Science.gov

Sample records for aerobic energy production

  1. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.

    PubMed

    Ahammad, S Z; Bereslawski, J L; Dolfing, J; Mota, C; Graham, D W

    2013-07-01

    Personal care product (PCP) industry liquid wastes contain shampoo residues, which are usually treated by aerobic activated sludge (AS). Unfortunately, AS is expensive for PCP wastes because of high aeration and energy demands, whereas potentially energy-positive anaerobic designs cannot meet effluent targets. Therefore, combined anaerobic-aerobic systems may be the best solution. Seven treatment systems were assessed in terms of energy and treatment performance for shampoo wastes, including one aerobic, three anaerobic (HUASB, AHR and AnCSTR) and three anaerobic-aerobic reactor designs. COD removals were highest in the HUASB-aerobic (87.9 ± 0.4%) and AHR-aerobic (86.8±0.5%) systems, which used 69.2% and 62.5% less energy than aerobic AS. However, actual methane production rates were low relative to theoretical in the UASB and AHR units (∼10% methane/COD removed) compared with the AnCSTR unit (∼70%). Anaerobic-aerobic sequence reactors show promise for treating shampoo wastes, but optimal designs depend upon whether methane production or COD removal is most important to operations.

  2. Pim-2 Modulates Aerobic Glycolysis and Energy Production during the Development of Colorectal Tumors.

    PubMed

    Zhang, Xue-hui; Yu, Hong-liang; Wang, Fu-jing; Han, Yong-long; Yang, Wei-liang

    2015-01-01

    Tumor cells have higher rates of glucose uptake and aerobic glycolysis to meet energy demands for proliferation and metastasis. The characteristics of increased glucose uptake, accompanied with aerobic glycolysis, has been exploited for the diagnosis of cancers. Although much progress has been made, the mechanisms regulating tumor aerobic glycolysis and energy production are still not fully understood. Here, we demonstrate that Pim-2 is required for glycolysis and energy production in colorectal tumor cells. Our results show that Pim-2 is highly expressed in colorectal tumor cells, and may be induced by nutrient stimulation. Activation of Pim-2 in colorectal cells led to increase glucose utilization and aerobic glycolysis, as well as energy production. While knockdown of Pim-2 decreased energy production in colorectal tumor cells and increased their susceptibility to apoptosis. Moreover, the effects of Pim-2 kinase on aerobic glycolysis seem to be partly dependent on mTORC1 signaling, because inhibition of mTORC1 activity reversed the aerobic glycolysis mediated by Pim-2. Our findings suggest that Pim-2-mediated aerobic glycolysis is critical for monitoring Warburg effect in colorectal tumor cells, highlighting Pim-2 as a potential metabolic target for colorectal tumor therapy.

  3. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  4. Aerobic Production and Utilization of Lactate Satisfy Increased Energy Demands Upon Neuronal Activation in Hippocampal Slices and Provide Neuroprotection Against Oxidative Stress

    PubMed Central

    Schurr, Avital; Gozal, Evelyne

    2012-01-01

    Ever since it was shown for the first time that lactate can support neuronal function in vitro as a sole oxidative energy substrate, investigators in the field of neuroenergetics have been debating the role, if any, of this glycolytic product in cerebral energy metabolism. Our experiments employed the rat hippocampal slice preparation with electrophysiological and biochemical methodologies. The data generated by these experiments (a) support the hypothesis that lactate, not pyruvate, is the end-product of cerebral aerobic glycolysis; (b) indicate that lactate plays a major and crucial role in affording neural tissue to respond adequately to glutamate excitation and to recover unscathed post-excitation; (c) suggest that neural tissue activation is accompanied by aerobic lactate and NADH production, the latter being produced when the former is converted to pyruvate by mitochondrial lactate dehydrogenase (mLDH); (d) imply that NADH can be utilized as an endogenous scavenger of reactive oxygen species (ROS) to provide neuroprotection against ROS-induced neuronal damage. PMID:22275901

  5. Protons and pleomorphs: aerobic hydrogen production in Azotobacters.

    PubMed

    Noar, Jesse D; Bruno-Bárcena, José M

    2016-02-01

    As obligate aerobic soil organisms, the ability of Azotobacter species to fix nitrogen is unusual given that the nitrogenase complex requires a reduced cellular environment. Molecular hydrogen is an unavoidable byproduct of the reduction of dinitrogen; at least one molecule of H2 is produced for each molecule of N2 fixed. This could be considered a fault in nitrogenase efficiency, essentially a waste of energy and reducing equivalents. Wild-type Azotobacter captures this hydrogen and oxidizes it with its membrane-bound uptake hydrogenase complex. Strains lacking an active hydrogenase complex have been investigated for their hydrogen production capacities. What is the role of H2 in the energy metabolism of nitrogen-fixing Azotobacter? Is hydrogen production involved in Azotobacter species' protection from or tolerance to oxygen, or vice versa? What yields of hydrogen can be expected from hydrogen-evolving strains? Can the yield of hydrogen be controlled or increased by changing genetic, environmental, or physiological conditions? We will address these questions in the following mini-review.

  6. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  7. Skin rubdown with a dry towel, 'kanpu-masatsu' is an aerobic exercise affecting body temperature, energy production, and the immune and autonomic nervous systems.

    PubMed

    Watanabe, Mayumi; Takano, Osamu; Tomiyama, Chikako; Matsumoto, Hiroaki; Kobayashi, Takahiro; Urahigashi, Nobuatsu; Urahigashi, Nobuatsu; Abo, Toru

    2012-01-01

    Skin rubdown using a dry towel (SRDT) to scrub the whole body is a traditional therapy for health promotion. To investigate its mechanism, 24 healthy male volunteers were studied. Body temperature, pulse rate, red blood cells (RBCs), serum levels of catecholamines and cortisol, blood gases (PO(2), sO(2), PCO(2) and pH), lactate and glucose, and the ratio and number of white blood cells (WBCs) were assessed before and after SRDT. After SRDT, pulse rate and body temperature were increased. PO(2), sO(2) and pH were also increased and there was no Rouleaux formation by RBCs. Lactate level tended to increase, whereas that of glucose did not. Adrenaline and noradrenaline levels increased, indicating sympathetic nerve (SN) dominance with increase in granulocytes. WBC number and ratio were divided into two groups according to granulocyte ratio (≤ or < 60%) before SRDT: a normal group and a SN group. Only in the SN group did the granulocyte ratio decrease and the lymphocyte ratio and number increase after SRDT. It is suggested that SRDT is a mild aerobic, systemic exercise that might affect the immune system via the autonomic nervous system.

  8. Aerobic methane production from organic matter

    NASA Astrophysics Data System (ADS)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in th e Earth’s atmosphere playing a key role in the radiative budget. It has be en known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the most importan t class of microorganisms which form the Archaea reign. Methane can be produced also from incomplete combustion of organic material. The generation of CH4 in an oxygenated environment under near-ambient conditions is a new discovery made in 2006 by Keppler et. al where surprisingly they measured emissions of this green house gas from plants incubated in chambers with air containing 20% of oxygen. A lthough the estimates on a global scale are still object of an intensive debate, the results presented in this thesis clearly show the existence of methane prod uction under oxic conditions for non living plant material. Temperature and UV l ight are key factors that drive the generation of CH4 from plant matter in a wel l oxygenated environment.

  9. Butyrate production under aerobic growth conditions by engineered Escherichia coli.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Yakushi, Toshiharu; Matsushita, Kazunobu

    2017-01-11

    Butyrate is an important industrial platform chemical. Although several groups have reported butyrate production under oxygen-limited conditions by a native producer, Clostridium tyrobutylicum, and by a metabolically engineered Escherichia coli, efforts to produce butyrate under aerobic growth conditions have met limited success. Here, we constructed a novel butyrate synthetic pathway that functions under aerobic growth conditions in E. coli, by modifying the 1-butanol synthetic pathway reported previously. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, and endogenous thioesterase(s) of E. coli. To evaluate the potential of this pathway for butyrate production, culture conditions, including pH, oxygen supply, and concentration of inorganic nitrogen sources, were optimized in a mini-jar fermentor. Under the optimal conditions, butyrate was produced at a concentration of up to 140 mM (12.3 g/L in terms of butyric acid) after 54 h of fed-batch culture.

  10. A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation.

    PubMed

    Zhong, Yuan; Ruan, Zhenhua; Zhong, Yingkui; Archer, Steven; Liu, Yan; Liao, Wei

    2015-03-01

    High energy demand hinders the development and application of aerobic microbial biofuel production from lignocellulosic materials. In order to address this issue, this study focused on developing an integrated system including anaerobic digestion and aerobic fungal fermentation to convert corn stover, animal manure and food wastes into microbial lipids for biodiesel production. Dairy manure and food waste were first anaerobically digested to produce energy and solid digestate (AD fiber). AD fiber and corn stover were then processed by a combined alkali and acid hydrolysis, followed by fungal lipid accumulation. The integrated process can generate 1L biodiesel and 1.9 kg methane from 12.8 kg dry dairy manure, 3.1 kg dry food wastes and 12.2 kg dry corn stover with a positive net energy of 57 MJ, which concludes a self-sustaining lignocellulosic biodiesel process and provides a new route to co-utilize corn stover and organic wastes for advanced biofuel production.

  11. Noise Levels during Aerobics and the Potential Effects on Distortion Product Otoacoustic Emissions

    ERIC Educational Resources Information Center

    Torre, Peter, III; Howell, Jennifer C.

    2008-01-01

    The purpose of this study was to measure noise levels during aerobics classes and to examine how outer hair cell (OHC) function, using distortion product otoacoustic emissions (DPOAEs), may be affected by this exposure. Fifty individuals (48 women and 2 men, ages 19-41 years) participated in 50-min aerobics classes. Noise levels were measured…

  12. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2014-01-01

    Although it is known that a part of lactic acid bacteria can produce carotenoid, little is known about the regulation of carotenoid production. The objective of this study was to determine whether aerobic growth condition influences carotenoid production in carotenoid-producing Enterococcus gilvus. Enterococcus gilvus was grown under aerobic and anaerobic conditions. Its growth was slower under aerobic than under anaerobic conditions. The decrease in pH levels and production of lactic acid were also lower under aerobic than under anaerobic conditions. In contrast, the amount of carotenoid pigments produced by E. gilvus was significantly higher under aerobic than under anaerobic conditions. Further, real-time quantitative reverse transcription PCR revealed that the expression level of carotenoid biosynthesis genes crtN and crtM when E. gilvus was grown under aerobic conditions was 2.55-5.86-fold higher than when it was grown under anaerobic conditions. Moreover, after exposure to 16- and 32-mM H2O2, the survival rate of E. gilvus grown under aerobic conditions was 61.5- and 72.5-fold higher, respectively, than when it was grown under anaerobic conditions. Aerobic growth conditions significantly induced carotenoid production and the expression of carotenoid biosynthesis genes in E. gilvus, resulting in increased oxidative stress tolerance.

  13. Combined Aerobic/Strength Training and Energy Expenditure in Older Women

    PubMed Central

    Hunter, Gary R.; Bickel, C. Scott; Fisher, Gordon; Neumeier, William; McCarthy, John

    2013-01-01

    Purpose To examine the effects of three different frequencies of combined resistance and aerobic training on total energy expenditure (TEE) and activity related energy expenditure (AEE) in a group of older adults. Methods Seventy-two women, 60 – 74 years old, were randomly assigned to one of three groups: 1 day/week of aerobic and 1 day/week of resistance (1+1); 2 days/week of aerobic and 2 days/week resistance (2+2); or 3 days/week aerobic and 3 days/week resistance (3+3). Body composition (DXA), feeling of fatigue, depression, and vigor (questionnaire), strength (1RM), serum cytokines (ELISA), maximal oxygen uptake (progressive treadmill test), resting energy expenditure, and TEE were measured before and after 16 weeks of training. Aerobic training consisted of 40 minutes of aerobic exercise at 80% maximum heart rate and resistance training consisted of 2 sets of 10 repetitions for 10 different exercises at 80% of one repetition maximum. Results All groups increased fat free mass, strength and aerobic fitness and decreased fat mass. No changes were observed in cytokines or perceptions of fatigue/depression. No time by group interaction was found for any fitness/body composition variable. TEE and AEE increased with the 2+2 group but not with the other two groups. Non-exercise training AEE (NEAT) increased significantly in the 2+2 group (+200 kcal/day), group 1×1 showed a trend for an increase (+68 kcal/day) and group 3+3 decreased significantly (−150 kcal/day). Conclusion Results indicate that 3+3 training may inhibit NEAT by being too time consuming and does not induce superior training adaptations to 1+1 and 2+2 training. Key words: physical activity, older adults, total energy expenditure, maximum oxygen uptake. PMID:23774582

  14. Change in energy expenditure and physical activity in response to aerobic and resistance exercise programs.

    PubMed

    Drenowatz, Clemens; Grieve, George L; DeMello, Madison M

    2015-01-01

    Exercise is considered an important component of a healthy lifestyle but there remains controversy on effects of exercise on non-exercise physical activity (PA). The present study examined the prospective association of aerobic and resistance exercise with total daily energy expenditure and PA in previously sedentary, young men. Nine men (27.0 ± 3.3 years) completed two 16-week exercise programs (3 exercise sessions per week) of aerobic and resistance exercise separated by a minimum of 6 weeks in random order. Energy expenditure and PA were measured with the SenseWear Mini Armband prior to each intervention as well as during week 1, week 8 and week 16 of the aerobic and resistance exercise program. Body composition was measured via dual x-ray absorptiometry. Body composition did not change in response to either exercise intervention. Total daily energy expenditure on exercise days increased by 443 ± 126 kcal/d and 239 ± 152 kcal/d for aerobic and resistance exercise, respectively (p < 0.01). Non-exercise moderate-to-vigorous PA, however, decreased on aerobic exercise days (-148 ± 161 kcal/d; p = 0.03). There was no change in total daily energy expenditure and PA on non-exercise days with aerobic exercise while resistance exercise was associated with an increase in moderate-to-vigorous PA during non-exercise days (216 ± 178 kcal/d, p = 0.01). Results of the present study suggest a compensatory reduction in PA in response to aerobic exercise. Resistance exercise, on the other hand, appears to facilitate non-exercise PA, particularly on non-exercise days, which may lead to more sustainable adaptations in response to an exercise program.

  15. Decomposition of organic waste products under aerobic and anaerobic conditions

    SciTech Connect

    Gale, P.M.

    1988-01-01

    The objectives of this research were to determine the kinetics of C and N mineralization under aerobic and anaerobic conditions. These parameters were then used to verify the simulation model, DECOMPOSITION, for the anaerobic system. Incubation experiments were conducted to compare the aerobic and anaerobic decomposition of alfalfa (Medicago sativa L.), a substrate with a low C:N ratio. Under anaerobic conditions the net mineralization of N occurred more rapidly than that under aerobic conditions. However, the rate of C mineralization as measured by CO{sub 2} evolution was much lower. For the anaerobic decomposition of alfalfa, C mineralization was best described as the sum of the CO{sub 2} and CH{sub 4} evolved plus the water soluble organic C formed. The kinetics of C mineralization, as determined by this approach, were used to successfully predict the rate and amount of N mineralization from alfalfa undergoing anaerobic decomposition. The decomposition of paper mill sludge, a high C:N ratio substrate, was also evaluated.

  16. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks.

  17. Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6

    PubMed Central

    Noar, Jesse; Loveless, Telisa; Navarro-Herrero, José Luis; Olson, Jonathan W.

    2015-01-01

    The diazotroph Azotobacter vinelandii possesses three distinct nitrogenase isoenzymes, all of which produce molecular hydrogen as a by-product. In batch cultures, A. vinelandii strain CA6, a mutant of strain CA, displays multiple phenotypes distinct from its parent: tolerance to tungstate, impaired growth and molybdate transport, and increased hydrogen evolution. Determining and comparing the genomic sequences of strains CA and CA6 revealed a large deletion in CA6's genome, encompassing genes related to molybdate and iron transport and hydrogen reoxidation. A series of iron uptake analyses and chemostat culture experiments confirmed iron transport impairment and showed that the addition of fixed nitrogen (ammonia) resulted in cessation of hydrogen production. Additional chemostat experiments compared the hydrogen-producing parameters of different strains: in iron-sufficient, tungstate-free conditions, strain CA6's yields were identical to those of a strain lacking only a single hydrogenase gene. However, in the presence of tungstate, CA6 produced several times more hydrogen. A. vinelandii may hold promise for developing a novel strategy for production of hydrogen as an energy compound. PMID:25911479

  18. A new hydrophilic supramolecular photocatalyst for the production of H2 in aerobic aqueous solutions.

    PubMed

    Canterbury, Theodore R; Arachchige, Shamindri M; Brewer, Karen J; Moore, Robert B

    2016-07-05

    Addition of sulfonated terminal ligands into a Ru,Rh,Ru photocatalyst has a significant impact on the excited-state properties of the complex. The hydrophilic photocatalyst demonstrates increased solubility and H2 production in aqueous solutions. H2 production is observed under aerobic conditions for the new complex, a stark contrast to the hydrophobic analog in organic solvents.

  19. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  20. Fundamentals of energy production

    NASA Astrophysics Data System (ADS)

    Harder, E. L.

    The theory, methods of conversion, and costs of various energy sources, transformations, and production techniques are summarized. Specific attention is given to carbon-based fuels in liquid, gaseous, and solid forms and processes for producing synthetic fuels. Additional details are presented for hydrogen and biomass technologies, as well as nuclear fuel-based electricity production. Renewable energy methods are dealt with in terms of the potentials and current applications of tidal generating stations, hydroelectric installations, solar thermal and electrical energy production, and the development of large wind turbines. Consideration is given to the environmental effects of individual energy technologies, along with associated costs and transportability of the energy produced.

  1. Cardiovascular Fitness and Energy Expenditure Response during a Combined Aerobic and Circuit Weight Training Protocol

    PubMed Central

    Benito, Pedro J.; Alvarez-Sánchez, María; Díaz, Víctor; Morencos, Esther; Peinado, Ana B.; Cupeiro, Rocio

    2016-01-01

    Objectives The present study describes the oxygen uptake and total energy expenditure (including both aerobic and anaerobic contribution) response during three different circuit weight training (CWT) protocols of equivalent duration composed of free weight exercises, machine exercises, and a combination of free weight exercises intercalating aerobic exercise. Design Controlled, randomized crossover designs. Methods Subjects completed in a randomized order three circuit weight training protocols of the same duration (3 sets of 8 exercises, 45min 15s) and intensity (70% of 15 repetitions maximum). The circuit protocols were composed of free weight exercises, machine exercises, or a combination of free weight exercises with aerobic exercise. Oxygen consumption and lactate concentration were measured throughout the circuit to estimate aerobic and anaerobic energy expenditure respectively. Results Energy expenditure is higher in the combined exercise protocol (29.9±3.6 ml/kg/min), compared with Freeweight (24.2±2.8ml/kg/min) and Machine (20.4±2.9ml/kg/min). The combined exercise protocol produced the highest total energy expenditure but the lowest lactate concentration and perceived exertion. The anaerobic contribution to total energy expenditure was higher in the machine and free weight protocols compared with the combined exercise protocol (6.2%, 4.6% and 2.3% respectively). Conclusions In the proposed protocols, the combined exercise protocol results in the highest oxygen consumption. Total energy expenditure is related to the type of exercise included in the circuit. Anaerobic contributions to total energy expenditure during circuit weight training may be modest, but lack of their estimation may underestimate total energy expenditure. Trial Registration ClinicalTrials.gov NCT01116856 PMID:27832062

  2. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm(-3) with the average value at 1.17 kWhm(-3). The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs.

  3. Efficient production and secretion of pyruvate from Halomonas sp. KM-1 under aerobic conditions.

    PubMed

    Kawata, Yoshikazu; Nishimura, Taku; Matsushita, Isao; Tsubota, Jun

    2016-03-01

    The alkaliphilic, halophilic bacterium Halomonas sp. KM-1 can utilize both hexose and pentose sugars for the intracellular storage of bioplastic poly-(R)-3-hydroxybutyric acid (PHB) under aerobic conditions. In this study, we investigated the effects of the sodium nitrate concentration on PHB accumulation in the KM-1 strain. Unexpectedly, we observed the secretion of pyruvate, a central intermediate in carbon- and energy-metabolism processes in all organisms; therefore, pyruvate is widely used as a starting material in the industrial biosynthesis of pharmaceuticals and is employed for the production of crop-protection agents, polymers, cosmetics, and food additives. We then further analyzed pyruvate productivity following changes in culture temperature and the buffer concentration. In 48-h batch-cultivation experiments, we found that wild-type Halomonas sp. KM-1 secreted 63.3 g/L pyruvate at a rate of 1.32 g/(L·h), comparable to the results of former studies using mutant and recombinant microorganisms. Thus, these data provided important insights into the production of pyruvate using this novel strain.

  4. Comparison of dry medium culture plates for mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.

    PubMed

    Park, Junghyun; Kim, Myunghee

    2013-12-01

    This study was performed to compare the performance of Sanita-Kun dry medium culture plate with those of traditional culture medium and Petrifilm dry medium culture plate for the enumeration of the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet. Mesophilic aerobic bacteria were comparatively evaluated in milk, ice cream, ham, and codfish fillet using Sanita-Kun aerobic count (SAC), Petrifilm aerobic count (PAC), and traditional plate count agar (PCA) media. According to the results, all methods showed high correlations of 0.989~1.000 and no significant differences were observed for enumerating the mesophilic aerobic bacteria in the tested food products. SAC method was easier to perform and count colonies efficiently as compared to the PCA and PAC methods. Therefore, we concluded that the SAC method offers an acceptable alternative to the PCA and PAC methods for counting the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.

  5. Formation of aerobic granules and their PHB production at various substrate and ammonium concentrations.

    PubMed

    Fang, Fang; Liu, Xian-Wei; Xu, Juan; Yu, Han-Qing; Li, Yong-Mei

    2009-01-01

    Aerobic granular sludge rich in polyhydroxybutyrate (PHB) was cultivated in a sequencing batch reactor (SBR) by seeding anaerobic granular sludge. The PHB content in aerobic granules was investigated and the experimental results reveal that both influent chemical oxygen demand (COD) and ammonium concentrations had a significant effect on the morphological characteristics and the PHB production of the aerobic granular sludge. At a COD and ammonium concentration of 750 mg/L and 8.5mg/L, respectively, the PHB content of the granules reached 44%, but their poor settling ability, as evidenced by a high sludge volume index, was observed. This was attributed to the outgrowth of filamentous bacteria on the granule surface. However, an increase in the ammonium concentration resulted in an elevated sludge concentration and a decrease in the PHB content in the granules. In this case, the aerobic granular sludge with a regular and compact structure was formed. The results suggest that, through controlling the COD and ammonium concentrations in the influent, the PHB-rich aerobic granular sludge with good settling ability could be cultivated.

  6. Aerobic activated sludge transformation of methotrexate: identification of biotransformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; de Alda, Miren López; Barceló, Damià

    2015-01-01

    This study describes the biotransformation of cytostatic and immunosuppressive pharmaceutical methotrexate. Its susceptibility to microbiological breakdown was studied in a batch biotransformation system, in presence or absence of carbon source and at two activated sludge concentrations. The primary focus of the present study are methotrexate biotransformation products, which were tentatively identified by the ultra-high performance liquid chromatography-quadrupole--Orbitrap-MS. Data-dependent experiments, combining full-scan MS data with product ion spectra were acquired, in order to identify the molecular ions of methotrexate transformation products, to propose the molecular formulae and to elucidate their chemical structures. Among the identified transformation products 2,4-diamino-N10-methyl-pteroic acid is most abundant and persistent. Other biotransformation reactions involve demethylation, oxidative cleavage of amine, cleavage of C-N bond, aldehyde to carboxylate transformation and hydroxylation. Finally, a breakdown pathway is proposed, which shows that most of methotrexate breakdown products retain the diaminopteridine structural segment. In total we propose nine transformation products, among them eight are described as methotrexate transformation products for the first time.

  7. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.

    PubMed

    Chen, Tao; Zhu, Nianqing; Xia, Huihua

    2014-01-01

    Arabinose is considered as an ideal feedstock for the microbial production of value-added chemicals due to its abundance in hemicellulosic wastes. In this study, the araBAD operon from Escherichia coli was introduced into succinate-producing Corynebacterium glutamicum, which enabled aerobic production of succinate using arabinose as sole carbon source. The engineered strain ZX1 (pXaraBAD, pEacsAgltA) produced 74.4 mM succinate with a yield of 0.58 mol (mol arabinose)(-1), which represented 69.9% of the theoretically maximal yield. Moreover, this strain produced 110.2 mM succinate using combined substrates of glucose and arabinose. To date, this is the highest succinate production under aerobic conditions in minimal medium.

  8. Effects of high-energy electron irradiation of chicken meat on Salmonella and aerobic plate count

    SciTech Connect

    Heath, J.L.; Owens, S.L.; Tesch, S.; Hannah, K.W. )

    1990-01-01

    Four experiments were used to determine the effects of high-energy irradiation on the number of aerobic microorganisms and Salmonella on broiler breasts and thighs. Irradiation ranging from 100 to 700 kilorads (krads) was provided by a commercial-scale, electron-beam accelerator. Irradiation of broiler breast and thigh pieces with electron beams at levels of 100, 200, 300, 400, 500, and 600 krads showed that levels as low as 100 krads would eliminate Salmonella. When 33 thighs were tested after irradiation at 200 krads, only one thigh tested presumptive positive. The total number of aerobic organisms was reduced by 2 to 3 log10 cycles at irradiation levels of 100, 200, 300, 400, 500, 600, and 700 krads. Increasing the dose above 100 krads gave little if any additional benefit.

  9. Material and energy productivity.

    PubMed

    Steinberger, Julia K; Krausmann, Fridolin

    2011-02-15

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.

  10. The effect of a silage inoculant on silage quality, aerobic stability, and meat production on farm scale.

    PubMed

    Acosta Aragón, Y; Jatkauskas, J; Vrotniakienė, V

    2012-01-01

    The effect of inoculation on nutrient content, fermentation, aerobic stability, and beef cattle performance for whole-plant corn silage treated with a commercial product (blend of homo- and heterofermentative lactic acid bacteria, BSM, blend of Enterococcus faecium, Lactobacillus plantarum, and Lactobacillus brevis, DSM numbers 3530, 19457, and 23231, resp.), was compared to a control treatment with no silage additives (CT). The material had a DM of 323 g/kg, crude protein, and water-soluble carbohydrate concentrations of 87.9 and 110.5 g/kg DM, respectively. BSM increased the fermentation rate with a significantly deeper pH (P < 0.01), a significant increase in the total organic acids concentration (P < 0.05), more lactic acid (P < 0.01), and numerically more acetic acid compared to CT. BSM significantly decreased the concentrations of butyric acid (P < 0.01), ethanol, and ammonia-N compared to the CT. BSM-treated silage decreased DM by 3.0 % (P < 0.01) and had a higher digestible energy and a higher metabolizable energy concentration by 2.3 (P < 0.01) and 1.00 % (P < 0.05), respectively, compared to untreated silage. Aerobic stability improved by more than 2 days in BSM silage. The DM intake of silage treated with BSM increased by 6.14 %, and improved weight gain and the feed conversion by 8.0 (P < 0.01) and 3.4%.

  11. The Effect of a Silage Inoculant on Silage Quality, Aerobic Stability, and Meat Production on Farm Scale

    PubMed Central

    Acosta Aragón, Y.; Jatkauskas, J.; Vrotniakienė, V.

    2012-01-01

    The effect of inoculation on nutrient content, fermentation, aerobic stability, and beef cattle performance for whole-plant corn silage treated with a commercial product (blend of homo- and heterofermentative lactic acid bacteria, BSM, blend of Enterococcus faecium, Lactobacillus plantarum, and Lactobacillus brevis, DSM numbers 3530, 19457, and 23231, resp.), was compared to a control treatment with no silage additives (CT). The material had a DM of 323 g/kg, crude protein, and water-soluble carbohydrate concentrations of 87.9 and 110.5 g/kg DM, respectively. BSM increased the fermentation rate with a significantly deeper pH (P < 0.01), a significant increase in the total organic acids concentration (P < 0.05), more lactic acid (P < 0.01), and numerically more acetic acid compared to CT. BSM significantly decreased the concentrations of butyric acid (P < 0.01), ethanol, and ammonia-N compared to the CT. BSM-treated silage decreased DM by 3.0 % (P < 0.01) and had a higher digestible energy and a higher metabolizable energy concentration by 2.3 (P < 0.01) and 1.00 % (P < 0.05), respectively, compared to untreated silage. Aerobic stability improved by more than 2 days in BSM silage. The DM intake of silage treated with BSM increased by 6.14 %, and improved weight gain and the feed conversion by 8.0 (P < 0.01) and 3.4%. PMID:23738122

  12. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production.

    PubMed

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.

  13. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production

    PubMed Central

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939

  14. Insuring wind energy production

    NASA Astrophysics Data System (ADS)

    D'Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2017-02-01

    This paper presents an insurance contract that the supplier of wind energy may subscribe in order to immunize the production of electricity against the volatility of the wind speed process. The other party of the contract may be any dispatchable energy producer, like gas turbine or hydroelectric generator, which can supply the required energy in case of little or no wind. The adoption of a stochastic wind speed model allows the computation of the fair premium that the wind power supplier has to pay in order to hedge the risk of inadequate output of electricity at any time. Recursive type equations are obtained for the prospective mathematical reserves of the insurance contract and for their higher order moments. The model and the validity of the results are illustrated through a numerical example.

  15. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions.

    PubMed

    Rafieenia, Razieh; Girotto, Francesca; Peng, Wei; Cossu, Raffaello; Pivato, Alberto; Raga, Roberto; Lavagnolo, Maria Cristina

    2017-01-01

    Aerobic pre-treatment was applied prior to two-stage anaerobic digestion process. Three different food wastes samples, namely carbohydrate rich, protein rich and lipid rich, were prepared as substrates. Effect of aerobic pre-treatment on hydrogen and methane production was studied. Pre-aeration of substrates showed no positive impact on hydrogen production in the first stage. All three categories of pre-aerated food wastes produced less hydrogen compared to samples without pre-aeration. In the second stage, methane production increased for aerated protein rich and carbohydrate rich samples. In addition, the lag phase for carbohydrate rich substrate was shorter for aerated samples. Aerated protein rich substrate yielded the best results among substrates for methane production, with a cumulative production of approximately 351ml/gVS. With regard to non-aerated substrates, lipid rich was the best substrate for CH4 production (263ml/gVS). Pre-aerated P substrate was the best in terms of total energy generation which amounted to 9.64kJ/gVS. This study revealed aerobic pre-treatment to be a promising option for use in achieving enhanced substrate conversion efficiencies and CH4 production in a two-stage AD process, particularly when the substrate contains high amounts of proteins.

  16. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions.

    PubMed

    Kristensen, N B; Sloth, K H; Højberg, O; Spliid, N H; Jensen, C; Thøgersen, R

    2010-08-01

    within farm based on test-day results from 2007 and 2008. The average milk production of lactating cows at test days during the study (January to September 2009) was 30.7+/-0.5 kg of energy-corrected milk/d. Milk production was 104.6+/-0.7% of the predicted yield and did not differ among treatments. In conclusion, the present study showed that homofermentative inoculants might not compete efficiently or might not deviate sufficiently from the epiphytic flora on whole-crop corn to affect fermentation in standard qualities of corn silage. Heterofermentative inoculation increased aerobic stability and numerous fermentation variables. None of the treatments affected milk production, and more-stable corn silage seemed to have a similar production value as compared with less-stable homofermented silage. Heterofermented silage can be evaluated for its properties to limit aerobic silage deterioration in the feed chain.

  17. Investigation of oxidative phosphorylation in continuous cultures. A non-equilibrium thermodynamic approach to energy transduction for Escherichia coli in aerobic condition

    NASA Astrophysics Data System (ADS)

    Ghafuri, Mohazabeh; Nosrati, Mohsen; Hosseinkhani, Saman

    2015-03-01

    Adenosine triphosphate (ATP) production in living cells is very important. Different researches have shown that in terms of mathematical modeling, the domain of these investigations is essentially restricted. Recently the thermodynamic models have been suggested for calculation of the efficiency of oxidative phosphorylation process and rate of energy loss in animal cells using chemiosmotic theory and non-equilibrium thermodynamics equations. In our previous work, we developed a mathematical model for mitochondria of animal cells. In this research, according to similarities between oxidative phosphorylation process in microorganisms and animal cells, Golfar's model was developed to predict the non-equilibrium thermodynamic behavior of the oxidative phosphorylation process for bacteria in aerobic condition. With this model the rate of energy loss, P/O ratio, and efficiency of oxidative phosphorylation were calculated for Escherichia coli in aerobic condition. The results then were compared with experimental data given by other authors. The thermodynamic model had an acceptable agreement with the experimental data.

  18. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system.

    PubMed

    Li, Zhongjian; Zhang, Xingwang; Lin, Jun; Han, Song; Lei, Lecheng

    2010-06-01

    A microbial fuel cell and anaerobic-aerobic sequential reactor coupled system was used for azo dye degradation with simultaneous electricity production. Electricity was produced during the co-metabolism process of glucose and azo dye. A microorganism cultured graphite-granular cathode effectively decreased the charge transfer resistance of the cathode and yielded higher power density. Operation parameters including glucose concentration and hydraulic retention time were optimized. The results indicated that recovering electricity during a sequential aerobic-anaerobic azo dye treatment process enhanced chemical oxygen demand removal and did not decrease azo dye removal. Moreover, UV-vis spectra and GC-MS illustrated that the azo bond was cleaved biologically in the anaerobic chamber and abiotically in the aerobic chamber. The toxic intermediates, aromatic amines, were removed by aerobic treatment. Our work demonstrated that the microbial fuel cell and sequential anode-cathode reactor coupled system could be applied to achieve electricity production with simultaneous azo dye degradation.

  19. Fate of phosphorus from biological aerobic treatment of pig slurry. By-products characterization and recovery.

    PubMed

    Daumer, M L; Beline, F; Guiziou, F

    2003-11-01

    The fate of phosphorus distribution in the products obtained from biological aerobic treatment of pig slurry, e.g. separated solids, liquid effluent and sludge, was monitored in three different farm-scale units. Samples of raw slurry, solid products, aerated slurry, liquid effluent and sludge were characterised and analysed for their concentration in total phosphorus, nitrogen content and heavy metals (Cu and Zn). At each treatment stage, nitrogen, phosphorus and heavy metals mass balance between input and output was established. Moreover, liquid products were characterised and analysed both for their total and dissolved ortho-phosphate content. Separated solids, sludge and liquid effluent represented 5%, 15-40% and 75-83% of the mass of the raw slurry, respectively. A mechanical separation step prior to aeration allowed the export of 25-30% of total phosphorus for further use as organic fertiliser. A large amount of total phosphorus (e.g. 60-70%) was located in sludge while phosphorus remaining in liquid effluent was about 15-25%. Raw slurry separation and sufficient aeration allowed phosphorus to concentrate in the sludge. Insufficient aeration resulted in the release of phosphorus as dissolved ortho-phosphate within the liquid effluent. Finally, relevance of the agronomic use of the products was discussed and improvements of biological aerobic treatment to enhance phosphorus removal and/or recovery were considered.

  20. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth.

    PubMed

    Lübbehüsen, T L; Nielsen, J; McIntyre, M

    2004-02-01

    The dimorphic organism Mucor circinelloides is currently being investigated as a potential host for heterologous protein production. The production of ethanol on pentose and hexose sugars was studied in submerged batch cultivations to further the general knowledge of Mucor physiology, with a view to the minimisation or elimination of the by-product ethanol for future process design. Large amounts of ethanol were produced during aerobic growth on glucose under non-oxygen limiting conditions, which is indicative of M. circinelloides being a Crabtree-positive organism. Ethanol production on galactose or xylose was less significant. The response of the organism to increased ethanol concentrations, both as the sole carbon source and in the presence of a sugar, was investigated in terms of biomass formation and morphology.

  1. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    PubMed

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype.

  2. The energy cost of cycling and aerobic performance of obese adolescent girls.

    PubMed

    Lafortuna, C L; Agosti, F; Busti, C; Galli, R; Sartorio, A

    2009-09-01

    In order to assess the energy cost of cycling and aerobic capacity in juvenile obesity, responses to cycle ergometer exercise were studied in 10 pubertal obese (OB) [body mass index (BMI) SD score (SDS): 3.40+/-0.58 SD] adolescent girls (age: 16.0+/-1.2 yr) and in 10 normal-weight (NW, BMI SDS: -0.30+/-0.54) girls of the same age (15.1+/-1.9). To this aim, gas exchange, heart rate (HR), and energy expenditure (EE) were studied during graded cycle ergometer test at 40, 60, 80, 100, and 120 W. The energy cost of cycling was higher in OB, being oxygen uptake (VO2) higher (about 20%) in OB than in NW girls at all workloads (p<0.01-0.001). Estimated maximal VO2 and VO2 at anaerobic threshold were significantly (p<0.05) higher in OB girls [although lower per unit body mass (p<0.01) and similar for unit fat-free mass], and explained the higher oxygen pulse and lower HR for any EE observed during submaximal exercise in OB. While net mechanical efficiency (ME) was significantly lower in OB (p<0.01), delta ME was similar in both groups, indicating no substantial derangement of muscle intrinsic efficiency. It is concluded that, despite a higher cost of cycling, OB girls can rely on a larger aerobic capacity which makes them able to sustain this kind of exercise within a wide range of work loads, with relevant implications when planning protocols of physical activity in the context of interventions for the reduction of juvenile obesity.

