found in the wastewater. Total colour removal in the final effluent exceeded 90% in all experiments where both synthetic (AO-7 containing) and real wastewater were used as the influent feed. The chemical oxygen demand reduction also exceeded 80% in all experiments under the same conditions. The MFC modules connected in parallel configuration allowed obtaining higher current densities than that can be obtained from a single MFC unit. The maximum current density of the MFC stack reached 1150 mA m(-2) when connected in a parallel configuration. The outcome of this work implies that suitably up-scaled MFC-aerobic integrated bioprocesses could be used for colour industry wastewater treatment under industrially relevant conditions with possible prospects of bioelectricity generation. PMID:26212183

  5. Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system.

    PubMed

    Fernando, Eustace; Keshavarz, Taj; Kyazze, Godfrey; Fonseka, Keerthi

    2016-01-01

    The scalability of any microbial fuel cell (MFC)-based system is of vital importance if it is to be utilized for potential field applications. In this study, an integrated MFC-aerobic bioreactor system was investigated for its scalability with the purpose of treating a simulated dye wastewater and industrial wastewaters originated from textile dyebaths and leather tanning. The influent containing real wastewater was fed into the reactor in continuous mode at ambient temperature. Three MFC units were integrated to act in unison as a single module for wastewater treatment and a continuously stirred aerobic bioreactor operating downstream to the MFC module was installed in order to ensure more complete degradation of colouring agents found in the wastewater. Total colour removal in the final effluent exceeded 90% in all experiments where both synthetic (AO-7 containing) and real wastewater were used as the influent feed. The chemical oxygen demand reduction also exceeded 80% in all experiments under the same conditions. The MFC modules connected in parallel configuration allowed obtaining higher current densities than that can be obtained from a single MFC unit. The maximum current density of the MFC stack reached 1150 mA m(-2) when connected in a parallel configuration. The outcome of this work implies that suitably up-scaled MFC-aerobic integrated bioprocesses could be used for colour industry wastewater treatment under industrially relevant conditions with possible prospects of bioelectricity generation.

  6. Social theory and infant feeding

    PubMed Central

    2011-01-01

    Clinicians, public health advisors, nutritionists and others have been attempting to increase breastfeeding rates for the last few decades, with varying degrees of success. We need social science researchers to help us understand the role of infant feeding in the family. Some researchers in the area of food and nutrition have found Pierre Bourdieu's theoretical framework helpful. In this editorial, I introduce some of Bourdieu's ideas and suggest researchers interested in infant feeding should consider testing these theories. PMID:21676218

  7. Infant feeding practices in Malaysia.

    PubMed

    Chen, S T

    1978-12-01

    Retrospective nutritional data on 100 children, aged 6 months to 2 1/2 years, who were admitted to the University Hospital in Kuala Lumpur, Malaysia, was obtained by interviewing the mothers of the children. Analysis of the data revealed that 1) only 49% of the children were breast-fed as infants; 2) 50% of the mothers who did breast-feed discontinued breast-feeding before the children were 3 months old; and 3) the weaning diet of at least 1/3 of the children was inadequate. 18% of the children were Malays, 49% were Chinese, and 33% were Indian. The proportion of breast-fed children was highest among the Malays and lowest among the Chinese. Mothers with higher incomes tended to stop breast-feeding earlier than mothers with lower incomes. 67% of the women said they stopped breast-feeding due to inadequate lactation. Most of the children received supplementary foods at relatively early ages. 50% of the infants received starchy foods by the time they were 3 1/2 months old, and 50% received fruit or fruit juice by the time they were 3 1/2 months old. Vegetable products, meat, fish, and eggs were not added to the diet until the children were considerably older. Recommendations, based on the study findings, were 1) hospitals should discontinue the practice of deferring breast-feeding initiation for 24 hours after delivery; 2) mothers should be encouraged to breast-feed fully; and 3) health personnel should discourage the widespread use of costly precooked cereals for supplementary feeding. Tables depicted 1) the frequency distribution of the 100 children by income and by milk feeding patterns according to ethnic affiliation and 2) the cost of serving precooked cereals as compared to the cost of serving home cooked meals. PMID:755160

  8. Storage and feeding of coal

    NASA Technical Reports Server (NTRS)

    Jenike, A. W.; Carson, J. W.

    1977-01-01

    Reliable feeding of coal from storage bins to process requires the knowledge of the behavior of coal during flow. The study of the flow of bulk solids was undertaken in the 1950's and led to the development of flow ability testing equipment and of the Mass Flow concept of design for reliable flow. The theory has since been expanded to two-phase, solids-gas system, and has found world wide application in the design of storage and feeding systems.

  9. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  10. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  11. Aerobic Methane Oxidation in Alaskan Lakes Along a Latitudinal Transect

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K. C.; Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Anthony, P.; Thalasso, F.

    2013-12-01

    Karla Martinez-Cruz* **, Armando Sepulveda-Jauregui*, Katey M. Walter Anthony*, Peter Anthony*, and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Methane (CH4) is the third most important greenhouse gas in the atmosphere, after carbon dioxide and water vapor. Boreal lakes play an important role in the current global warming by contributing as much as 6% of global atmospheric CH4 sources annually. On the other hand, aerobic methane oxidation (methanotrophy) in lake water is a fundamental process in global methane cycling that reduces the amount of CH4 emissions to the atmosphere. Several environmental factors affect aerobic methane oxidation in the water column both directly and indirectly, including concentration of CH4 and O2, temperature and carbon budgets of lakes. We analyzed the potential of aerobic methane oxidation (PMO) rates in incubations of water collected from 30 Alaskan lakes along a north-south transect during winter and summer 2011. Our findings showed an effect of CH4 and O2 concentrations, temperature and yedoma thawing permafrost on PMO activity in the lake water. The highest PMO rates were observed in summer by lakes situated on thawing yedoma permafrost, most of them located in the interior of Alaska. We also estimated that 60-80% of all CH4 produced in Alaskan lakes could be taken up by methanotrophs in the lake water column, showing the significant influence of aerobic methane oxidation of boreal lakes to the global CH4 budget.

  12. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new. PMID:27415771

  13. Comparison of two aerobic field tests in young tennis players.

    PubMed

    Fargeas-Gluck, Marie-Agnès; Léger, Luc A

    2012-11-01

    This study compares the maximal responses of a new aerobic tennis field test, the NAVTEN to a known aerobic field test, often used with young tennis players, that is, the continuous multistage 20-m shuttle run test (20-m SRT). The NAVTEN is an intermittent (1-minute/1-minute) multistage test with side-to-side displacements and ball hitting. Ten young elite tennis players aged 12.9 ± 0.3 (mean ± SD) randomly performed both tests and were continuously monitored for heart rate (HR) and oxygen uptake (V[Combining Dot Above]O2) using the Vmax ST (Sensormedics). The 20-m SRT and NAVTEN show similar HRpeak (202 ± 6.1 vs. 208 ± 9.5, respectively) and V[Combining Dot Above]O2peak (54.2 ± 5.9 vs. 54.9 ± 6.0 ml·kg·min). Pearson correlations between both tests were 0.88 and 0.92 for V[Combining Dot Above]O2peak and maximal speed, respectively. The NAVTEN yielded V[Combining Dot Above]O2peak values that are typical for active subjects of that age and are similar to the 20-m SRT supporting its use to measure aerobic fitness of young tennis players in specific and entertaining field conditions. The fact that two-thirds of the tennis players achieved a different ranking (±1 rank) with the NAVTEN and the 20-m SRT suggests that the NAVTEN may be more specific than the 20-m SRT to assess aerobic fitness of tennis players. From a practical point of view, the NAVTEN test is more specific and pedagogical for young tennis players even though both tests yield similar maximal values.

  14. The interaction effects of aerobic exercise training and vitamin D supplementation on plasma lipid profiles and insulin resistance in ovariectomized rats

    PubMed Central

    Babaei, Parvin; Damirchi, Arsalan; Hoseini, Rastegar

    2015-01-01

    Purpose The purpose of this study was to determine the interaction effects of aerobic exercise training and vitamin D supplementation on indices of obesity and plasma lipid profiles in ovariectomized (OVX) rats. Methods Forty female Wistar rats were divided into 5 groups: aerobic training (3 days/week for 8 weeks; AT; n = 8), aerobic training and vitamin D supplementation (OVX + AT + Vit D; n = 8), vitamin D supplementation (OVX + Vit D; n = 8), ovariectomized control (OVX + C, n = 8) and SHAM (n = 8). After blood sampling, visceral fat was taken from the abdominal cavity and weighed immediately. Data was statistically analyzed by One-way ANOVA and Repeated measure ANOVA tests with a 0.05 significance level. Results Body weight, visceral fat, BMI and food intake decreased significantly in OVX + AT + Vit D (P < 0.001); whereas these variables increased significantly in OVX + C (P < 0.001) and SHAM (P < 0.023) groups. At the end of two-months of follow-up, we observed significant differences in TC, TG, HDL-C, LDL-C, glucose, insulin, and HOMA-IR in all groups. Conclusion It seems that aerobic training with vitamin D, due to the involvement of muscle mass and exposure to dynamic pressure on the bones and muscles, increased energy expenditure, stimulated insulin exudation and glucose homeostasis, decreased insulin resistance and improved the lipid profile in ovariectomized rats. PMID:26526941

  15. Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti Mosquito

    PubMed Central

    Gonçalves, Renata L. S.; Machado, Ana Carolina L.; Paiva-Silva, Gabriela O.; Sorgine, Marcos H. F.; Momoli, Marisa M.; Oliveira, Jose Henrique M.; Vannier-Santos, Marcos A.; Galina, Antonio; Oliveira, Pedro L.; Oliveira, Marcus F.

    2009-01-01

    Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding. PMID:19924237

  16. Feeding the Monster

    NASA Astrophysics Data System (ADS)

    2005-10-01

    Near-infrared images of the active galaxy NGC 1097, obtained with the NACO adaptive optics instrument on ESO's Very Large Telescope, disclose with unprecedented detail a complex central network of filamentary structure spiralling down to the centre of the galaxy. These observations provide astronomers with new insights on how super-massive black holes lurking inside galaxies get fed. "This is possibly the first time that a detailed view of the channelling process of matter, from the main part of the galaxy down to the very end in the nucleus is released," says Almudena Prieto (Max-Planck Institute, Heidelberg, Germany), lead author of the paper describing these results. Located at a distance of about 45 million light-years in the southern constellation Fornax (the Furnace), NGC 1097 is a relatively bright, barred spiral galaxy seen face-on. At magnitude 9.5, and thus just 25 times fainter than the faintest object that can be seen with the unaided eye, it appears in small telescopes as a bright, circular disc. NGC 1097 is a very moderate example of an Active Galactic Nucleus (AGN), whose emission is thought to arise from matter (gas and stars) falling into oblivion in a central black hole. However, NGC 1097 possesses a comparatively faint nucleus only, and the black hole in its centre must be on a very strict "diet": only a small amount of gas and stars is apparently being swallowed by the black hole at any given moment. Astronomers have been trying to understand for a long time how the matter is "gulped" down towards the black hole. Watching directly the feeding process requires very high spatial resolution at the centre of galaxies. This can be achieved by means of interferometry as was done with the VLTI MIDI instrument on the central parts of another AGN, NGC 1068 (see ESO PR 17/03), or with adaptive optics [1]. Thus, astronomers [2] obtained images of NGC 1097 with the adaptive optics NACO instrument attached to Yepun, the fourth Unit Telescope of ESO's VLT

  17. Motor control of fly feeding.

    PubMed

    McKellar, Claire E

    2016-06-01

    Following considerable progress on the molecular and cellular basis of taste perception in fly sensory neurons, the time is now ripe to explore how taste information, integrated with hunger and satiety, undergo a sensorimotor transformation to lead to the motor actions of feeding behavior. I examine what is known of feeding circuitry in adult flies from more than 250 years of work in larger flies and from newer work in Drosophila. I review the anatomy of the proboscis, its muscles and their functions (where known), its motor neurons, interneurons known to receive taste inputs, interneurons that diverge from taste circuitry to provide information to other circuits, interneurons from other circuits that converge on feeding circuits, proprioceptors that influence the motor control of feeding, and sites of integration of hunger and satiety on feeding circuits. In spite of the several neuron types now known, a connected pathway from taste inputs to feeding motor outputs has yet to be found. We are on the threshold of an era where these individual components will be assembled into circuits, revealing how nervous system architecture leads to the control of behavior. PMID:27309215