  3. [Effects of salinity on N2O production during nitrification using aerobic granular sludge].

    PubMed

    Wang, Shan-Shan; iang, Hong; Gao, Da-Wen

    2014-11-01

    An aerobic SBR biological wastewater treatment system was adopted to measure the N2O production and nitrogen removal using aerobic granular sludge nitrification process under 0, 5, 10 g x L(-1) salinity conditions. The results showed that the N2O production increased with the increase of salinity concentration. At three salinity levels (0, 5, 10 g x L(-1)), the dissolved N2O production was 1.21, 8.99, 24.81 mg x m(-3), respectively, and the released N2O was 0.95, 3.46, 16.45 mg x m(-3), respectively. The N2O release rates at the 5 g x L(-1) and 10 g x L(-1) salinity levels were 3.6 and 17.4 times as high as that at the 0 g x L(-1) salinity level. Under various salinity conditions both the dissolved and releasing state N2O production first increased and then decreased, and the dissolved N2O production was greater than that in the releasing state. In addition, when the salinity was low (less than 5 g x L(-1)), the NH4(+)-N removal rate was less affected and almost the same with the condition of 0 g x L(-1), both over 98%. When the salinity was increased to 10 g x L(-1), the NH4(+)-N removal rate dropped to 70%. Thus, increasing the salinity of wastewater not only affected the system nitrogen removal rate but also increased the amount of N2O production.

  4. Redox-sensing regulator Rex regulates aerobic metabolism, morphological differentiation, and avermectin production in Streptomyces avermitilis

    PubMed Central

    Liu, Xingchao; Cheng, Yaqing; Lyu, Mengya; Wen, Ying; Song, Yuan; Chen, Zhi; Li, Jilun

    2017-01-01

    The regulatory role of redox-sensing regulator Rex was investigated in Streptomyces avermitilis. Eleven genes/operons were demonstrated to be directly regulated by Rex; these genes/operons are involved in aerobic metabolism, morphological differentiation, and secondary metabolism. Rex represses transcription of target genes/operons by binding to Rex operator (ROP) sequences in the promoter regions. NADH reduces DNA-binding activity of Rex to target promoters, while NAD+ competitively binds to Rex and modulates its DNA-binding activity. Rex plays an essential regulatory role in aerobic metabolism by controlling expression of the respiratory genes atpIBEFHAGDC, cydA1B1CD, nuoA1-N1, rex-hemAC1DB, hppA, and ndh2. Rex also regulates morphological differentiation by repressing expression of wblE, which encodes a putative WhiB-family transcriptional regulator. A rex-deletion mutant (Drex) showed higher avermectin production than the wild-type strain ATCC31267, and was more tolerant of oxygen limitation conditions in regard to avermectin production. PMID:28303934

  5. Energy Production Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy production systems is one of 15 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  6. Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise.

    PubMed

    Brooks, G A

    1986-12-01

    O2 insufficiency and other factors increase the rate of lactate production. Significant quantities of lactate are produced under postabsorptive as well as postprandial conditions in resting individuals. In humans during postabsorptive rest, 25-50% of the total carbohydrate combusted appears to pass through the lactate pool. During sustained submaximal (in terms of VO2max) exercise, the rates of lactate production (Ri) and oxidation (Rox) are greatly elevated as compared to rest. However, lactate production and oxidation increase relatively less than O2 consumption during moderate-intensity exercise. Because the lactate production index (RiI = Ri/VO2) decreases during submaximal, moderate-intensity exercise compared to rest, it is concluded that skeletal muscle and other sites of lactate production are effectively oxygenated. Alterations in the levels of circulating catecholamines can affect levels and turnover rates of glucose and lactate. In pure red dog gracilis muscle in situ and in the healthy and myocardium in vivo, contraction results in glycolysis and lactate production. This production of lactate occurs despite an apparent abundance of O2. Similarly, glucose catabolism in the human brain results in lactate production. The formation of lactate under fully aerobic conditions of rest and exercise represents an important mechanism by which different tissues share a carbon source (lactate) for oxidation and other processes such as gluconeogenesis. This mechanism has been termed the lactate shuttle.

  7. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  8. Effect of cycle time on polyhydroxybutyrate (PHB) production in aerobic mixed cultures.

    PubMed

    Ozdemir, Sebnem; Akman, Dilek; Cirik, Kevser; Cinar, Ozer

    2014-03-01

    The aim of this study was to investigate the effect of cycle time on polyhydroxybutyrate (PHB) production under aerobic dynamic feeding system. The acetate-fed feast and famine sequencing batch reactor was used to enrich PHB accumulating microorganism. Sequencing batch reactor (SBR) was operated in four different cycle times (12, 8, 4, and 2 h) fed with a synthetic wastewater. The system performance was determined by monitoring total dissolved organic carbon, dissolved oxygen, oxidation-reduction potential, and PHB concentration. In this study, under steady-state conditions, the feast period of the SBR was found to allow the PHB storage while a certain part of stored PHB was used for continued growth in famine period. The percentage PHB storages by aerobic microorganism were at 16, 18, 42, and 55% for the 12, 8, 4, and 2-h cycle times, respectively. The PHB storage was increased as the length of the cycle time was decreased, and the ratio of the feast compared to the total cycle length was increased from around 13 to 33% for the 12 and 2-h cycle times, respectively.

  9. The relationship between repeated sprint ability and the aerobic and anaerobic energy systems.

    PubMed

    Wadley, G; Le Rossignol, P

    1998-06-01

    A large number of team games require participants to repeatedly produce maximal or near maximal sprints of short duration with brief recovery periods. The purpose of the present study was to determine the relationship between a repeated sprint ability (RSA) test that is specific to the energy demands of Australian Rules football (ARF), and the aerobic and anaerobic energy systems. Seventeen ARF players participated in the study. Each participant was assessed for VO2 max, accumulated oxygen deficit (AOD), best 20 m sprint time and RSA. The RSA test involved 12x20 m sprints departing every 20 s. When including the work performed during the time taken to decelerate, the test involved a work to rest ratio of approximately 1:3. Total sprinting time and the percentage decrement of repeated sprinting times were the two derived measures of RSA. The results indicate that the best 20 m sprint time was the only factor to correlate significantly with total sprinting time (r = 0.829, P < 0.001) and percentage decrement (r = -0.722, P < 0.01). VO2 max and AOD were not related to the total sprinting time or the percentage decrement that was produced by the RSA test. This was interpreted to signify that the phosphagen system was the major energy contributor for this test.

  10. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill.

  11. Semiquantitative determination of mesophilic, aerobic microorganisms in cocoa products using the Soleris NF-TVC method.

    PubMed

    Montei, Carolyn; McDougal, Susan; Mozola, Mark; Rice, Jennifer

    2014-01-01

    The Soleris Non-fermenting Total Viable Count method was previously validated for a wide variety of food products, including cocoa powder. A matrix extension study was conducted to validate the method for use with cocoa butter and cocoa liquor. Test samples included naturally contaminated cocoa liquor and cocoa butter inoculated with natural microbial flora derived from cocoa liquor. A probability of detection statistical model was used to compare Soleris results at multiple test thresholds (dilutions) with aerobic plate counts determined using the AOAC Official Method 966.23 dilution plating method. Results of the two methods were not statistically different at any dilution level in any of the three trials conducted. The Soleris method offers the advantage of results within 24 h, compared to the 48 h required by standard dilution plating methods.

  12. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation.

    PubMed

    Könneke, Martin; Schubert, Daniel M; Brown, Philip C; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J; Stahl, David A; Berg, Ivan A

    2014-06-03

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments.

  13. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation

    PubMed Central

    Könneke, Martin; Schubert, Daniel M.; Brown, Philip C.; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J.; Stahl, David A.; Berg, Ivan A.

    2014-01-01

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments. PMID:24843170

  14. Energy Vs. Productivity: Diminishing Returns

    ERIC Educational Resources Information Center

    MOSAIC, 1975

    1975-01-01

    Energy invested in corn production is compared with food energy returned in calculations by David Pimentel at Cornell University. The rate of return is falling off sharply in this already energy-intensive agriculture. Increased energy input, in the form of fertilizer, would yield far greater returns where agriculture is less sophisticated.…

  15. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    PubMed

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-02

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  16. Oxidative stability of pork emulsion containing tomato products and pink guava pulp during refrigerated aerobic storage.

    PubMed

    Joseph, Serlene; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari

    2014-11-01

    Lipid oxidation-induced quality problems can be minimized with the use of natural antioxidants. Antioxidant potential of tomato puree (10 %; T-1), tomato pulp (12.5 %; T-2), lyophilized tomato peel (6 %; T-3), and pink guava pulp (10 %; T-4) was evaluated in raw pork emulsion during refrigerated storage for 9 days under aerobic packaging. The lycopene and β-carotene content varied in pork emulsion as T-3 > T-1 > T-2 > T-4 and decreased (P < 0.05) during storage. The surface redness (a* value) increased (P < 0.05) with the incorporation of tomato products and pink guava pulp. Furthermore, metmyoglobin formation and lipid oxidation were lower (P < 0.05) in tomato- and guava-treated emulsions than in control. Overall, incorporation of tomato products and pink guava pulp improved the visual colour and odour scores of raw pork emulsion. These results indicated that tomato products and guava pulp can be utilized as sources of natural antioxidants in raw pork products to minimize lipid oxidation, off-odour development, and surface discolouration.

  17. Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products.

    PubMed

    Zhu, Jiangfeng; Sánchez, Ailen; Bennett, George N; San, Ka-Yiu

    2011-11-01

    Optimizing the productivity of bioengineered strains requires balancing ATP generation and carbon atom conservation through fine-tuning cell respiration and metabolism. Traditional approaches manipulate cell respiration by altering air feeding, which are technically difficult especially in large bioreactors. An approach based on genetic regulation may better serve this purpose. With excess oxygen supply to the culture, we efficiently manipulated Escherichia coli cell respiration by adding different amount of coenzyme Q1 to strains lacking the ubiCA genes, which encode two critical enzymes for ubiquinone synthesis. As a proof-of-concept, the metabolic effect of the ubiCA gene knockout and coenzyme Q1 supplementation were characterized, and the metabolic profiles of the experimental strains showed clear correlations with coenzyme Q1 concentrations. Further proof-of-principle experiments were performed to illustrate that the approach can be used to optimize cell respiration for the production of chemicals of interest such as ethanol. This study showed that controlled respiration through genetic manipulation can be exploited to allow much larger operating windows for reduced product formation even under fully aerobic conditions.

  18. Dynamic Modeling of Aerobic Growth of Shewanella oneidensis. Predicting Triauxic Growth, Flux Distributions and Energy Requirement for Growth

    SciTech Connect

    Song, Hyun-Seob; Ramkrishna, Doraiswami; Pinchuk, Grigoriy E.; Beliaev, Alex S.; Konopka, Allan; Fredrickson, Jim K.

    2013-01-01

    A model-based analysis is conducted to investigate metabolism of Shewanella oneidensis MR-1 strain in aerobic batch culture, which exhibits an intriguing growth pattern by sequentially consuming substrate (i.e., lactate) and by-products (i.e., pyruvate and acetate). A general protocol is presented for developing a detailed network-based dynamic model for S. oneidensis based on the Lumped Hybrid Cybernetic Model (LHCM) framework. The L-HCM, although developed from only limited data, is shown to accurately reproduce exacting dynamic metabolic shifts, and provide reasonable estimates of energy requirement for growth. Flux distributions in S. oneidensis predicted by the L-HCM compare very favorably with 13C-metabolic flux analysis results reported in the literature. Predictive accuracy is enhanced by incorporating measurements of only a few intracellular fluxes, in addition to extracellular metabolites. The L-HCM developed here for S. oneidensis is consequently a promising tool for the analysis of intracellular flux distribution and metabolic engineering.

  19. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  20. Sustainable Energy Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels currently supply a small portion of the world’s energy needs but this is increasing due to mandates intended to reduce use of fossil fuels and the associated environmental impacts. However, the potentials of plant based feedstocks to substitute for fossil fuels and mitigate environmental im...

  1. Renewable energy: energy from agricultural products

    SciTech Connect

    Not Available

    1984-06-01

    This study discusses major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10% of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10% mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: Growing crops such as napier grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.

  2. Renewable energy: energy from agricultural products

    SciTech Connect

    Not Available

    1984-06-01

    This report discusses the major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: growing crops such as napier grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; and improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.

  3. Melatonin production in an aerobic photosynthetic bacterium: an evolutionarily early association with darkness.

    PubMed

    Tilden, A R; Becker, M A; Amma, L L; Arciniega, J; McGaw, A K

    1997-03-01

    Melatonin was measured in a species of aerobic photosynthetic bacteria, Erythrobacter longus, grown in either constant light or constant dark. A radioimmunoassay was used to quantify melatonin levels and thin-layer chromatography to confirm the identity of melatonin immunoactivity. Melatonin levels were significantly higher (nearly 2.3-fold) in the dark-grown than in the light-grown samples. Also, the homogenates of the dark-grown bacteria retained melatonin-producing enzymatic activity, whereas the light-grown homogenates did not; melatonin levels extracted from the dark-grown homogenates increased with increasing extraction time, reaching as high as 29.2 ng.mg-1 protein at 120 min. Removal of membrane fragments from homogenates did not influence melatonin levels in light-grown homogenate, but this procedure increased melatonin levels in dark-grown homogenate, indicating that at least some of the enzymes in the pathway of melatonin production are not membrane-bound. This study is the second to demonstrate the presence of melatonin at the prokaryotic level, supporting the evidence that melatonin appeared very early in evolution. Its function in prokaryotes has not been determined, but may relate to its antioxidative actions.

  4. Total Energy CMR Production

    SciTech Connect

    Friedrich, S; Kolagani, R M

    2008-08-11

    The following outlines the optimized pulsed laser deposition (PLD) procedure used to prepare Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} (NSMO) temperature sensors at Towson University (Prof. Rajeswari Kolagani) for the LCLS XTOD Total Energy Monitor. The samples have a sharp metal/insulator transition at T {approx} 200 K and are optimized for operation at T {approx} 180 K, where their sensitivity is the highest. These samples are epitaxial multilayer structures of Si/YSZ/CeO/NSMO, where these abbreviations are defined in table 1. In this heterostructure, YSZ serves as a buffer layer to prevent deleterious chemical reactions, and also serves to de-oxygenate the amorphous SiO{sub 2} surface layer to generate a crystalline template for epitaxy. CeO and BTO serve as template layers to minimize the effects of thermal and lattice mismatch strains, respectively. More details on the buffer and template layer scheme are included in the attached manuscript accepted for publication in Sensor Letters (G. Yong et al., 2008).

  5. Energy: Production, Consumption, and Consequences.

    ERIC Educational Resources Information Center

    Helm, John L., Ed.

    Energy policy in the United States and much of the analysis behind those policies is largely incomplete according to many. Systems for energy production, distribution, and use have traditionally been analyzed by supply sector, yet such analyses cannot capture the complex interplay of technology, economics, public policy, and environmental concerns…

  6. Engineering Microorganisms for Energy Production

    DTIC Science & Technology

    2006-06-01

    focus for the Department of Energy. Microorganisms are simpler than plants; they have smaller genomes and proteomes, and are eas- ier to manipulate and...opportunity. The synergy between research into biofuel production by microorgan- isms and the Genomes to Life program is important and should be fully...producing energy: this is an important problem in basic energy science, whose solution will require synergistic interactions with genomics , synthetic and

  7. Abundance and distribution of Macrolide-Lincosamide-Streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater.

    PubMed

    Liu, Miaomiao; Ding, Ran; Zhang, Yu; Gao, Yingxin; Tian, Zhe; Zhang, Tong; Yang, Min

    2014-10-15

    The behaviors of the Macrolide-Lincosamide-Streptogramin (MLS) resistance genes were investigated in an anaerobic-aerobic pilot-scale system treating spiramycin (SPM) production wastewater. After screening fifteen typical MLS resistance genes with different mechanisms using conventional PCR, eight detected genes were determined by quantitative PCR, together with three mobile elements. Aerobic sludge in the pilot system exhibited a total relative abundance of MLS resistance genes (per 16S rRNA gene) 2.5 logs higher than those in control samples collected from sewage and inosine wastewater treatment systems (P < 0.05), implying the presence of SPM could induce the production of MLS resistance genes. However, the total relative gene abundance in anaerobic sludge (4.3 × 10(-1)) was lower than that in aerobic sludge (3.7 × 10(0)) despite of the higher SPM level in anaerobic reactor, showing the advantage of anaerobic treatment in reducing the production of MLS resistance genes. The rRNA methylase genes (erm(B), erm(F), erm(X)) were the most abundant in the aerobic sludge (5.3 × 10(-1)-1.7 × 10(0)), followed by esterase gene ere(A) (1.3 × 10(-1)) and phosphorylase gene mph(B) (5.7 × 10(-2)). In anaerobic sludge, erm(B), erm(F), ere(A), and msr(D) were the major ones (1.2 × 10(-2)-3.2 × 10(-1)). These MLS resistance genes (except for msr(D)) were positively correlated with Class 1 integron (r(2) = 0.74-0.93, P < 0.05), implying the significance of horizontal transfer in their proliferation.

  8. 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae.

    PubMed

    Hao, Jian; Lin, Rihui; Zheng, Zongming; Sun, Yan; Liu, Dehua

    2008-12-01

    3-Hydroxypropionaldehyde (3-HPA) is a toxic intermediary metabolite in the biological route of 1,3-propanediol biosynthesis from glycerol. 3-HPA accumulated in culture medium would arouse an irreversible cessation of the fermentation process. The role of substrate (glycerol) on 3-HPA accumulation in aerobic fermentation was investigated in this paper. 1,3-Propanediol oxidoreductase and glycerol dehydratase, two key enzyme catalyzing reactions of 3-HPA formation and consumption, were sensitive to high concentration of 3-HPA. When the concentration of 3-HPA increased to a higher level in medium (ac 10 mmol/L), the activity of 1,3-propanediol oxidoreductase in cell decreased correspondingly, which led to decrease of the 3-HPA conversion rate, then the 3-HPA concentration increasing was accelerated furthermore. 3-HPA accumulation in culture medium was triggered by this positive feedback mechanism. In the cell exponential growth phase, the reaction catalyzed by 1,3-propanediol oxidoreductase was the rate limiting step in 1,3-propanediol production. The level of 3-HPA in culture medium could be controlled by the substrate (glycerol) concentration, and lower level of glycerol could avoid 3-HPA accumulating to a high, lethal concentration. In fed batch fermentation, under the condition of initial glycerol concentration 30 g/L, and keeping glycerol concentration lower than 7-8 g/L in cell exponential growth phase, 3-HPA accumulation could not be incurred. Based on this result, a glycerol feeding strategy was set up in fed batch fermentation. Under the optimized condition, 50.1 g/L of 1,3-propanediol was produced in 24 h, and 73.1 g/L of final 1,3-propanediol concentration was obtained in 54 h.

  9. Energy implications of product leasing.

    PubMed

    Intlekofer, Koji; Bras, Bert; Ferguson, Mark

    2010-06-15

    A growing number of advocates have argued that leasing is a "greener" form of business transactions than selling. Leasing internalizes the costs of process wastes and product disposal, placing the burden on the OEMs, who gain from reducing these costs. Product leasing results in closed material loops, promotes remanufacturing or recycling, and sometimes leads to shorter life cycles. This paper provides two case studies to quantitatively test these claims for two distinct product categories. Life cycle optimization and scenario analysis are applied, respectively, to the household appliance and computer industries to determine the effect that life spans have on energy usage and to what extent leasing the product versus selling it may influence the usage life span. The results show that products with high use impacts and improving technology can benefit from reduced life cycles (achieved through product leases), whereas products with high manufacturing impacts and no improving technology do not.

  10. Validation of the Peel Plate™ AC for Detection of Total Aerobic Bacteria in Dairy and Nondairy Products.

    PubMed

    Salter, Robert S; Durbin, Gregory W; Bird, Patrick; Fisher, Kiel; Crowley, Erin; Hammack, Thomas; Chen, Yi; Clark, Dorn; Ziemer, Wayne

    2016-01-01

    Peel Plate™ AC (aerobic count) is a low-profile plastic 47 mm culture dish with adhesive top that contains a dried standard plate count medium with oxidation/reduction indicator triphenyl tetrazolium chloride (TTC) that turns red with dehydrogenase enzyme activity of growing aerobic bacteria. The method provides a conventional quantitative count with simple rehydration and incubation for 48 ± 3 h at 35 ± 1°C for most food matrixes and 32 ± 1°C for 48 ± 3 h for dairy products. Dairy matrixes claimed and supported with total aerobic count data are whole milk, skim milk, chocolate milk (2% fat), light cream (20% fat), pasteurized whole goat milk, ultra-high temperature pasteurized milk, nonfat dried milk, lactose-reduced milk, strawberry milk, raw cow milk, raw goat milk, raw sheep milk, condensed skim milk, and vanilla ice cream. Food matrixes claimed for aerobic count detection are raw ground beef, environmental sponge of stainless steel, raw ground turkey, dry dog food, liquid whole pasteurized eggs, milk chocolate, poultry carcass rinse, and large animal carcass sponge. The method has been independently evaluated for aerobic count in dairy products: whole milk, skim milk, chocolate milk, and light cream. The method was also independently evaluated for aerobic count in food matrixes: ground beef and sponge rinse from stainless steel surfaces. In the matrix study, each matrix was assessed separately at each contamination level in comparison to an appropriate reference method. Colony counts were determined for each level and then log10-transformed. The transformed data were evaluated for repeatability, mean comparison between methods with 95% confidence interval (CI), and r(2). A CI range of (-0.5, 0.5) on the mean difference was used as the acceptance criterion to establish significant statistical differences between methods. The evaluations demonstrate that the Peel Plate AC provides no statistical differences across most of the matrixes with r(2) > 0

  11. Hydrogen production from solar energy

    NASA Technical Reports Server (NTRS)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  12. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  13. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  14. Wave energy and intertidal productivity.

    PubMed

    Leigh, E G; Paine, R T; Quinn, J F; Suchanek, T H

    1987-03-01

    In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 x 10(8) J, per m(2) in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms "harness" wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding.

  15. Wave energy and intertidal productivity

    SciTech Connect

    Leigh, E.G. Jr.; Paine, R.T.; Quinn, J.F.; Suchanek, T.H.

    1987-03-01

    In the northern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 x 10/sup 8/ J, per m/sup 2/ in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms harness wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organism, and protect intertidal residents by knocking away their enemies or preventing them from feeding.

  16. Wave energy and intertidal productivity

    PubMed Central

    Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.

    1987-01-01

    In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813

  17. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg.

    PubMed

    Wang, Xun; Ye, Zhihong; Li, Bing; Huang, Linan; Meng, Mei; Shi, Jianbo; Jiang, Guibin

    2014-01-01

    Rice consumption represents a major route of mercury (Hg) and methylmercury (MeHg) exposure for those living in certain areas of inland China. In this study we investigated the effects of water management on bioavailable Hg, MeHg, and sulfate-reducing bacteria (SRB, abundance and community composition) in rhizosphere soil, and total Hg (THg) and MeHg in rice plants grown under glasshouse and paddy field conditions. Aerobic conditions greatly decreased the amount of THg and MeHg taken up by rice plants and affected their distribution in different plant tissues. There were positive correlations between bioavailable Hg and THg in brown rice and roots and between numbers of SRB and MeHg in brown rice, roots, and rhizosphere soil. Furthermore, the community composition of SRB was dramatically influenced by the water management regimes. Our results demonstrate that the greatly reduced bioavailability of Hg and production of MeHg are due to decreased SRB numbers and proportion of Hg methylators in the rhizosphere under aerobic conditions. These are the main reasons for the reduced Hg and MeHg accumulation in aerobically grown rice. Water management is indicated as an effective measure that can be used to reduce Hg and MeHg uptake by rice plants from Hg-contaminated paddy fields.

  18. Laboratory simulation of the successive aerobic and anaerobic degradation of oil products in oil-contaminated high-moor peat

    NASA Astrophysics Data System (ADS)

    Tolpeshta, I. I.; Trofimov, S. Ya.; Erkenova, M. I.; Sokolova, T. A.; Stepanov, A. L.; Lysak, L. V.; Lobanenkov, A. M.

    2015-03-01

    A model experiment has been performed on the successive aerobic and anaerobic degradation of oil products in samples of oil-contaminated peat sampled from a pine-subshrub-sphagnum bog near the Sutormin oilfield pipeline in the Yamal-Nenets autonomous district. During the incubation of oil-contaminated peat with lime and mineral fertilizers under complete flooding, favorable conditions are created for the aerobic oxidation of oil products at the beginning of the experiment and, as the redox potential decreases, for the anaerobic degradation of oil products conjugated with the reduction of N5+ and S+6 and methanogenesis. From the experimental data on the dynamics of the pH; Eh; and the NO{3/-}, NO{2/-}, and SO{4/2-} concentrations in the liquid phase of the samples, it has been found that denitrifiers significantly contributed to the biodegradation of oil products under the experimental conditions. After the end of the experiment, the content of oil products in the contaminated samples decreased by 21-26%.

  19. Follow the ATP: tumor energy production: a perspective.

    PubMed

    Oronsky, Bryan T; Oronsky, Neil; Fanger, Gary R; Parker, Christopher W; Caroen, Scott Z; Lybeck, Michelle; Scicinski, Jan J

    2014-01-01

    As early as the 1920s, the eminent physician and chemist, Otto Warburg, nominated for a second Nobel Prize for his work on fermentation, observed that the core metabolic signature of cancer cells is a high glycolytic flux. Warburg averred that the prime mover of cancer is defective mitochondrial respiration, which drives a switch to an alternative energy source, aerobic glycolysis in lieu of Oxidative Phosphorylation (OXPHOS), in an attempt to maintain cellular viability and support critical macromolecular needs. The cell, deprived of mitochondrial ATP production, must reprogram its metabolism as a secondary survival mechanism to maintain sufficient ATP and NADH levels for macromolecule production, membrane integrity and DNA synthesis as well as maintenance of membrane ionic gradients. A time-tested method to identify and disrupt criminal activity is to "follow the money" since the illicit proceeds from crime are required to underwrite it. By analogy, strategies to target cancer involve following and disrupting the flow of ATP and NADH, the energetic and redox "currencies" of the cell, respectively, since the tumor requires high levels of ATP and NADH, not only for metastasis and proliferation, but also, on a more basic level, for survival. Accordingly, four broad ATP reduction strategies to impact and potentially derail cancer energy production are highlighted herein: 1) small molecule energy-restriction mimetic agents (ERMAs) that target various aspects of energy metabolism, 2) reduction of energy 'subsidization' with autophagy inhibitors, 3) acceleration of ATP turnover to increase energy inefficiency, and 4) dietary energy restriction to limit the energy supply.

  20. Twelve weeks of moderate aerobic exercise without dietary intervention or weight loss does not affect 24-h energy expenditure in lean and obese adolescents.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exercise might have a persistent effect on energy expenditure and fat oxidation, resulting in increased fat loss. However, even without weight loss, exercise results in positive metabolic effects. The effect of an aerobic exercise program on 24-h total energy expenditure (TEE), and its components-ba...

  1. The influence of aerobic exercise training on the double product break point in low-to-moderate risk adults.

    PubMed

    Hargens, Trent A; Griffin, Diane C; Kaminsky, Leonard A; Whaley, Mitchell H

    2011-02-01

    The double product is the product of the heart rate and systolic blood pressure. The double product break point (DPBP) is a physiologic threshold that occurs at similar exercise intensities to that of the ventilatory threshold (VT). The influence of aerobic exercise training on the DPBP has not yet been examined. The purpose of this study was to examine whether aerobic exercise training (ET) increases the exercise intensity at which the DPBP occurs, and whether it increases in a similar fashion to the VT. Seven males and 11 females, all sedentary (mean ± SD: age = 29.9 ± 10.5 years) underwent supervised cardiopulmonary exercise testing using a cycle ergometer ramp protocol at baseline and after 8 weeks of vigorous ET on a cycle ergometer. The VT was determined by gas analysis and the V-slope method. Experienced observers using standardized instructions visually determined the DPBP. Following ET, VO(2 peak), maximal workload, and body composition variables all showed significant positive changes. The VO(2) at which the DPBP and VT occurred increased significantly from baseline to follow-up (P < 0.001). At baseline and at follow-up, the DPBP and VT did not differ. The DPBP and VT were significantly correlated to each other at both time points. Results suggest that the DPBP responds to ET in a similar fashion to that of the VT, and may be an easier and more useful marker of the VT for exercise training purposes.

  2. Thinking big: towards ideal strains and processes for large-scale aerobic biofuels production

    SciTech Connect

    McMillan, James D.; Beckham, Gregg T.

    2016-12-22

    Global concerns about anthropogenic climate change, energy security and independence, and environmental consequences of continued fossil fuel exploitation are driving significant public and private sector interest and financing to hasten development and deployment of processes to produce renewable fuels, as well as bio-based chemicals and materials, towards scales commensurate with current fossil fuel-based production. Over the past two decades, anaerobic microbial production of ethanol from first-generation hexose sugars derived primarily from sugarcane and starch has reached significant market share worldwide, with fermentation bioreactor sizes often exceeding the million litre scale. More recently, industrial-scale lignocellulosic ethanol plants are emerging that produce ethanol from pentose and hexose sugars using genetically engineered microbes and bioreactor scales similar to first-generation biorefineries.

  3. Aerobic utilization of crude glycerol by recombinant Escherichia coli for simultaneous production of poly 3-hydroxybutyrate and bioethanol.

    PubMed

    Shah, Pramod; Chiu, Feng-Shen; Lan, John Chi-Wei

    2014-03-01

    Crude glycerol, an inevitable byproduct during biodiesel production, is emerging as a potential feedstock for fermentation, due to its availability and a reasonable price. Biological utilization of abundant crude glycerol to several value added products is contemporary research area with beneficial features. Solving the problem of proper disposal and raising economic viability of biodiesel industries. Several researches have been directed toward the production of numerous products by using Escherichia coli, an ideal organism for heterologous expression of various foreign proteins. In this fashion, recombinant E. coli strains were constructed for the simultaneous production of poly 3-hydroxybutyrate (P3HB) and bioethanol from crude glycerol. The incorporation of aldehyde reductase (Alrd) and aldehyde dehydrogenase (AldH) in recombinant strain showed 2-fold increment in crude glycerol utilization under aerobic condition. Moreover, these two enzymes introduced an alternative pathway leading toward the potential production of bioethanol which was more than redox-balancing steps. Acetate was accumulated as an intermediate product. Subsequently, acetate was utilized as substrate in the second pathway, which directly converted acetyl-CoA to P3HB. This strategy demonstrated a potential production manner of bioethanol as an extracellular product and P3HB as water insoluble inclusion bodies inside E. coli. The maximum production of bioethanol and P3HB in the recombinant strain was 0.8 g L(-1) (17.4 mmol L(-1)) and 30.2% (w/w dry cell weight), respectively, which were higher than the parental strain.

  4. Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration.

    PubMed

    Mailloux, Ryan J; Dumouchel, Tyler; Aguer, Céline; deKemp, Rob; Beanlands, Rob; Harper, Mary-Ellen

    2011-07-15

    UCP3 (uncoupling protein-3) mitigates mitochondrial ROS (reactive oxygen species) production, but the mechanisms are poorly understood. Previous studies have also examined UCP3 effects, including decreased ROS production, during metabolic states when fatty acid oxidation is high (e.g. a fasting state). However, the role of UCP3 when carbohydrate oxidation is high (e.g. fed state) has remained largely unexplored. In the present study, we show that mitochondrial-bound HK (hexokinase) II curtails oxidative stress and enhances aerobic metabolism of glucose in the fed state in a UCP3-dependent manner. Genetic knockout or inhibition of UCP3 significantly decreased mitochondrial-bound HKII. Furthermore, UCP3 was required for the HKII-mediated decrease in mitochondrial ROS emission. Intriguingly, the UCP3-mediated modulation of mitochondria-associated HKII was only observed in cells cultured under high-glucose conditions. UCP3 was required to maintain high rates of aerobic metabolism in high-glucose-treated cells and in muscle of fed mice. Deficiency in UCP3 resulted in a metabolic shift that favoured anaerobic glycolytic metabolism, increased glucose uptake and increased sensitivity to oxidative challenge. PET (positron emission tomography) of [18F]fluoro-deoxyglucose uptake confirmed these findings in UCP3-knockout and wild-type mice. Collectively, our findings link the anti-oxidative and metabolic functions of UCP3 through a surprising molecular connection with mitochondrial-bound HKII.

  5. Food Production and the Energy Crisis

    ERIC Educational Resources Information Center

    And Others; Pimentel, David

    1973-01-01

    Analyzes the energy inputs in United States and green revolution crop production techniques, using corn as a typical crop. Examines the energy needs for a world food supply that depends on modern energy intensive agriculture, and considers alternatives in crop production technology which might reduce energy inputs in food production. (CC)

  6. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.

    PubMed

    Chwa, Jun-Won; Kim, Wook Jin; Sim, Sang Jun; Um, Youngsoon; Woo, Han Min

    2016-08-01

    Capture and conversion of CO2 to valuable chemicals is intended to answer global challenges on environmental issues, climate change and energy security. Engineered cyanobacteria have been enabled to produce industry-relevant chemicals from CO2 . However, the final products from cyanobacteria have often been mixed with fermented metabolites during dark fermentation. In this study, our engineering of Synechococcus elongatus PCC 7942 enabled continuous conversion of CO2 to volatile acetone as sole product. This process occurred during lighted, aerobic culture via both ATP-driven malonyl-CoA synthesis pathway and heterologous phosphoketolase (PHK)-phosphotransacetylase (Pta) pathway. Because of strong correlations between the metabolic pathways of acetate and acetone, supplying the acetyl-CoA directly from CO2 in the engineered strain, led to sole production of acetone (22.48 mg/L ± 1.00) without changing nutritional constraints, and without an anaerobic shift. Our engineered S. elongatus strains, designed for acetone production, could be modified to create biosolar cell factories for sustainable photosynthetic production of acetyl-CoA-derived biochemicals.

  7. Water, energy, and farm production

    SciTech Connect

    Ulibarri, C.A.; Seely, H.S.; Willis, D.B.; Anderson, D.M.

    1996-04-01

    Electric utility rate deregulation can have disproportionate impacts on water-intensive crops, which have historically relied upon pressurized irrigation technologies and surface water resources. Based on a case study of agricultural growers in southern California, the paper models the impacts of utility rates considered in the Western Area Power Administration`s Sierra Nevada Customer Service Region. The study was performed as part of the 2004 Power Marketing Program Draft Environmental Impact Statement. The empirical results reflect linear-programming estimates of the income transfers from growers to energy providers based on county-wide coverage of 13 junior and senior irrigation districts and short-run production possibilities of 11 irrigated crops. Transfers of income from growers to energy suppliers occur through their losses in producer surplus.

  8. Homeostasis and the glycogen shunt explains aerobic ethanol production in yeast

    PubMed Central

    Shulman, Robert G.; Rothman, Douglas L.

    2015-01-01

    Aerobic glycolysis in yeast and cancer cells produces pyruvate beyond oxidative needs, a paradox noted by Warburg almost a century ago. To address this question, we reanalyzed extensive measurements from 13C magnetic resonance spectroscopy of yeast glycolysis and the coupled pathways of futile cycling and glycogen and trehalose synthesis (which we refer to as the glycogen shunt). When yeast are given a large glucose load under aerobic conditions, the fluxes of these pathways adapt to maintain homeostasis of glycolytic intermediates and ATP. The glycogen shunt uses glycolytic ATP to store glycolytic intermediates as glycogen and trehalose, generating pyruvate and ethanol as byproducts. This conclusion is supported by studies of yeast with a partial block in the glycogen shunt due to the cif mutation, which found that when challenged with glucose, the yeast cells accumulate glycolytic intermediates and ATP, which ultimately leads to cell death. The control of the relative fluxes, which is critical to maintain homeostasis, is most likely exerted by the enzymes pyruvate kinase and fructose bisphosphatase. The kinetic properties of yeast PK and mammalian PKM2, the isoform found in cancer, are similar, suggesting that the same mechanism may exist in cancer cells, which, under these conditions, could explain their excess lactate generation. The general principle that homeostasis of metabolite and ATP concentrations is a critical requirement for metabolic function suggests that enzymes and pathways that perform this critical role could be effective drug targets in cancer and other diseases. PMID:26283370

  9. Incomplete aerobic degradation of the antidiabetic drug Metformin and identification of the bacterial dead-end transformation product Guanylurea.

    PubMed

    Trautwein, Christoph; Kümmerer, Klaus

    2011-10-01

    Active pharmaceutical ingredients as well as personal care products are detected in increasing prevalence in different environmental compartments such as surface water, groundwater and soil. Still little is known about the environmental fate of these substances. The type II antidiabetic drug Metformin has already been detected in different surface waters worldwide, but concentrations were significantly lower than the corresponding predicted environmental concentration (PEC). In human and mammal metabolism so far no metabolites of Metformin have been identified, so the expected environmental concentrations should be very high. To assess the aerobic biodegradability of Metformin and the possible formation of degradation products, three Organisation of Economic Cooperation and Development (OECD) test series were performed in the present study. In the Closed Bottle test (OECD 301 D), a screening test that simulates the conditions of an environmental surface water compartment, Metformin was classified as not readily biodegradable (no biodegradation). In the Manometric Respiratory test (OEDC 301 F) working with high bacterial density, Metformin was biodegraded in one of three test bottles to 48.7% and in the toxicity control bottle to 57.5%. In the Zahn-Wellens test (OECD 302 B) using activated sludge, Metformin was biodegraded in both test vessels to an extent of 51.3% and 49.9%, respectively. Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass spectrometry (HPLC-MS(n)) showed in the tests vessels were biodegradation was observed full elimination of Metformin and revealed Guanylurea (Amidinourea, Dicyandiamidine) as single and stable aerobic bacterial degradation product. In another Manometric Respiratory test Guanylurea showed no more transformation. Photodegradation of Guanylurea was also negative. A first screening in one of the greatest sewage treatment plant in southern Germany found Metformin with high concentrations

  10. Rapid production of organic fertilizer by dynamic high-temperature aerobic fermentation (DHAF) of food waste.

    PubMed

    Jiang, Yang; Ju, Meiting; Li, Weizun; Ren, Qingbin; Liu, Le; Chen, Yu; Yang, Qian; Hou, Qidong; Liu, Yiliang

    2015-12-01

    Keep composting matrix in continuous collision and friction under a relatively high-temperature can significantly accelerate the progress of composting. A bioreactor was designed according to the novel process. Using this technology, organic fertilizer could be produced within 96h. The electric conductivity (EC) and pH value reached to a stable value of 2.35mS/cm and 7.7 after 96h of fermentation. The total carbon/total nitrogen (TC/TN) and dissolved carbon/dissolved nitrogen (DC/DN) ratio was decrease from 27.3 and 36.2 to 17.4 and 7.6 respectively. In contrast, it needed 24days to achieve the similar result in traditional static composting (TSC). Compost particles with different size were analyzed to explore the rapid degradation mechanism of food waste. The evidence of anaerobic fermentation was firstly discovered in aerobic composting.

  11. Dynamics Analysis of Wind Energy Production Development

    NASA Astrophysics Data System (ADS)

    Berg, V. I.; Zakirzakov, A. G.; Gordievskaya, E. F.

    2017-01-01

    The paper presents the analysis of the introduction experience and dynamics development of the world wind energy production. Calculated the amount of wind energy sources investments and the production capacity growth dynamics of the wind turbines. The studies have shown that the introduction dynamics of new wind energy sources is higher than any other energy source.

  12. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part II. The application of aerobic sequencing batch reactor (aerobic SBR) to produce high biomass of Dioszegia sp. TISTR 5792.

    PubMed

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-07-03

    This study aimed to investigate the efficiency of an aerobic sequencing batch reactor (aerobic SBR) in a nonsterile system using the application of an experimental design via central composite design (CCD). The acidic whey obtained from lactic acid fermentation by immobilized Lactobacillus plantarum sp. TISTR 2265 was fed into the bioreactor of the aerobic SBR in an appropriate ratio between acidic whey and cheese whey to produce an acidic environment below 4.5 and then was used to support the growth of Dioszegia sp. TISTR 5792 by inhibiting bacterial contamination. At the optimal condition for a high yield of biomass production, the system was run with a hydraulic retention time (HRT) of 4 days, a solid retention time (SRT) of 8.22 days, and an acidic whey concentration of 80% feeding. The chemical oxygen demand (COD) decreased from 25,230 mg/L to 6,928 mg/L, which represented a COD removal of 72.15%. The yield of biomass production and lactose utilization by Dioszegia sp. TISTR 5792 were 13.14 g/L and 33.36%, respectively, with a long run of up to 180 cycles and the pH values of effluent were rose up to 8.32 without any pH adjustment.

  13. Effects of a 12-week aerobic exercise intervention on eating behaviour, food cravings, and 7-day energy intake and energy expenditure in inactive men.

    PubMed

    Rocha, Joel; Paxman, Jenny; Dalton, Caroline; Winter, Edward; Broom, David R

    2016-11-01

    This study examined effects of 12 weeks of moderate-intensity aerobic exercise on eating behaviour, food cravings, and weekly energy intake and expenditure in inactive men. Eleven healthy men (mean ± SD: age, 26 ± 5 years; body mass index, 24.6 ± 3.8 kg·m(-2); maximum oxygen uptake, 43.1 ± 7.4 mL·kg(-1)·min(-1)) completed the 12-week supervised exercise programme. Body composition, health markers (e.g., blood pressure), eating behaviour, food cravings, and weekly energy intake and expenditure were assessed before and after the exercise intervention. There were no intervention effects on weekly free-living energy intake (p = 0.326, d = -0.12) and expenditure (p = 0.799, d = 0.04) or uncontrolled eating and emotional eating scores (p > 0.05). However, there was a trend with a medium effect size (p = 0.058, d = 0.68) for cognitive restraint to be greater after the exercise intervention. Total food cravings (p = 0.009, d = -1.19) and specific cravings of high-fat foods (p = 0.023, d = -0.90), fast-food fats (p = 0.009, d = -0.71), and carbohydrates/starches (p = 0.009, d = -0.56) decreased from baseline to 12 weeks. Moreover, there was a trend with a large effect size for cravings of sweets (p = 0.052, d = -0.86) to be lower after the exercise intervention. In summary, 12 weeks of moderate-intensity aerobic exercise reduced food cravings and increased cognitive restraint, but these changes were not accompanied by changes in other eating behaviours or weekly energy intake and expenditure. The results indicate the importance of exercising for health improvements even when reductions in body mass are modest.

  14. Aerobic energy cost and sensation responses during submaximal running exercise--positive effects of wearing compression tights.

    PubMed

    Bringard, A; Perrey, S; Belluye, N

    2006-05-01

    This study aimed to examine the effects of wearing compression compared to classic elastic tights and conventional shorts (control trial) on oxygen cost and sensation responses during submaximal running exercise. In part I, aerobic energy cost was evaluated in six trained runners at 10, 12, 14, and 16 km x h(-1). In part II, the increase in energy cost over time (i. e., slow component expressed as difference in VO2 values between min 2 and end-exercise) was determined in six trained runners at a constant running pace corresponding to 80% of maximal VO2 for 15 min duration. All tests were performed on a 200-m indoor track with equivalent thermal stress conditions. VO2 was determined with a portable metabolic system (Cosmed K4b2, Rome, Italy) during all testing sessions. Runners were asked their ratings of perceived exertion (RPE) and perceptions for clothing sweating, comfort, and whole thermal sensations following each trial. Results showed in part I a significant lower energy cost only at 12 km x h(-1) by wearing compression and elastic tights compared to conventional shorts. During part II, wearing compression tights decreased significantly VO2 slow component by 26 and 36% compared to elastic tights and conventional shorts, respectively. There were no differences in sweating and comfort sensations, RPE, and for whole thermal sensation between clothing conditions in parts I and II. Wearing compression tights during running exercise may enhance overall circulation and decrease muscle oscillation to promote a lower energy expenditure at a given prolonged submaximal speed.

  15. Production of autoinducer-2 by aerobic endospore-forming bacteria isolated from the West African fermented foods.

    PubMed

    Qian, Yang; Kando, Christine Kere; Thorsen, Line; Larsen, Nadja; Jespersen, Lene

    2015-11-01

    Autoinducer-2 (AI-2) is a quorum-sensing (QS) molecule which mediates interspecies signaling and affects various bacterial behaviors in food fermentation. Biosynthesis of AI-2 is controlled by S-ribosylhomocysteine lyase encoded by the luxS gene. The objective of this study was to investigate production of AI-2 by aerobic endospore-forming bacteria (AEB) isolated from the West African alkaline fermented seed products Mantchoua and Maari. The study included 13 AEB strains of Bacillus subtilis, B. cereus, B. altitudinis, B. amyloliquefaciens, B. licheniformis, B. aryabhattai, B. safensis, Lysinibacillus macroides and Paenibacillus polymyxa. All the tested strains harbored the luxS gene and all strains except for P. polymyxa B314 were able to produce AI-2 during incubation in laboratory medium. Production of AI-2 by AEB was growth phase dependent, showing maximum activity at the late exponential phase. AI-2 was depleted from the culture medium at the beginning of the stationary growth phase, indicating that the tested AEB possess a functional AI-2 receptor that internalizes AI-2. This study provides the evidences of QS system in Bacillus spp. and L. macroides and new knowledge of AI-2 production by AEB. This knowledge contributes to the development of QS-based strategies for better control of alkaline fermentation.

  16. Anaerobic digestion for energy production and environmental protection

    SciTech Connect

    Lettinga, G.; Haandel, A.C. Vaan

    1993-12-31

    Anaerobic digestion is the decomposition of complex molecules into simpler substances by micro-organisms in the absence of oxygen. Anaerobic digestion processes can be employed for resource conservation, for the production of biogas and other useful end products from biomass, and for environmental protection through waste and wastewater treatment. Modern high-rate anaerobic wastewater-treatment processes can effectively remove organic pollutants from wastewater at a cost far below that of conventional aerobic processes. These anaerobic wastewater treatment processes can also be profitably applied for the generation of biogas from energy crops such as sugarcane. In fact, these methods might even be an attractive alternative for the alcohol fermentation extensively employed in Brazil for the production of fuel alcohol from sugarcane. The potential of modern anaerobic processes for this purpose has not yet been widely recognized. This paper describes the principles and use of these processes and demonstrates their prospects for producing energy from sugarcane (1) by treating vinasse, the wastewater generated during the production of ethanol from sugarcane, and (2) as a direct method for producing biogas from sugarcane juice.

  17. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis

    PubMed Central

    Krustrup, Peter; Ferguson, Richard A; Kjær, Michael; Bangsbo, Jens

    2003-01-01

    The aim of the present study was to simultaneously examine skeletal muscle heat production and ATP turnover in humans during dynamic exercise with marked differences in aerobic metabolism. This was done to test the hypothesis that efficiency is higher in anaerobic than aerobic ATP resynthesis. Six healthy male subjects performed 90 s of low intensity knee-extensor exercise with (OCC) and without thigh occlusion (CON-LI) as well as 90 s of high intensity exercise (CON-HI) that continued from the CON-LI bout. Muscle heat production was determined by continuous measurements of muscle heat accumulation and heat release to the blood. Muscle ATP production was quantified by repeated measurements of thigh oxygen uptake as well as blood and muscle metabolite changes. All temperatures of the thigh were equalized to ≈37 °C prior to exercise by a water-perfused heating cuff. Oxygen uptake accounted for 80 ± 2 and 59 ± 4 %, respectively, of the total ATP resynthesis in CON-LI and CON-HI, whereas it was negligible in OCC. The rise in muscle temperature was lower (P < 0.05) in OCC than CON-LI (0.32 ± 0.04 vs. 0.37 ± 0.03 °C). The mean rate of heat production was also lower (P < 0.05) in OCC than CON-LI (36 ± 4 vs. 57 ± 4 J s−1). Mechanical efficiency was 52 ± 4 % after 15 s of OCC and remained constant, whereas it decreased (P < 0.05) from 56 ± 5 to 32 ± 3 % during CON-LI. During CON-HI, mechanical efficiency transiently increased (P < 0.05) to 47 ± 4 %, after which it decreased (P < 0.05) to 36 ± 3 % at the end of CON-HI. Assuming a fully coupled mitochondrial respiration, the ATP turnover per unit of work was calculated to be unaltered during OCC (≈20 mmol ATP kJ−1), whereas it increased (P < 0.05) from 21 ± 4 to 29 ± 3 mmol ATP kJ−1 during CON-LI and further (P < 0.05) to 37 ± 3 mmol ATP kJ−1 during CON-HI. The present data confirm the hypothesis that heat loss is lower in anaerobic ATP resynthesis than in oxidative phosphorylation and can in part

  18. Energy management study for lunar oxygen production

    NASA Technical Reports Server (NTRS)

    Fazzolare, R. A.; Wong-Swanson, B. G.

    1989-01-01

    Energy management opportunities in the process of hydrogen reduction of ilmenite for lunar oxygen production are being investigated. An optimal energy system to supply the power requirements for the process will be determined.

  19. An acute decrease in TCA cycle intermediates does not affect aerobic energy delivery in contracting rat skeletal muscle.

    PubMed

    Dawson, Kristen D; Baker, David J; Greenhaff, Paul L; Gibala, Martin J

    2005-06-01

    We tested the hypothesis that an acute decrease in muscle TCA cycle intermediates during contraction would compromise aerobic energy delivery. Male Wistar rats were anaesthetized and the gastrocnemius-plantaris-soleus (GPS) muscle complex from one leg was isolated and perfused with a red cell medium containing either saline (Con) or cycloserine (Cyclo; 0.05 mg g-1), an inhibitor of alanine aminotransferase (AAT). After 1 h of perfusion, the GPS muscle was either snap frozen (Con-Rest, n=11; Cyclo-Rest, n=9) or stimulated to contract for 10 min (1 Hz, 0.3 ms, 2 V) with blood flow fixed at 30 ml min-1 (100 g)-1 and then snap frozen (Con-Stim, n=10; Cyclo-Stim, n=10). Maximal AAT activity was>80% lower (P<0.001) in both Cyclo-treated groups (Rest: 0.61+/-0.02; Stim: 0.63+/-0.01 mmol (kg wet wt)-1 min-1; mean+/-s.e.m.) compared to Con (Rest: 3.56+/-0.16; Stim: 3.92+/-0.29). The sum of five measured TCAI (SigmaTCAI) was reduced by 23% in Cyclo-Rest versus Con-Rest but this was not different (P=0.08). However, after 10 min of contraction, the SigmaTCAI was 25% lower (P=0.006) in Cyclo-Stim compared to Con-Stim (1.88+/-0.15 versus 2.48+/-0.11 mmol (kg dry wt)-1). Despite the acute decrease in TCAI after Cyclo treatment, the contraction-induced changes in markers of non-oxidative energy provision (phosphocreatine, ATP and lactate) and the decline in tension after 10 min of stimulation were similar compared to Con. These data do not support the hypothesis that the total muscle concentration of TCAI is causally linked to the rate of mitochondrial respiration during contraction.

  20. Nitrite-Driven Nitrous Oxide Production Under Aerobic Soil Conditions: Kinetics and Biochemical Controls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrite (NO2-) can accumulate during nitrification in soil following fertilizer application. While the role of NO2- as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil-to-atmosphere fluxes as a functi...

  1. PRODUCING ENERGY AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Segre, E.; Kennedy, J.W.; Seaborg, G.T.

    1959-10-13

    This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.

  2. Manure phosphorus extractability as affected by aluminum- and iron by-products and aerobic composting.

    PubMed

    Dao, T H; Sikora, L J; Hamasaki, A; Chaney, R L

    2001-01-01

    Shifts in manure phosphorus (P) chemical forms and pool sizes induced by water treatment residuals and industrial mineral by-products are largely undefined. We conducted a manure P fractionation study to determine mechanisms of reduction of dissolved reactive phosphorus (DRP) in poultry manure upon mineral by-product additions. The effects of composting on the P immobilization efficacy of the by-products were determined using laboratory self-heating composting simulators. The mineral by-products included an aluminum-water treatment residual (Al-WTR) and an iron-rich titanium-processing by-product. The noncomposted manure averaged 0.11 g g(-1) of total P as DRP forms. The by-products significantly reduced manure DRP, by an average of 39 and 48% in the Al- and the Fe-treated manure, respectively. The by-products also reduced the 0.5 M NH4F-extractable phosphorus (FEP) fraction. Shifts in P forms between FEP and 0.1 M NaOH-extractable phosphorus (SHEP) depended upon the Al and Fe contents of the by-products while the combined FEP + SHEP pool remained constant. Phosphate sorption measurements supported the observations that the Fe-rich by-product was more effective at reducing manure DRP and enhancing the formation of SHEP forms at the expense of FEP than the Al-WTR. Composting had no effect on the efficacy of either by-product to reduce DRP. Potential mechanisms of enhanced P stabilization in treated manure upon composting included chemical shifts from the DRP and FEP fractions to the citrate-bicarbonate-dithionite extractable P fraction. Thus, the choice of P immobilization agents affected the stability of immobilized P forms and should be taken into consideration in developing manure processing and nutrient stabilization methods.

  3. Promoting greater Federal energy productivity [Final report

    SciTech Connect

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  4. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4°C.

    PubMed

    Liang, Rongrong; Yu, Xiaoqiao; Wang, Renhuan; Luo, Xin; Mao, Yanwei; Zhu, Lixian; Zhang, Yimin

    2012-06-01

    This study analyzed the bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products stored aerobically at 4°C, using "bone and chicken string," a product popular in the People's Republic of China, as the study subject. Samples collected from three different factories were tray packaged with cling film and stored at 4°C. Bacterial diversity and dominant bacteria were analyzed using PCR amplification and denaturing gradient gel electrophoresis. Combined with selective cultivation of the dominant bacteria and correlation analysis, the dominant spoilage microbiota was determined. The results showed that bacterial diversity varied with different manufacturers. Such bacteria as Acinetobacter sp., Carnobacterium sp., Rahnella sp., Pseudomonas sp., Brochothrix sp., and Weissella sp. were detected in freshly prepared chicken products during storage. And Carnobacterium sp., Pseudomonas sp., and Brochothrix sp. bacteria were the common dominant spoilage bacteria groups in most freshly prepared chicken products from different factories. Carnobacterium was, for the first time, shown to be an important contributor to the spoilage-related microflora of freshly prepared chicken products stored aerobically under refrigeration. Our work shows the bacterial diversity and dominant spoilage microbiota of freshly prepared chicken products stored aerobically under refrigeration.

  5. High muscle mitochondrial volume and aerobic capacity in a small marsupial (Sminthopsis crassicaudata) reveals flexible links between energy-use levels in mammals.

    PubMed

    Dawson, Terence J; Webster, Koa N; Lee, Enhua; Buttemer, William A

    2013-04-01

    We investigated the muscle structure-function relationships that underlie the aerobic capacity of an insectivorous, small (~15 g) marsupial, Sminthopsis crassicaudata (Family: Dasyuridae), to obtain further insight into energy use patterns in marsupials relative to those in placentals, their sister clade within the Theria (advanced mammals). Disparate hopping marsupials (Suborder Macropodiformes), a kangaroo (Macropus rufus) and a rat-kangaroo (Bettongia penicillata), show aerobic capabilities as high as those of 'athletic' placentals. Equivalent muscle mitochondrial volumes and cardiovascular features support these capabilities. We examined S. crassicaudata to determine whether highly developed aerobic capabilities occur elsewhere in marsupials, rather than being restricted to the more recently evolved Macropodiformes. This was the case. Treadmill-trained S. crassicaudata attained a maximal aerobic metabolic rate ( or MMR) of 272 ml O2 min(-1) kg(-1) (N=8), similar to that reported for a small (~20 g), 'athletic' placental, Apodemus sylvaticus, 264 ml O2 min(-1) kg(-1). Hopping marsupials have comparable aerobic levels when body mass variation is considered. Sminthopsis crassicaudata has a basal metabolic rate (BMR) about 75% of placental values but it has a notably large factorial aerobic scope (fAS) of 13; elevated fAS also features in hopping marsupials. The of S. crassicaudata was supported by an elevated total muscle mitochondrial volume, which was largely achieved through high muscle mitochondrial volume densities, Vv(mt,f), the mean value being 14.0±1.33%. These data were considered in relation to energy use levels in mammals, particularly field metabolic rate (FMR). BMR is consistently lower in marsupials, but this is balanced by a high fAS, such that marsupial MMR matches that of placentals. However, FMR shows different mass relationships in the two clades, with the FMR of small (<125 g) marsupials, such as S. crassicaudata, being higher than that in

  6. Metabolic network analysis of DB1 melanoma cells: how much energy is derived from aerobic glycolysis?

    PubMed

    Shestov, A A; Mancuso, A; Leeper, D B; Glickson, J D

    2013-01-01

    A network model has been developed for analysis of tumor glucose metabolism from (13)C MRS isotope exchange kinetic data. Data were obtained from DB1 melanoma cells grown on polystyrene microcarrier beads contained in a 20-mm diameter perfusion chamber in a 9.4 T Varian NMR spectrometer; the cells were perfused with 26 mM [1,6-(13)C(2)]glucose under normoxic conditions and 37°C and monitored by (13)C NMR spectroscopy for 6 h. The model consists of ∼150 differential equations in the cumomer formalism describing glucose and lactate transport, glycolysis, TCA cycle, pyruvate cycling, the pentose shunt, lactate dehydrogenase, the malate-aspartate and glycerophosphate shuttles, and various anaplerotic pathways. The rate of oxygen consumption (CMRO(2)) was measured polarographically by monitoring differences in pO(2). The model was validated by excellent agreement between model predicted and experimentally measured values of CMRO(2) and glutamate pool size. Assuming a P/O ratio of 2.5 for NADH and 1.5 for FADH2, ATP production was estimated as 46% glycolytic and 54% mitochondrial based on average values of CMRO(2) and glycolytic flux (two experiments).

  7. Influence of the oxygen uptake slow component on the aerobic energy cost of high-intensity submaximal treadmill running in humans.

    PubMed

    Bernard, O; Maddio, F; Ouattara, S; Jimenez, C; Charpenet, A; Melin, B; Bittel, J

    1998-11-01

    During high-intensity running, the oxygen uptake (VO2) kinetics is characterised by a slow component which delays the attainment of the steady-state beyond the 3rd min of exercise. To assess if the aerobic energy cost of running measured at the 3rd min (C3) adequately reflects the variability of the true aerobic energy cost measured during the steady-state (Css), 13 highly-trained runners completed sessions of square-wave running at intensities above 80% maximal oxygen uptake (VO2max) on a level treadmill. To evaluate the time at which the steady-state VO2 was attained (tss), the VO2 responses were described using a general double-exponential equation and tss was defined as the time at which VO2 was less than 1% below the asymptotic value given by the model. All the subjects achieved a steady state for intensities equal to or greater than 92% VO2max, and 8 out of 13 achieved it at 99% VO2max. In all cases, tss was less than 13 min. For intensities greater than 85% VO2max, Css was significantly higher than C3 and was positively related to %VO2 max (r=0.44; P < 0.001) while C3 remained constant. The C3 only explained moderately the variability of Css (0.39 < r2 < 0.72, depending on the velocity or the (relative intensity at which the relationship was calculated). Moreover, the excess aerobic energy cost of running the (difference between Css and C3) was well predicted by age (0.90 < r2 < 0.93). Therefore, when the aerobic profile of runners is evaluated, it is recommended that their running efficiencies at velocities which reflect their race intensities should be determined, with VO2 data being measured at the true steady-state.

  8. Switchgrass: Production, Economics, and Net Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The critical questions for a biomass bioenergy production system are: • What are the economics? • Is energy from biomass net energy positive? • Is production system information available and verified? • Is the system sustainable? To address these questions, ten farmers in the mid-continental USA w...

  9. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  10. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential.

    PubMed

    Gates, Andrew J; Richardson, David J; Butt, Julea N

    2008-01-01

    Paracoccus pantotrophus expresses two nitrate reductases associated with respiratory electron transport, termed NapABC and NarGHI. Both enzymes derive electrons from ubiquinol to reduce nitrate to nitrite. However, while NarGHI harnesses the energy of the quinol/nitrate couple to generate a transmembrane proton gradient, NapABC dissipates the energy associated with these reducing equivalents. In the present paper we explore the nitrate reductase activity of purified NapAB as a function of electrochemical potential, substrate concentration and pH using protein film voltammetry. Nitrate reduction by NapAB is shown to occur at potentials below approx. 0.1 V at pH 7. These are lower potentials than required for NarGH nitrate reduction. The potentials required for Nap nitrate reduction are also likely to require ubiquinol/ubiquinone ratios higher than are needed to activate the H(+)-pumping oxidases expressed during aerobic growth where Nap levels are maximal. Thus the operational potentials of P. pantotrophus NapAB are consistent with a productive role in redox balancing. A Michaelis constant (K(M)) of approx. 45 muM was determined for NapAB nitrate reduction at pH 7. This is in line with studies on intact cells where nitrate reduction by Nap was described by a Monod constant (K(S)) of less than 15 muM. The voltammetric studies also disclosed maximal NapAB activity in a narrow window of potential. This behaviour is resistant to change of pH, nitrate concentration and inhibitor concentration and its possible mechanistic origins are discussed.

  11. Using variable rate irrigation to determine optimal irrigation schedule for aerobic rice production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because almost all U.S. rice is produced with flood irrigation, little information addresses irrigation scheduling for rice; however, successful production of rice without a continuous flood will require timely irrigation. A field study was conducted at the University of Missouri Fisher Delta Resear...

  12. IN VITRO CYTOTOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS IN BLUEGILL SUNFISH BF-2 CELLS

    EPA Science Inventory

    Toluene (methylbenzene) is a common environmental pollutant that is found in many hazardous waste sites and it is an aquifer contaminant. A concern is the potential risk to human and ecosystem health due to exposure to toluene and its major biotransformation products. The cytotox...

  13. Microbial community structure and pharmaceuticals and personal care products removal in a membrane bioreactor seeded with aerobic granular sludge.

    PubMed

    Xia, Zhao; Xiao-chun, Wang; Zhong-lin, Chen; Hao, Xu; Qing-fang, Zhang

    2015-01-01

    A process involving the use of membrane bioreactor seeded with aerobic granular sludge (GMBR) was applied to the treatment of sewage containing pharmaceuticals and personal care products (PPCPs). The removal effects of five kinds of medicines in the reactor were investigated, and the microbial communities were constructed by polymerase chain reaction and denaturing gradient gel electrophoresis. We also determined the effects of different sludge retention and hydraulic retention times (SRT and HRT, respectively) and influent organic loading on GMBR's efficiency in processing sewage containing PPCPs. The removal effects of the GMBR on five PPCPs varied. Using the GMBR, the removal rates of prednisolone, naproxen and norfloxacin were 98.56, 84.02 and 87.85%, respectively. The removal rates of sulfamethoxazole and ibuprofen were 77.83 and 63.32%, respectively. In the system, PPCP drugs had relatively less effect on microbial diversity. A certain succession was observed in the structural variation of microbial species in the GMBR. Microorganisms that can degrade PPCPs gradually accumulated, and antibiotic-resistant microorganisms, such as Firmicutes sp., Aeromonas sp. and Nitrospira sp., served a key function in the treatment of sewage containing antibiotics. Long SRT and HRT during the GMBR process can facilitate the removal of most PPCPs. The system efficiently removed PPCPs at high influent organic loading.

  14. Model-based scale-up methodology for aerobic fed-batch bioprocesses: application to polyhydroxybutyrate (PHB) production.

    PubMed

    Monsalve-Bravo, Gloria Milena; Garelli, Fabricio; Mozumder, Md Salatul Islam; Alvarez, Hernan; De Battista, Hernan

    2015-06-01

    This work presents a general model-based methodology to scale-up fed-batch bioprocesses. The idea behind this approach is to establish a dynamics hierarchy, based on a model of the process, that allows the designer to determine the proper scale factors as well as at which point of the fed-batch the process should be scaled up. Here, concepts and tools of linear control theory, such as the singular value decomposition of the Hankel matrix, are exploited in the context of process design. The proposed scale-up methodology is first described in a bioprocesses general framework highlighting its main features, key variables and parameters. Then, it is applied to a polyhydroxybutyrate (PHB) fed-batch bioreactor and compared with three empirical criteria, that are traditionally employed to determine the scale factors of these processes, showing the usefulness and distinctive features of this proposal. Moreover, this methodology provides theoretical support to a frequently used empirical rule: scale-up aerobic bioreactors at constant volumetric oxygen transfer coefficient. Finally, similar process dynamic behavior and PHB production set at the laboratory scale are predicted at the new operating scale, while it is also determined that is rarely possible to reproduce similar dynamic behavior of the bioreactor using empirical scale-up criteria.

  15. Energy conservation in alcohol production

    SciTech Connect

    Standiford, F.C.; Weimer, L.D.

    1983-01-01

    Explains how substantial energy savings can be achieved by integrating the distillation system into the slop concentrating evaporator of a fermentation plant. Presents diagram of a fully integrated system. Advantages of a combined system include considerable improvement in the energy balance of a fuel alcohol plant; concentration of alcohol in the feed becomes much less important; improvement in the recovery of alcohol in the feed; and it enables simpler stripping of alcohol from the fermented liquor. Such systems will reduce the net extra heat required for distillation from one-half to one-third that normally needed. The energy required for slop evaporation is slightly less than normally needed by a highly efficient vapor compression evaporator operating alone.

  16. Performance effects of 6 weeks of aerobic production training in junior elite soccer players.

    PubMed

    Ingebrigtsen, Jørgen; Shalfawi, Shaher A I; Tønnessen, Espen; Krustrup, Peter; Holtermann, Andreas

    2013-07-01

    This study investigates the performance effects of a 6-week biweekly anaerobic speed endurance production training among junior elite soccer players. Sixteen junior (age 16.9 ± 0.6 years) elite soccer players were tested in the Yo-Yo Intermittent Recovery test level 2 (IR2), 10-m and 35-m sprints, 7 × 35-m repeated-sprint ability (RSA) tests, countermovement jump and squat jump tests, and randomly assigned to either a control group (CG) performing their normal training schedule, which included 4 weekly soccer training sessions of approximately 90 minutes, or a training group performing anaerobic speed endurance production training twice weekly for 6 weeks in addition to their normal weekly schedule. We found that the intervention group significantly improved (p < 0.05) their performance in the Yo-Yo IR2 (63 ± 74 m) and 10-m sprint time (-0.06 ± 0.06 seconds). No significant performance changes were found in the CG. Between-group pretest to posttest differences were found for 10-m sprint times (p < 0.05). No significant changes were observed in the 35-m sprint times, RSA, or jump performances. These results indicate that short-term anaerobic production training is effective in improving acceleration and intermittent exercise performance among well-trained junior elite players.

  17. Thermophilic aerobic digestion process for producing animal nutrients and other digested products

    SciTech Connect

    Coulthard, T.L.; Townsley, P.M.; Saben, H.S.

    1981-09-29

    Waste materials are digested by thermophilic bacteria to produce single-cell protein and vitamin B12. The bacteria are contained in the waste and are not inoculated. Thus, a hog manure slurry containing 10% solids was stirred with aeration in an insulated reactor to allow the temperature to be maintained at greater than 55/sup 0/. The temperature was maintained at 55-65/sup 0/ and the dissolved O/sub 2/ concentration at 1.5-3 ppm for 6 days. After 10 days reaction, the product was fed to hogs as 10% of their nutrient supply with no apparent adverse effects.

  18. Worker productivity rises with energy efficiency

    SciTech Connect

    Romm, J.J. )

    1995-01-01

    Many American companies have found that saving energy and cutting pollution dramatically improves the bottom line. But beyond these gains, businesses that launch energy efficiency programs to save money are often astonished to discover unforeseen benefits: energy efficient lighting, heating, cooling, motors, and industrial processes can increase worker productivity, decrease absenteeism, and improve the quality of work performed. Profits created by the jump in worker productivity can exceed energy savings by a factor of ten. Energy efficiency and pollution prevention represent the next wave in manufacturing, following the quality revolution launched by the Japanese in the 1960s. Unless America leads the lean and clean revolution, economic health will be undermined as other countries develop clean processes and products and US companies suffer competitively. Also, developing countries will leapfrog their wasteful model and buy products and manufacturing processes from foreign firms already practicing lean and clean.

  19. Environmentally conscious alternative energy production

    SciTech Connect

    Kutz, M.

    2007-09-15

    This fourth volume of the series describes and compares the environmental and economic impacts of renewable and conventional power generation technologies. Chapter heading are: Economic comparisons of power generation technologies (Todd Nemec); Solar energy applications (Jan F. Kreider); Fuel cells (Matthew W. Mench); Geothermal resources and technology: an introduction (Peter D. Blair); Wind power generation (Todd Nemec); Cogeneration (Jerald Caton); Hydrogen energy (Elias K. Stefanakos, Yogi Goswami, S.S. Srinivasan, and J.T. Wolan); Clean power generation from coal (Prabir Basu and James Butler); and Using waste heat from power plants (Herbert A. Ingley). The chapter on clean coal power generation from coal has been abstracted separately on the Coal Abstracts database. 2 apps.

  20. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  1. Automatic control algorithm effects on energy production

    NASA Technical Reports Server (NTRS)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  2. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2016-07-12

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  3. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  4. Study on optimization of proportion between fermented liquid and traditional cultural medium of bioflocculant production and its flocculant performance considering the aerobic fermentation of rice straw as substrate.

    PubMed

    Zhao, Zhen; Wei, Li; Li, Chun-Ying; Wang, Zhe; Hu, Yi-Wen; Liu, Chang-Chao; Ma, Fang

    2014-11-01

    High cost of traditional culture medium of flocculant is the key element to limit the bioflocculant production. It's therefore much crucial to seek the economic production materials. In this research, part of the traditional culture medium of bioflocculant is replaced by the fermented liquid of rice straw to conduct the discussion on fermentation matching, optimization of fermentation condition and ability of flocculant production. The optimal proportion of aerobic saccharification liquid and traditional cultural medium of flocculant production is 1: 3. The flocculant rates of the economic culture medium of flocculant production are the highest, 65.49% and 71.24%, which are combined by 67d and 109d fermented saccharification liquid and the traditional cultural medium of flocculant production. The growth of flocculant production bacterium is in better situation for composite culture medium of flocculant production. The amount of bioflocculant is 40kg from per ton. The fermentation cost of flocculant saves by 25% comparing with the traditional culture medium. The simple aerobic fermentation technique opens up a new road for low-cost culture medium of flocculant production.

  5. Relighting for energy efficiency and productivity

    SciTech Connect

    Harris, L. ); Purcell, C.W. )

    1992-01-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  6. Relighting for energy efficiency and productivity

    SciTech Connect

    Harris, L.; Purcell, C.W.

    1992-10-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  7. Wastewater treatment as an energy production plant

    NASA Astrophysics Data System (ADS)

    Samela, Daniel A.

    The objective of this research was to investigate the potential for net energy production at a Wastewater Treatment Plant (WWTP). Historically, wastewater treatment plants have been designed with the emphasis on process reliability and redundancy; efficient utilization of energy has not received equal consideration. With growing demands for energy and increased budgetary pressures in funding wastewater treatment plant costs, methods of reducing energy consumption and operating costs were explored in a new and novel direction pointed towards energy production rather than energy consumption. To estimate the potential for net energy production, a quantitative analysis was performed using a mathematical model which integrates the various unit operations to evaluate the overall plant energy balance. Secondary treatment performance analysis is included to ensure that the energy evaluation is consistent with plant treatment needs. Secondary treatment performance was conducted for activated sludge, trickling filters and RBCs. The equations for the mathematical model were developed independently for each unit operation by writing mass balance equations around the process units. The process units evaluated included those for preliminary treatment, primary treatment, secondary treatment, disinfection, and sludge treatment. Based on an analysis of both energy reduction and energy recovery methods, it was shown that net energy production at a secondary WWTP is possible utilizing technologies available today. Such technologies include those utilized for plant operations, as well as for energy recovery. The operation of fuel cells using digester gas represents one of the most significant new opportunities for energy recovery at wastewater facilities. The analysis predicts that a trickling filter WWTP utilizing commercial phosphoric acid fuel cells to recover energy from digester gas can provide for facility energy needs and have both electrical and thermal energy available for

  8. Remediation of pharmaceuticals and personal care products using an aerobic granular sludge sequencing bioreactor and microbial community profiling using Solexa sequencing technology analysis.

    PubMed

    Zhao, Xia; Chen, Zhonglin; Wang, Xiaochun; Li, Jinchunzi; Shen, Jimin; Xu, Hao

    2015-03-01

    Recently, a new type of organic pollution derived from pharmaceuticals and personal care products (PPCPs) is gradually on the rise. Wastewater treatment to remove PPCPs was investigated using an aerobic granular sludge sequencing bioreactor (GSBR). After optimization of influent organic load, hydraulic shear stress, sludge settling time, etc., aerobic granular sludge was analyzed for its physiological and biochemical characteristics and tested for its efficacy to remove PPCPs wastewater. The granular sludge effectively removed some but not all of the PPCPs tested; removal correlated with the microbial profiles in the granules, as assessed using Solexa sequencing technology. Sequencing revealed the presence of five phylogenetic groups: Proteobacteria, Bacteroidetes, Betaproteobacteria, an unclassified genus, and Zoogloea. The results demonstrated changes in the microbial profiles with time in response to the presence of PPCPs. The effects of PPCPs on microbial communities in granular sludge process are discussed.

  9. Ethanol production: energy, economic, and environmental losses.

    PubMed

    Pimentel, David; Patzek, Tad; Cecil, Gerald

    2007-01-01

    The prime focus of ethanol production from corn is to replace the imported oil used in American vehicles, without expending more fossil energy in ethanol production than is produced as ethanol energy. In a thorough and up-to-date evaluation of all the fossil energy costs of ethanol production from corn, every step in the production and conversion process must be included. In this study, 14 energy inputs in average U.S. corn production are included. Then, in the fermentation/distillation operation, 9 more identified fossil fuel inputs are included. Some energy and economic credits are given for the by-products, including dried distillers grains (DDG). Based on all the fossil energy inputs, a total of 1.43 kcal fossil energy is expended to produced 1 kcal ethanol. When the energy value of the DDG, based on the feed value of the DDG as compared to that of soybean meal, is considered, the energy cost of ethanol production is reduced slightly, to 1.28 kcal fossil energy input per 1 kcal ethanol produced. Several proethanol investigators have overlooked various energy inputs in U.S. corn production, including farm machinery, processing machinery, and the use of hybrid corn. In other studies, unrealistic, low energy costs were attributed to such inputs as nitrogen fertilizer, insecticides, and herbicides. Controversy continues concerning the energy and economic credits that should be assigned to the by-products. The U.S. Department of Energy reports that 17.0 billion L ethanol was produced in 2005. This represents only less than 1% of total oil use in the U.S. These yields are based on using about 18% of total U.S. corn production and 18% of cornland. Because the production of ethanol requires large inputs of both oil and natural gas in production, the U.S. is importing both oil and natural gas to produce ethanol. Furthermore, the U.S. Government is spending about dollar 3 billion annually to subsidize ethanol production, a subsidy of dollar 0.79/L ethanol produced. With

  10. Microbial production of energy sources from biomass

    NASA Astrophysics Data System (ADS)

    Righelato, R. C.