  18. Electric motor assisted bicycle as an aerobic exercise machine.

    PubMed

    Nagata, T; Okada, S; Makikawa, M

    2012-01-01

    The goal of this study is to maintain a continuous level of exercise intensity around the aerobic threshold (AT) during riding on an electric motor assisted bicycle using a new control system of electrical motor assistance which uses the efficient pedaling rate of popular bicycles. Five male subjects participated in the experiment, and the oxygen uptake was measured during cycling exercise using this new pedaling rate control system of electrical motor assistance, which could maintain the pedaling rate within a specific range, similar to that in previous type of electrically assisted bicycles. Results showed that this new pedaling rate control system at 65 rpm ensured continuous aerobic exercise intensity around the AT in two subjects, and this intensity level was higher than that observed in previous type. However, certain subjects were unable to maintain the expected exercise intensity because of their particular cycling preferences such as the pedaling rate. It is necessary to adjust the specific pedaling rate range of the electrical motor assist control according to the preferred pedaling rate, so that this system becomes applicable to anyone who want continuous aerobic exercise.

  19. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.

    PubMed

    Bamforth, C W; Quayle, J R

    1978-10-01

    1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate. 2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme. 3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions. 4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured. 5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase. PMID:718372

  20. Microbial fuel cells with highly active aerobic biocathodes

    NASA Astrophysics Data System (ADS)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  1. Microbial fuel cells with highly active aerobic biocathodes

    NASA Astrophysics Data System (ADS)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  2. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose.

  3. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  4. Echinacea Supplementation: Does it Really Improve Aerobic Fitness?

    PubMed Central

    Baumann, Cory W.; Kwak, Dongmin

    2016-01-01

    [Purpose] Echinacea is an herbal supplement used by endurance athletes for its performance boosting properties. It is thought that Echinacea improves the blood’s oxygen carrying capacity by increasing production of erythropoietin (EPO), a glycoprotein that regulates red blood cell formation. Subsequently, these changes would lead to an overall improvement in maximal oxygen uptake (VO2max) and running economy (RE), two markers of aerobic fitness. The purpose of this review is to briefly discuss the physiological variables associated with distance running performance and how these variables are influenced by Echinacea supplementation. [Methods] To determine Echinacea’s ergogenic potential, human studies that used Echinacea in conjunction to analyzing the blood’s oxygen carrying capacity and/or aerobic fitness were assessed. [Results] Taken together, the majority of the published literature does not support the claim that Echinacea is a beneficial ergogenic aid. With the exception of one study, several independent groups have reported Echinacea supplementation does not increase EPO production, blood markers of oxygen transport, VO2max or RE in healthy untrained or trained subjects. [Conclusion] To date, the published literature does not support the use of Echinacea as an ergogenic aid to improve aerobic fitness in healthy untrained or trained subjects. PMID:27757381

  5. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution.

    PubMed

    Mattes, Timothy E; Alexander, Anne K; Coleman, Nicholas V

    2010-07-01

    Extensive use and inadequate disposal of chloroethenes have led to prevalent groundwater contamination worldwide. The occurrence of the lesser chlorinated ethenes [i.e. vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE)] in groundwater is primarily a consequence of incomplete anaerobic reductive dechlorination of the more highly chlorinated ethenes (tetrachloroethene and trichloroethene). VC and cDCE are toxic and VC is a known human carcinogen. Therefore, their presence in groundwater is undesirable. In situ cleanup of VC- and cDCE-contaminated groundwater via oxidation by aerobic microorganisms is an attractive and potentially cost-effective alternative to physical and chemical approaches. Of particular interest are aerobic bacteria that use VC or cDCE as growth substrates (known as the VC- and cDCE-assimilating bacteria). Bacteria that grow on VC are readily isolated from contaminated and uncontaminated environments, suggesting that they are widespread and influential in aerobic natural attenuation of VC. In contrast, only one cDCE-assimilating strain has been isolated, suggesting that their environmental occurrence is rare. In this review, we will summarize the current knowledge of the physiology, biodegradation pathways, genetics, ecology, and evolution of VC- and cDCE-assimilating bacteria. Techniques (e.g. PCR, proteomics, and compound-specific isotope analysis) that aim to determine the presence, numbers, and activity of these bacteria in the environment will also be discussed.

  6. Obesity promotes aerobic glycolysis in prostate cancer cells.

    PubMed

    Cavazos, David A; deGraffenried, Matthew J; Apte, Shruti A; Bowers, Laura W; Whelan, Kaitlin A; deGraffenried, Linda A

    2014-01-01

    Obesity is the leading preventable comorbidity associated with increased prostate cancer-related recurrence and mortality. Epidemiological and clinical studies indicate that a body mass index >30 is associated with increased oxidative DNA damage within the prostate gland and increased prostate cancer-related mortality. Here we provide evidence that obesity promotes worse clinical outcome through induction of metabolic abnormalities known to promote genotoxic stress. We have previously reported that blood serum derived from obese mice may enhance the proliferative and invasive potential of human prostate cancer cell lines ex vivo. Here we show that a 1-h exposure of LNCaP or PacMetUT1 prostate cancer cell lines and nonmalignant RWPE-1 prostate epithelial cells to 2% serum from obese mice induces markers of aerobic glycolysis relative to those exposed to serum from nonobese mice. This metabolic change was correlated with accumulation of reactive oxygen species (ROS) and increased frequency of DNA double-strand breaks. Interestingly, N-tert-Butylhydroxylamine, an antioxidant, significantly suppressed markers of aerobic glycolysis in the cells exposed to the blood serum of obese mice, suggesting that ROS contributes to a metabolic shift toward aerobic glycolysis. Here we describe obesity-induced changes in key metabolic markers that impact prostate cancer cell progression and explore the role of antioxidants in ameliorating these effects. PMID:25264717

  7. Considerations in prescribing preflight aerobic exercise for astronauts.

    PubMed

    Frey, M A

    1987-10-01

    Many human responses to the weightless environment have been documented from actual spaceflights. These include physiological effects on the nervous system, cardiovascular system and fluid balance, and the musculoskeletal system, as well as psychological effects. Simulations on Earth have added to our knowledge about the physiology of weightlessness. Early data on orthostatic intolerance after real and simulated spaceflight led some scientists to discourage a high level of aerobic fitness for astronauts. They believed it was detrimental to orthostatic tolerance on return to Earth. However, most of the data available today do not support this contention. Furthermore, aerobic fitness is beneficial to cardiovascular function and mental performance. Therefore, it may be important in performing extra-vehicular activities during flight. Some astronauts claim exercise enhances their feeling of well-being and self image. And, although the cardiovascular system and exercise performance may recover more slowly after flight to preflight levels when fitness level prior to flight is high, the musculoskeletal system may recover more rapidly. Research is needed to determine optimal levels of aerobic training for performing tasks in flight, maintaining health and well-being during flight, and assuring satisfactory recovery on return to Earth. PMID:3314852

  8. Aerobic fitness and orthostatic tolerance: Evidence against an association

    NASA Technical Reports Server (NTRS)

    Ebert, Thomas J.

    1994-01-01

    This presentation will focus on only one side of the debate as to whether high levels of aerobic fitness have a deleterious effect on tolerance to gravitational stress. This issue was raised in the early 1970's as a result of two research publications. The first work investigated the carotid sinus baroreflex of humans with an airtight chamber that surrounded the head and neck. The steady-state reflex changes in blood pressure that were recorded 3 minutes after application of the head and neck stimuli, were attenuated in an athletic group compared to a sedentary group of volunteers. A second report in the NASA literature indicated that five endurance-trained runners were less tolerant to LBNP than five nonrunners. These early research findings have stimulated a considerable amount of interest that has lead to a growing number of research efforts seeking an association between aerobic fitness and orthostatic tolerance in humans. I will briefly review some of the more pertinent published research information which suggests that there is no relationship between aerobic fitness and orthostatic tolerance in humans.

  9. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.

    PubMed

    Gangadharan Puthiya Veetil, Prajeesh; Vijaya Nadaraja, Anupama; Bhasi, Arya; Khan, Sudheer; Bhaskaran, Krishnakumar

    2012-07-01

    Triclosan (2, 4, 4'-trichloro-2'-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1 g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10 mg/L level triclosan, 95 ± 1.2% was degraded in 5 days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1 g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).

  10. Electric motor assisted bicycle as an aerobic exercise machine.

    PubMed

    Nagata, T; Okada, S; Makikawa, M

    2012-01-01

    The goal of this study is to maintain a continuous level of exercise intensity around the aerobic threshold (AT) during riding on an electric motor assisted bicycle using a new control system of electrical motor assistance which uses the efficient pedaling rate of popular bicycles. Five male subjects participated in the experiment, and the oxygen uptake was measured during cycling exercise using this new pedaling rate control system of electrical motor assistance, which could maintain the pedaling rate within a specific range, similar to that in previous type of electrically assisted bicycles. Results showed that this new pedaling rate control system at 65 rpm ensured continuous aerobic exercise intensity around the AT in two subjects, and this intensity level was higher than that observed in previous type. However, certain subjects were unable to maintain the expected exercise intensity because of their particular cycling preferences such as the pedaling rate. It is necessary to adjust the specific pedaling rate range of the electrical motor assist control according to the preferred pedaling rate, so that this system becomes applicable to anyone who want continuous aerobic exercise. PMID:23366293

  11. Adaptation of Aerobically Growing Pseudomonas aeruginosa to Copper Starvation▿ †

    PubMed Central

    Frangipani, Emanuela; Slaveykova, Vera I.; Reimmann, Cornelia; Haas, Dieter

    2008-01-01

    Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA′-′lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases. PMID:18708503

  12. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    PubMed Central

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840

  13. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation.

    PubMed

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  14. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  15. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

    PubMed Central

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  16. Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation.

    PubMed

    Frangipani, Emanuela; Slaveykova, Vera I; Reimmann, Cornelia; Haas, Dieter

    2008-10-01

    Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases. PMID:18708503

  17. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  18. Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes

    PubMed Central

    Allen, Heather K.; Looft, Torey; Bayles, Darrell O.; Humphrey, Samuel; Levine, Uri Y.; Alt, David; Stanton, Thaddeus B.

    2011-01-01

    ABSTRACT Antibiotics are a cost-effective tool for improving feed efficiency and preventing disease in agricultural animals, but the full scope of their collateral effects is not understood. Antibiotics have been shown to mediate gene transfer by inducing prophages in certain bacterial strains; therefore, one collateral effect could be prophage induction in the gut microbiome at large. Here we used metagenomics to evaluate the effect of two antibiotics in feed (carbadox and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) on swine intestinal phage metagenomes (viromes). We also monitored the bacterial communities using 16S rRNA gene sequencing. ASP250, but not carbadox, caused significant population shifts in both the phage and bacterial communities. Antibiotic resistance genes, such as multidrug resistance efflux pumps, were identified in the viromes, but in-feed antibiotics caused no significant changes in their abundance. The abundance of phage integrase-encoding genes was significantly increased in the viromes of medicated swine over that in the viromes of nonmedicated swine, demonstrating the induction of prophages with antibiotic treatment. Phage-bacterium population dynamics were also examined. We observed a decrease in the relative abundance of Streptococcus bacteria (prey) when Streptococcus phages (predators) were abundant, supporting the “kill-the-winner” ecological model of population dynamics in the swine fecal microbiome. The data show that gut ecosystem dynamics are influenced by phages and that prophage induction is a collateral effect of in-feed antibiotics. PMID:22128350

  19. Aerobic exercise training increases circulating insulin-like growth factor binding protein-1 concentration, but does not attenuate the reduction in circulating insulin-like growth factor binding protein-1 after a high-fat meal.

    PubMed

    Prior, Steven J; Jenkins, Nathan T; Brandauer, Josef; Weiss, Edward P; Hagberg, James M

    2012-03-01

    Insulin-like growth factor binding protein-1 (IGFBP-1) has metabolic effects throughout the body, and its expression is regulated in part by insulin. Circulating IGFBP-1 predicts development of cardiometabolic diseases in longitudinal studies, and low IGFBP-1 concentrations are associated with insulin resistance and consumption of a high-fat diet. Because of the favorable metabolic effects of regular aerobic exercise, we hypothesized that aerobic exercise training would increase plasma IGFBP-1 concentrations and attenuate the reduction in IGFBP-1 after a high-fat meal. Ten overweight (body mass index = 28.7 ± 0.9 kg/m(2)), older (61 ± 2 years) men and women underwent high-fat feeding and oral glucose tolerance tests at baseline and after 6 months of aerobic exercise training. In response to aerobic exercise training, subjects increased cardiorespiratory fitness by 13% (P < .05) and insulin sensitivity index by 28% (P < .05). Basal plasma concentrations of IGFBP-1 increased by 41% after aerobic exercise training (P < .05). The insulin response to an oral glucose tolerance test was a significant predictor of fasting plasma IGFBP-1 concentrations at baseline and after exercise training (P = .02). In response to the high-fat meal at baseline, plasma IGFBP-1 concentrations decreased by 58% (P < .001); a 61% decrease to similar postprandial concentrations was observed after exercise training (P < .001). Plasma insulin response to the high-fat meal was inversely associated with postprandial IGFBP-1 concentrations at baseline and after exercise training (P = .06 and P < .05, respectively). Although aerobic exercise training did not attenuate the response to a high-fat meal, the increase in IGFBP-1 concentrations after exercise training may be one mechanism by which exercise reduces risk for cardiometabolic diseases in older adults.