    1980-02-01

    The biochemical options available for the microbial production of energy sources from biomass is reviewed and some of the technology available for microbial conversion is discussed with particular reference to present limitations and how they may be overcome. Attention is given to the chemical process of anaerobic fermentation emphasizing the chemical reaction of glucose into pyruvic acid. The capital costs and energy consumption of ethanol and methane and their production are discussed. It is concluded that anaerobic fermentation of carbohydrates and digestion of biomass-containing effluents can be used as methods for achieving greater energy availability.

  11. Production of a raw material for energy production in agriculture

    NASA Astrophysics Data System (ADS)

    Hellstroem, G.

    1980-04-01

    The total amount of energy in products produced by Swedish agriculture was estimated to 80 TWH: 30 TWh for cereals, 15 TWh for grass and leguminosae, and 35 TWh for straw and other agricultural wastes. Of this production a large part will be used as food even in the future. New plants that would produce more energy than the ones traditionally grown in Sweden are discussed. Also other types of energy from agriculture are discussed such as methane from manure, methanol from gasification processes, and ethanol from fermentative processes. Costs were estimated from different alternatives.

  12. A Fluorescence Approach to Assess the Production of Soluble Microbial Products from Aerobic Granular Sludge Under the Stress of 2,4-Dichlorophenol.

    PubMed

    Wei, Dong; Dong, Heng; Wu, Na; Ngo, Huu Hao; Guo, Wenshan; Du, Bin; Wei, Qin

    2016-04-14

    In this study, a fluorescence approach was used to evaluate the production of soluble microbial products (SMP) in aerobic granular sludge system under the stress of 2,4-dichlorophenol (2,4-DCP). A combined use of three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM), Parallel factor analysis (PARAFAC), synchronous fluorescence and two-dimensional correlation spectroscopy (2D-COS) were explored to respect the SMP formation in the exposure of different doses of 2,4-DCP. Data implied that the presence of 2,4-DCP had an obvious inhibition on biological nitrogen removal. According to EEM-PARAFAC, two fluorescent components were derived and represented to the presence of fulvic-like substances and humic-like substances in Component 1 and protein-like substances in Component 2. It was found from synchronous fluorescence that protein-like peak presented slightly higher intensity than that of fulvic-like peak. 2D-COS further revealed that fluorescence change took place sequentially in the following order: protein-like fraction > fulvic-like fraction. The obtained results could provide a potential application of fluorescence spectra in the released SMP assessment in the exposure of toxic compound during wastewater treatment.

  13. A Fluorescence Approach to Assess the Production of Soluble Microbial Products from Aerobic Granular Sludge Under the Stress of 2,4-Dichlorophenol

    PubMed Central

    Wei, Dong; Dong, Heng; Wu, Na; Ngo, Huu Hao; Guo, Wenshan; Du, Bin; Wei, Qin

    2016-01-01

    In this study, a fluorescence approach was used to evaluate the production of soluble microbial products (SMP) in aerobic granular sludge system under the stress of 2,4-dichlorophenol (2,4-DCP). A combined use of three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM), Parallel factor analysis (PARAFAC), synchronous fluorescence and two-dimensional correlation spectroscopy (2D-COS) were explored to respect the SMP formation in the exposure of different doses of 2,4-DCP. Data implied that the presence of 2,4-DCP had an obvious inhibition on biological nitrogen removal. According to EEM-PARAFAC, two fluorescent components were derived and represented to the presence of fulvic-like substances and humic-like substances in Component 1 and protein-like substances in Component 2. It was found from synchronous fluorescence that protein-like peak presented slightly higher intensity than that of fulvic-like peak. 2D-COS further revealed that fluorescence change took place sequentially in the following order: protein-like fraction > fulvic-like fraction. The obtained results could provide a potential application of fluorescence spectra in the released SMP assessment in the exposure of toxic compound during wastewater treatment. PMID:27075778

  14. Environmental consequences of energy production: Proceedings

    SciTech Connect

    none,

    1989-01-01

    The Seventeenth Annual Illinois Energy conference entitled Environmental consequences of Energy Production was held in Chicago, Illinois on October 19-20, 1989. The purpose of the meeting was to provide a forum for exchange of information on the technical, economic and institutional issues surrounding energy production and related environmental problems. The conference program was developed by a planning committee which included Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The conference included presentations on four major topic areas. The issue areas were: urban pollution: where are we now and what needs to be done in the future; the acid rain problem: implications of proposed federal legislation on the Midwest; global warming: an update on the scientific debate; and strategies to minimize environmental damage. Separate abstracts have been prepared for the individual presentations. (FL)

  15. Performance of sequential anaerobic/aerobic digestion applied to municipal sewage sludge.

    PubMed

    Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe

    2011-07-01

    A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed.

  16. Geothermal energy and the production of electricity

    NASA Astrophysics Data System (ADS)

    Varet, J.

    Geothermal production of electricity, about 2,500 MW throughout the world, is considered. The types of geothermal resources are reviewed. A geothermal field can be used for the production of electricity only if the layer, a porous and permeable stock located at depths of 500 and 1500 m, is carried by a magmatic source at high temperatures. Prospecting and development of high energy geothermal energy are discussed, including feasibility studies and the construction of electric power stations. Once the existence of a field is determined, exploitation can begin, consisting of drilling, steam collecting and purifying, and the construction of turboalternator power plants. An example, the Bouillante-Guadeloupe geothermal power station, is presented. Production sites across the globe are reviewed, and electrical energy costs are discussed.

  17. Electrorheology for energy production and conservation

    NASA Astrophysics Data System (ADS)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national

  18. Energy Production Demonstrator for Megawatt Proton Beams

    SciTech Connect

    Pronskikh, Vitaly S.; Mokhov, Nikolai V.; Novitski, Igor; Tyutyunnikov, Sergey I.

    2014-07-16

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

  19. Energy distribution among reaction products. IV.

    NASA Technical Reports Server (NTRS)

    Maylotte, D. H.; Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Use of an infrared chemiluminescence technique, called 'Method II,' or the 'method of arrested relaxation' to measure the distribution of energy among products of the Cl + HI and Cl + DI reactions. Preliminary results are also given for the Br + HI and Cl + HBr reactions. Instead of measuring vibrational relaxation, Method II attempts to arrest vibrational and rotational relaxation by the rapid removal of excited products at a cold surface.

  20. India's Fertilizer Industry: Productivity and Energy Efficiency

    SciTech Connect

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  1. Energy management analysis of lunar oxygen production

    NASA Technical Reports Server (NTRS)

    Fazzolari, R.; Wong-Swanson, B. G.

    1990-01-01

    Energy load models in the process of hydrogen reduction of ilmenite for lunar oxygen production are being developed. The load models will be used as a first step to ultimately determine the optimal energy system needed to supply the power requirements for the process. The goal is to determine the energy requirements in the process of hydrogen reduction of ilmenite to produce oxygen. The general approach is shown, and the objectives are to determine the energy loads of the processes in the system. Subsequent energy management studies will be made to minimize the system losses (irreversibilities) and to design optimal energy system power requirements. A number of processes are being proposed as possible candidates for lunar application and some detailed experimental efforts are being conducted within this project at the University of Arizona. Priorities are directed toward developing the energy models for each of the proposed processes being considered. The immediate goals are to identify the variables that would impact energy requirements and energy sources of supply.

  2. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  3. Energy from anaerobic methane production. [Sweden

    SciTech Connect

    Not Available

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  4. Reactors Save Energy, Costs for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  5. Beam Energy Calibration with Meson Production

    NASA Astrophysics Data System (ADS)

    Razen, B.; Betigeri, M. G.; Bojowald, J.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Foertsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Hawash, M.; Igel, S.; Ilieva, I.; Jahn, R.; Jarczyk, L.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, B. J.; Lippert, G.; Machner, H.; Magiera, A.; Maier, R.; Nann, H.; Plendl, H. S.; Protic, D.; Razen, B.; von Rossen, P.; Roy, B.; Siudak, R.; Smyrski, J.; Strzalkowski, A.; Tsenov, R.; Zolnierczuk, P. A.

    1998-11-01

    The magnetic spectrometer BIG KARL is used to get energy calibration fix-points for the external beam of COSY-Juelich. These fixpoints were obtained by measuring the meson-production reaction pp → dπ+ close to threshold and at the beam momentum, where the forward pions and the backward deuterons have the same momentum.

  6. Modeling microbial ethanol production by E. coli under aerobic/anaerobic conditions: applicability to real postmortem cases and to postmortem blood derived microbial cultures.

    PubMed

    Boumba, Vassiliki A; Kourkoumelis, Nikolaos; Gousia, Panagiota; Economou, Vangelis; Papadopoulou, Chrissanthy; Vougiouklakis, Theodore

    2013-10-10

    The mathematical modeling of the microbial ethanol production under strict anaerobic experimental conditions for some bacterial species has been proposed by our research group as the first approximation to the quantification of the microbial ethanol production in cases where other alcohols were produced simultaneously with ethanol. The present study aims to: (i) study the microbial ethanol production by Escherichia coli under controlled aerobic/anaerobic conditions; (ii) model the correlation between the microbial produced ethanol and the other higher alcohols; and (iii) test their applicability in: (a) real postmortem cases that had positive BACs (>0.10 g/L) and co-detection of higher alcohols and 1-butanol during the original ethanol analysis and (b) postmortem blood derived microbial cultures under aerobic/anaerobic controlled experimental conditions. The statistical evaluation of the results revealed that the formulated models were presumably correlated to 1-propanol and 1-butanol which were recognized as the most significant descriptors of the modeling process. The significance of 1-propanol and 1-butanol as descriptors was so powerful that they could be used as the only independent variables to create a simple and satisfactory model. The current models showed a potential for application to estimate microbial ethanol - within an acceptable standard error - in various tested cases where ethanol and other alcohols have been produced from different microbes.

  7. Accelerators for Inertial Fusion Energy Production

    NASA Astrophysics Data System (ADS)

    Bangerter, R. O.; Faltens, A.; Seidl, P. A.

    2014-02-01

    Since the 1970s, high energy heavy ion accelerators have been one of the leading options for imploding and igniting targets for inertial fusion energy production. Following the energy crisis of the early 1970s, a number of people in the international accelerator community enthusiastically began working on accelerators for this application. In the last decade, there has also been significant interest in using accelerators to study high energy density physics (HEDP). Nevertheless, research on heavy ion accelerators for fusion has proceeded slowly pending demonstration of target ignition using the National Ignition Facility (NIF), a laser-based facility at Lawrence Livermore National Laboratory. A recent report of the National Research Council recommends expansion of accelerator research in the US if and when the NIF achieves ignition. Fusion target physics and the economics of commercial energy production place constraints on the design of accelerators for fusion applications. From a scientific standpoint, phase space and space charge considerations lead to the most stringent constraints. Meeting these constraints almost certainly requires the use of multiple beams of heavy ions with kinetic energies > 1 GeV. These constraints also favor the use of singly charged ions. This article discusses the constraints for both fusion and HEDP, and explains how they lead to the requirements on beam parameters. RF and induction linacs are currently the leading contenders for fusion applications. We discuss the advantages and disadvantages of both options. We also discuss the principal issues that must yet be resolved.

  8. Energy and Angular Correlations of Fission Products

    NASA Astrophysics Data System (ADS)

    Peters, William; Smith, M. S.; Pain, S. D.; Febbraro, M.; Galindo-Uribarri, A.; Jones, K. L.; Smith, K.; Grzywacz, R.; Temanson, E.; Cizewski, J. A.

    2016-09-01

    Despite the discovery of fission nearly 80 years ago and its importance to nuclear energy, national security, and astrophysics; there are very few measurements that correlate multiple fission products. A proof-of-principle experiment is underway at Oak Ridge National Lab to measure the energy and angle correlation between prompt fission neutrons, gamma rays, and fragments in time-coincidence. The angular and energy spectrum of the prompt neutrons and /or gamma rays with respect to fragment mass, could reveal new details concerning the energy balance between these products and will be essential for benchmarking advanced fission models. An array of neutron and gamma-ray detectors is positioned opposite dual time-of-flight detectors and a total-energy detector to determine one fragment mass. Preliminary results from a spontaneous 252Cf source will be presented, along with plans for future improvements. Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy.

  9. Productive trends in India's energy intensive industries

    SciTech Connect

    Roy, J.; Sathaye, J.; Sanstad, A.; Mongia, P.; Schumacher, K.

    1999-07-01

    This paper reports on an analysis of productivity growth and input trends in six energy intensive sectors of the Indian economy, using growth accounting and econometric methods. The econometric work estimates rates and factor price biases of technological change using a translog production model with an explicit relationship defined for technological change. Estimates of own-price responses indicate that raising energy prices would be an effective carbon abatement policy for India. At the same time, the authors results suggest that, as with previous findings on the US economy, such policies in India could have negative long run effects on productivity in these sectors. Inter-input substitution possibilities are relatively weak, so that such policies might have negative short and medium term effects on sectoral growth. The authors study provides information relevant for the analysis of costs and benefits of carbon abatement policies applied to India and thus contributes to the emerging body of modeling and analysis of global climate policy.

  10. Hydrogen production through solar energy water electrolysis

    NASA Astrophysics Data System (ADS)

    Dini, D.

    Water electrolysis systems are seen as the principal means of producing a large amount of hydrogen in the future. Hydrogen energy production from direct solar energy conversion facilities located on the shores of oceans and lakes is discussed. The electrolysis interface is shown to be conveniently adapted to direct solar energy conversion; this, however, will depend on technical and economic feasibility aspects as they emerge from the research phases. The basic requirements for relatively immense solar collection areas for large-scale central conversion facilities, with widely variable electricity charges, are outlined. The operation of electrolysis and photovoltaic array combination is verified at various insolation levels. It is pointed out that solar cell arrays and electrolyzers are producing the expected results with solar energy inputs that are continuously varying.

  11. Muscle heat production and anaerobic energy turnover during repeated intense dynamic exercise in humans

    PubMed Central

    Krustrup, Peter; González-Alonso, José; Quistorff, Bjørn; Bangsbo, Jens

    2001-01-01

    The aim of the present study was to examine muscle heat production, oxygen uptake and anaerobic energy turnover throughout repeated intense exercise to test the hypotheses that (i) energy turnover is reduced when intense exercise is repeated and (ii) anaerobic energy production is diminished throughout repeated intense exercise. Five subjects performed three 3 min intense one-legged knee-extensor exercise bouts (EX1, EX2 and EX3) at a power output of 65 ± 5 W (mean ±s.e.m.), separated by 6 min rest periods. Muscle, femoral arterial and venous temperatures were measured continuously during exercise for the determination of muscle heat production. In addition, thigh blood flow was measured and femoral arterial and venous blood were sampled frequently during exercise for the determination of muscle oxygen uptake. Anaerobic energy turnover was estimated as the difference between total energy turnover and aerobic energy turnover. Prior to exercise, the temperature of the quadriceps muscle was passively elevated to 37.02 ± 0.12 °C and it increased 0.97 ± 0.08 °C during EX1, which was higher (P < 0.05) than during EX2 (0.79 ± 0.05 °C) and EX3 (0.77 ± 0.06 °C). In EX1 the rate of muscle heat accumulation was higher (P < 0.05) during the first 120 s compared to EX2 and EX3, whereas the rate of heat release to the blood was greater (P < 0.05) throughout EX2 and EX3 compared to EX1. The rate of heat production, determined as the sum of heat accumulation and release, was the same in EX1, EX2 and EX3, and it increased (P < 0.05) from 86 ± 8 during the first 15 s to 157 ± 7 J s−1 during the last 15 s of EX1. Oxygen extraction was higher during the first 60 s of EX2 and EX3 than in EX 1 and thigh oxygen uptake was elevated (P < 0.05) during the first 120 s of EX2 and throughout EX3 compared to EX1. The anaerobic energy production during the first 105 s of EX2 and 150 s of EX3 was lower (P < 0.05) than in EX1. The present study demonstrates that when intense exercise

  12. Target production for inertial fusion energy

    SciTech Connect

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of {approximately}16{cents} per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW{sub e} IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level.

  13. Geothermal energy production with supercritical fluids

    DOEpatents

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  14. Production of Energy Efficient Preform Structures (PEEPS)

    SciTech Connect

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  15. Photosynthetic pathway and biomass energy production.

    PubMed

    Marzola, D L; Bartholomew, D P

    1979-08-10

    The current interest in locating new or alternative sources of energy has focused attention on solar energy capture by crops that can be subsequently utilized as a substitute for fossil fuels. The very high productivity of sugarepane and the fact that it accumulates sugars that are directly fermentable to alcohol may have caused seemingly less productive crops to be overlooked. We show here that recoverable alcohol from achievable commercial yields of pineapple can actually equal that of sugarcane, with the pineapple crop requiring only a fraction of the water used by sugarcane. Pineapple is well adapted to the subhumid or semiarid tropics and thus is particularly well suited for exploiting large areas not now under cultivation with any crop of commercial value.

  16. Nanomaterials for renewable energy production and storage.

    PubMed

    Chen, Xiaobo; Li, Can; Grätzel, Michaël; Kostecki, Robert; Mao, Samuel S

    2012-12-07

    Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.

  17. Efficiency in energy production and consumption

    NASA Astrophysics Data System (ADS)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  18. Energy production with a tubular propeller turbine

    NASA Astrophysics Data System (ADS)

    Samora, I.; Hasmatuchi, V.; Münch-Alligné, C.; Franca, M. J.; Schleiss, A. J.; Ramos, H. M.

    2016-11-01

    Micro-hydropower is a way of improving the energetic efficiency of existent water systems. In the particular case of drinking water systems, several studies have showed that pressure reducing valves can be by-passed with turbines in order to recover the dissipated hydraulic energy to produce electricity. As conventional turbines are not always cost-effective for power under 20 kW, a new energy converter is studied. A five blade tubular propeller (5BTP), assessed through laboratorial tests on a reduced model with a diameter of 85 mm diameter and a maximal output power of 300 W, is addressed in this work. Having showed promising potential for further development, since global efficiencies of around 60% were observed, the turbine has been further used to estimate the potential for energy production in a real case study. A sub-grid of the drinking water system of the city of Lausanne, Switzerland, has been used to obtain an annual energy production through hourly simulations with several turbines.

  19. Food production and the energy crisis.

    PubMed

    Pimentel, D; Hurd, L E; Bellotti, A C; Forster, M J; Oka, I N; Sholes, O D; Whitman, R J

    1973-11-02

    The principal raw material of modern U.S. agriculture is fossil fuel, whereas the labor input is relatively small (about 9 hours per crop acre). As agriculture is dependent upon fossil energy, crop production costs will also soar when fuel costs increase two- to fivefold. A return of 2.8 kcal of corn per 1 kcal of fuel input may then be uneconomical. Green revolution agriculture also uses high energy crop production technology, especially with respect to fertilizers and pesticides. While one may not doubt the sincerity of the U.S. effort to share its agricultural technology so that the rest of the world can live and eat as it does, one must be realistic about the resources available to accomplish this mission. In the United States we are currently using an equivalent of 80 gallons of gasoline to produce an acre of corn. With fuel shortages and high prices to come, we wonder if many developing nations will be able to afford the technology of U.S. agriculture. Problems have already occurred with green revolution crops, particularly problems related to pests (57). More critical problems are expected when there is a world energy crisis. A careful assessment should be made of the benefits, costs, and risks of high energy-demand green revolution agriculture in order to be certain that this program will not aggravate the already serious world food situation (58). To reduce energy inputs, green revolution and U.S. agriculture might employ such alternatives as rotations and green manures to reduce the high energy demand of chemical fertilizers and pesticides. U.S. agriculture might also reduce energy expenditures by substituting some manpower currently displaced by mechanization. While no one knows for certain what changes will have to be made, we can be sure that when conventional energy resources become scarce and expensive, the impact on agriculture as an industry and a way of life will be significant. This analysis is but a preliminary investigation of a significant

  20. Validity of COSMED's quark CPET mixing chamber system in evaluating energy metabolism during aerobic exercise in healthy male adults.

    PubMed

    Nieman, David C; Austin, Melanie D; Dew, Dustin; Utter, Alan C

    2013-01-01

    This study validated the accuracy of COSMED's Quark cardiopulmonary exercise testing (CPET) metabolic mixing chamber system in measuring metabolic factors during maximal, graded exercise testing. Subjects included 32 physically active men between the ages of 18 and 34 years. During the first test session, subjects were measured for maximal oxygen consumption twice (15 min separation) with the CPET and Douglas bag systems (random order). During the second test session, subjects exercised through four stages of the Bruce treadmill protocol with measurement by the CPET and Douglas bag systems (random order) during steady state at the end of each 3-minute stage. Statistical analysis using a 2 (systems) x 5 (time) repeated measures ANOVA showed that the pattern of change in VO2, VCO2, VE, FeO2, FeCO2, and RER did not differ significantly between CPET and Douglas bag systems. This validation study indicates that the CPET mixing chamber system provides valid metabolic measurements that compare closely with the Douglas bag system during aerobic exercise.

  1. Diffractive hadron production at ultrahigh energies

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.

    2015-03-01

    Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q2{1-> 1} ˜ m2/ln;2s, q2{3-> 3} ˜ m2/ln;2s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor 1/4; initial state rescatterings result in additional factor 1/2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σinel/σtot → 0 at √ {s}->∞ in this mode.

  2. Biogas and energy production from cattle waste

    SciTech Connect

    Chakravarthi, J.

    1997-12-31

    Biomass is one of the longest used energy sources employed in human activity. The bioconversion of organic matter to biogas is a complex anaerobic fermentation process involving the action of microorganisms such as methane producing bacteria. In this paper, biogas and energy production from cattle waste is investigated. There are two significant reasons that motivate this study. First, treating animal waste with the technology of anaerobic digestion can reduce environmental pollution and generate a relatively cheap and easily available source of energy in dairy farms. The gas produced can be used for space and water heating of farm houses, cooking, lighting, grain drying and as a fuel for heating greenhouses during cold weather. It also has the potential to run other small industries. Second, it is an effective way of managing cattle waste as well as producing a quick acting, non-toxic fertilizer for agricultural use. A working model of biogas plant is studied in this paper and its economic value as an alternative energy source is examined. An alternative to direct generation of electricity, is to convert the methane from the biomass to methanol. Methanol is an excellent fuel for internal combustion engines and can easily compete with gasoline in many nations where gasoline costs over $4 per US gallon.

  3. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  4. Drell-Yan production at collider energies

    SciTech Connect

    Neerven, W.L. Van

    1995-07-01

    We present some results of the Drell-Yan cross sections d{sigma}/dm and {sigma}{sub tot} which includes the O ({alpha}{sub s}{sup 2}) contribution to the coefficient function. In particular we study the total cross section {sigma}{sub tot} for vector boson production and d{sigma}/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme ({bar M}S versus DIS) and the factorization scale.

  5. Hydrogen production from organic substrates in an aerobic nitrogen-fixing marine unicellular cyanobacterium Synechococcus sp. strain Miami BG 043511

    SciTech Connect

    Luo, Y.H.; Mitsui, A. )

    1994-11-20

    Synechococcus sp. strain Miami BG 043511 exhibits very high H[sub 2] photoproduction from water, but the H[sub 2] photo-production capability is lost rapidly with the age of the batch culture. The decrease of the capability coincides with the decrease of cellular glucose content. However, H[sub 2] photoproduction capability can be restored by the addition of organic substrates. Among 40 organic compounds tested, carbohydrates such as glucose, fructose, maltose, and sucrose were effective electron donors. Among organic acids tested, only pyruvate was an effective electron donor. Among alcohols tested, glycerol was a good electron donor, whereas ethanol was a poor but positive electron donor. These results demonstrate that this unicellular cyanobacterium exhibits a wide substrate specificity for H[sub 2] photoproduction but has a different substrate specificity compared to photosynthetic bacteria. The maximum rates of H[sub 2] photoproduction from a 6-day-old batch culture with 25 mmol of pyruvate, glucose, maltose, sucrose, fructose, and glycerol were 1.11, 0.62, 0.05, 0.47, 0.30, and 0.39 [mu]moles per mg cell dry weight per hour respectively. Therefore, this cyanobacterial strain may have a potential significance in removing organic materials from the wastewater and simultaneously transforming them to H[sub 2] gas, a pollution-free energy. The activity of nitrogenase, which catalyzes hydrogen production, completely disappeared when intracellular glucose was used up, but it could be restored by the addition of organic substrates such as glucose and pyruvate.

  6. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ..., U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies... Edwards, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Part 430 RIN 1904-AB57 Energy Efficiency Program for Consumer Products: Energy Conservation...

  7. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  8. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  9. Sequential anaerobic-aerobic degradation of indigenous PCBs in a contaminated soil matrix

    SciTech Connect

    Klasson, K.T.; Reeves, M.E.; Evans, B.S.; Dudley, C.A.

    1994-12-31

    Many industrial locations, including the US Department of Energy`s, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges; however, a practicable remediation technology has not yet been demonstrated. A biological treatment technology is likely to consist of an anaerobic fermentation step in which PCB dechlorination takes place producing PCBs with fewer chlorines. These products are then more susceptible to aerobic mineralization. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River and Woods Pond have been used to obtain anaerobic dechlorination of PCBs in soil slurry reactors. The anaerobic dechlorination was followed by qualitative estimation of the effect of aerobic fermentation of the dechlorination products based on literature data. The sequential anaerobic-(simulated) aerobic treatment constituted an improvement compared anaerobic treatment alone.

  10. Solar Energy - An Option for Future Energy Production

    ERIC Educational Resources Information Center

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  11. The effectiveness of aerobic training, cognitive behavioural therapy, and energy conservation management in treating MS-related fatigue: the design of the TREFAMS-ACE programme

    PubMed Central

    2013-01-01

    Background TREFAMS is an acronym for TReating FAtigue in Multiple Sclerosis, while ACE refers to the rehabilitation treatment methods under study, that is, Aerobic training, Cognitive behavioural therapy, and Energy conservation management. The TREFAMS-ACE research programme consists of four studies and has two main objectives: (1) to assess the effectiveness of three different rehabilitation treatment strategies in reducing fatigue and improving societal participation in patients with MS; and (2) to study the neurobiological mechanisms of action that underlie treatment effects and MS-related fatigue in general. Methods/Design Ambulatory patients (n = 270) suffering from MS-related fatigue will be recruited to three single-blinded randomised clinical trials (RCTs). In each RCT, 90 patients will be randomly allocated to the trial-specific intervention or to a low-intensity intervention that is the same for all RCTs. This low-intensity intervention consists of three individual consultations with a specialised MS-nurse. The trial-specific interventions are Aerobic Training, Cognitive Behavioural Therapy, and Energy Conservation Management. These interventions consist of 12 individual therapist-supervised sessions with additional intervention-specific home exercises. The therapy period lasts 16 weeks. All RCTs have the same design and the same primary outcome measures: fatigue - measured with the Checklist Individual Strength, and participation - measured with the Impact on Participation and Autonomy questionnaire. Outcomes will be assessed 1 week prior to, and at 0, 8, 16, 26 and 52 weeks after randomisation. The assessors will be blinded to allocation. Pro- and anti-inflammatory cytokines in serum, salivary cortisol, physical fitness, physical activity, coping, self-efficacy, illness cognitions and other determinants will be longitudinally measured in order to study the neurobiological mechanisms of action. Discussion The TREFAMS-ACE programme is unique in its aim to

  12. Renewable energy for productive uses in Mexico

    SciTech Connect

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a line item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.

  13. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  14. Microoxic Niches within the Thylakoid Stroma of Air-Grown Chlamydomonas reinhardtii Protect [FeFe]-Hydrogenase and Support Hydrogen Production under Fully Aerobic Environment1[OPEN

    PubMed Central

    Liran, Oded; Milrad, Yuval; Eilenberg, Haviva; Weiner, Iddo

    2016-01-01

    Photosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen. Using membrane inlet mass spectrometry, 18O2 isotope, and various inhibitors, we were able to dissect the various oxygen uptake mechanisms. We found that both chlororespiration, catalyzed by plastid terminal oxidase, and Mehler reactions, catalyzed by photosystem I and Flavodiiron proteins, significantly contribute to oxygen uptake rate. This rate is considerably enhanced with increasing light, thus forming local anaerobic niches at the proximity of the stromal face of the thylakoid membrane. Furthermore, we found that in transition to high light, the hydrogen production rate is significantly enhanced for a short duration (100 s), thus indicating that [FeFe]-hydrogenase functions as an immediate sink for surplus electrons in aerobic as well as in anaerobic environments. In summary, we show that an anaerobic locality in the chloroplast preserves [FeFe]-hydrogenase activity and supports continuous hydrogen production in air-grown microalgal cells. PMID:27443604

  15. Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men.

    PubMed

    Douglas, Jessica A; King, James A; McFarlane, Ewan; Baker, Luke; Bradley, Chloe; Crouch, Nicole; Hill, David; Stensel, David J

    2015-09-01

    Single bouts of exercise do not cause compensatory changes in appetite, food intake or appetite regulatory hormones on the day that exercise is performed. It remains possible that such changes occur over an extended period or in response to a higher level of energy expenditure. This study sought to test this possibility by examining appetite, food intake and appetite regulatory hormones (acylated ghrelin, total peptide-YY, leptin and insulin) over two days, with acute bouts of exercise performed on each morning. Within a controlled laboratory setting, 15 healthy males completed two, 2-day long (09:00-16:00) experimental trials (exercise and control) in a randomised order. On the exercise trial participants performed 60 min of continuous moderate-high intensity treadmill running (day one: 70.1 ± 2.5% VO2peak, day two: 70.0 ± 3.2% VO2max (mean ± SD)) at the beginning of days one and two. Across each day appetite perceptions were assessed using visual analogue scales and appetite regulatory hormones were measured from venous blood samples. Ad libitum energy and macronutrient intakes were determined from meals provided two and six hours into each day and from a snack bag provided in-between trial days. Exercise elicited a high level of energy expenditure (total = 7566 ± 635 kJ across the two days) but did not produce compensatory changes in appetite or energy intake over two days (control: 29,217 ± 4006 kJ; exercise: 28,532 ± 3899 kJ, P > 0.050). Two-way repeated measures ANOVA did not reveal any main effects for acylated ghrelin or leptin (all P > 0.050). However a significant main effect of trial (P = 0.029) for PYY indicated higher concentrations on the exercise vs. control trial. These findings suggest that across a two day period, high volume exercise does not stimulate compensatory appetite regulatory changes.

  16. Aerobic response to exercise of the fastest land crab.

    PubMed

    Full, R J; Herreid, C F

    1983-04-01

    To view the aerobic response to exercise, the ghost crab Ocypode guadichaudii was run in a treadmill respirometer at three velocities (0.13, 0.19, and 0.28 km/h) while oxygen consumption (VO2) was monitored. A steady-state VO2 that increased linearly with velocity was attained. VO2 transient periods at the beginning and end of exercise were extremely rapid with half times from 50 to 150 s. The magnitude of oxygen deficit and debt were small and both showed increases with an increase in velocity. Oxygen debt was measured at each velocity after 4-, 10-, and 20-min exercise bouts. No change in the magnitude of oxygen debt was observed with respect to exercise duration. Maximal VO2 was 11.9 times the average resting VO2. Oxygen uptake kinetics have shown only very sluggish and reduced rates in five other more sedentary crab species previously tested. The aerobic response pattern observed in the present study is more comparable to that of exercising mammals and highly aerobic ectothermic vertebrates. This suggests that the ghost crab meets the energy demand of sustained exercise by aerobic ATP production in contrast to many other crab species.

  17. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  18. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  19. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  20. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  1. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  2. Net energy analysis of alcohol production from sugarcane

    SciTech Connect

    Hopkinson, C.S. Jr.; Day, J.W. Jr.

    1980-01-18

    Energy requirements were calculated for the agricultural and the industrial phase of ethyl alcohol production from sugarcane grown in Louisiana. Agricultural energy requirements comprised 54% of all energy inputs, with machinery, fuel, and nitrogen fertilizer representing most of the energy subsidies. Overall net energy benefits (output:input) for alcohol production ranged from 1.8:1 to 0.9:1 depending on whether crop residues or fossil fuels were used for industrial processes.

  3. 78 FR 72533 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... / Tuesday, December 3, 2013 / Rules and Regulations#0;#0; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AD08 Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Final rule;...

  4. Technical support document: energy use projections for four consumer products

    SciTech Connect

    Not Available

    1985-03-01

    This report summarizes an investigation conducted to forecast the amount of energy savings which could be attributed to energy efficiency standards for four consumer products as well as to determine the economic impact of such standards on consumers. The four consumer products are dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers. Energy savings were forecasted for two levels of energy efficiency standards. Since the standard levels selected were greater than the energy efficiency at the minimum life cycle point, energy efficiency standards could result in increased life cycle costs for all four products. Sensitivity analyses were conducted to determine the effect that different projections of consumer purchasing behavior during a no-standards scenario would have on the forecasts of energy savings. Standards for the four products probably would not result in significant conservation of energy. The economic impact of such standards could result in higher first costs and increased life cycle costs for all four products.

  5. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  6. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  7. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  8. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  9. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  10. Proteomic analysis reveals perturbed energy metabolism and elevated oxidative stress in hearts of rats with inborn low aerobic capacity

    PubMed Central

    Burniston, Jatin G.; Kenyani, Jenna; Wastling, Jonathan M.; Burant, Charles F.; Qi, Nathan R.; Koch, Lauren G.; Britton, Steven L.

    2012-01-01

    Selection on running capacity has created rat phenotypes of high capacity runners (HCR) that have enhanced cardiac function and low capacity runners (LCR) that exhibit risk factors of metabolic syndrome. We analysed hearts of HCR and LCR from generation 22 of selection using DIGE and identified proteins from MS database searches. The running capacity of HCR was 6-fold greater than LCR. DIGE resolved 957 spots and proteins were unambiguously identified in 369 spots. Protein expression profiling detected 67 statistically significant (P<0.05; false discovery rate <10 %, calculated using q-values) differences between HCR and LCR. Hearts of HCR rats exhibited robust increases in the abundance of each enzyme of the beta-oxidation pathway. In contrast, LCR hearts were characterised by the modulation of enzymes associated with ketone body or amino acid metabolism. LCR also exhibited enhanced expression of antioxidant enzymes such as catalase and greater phosphorylation of alpha B-crystallin at serine 59, which is a common point of convergence in cardiac stress signalling. Thus proteomic analysis revealed selection on low running capacity is associated with perturbations in cardiac energy metabolism and provided the first evidence that the LCR cardiac proteome is exposed to greater oxidative stress. PMID:21751351

  11. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  12. Effects of ingesting JavaFit Energy Extreme functional coffee on aerobic and anaerobic fitness markers in recreationally-active coffee consumers.

    PubMed

    Roberts, Michael D; Taylor, Lemuel W; Wismann, Jennifer A; Wilborn, Colin D; Kreider, Richard B; Willoughby, Darryn S

    2007-12-08

    The purpose of this study was to examine the effects of ingesting JavaFittrade mark Energy Extreme (JEE) on aerobic and anaerobic performance measures in recreationally-active male and female coffee drinkers. Five male (27.6 +/- 4.2 yrs, 93.2 +/- 11.7 kg, 181.6 +/- 6.9 cm) and five female (29 +/- 4.6 yrs, 61.5 +/- 9.2 kg, 167.6 +/- 6.9 cm) regular coffee drinkers (i.e., 223.9 +/- 62.7 mg.d-1 of caffeine) participated in this study. In a cross-over, randomized design, participants performed a baseline (BASELINE) graded treadmill test (GXT) for peak VO2 assessment and a Wingate test for peak power. Approximately 3-4 d following BASELINE testing, participants returned to the lab for the first trial and ingested 354 ml of either JEE or decaffeinated coffee (DECAF), after which they performed a GXT and Wingate test. Criterion measures during the GXT included an assessment of peakVO2 at maximal exercise, as well as VO2 at 3 minutes and 10 minutes post-exercise. Additionally, time-to-exhaustion (TTE), maximal RPE, mean heart rate (HR), mean systolic pressure (SBP), and mean diastolic blood pressure (DBP) were measured during each condition. Criterion measures for the Wingate included mean HR, SBP, DBP, peak power, and time to peak power (TTP). Participants then returned to the lab approximately one week later to perform the second trial under the same conditions as the first, except consuming the remaining coffee. Data were analyzed using a one way ANOVA (p < 0.05). Our results indicate that JEE significantly increased VO2 at 3 minutes post-exercise when compared to BASELINE (p = 0.04) and DECAF (p = 0.02) values, which may be beneficial in enhancing post-exercise fat metabolism.

  13. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.