  20. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions.

    PubMed

    Kristensen, N B; Sloth, K H; Højberg, O; Spliid, N H; Jensen, C; Thøgersen, R

    2010-08-01

    The present study aimed to investigate the effects of 2 corn silage inoculation strategies (homofermentative vs. heterofermentative inoculation) under field conditions and to monitor responses in silage variables over the feeding season from January to August. Thirty-nine commercial dairy farms participated in the study. Farms were randomly assigned to 1 of 3 treatments: control (nonactive carrier; Chr. Hansen A/S, Hørsholm, Denmark), Lactisil (inoculation with 1 x 10(5)Lactobacillus pentosus and 2.5 x 10(4)Pediococcus pentosaceus per gram of fresh matter; Chr. Hansen A/S), and Lalsil Fresh (inoculation with 3 x 10(5)Lactobacillus buchneri NCIMB 40788 per gram of fresh matter; Lallemand Animal Nutrition, Blagnac, France). Inoculation with Lactisil had no effects on fermentation variables and aerobic stability. On the contrary, inoculation with Lalsil Fresh doubled the aerobic stability: 37, 38, and 80+/-8h for control, Lactisil, and Lalsil Fresh, respectively. The effect of Lalsil Fresh on aerobic stability tended to differ between sampling times, indicating a reduced difference between treatments in samples collected in April. Lalsil Fresh inoculation increased silage pH and contents of acetic acid, propionic acid, propanol, propyl acetate, 2-butanol, propylene glycol, ammonia, and free AA. The contents and ratios of DL-lactic acid, L-lactic acid relative to DL-lactic acid, free glucose, and DL-lactic acid relative to acetic acid decreased with Lalsil Fresh inoculation. Lalsil Fresh inoculation increased the silage counts of total lactic acid bacteria and reduced yeast counts. The Fusarium toxins deoxynivalenol, nivalenol, and zearalenone were detected in all silages at all collections, but the contents were not affected by ensiling time or by inoculation treatment. The effect of inoculation treatments on milk production was assessed by collecting test-day results from the involved farms and comparing the actual milk production with predicted milk production

  1. Hot Stuff: Lability of Forest Floor DOM to Aerobic Degradation

    NASA Astrophysics Data System (ADS)

    Bourbonniere, R. A.; Creed, I. F.; Kapila, R.; Collins, J.

    2004-05-01

    The hypothesis that the lability of DOM to aerobic microbial degradation to CO2 is related to its age and character is tested in an incubation study conducted using an assemblage of soil bacteria in their natural state. Extracts (WF) of leaf and forest floor material characterized by different degrees of degradation: green leaves, fresh fallen leaves, litter (one year weathering), fibric matter, hemic matter and peat were used in this study. The working hypothesis is that these extracts represent a chronosequence of degradation and DOM extracted from them might also represent a similar lability sequence. As well aliquots of the WF extracts were processed to remove DOM fractions. Thus a fulvic acid (FA) fraction was made by precipitating and removing humic acid, and a hydrophilic fraction (HPI) by removing hydrophobics from the FA using XAD-8 resin. Incubations were carried out on all three DOM solutions from each extract to determine if there were differences in lability among the fractions. When comparing the WF solutions for CO2 production, the green leaves, litter, fibric and hemic extracts showed approximately the same CO2 yield, on an equal C basis, and the fresh fallen leaves and peat produced less. For five of the six extracts the respective WF and HPI solutions yielded nearly the same quantity of CO2 per mg C suggesting that the HPI component contributes almost all the lability. Furthermore the magnitudes of the C-normalized CO2 yield for these solutions are similar to that for glucose, which fractionates as HPI. For the same five extracts the FA solution yielded lower quantities of CO2, on an equal C basis, than WF and HPI suggesting that the hydrophobic content of the extracts may inhibit aerobic degradation. The peat extract solutions yielded a different CO2 production distribution with the HPI only slightly higher than the FA which in turn was much greater than WF. The material from which this extract was made is much older and contains significant HA

  2. Aerobic training in persons who have recovered from juvenile dermatomyositis.

    PubMed

    Riisager, M; Mathiesen, P R; Vissing, J; Preisler, N; Ørngreen, M C

    2013-12-01

    A recent study has shown that 36 persons who had recovered from juvenile dermatomyositis (JDM) have on average an 18% decrease in maximal oxygen uptake. The objective of this study was to investigate the effect of a 12-week aerobic training program in this group, and assess whether aerobic training can normalize aerobic capacity to the expected level for age and gender. The patients participating in the study, one male and nine females (16-42 years of age), were in remission from JDM, defined as no clinical or biochemical evidence of disease activity and no medical treatment for 1 year. The patients had a median disease duration of 3.4 years (1.4-10.3), a median treatment duration of 2.4 years (0.4-9.3) and a median duration of remission of 7.0 years (1.2-30.0). Patients trained at home on a cycle ergometer for 12 weeks at a heart rate interval corresponding to 65% of their maximal oxygen uptake (VO(2max)). VO(2max) and maximal workload (W(max)) were determined before and after the 12-week training period through an incremental cycling test to exhaustion. The patients served as their own controls. Eight patients with JDM in remission completed the 12-week exercise program; one patient completed 9 weeks out of the 12-week program and one dropped out of the study. Training increased VO(2max) and W(max) by 26% and 30% (P < 0.001). Creatine kinase (CK) levels were normal pre-training and did not change with training, reflecting no muscle damage. We also found that at a given workload, heart rate was lowered significantly after the 12-week training period, indicating an improvement in cardiovascular fitness. This study shows that 12 weeks of moderate-intensity aerobic training is an effective and safe method to increase oxidative capacity and fitness in persons who have recovered from JDM. The results indicate that the low oxidative capacity in JDM patients in remission is reversible and can be improved. Thus, we recommend frequent aerobic training to be incorporated

  3. Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females.