    PubMed

    Mortensen, Stefan P; González-Alonso, José; Damsgaard, Rasmus; Saltin, Bengt; Hellsten, Ylva

    2007-06-01

    Prostaglandins, nitric oxide (NO) and endothelial-derived hyperpolarizing factors (EDHFs) are substances that have been proposed to be involved in the regulation of skeletal muscle blood flow during physical activity. We measured haemodynamics, plasma ATP at rest and during one-legged knee-extensor exercise (19 +/- 1 W) in nine healthy subjects with and without intra-arterial infusion of indomethacin (Indo; 621 +/- 17 microg min(-1)), Indo + N(G)-monomethyl-L-arginine (L-NMMA; 12.4 +/- 0.3 mg min(-1)) (double blockade) and Indo + L-NMMA + tetraethylammonium chloride (TEA; 12.4 +/- 0.3 mg min(-1)) (triple blockade). Double and triple blockade lowered leg blood flow (LBF) at rest (P<0.05), while it remained unchanged with Indo. During exercise, LBF and vascular conductance were 2.54 +/- 0.10 l min(-1) and 25 +/- 1 mmHg, respectively, in control and they were lower with double (33 +/- 3 and 36 +/- 4%, respectively) and triple (26 +/- 4 and 28 +/- 3%, respectively) blockade (P<0.05), while there was no difference with Indo. The lower LBF and vascular conductance with double and triple blockade occurred in parallel with a lower O(2) delivery, cardiac output, heart rate and plasma [noradrenaline] (P<0.05), while blood pressure remained unchanged and O(2) extraction and femoral venous plasma [ATP] increased. Despite the increased O(2) extraction, leg was 13 and 17% (triple and double blockade, respectively) lower than control in parallel to a lower femoral venous temperature and lactate release (P<0.05). These results suggest that NO and prostaglandins play important roles in skeletal muscle blood flow regulation during moderate intensity exercise and that EDHFs do not compensate for the impaired formation of NO and prostaglandins. Moreover, inhibition of NO and prostaglandin formation is associated with a lower aerobic energy turnover and increased concentration of vasoactive ATP in plasma.

  14. Effects of ingesting JavaFit Energy Extreme functional coffee on aerobic and anaerobic fitness markers in recreationally-active coffee consumers

    PubMed Central

    Roberts, Michael D; Taylor, Lemuel W; Wismann, Jennifer A; Wilborn, Colin D; Kreider, Richard B; Willoughby, Darryn S

    2007-01-01

    The purpose of this study was to examine the effects of ingesting JavaFit™ Energy Extreme (JEE) on aerobic and anaerobic performance measures in recreationally-active male and female coffee drinkers. Five male (27.6 ± 4.2 yrs, 93.2 ± 11.7 kg, 181.6 ± 6.9 cm) and five female (29 ± 4.6 yrs, 61.5 ± 9.2 kg, 167.6 ± 6.9 cm) regular coffee drinkers (i.e., 223.9 ± 62.7 mg·d-1 of caffeine) participated in this study. In a cross-over, randomized design, participants performed a baseline (BASELINE) graded treadmill test (GXT) for peak VO2 assessment and a Wingate test for peak power. Approximately 3–4 d following BASELINE testing, participants returned to the lab for the first trial and ingested 354 ml of either JEE or decaffeinated coffee (DECAF), after which they performed a GXT and Wingate test. Criterion measures during the GXT included an assessment of peakVO2 at maximal exercise, as well as VO2 at 3 minutes and 10 minutes post-exercise. Additionally, time-to-exhaustion (TTE), maximal RPE, mean heart rate (HR), mean systolic pressure (SBP), and mean diastolic blood pressure (DBP) were measured during each condition. Criterion measures for the Wingate included mean HR, SBP, DBP, peak power, and time to peak power (TTP). Participants then returned to the lab approximately one week later to perform the second trial under the same conditions as the first, except consuming the remaining coffee. Data were analyzed using a one way ANOVA (p < 0.05). Our results indicate that JEE significantly increased VO2 at 3 minutes post-exercise when compared to BASELINE (p = 0.04) and DECAF (p = 0.02) values, which may be beneficial in enhancing post-exercise fat metabolism. PMID:18067677

  15. 78 FR 16443 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC87 Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans and Ceiling Fan Light Kits AGENCY: Office of Energy Efficiency and... process to consider amending the energy conservation standards for ceiling fans and ceiling fan light...

  16. Aerobic Physical Activity and the Leadership of Principals

    ERIC Educational Resources Information Center

    Kiser, Kari

    2016-01-01

    The purpose of this study was to explore if there was a connection between regular aerobic physical activity and the stress and energy levels of principals as they reported it. To begin the research, the current aerobic physical activity level of principals was discovered. Additionally, the energy and stress levels of the principals who do engage…

  17. Coal production and energy fact in Turkey

    SciTech Connect

    Sensogut, C.; Oren, O.

    2009-07-01

    Energy is an important input for manufacturing plants and serves human beings to improve their level of development. However, as a person living in this society, each of us is getting anxious since the external dependence on the side of energy increases. In order to handle the deficiencies, which may occur in the near future, it is necessary to look into today's energy policies. In doing so, coal should be kept in mind as a respectful actor.

  18. Energy productivity in the industrial sector: an econometric analysis

    SciTech Connect

    Roop, J.M.

    1983-01-01

    Energy productivity and energy intensity within the industrial sector of the economy are examined. Results suggest that relative prices and other economic factors can explain much of the variation in both energy productivity and energy intensity for manufacturing and mining and for the industrial sector as a whole. Cyclical factors, seasonal factors and trend variables are also useful in explaining variation in these data, both for annual and monthly time series. Of the variables examined, it appears that the relative price of energy is a highly significant factor in accounting for the difference between actual industrial energy intensity and that which might have been expected had pre-1973 trends continued.

  19. Ionic liquid-based green processes for energy production.

    PubMed

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production.

  20. The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production.

    PubMed

    Aklujkar, Muktak; Prince, Roger C; Beatty, J Thomas

    2005-05-15

    A conserved orf of previously unknown function (herein designated as puhE) is located 3' of the reaction centre H (puhA) gene in purple photosynthetic bacteria, in the order puhABCE in Rhodobacter capsulatus. Disruptions of R. capsulatus puhE resulted in a long lag in the growth of photosynthetic cultures inoculated with cells grown under high aeration, and increased the level of the peripheral antenna, light-harvesting complex 2 (LH2). The amount of the photosynthetic reaction centre (RC) and its core antenna, light-harvesting complex 1 (LH1), was reduced; however, there was no decrease in expression of a lacZ reporter fused to the puf (RC and LH1) promoter, in RC assembly in the absence of LH1, or in LH1 assembly in the absence of the RC. In strains that lack LH2, disruption of puhE increased the in vivo absorption at 780 nm, which we attribute to excess bacteriochlorophyll a (BChl) pigment production. This effect was seen in the presence and absence of PufQ, a protein that stimulates BChl biosynthesis. Expression of puhE from a plasmid reduced A(780) production in puhE mutants. We suggest that PuhE modulates BChl biosynthesis independently of PufQ, and that the presence of excess BChl in PuhE(-)LH2(+) strains results in excess LH2 assembly and also interferes with the adaptation of cells during the transition from aerobic respiratory to anaerobic photosynthetic growth.

  1. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-12-01

    Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.

  2. Energy conservation and production in a packed-bed anaerobic bioreactor

    SciTech Connect

    Pit, W.W. Jr.; Genung, R.K.

    1980-01-01

    Oak Ridge National Laboratory (ORNL) is developing an energy-conserving/ producing wastewater treatment system based on a fixed-film anaerobic bioreactor. The treatment process is based on passing wastewaters upward through the bioreactor for continuous treatment by gravitational settling, biophysical filtration and biological decomposition. A two-year pilot-plant project using a bioreactor designed to treat 5000 gpd has been conducted using raw wastewater on a municipal site in Oak Ridge, Tennessee. Data obtained for the performance of the bioreactor during this project have been analyzed by ORNL and Associated Water and Air Resources Engineers (AWARE), Inc. of Nashville, Tennessee. From these analyses it was estimated that hydraulic loading rates of 0.25 gpm/ft/sup 2/ and hydraulic residence times of 10 hours could be used in designing such bioreactors for the secondary treatment of municipal wastewaters. Conceptual designs for total treatment systems processing up to one million gallons of wastewater per day were developed based on the performance of the pilot plant bioreactor. These systems were compared to activated sludge treatment systems also operating under secondary treatment requirements and were found to consume as little as 30% of the energy required by the activated sludge systems. Economic advantages of the process result from the elimination of operating energy requirements associated with the aeration of aerobic-based processes and with the significant decrease of sludge-handling costs required with conventional activated sludge treatment systems.Furthermore, methane produced by anaerobic fermentation processes occurring during the biological decomposition of carbonaceous wastes also represented a significant and recoverable energy production. For dilute municipal wastewaters this would completely offset the remaining energy required for treatment, while for concentrated industrial wastewater would result in a net production of energy.

  3. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication.

    PubMed

    Jiang, Bo; Liu, Yu

    2013-06-01

    Aerobic granules are dense and compact microbial aggregates with various bacterial species. Recently, aerobic granulation technology has been extensively explored for treatment of municipal and industrial wastewaters. However, little information is currently available with regard to their structure stability and integrity at levels of energy metabolism and cell communication. In the present study, a typical chemical uncoupler, 3,3',4',5-tetrachlorosalicylanilide with the power to dissipate proton motive force and subsequently inhibit adenosine triphosphate (ATP) generation, was used to investigate possible roles of ATP and cell communication in maintaining the structure stability and integrity of aerobic granules. It was found that inhibited ATP synthesis resulted in the reduced production of autoinducer-2 and N-acylhomoserine lactones essential for cell communication, while lowered extracellular polymeric substance (EPS) production was also observed. As a consequence, aerobic granules appeared to break up. This study showed that ATP-dependent quorum sensing and EPS were essential for sustaining the structure stability and integrity of aerobic granules.

  4. Analysis of Federal incentives used to stimulate energy production

    SciTech Connect

    Cone, B.W.; Brenchley, D.L.; Brix, V.L.

    1980-02-01

    Solar energy's share in the national energy budget has caused policy makers to speculate on the reasons for the large difference between present and potential use. Complex technical, economic, legal, institutional, and political interrelationships appear and an attempt is made to present an understanding of that relationship and to enhance the design of solar energy policy. Federal incentives that have been previously used on other energy sources are examined and the report identifies, quantifies, and analyzes such incentives and relates them to current thought about solar energy. The chapters presented are: A Theoretical Approach to Analyzing Incentives for Energy Production; Generic Analysis of Energy Incentives; Nuclear Energy Incentives; Hydroenergy Incentives; Coal Energy Incentives; Oil Energy Incentives; Natural Gas Energy Incentives; and Electricity. Conclusions with respect to solar energy policy for each of these are summed. (MCW)

  5. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  6. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect

    Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

    2010-08-24

    This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

  7. Removal of Total Coliforms, Thermotolerant Coliforms, and Helminth Eggs in Swine Production Wastewater Treated in Anaerobic and Aerobic Reactors

    PubMed Central

    Zacarias Sylvestre, Silvia Helena; Lux Hoppe, Estevam Guilherme; de Oliveira, Roberto Alves

    2014-01-01

    The present work evaluated the performance of two treatment systems in reducing indicators of biological contamination in swine production wastewater. System I consisted of two upflow anaerobic sludge blanket (UASB) reactors, with 510 and 209 L in volume, being serially arranged. System II consisted of a UASB reactor, anaerobic filter, trickling filter, and decanter, being also organized in series, with volumes of 300, 190, 250, and 150 L, respectively. Hydraulic retention times (HRT) applied in the first UASB reactors were 40, 30, 20, and 11 h in systems I and II. The average removal efficiencies of total and thermotolerant coliforms in system I were 92.92% to 99.50% and 94.29% to 99.56%, respectively, and increased in system II to 99.45% to 99.91% and 99.52% to 99.93%, respectively. Average removal rates of helminth eggs in system I were 96.44% to 99.11%, reaching 100% as in system II. In reactor sludge, the counts of total and thermotolerant coliforms ranged between 105 and 109 MPN (100 mL)−1, while helminth eggs ranged from 0.86 to 9.27 eggs g−1 TS. PMID:24812560

  8. Two-stage process combines anaerobic and aerobic methods

    SciTech Connect

    Kayhanian, M.; Lindenauer, K.; Hardy, S.; Tchobanoglous, G.

    1991-03-01

    The organic fraction of the material diverted from landfills has potential to be utilized as a raw material to be recycled, used for the production of compost, converted to energy in waste-to-energy facilities, or used for the production of other end products. Given the uncertainties concerning the future availability, production costs, and market prices for conventional fuels, any potential source of alternate energy and alternative energy technologies deserve serious consideration. Faced with an uncertain energy future, several European countries have already started using biomass and MSW as a source of energy. An innovative high-solids anaerobic digestion/aerobic composting process currently under investigation at the University of California, Davis is as an ideal candidate for processing a large fraction of the organic matter in MSW. The principal advantages of this innovative process which is described and discussed in this paper are: (1) the recovery of biogas that can be used as a fuel for the production of energy, and (2) the production of humus-like material that can be used as a high-quality soil amendment or as boiler fuel. The fact that a liquid waste stream that needs further treatment is not generated in this process is another significant advantage.

  9. Hydrothermal energy: a source of energy for alcohol production

    SciTech Connect

    Stiger, R.R.

    1980-01-01

    A small scale (1 gal/hr) biomass-to-alcohol still was built at the Raft River Geothermal Site to investigate difficulties in geothermal assisted biomass conversion. The unit was successfully operated, producing 95% (190 proof) ethanol from sugar beet juice. The unit was designed and built in less than eight weeks from surplus equipment using commercially available design information. This small-scale still demonstrated that 95% ethanol can be produced from sugar beet beer containing 8 to 10% alcohol using geothermal energy and present commercial technology. The geothermal resource provided both an energy source and process water. Recently, Bechtel National, Incorporated, of San Francisco, California completed a study to analyze the economic feasibility of producing ethanol from potatoes, wheat, and sugar beets using geothermal resources available in the Raft River Region of Idaho. The study concluded that a 20 million gallon per year facility can be built that will supply alcohol at $1.78 per gallon using geothermal energy. (MHR)

  10. Water-Energy Nexus: the case of biogas production from energy crops evaluated by Water Footprint and LCA methods

    NASA Astrophysics Data System (ADS)

    Pacetti, Tommaso; Caporali, Enrica; Federici, Giorgio

    2015-04-01

    This study analyzes the production of biogas from aerobic digestion of energy crops. The production of biogas is an important case study because its spread, similar to other sources of bioenergy, creates questions about the environmental effects, the competition in the food market as well as the progressive change of land use. In particular is hereby analyzed the nexus between bioenergy production and water, which plays a key role because water resources are often the limiting factor in energy production from energy crops. The environmental performances of biogas production were analyzed through Water Footprint (WF) and Life cycle assessment (LCA): the integration of LCA and WF represents an attempt of taking advantage of their complementary strengths in environmental assessment, trying to give a comprehensive analysis of bioenergy production sustainability. Eighteen scenarios were considered, trying to figure out the performances of different combinations of locations (north, center, south Italy), crops (maize, sorghum, wheat) and treatments (anaerobic digestion with water dilution or manure co-digestion). WF assessment shows that cultivation phase is the most impacting on water resource use along the entire system life cycle. In particular, water requirements for crop growth shows that sorghum is the more water saver crop (in terms of consumptive water use to produce the amount of crop needed to produce 1 GJ of biogas energy content). Moreover WF investigates the kind of water use and shows that wheat, despite being the most intensive water user, exploits more green water than the other crops.WF was evaluated with respect to water stress indicators for the Italian territory, underlining the higher criticalities associated with water use in southern Italy and identifying consumptive blue water use, in this area, as the main hotspot. Therefore biogas production from energy crops in southern Italy is unsustainable from a water management perspective. At a basin

  11. The Energy Relationships of Corn Production and Alcohol Fermentation.

    ERIC Educational Resources Information Center

    Van Koevering, Thomas E.; And Others

    1987-01-01

    Proposes that the production of alcohol from corn be used as a practical application of scientific principles that deal with energy transformations. Discusses the solar energy available for growth, examining the utilization of solar energy by plants. Describes the conversion of corn to alcohol, with suggestions for classroom and laboratory study.…

  12. Alfalfa -- a sustainable crop for biomass energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  13. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  14. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-08-01

    Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.

  15. 78 FR 77019 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... Part 430 RIN 1904-AD08 Energy Conservation Program: Energy Conservation Standards for Certain Consumer... the Energy Policy and Conservation Act of 1975 (EPCA or ``the Act'') (42 U.S.C. 6291-6309, as codified), which provides for an energy conservation program for consumer products other than automobiles, and...

  16. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... measurement of the estimated annual operating costs or other measures of energy consumption for certain... that the estimated annual operating costs of a covered product be calculated from measurements of...: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency and Renewable Energy,...

  17. 77 FR 24940 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... measurement of the estimated annual operating costs or other measures of energy consumption for certain... that the estimated annual operating costs of a covered product be calculated from measurements of...: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency and Renewable Energy,...

  18. 78 FR 25626 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Ceiling Fans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC87 Energy Conservation Program for Consumer Products: Energy Conservation Standards... and invite comments on the Framework Document regarding energy conservation standards for...

  19. Energy Star{reg{underscore}sign} label for roof products

    SciTech Connect

    Schmeltz, R.S.; Bretz, S.E.

    1998-07-01

    Home and buildings owners can save up to 40% of cooling energy costs by installing reflective roofs, especially in hot and sunny climates. The increase in exterior albedo and subsequent decrease in heat flow across the building envelope reduces the energy requirements to maintain air-conditioned space. Indirectly, the increase in overall albedo of a community as these roofs are installed in a large fraction of the buildings results in lower ambient air temperature and less need for air conditioning. Another indirect effect is a decrease in smog formation due to lower ambient air temperatures and less air pollution from power plants because of minimized electrical demand and use. The US Environmental Protection Agency and the US Department of Energy are currently developing the Energy Star Roof Products Program to create a vibrant market for energy-efficient, cost-effective roof materials through the widespread availability of products, clear recognition of the benefits by consumers, and active promotion of products by manufacturers. Several activities, including pilot procurements of room materials, and the development of outreach and training materials, will be performed to assist the transformation of the roofing market toward more energy-efficient products. Using the experiences gained in establishing the Energy Star Roof Products Program as an example, this paper will discuss the barriers to the development of energy-efficient roofing practices, program implementation, and program successes. This paper will further describe the specifics of the Energy Star Roof Products Program, its goals, benefits, activities, and timeframe.

  20. Energy transfer of nucleic acid products

    NASA Astrophysics Data System (ADS)

    Jung, Paul M.; Hu, Hsiang-Yun; Khalil, Omar S.

    1995-04-01

    Fluorescence energy transfer was investigated as a homogeneous detection method for the gapped ligase chain reaction (G-LCR). Oligonucleotides of a Chlamydia trachomatic G-LCR probe set were labeled with fluorescein as the donor and Texas Red as the acceptor fluorophore. Amplification and detection of 10 molecules of synthetic target was demonstrated in spiked urine samples.

  1. Sustainable Production of Switchgrass for Biomass Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  2. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    SciTech Connect

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  3. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  4. Aerobic production of isoamyl acetate by overexpression of the yeast alcohol acetyl-transferases AFT1 and AFT2 in Escherichia coli and using low-cost fermentation ingredients.

    PubMed

    Singh, R; Vadlani, P V; Harrison, M L; Bennett, G N; San, K-Y

    2008-06-01

    Isoamyl acetate, produced via fermentation, is a natural flavor chemical with applications in the food industry. Two alcohol acetyltransferases from Saccharomyces cerevisiae (ATF1 and ATF2) can catalyze the esterification of isoamyl alcohol with acetyl coenzyme A. The respective genes were cloned and expressed in an appropriate ack-pta(-) strain of Escherichia coli. The engineered strains produce isoamyl acetate when isoamyl alcohol is added to the culture medium. Aerobic shake flask experiments examined isoamyl acetate production over various growth times, temperatures, and initial optical densities. The strain carrying the pBAD-ATF1 plasmid exhibited a high molar ester yield from glucose (1.13) after 48 h of aerobic growth at 25 degrees C. Low-cost media components, such as fusel oil, sorghum glucose and corn steep liquor, were found to give a high yield of isoamyl acetate. High-cell-density gave an increased isoamyl acetate yield of 0.18 g/g of glucose consumed.

  5. Utilization of cellulosic waste for energy production

    NASA Astrophysics Data System (ADS)

    Deshpande, V.; Mishra, C.; Rao, M.; Seeta, R.; Srinivasan, M. C.; Jagannathan, V.

    1980-01-01

    Bioconversion of cellulose for the production of food or alcohol is of importance for the utilization of a renewable and abundant resource. The hydrolysis of different cellulosic materials by the cellulolytic enzymes produced by Penicillium funiculosum was studied. Fifty to 70% saccharification was obtained from pretreated bagasse, cotton and wood. The effect of different pretreatments to make the cellulose more susceptible to enzyme breakdown was also studied. Alkali pretreatment was found to be effective for most of the substrates. The production of alcohol from the hydrolysates by yeast fermentation without isolation of glucose was studied.

  6. Great productivity debate: the answer is energy

    SciTech Connect

    Jorgenson, D.W.

    1980-11-01

    In this interview, Dr. Jorgenson views the rapid US economic growth from 1948 to 1976 as due largely to expanded capital input, followed by growth in productivity and labor inputs. The decline since 1973 is almost entirely due to the drop in productivity. When the data are disaggregated to the level of 35 individual industrial and government sectors to determine gross intermediate outputs, the model is able to determine how the relative prices of sectoral inputs affect the growth of sectoral productivity. A tax package which cuts both payroll and capital taxes will stimulate capital formation and productivity growth. The concept of a First Year Capital Recovery System (FYCRS) insulates capital-consumption allowances from inflation and allows tax rates to reflect present value as well as reducing business paperwork. This approach would also spur technological innovation and improve the US position in international competition using trade adjustment and unemployment assistance in a way that won't prolong the life of noncompetitive industries. Specific measures that can redirect research and training need to link the scientific and business sectors in the planning process. (DCK)

  7. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  8. Nitrogen removal in an upflow sludge blanket (USB) reactor combined by aerobic biofiltration systems.

    PubMed

    Jun, H B; Park, S M; Park, J K; Choi, C O; Lee, J S

    2004-01-01

    A new nitrogen removal process (up-flow sludge blanket and aerobic filter, USB-AF) was proposed and tested with real sewage. In the USB reactor, the larger part of influent organic and nitrogen matters were removed, and ammonia was effectively oxidized in the subsequent aerobic filter. The role of the aerobic filter was to convert ammonia into nitrate, an electron acceptor that could convert soluble organic matters into volatile suspended solid (VSS) in the USB. The accumulated as well as influent VSS in the USB was finally degraded to fermented products that were another good carbon source for denitrification. Total COD, settleable COD and soluble COD in the raw sewage were 325, 80 and 140 mg/l, respectively. Most unsettleable COD as well as some SCOD in the influent was successfully removed in the USB. TCOD removal in the anoxic filter was by denitrification with the recycled nitrate. Low COD input to the aerobic filter could increase nitrification efficiency, reduce the start-up period and save the aeration energy in the USB-AF system. About 95% of ammonia was nitrified in the aerobic filter with no relation to the influent ammonia concentration. Denitrification efficiency of the recycled nitrate in the anoxic filter was about 85, 83, and 72% at recycle ratios of 100, 200, and 300%, respectively. T-N removal efficiency was 70% at recycle ratio of 300%.

  9. Effects of ZnO nanoparticle exposure on wastewater treatment and soluble microbial products (SMPs) in an anoxic-aerobic membrane bioreactor.

    PubMed

    Zhang, Dong Qing; Eng, Chin Yee; Stuckey, David C; Zhou, Yan

    2017-03-01

    The effect of zinc oxide nanoparticles (ZnO NPs) on the performance of an anoxic-aerobic submerged membrane bioreactor (MBR), and the characterization of the soluble microbial products (SMPs) produced in the presence of ZnO NPs was evaluated. Continuous operation over 144 days showed that ZnO NPs at concentrations of 10 and 50 mg/L exerted a negative impact on chemical oxygen demand (COD) and nitrogen removal, although ZnO NPs were efficiently removed in the MBR (>92%). 10 and 50 mg/L ZnO NPs decreased COD removal substantially from 93.1± 0.6% to 90.1± 0.8% (<0.05) and 86.3± 2.3% (<0.05), respectively. Similarly, with 10 and 50 mg L ZnO NPs, the decreased in NH4N removal was 8.1% and 21.1%, respectively. Exposure to 1, 10 and 50 mg/L ZnO NPs increased SMP concentrations by 12.8%, 42.4% and 51.5%, respecti. High performance size exclusion chromatograph (HP-SEC) analysis revealed that the presence of ZnO NPs caused a significant increase in high-molecular weight (MW) (583 kDa) SMPs at 1 and 10 mg/L ZnO NP concentration. A substantial decrease in the concentration of high-MW compounds in the MBR effluent was observed at the end of the experiment. Excitation emission matrix (EEM) fluorescence contours revealed that SMPs were dominated by amino acid-, tryptophan protein-, polyaromatic-, and polycarboxylate-type substances. The presence of ZnO NPs enhanced the production of amino acid-like (7.5-25.1%) and tryptophan protein-like compounds (31.7-38.1%), compared to the control (6.0-20.2% for amino acid-like compounds; and 28.5-36.7% for tryptophan protein-like compounds). In contrast, the fulvic and humic acid-like compounds decreased with exposure to ZnO NPs. This work may help better understanding the effect of nanoparticle exposure on wastewater treatment performance and SMP characteristics.

  10. Energy production using fission fragment rockets

    SciTech Connect

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs.

  11. Energy distribution among reaction products. V.

    NASA Technical Reports Server (NTRS)

    Anlauf, K. G.; Horne, D. S.; Macdonald, R. G.; Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Discussion of three reactions, one point of theoretical interest being the predicted correlation between barrier height and barrier location. The H + Br 2 reaction having a lower activation barrier than H + Cl 2, should have an earlier barrier, and hence a greater percentage attractive energy release and higher efficiency of vibrational excitation. Information is developed concerning the effect of isotopic substitution in the pair of reactions H + Cl 2 and D + Cl 2. The 'arrested relaxation' method was used. Essentially, the method involves reacting two diffuse reagent beams in a reaction vessel with background pressure less than 0.001 torr, and with walls cooled by liquid nitrogen or liquid helium.

  12. Sustainable Algal Energy Production and Environmental Remediation

    SciTech Connect

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  13. Phenomenology of strangeness production at high energies

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel; Yassin, Hayam; Abo Elyazeed, Eman R.; Maher, Muhammad; Magied Diab, Abdel; Abdel Wahab, Magda; Abou El Dahab, Eiman

    2016-12-01

    The strange-quark occupation factor (γ_s) is determined from the statistical fit of the multiplicity ratio {K}^+/π+ in a wide range of nucleon-nucleon center-of-mass energies (\\sqrt{sNN} ). From this single-strange-quark subsystem, γ_s(\\sqrt{sNN}) was parametrized as a damped trigonometric functionality and successfully implemented into the hadron resonance gas model, at chemical semi-equilibrium. Various particle ratios including {K}^-/ π- , Λ/π- , and \\barΛ/π- are well reproduced. The phenomenology of γ_s(\\sqrt{sNN}) suggests that the hadrons (γs rises) at \\sqrt{sNN} ≃ 7 \\text{GeV} seem to undergo a phase transition to a mixed phase (γs decreases), which is then derived into partons (γs remains unchanged with increasing \\sqrt{sNN} ), at \\sqrt{sNN} ≃ 20 \\text{GeV} .

  14. Devon Energy Production Company – Riverton Dome NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit WY-0000671, Devon Energy Production Company, L.P. – Riverton Dome is authorized to discharge from its wastewater treatment facility located in Fremont County, Wyoming to the Little Wind River via unnamed draw.

  15. Introduction to Energy Conservation and Production at Waste Cleanup Sites

    EPA Pesticide Factsheets

    This issue paper, prepared by EPA's Engineering Forum under the Technical Support Project, provides an overview on the considerations for energy conservation and production during the design and (O&M) phases of waste cleanup projects.

  16. Intriguing aspects of strangeness production at CERN energies

    SciTech Connect

    Odyniec, G.

    1996-07-01

    Strange particle production in pp, pA and AA collisions at CERN SPS energies is reviewed. First results from Pb beam experiments are briefly presented. The emerging picture (still incomplete) is discussed.

  17. Biomass and energy productivity of Leucaena under humid subtropical conditions

    SciTech Connect

    Othman, A.B.; Prine, G.M.

    1984-01-01

    A table shows the amount and energy content of above-ground biomass produced in 1982 and 1983 by the 12 most productive of 62 accessions of Leucanena spp. established in 1979 at the University of Florida. Mean annual biomass production of the 12 accessions was 29.3 and 24.7 Mg/ha, with energy contents of 19,690 and 19,820 J/g, in 1982 and 1983 respectively.

  18. Energy Production from Zoo Animal Wastes

    SciTech Connect

    Klasson, KT

    2003-04-07

    Elephant and rhinoceros dung was used to investigate the feasibility of generating methane from the dung. The Knoxville Zoo produces 30 cubic yards (23 m{sup 3}) of herbivore dung per week and cost of disposal of this dung is $105/week. The majority of this dung originates from the Zoo's elephant and rhinoceros population. The estimated weight of the dung is 20 metric tons per week and the methane production potential determined in experiments was 0.033 L biogas/g dung (0.020 L CH{sub 4}/g dung), and the digestion of elephant dung was enhanced by the addition of ammonium nitrogen. Digestion was better overall at 37 C when compared to digestion at 50 C. Based on the amount of dung generated at the Knoxville Zoo, it is estimated that two standard garden grills could be operated 24 h per day using the gas from a digester treating 20 metric ton herbivore dung per week.

  19. 76 FR 69122 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AB93 Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products (Dishwashers, Dehumidifiers, Microwave Ovens, and Electric and Gas Kitchen Ranges and Ovens)...

  20. 78 FR 62988 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Energy, Department of Energy. ACTION: Final rule; technical amendment. SUMMARY: The recently enacted... to certain consumer products and commercial and industrial equipment. The amendments include new and... Department of Energy (DOE) is incorporating into its regulations in this technical amendment. DOE is...

  1. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  2. Effect of anaerobic reactor process configuration on useful energy production.

    PubMed

    DiStefano, Thomas D; Palomar, Albert

    2010-04-01

    The effect of reactor process configuration on anaerobic production of useful energy (hydrogen and methane) from a complex substrate was investigated for the following reactor systems: suspended growth, two-phase mixed, two-stage mixed, upflow anaerobic sludge blanket (UASB) reactor, and two-phase UASB. The mixed two-phase and two-stage configurations yielded the highest specific energy productions of 13.3 and 13.4 kJ/g COD fed, respectively. Reactor process configuration influenced microbial pathways in acidogenic reactors in that butyrate was the predominant volatile acid in phased configurations, whereas acetate was predominant in the staged configuration. The UASB reactor achieved the highest average daily energy production per reactor volume of 101 kJ/L reactor-d. All reactor configurations achieved high COD removals on the order of 99%. However, hydrogen represented only 3% of the total energy produced by the two-phase mixed and two-phase UASB configurations. Theoretical analysis revealed that the maximum specific energy production by the two-phase suspended-growth configuration is only 9% higher than that for a single-stage mixed reactor. Consequently, the production of hydrogen from complex substrates in these process configurations does not seem to be justifiable solely from an energy point of view. Instead, it is suggested that phased anaerobic systems should be considered primarily for improved process stability whereas resultant hydrogen production is of secondary benefit.

  3. Energy distribution among reaction products. VII - H + F2.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Sloan, J. J.

    1972-01-01

    The 'arrested relaxation' variant of the IR chemiluminescence technique is used in a study of the distribution of vibrational, rotational and translational energies between the products of the reaction by which H + F2 yields HF + F. Diagrams are plotted and numerical values are obtained for the energy distribution rate constants.

  4. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    ERIC Educational Resources Information Center

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  5. The water consumption of energy production: an international comparison

    NASA Astrophysics Data System (ADS)

    Spang, E. S.; Moomaw, W. R.; Gallagher, K. S.; Kirshen, P. H.; Marks, D. H.

    2014-10-01

    Producing energy resources requires significant quantities of fresh water. As an energy sector changes or expands, the mix of technologies deployed to produce fuels and electricity determines the associated burden on regional water resources. Many reports have identified the water consumption of various energy production technologies. This paper synthesizes and expands upon this previous work by exploring the geographic distribution of water use by national energy portfolios. By defining and calculating an indicator to compare the water consumption of energy production for over 150 countries, we estimate that approximately 52 billion cubic meters of fresh water is consumed annually for global energy production. Further, in consolidating the data, it became clear that both the quality of the data and global reporting standards should be improved to track this important variable at the global scale. By introducing a consistent indicator to empirically assess coupled water-energy systems, it is hoped that this research will provide greater visibility into the magnitude of water use for energy production at the national and global scales.

  6. Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production

    NASA Astrophysics Data System (ADS)

    Moore, Gary F.; Brudvig, Gary W.

    2011-03-01

    Solar energy has the capacity to fulfill global human energy demands in an environmentally and socially responsible manner, provided efficient, low-cost systems can be developed for its capture, conversion, and storage. Toward these ends, a molecular-based understanding of the fundamental principles and mechanistic details of energy conversion in photosynthesis is indispensable. This review addresses aspects of photosynthesis that may prove auspicious to emerging technologies. Conversely, areas in which human ingenuity may offer innovative solutions, resulting in enhanced energy storage efficiencies in artificial photosynthetic constructs, are considered. Emphasis is placed on photoelectrochemical systems that utilize water as a source of electrons for the production of solar fuels.

  7. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    PubMed

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  8. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  9. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    SciTech Connect

    Zhiwei Zhou

    2006-07-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  10. Bio-based products from solar energy and carbon dioxide.

    PubMed

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation.

  11. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect

    Schumacher, Katja

    1999-07-01

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  12. Biomass energy crop production versus food crop production in the Caribbean

    SciTech Connect

    Sammuels, G.

    1983-12-01

    The Caribbean countries have traditionally grown sugar cane, coffee and bananas as major agriculture export crops. Food crop production was sufficient in most cases for domestic consumption. In recent years powerful social and economic changes of increasing population, industrial development and higher living standards have placed pressure on local governments to provide food, clothing, shelter and energy. Energy that is mainly supplied by imported oil. Biomass, primarily as sugar cane, can provide a solution, either partial or total, to the problem. Unfortunately, the arable land area for the majority of the countries is limited. Food crop production is needed for local consumption and export. Possible energy crop production to provide local needs will place an increasing demand on arable land. The objective of this paper is to present the scope of food versus energy crop production and a suggested renewable energy crop program to help achieve a balance within the limited land resources of the Caribbean.

  13. Marginal land-based biomass energy production in China.

    PubMed

    Tang, Ya; Xie, Jia-Sui; Geng, Shu

    2010-01-01

    Fast economic development in China has resulted in a significant increase in energy demand. Coal accounts for 70% of China's primary energy consumption and its combustion has caused many environmental and health problems. Energy security and environmental protection requirements are the main drivers for renewable energy development in China. Small farmland and food security make bioenergy derived from corn or sugarcane unacceptable to China: the focus should be on generating bioenergy from ligno-cellulosic feedstock sources. As China cannot afford biomass energy production from its croplands, marginal lands may play an important role in biomass energy production. Although on a small scale, marginal land has already been used for various purposes. It is estimated that some 45 million hm(2) of marginal land could be brought into high potential biomass energy production. For the success of such an initiative, it will likely be necessary to develop multipurpose plants. A case study, carried out on marginal land in Ningnan County, Sichuan Province with per capita cropland of 0.07 ha, indicated that some 380,000 tons of dry biomass could be produced each year from annual pruning of mulberry trees. This study supports the feasibility of producing large quantities of biomass from marginal land sources.

  14. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  15. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  16. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  17. H + CD4 abstraction reaction dynamics: product energy partitioning.

    PubMed

    Hu, Wenfang; Lendvay, György; Troya, Diego; Schatz, George C; Camden, Jon P; Bechtel, Hans A; Brown, Davida J A; Martin, Marion R; Zare, Richard N

    2006-03-09

    This paper presents experimental and theoretical studies of the product energy partitioning associated with the H + CD4 (nu = 0) --> HD + CD3 reaction for the collision energy range 0.5-3.0 eV. The theoretical results are based on quasiclassical trajectories from (1) first principles direct dynamics calculations (B3LYP/6-31G), (2) an empirical surface developed by Espinosa-García [J. Chem. Phys. 2002, 116, 10664] (EG), and (3) two semiempirical surfaces (MSINDO and reparametrized MSINDO). We find that most of the energy appears in product translation at energies just above the reactive threshold; however, HD vibration and rotation become quite important at energies above 1 eV, each accounting for over 20% of the available energy above 1.5 eV, according to the B3LYP calculations. The barrier on the B3LYP surface, though being later than that on EG, predicts significantly higher HD vibrational excitation than EG. This deviation is contradictory to what would be expected on the basis of the Polanyi rules and derives from modest differences in the potential energy surfaces. The CD3 internal energy is generally quite low, and we present detailed rotational state distributions which show that the CD3 rotational distribution is largely independent of collision energy in the 0.75-1.95 eV range. The most populated rotational levels are N = 5 and 6 on B3LYP, with most of that excitation being associated with motion about the C2 axes, rather than C3 axis, of the CD3 product, in good agreement with the experimental results. Through our extensive studies in this and previous work concerning the scattering dynamics, we conclude that B3LYP/6-31G provides the best available description of the overall dynamics for the title reaction at relatively high collision energies.

  18. Effective-energy budget in multiparticle production in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Mishra, Aditya Nath; Sahoo, Raghunath; Sarkisyan, Edward K. G.; Sakharov, Alexander S.

    2014-11-01

    The dependencies of charged particle pseudorapidity density and transverse energy pseudorapidity density at midrapidity on the collision energy and on the number of nucleon participants, or centrality, measured in nucleus-nucleus collisions are studied in the energy range spanning a few GeV to a few TeV per nucleon. The approach in which the multiparticle production is driven by the dissipating effective energy of participants is introduced. This approach is based on the earlier proposed consideration, combining the constituent quark picture together with Landau relativistic hydrodynamics shown to interrelate the measurements from different types of collisions. Within this picture, the dependence on the number of participants in heavy-ion collisions are found to be well described in terms of the effective energy defined as a centrality-dependent fraction of the collision energy. For both variables under study, the effective-energy approach reveals a similarity in the energy dependence obtained for the most central collisions and centrality data in the entire available energy range. Predictions are made for the investigated dependencies for the forthcoming higher-energy measurements in heavy-ion collisions at the LHC.

  19. Energy and nutrient cycling in pig production systems

    NASA Astrophysics Data System (ADS)

    Lammers, Peter J.

    United States pig production is centered in Iowa and is a major influence on the economic and ecological condition of that community. A pig production system includes buildings, equipment, production of feed ingredients, feed processing, and nutrient management. Although feed is the largest single input into a pig production system, nearly 30% of the non-solar energy use of a conventional--mechanically ventilated buildings with liquid manure handling--pig production system is associated with constructing and operating the pig facility. Using bedded hoop barns for gestating sows and grow-finish pigs reduces construction resource use and construction costs of pig production systems. The hoop based systems also requires approximately 40% less non-solar energy to operate as the conventional system although hoop barn-based systems may require more feed. The total non-solar energy input associated with one 136 kg pig produced in a conventional farrow-to-finish system in Iowa and fed a typical corn-soybean meal diet that includes synthetic lysine and exogenous phytase is 967.9 MJ. Consuming the non-solar energy results in emissions of 79.8 kg CO2 equivalents. Alternatively producing the same pig in a system using bedded hoop barns for gestating sows and grow-finish pigs requires 939.8 MJ/pig and results in emission of 70.2 kg CO2 equivalents, a reduction of 3 and 12% respectively. Hoop barn-based swine production systems can be managed to use similar or less resources than conventional confinement systems. As we strive to optimally allocate non-solar energy reserves and limited resources, support for examining and improving alternative systems is warranted.

  20. Energy and rapidity dependence of beauty production at Tevatron

    SciTech Connect

    Ba, M.M.

    1997-09-01

    The CDF and D0 experiments have measured bb production in pp interactions at {radical}s = 1800 GeV and 630 GeV (the energy at which the previous measurement was performed by the UAl experiment). The Tevatron measurements are used to evaluate, for the first time, the center-of-mass energy and rapidity dependence of b-quark production cross section measured with the same detectors. Preliminary results from these measurements are presented and compared with the next-to-leading order QCD predictions.

  1. Environmental assessment. Energy efficiency standards for consumer products

    SciTech Connect

    McSwain, Berah

    1980-06-01

    The Energy Policy and Conservation Act of 1975 requires DOE to prescribe energy efficiency standards for 13 consumer products. The Consumer Products Efficiency Standards (CPES) program covers: refrigerators and refrigerator-freezers, freezers, clothes dryers, water heaters, room air conditioners, home heating equipment, kitchen ranges and ovens, central air conditioners (cooling and heat pumps), furnaces, dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers. This Environmental Assessment evaluates the potential environmental and socioeconomic impacts expected as a result of setting efficiency standards for all of the consumer products covered by the CPES program. DOE has proposed standards for eight of the products covered by the Program in a Notice of Proposed Rulemaking (NOPR). DOE expects to propose standards for home heating equipment, central air conditioners (heat pumps only), dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers in 1981. No significant adverse environmental or socioeconomic impacts have been found to result from instituting the CPES.

  2. India's cement industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  3. Food, livestock production, energy, climate change, and health.

    PubMed

    McMichael, Anthony J; Powles, John W; Butler, Colin D; Uauy, Ricardo

    2007-10-06

    Food provides energy and nutrients, but its acquisition requires energy expenditure. In post-hunter-gatherer societies, extra-somatic energy has greatly expanded and intensified the catching, gathering, and production of food. Modern relations between energy, food, and health are very complex, raising serious, high-level policy challenges. Together with persistent widespread under-nutrition, over-nutrition (and sedentarism) is causing obesity and associated serious health consequences. Worldwide, agricultural activity, especially livestock production, accounts for about a fifth of total greenhouse-gas emissions, thus contributing to climate change and its adverse health consequences, including the threat to food yields in many regions. Particular policy attention should be paid to the health risks posed by the rapid worldwide growth in meat consumption, both by exacerbating climate change and by directly contributing to certain diseases. To prevent increased greenhouse-gas emissions from this production sector, both the average worldwide consumption level of animal products and the intensity of emissions from livestock production must be reduced. An international contraction and convergence strategy offers a feasible route to such a goal. The current global average meat consumption is 100 g per person per day, with about a ten-fold variation between high-consuming and low-consuming populations. 90 g per day is proposed as a working global target, shared more evenly, with not more than 50 g per day coming from red meat from ruminants (ie, cattle, sheep, goats, and other digastric grazers).

  4. Heavy Meson Production at a Low-Energy Photon Collider

    SciTech Connect

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  5. Pion production in high-energy neutrino reactions with nuclei

    NASA Astrophysics Data System (ADS)

    Mosel, U.

    2015-06-01

    Background: A quantitative understanding of neutrino interactions with nuclei is needed for precision era neutrino long baseline experiments (MINOS, NOvA, DUNE) which all use nuclear targets. Pion production is the dominant reaction channel at the energies of these experiments. Purpose: Investigate the influence of nuclear effects on neutrino-induced pion production cross sections and compare predictions for pion-production with available data. Method: The Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) model is used for the description of all incoherent channels in neutrino-nucleus reactions. Results: Differential cross sections for charged and neutral pion production for the MINER ν A neutrino and antineutrino flux are calculated. An estimate for the coherent cross section is obtained from a comparison of data with theoretical results for incoherent cross sections. The invariant mass (W ) distribution of the Δ resonances produced is analyzed. Conclusions: Final state interactions affect the pion kinetic energy spectra significantly. The data for charged pion production at MINER ν A are compatible with the results of calculations using elementary data taken from an old Argonne National Laboratory experiment. Remaining differences for charged pion production can be attributed to coherent production; the data for antineutrino induced neutral pion production, where no coherent contribution is present, are reproduced quite well. The analysis of W distributions shows that sharp cuts on experimentally reconstructed invariant masses lead to shape distortions of the true W distributions for nuclear targets.

  6. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions.

    PubMed

    Tabacco, E; Piano, S; Revello-Chion, A; Borreani, G

    2011-11-01

    This study determined the efficacy of the use of 2 commercial inoculants containing Lactobacillus buchneri alone or in combination with homofermentative lactic acid bacteria in improving aerobic stability of corn silage stored in commercial farm silos in northern Italy. In the first survey, samples were collected from 10 farms that did not inoculate their silages and from 10 farms that applied a Pioneer 11A44 inoculant (L. buchneri strain LN4637; Pioneer Hi-Bred International, Des Moines, IA). In the second survey, corn silage samples were collected from 11 farms that did not inoculate their silages and from 11 farms that applied a Pioneer 11CFT inoculant (L. buchneri strain LN40177; Pioneer Hi-Bred International). Inoculants were applied directly through self-propelled forage harvesters, at the recommended rate of 1 g/t of fresh forage, to achieve a final application rate of 1.0 × 10(5) cfu/g of L. buchneri. One corn bunker silo, which had been open for at least 10 d, was examined in detail on each farm. The silages inoculated with L. buchneri had lower concentrations of lactic acid, a lower lactic-to-acetic acid ratio, a lower yeast count, and higher aerobic stability compared with the untreated silages. Unexpectedly, concentrations of acetic acid and 1,2-propanediol, 2 hallmarks of L. buchneri activity, did not differ between treatments and were only numerically higher in the inoculated silages compared with untreated ones, in both surveys. Aerobic stability, on average, was 107 and 121 h in the inoculated silages and 64 and 74 h in the untreated silages, for surveys 1 and 2, respectively, and decreased exponentially as the yeast count in the silage at the time of sampling increased, regardless of treatment. Inoculation with L. buchneri proved to be effective in reducing the yeast count to <2 log cfu/g of silage in 16 of 21 of the studied farm silages, confirming the ability of this inoculum to enhance the aerobic stability of corn silages in farm bunker silos.

  7. Airports Offer Unrealized Potential for Alternative Energy Production

    NASA Astrophysics Data System (ADS)

    Devault, Travis L.; Belant, Jerrold L.; Blackwell, Bradley F.; Martin, James A.; Schmidt, Jason A.; Wes Burger, L.; Patterson, James W.

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  8. Airports offer unrealized potential for alternative energy production.

    PubMed

    DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  9. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    PubMed Central

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  10. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  11. Energy recovery by production of fuel from citrus wastes

    SciTech Connect

    Wesley Clark, C.

    1982-05-01

    A study to determine how much energy can be recovered from a Florida citrus processing plant was conducted. The production of ethyl alcohol in particular was examined as it is thought to represent the greatest potential for immediate energy recovery. Three-fourths of the energy expended to produce, harvest, process and market a box of fruit was recoverable using existing technology, i.e. 78,500 Btu/ box of fruit recoverable from a total energy expenditure of 107,800 Btu/ box of fruit. Aside from the actual cost benefits of recovering energy in the form of ethanol, the food processor is also helping to reduce the foreign-oil imports by the blending of ethyl alcohol with unleaded gasoline to form gasohol.

  12. Enhanced production of low energy electrons by alpha particle impact.

    PubMed

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-07-19

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.

  13. Mapping water consumption for energy production around the Pacific Rim

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent; Moreland, Barbie

    2016-09-01

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  14. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect

    Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

    2008-10-31

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

  15. Mapping water consumption for energy production around the Pacific Rim

    DOE PAGES

    Tidwell, Vincent; Moreland, Barbie

    2016-09-07

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium andmore » unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. Furthermore, for six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.« less

  16. Mapping water consumption for energy production around the Pacific Rim

    SciTech Connect

    Tidwell, Vincent; Moreland, Barbie

    2016-09-07

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. Furthermore, for six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  17. Ultrasonic energy in liposome production: process modelling and size calculation.

    PubMed

    Barba, A A; Bochicchio, S; Lamberti, G; Dalmoro, A

    2014-04-21

    The use of liposomes in several fields of biotechnology, as well as in pharmaceutical and food sciences is continuously increasing. Liposomes can be used as carriers for drugs and other active molecules. Among other characteristics, one of the main features relevant to their target applications is the liposome size. The size of liposomes, which is determined during the production process, decreases due to the addition of energy. The energy is used to break the lipid bilayer into smaller pieces, then these pieces close themselves in spherical structures. In this work, the mechanisms of rupture of the lipid bilayer and the formation of spheres were modelled, accounting for how the energy, supplied by ultrasonic radiation, is stored within the layers, as the elastic energy due to the curvature and as the tension energy due to the edge, and to account for the kinetics of the bending phenomenon. An algorithm to solve the model equations was designed and the relative calculation code was written. A dedicated preparation protocol, which involves active periods during which the energy is supplied and passive periods during which the energy supply is set to zero, was defined and applied. The model predictions compare well with the experimental results, by using the energy supply rate and the time constant as fitting parameters. Working with liposomes of different sizes as the starting point of the experiments, the key parameter is the ratio between the energy supply rate and the initial surface area.

  18. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    PubMed

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  19. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  20. CO[sub 2] mitigation and energy production with microalgae

    SciTech Connect

    Ikuta, Yoshiaki; Kaneko, Masato )

    1992-01-01

    Three R D projects to mitigate CO[sub 2] by using microalgae are conducted. The objectives of each project are: (1) Maximum fixation of CO[sub 2] and high density cultivation by using optical fiber, (2) maximum production of energy and (3) hydrogen production. To increase the productivity of the biomass per area is one of the most important point for Japan, where no large area is available. The results of the experiments by Mitsubishi in cooperation with Japanese power companies are presented.

  1. Causality constraints on hadron production in high energy collisions

    NASA Astrophysics Data System (ADS)

    Castorina, Paolo; Satz, Helmut

    2014-04-01

    For hadron production in high energy collisions, causality requirements lead to the counterpart of the cosmological horizon problem: the production occurs in a number of causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) must be conserved locally in spatially restricted correlation clusters. This provides a theoretical basis for the observed suppression of strangeness production in elementary interactions (pp, e+e-). In contrast, the space-time superposition of many collisions in heavy ion interactions largely removes these causality constraints, resulting in an ideal hadronic resonance gas in full equilibrium.

  2. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration.

    PubMed

    Chowdhury, Raja; Viamajala, Sridhar; Gerlach, Robin

    2012-03-01

    The life cycle impacts were assessed for an integrated microalgal biodiesel production system that facilitates energy- and nutrient- recovery through anaerobic digestion, and utilizes glycerol generated within the facility for additional heterotrophic biodiesel production. Results show that when external fossil energy inputs are lowered through process integration, the energy demand, global warming potential (GWP), and process water demand decrease significantly and become less sensitive to algal lipid content. When substitution allocation is used to assign additional credit for avoidance of fossil energy use (through utilization of recycled nutrients and biogas), GWP and water demand can, in fact, increase with increase in lipid content. Relative to stand-alone algal biofuel facilities, energy demand can be lowered by 3-14 GJ per ton of biodiesel through process integration. GWP of biodiesel from the integrated system can be lowered by up to 71% compared to petroleum fuel. Evaporative water loss was the primary water demand driver.

  3. Optimizing Nutrient Management for Sustainable Bio-energy Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn grain and stover are both being evaluated as feedstock sources for bio-energy production. To meet current and future demands for corn, both short- and long-term effects on nutrient cycling, physical properties, and biological activity in soils must be understood. Our project goal was to increas...

  4. Green energy products in the United Kingdom, Germany and Finland

    NASA Astrophysics Data System (ADS)

    Hast, Aira; McDermott, Liisa; Järvelä, Marja; Syri, Sanna

    2014-12-01

    In liberalized electricity markets, suppliers are offering several kinds of voluntary green electricity products marketed as environmentally friendly. This paper focuses on the development of these voluntary markets at household level in the UK, Germany and Finland. Since there are already existing renewable energy policies regulating and encouraging the use of renewable energy, it is important to consider whether voluntary products offer real additional benefits above these policies. Problems such as double counting or re-marketing hydropower produced in existing plants are identified. According to our study, the demand varies between countries: in Germany the number of green electricity customers has increased and is also higher than in the UK or Finland. Typically the average additional cost to consumer from buying green electricity product instead of standard electricity product is in the range of 0-5% in all studied countries, although the level of price premium depends on several factors like electricity consumption. Case study of Finland and literature show that the impacts of green energy are not solely environmental. Renewable energy can benefit local public policy.

  5. Strangeness and charm production in high energy heavy ion collisions

    SciTech Connect

    Xu, Nu

    2001-01-01

    We discuss the dynamical effects of strangeness and charm production in high energy nuclear collisions. In order to understand the early stage dynamical evolution, it is necessary to study the transverse momentum distributions of multi-strange hadrons like {Xi} and {Omega} and charm mesons like J/{Psi} as a function of collision centrality.

  6. Seasonal energy storage using bioenergy production from abandoned croplands

    NASA Astrophysics Data System (ADS)

    Campbell, J. Elliott; Lobell, David B.; Genova, Robert C.; Zumkehr, Andrew; Field, Christopher B.

    2013-09-01

    Bioenergy has the unique potential to provide a dispatchable and carbon-negative component to renewable energy portfolios. However, the sustainability, spatial distribution, and capacity for bioenergy are critically dependent on highly uncertain land-use impacts of biomass agriculture. Biomass cultivation on abandoned agriculture lands is thought to reduce land-use impacts relative to biomass production on currently used croplands. While coarse global estimates of abandoned agriculture lands have been used for large-scale bioenergy assessments, more practical technological and policy applications will require regional, high-resolution information on land availability. Here, we present US county-level estimates of the magnitude and distribution of abandoned cropland and potential bioenergy production on this land using remote sensing data, agriculture inventories, and land-use modeling. These abandoned land estimates are 61% larger than previous estimates for the US, mainly due to the coarse resolution of data applied in previous studies. We apply the land availability results to consider the capacity of biomass electricity to meet the seasonal energy storage requirement in a national energy system that is dominated by wind and solar electricity production. Bioenergy from abandoned croplands can supply most of the seasonal storage needs for a range of energy production scenarios, regions, and biomass yield estimates. These data provide the basis for further down-scaling using models of spatially gridded land-use areas as well as a range of applications for the exploration of bioenergy sustainability.

  7. Review of Photovoltaic Energy Production Using Thin Film Modules

    NASA Astrophysics Data System (ADS)

    Gessert, Timothy

    2011-04-01

    It is now widely accepted that thin-film photovoltaic (PV) devices will be important contributors of new US electricity generation. The annual production of PV devices needed to meet conservative U.S. Department of Energy goals for 2050 represents ˜100 square miles of active module area (20 GW), or ˜200 times the total area of photovoltaic modules installed in the US by 2004. However, if the rate of growth observed in PV module production for the past eight years continues, 100 square miles of annual US PV production could be achieved as early as 2018. Further, the amount PV installed by 2036 could generate the entire 2004 US Total Energy Consumption (˜100 Quadrillion BTU's, i.e., the combined energy consumed in the US from petroleum, coal, natural gas, nuclear, and all renewable sources). Regardless of what assumptions are made, PV represents a significant future market for related materials and technologies. This talk will discuss thin-film PV devices within the context of the major PV technologies in production today, and indicate areas where improved material and device understanding would be beneficial. This work was performed with the support of US Department of Energy Contract No. DE-AC36-08-GO28308. This abstract is subject to government rights.

  8. Preparation and characterization of nanomaterials for sustainable energy production.

    PubMed

    Liu, Chang-jun; Burghaus, Uwe; Besenbacher, Flemming; Wang, Zhong Lin

    2010-10-26

    The use of nanotechnology to develop a suite of sustainable energy production schemes is one of the most important scientific challenges of the 21st century. The challenge is to design, to synthesize, and to characterize new functional nanomaterials with controllable sizes, shapes, and/or structures. To summarize the progress of the research and development made in this important field, the Fuel Chemistry Division of the American Chemical Society (ACS) organized a symposium on "Nanotechnology for Sustainable Energy and Fuels" during the 240th ACS National Meeting in Boston, MA on August 22-26, 2010, with the ACS Catalysis Division as the cosponsor. This symposium was a global gathering of leading scientists at the intersection of energy and nanotechnology. The topics discussed at the symposium included nanotechnology, not only for traditional fossil fuel production but also for novel processes for renewable energy applications. This article aims to highlight some of the most exciting advances presented at the symposium, including the preparation and characterization of nanomaterials for clean fuel production, CO(2) capture, solar cells and solar fuels, energy conversion and storage materials, hydrogen storage materials, and fuel cells. Finally, possible future developments in this important and timely area are discussed.

  9. ENTROPY PRODUCTION AT HIGH ENERGY AND mu B.

    SciTech Connect

    STEINBERG,P.

    2006-07-03

    The systematics of bulk entropy production in experimental data on Ai-A, p + y and e{sup +}e{sup -} interactions at high energies and large {mu}{sub B} is discussed. It is proposed that scenarios with very early thermalization, such as Landau's hydrodynamical model, capture several essential features of the experimental results. It is also pointed out that the dynamics of systems which reach the hydrodynamic regime give similar multiplicities and angular distributions as those calculated in weak-coupling approximations (e.g. pQCD) over a wide range of beam energies. Finally, it is shown that the dynamics of baryon stopping are relevant to the physics of total entropy production, explaining why A+A and e{sup +}e{sup -} multiplicities are different at low beam energies.

  10. Higgs production as a probe of chameleon dark energy

    SciTech Connect

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Seery, David; Weltman, Amanda

    2010-05-15

    In this paper we study various particle physics effects of a light, scalar dark energy field with chameleonlike couplings to matter. We show that a chameleon model with only matter couplings will induce a coupling to photons. In doing so, we derive the first microphysical realization of a chameleonic dark energy model coupled to the electromagnetic field strength. This analysis provides additional motivation for current and near-future tests of axionlike and chameleon particles. We find a new bound on the coupling strength of chameleons in uniformly coupled models. We also study the effect of chameleon fields on Higgs production, which is relevant for hadron colliders. These are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W{sup {+-}.} We show that, like the Tevatron, the LHC will not be able to rule out or observe chameleons through this mechanism, because gauge invariance of the low energy Lagrangian suppresses the corrections that may arise.

  11. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  12. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  13. Thermodynamic laws, economic methods and the productive power of energy

    NASA Astrophysics Data System (ADS)

    Kümmel, Reiner; Ayres, Robert U.; Lindenberger, Dietmar

    2010-07-01

    Energy plays only a minor role in orthodox theories of economic growth, because standard economic equilibrium conditions say that the output elasticity of a production factor, which measures the factor's productive power, is equal to the factor's share in total factor cost. Having commanded only a tiny cost share of about 5 percent so far, energy is often neglected altogether. On the other hand, energy conversion in the machines of the capital stock has been the basis of industrial growth. How can the physically obvious economic importance of energy be reconciled with the conditions for economic equilibrium, which result from the maximization of profit or overall welfare? We show that these equilibrium conditions no longer yield the equality of cost shares and output elasticities, if the optimization calculus takes technological constraints on the combinations of capital, labor, and energy into account. New econometric analyses of economic growth in Germany, Japan, and the USA yield output elasticities that are for energy much larger and for labor much smaller than their cost shares. Social consequences are discussed.

  14. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes.

    PubMed

    Jády, Attila Gy; Nagy, Ádám M; Kőhidi, Tímea; Ferenczi, Szilamér; Tretter, László; Madarász, Emília

    2016-07-01

    While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H(+) production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In "starving" neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons.

  15. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity.

    PubMed

    De Block, Marc; Van Lijsebettens, Mieke

    2011-06-01

    The importance of energy metabolism in plant performance and plant productivity is conceptually well recognized. In the eighties, several independent studies in Lolium perenne (ryegrass), Zea mays (maize), and Festuca arundinacea (tall fescue) correlated low respiration rates with high yields. Similar reports in the nineties largely confirmed this correlation in Solanum lycopersicum (tomato) and Cucumis sativus (cucumber). However, selection for reduced respiration does not always result in high-yielding cultivars. Indeed, the ratio between energy content and respiration, defined here as energy efficiency, rather than respiration on its own, has a major impact on the yield potential of a crop. Besides energy efficiency, energy homeostasis, representing the balance between energy production and consumption in a changing environment, also contributes to an enhanced plant performance and this happens mainly through an increased stress tolerance. Although a few single gene approaches look promising, probably whole interacting networks have to be modulated, as is done by classical breeding, to improve the energy status of plants. Recent developments show that both energy efficiency and energy homeostasis have an epigenetic component that can be directed and stabilized by artificial selection (i.e. selective breeding). This novel approach offers new opportunities to improve yield potential and stress tolerance in a wide variety of crops.

  16. Aerobic sugar metabolism in the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Merico, Annamaria; Capitanio, Daniele; Vigentini, Ileana; Ranzi, Bianca Maria; Compagno, Concetta

    2003-12-01

    Despite the importance of some Zygosaccharomyces species as agents causing spoilage of food, the carbon and energy metabolism of most of them is yet largely unknown. This is the case with Zygosaccharomyces bailii. In this study the occurrence of the Crabtree effect in the petite-negative yeast Z. bailii ATCC 36947 was investigated. In this yeast the aerobic ethanol production is strictly dependent on the carbon source utilised. In glucose-limited continuous cultures a very low level of ethanol was produced. In fructose-limited continuous cultures ethanol was produced at a higher level and its production increased with the dilution rate. As a consequence, on fructose the onset of respiro-fermentative metabolism caused a reduction in biomass yield. An immediate aerobic alcoholic fermentation in Z. bailii was observed during the transition from sugar limitation to sugar excess, both on glucose and on fructose. The analysis of some key enzymes of the fermentative metabolism showed a high level of acetyl-CoA synthetase in Z. bailii growing on fructose. At high dilution rates, the activities of glucose- and fructose-phosphorylating enzymes, as well as of pyruvate decarboxylase and alcohol dehydrogenase, were higher in cells during growth on fructose than on glucose.

  17. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    SciTech Connect

    Melaina, M.; Penev, M.; Heimiller, D.

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  18. Contributions of parent molecule fixed and excess energies to product energy partitioning in four-center elimination reactions

    NASA Astrophysics Data System (ADS)

    Benito, R. M.; Santamaría, J.

    1989-03-01

    In four-center elimination reactions such as hydrogen halide elimination from halogenated hydrocarbons the energy barrier is higher than the difference in enthalpy of formation between the parent molecule and its fragments (HX and olefin). This determines that the energy available to products has two origins: the reverse reaction barrier (fixed energy), and the excess energy (energy above the barrier). Both types of energy are partitioned among products following different laws: more or less statistical for excess energy and non-statistical for fixed energy. In a study of CF 3-CH 3 decomposition, we describe a practical method, based on the variation of product energy partitioning with excess energy, to determine the partitioning of the fixed energy among different types of product energy, thus defining the exact nature of the reverse reaction energy barrier. We applied this model to other types of reactions, such as three-center molecular eliminations.

  19. Product energy distributions and energy partitioning in O atom reactions on surfaces

    NASA Technical Reports Server (NTRS)

    Halpern, Bret; Kori, Moris

    1987-01-01

    Surface reactions involving O atoms are likely to be highly exoergic, with different consequences if energy is channeled mostly to product molecules or surface modes. Thus the surface may become a source of excited species which can react elsewhere, or a sink for localized heat deposition which may disrupt the surface. The vibrational energy distribution of the product molecule contains strong clues about the flow of released energy. Two instructive examples of energy partitioning at surfaces are the Pt catalyzed oxidations: (1) C(ads) + O(ads) yields CO* (T is greater than 1000 K); and (2) CO(ads) + O(gas) yields CO2* (T is approx. 300 K). The infrared emission spectra of the excited product molecules were recorded and the vibrational population distributions were determined. In reaction 1, energy appeared to be statistically partitioned between the product CO and several Pt atoms. In reaction 2, partitioning was non-statistical; the CO2 asymmetric stretch distribution was inverted. In gas reactions these results would indicate a long lived and short lived activated complex. The requirement that Pt be heated in O atoms to promote reaction of atomic O and CO at room temperature is specifically addressed. Finally, the fraction of released energy that is deposited in the catalyst is estimated.

  20. Technology diffusion of energy-related products in residential markets

    SciTech Connect

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  1. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  2. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced.

  3. Space-time dependence between energy sources and climate related energy production

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn; Borga, Marco; Creutin, Jean-Dominique; Ramos, Maria-Helena; Tøfte, Lena; Warland, Geir

    2014-05-01

    The European Renewable Energy Directive adopted in 2009 focuses on achieving a 20% share of renewable energy in the EU overall energy mix by 2020. A major part of renewable energy production is related to climate, called "climate related energy" (CRE) production. CRE production systems (wind, solar, and hydropower) are characterized by a large degree of intermittency and variability on both short and long time scales due to the natural variability of climate variables. The main strategies to handle the variability of CRE production include energy-storage, -transport, -diversity and -information (smart grids). The three first strategies aim to smooth out the intermittency and variability of CRE production in time and space whereas the last strategy aims to provide a more optimal interaction between energy production and demand, i.e. to smooth out the residual load (the difference between demand and production). In order to increase the CRE share in the electricity system, it is essential to understand the space-time co-variability between the weather variables and CRE production under both current and future climates. This study presents a review of the literature that searches to tackle these problems. It reveals that the majority of studies deals with either a single CRE source or with the combination of two CREs, mostly wind and solar. This may be due to the fact that the most advanced countries in terms of wind equipment have also very little hydropower potential (Denmark, Ireland or UK, for instance). Hydropower is characterized by both a large storage capacity and flexibility in electricity production, and has therefore a large potential for both balancing and storing energy from wind- and solar-power. Several studies look at how to better connect regions with large share of hydropower (e.g., Scandinavia and the Alps) to regions with high shares of wind- and solar-power (e.g., green battery North-Sea net). Considering time scales, various studies consider wind

  4. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    SciTech Connect

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    2011 is the first year of the 12th Five-Year Plan and, as such, it is a crucial year to push forward the work of energy conservation and emissions reduction. Important large-scale energy conservation policies issued in 2011 include Outline of the 12th Five-year Plan for National Economic and Social Development of The People’s Republic of China (the “Plan”) and Notice of the State Council on Issuing the Comprehensive Work Proposal for Energy Conservation and Emission Reduction during the 12th Five-Year Plan Period (GF (2011) No. 26) (the “Proposal”). These two policies have established strategic objectives for energy conservation during the 12th Five-Year Plan in China, and they have also identified the key tasks and direction of energy efficiency programs for energy-using products.

  5. Wind energy in electric power production, preliminary study

    NASA Astrophysics Data System (ADS)

    Lento, R.; Peltola, E.

    1984-01-01

    The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics estimates on the available wind energy were also made. Eight hundred wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics included is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions caused extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects to birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of the plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.

  6. Fertilizers for food production vs energy needs and environmental quality.

    PubMed

    Olson, R A

    1977-12-01

    The world is experiencing an energy crisis that is restrictive to agricultural requisites production at the same time that food is becoming increasingly short on a global basis. Fertilizers are the most energy demanding of these inputs and have become very expensive and intermittently short in supply with the reduced availability of fossil fuels. They have been indicted, furthermore, as environmental pollutants due to their presumed role in eutrophication and in being a source of excessive NO3-N that may accumulate in some leaf crops and in drinking waters. Exponential growth in fossil fuel consumption cannot continue. Economies can be made in the agricultural sector, which does indeed consume substantial quantities of energy. The energy consumed in this very essential food-producing process, however, is almost insignificant compared with that involved in transport and processing of food beyond the farm and with other energy expenditures in modern society. A shift in priorities will certainly be required in adapting to the real world of the 1970s if man's first need is to be met. Economies in fertilizer use can be made by adherence to known agronomic principles. Savings in fossil fuel energy can probably be effected also in the production of N fertilizer, by far the most fossil-energy-demanding process in the realm of agriculture. Considerable research remains to be done, however, under varied climatic conditions for understanding and controlling processes by which residuals from fertilizers may become environmental pollutants. The various issues in this paper must be resolved promptly in consideration of the now-existing energy crisis and the imminent world food crisis.

  7. High intensity training and energy production during 90-second box jump in junior alpine skiers.

    PubMed

    Gross, Micah; Hemund, Kevin; Vogt, Michael

    2014-06-01

    Alpine ski races can last up to 2.5 minutes and have very high metabolic demands. One limiting factor for performance is insufficient aerobic energy supply. We studied the effects of an 8-day interval training block on aerobic capacity (VO2max) and performance and physiology during the 90-second box jump test (BJ90), a maximal performance test employed to simulate the metabolic demands of alpine ski racing, in elite junior skiers. After 10 high-intensity interval training sessions, performed as cycling, running, or an obstacle course, VO2max increased in all subjects by 2.5 ± 1.9 ml · minute(-1) · kg(-1) (4.3 ± 3.2%), as did maximal blood lactate concentration in a graded cycling test (before: 11.7 ± 1.3 mmol · L(-1), after: 14.8 ± 1.8 mmol · L(-1), both parameters p ≤ 0.05). Performance (total jumps) and aerobic energy contribution (63.3 ± 2.8%) during the BJ90 did not increase as hypothesized; however, subjects altered their pacing strategy, which may have counteracted such an effect. Additionally, the present data support the practicality of the performance test used for mimicking the demands of alpine skiing.

  8. Radiative neutralino production in low energy supersymmetric models

    SciTech Connect

    Basu, Rahul; Sharma, Chandradew; Pandita, P. N.

    2008-06-01

    We study the production of the lightest neutralinos in the radiative process e{sup +}e{sup -}{yields}{chi}-tilde{sub 1}{sup 0}{chi}-tilde{sub 1}{sup 0}{gamma} in low energy supersymmetric models for the International Linear Collider energies. This includes the minimal supersymmetric standard model as well as its extension with an additional chiral Higgs singlet superfield, the nonminimal supersymmetric standard model. We compare and contrast the dependence of the signal cross section on the parameters of the neutralino sector of the minimal and nonminimal supersymmetric standard model. We also consider the background to this process coming from the standard model process e{sup +}e{sup -}{yields}{nu}{nu}{gamma}, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) e{sup +}e{sup -}{yields}{nu}-tilde{nu}-tilde*{gamma}, which can be a background to the radiative neutralino production when the sneutrinos decay invisibly. In low energy supersymmetric models radiative production of the lightest neutralinos may be the only channel to study supersymmetric partners of the standard model particles at the first stage of a linear collider, since heavier neutralinos, charginos, and sleptons may be too heavy to be pair produced at a e{sup +}e{sup -} machine with {radical}(s)=500 GeV.

  9. Product suitable for the storage and conveyance of thermal energy

    SciTech Connect

    Babin, L.; Clausse, D.

    1981-09-01

    This invention concerns the storage and conveyance of thermal energy at low temperature, by using the latent heat produced by a substance during changes of state. This substance consists of a salt producing considerable latent heat during change of state, such as NA/sub 2/SO/sub 4/, 10 H/sub 2/O, combined closely with a nucleating agent such as borax and dispersed in an oil to which an emulsifying agent has been added. This product is particularly suitable for storage of solar energy at low temperature and for heating of enclosed areas.

  10. QCD Resummation for Heavy Quarkonium Production in High Energy Collisions

    SciTech Connect

    Kang Zhongbo; Qiu Jianwei

    2008-10-13

    Using e{sup +}e{sup -}{yields}J/{psi}+X as a case study, we explicitly demonstrate that the perturbatively calculated cross section for heavy quarkonium production in terms of the NRQCD factorization formalism has large logarithms as the collision energy s>>M, the heavy quarkonium mass. We propose a modified factorization formalism for the cross section, which systematically resums the large logarithms of the perturbatively calculated coefficient functions. The modified factorization formalism is perturbatively more stable and reliable for a much wider range of collision energies.

  11. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering.

    PubMed

    Quintana, Naira; Van der Kooy, Frank; Van de Rhee, Miranda D; Voshol, Gerben P; Verpoorte, Robert

    2011-08-01

    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review.

  12. Challenges in polyoxometalate-mediated aerobic oxidation catalysis: catalyst development meets reactor design.

    PubMed

    Lechner, Manuel; Güttel, Robert; Streb, Carsten

    2016-11-14

    Selective catalytic oxidation is one of the most widely used chemical processes. Ideally, highly active and selective catalysts are used in combination with molecular oxygen as oxidant, leading to clean, environmentally friendly process conditions. For homogeneous oxidation catalysis, molecular metal oxide anions, so-called polyoxometalates (POMs) are ideal prototypes which combine high reactivity and stability with chemical tunability on the molecular level. Typically, POM-mediated aerobic oxidations are biphasic, using gaseous O2 and liquid reaction mixtures. Therefore, the overall efficiency of the reaction is not only dependent on the chemical components, but requires chemical engineering insight to design reactors with optimized productivity. This Perspective shows that POM-mediated aerobic liquid-phase oxidations are ideal reactions to be carried out in microstructured flow reactors as they enable facile mass and energy transfer, provide large gas-liquid interfaces and can be easily upscaled. Recent advances in POM-mediated aerobic catalytic oxidations are therefore summarized with a focus on technological importance and mechanistic insight. The principles of reactor design are discussed from a chemical engineering point of view with a focus on homogeneous oxidation catalysis using O2 in microfluidic systems. Further, current limitations to catalytic activity are identified and future directions based on combined chemistry and chemical engineering approaches are discussed to show that this approach could lead to sustainable production methods in industrial chemistry based on alternative energy sources and chemical feedstocks.

  13. Investigation of Rare Particle Production in High Energy Nuclear Collisions

    SciTech Connect

    1999-09-02

    Our program is an investigation of the hadronization process through measurement of rare particle production in high energy nuclear interactions. Such collisions of heavy nuclei provide an environment similar in energy density to the conditions in the Big Bang. We are currently involved in two major experiments to study this environment, E896 at the AGS and STAR at RHIC. We have completed our physics running of E896, a search for the H dibaryon and measurement of hyperon production in AuAu collisions, and are in the process of analyzing the data. We have produced the electronics and software for the STAR trigger and will begin to use these tools to search for anti-nuclei and strange hadrons when RHIC turns on later this year.

  14. Energy-efficient photobioreactor configuration for algal biomass production.

    PubMed

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs.

  15. 78 FR 65223 - Energy Conservation Program for Consumer Products: Proposed Determination of Miscellaneous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC51 Energy Conservation Program for Consumer Products...) established the ``Energy Conservation Program for Consumer Products Other Than Automobiles,'' which covers consumer products and certain commercial products (i.e. ``covered products'').\\1\\ \\1\\ Upon codification...

  16. Energy-Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Johnson, Rolland Paul

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  17. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  18. National voluntary laboratory accreditation program: Energy efficient lighting products. Handbook

    SciTech Connect

    Galowin, L.S.; Hall, W.; Rossiter, W.J.