    PubMed

    McRae, Gill; Payne, Alexa; Zelt, Jason G E; Scribbans, Trisha D; Jung, Mary E; Little, Jonathan P; Gurd, Brendon J

    2012-12-01

    The current study evaluated changes in aerobic fitness and muscular endurance following endurance training and very low volume, whole-body, high-intensity, interval-style aerobic-resistance training. Subjects' enjoyment and implementation intentions were also examined prior to and following training. Subjects (22 recreationally active females (20.3 ± 1.4 years)) completed 4 weeks of exercise training 4 days per week consisting of either 30 min of endurance treadmill training (~85% maximal heart rate; n = 7) or whole-body aerobic-resistance training involving one set of 8 × 20 s of a single exercise (burpees, jumping jacks, mountain climbers, or squat thrusts) separated by 10 s of rest per session (n = 7). A third group was assigned to a nontraining control group (n = 8). Following training, [Formula: see text]O(2peak) was increased in both the endurance (~7%) and interval (~8%) groups (p < 0.05), whereas muscle endurance was improved (p < 0.05) in the interval group (leg extensions, +40%; chest presses, +207%; sit-ups, +64%; push-ups, +135%; and back extensions, +75%). Perceived enjoyment of, and intentions to engage in, very low volume, high-intensity, whole-body interval exercise were both increased following training (p < 0.05). No significant changes were observed for any variable in the control (nontraining) group. These data demonstrate that although improvements in cardiovascular fitness are induced by both endurance and extremely low volume interval-style training, whole-body aerobic-resistance training imparted addition benefit in the form of improved skeletal muscle endurance.

  4. Evaluation of the petrifilm aerobic count plate for enumeration of aerobic marine bacteria from seawater and Caulerpa lentillifera.

    PubMed

    Kudaka, Jun; Horii, Toru; Tamanaha, Koji; Itokazu, Kiyomasa; Nakamura, Masaji; Taira, Katsuya; Nidaira, Minoru; Okano, Sho; Kitahara, Akio

    2010-08-01

    The enumeration and evaluation of the activity of marine bacteria are important in the food industry. However, detection of marine bacteria in seawater or seafood has not been easy. The Petrifilm aerobic count plate (ACP) is a ready-to-use alternative to the traditional enumeration media used for bacteria associated with food. The purpose of this study was to evaluate the usefulness of a simple detection and enumeration method utilizing the Petrifilm ACP for enumeration of aerobic marine bacteria from seawater and an edible seaweed, Caulerpa lentillifera. The efficiency of enumeration of total aerobic marine bacteria on Petrifilm ACP was compared with that using the spread plate method on marine agar with 80 seawater and 64 C. lentillifera samples. With sterile seawater as the diluent, a close correlation was observed between the method utilizing Petrifilm ACP and that utilizing the conventional marine agar (r=0.98 for seawater and 0.91 for C. lentillifera). The Petrifilm ACP method was simpler and less time-consuming than the conventional method. These results indicate that Petrifilm ACP is a suitable alternative to conventional marine agar for enumeration of marine microorganisms in seawater and C. lentillifera samples.

  5. β-alanine Supplementation Fails to Increase Peak Aerobic Power or Ventilatory Threshold in Aerobically Trained Males.

    PubMed

    Greer, Beau Kjerulf; Katalinas, Matthew E; Shaholli, Danielle M; Gallo, Paul M

    2016-01-01

    The purpose of the present study was to determine the effect of 30 days of β-alanine supplementation on peak aerobic power and ventilatory threshold (VT) in aerobically fit males. Fourteen males (28.8 ± 9.8 yrs) were assigned to either a β-alanine (SUPP) or placebo (PLAC) group; groups were matched for VT as it was the primary outcome measure. β-alanine supplementation consisted of 3 g/day for 7 days, and 6 g/day for the remaining 23 days. Before and after the supplementation period, subjects performed a continuous, graded cycle ergometry test to determine VO2 peak and VT. Metabolic data were analyzed using a 2 × 2 ANOVA with repeated measures. Thirty days of β-alanine supplementation (SUPP) did not increase VO2 peak (4.05 ± 0.6 vs. 4.14 ± 0.6 L/min) as compared to the placebo (PLAC) group (3.88 ± 0.2 vs. 3.97 ± 0.2 L/min) (p > .05). VT did not significantly improve in either the SUPP (3.21 ± 0.5 vs. 3.33 ± 0.5 L/min) or PLAC (3.19 ± 0.1 vs. 3.20 ± 0.1 L/min) group (p > .05). In conclusion, 30 days of β-alanine supplementation had no effect on VO2 peak or VT in aerobically trained athletes.

  6. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    PubMed Central

    Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio

    2006-01-01

    Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in

  7. How the pilidium larva feeds

    PubMed Central

    2013-01-01

    Introduction The nemertean pilidium is a long-lived feeding larva unique to the life cycle of a single monophyletic group, the Pilidiophora, which is characterized by this innovation. That the pilidium feeds on small planktonic unicells seems clear; how it does so is unknown and not readily inferred, because it shares little morphological similarity with other planktotrophic larvae. Results Using high-speed video of trapped lab-reared pilidia of Micrura alaskensis, we documented a multi-stage feeding mechanism. First, the external ciliation of the pilidium creates a swimming and feeding current which carries suspended prey past the primary ciliated band spanning the posterior margins of the larval body. Next, the larva detects prey that pass within reach, then conducts rapid and coordinated deformations of the larval body to re-direct passing cells and surrounding water into a vestibular space between the lappets, isolated from external currents but not quite inside the larva. Once a prey cell is thus captured, internal ciliary bands arranged within this vestibule prevent prey escape. Finally, captured cells are transported by currents within a buccal funnel toward the stomach entrance. Remarkably, we observed that the prey of choice – various cultured cryptomonads – attempt to escape their fate. Conclusions The feeding mechanism deployed by the pilidium larva coordinates local control of cilia-driven water transport with sensorimotor behavior, in a manner clearly distinct from any other well-studied larval feeding mechanisms. We hypothesize that the pilidium’s feeding strategy may be adapted to counter escape responses such as those deployed by cryptomonads, and speculate that similar needs may underlie convergences among disparate planktotrophic larval forms. PMID:23927417

  8. Assessing Enhanced Anaerobic and Intrinsic Aerobic Biodegradation of Trichloroethene

    NASA Astrophysics Data System (ADS)

    Sorenson, K. S.; Ely, R. L.; Martin, J. P.; Alvarez-Cohen, L.; Kauffman, M. E.