    1994-07-01

    The purpose of this handbook is to set out procedures and technical requirements for the National Voluntary Laboratory Accreditation Program (NVLAP) accreditation of laboratories which perform test methods covered by the Energy Efficient Lighting (EEL) Products program. It complements and supplements the NVLAP programmatic procedures and general requirements found in NIST Handbook 150 (PB94-178225). The interpretive comments and additional requirements contained in this handbook make the general NVLAP criteria specifically applicable to the EEL program.

  19. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  20. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  1. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  2. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  3. Performance of the NEC production high energy implantation system

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Klody, G. M.; Loger, R. L.

    1987-04-01

    MeV ion implantation systems are now being used on a production basis, providing beam energies in the range from 200 keV to 4 MeV. Interest and demand for such systems has increased since the first system went on-line in May 1983. At present, eight systems have been sold with a maximum beam energy capability of 4 MeV for use in the production environment. Production machines are now available providing beam energies as high as 8 MeV. These systems are capable of providing a wide range of ion species without the use of toxic gases. Present beam current and beam species capabilities will be presented. In addition, we describe new techniques for measuring dose uniformity from MeV implants [W.A. Keenan, Prometrix Corp., 3255 Scott Blvd., Bldg. 2, Santa Clara, CA 95054-3077, USA] and present results of uniformity and particulate measurements. We describe MeV implanter developments, including a new wafer handler.

  4. The production of herbaceous feedstocks for renewable energy

    SciTech Connect

    Not Available

    1986-09-01

    This document describes the use of a selected group of herbaceous plants as energy feedstocks. Twelve herbaceous crops were selected for study based on their above average yields; their composition, which can increase their value for fuel and other applications; and their ability to produce in a variety of soils and climates. Six of the twelve are carbohydrate crops (sugarcane, sweet sorghum, sweet-stemmed grain sorghum, Jerusalem artichoke, sugar beet, and fodder beet), and six are lignocellulosic crops (kenaf, napiergrass, alfalfa, reed canarygrass, common reed, and water hyacinth). The contribution that herbaceous crops can make to the total US energy supply is discussed. Each candidate crop is characterized in terms of chemical composition, storage, processing, products, and uses. Growth characteristics and production practices in terms of geographic range, yield potential, and cultural requirements are described. Barriers to private sector development of herbaceous energy crops are listed and how R and D programs could be directed to overcome these roadblocks. The areas considered are feedstock selection and production, harvesting and transport, and processing and conversion.

  5. Experiences of a grid connected solar array energy production

    NASA Astrophysics Data System (ADS)

    Hagymássy, Zoltán; Vántus, András

    2015-04-01

    Solar energy possibilities of Hungary are higher than in Central Europe generally. The Institute for Land Utilisation, Technology and Regional Development of the University of Debrecen installed a photovoltaic (PV) system. The PV system is structured into 3 subsystems (fields). The first subsystem has 24 pieces of Kyocera KC 120 W type modules, the second subsystem has 72 pieces of Siemens ST 40W, and the remaining has 72 pieces of Dunasolar DS 40W In order to be operable independently of each other three inverter modules (SB 2500) had been installed. The recorder can be connected directly to a desktop PC. Operating and meteorological dates are recorded by MS Excel every 15 minutes. The power plant is connected to a weather station, which contents a PT 100 type temperature and humidity combined measuring instrument, a CM 11 pyranometer, and a wind speed measuring instrument. The produced DC, and AC power, together with the produced energy are as well, and the efficiency can be determined for each used PV technology. The measured operating and meteorological dates are collected by Sunny Boy Control, produced by the SMA. The energy productions of the subsystems are measured continually and the subsystems are measured separately. As an expected, the produced energy of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. It is well known that energy analysis is more suitable for energy balance when we design a system. The air temperature and the temperature of the panels and the global irradiation conditions were measured. In summertime the panel temperature reaches 60-80 degrees in a sunny day. The panel temperatures are in a spring sunny day approximately 30-40 degrees. It can be concluded that the global irradiation is a major impact feature to influence the amount of energy produced. The efficiency depends on several parameters (spectral distribution of the incoming light, temperature values, etc.). The energy efficiency

  6. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  7. Energy Production from Biogas: Competitiveness and Support Instruments in Latvia

    NASA Astrophysics Data System (ADS)

    Klāvs, G.; Kundziņa, A.; Kudrenickis, I.

    2016-10-01

    Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 - the investment support (IS) and the feed-in tariff (FIT) - on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors' estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.

  8. Aerobic glycolysis and lymphocyte transformation

    PubMed Central

    Hume, David A.; Radik, Judith L.; Ferber, Ernst; Weidemann, Maurice J.

    1978-01-01

    1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-14C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-14C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [3H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25μm) stimulated DNA synthesis half-maximally, but maximum [3H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [3H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis. PMID:310305

  9. Production and Transfer of Energy and Information in Hamiltonian Systems

    PubMed Central

    Antonopoulos, Chris G.; Bianco-Martinez, Ezequiel; Baptista, Murilo S.

    2014-01-01

    We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an “experimental” implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented. PMID:24586891

  10. Production and transfer of energy and information in Hamiltonian systems.

    PubMed

    Antonopoulos, Chris G; Bianco-Martinez, Ezequiel; Baptista, Murilo S

    2014-01-01

    We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an "experimental" implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented.

  11. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  12. 75 FR 4548 - Energy Efficiency Program for Consumer Products: Commonwealth of Massachusetts Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency Program for Consumer Products: Commonwealth of Massachusetts Petition for Exemption From Federal Preemption of Massachusetts'...

  13. Hadron Diffractive Production at Ultrahigh Energies and Shadow Effects

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.

    Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies... Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q^2_{1 to 1} m^2/ ln^2 s, q^2_{3 to 3} m^2/ ln^2 s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor 1/4 initial state rescatterings result in additional factor 1/2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σ_{inel}/σ_{tot} to 0 at √{s}to ∞ in this mode.

  14. Hadron diffractive production at ultrahigh energies and shadow effects

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nikonov, V. A.

    2016-10-01

    Shadow effects at collisions of hadrons with light nuclei at high energies were subject of scientific interest of V.N. Gribov, first, we mean his study of the hadron-deuteron scattering, see Sov. Phys. JETP 29, 483 (1969) [Zh. Eksp. Teor. Fiz. 56, 892 (1969)] and discovery of the reinforcement of shadowing due to inelastic diffractive rescatterings. It turns out that the similar effect exists on hadron level though at ultrahigh energies. Diffractive production is considered in the ultrahigh energy region where pomeron exchange amplitudes are transformed into black disk ones due to rescattering corrections. The corresponding corrections in hadron reactions h1 + h3 → h1 + h2 + h3 with small momenta transferred (q1→12 ˜ m2/ln2s, q3→32 ˜ m2/ln2s) are calculated in terms of the K-matrix technique modified for ultrahigh energies. Small values of the momenta transferred are crucial for introducing equations for amplitudes. The three-body equation for hadron diffractive production reaction h1 + h3 → h1 + h2 + h3 is written and solved precisely in the eikonal approach. In the black disk regime final state scattering processes do not change the shapes of amplitudes principally but dump amplitudes by a factor ˜ 1 4; initial state rescatterings result in additional factor ˜ 1 2. In the resonant disk regime initial and final state scatterings damp strongly the production amplitude that corresponds to σinel/σtot → 0 at s →∞ in this mode.

  15. Coastal eutrophication in Europe caused by production of energy crops.

    PubMed

    van Wijnen, Jikke; Ivens, Wilfried P M F; Kroeze, Carolien; Löhr, Ansje J

    2015-04-01

    In Europe, the use of biodiesel may increase rapidly in the coming decades as a result of policies aiming to increase the use of renewable fuels. Therefore, the production of biofuels from energy crops is expected to increase as well as the use of fertilisers to grow these crops. Since fertilisers are an important cause of eutrophication, the use of biodiesel may have an effect on the water quality in rivers and coastal seas. In this study we explored the possible effects of increased biodiesel use on coastal eutrophication in European seas in the year 2050. To this end, we defined a number of illustrative scenarios in which the biodiesel production increases to about 10-30% of the current diesel use. The scenarios differ with respect to the assumptions on where the energy crops are cultivated: either on land that is currently used for agriculture, or on land used for other purposes. We analysed these scenarios with the Global NEWS (Nutrient Export from WaterSheds) model. We used an existing Millennium Ecosystem Assessment Scenario for 2050, Global Orchestration (GO2050), as a baseline. In this baseline scenario the amount of nitrogen (N) and phosphorus (P) exported by European rivers to coastal seas decreases between 2000 and 2050 as a result of environmental and agricultural policies. In our scenarios with increased biodiesel production the river export of N and P increases between 2000 and 2050, indicating that energy crop production may more than counterbalance this decrease. Largest increases in nutrient export were calculated for the Mediterranean Sea and the Black Sea. Differences in nutrient export among river basins are large.

  16. Effects of an acute bout of aerobic exercise on immediate and subsequent three-day food intake and energy expenditure in active and inactive men.

    PubMed

    Rocha, Joel; Paxman, Jenny; Dalton, Caroline; Winter, Edward; Broom, David

    2013-12-01

    This study examined the effects of an acute bout of low-intensity cycling on food intake and energy expenditure over four days. Thirty healthy, active (n=15) and inactive (n=15) men completed two conditions (exercise and control), in a randomised crossover fashion. The exercise experimental day involved cycling for one hour at an intensity equivalent to 50% of maximum oxygen uptake and two hours of rest. The control condition comprised three hours of rest. Participants arrived at the laboratory fasted overnight; breakfast was standardised and an ad libitum pasta lunch was consumed on each experimental day. Participants kept a food diary and wore an Actiheart to estimate energy intake and expenditure for the remainder of the experimental days and over the subsequent 3 days. Ad libitum lunch energy intake did not differ between conditions (p=0.32, d=0.18) or groups (p=0.43, d=0.27). Energy intake in the active group was greater on the exercise experimental day than on the control experimental day (mean difference=2070 kJ; 95% CI 397 to 3743 kJ, p=0.024, d=0.56) while in the inactive group it was increased on only the third day after exercise (mean difference=2225 kJ; 95% CI 414 to 4036 kJ, p=0.024, d=0.80). There was only a group effect (p=0.032, d=0.89) for free-living energy expenditure, indicating that active participants expended more energy than inactive over this period. Acute low-intensity exercise did not affect energy intake at the meal immediately after exercise, but induces an acute (within the experimental day) and delayed (third day after the experimental day) increase in energy intake in active and inactive participants, respectively with no compensatory changes to daily energy expenditure. These results suggest that active individuals compensate for an acute exercise-induced energy deficit quicker than inactive individuals.

  17. Energy efficiency, low-carbon energy production, and economic growth in CIS countries

    NASA Astrophysics Data System (ADS)

    Vazim, A.; Kochetkova, O.; Azimzhamov, I.; Shvagrukova, E.; Dmitrieva, N.

    2016-09-01

    The paper studies the peculiarities of energy efficiency increase in national economy and decrease of carbon dioxide emission for CIS countries. The conditions that allow achieving parameters of sustainable development are determined according to indexes of GDP energy intensity and carbon intensity. Focusing on the indexes of GDP energy intensity and carbon intensity dynamics as well as on carbon intensity of energy production, a real movement towards implementation of program conditions presented by international organizations is analyzed, namely, economic conversion to the model of sustainable development. The examples demonstrate both the presence of significant differences between 12 countries and the lack of fatality in these differences. At determining dependencies linear models are preferred to non-linear ones, with the explanation of reasons in each particular case. Attention to success of these countries may help to understand the advantages of conversion to the model of sustainable development and also it helps to decrease demands in terms of costs for this conversion.

  18. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  19. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  20. Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use

    NASA Astrophysics Data System (ADS)

    National Research Council

    2011-11-01

    The U.S. Congress directed the U.S. Department of the Treasury to arrange for a review by the National Academy of Sciences to define and evaluate the health, environmental, security, and infrastructural external costs and benefits associated with the production and consumption of energy--costs and benefits that are not or may not be fully incorporated into the market price of energy, into the federal tax or fee, or into other applicable revenue measures related to production and consumption of energy. In response, the National Research Council established the Committee on Health, Environmental, and Other External Costs and Benefits of Energy Production and Consumption, which prepared the report summarized in this chapter. The report estimates dollar values for several major components of these costs. The damages the committee was able to quantify were an estimated $120 billion in the U.S. in 2005, a number that reflects primarily health damages from air pollution associated with electricity generation and motor vehicle transportation. The figure does not include damages from climate change, harm to ecosystems, effects of some air pollutants such as mercury, and risks to national security, which the report examines but does not monetize.

  1. Fuel cell systems for a sustainable energy production

    SciTech Connect

    Kivisaari, T.

    1996-12-31

    When talking about fuel cell systems for stationary applications, two of the advantages are claimed to be a high inherent efficiency and environmentally favourable characteristics. It should, however, be obvious to everybody that in order to call an energy production route environmentally benign, it is not enough that just the energy production step itself has a low negative environmental impact, but that all steps involved (e.g. fuel pre-treatment, fuel processing etc.) should be subjected to the same constraints if the overall production process is to be considered environmentally friendly. In order to evaluate the technical possibilities of a biomass fuelled MCFC unit for stationary applications a system study of a 40 MWe biomass-fired MCFC system is currently carried out at The Royal Institute of Technology, as part of the international co-operation within the IEA Advanced Fuel Cell Programme Annex 1, Balance of Plant of MCFC Systems. In addition to the present work, other recent studies involving biomass and fuel cells can be found in literature.

  2. Status of photoelectrochemical production of hydrogen and electrical energy

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  3. 78 FR 48821 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AD03 Energy Conservation Program for Consumer Products and... Consumer Product AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... servers and provided for the submission of comments by August 12, 2013. Thereafter, the...

  4. Energy saving system using by-product hydrogen

    NASA Astrophysics Data System (ADS)

    Miki, Hirofumi; Yamarnoto, Hirotaka; Ganke, Toshihiko; Satake, Ichirou; Nogi, Toshihide; Yoshioka, Hiroshi

    The authors in conjunction with Shikoku Electric Power and Toagosei have been developing a new energy saving system using by-product hydrogen assisted by the Agency of Industrial Science and Technology (AISI) of the Ministry of International Trade and Industry (MITI) since 1993. The main unit of the system is a 100-kW class phosphoric acid fuel cell (PAFC) utilizing by-product hydrogen. The development technology of this hydrogen PAFC system include the following items; (1) recycling technology for using unreacted exhaust hydrogen at the anode outlet (2) safe processing technology of exhaust hydrogen. The system was constructed at the Tokushima plant of Toagosei and has operated from December 1996. The total operating time reached over 3000 h as of June 1997. The demonstration test will be conducted from 1996 through FY 1998.

  5. Researchers fine-tune production of energy crops

    SciTech Connect

    Parish, D.J. )

    1990-04-01

    Renewable energy sources, plant materials that can be processed into liquid fuels, are becoming increasingly important as fossil fuel sources dwindle and environmental impacts of releasing fossilized carbon into the atmosphere become more evident. But which plant species provide the most material and can be grown on land not used to produce food, feed, and fiber Switchgrass exceeds all other herbaceous species we have tested in production of biomass on marginal sites in the Virginia Piedmont reports David J. Parrish, Virginia Tech (Blacksburg, VA) professor of crop and soil environmental sciences. In a study sponsored by the U.S. Department of Energy (DOE) at Virginia Tech, graduate student Steven Nagle, Parrish, professor Dale Wolf, and associate professor W.L. Daniels are comparing the biomass productivity of switchgrass, weeping lovegrass, and tall fescue. Since 1985, the crops - selected for their marginal crop value - have been grown on 12 sites in the Virginia Piedmont. Planting was done using no-till procedures that slice but do not turn the soil, because the sites are subject to erosion. The two warm-season grasses are harvested once a year, the fescue twice. Switchgrass has been the most productive on clay soils, and lovegrass on sandy soil. In a second DOE-sponsored study - this one by graduate student Preston Sullivan, Parish, Wolf, Daniels, and Nagle - the Virginia Tech researchers have begun to investigate planting winter-annual legumes in with switchgrass as a source of nitrogen to reduce cost of production, and as a means to increase biomass. In the fall of 1988, crimson clover, arrowleaf clover, and hairy vetch were planted into the switchgrass stubble. Other plots of switchgrass are being provided with various levels of nitrogen fertilizer to compare those yields with legume-planted plots. Crimson clover had provided the most fall growth, but by mid-May 1989, the hairy vetch had produced a dense webbing of biomass over the new switchgrass.

  6. Energy cane as a multiple-products alternative

    SciTech Connect

    Alexander, A.G.

    1984-01-01

    CANE SUGAR planting as it was formerly known is in serious and essentially irreversible trouble. Diversification of sugarcane to alternative farm crops is indicated in some instances. Yet, for the most part, the more logical alternative is an internal diversification to a multiple-products biomass commodity. Sometimes termed the energy cane approach, its keystones are the management of sugarcane as a quantitative rather than qualitative entity, and the inclusion of certain tropical-grass relatives to assist cane in its year-round supply of biomass to industrial consumers. Managed in this way, absolute tonnages of whole cane are increased materially beyond what is possible from sugar-crop management. Juice quality declines but sugar yields are significant as a function of high biomass tonnages per acre. Usage of the lignocellulose can range from low-quality humid boiler fuel in furnaces designed for refuse incineration, to higher-quality fuels in more efficient boilers, to proprietary fuels and chemical products, and to lignocellulose supply as the feedstock for primary chemicals production. The latter might include, for example, synthesis gas and petrochemicals in tropical regions lacking natural gas, naphtha, or coal as starting materials. Diversification of sugarcane to completely new farm commodities is opposed in favor of internal diversification to a high-growth, multiple-products commodity. Decisive issues here are as much educational as they are technical. The energy cane concept maintains that sugarcane is a future resource of enormous national and international value. It should develop accordingly where decision-taking is by persons who respect the cane plant and who have done their homework on its alternative-use potentials. 35 references, 5 figures, 6 tables.

  7. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  8. Energy dependence of resonance production in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shao, Feng-Lan; Song, Jun; Wang, Rui-Qin; Zhang, Mao-Sheng

    2017-01-01

    The production of the hadronic resonances K*0(892), ϕ(1020), Σ*(1385), and Ξ*(1530) in central AA collisions at , 200, and 2760 GeV is systematically studied. The direct production of these resonances at system hadronization is described by the quark combination model and the effects of hadron multiple-scattering stage are dealt with by a ultra-relativistic quantum molecular dynamics model (UrQMD). We study the contribution of these two production sources to final observation and compare the final spectra with the available experimental data. The p T spectra of K*0(892) calculated directly by quark combination model are explicitly higher than the data at low p T ≲ 1.5 GeV, and taking into account the modification of rescattering effects, the resulting final spectra well agree with the data at all three collision energies. The rescattering effect on ϕ(1020) production is weak and including it can slightly improve our description at low p T on the basis of overall agreement with the data. We also predict the p T spectra of Σ*(1385) and Ξ*(1530), to be tested by the future experimental data. Supported by National Natural Science Foundation of China (11575100, 11305076, 11505104)

  9. Shelf life study of hurdle treated ready-to-eat spiced buffalo meat product stored at 30 ± 3 °C for 7 weeks under vacuum and aerobic packaging.

    PubMed

    Malik, Altaf Hussain; Sharma, Brahama Deo

    2014-05-01

    Shelf stable ready to eat spiced pickle type buffalo meat product was prepared after desorbing in infusion solution (glycerol 3.5%, sodium chloride 5.0%, honey2.0%, mango powder 2.2%, spices 1.0%, sodium nitrite 0.015%, phosphate 0.2%, Sorbic acid 0.2%.and acetic acid 1%), pressure cooking of meat in infusion solution for 20 min followed by frying for 2 min in mustard oil and mixing with prefried condiments and spices. The physico-chemical properties i.e. pH, water activity, proximate composition, FFA, Soluble hydroxyproline, TBA values, nitrite content, protein solubility, shear force value, haempigments, microbiological and sensory quality of the product remained good and hygienically safe and almost comparable in aerobic PET jars and multilayered nylon barrier pouches stored at 30 ± 3 °C for 7 weeks .It can be suggested that storage of such product may be conveniently done even in food grade PET jars without going for vacuum packaging which is a bit costly.

  10. Utilisation of biomass gasification by-products for onsite energy production.

    PubMed

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency.

  11. Is Low-Impact Aerobic Dance an Effective Cardiovascular Workout?

    ERIC Educational Resources Information Center

    Williford, Henry N.; And Others

    1989-01-01

    Presents results of an investigation comparing energy cost and cardiovascular responses of aerobic dance routines performed at different intensity levels in varying amounts of energy expenditure. For low-impact dance to meet minimum guidelines suggested by the American College of Sports Medicine, it should be performed at high intensity. (SM)

  12. Energy production from biosolids: A cattle feedlot demonstration system

    SciTech Connect

    Fedler, C.B.; Parker, N.C.

    1996-12-31

    About 5 million head of cattle are produced annually from about 200 feedlots in the Texas High Plains with about 3.5 million head standing. Annually, the 3.5 million head of cattle produce about 28 millions metric tons of were manure (88% water). If anaerobically digested, the manure would yield about 1.4 million m{sup 3} of biogas, or about 4.4 million kWh daily. With cogeneration and nutrient recovery, the sum of the revenue sources in over $500 million annually and does no include the value of water or other byproducts such as fish and plants that could be produced from an integrated system. A demonstration unit to treat the waste from a 1000-head cattle and a 280 sow farrow-to-finish swine operation is constructed. This system employs a 6 m deep anaerobic pit for production and capture of biogas integrated with a facultative pond, a shallow pond for production of aquatic plants, and a pond for production of fish or other aquatic species. The resulting related agribusinesses would not only produce additional revenues, but would also produce energy, improve the environment though extraction of nitrogen compounds, capture of gaseous emissions, reduction of odor, and creation of wildlife habitat in consturcted wetlants.

  13. Production of Hydrogen Using Nuclear Energy and Inorganic Membranes

    SciTech Connect

    Bischoff, Brian L.; Trowbridge, Lee D.; Mansur, Louis K.; Forsberg, Charles W.

    2004-07-01

    The sulfur family of thermochemical processes are the leading candidates worldwide for production of hydrogen (H{sub 2}) using nuclear energy. These processes thermo-catalytically crack water yielding hydrogen and oxygen. The processes consist of a series of chemical reactions where all the chemicals are recycled in the process except for water. The processes are potentially efficient, scalable to large sizes, and use no expensive chemical reagents; however, these processes have one major disadvantage: high operating temperatures (800 to 900 deg. C). The high-temperature chemical reaction common to all of these cycles is the equilibrium thermal decomposition of sulfuric acid. There is a potential to lower the peak temperature by 200+ deg. C if the high-temperature decomposition products of sulfuric acid, O{sub 2}, H{sub 2}O, and SO{sub 2}, can be separated from SO{sub 3} using an inorganic membrane. The goal of this project is to conduct proof-of-principle experiments and associated analysis to demonstrate the potential for inorganic membranes to dramatically improve the sulfur family of thermochemical processes. We will present preliminary data of the separation efficiency of the product gases from SO{sub 3}. (authors)

  14. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  15. Contracting for Efficiency. A Best Practices Guide for Energy -Efficient Product Procurement

    SciTech Connect

    Bunch, Saralyn; Payne, Christopher

    2016-04-25

    The requirement to buy energy- and water-efficient products applies to federal purchases made through any procurement pathway (e.g., purchase cards, e-retailers, and solicitations) and to a wide variety of federal projects. The Federal Energy Management Program’s (FEMP's) Buy Energy-Efficient Products buyer overview fact sheet and Contracting for Efficiency best practices guide for product procurement are designed to support federal buyers in the purchase of energy- and water-efficient products.

  16. Hypertriton and light nuclei production at Lambda-production subthreshold energy in heavy-ion collisions

    SciTech Connect

    Zhang, S.; Zu, Z.; Chen, J.H., Ma, Y.G., Cai, X-Z, Ma, G.L., Zhong, C.

    2011-08-01

    High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion ({sup 3}He), and hypertriton ({sub {Lambda}}{sup 3}H) at subthreshold energy of Aproduction ({approx} 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor (S{sub 3} = {sup 3}{sub {Lambda}}H/({sup 3}He x {Lambda}/p)) shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few {mu}b in {sup 36}Ar+{sup 36}Ar, {sup 40}Ca+{sup 40}Ca and {sup 56}Ni+{sup 56}Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at {Lambda} subthreshold energy are suitable for breaking new ground in hypernuclear physics.

  17. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  18. By-products: oil sorbents as a potential energy source.

    PubMed

    Karakasi, Olga K; Moutsatsou, Angeliki

    2013-04-01

    The present study investigated the utilization of an industrial by-product, lignite fly ash, in oil pollution treatment, with the further potential profit of energy production. The properties of lignite fly ash, such as fine particle size, porosity, hydrophobic character, combined with the properties, such as high porosity and low specific gravity, of an agricultural by-product, namely sawdust, resulted in an effective oil-sorbent material. The materials were mixed either in the dry state or in aqueous solution. The oil sorption behaviour of the fly ash-sawdust mixtures was investigated in both marine and dry environments. Mixtures containing fly ash and 15-25% w/w sawdust performed better than each material alone when added to oil spills in a marine environment, as they formed a cohesive semi-solid phase, adsorbing almost no water, floating on the water surface and allowing total oil removal. For the clean-up of an oil spill 0.5 mm thick with surface area 1000 m(2), 225-255 kg of lignite fly ash can be utilized with the addition of 15-25% w/w sawdust. Fly ash-sawdust mixtures have also proved efficient for oil spill clean-up on land, since their oil sorption capacity in dry conditions was at least 0.6-1.4 g oil g(-1) mixture. The higher calorific value of the resultant oil-fly ash-sawdust mixtures increased up to that of bituminous coal and oil and exceeded that of lignite, thereby encouraging their utilization as alternative fuels especially in the cement industry, suggesting that the remaining ash can contribute in clinker production.

  19. High Concentrations of H2O2 Make Aerobic Glycolysis Energetically More Favorable for Cellular Respiration

    PubMed Central

    Molavian, Hamid R.; Kohandel, Mohammad; Sivaloganathan, Sivabal

    2016-01-01

    Since the original observation of the Warburg Effect in cancer cells, over 8 decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2) above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP) in response to the production of reactive oxygen species (ROS) H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources). This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production) to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis. PMID:27601999

  20. Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops

    PubMed Central

    Rockwood, Donald L.; Rudie, Alan W.; Ralph, Sally A.; Zhu, J.Y.; Winandy, Jerrold E.

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida USA and similar locations, we document their current energy applications and assess their productivity as short-term and likely long-term energy and related products. PMID:19325808

  1. Explosive Products EOS: Adjustment for detonation speed and energy release

    SciTech Connect

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wave with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.

  2. Proliferation Risks of Magneetic Fusion Energy: Clandestine Production, Covert Production and Breakout

    SciTech Connect

    A. Glaser and R.J. Goldston

    2012-03-13

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material inn a declared facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  3. The Relationship Between Aerobic and Anaerobic Performance in Recreational Runners

    PubMed Central

    GILLEN, ZACHARY M.; WYATT, FRANK B.; WINCHESTER, JASON B.; SMITH, DALTON A.; GHETIA, VIDHI

    2016-01-01

    Research has indicated that combined aerobic and anaerobic training (concurrent training) may improve aerobic performance greater than aerobic training alone. The purpose of this investigation was to establish any associations between aerobic and anaerobic performance. Eleven participants (n = 11, age = 34.1 ± 13 years, VO2max = 58.4 ± 7.8) volunteered for this study. Participants were asked for endurance training experience (4.7 ± 3.7 years) and resistance training experience (4.1 ± 4.6 years). To meet training status, participants were to have a VO2max in the 80th percentile as per ACSM guidelines. The Bruce treadmill test was used to measure aerobic performance. In order to measure anaerobic performance, several tests were completed utilizing a force platform. A Pearson Product R Correlation Coefficient was calculated to determine correlations between variables. The results show significant correlation between VO2max and RFD (r = 0.68). Further analyses utilizing Cohen’s effect size indicated a strong association between VO2max and peak force, as well as running efficiency and peak power, relative peak power, and power endurance. These results indicate an existing possibility that anaerobic performance measures such as RFD may have a positive relationship with aerobic performance measures such as VO2max. Therefore, it may be beneficial to integrate specific training components which focus on improving RFD as a method of improving running performance. PMID:27990224

  4. PREFACE: International Workshop: Meson Production at Intermediate and High Energies

    NASA Astrophysics Data System (ADS)

    Giardina, Giorgio; Bossi, Fabio; Levi Sandri, Paolo; Pedroni, Paolo; Schmieden, Hartmut

    2012-03-01

    The International Workshop 'Meson Production at Intermediate and High Energies' was held in the 'Capo Peloro Resort' Hotel in Messina, Italy on November 10-11, 2011. The workshop was organized by the University of Messina and 'Fondazione Bonino-Pulejo', in the wonderful setting of the confluence between the Ionian and Tyrrhenian seas, the center of the ancient historical and mythological civilizations of the Mediterranean countries. The main purpose of this workshop was to deal with aspects of electromagnetic and strong forces by meson photoproduction and the electron-positron collider, and to search for dark energy. The subjects covered at the workshop in Messina involved the main activities of the laboratories of Europe and countries overseas. The topics included: Baryon spectroscopy and 'missing resonances' Polarization observables Pseudoscalar and vector meson production through e.m. and hadronic reactions Hadron cross section measurements Measurements with polarized target and/or beam Editors: Giorgio GiardinaUniversity of Messina Fabio BossiINFN - Laboratori Nazionali di Frascati Paolo Levi SandriINFN - Laboratori Nazionali di Frascati Paolo PedroniINFN - Sezione di Pavia Hartmut SchmiedenUniversity of Bonn Organizing Committee: Chairman:G GiardinaMessina, Italy Co-Chairman:F BossiFrascati, Italy Co-Chairman:P Levi SandriFrascati, Italy Co-Chairman:P PedroniPavia, Italy Co-Chairman:H SchmiedenBonn, Germany Scientific Secretary:G MandaglioUniversity of Messina, Italy Local Organizing Committee: F Curciarello, V De Leo, G Fazio, G Giardina, G Mandaglio and M Romaniuk Organizing Institutions: Messina logoFBP logo University of MessinaFondazione Bonino-Pulejo (Messina) Sponsored by: University of Messina, Fondazione Bonino-Pulejo (Messina) and INFN Sezione di Catania http://newcleo.unime.it/workshop2011/ Group Photo 1 Group Photo 2

  5. Sustainable Energy Production from Jatropha Bio-Diesel

    NASA Astrophysics Data System (ADS)

    Yadav, Amit Kumar; Krishna, Vijai

    2012-10-01

    The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. This economic development has led to a huge demand for energy, where the major part of that energy is derived from fossil sources such as petroleum, coal and natural gas. Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies. There is a growing interest in using Jatropha curcas L. oil as the feedstock for biodiesel production because it is non-edible and thus does not compromise the edible oils, which are mainly used for food consumption. Further, J. curcas L. seed has a high content of free fatty acids that is converted in to biodiesel by trans esterification with alcohol in the presence of a catalyst. The biodiesel produced has similar properties to that of petroleum-based diesel. Biodiesel fuel has better properties than petro diesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future. Biodiesel has the potential to economically, socially, and environmentally benefit communities as well as countries, and to contribute toward their sustainable development.

  6. Renewable power production in a Pan-Caribbean energy grid

    NASA Astrophysics Data System (ADS)

    Miller, David

    The Small Island Developing States of the Caribbean are victims of geography and geopolitics. Lacking access to large fossil fuel reserves, they are forced to import fuel at prices they have no control over. Renewable energy resources, particularly wind, have the potential to help break the Caribbean dependency on fossil fuels and allow for increased development at the same time. Working from a sustainable development point of view, this project discusses the history of the area, the theoretical background for the idea of large scale renewable power production, the regional initiatives already in place that address both the cost of fossil fuels and the policy hurdles that need to be overcome to assist the region in gaining energy independence. Haiti is highlighted as a special case in the region and the potential use of several renewable resources are discussed, along with a potential business model based on the idea of the Internet. Power storage is covered, specifically the potential of battery operated vehicles to have a positive impact on the Caribbean region and other developing states. The role of government regulation and policy comes into play next, followed by a discussion on the need for developed states to change patterns of behavior in order to achieve sustainability. Finally, nuclear power and liquefied natural gas are reviewed and rejected as power options for the region.

  7. Hydrogen energy for tomorrow: Advanced hydrogen production technologies

    SciTech Connect

    1995-08-01

    The future vision for hydrogen is that it will be cost-effectively produced from renewable energy sources and made available for widespread use as an energy carrier and a fuel. Hydrogen can be produced from water and when burned as a fuel, or converted to electricity, joins with oxygen to again form water. It is a clean, sustainable resource with many potential applications, including generating electricity, heating homes and offices, and fueling surface and air transportation. To achieve this vision, researchers must develop advanced technologies to produce hydrogen at costs competitive with fossil fuels, using sustainable sources. Hydrogen is now produced primarily by steam reforming of natural gas. For applications requiring extremely pure hydrogen, production is done by electrolysis. This is a relatively expensive process that uses electric current to dissociate, or split, water into its hydrogen and oxygen components. Technologies with the best potential for producing hydrogen to meet future demand fall into three general process categories: photobiological, photoelectrochemical, and thermochemical. Photobiological and photoelectrochemical processes generally use sunlight to split water into hydrogen and oxygen. Thermochemical processes, including gasification and pyrolysis systems, use heat to produce hydrogen from sources such as biomass and solid waste.

  8. Energy production from food industry wastewaters using bioelectrochemical cells

    SciTech Connect

    Hamilton, Choo Yieng

    2009-01-01

    Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

  9. 78 FR 43974 - Energy and Water Use Labeling for Consumer Products Under the Energy Policy and Conservation Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... From the Federal Register Online via the Government Publishing Office FEDERAL TRADE COMMISSION 16 CFR Part 305 Energy and Water Use Labeling for Consumer Products Under the Energy Policy and... standards and to aid shoppers who compare products during this period, AHAM proposed two measures. First,...

  10. Estimation of PV energy production based on satellite data

    NASA Astrophysics Data System (ADS)

    Mazurek, G.

    2015-09-01

    Photovoltaic (PV) technology is an attractive source of power for systems without connection to power grid. Because of seasonal variations of solar radiation, design of such a power system requires careful analysis in order to provide required reliability. In this paper we present results of three-year measurements of experimental PV system located in Poland and based on polycrystalline silicon module. Irradiation values calculated from results of ground measurements have been compared with data from solar radiation databases employ calculations from of satellite observations. Good convergence level of both data sources has been shown, especially during summer. When satellite data from the same time period is available, yearly and monthly production of PV energy can be calculated with 2% and 5% accuracy, respectively. However, monthly production during winter seems to be overestimated, especially in January. Results of this work may be helpful in forecasting performance of similar PV systems in Central Europe and allow to make more precise forecasts of PV system performance than based only on tables with long time averaged values.

  11. Production of desalinated water using ocean thermal energy

    NASA Astrophysics Data System (ADS)

    Rabas, T.; Panchal, C.

    This paper describes an Ocean Thermal Energy Conversion (OTEC) desalination plant that consists of a multistage flash evaporator (MSF), a closed-cycle OTEC power plant, and an appropriate seawater system depending if the desalination plant is land based or floating. OTEC desalination plants of this type are preferred because the production of desalinated water far exceeds that obtained from other OTEC plant types employing the same size seawater system. The focus of the paper is on the multistage flash evaporator. The similarities and differences between conventional MSF and OTEC multistage flash evaporators (OTEC-MSF) are first described. Then the details of the OTEC-MSF evaporator design are discussed and preliminary correlations are recommended for the three major elements: the flash chamber, the moisture removal device, and the condenser. Recent advances such as enhanced condenser tubes, condensers of the compact type, and corrugated-plate moisture separators are introduced into the design. Comparisons of the water production capability, evaporator shell volume, and material cost are then presented for state-of-the-art and the new design concepts.

  12. Production of desalinated water using ocean thermal energy

    SciTech Connect

    Rabas, T.; Panchal, C.

    1991-01-01

    This paper describes an Ocean Thermal Energy Conversion (OTEC) desalination plant that consists of a multistage flash evaporator (MSF), a closed-cycle OTEC power plant, and an appropriate seawater system depending if the desalination plant is land based or floating. OTEC desalination plants of this type are preferred because the production of desalinated water far exceeds that obtained from other OTEC plant types employing the same size seawater system. The focus of the paper is on the multistage flash evaporator. The similarities and differences between conventional MSF and OTEC multistage flash evaporators (OTEC-MSF) are first described. Then the details of the OTEC-MSF evaporator design are discussed and preliminary correlations are recommended for the three major elements: the flash chamber, the moisture removal device, and the condenser. Recent advances such as enhanced condenser tubes, condensers of the compact type, and corrugated-plate moisture separators are introduced into the design. Comparisons of the water production capability, evaporator shell volume, and material cost are then presented for state-of-the-art and the new design concepts. 20 refs., 11 figs., 5 tabs.

  13. Hydrogen Production from Nuclear Energy via High-Temperature Electrolysis

    SciTech Connect

    Herring, J.S.; O'Brien, J.E.; Stoots, C.M.; Lessing, P.A.