    2001-12-01

    Biodegradation of chloroethenes can proceed either anaerobically or aerobically; however, the techniques for monitoring the two pathways are quite different. At the Idaho National Engineering and Environmental Laboratory's Test Area North (TAN, a combination of anaerobic and aerobic biodegradation of trichloroethene (TCE) is being employed for restoration of a large plume of contaminated groundwater. During stimulation of anaerobic biodegradation of TCE through lactate addition, several assessment tools have proven effective for various objectives. Monitoring TCE and its lesser chlorinated degradation products provides a straightforward assessment tool for the occurrence of degradation. It does not, however, provide information regarding the potential for reductive dechlorination, nor progress from less suitable to more suitable conditions. A technique for obtaining this information is monitoring redox-sensitive geochemical parameters such as dissolved iron, sulfate, methane, and oxidation-reduction potential. This approach was demonstrated by the strong correlation of steps in the reductive dechlorination pathway to redox conditions at the TAN site. Yet another tool is required to determine adequacy of conditions for efficient dechlorination. Dechlorination efficiency appears to be dependent upon the predominant electron donor utilization (or fermentation) process occurring at any given time, an observation consistent with thermodynamic considerations. Thus, monitoring of added electron donor and intermediate product concentrations can help determine an efficient operations strategy. One final tool demonstrated at the TAN site was monitoring stable carbon isotope ratios. As TCE was dechlorinated, a clear fractionation occurred from cis-dichloroethene to vinyl chloride, and from vinyl chloride to ethene. This fractionation provides a clear signature of reductive dechlorination. Assessment of aerobic biodegradation of chloroethenes at TAN is more challenging because

  9. Assessing aerobic natural attenuation of trichloroethene at four DOE sites

    SciTech Connect

    Koelsch, Michael C.; Starr, Robert C.; Sorenson, Jr., Kent S.

    2005-03-01

    A 3-year Department of Energy Environmental Science Management Program (EMSP) project is currently investigating natural attenuation of trichloroethane (TCE) in aerobic groundwater. This presentation summarizes the results of a screening process to identify TCE plumes at DOE facilities that are suitable for assessing the rate of TCE cometabolism under aerobic conditions. In order to estimate aerobic degradation rates, plumes had to meet the following criteria: TCE must be present in aerobic groundwater, a conservative co-contaminant must be present and have approximately the same source as TCE, and the groundwater velocity must be known. A total of 127 TCE plumes were considered across 24 DOE sites. The four sites retained for the assessment were: (1) Brookhaven National Laboratory, OU III; (2) Paducah Gaseous Diffusion Plant, Northwest Plume; (3) Rocky Flats Environmental Technology Site, Industrialized Area--Southwest Plume and 903 Pad South Plume; and (4) Savannah River Site, A/M Area Plume. For each of these sites, a co-contaminant derived from the same source area as TCE was used as a nonbiodegrading tracer. The tracer determined the extent to which concentration decreases in the plume can be accounted for solely by abiotic processes such as dispersion and dilution. Any concentration decreases not accounted for by these processes must be explained by some other natural attenuation mechanism. Thus, ''half-lives'' presented herein are in addition to attenuation that occurs due to hydrologic mechanisms. This ''tracer-corrected method'' has previously been used at the DOE's Idaho National Engineering and Environmental Laboratory in conjunction with other techniques to document the occurrence of intrinsic aerobic cometabolism. Application of this method to other DOE sites is the first step to determining whether this might be a significant natural attenuation mechanism on a broader scale. Application of the tracer-corrected method to data from the Brookhaven

  10. Feed Your Head: Neurodevelopmental Control of Feeding and Metabolism

    PubMed Central

    Lee, Daniel A.; Blackshaw, Seth

    2014-01-01

    During critical periods of development early in life, excessive or scarce nutritional environments can disrupt the development of central feeding and metabolic neural circuitry, leading to obesity and metabolic disorders in adulthood. A better understanding of the genetic networks that control the development of feeding and metabolic neural circuits, along with knowledge of how and where dietary signals disrupt this process, can serve as the basis for future therapies aimed at reversing the public health crisis that is now building as a result of the global obesity epidemic. This review of animal and human studies highlights recent insights into the molecular mechanisms that regulate the development of central feeding circuitries, the mechanisms by which gestational and early postnatal nutritional status affects this process, and approaches aimed at counteracting the deleterious effects of early over- and underfeeding. PMID:24274739

  11. The effects of composting approaches on the emissions of anthropogenic volatile organic compounds: A comparison between vermicomposting and general aerobic composting.

    PubMed

    Bhattacharya, S S; Kim, Ki-Hyun; Ullah, Md Ahsan; Goswami, L; Sahariah, B; Bhattacharyya, P; Cho, Sung-Back; Hwang, Ok-Hwa

    2016-01-01

    Emission patterns of 13 VOCs were investigated in three types of vermicomposting systems (Eisenia fetida, Metaphire posthuma, and Lampito mauritii) in reference to a traditional aerobic composting system by feeding the systems with mixtures of three materials (coal ash (CA), municipal solid waste (MSW), and cow dung (CD)). On an average, the emission rates of aromatic VOCs (benzene, toluene, xylenes, and styrene) were two to three times higher than all other groups (aldehyde, ketones, esters, and alcohols) from all three types of feeding mixtures. However, the emission rates of aromatic VOCs were generally reduced over time in both aerobic composting and vermicomposting systems. Such reduction in the emission rates was most prominent from Eisenia-treated CD + MSW (1:1), Lampito-treated CD + CA (1:1), and Metaphire-treated CD. The results clearly indicated that the increase in humified organic C fractions (humic acid and fulvic acid) and the microbial biomass present during the biocomposting processes greatly reduced the emissions of VOCs. Hence, the study recommends that vermicomposting of coal ash and municipal solid waste in combination with cow dung in 1:1 ratio is an environmentally gainful proposition. PMID:26589098

  12. An index for quantifying the aerobic reactivity of municipal solid wastes and derived waste products.

    PubMed

    Scaglia, Barbara; Adani, Fabrizio

    2008-05-01

    The organic matter contained in municipal solid waste (MSW) and in the MSW fractions obtained by mechanical separation has strong environmental impact when the waste is used as landfill. This is partly due to the biological activity that occurs under anaerobic conditions. Negative effects on the environment include unpleasant odors, biogas, leachate and biomass self-heating. Measuring the biological reactivity of waste with the help of indicators is an important tool to prevent waste impact. The aim of this study was to develop an index capable of describing the aerobic reactivity of waste, using both biological and chemical indicators. To develop this index, 71 MSW and MSW-product samples, including biologically treated MSW and mechanically separated MSW fractions, were analyzed. Fifty of the 71 samples analyzed represented MSWs and their derived products collected from a number of Italian waste plants and sites. The remaining 21 were MSW samples collected at different times during 8 different full-scale aerobic biological processes in four treatment plants used to reduce the biological reactivity of wastes. Five of these processes used the entire (unsorted) MSW, while the remaining three used the organic fraction of the MSW obtained by mechanical pre-treatment (waste sieving). Respirometric activity (Dynamic Respiration Index, DRI) and eluates characterization (chemical oxygen demand--COD, and 5 days biological oxygen demand--BOD5) were used as indicators of waste strength, as they had previously been reported to be indirect measures of waste impact on landfill. Summarizing all studied indicators, Principal Component Analysis (PCA) was used to develop the Putrescibility Index (Ip). The results revealed Ip index of 204+/-33 (mean+/-standard deviation) and 159+/-14 for the organic fraction of MSW and MSW untreated waste respectively, and of 106+/-16 and 101+/-22 for the corresponding biologically treated waste. PMID:18280541

  13. Host stress hormones alter vector feeding preferences, success, and productivity.

    PubMed

    Gervasi, Stephanie S; Burkett-Cadena, Nathan; Burgan, Sarah C; Schrey, Aaron W; Hassan, Hassan K; Unnasch, Thomas R; Martin, Lynn B

    2016-08-17

    Stress hormones might represent a key link between individual-level infection outcome, population-level parasite transmission, and zoonotic disease risk. Although the effects of stress on immunity are well known, stress hormones could also affect host-vector interactions via modification of host behaviours or vector-feeding patterns and subsequent reproductive success. Here, we experimentally manipulated songbird stress hormones and examined subsequent feeding preferences, feeding success, and productivity of mosquito vectors in addition to defensive behaviours of hosts. Despite being more defensive, birds with elevated stress hormone concentrations were approximately twice as likely to be fed on by mosquitoes compared to control birds. Moreover, stress hormones altered the relationship between the timing of laying and clutch size in blood-fed mosquitoes. Our results suggest that host stress could affect the transmission dynamics of vector-borne parasites via multiple pathways. PMID:27512147

  14. Four GABAergic interneurons impose feeding restraint in Drosophila

    PubMed Central

    Pool, Allan-Hermann; Kvello, Pal; Mann, Kevin; Cheung, Samantha K.; Gordon, Michael D.; Wang, Liming; Scott, Kristin

    2014-01-01

    Summary Feeding is dynamically regulated by the palatability of the food source and the physiological needs of the animal. How consumption is controlled by external sensory cues and internal metabolic state remains under intense investigation. Here, we identify four GABAergic interneurons in the Drosophila brain that establish a central feeding threshold which is required to inhibit consumption. Inactivation of these cells results in indiscriminate and excessive intake of all compounds, independent of taste quality or nutritional state. Conversely, acute activation of these neurons suppresses consumption of water and nutrients. The output from these neurons is required to gate activity in motor neurons that control meal initiation and consumption. Thus, our study reveals a new layer of inhibitory control in feeding circuits that is required to suppress a latent state of unrestricted and non-selective consumption. PMID:24991960

  15. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children.

    PubMed

    Chaddock-Heyman, Laura; Erickson, Kirk I; Chappell, Michael A; Johnson, Curtis L; Kienzler, Caitlin; Knecht, Anya; Drollette, Eric S; Raine, Lauren B; Scudder, Mark R; Kao, Shih-Chun; Hillman, Charles H; Kramer, Arthur F

    2016-08-01

    The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL) perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development. PMID:27419884

  16. Coplanar waveguide feeds for phased array antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1991-01-01

    The design and performance is presented of the following Coplanar Waveguides (CPW) microwave distribution networks for linear as well as circularly polarized microstrip patches and dipole arrays: (1) CPW/Microstrip Line feed; (2) CPW/Balanced Stripline feed; (3) CPW/Slotline feed; (4) Grounded CPW/Balanced coplanar stripline feed; and (5) CPW/Slot coupled feed. Typical measured radiation patterns are presented, and their relative advantages and disadvantages are compared.

  17. Apparatus for continuous feed material melting

    DOEpatents

    Surma, Jeffrey E.; Perez, Jr., Joseph M.

    1998-01-01

    The apparatus of the present invention is a melter housing having a pretreat chamber heated with a feed material heater that is partially isolated from a melter chamber. The method of the present invention has the steps of introducing feed material into a pretreat chamber and heating the feed material to a softening temperature of the feed material, and passing the pretreated feed material to a melter chamber.

  18. Beer, Breast Feeding, and Folklore

    PubMed Central

    MENNELLA, JULIE A.; BEAUCHAMP, GARY K.

    2009-01-01

    Beer consumption by nursing women altered the sensory qualities of their milk and the behavior of their infants during breast-feeding in the short term. The infants consumed significantly less milk during the 4-hr testing sessions in which their mothers drank alcoholic beer compared to when the mothers drank nonalcoholic beer; this decrease in milk intake was not due to a decrease in the number of times the babies fed. Although the infants consumed less of the alcohol-flavored milk, the mothers believed their infants had ingested enough milk, reported that they experienced a letdown during nursing, and felt they had milk remaining in their breasts at the end of the majority of feedings. Moreover, the mothers terminated the feeds the same percentage of time on both testing days. The mechanism by which the consumption of alcoholic beer by lactating women decreases milk intake by their nurslings remains to be determined. PMID:8293892

  19. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway. PMID:26314017

  20. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.