    2004-07-01

    High-temperature electrolytic water-splitting supported by nuclear process heat and electricity has the potential to produce H{sub 2} with an overall system efficiency near those of the hydrocarbon and thermochemical processes, but without the corrosive conditions of thermochemical processes and without the fossil fuel consumption and greenhouse gas emissions associated with hydrocarbon processes. Specifically, a high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-hydrogen conversion efficiency of 45 to 55%. A research program is under way at INEEL to develop a conceptual design for large-scale nuclear production of hydrogen via planar solid oxide electrolysis technology. The design effort is addressing solid oxide cell materials and configuration, performance, durability, operating conditions, economics, and safety. Single and multiple cell experimental studies are being conducted. Interim results indicate that this technology performs close to theoretical predictions and remains a viable means for hydrogen production using nuclear energy. (authors)

  14. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    PubMed

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery.

  15. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel

  16. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions.

    PubMed

    Zhao, Lanmei; Bao, Mutai; Yan, Miao; Lu, Jinren

    2016-09-01

    Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product.

  17. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds.

    PubMed

    Shilton, A N; Mara, D D; Craggs, R; Powell, N

    2008-01-01

    Waste stabilisation pond (WSP) technology offers some important advantages and interesting possibilities when viewed in the light of sustainable energy and carbon management. Pond systems stand out as having significant advantages due to simple construction; low (or zero) operating energy requirements; and the potential for bio-energy generation. Conventional WSP requires little or no electrical energy for aerobic treatment as a result of algal photosynthesis. Sunlight enables WSP to disinfect wastewaters very effectively without the need for any chemicals or electricity consumption and their associated CO(2) emissions. The energy and carbon emission savings gained over electromechanical treatment systems are immense. Furthermore, because algal photosynthesis consumes CO(2), WSP can be utilised as CO(2) scrubbers. The environmental and financial benefits of pond technology broaden further when considering the low-cost, energy production opportunities of anaerobic ponds and the potential of algae as a biofuel. As we assess future best practice in wastewater treatment technology, perhaps one of the greatest needs is an improved consideration of the carbon footprint and the implications of future increases in the cost of electricity and the value of biogas.

  18. Energy Resiliency for Marine Corps Logistics Base Production Plant Barstow

    DTIC Science & Technology

    2014-12-01

    Secm-ity, Modem Portfolio Theoty, Solar, Photovoltaic, Wind, Biomass , Waste-to- energy , PAGES Energy Planning, Energy Sn·ategy, Value ofElecn-ical...security. Figure 3. SCE SAIDI and SIAIF data 2008 – 2014 E. ENERGY SOURCES 1. Biomass , Landfill Gas, and Biogas Biomass and Biogas... Biomass energy basics. Retrieved December 7, 2014, from http://www.nrel.gov/learning/re_biomass.html National Research Energy Laboratory. (2014

  19. 76 FR 33271 - Energy Conservation Program for Consumer Products: Decision and Order Granting a Waiver to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Decision... Residential Clothes Dryer Test Procedure AGENCY: Office of Energy Efficiency and Renewable Energy, Department... from the DOE clothes dryer test procedure. The waiver pertains to the specified models of...

  20. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment.

  1. Buy Energy-Efficient Products: A Guide for Federal Purchasers and Specifiers

    SciTech Connect

    2012-09-03

    Efficient product purchases can really add up. In a single year, they could save the Federal Government almost a half billion dollars worth of energy. Every day, Federal employees and contractors make product choices. With each choice comes an opportunity to capture ongoing savings through the purchase of energy-efficient products. By purchasing products that exceed required efficiency levels, you save the government even more energy and money.

  2. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading.

    PubMed

    Jiang, H-L; Tay, J-H; Tay, S T-L

    2004-02-01

    Four column-type sequential aerobic sludge blanket reactors were fed with phenol as the sole carbon and energy source and operated at loading rates of 1.0, 1.5, 2.0 and 2.5 kg phenol m(-3) day(-1). The results indicated that phenol loading exerted a profound influence on the structure, activity and metabolism of the aerobic granules. Compact granules with good settling ability were maintained at loadings up to 2.0 kg phenol m(-3) day(-1), and structurally weakened granules with enhanced production of extracellular polymers and proteins and significantly lower hydrophobicities were observed at the highest loading of 2.5 kg phenol m(-3) day(-1). Specific oxygen uptake rate, catechol 2,3-dioxygenase (C23O) and catechol 1,2-dioxygenase (C12O) activities peaked at a loading of 2.0 kg phenol m(-3) day(-1), and declined thereafter. Granules degraded phenol completely in all four reactors, mainly through the meta cleavage pathway as C23O activities were significantly higher than C12O activities. At the highest loading applied, the anabolism and catabolism of microorganisms were regulated such that phenol degradation proceeded exclusively via the meta pathway, apparently to produce more energy for overstimulation of protein production against phenol toxicity. This work contributes to a better understanding of the ability of aerobic granules to handle high-strength industrial wastewaters containing chemicals that are normally inhibitory to microbial growth.

  3. Waste to Energy Power Production at DOE and DOD Sites

    DTIC Science & Technology

    2011-01-13

    BiomassHeat and Power USAF: Hill Air Force Base • Landfill Gasto Energy Generation Ameresco independent...coal each year. DOESR– Project Benefits Ameresco independent Hill AFBLandfill Gasto Energy Ameresco independent...AFBRenewable Energy Initiatives Landfill Gasto Energy Electrical Generation (LFGTE) • First of itskind in the USAF/ DOD/ Utah • First Project Under

  4. Energy requirement for the production of silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wihl, M.; Scheinne, A.; Morrison, A. D.

    1977-01-01

    Photovoltaics is subject of an extensive technology assessment in terms of its net energy potential as an alternate energy source. Reduction of quartzite pebbles, refinement, crystal growth, cell processing and panel building are evaluated for energy expenditure compared to direct, indirect, and overhead energies.

  5. An Economic Feasibility Study on the Space-Based Production of Methane Gas from Human Waste through Aerobic Digestion for Use as an Orbit Maintenance Propellant.

    DTIC Science & Technology

    1985-12-01

    with the Gobar Gas Plant fabricated at the New Delhi, India , Agricultural Research Institute. China currently has over half a million small scale...digesters. India has installed some 100,000 such plants, and Korea is building 50,000 small-scale anaerobic operations. In 1976 the U.S. Energy Research...JUT S: 1:3.31! icai ’P 2 4 IS: C0.1~ al TOTAL 2 :5: :.:i: Ca1 tT TOA , ut 15: a Ia ’.K T %E ET lS:-.2273E-3 :a’ - UH 71CF : O’i7JFT K .i ,.4 OL, 2 : - 7

  6. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    PubMed

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-02-26

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  7. Aerobic Biodegradation of Trichloroethylene.

    DTIC Science & Technology

    1987-07-01

    the meta ring-fission product , the supernatant solution of phenol- induced restTW cells incubated with catechol and 3-methylcatechol was examined ...into C02 and unidentified nonvolatile products . Phenol, 41 toiin- andq-cresol were found to replace the site water requirement for TCE metabolism...undertaken in an effort to discover microorganisms capable of degrading TCE to innocuous products . Isolation of a microorganism with TCE-degrading ability

  8. Sustainability and energy development: influences of greenhouse gas emission reduction options on water use in energy production.

    PubMed

    Cooper, D Craig; Sehlke, Gerald

    2012-03-20

    Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a "safe" level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints will limit our options for meeting society's growing demand for energy while also reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the climate wedges proposal of Pacala and Socolow (Science2004, 305 (5686), 968-972) and evaluating the potential water-use impacts of the wedges associated with energy production. GHG mitigation options that improve energy conversion or use efficiency can simultaneously reduce GHG emissions, lower energy costs, and reduce energy impacts on water resources. Other GHG mitigation options (e.g., carbon capture and sequestration, traditional nuclear, and biofuels from dedicated energy crops) increase water requirements for energy. Achieving energy sustainability requires deployment of alternatives that can reduce GHG emissions, water resource impacts, and energy costs.

  9. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.

    PubMed

    Weschler, Matthew K; Barr, William J; Harper, Willie F; Landis, Amy E

    2014-02-01

    Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient.

  10. Modeling defect production in high energy collision cascades

    SciTech Connect

    Heinisch, H.L.; Singh, B.N.; Diaz de la Rubia, T.

    1993-12-01

    A multi-model approach roach (MMA) to simulating defect production processes at the atomic scale is described that incorporates molecular dynamics (MD), binary collision approximation (BCA) calculations and stochastic annealing simulations. The central hypothesis of the MMA is that the simple, fast computer codes capable of simulating large numbers of high energy cascades (e.g., BCA codes) can be made to yield the correct defect configurations when their parameters are calibrated using the results of the more physically realistic MD simulations. The calibration procedure is investigated using results of MD simulations of 25 keV cascades in copper. The configurations of point defects are extracted from the MD cascade simulations at the end of the collisional phase, similar to the information obtained with a binary collision model. The MD collisional phase defect configurations are used as input to the ALSOME annealing simulation code, and values of the ALSOME quenching parameters are determined that yield the best fit to the post-quenching defect configurations of the MD simulations.

  11. NonBoussinesq effects on vorticity and kinetic energy production

    NASA Astrophysics Data System (ADS)

    Ravichandran, S.; Dixit, Harish; Govindarajan, Rama

    2015-11-01

    The Boussinesq approximation, commonly employed in weakly compressible or incompressible flows, neglects changes in inertia due to changes in the density. However, the nonBoussinesq terms can lead to a kind of centrifugal instability for small but sharp density variations, and therefore cannot be neglected under such circumstances (see, e.g., DIXIT & GOVINDARAJAN, JFM , 2010, 415). Here, we study the evolution of a light-cored Gaussian vortex and find that the nonBoussinesq terms can lead to significant changes in how vortices evolve. The problem is governed by three nondimensional numbers--Reynolds number (i.e. viscosity), Atwood number, and a ratio of gravitational and centrifugal Froude numbers. We find that the production of kinetic energy and vorticity in a light-cored Gaussian vortex are affected significantly by the nonBoussinesq terms, and varies non-monotonically with the parameters of the problem. In general, these nonBoussinesq effects depend both on the strength of gravity and on the Reynolds number associated with the initial vortex.

  12. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass

    PubMed Central

    Wright, Katherine E.; Williamson, Charles; Grasby, Stephen E.; Spear, John R.; Templeton, Alexis S.

    2013-01-01

    We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S0) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the

  13. Energy and materials flows in the production of olefins and their derivatives

    SciTech Connect

    Gaines, L.L.; Shen, S.Y.

    1980-08-01

    Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

  14. 75 FR 75289 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Dishwashers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-02

    ...In order to implement recent amendments to the Energy Policy and Conservation Act of 1975 (EPCA), the U.S. Department of Energy (DOE) proposes to amend its test procedures for residential dishwashers, dehumidifiers, and conventional cooking products (which include cooktops, ovens, and ranges) to provide for measurement of standby mode and off mode energy use by these products. The proposed......

  15. Sell Energy-Efficient Products: A Guide to Selling to the U.S. Government

    SciTech Connect

    2012-12-01

    The Federal Government spends $500 billion on goods and services every year and $20 billion on energy. For many product types, the U.S. Government is the single largest purchaser. Manufacturers and vendors can increase their sales potential by helping Federal purchasers meet their energy-efficient product purchasing requirements. This guide explains how to sell products to the government.

  16. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    SciTech Connect

    Dykens, James A. Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A.; Will, Yvonne

    2008-12-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.

  17. Bacteria associated with processed crawfish and potential toxin production by Clostridium botulinum type E in vacuum-packaged and aerobically packaged crawfish tails.

    PubMed

    Lyon, W J; Reddmann, C S

    2000-12-01

    Refrigerated vacuum-packaged storage has been shown to increase significantly the shelf life of fresh fish and seafood products, but the effect, if any, on the outgrowth and toxin production of Clostridium botulinum type E on cooked crawfish is unknown. Microflora associated with live crawfish reflect the microbial populations of the harvest water and sediments in which they are living. The presence or absence of specific pathogens in either vacuum-packaged or air-permeable bags of cooked crawfish have not been thoroughly evaluated. This study evaluates the potential survival and outgrowth of biological hazards in both vacuum-packaged and air-permeable-packaged cooked crawfish held at 4 and 10 degrees C for 30 days. During shelf-life studies of vacuum-packaged and air-permeable-bagged cooked crawfish, a total of 31 bacterial species were isolated and identified from crawfish samples using both selective and nonselective media. The only pathogens isolated from both vacuum-packed and air-permeable bags of processed crawfish samples during shelf-life studies were strains of Aeromonas hydrophila and Staphylococcus aureus. C. botulinum type E and Clostridium perfringens species were not isolated from any of the uninoculated crawfish samples. Cooked crawfish were inoculated with 10(3) C. botulinum type E spores per g of crawfish tail meat to determine whether cooked crawfish tails would support the growth of C. botulinum type E strains and produce toxin at refrigerated temperatures. Spore-inoculated crawfish tails were vacuum packaged in both a high barrier film and an air-permeable bag and stored at 4 degrees C and 10 degrees C for 30 days. C. botulinum toxin E was not detected in any of the spore-inoculated packages throughout the shelf-life study until day 30. Microbiological data from this study should be useful in the development and implementation of the hazard analysis and critical control point plans for processed crawfish tails.

  18. Renewable Energy Supply for Power Dominated, Energy Intense Production Processes - A Systematic Conversion Approach for the Anodizing Process

    NASA Astrophysics Data System (ADS)

    >D Stollenwerk, T Kuvarakul, I Kuperjans,

    2013-06-01

    European countries are highly dependent on energy imports. To lower this import dependency effectively, renewable energies will take a major role in future energy supply systems. To assist the national and inter-European efforts, extensive changes towards a renewable energy supply, especially on the company level, will be unavoidable. To conduct this conversion in the most effective way, the methodology developed in this paper can support the planning procedure. It is applied to the energy intense anodizing production process, where the electrical demand is the governing factor for the energy system layout. The differences between the classical system layout based on the current energy procurement and an approach with a detailed load-time-curve analysis, using process decomposition besides thermodynamic optimization, are discussed. The technical effects on the resulting energy systems are shown besides the resulting energy supply costs which will be determined by hourly discrete simulation.

  19. Wind turbine power production and annual energy production depend on atmospheric stability and turbulence

    SciTech Connect

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; Poulos, Gregory S.; Schreck, Scott J.

    2016-11-01

    Using detailed upwind and nacelle-based measurements from a General Electric (GE) 1.5sle model with a 77 m rotor diameter, we calculate power curves and annual energy production (AEP) and explore their sensitivity to different atmospheric parameters to provide guidelines for the use of stability and turbulence filters in segregating power curves. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes based on turbulence parameters such as turbulence intensity (TI) as well as atmospheric stability parameters such as the bulk Richardson number (RB). We also calculate AEP with and without these atmospheric filters and highlight differences between the results of these calculations. The power curves for different TI regimes reveal that increased TI undermines power production at wind speeds near rated, but TI increases power production at lower wind speeds at this site, the US Department of Energy (DOE) National Wind Technology Center (NWTC). Similarly, power curves for different RB regimes reveal that periods of stable conditions produce more power at wind speeds near rated and periods of unstable conditions produce more power at lower wind speeds. AEP results suggest that calculations without filtering for these atmospheric regimes may overestimate the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to incorporate effects of atmospheric stability and turbulence across the rotor disk.

  20. Wind turbine power production and annual energy production depend on atmospheric stability and turbulence

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; ...

    2016-11-01

    Using detailed upwind and nacelle-based measurements from a General Electric (GE) 1.5sle model with a 77 m rotor diameter, we calculate power curves and annual energy production (AEP) and explore their sensitivity to different atmospheric parameters to provide guidelines for the use of stability and turbulence filters in segregating power curves. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes based on turbulence parameters such as turbulence intensity (TI) as well as atmospheric stability parameters such as the bulk Richardson number (RB). Wemore » also calculate AEP with and without these atmospheric filters and highlight differences between the results of these calculations. The power curves for different TI regimes reveal that increased TI undermines power production at wind speeds near rated, but TI increases power production at lower wind speeds at this site, the US Department of Energy (DOE) National Wind Technology Center (NWTC). Similarly, power curves for different RB regimes reveal that periods of stable conditions produce more power at wind speeds near rated and periods of unstable conditions produce more power at lower wind speeds. AEP results suggest that calculations without filtering for these atmospheric regimes may overestimate the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to incorporate effects of atmospheric stability and turbulence across the rotor disk.« less

  1. An Examination of Energy Considerations in the Product Acquisition Process.

    DTIC Science & Technology

    1980-12-01

    everyone. Richard C. Dorf , in his book Energy, Resources, & Policy, states that the conservation of energy can cause a signifi- cant drop in the energy...Department of the Air Force. AF Regulation 70-15. Source Selection Policy and Procedures. Washington: Government Printing Office, 1976. Dorf , Richard C...Btu’s) of energy ( Dorf , 1978; McRae, et al, 1977; AFIT School of Civil Engineering, 1975; Tetra Tech, Inc., 1977). This is approximately one-third of the

  2. Energy efficiency increase in a chemical production site.

    PubMed

    Keller, Urs; Jucker, Walter

    2013-01-01

    Sustainability has become a key factor for the chemical industry. One element of sustainability is energy efficiency in manufacturing processes. This article illustrates the strategic energy initiatives of a leading global operating company and the implementation of its elements into practice. Some successful energy-saving projects are highlighted.

  3. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  4. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.

    PubMed

    Peces, M; Astals, S; Clarke, W P; Jensen, P D

    2016-01-01

    There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation.

  5. Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China.

    PubMed

    Wang, Dan; Sui, Qian; Lu, Shu-Guang; Zhao, Wen-Tao; Qiu, Zhao-Fu; Miao, Zhou-Wei; Yu, Gang

    2014-03-01

    The occurrence and removal of six pharmaceuticals and personal care products (PPCPs) including caffeine (CF), N, N-diethyl-meta-toluamide (DEET), carbamazepine, metoprolol, trimethoprim (TMP), and sulpiride in a municipal wastewater treatment plant (WWTP) in Shanghai, China were studied in January 2013; besides, grab samples of the influent were also taken every 6 h, to investigate the daily fluctuation of the wastewater influent. The results showed the concentrations of the investigated PPCPs ranged from 17 to 11,400 ng/L in the WWTP. A low variability of the PPCP concentrations in the wastewater influent throughout the day was observed, with the relative standard deviations less than 25 % for most samples. However, for TMP and CF, the slight daily fluctuation still reflected their consumption patterns. All the target compounds except CF and DEET, exhibited poor removal efficiencies (<40 %) by biological treatment process, probably due to the low temperature in the bioreactor, which was unfavorable for activated sludge. While for the two biodegradable PPCPs, CF, and DEET, the anaerobic and oxic tank made contributions to their removal while the anoxic tank had a negative effect to their elimination. The tertiary UV treatment removed the investigated PPCPs by 5-38 %, representing a crucial polishing step to compensate for the poor removal by the biologic treatment process in winter.

  6. Gender difference in anaerobic capacity: role of aerobic contribution.

    PubMed

    Hill, D W; Smith, J C

    1993-03-01

    The purpose of this study was to evaluate effects of gender on anaerobic and aerobic contributions to high-intensity exercise. A group of 38 subjects (22 women, 16 men) performed modified Wingate tests against resistances of 0.086 kg kg-1 body mass (0.844 N kg-1) for women and 0.095 kg kg-1 body mass (0.932 N kg-1) for men. The aerobic contribution to total work performed was determined from breath-by-breath analyses of expired gases during each test. Total work in 30 s was 30% lower (Student's t test; P < 0.01) in women than men (211 +/- 5 J kg-1 versus 299 +/- 14 J kg-1). Aerobic contribution was only 7% lower (P = 0.12) in women than men (53 +/- 1 J kg-1 versus 57 +/- 2 J kg-1). The anaerobic component of the work performed, determined by subtraction of the aerobic component from total work in 30 s, was 35% lower (P < 0.01) in women than men (158 +/- 5 J kg-1 versus 242 +/- 15 J kg-1). It is concluded that, because women provide a relatively higher (P < 0.01) portion of the energy for a 30-s test aerobically than men (25% versus 20%), total work during a Wingate test actually underestimates the gender difference in anaerobic capacity between women and men.

  7. Strength and aerobic training in overweight females in Gdansk, Poland

    PubMed Central

    Sawczyn, Stanisław; Mishchenko, Viktor; Moska, Waldemar; Sawczyn, Michał; Jagiełło, Marina; Kuehne, Tatiana; Nowak, Robert; Cięszczyk, Paweł

    2015-01-01

    We compared the effects of 16-week-training on rest metabolic rate, aerobic power, and body fat, and the post-exercise effects upon rest oxygen uptake and respiratory exchange ratio in overweight middle-aged females. Twenty nine overweight women (BMI 29.9 ± 1.2 kg*m−2) participated in training (3 days a week). The subjects were divided onto groups of aerobic (AT) and strength (ST) training. The results showed that the total body mass decrease and VO2 max increase did not differ in both groups. Decrease in waist circumference after 16 weeks was higher in the ST group. In the ST group fat-free mass increased during the first 8 weeks. Rest metabolic rate was increased significantly at 16th week compared to initial value in ST group only. Significant increase in post-exercise resting VO2 and respiratory exchange ratio at 12 and 36 h was observed after the strength training session only. Increase in rest metabolic rate and post-exercise rest energy expenditure occurred after strength training but not after aerobic training despite the similar increase in aerobic power. The effect of 8–16 weeks of strength training on body mass decrease was higher in comparison to aerobic training. PMID:28352690

  8. Energy Productivity: Key to Environmental Protection and Economic Progress. Worldwatch Paper 63.

    ERIC Educational Resources Information Center

    Chandler, William U.

    This report examines various topics and issues related to worldwide energy productivity and energy conservation. Following an introduction, these issues are considered in 6 sections focusing on: (1) energy demand projections (with data on 1982 energy consumption in selected countries); (2) continued industrial efficiency gains (including data on…

  9. Full PWA Report: An Assessment of Energy, Waste, and Productivity Improvements for North Star Steel Iowa

    SciTech Connect

    2010-06-25

    North Star Steel's Wilton, Iowa plant (NSSI) was awarded a subcontract through a competitive process to use Department of Energy/OIT funding to examine potential processes and technologies that could save energy, reduce waste, and increase productivity.

  10. Energy production/savings on a northern great plain dairy/grain farm

    SciTech Connect

    Lindley, J.A.; Roehl, L.J.; Pratt, G.L.; Giles, J.; Johnson, R.; Schellinge, G.; Erickson, G.; Spilde, L.

    1984-01-01

    Energy management alternatives integrated into the NDSU dairy and grain farm include low tillage practices, solar heat collection, reclaiming and utilizing waste heat, and biogas production from manure. The effect on energy reduction has been positive.

  11. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  12. Captopril and its dimer captopril disulfide: photodegradation, aerobic biodegradation and identification of transformation products by HPLC-UV and LC-ion trap-MS(n).

    PubMed

    Mahmoud, Waleed M M; Kümmerer, Klaus

    2012-08-01

    In some countries effluents from hospitals and households are directly emitted into open ditches without any further treatment and with very little dilution. Under such circumstances photo- and biodegradation in the environment can occur. However, these processes do not necessarily end up with the complete mineralization of a chemical. Therefore, the biodegradability of photoproduct(s) by environmental bacteria is of interest. Cardiovascular diseases are the number one cause of death globally. Captopril (CP) is used in this study as it is widely used in Egypt and stated as one of the essential drugs in Egypt for hypertension. Three tests from the OECD series were used for biodegradation testing: Closed Bottle test (CBT; OECD 301 D), Manometric Respirometry test (MRT; OECD 301 F) and the modified Zahn-Wellens test (ZWT; OECD 302 B). Photodegradation (150 W medium-pressure Hg-lamp) of CP was studied. Also CBT was performed for captopril disulfide (CPDS) and samples received after 64 min and 512 min of photolysis. The primary elimination of CP and CPDS was monitored by LC-UV at 210 nm and structures of photoproducts were assessed by LC-UV-MS/MS (ion trap). Analysis of photodegradation samples by LC-MS/MS revealed CP sulfonic acid as the major photodegradation product of CP. No biodegradation was observed for CP, CPDS and of the mixture resulting from photo-treatment after 64 min in CBT. Partial biodegradation in the CBT and MRT was observed in samples taken after 512 min photolysis and for CP itself in MRT. Complete biodegradation and mineralization of CP occurred in the ZWT.

  13. Sustainability and Energy Development: Influences of Greenhouse Gas Emissions Reduction Options on Water Use in Energy Production

    SciTech Connect

    D. Craig Cooper; Gerald Sehlke

    2012-01-01

    Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a 'safe' level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints (e.g., insufficient supplies and competing ecological and anthropogenic needs) will limit our options for producing energy and for reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the 'climate wedges' proposal of Pacala and Sokolow [1], and evaluating the potential water impacts of the 'wedges' associated with energy production. Results indicate that there is a range of water impacts, with some options reducing water demand while others increase water demand. Mitigation options that improve energy conversion and end-use efficiency have the greatest potential for reducing water resources impacts. These options provide 'win-win-win' scenarios for reducing GHG emissions, lowering energy costs and reducing water demand. Thet may merit higher priority than alternative options that emphasize deploying new low-carbon energy facilities or modifying existing facilities with energy intensive GHG mitigation technologies to reduce GHG emissions. While the latter can reduce GHG emissions, they will typically increase energy costs and water impacts.

  14. [Isolation and identification of electrochemically active microorganism from micro-aerobic environment].

    PubMed

    Wu, Song; Xiao, Yong; Zheng, Zhi-Yong; Zheng, Yue; Yang, Zhao-Hui; Zhao, Feng

    2014-10-01

    Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell.

  15. Disturbance of aerobic metabolism accompanies neurobehavioral changes induced by nickel in mice.

    PubMed

    He, Min-Di; Xu, Shang-Cheng; Zhang, Xin; Wang, Yan; Xiong, Jia-Chuan; Zhang, Xiao; Lu, Yong-Hui; Zhang, Lei; Yu, Zheng-Ping; Zhou, Zhou

    2013-09-01

    The oral ingestion of soluble nickel compounds leads to neurological symptoms in humans. Deficiencies in aerobic metabolism induced by neurotoxic stimulus can cause an energy crisis in the brain that results in a variety of neurotoxic effects. In the present study, we focused on the aerobic metabolic states to investigate whether disturbance of aerobic metabolism was involved in nickel-induced neurological effects in mice. Mice were orally administered nickel chloride, and neurobehavioral performance was evaluated using the Morris water maze and open field tests at different time points. Aerobic metabolic states in the cerebral cortex were analyzed at the same time points at which neurobehavioral changes were evident. We found that nickel exposure caused deficits in both spatial memory and exploring activity in mice and that nickel was deposited in their cerebral cortex. Deficient aerobic metabolism manifested as decreased O2 consumption and ATP concentrations, lactate and NADH accumulation, and oxidative stress. Meanwhile, the activity of prototypical iron-sulfur clusters (ISCs) containing enzymes that are known to control aerobic metabolism, including complex I and aconitase, and the expression of ISC assembly scaffold protein (ISCU) were inhibited following nickel deposition. Overall, these data suggest that aerobic metabolic disturbances, which accompanied the neurobehavioral changes, may participate in nickel-induced neurologic effects. The inactivation of ISC containing metabolic enzymes may result in the disturbance of aerobic metabolism. A better understanding of how nickel impacts the energy metabolic processes may provide insight into the prevention of nickel neurotoxicity.

  16. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    SciTech Connect

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-04-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

  17. Bioethanol production from dedicated energy crops and residues in Arkansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, one of the major technological goals is cost-effective lignocellulosic ethanol production from biomass feedstocks. Lignocellulosic biomass of five dedicated energy crops and two crops residues were tested for bioethanol production using cellulose solvent-based lignocellulose fractionation...

  18. Biotransformation of phytosterols under aerobic conditions.

    PubMed

    Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

    2014-07-01

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

  19. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  20. Meson production based on the Thomson energy correlation

    SciTech Connect

    Aspden, H.

    1986-07-01

    Attention is drawn to a remarkable energy correlation which uniquely determines the rest-mass energies of all the intermediate particles in the electron-proton energy spectrum. The correlation formula uses a classical expression formulated by J. J. Thomson, which represents the charge of a particle as confined within a sphere of radius 2e/sup 2//3mc/sup 2/.

  1. Energy requirement for the production of silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Rosenfield, T.; Wrigley, C. Y.; Morrison, A.; Anderson, J.; Clifford, A.; Lafky, W.

    1977-01-01

    The results of a study to investigate the feasibility of manufacturing photovoltaic solar array modules by the use of energy obtained from similar or identical photovoltaic sources are presented. The primary objective of this investigation was the characterization of the energy requirements of current and developing technologies which comprise the photovoltaic field. For cross-checking the energies of prevailing technologies data were also used and the wide-range assessment of alternative technologies included different refinement methods, various ways of producing light sheets, semicrystalline cells, etc. Energy data are utilized to model the behavior of a future solar breeder plant under various operational conditions.

  2. Optimization of accelerated charged particle beam for ADS energy production

    NASA Astrophysics Data System (ADS)

    Baldin, A. A.; Berlev, A. I.; Paraipan, M.; Tyutyunnikov, S. I.

    2017-01-01

    A comparative analysis and optimization of energy efficiency for proton and ion beams in ADS systems is performed via simulation using a GEANT4 code with account for energy consumption for different accelerator types. It is demonstrated that for light nuclei, beginning from 7Li, with energies above 1 GeV/nucleon, ion beams are considerably (several times) more efficient than the 1-3 GeV proton beam. The possibility of achieving energy deposition equivalent to 1 GeV protons in a quasi-infinite uranium target with higher efficiency (and twice as small accelerator size) in the case of acceleration of light ions is substantiated.

  3. An assessment of energy use efficiency and sensitivity analysis of inputs in rice paddy production

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.

    2012-04-01

    This research studies the energy balance between the inputs and the output and estimation of inputs sensitivity for paddy production in Golestan province, Iran. The sensitivity of energy inputs was estimated using the marginal physical productivity (MPP) method and partial regression coefficients on rice yield. The results indicated that total energy inputs were found to be 29668 MJ ha-1. The results showed that among energy inputs, the share of chemical fertilizers was highest with 39% followed by water for irrigation with 32%. Energy use efficiency and energy productivity were found to be 2.5 and 0.2 ¬kg MJ-1, respectively. Sensitivity analysis indicates that highest MPP was for machinery energy, followed by human labour energy. The MPP estimated for biocides energy was found negative, indicating that biocides energy consumption is high in paddy production. It is suggested that specific policy is to be taken to increase yield by raising partial productivity of energy inputs without depending on mainly non-renewable energy sources such as chemical fertilizers and biocides that create environmental risk problems. Keywords:Energy input, Sensitivity analysis, Chemical fertilizers, Paddy

  4. Buy Energy-Efficient Products: A Guide for Federal Purchasers and Specifiers

    SciTech Connect

    2016-07-01

    In a single year, energy-efficient product purchases could save the federal government almost a half billion dollars worth of energy. By purchasing products that exceed the minimum required efficiency levels, buyers can save the government even more energy and money. Federal employees and contractors must take an active role in ensuring that the government receives products that meet efficiency requirements. This document provides an overview of product purchasing requirements and shows you how to write compliant contracts, find funding, and confirm product compliance.

  5. 75 FR 1121 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ...The U.S. Department of Energy (DOE) is adopting amended energy conservation standards for commercial clothes washers (CCWs). DOE has determined that amended energy conservation standards for these types of equipment would result in significant conservation of energy, and are technologically feasible and economically...

  6. Cogeneration process for production of energy and iron materials

    SciTech Connect

    Lehto, J.M.

    1991-10-08

    This paper reports a process for the production of electricity. It comprises: providing a low grade coal fuel' performing a pyrolysis procedure on the coal fuel at a temperature of about 600{degrees} C. to remove oil and volatiles therefrom, and to generate a resultant coal char product; pelletizing the coal char product to form coal char product pellets, the step of pelletizing comprising pelletizing at least a portion of the coal char product in combination with reducible solid iron material to form coal char pellets containing reducible solid iron material; charging a cupola with the coal char product and the reducible solid iron material, the step of charging a cupola being characterized by charging substantially all the coal char product in the form of coal char product pellets and substantially all the reducible solid iron material in the form of pellets containing the coal char product in combination with the reducible solid iron material; reducing and melting all the reducible solid iron material in the coal char pellets by heating the pellets in the cupola at a suitable temperature under a pressure of at least about 100 psi in the presence of a sufficient upward flow of process gases, with the resultant formation of hot product gases.

  7. Energy balance of biofuel production from biological conversion of crude glycerol.

    PubMed

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance.

  8. Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology

    SciTech Connect

    Sanchez, Marla; Homan, Gregory; Lai, Judy; Brown, Richard

    2009-09-24

    This report provides a top-level summary of national savings achieved by the Energy Star voluntary product labeling program. To best quantify and analyze savings for all products, we developed a bottom-up product-based model. Each Energy Star product type is characterized by product-specific inputs that result in a product savings estimate. Our results show that through 2007, U.S. EPA Energy Star labeled products saved 5.5 Quads of primary energy and avoided 100 MtC of emissions. Although Energy Star-labeled products encompass over forty product types, only five of those product types accounted for 65percent of all Energy Star carbon reductions achieved to date, including (listed in order of savings magnitude)monitors, printers, residential light fixtures, televisions, and furnaces. The forecast shows that U.S. EPA?s program is expected to save 12.2 Quads of primary energy and avoid 215 MtC of emissions over the period of 2008?2015.

  9. Electric energy costs and firm productivity in the countries of the Pacific Alliance

    NASA Astrophysics Data System (ADS)

    Camacho, Anamaria

    This paper explores the relation between energy as an input of production and firm-level productivity for Chile, Colombia, Mexico and Peru, all country members of the Pacific Alliance economic bloc. The empirical literature, has explored the impact of infrastructure on productivity; however there is limited analysis on the impact of particular infrastructure variables, such as energy, on productivity at the firm level in Latin America. Therefore, this study conducts a quantitative assessment of the responsiveness of productivity to energy cost and quality for Chile, Colombia, Mexico and Peru. For this, the empirical strategy is to estimate a Cobb-Douglas production function using the World Bank's Enterprise Survey to obtain comparable measures of output and inputs of production. This approach provides estimates of input factor elasticities for all of the factors of production including energy. The results indicate that electric energy costs explain cross-country differences in firm level productivity. For the particular case of Colombia, the country exhibits the lowest capital and labor productivity of the PA, and firm output is highly responsive to changes in energy use. As a result, the evidence suggests that policies reducing electric energy costs are an efficient alternative to increase firm performance, particularly in the case of Colombia.

  10. Energy return on investment for algal biofuel production coupled with wastewater treatment.

    PubMed

    Beal, Colin M; Stillwell, Ashlynn S; King, Carey W; Cohen, Stuart M; Berberoglu, Halil; Bhattarai, Rajendra P; Connelly, Rhykka L; Webber, Michael E; Hebner, Robert E

    2012-09-01

    This study presents a second-order energy return on investment analysis to evaluate the mutual benefits of combining an advanced wastewater treatment plant (WWTP) (with biological nutrient removal) with algal biofuel production. With conventional, independently operated systems, algae production requires significant material inputs, which require energy directly and indirectly, and the WWTP requires significant energy inputs for treatment of the waste streams. The second-order energy return on investment values for independent operation of the WWTP and the algal biofuels production facility were determined to be 0.37 and 0.42, respectively. By combining the two, energy inputs can be reduced significantly. Consequently, the integrated system can outperform the isolated system, yielding a second-order energy return on investment of 1.44. Combining these systems transforms two energy sinks to a collective (second-order) energy source. However, these results do not include capital, labor, and other required expenses, suggesting that profitable deployment will be challenging.

  11. Optimal control strategies for hydrogen production when coupling solid oxide electrolysers with intermittent renewable energies

    NASA Astrophysics Data System (ADS)

    Cai, Qiong; Adjiman, Claire S.; Brandon, Nigel P.

    2014-12-01

    The penetration of intermittent renewable energies requires the development of energy storage technologies. High temperature electrolysis using solid oxide electrolyser cells (SOECs) as a potential energy storage technology, provides the prospect of a cost-effective and energy efficient route to clean hydrogen production. The development of optimal control strategies when SOEC systems are coupled with intermittent renewable energies is discussed. Hydrogen production is examined in relation to energy consumption. Control strategies considered include maximizing hydrogen production, minimizing SOEC energy consumption and minimizing compressor energy consumption. Optimal control trajectories of the operating variables over a given period of time show feasible control for the chosen situations. Temperature control of the SOEC stack is ensured via constraints on the overall temperature difference across the cell and the local temperature gradient within the SOEC stack, to link materials properties with system performance; these constraints are successfully managed. The relative merits of the optimal control strategies are analyzed.

  12. Energy farming in Brazil: the role of agroforestry on the production of food and energy from biomass in southeast Bahia

    SciTech Connect

    Alvim, R.

    1983-01-01

    This paper analyzes the problem of fuel production from plants, on the basis of information drawn from the literature and from case studies conducted in Brazil. Special reference is made to the production of charcoal and the production of alcohol and vegetable oils to replace gasoline and diesel fuel. The potential and socioeconomic implications of energy farming are discussed. Diversified plant communities are more stable than monocropping systems in terms of prevention of soil degradation by erosion and leaching, and consequently agroforestry is the safest and the most attractive system for the combined production of food and energy from plants in the humid tropics. Agroforestry is especially interesting in the establishment of perennial energy crops, because it provides earlier cash returns.

  13. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418.

    PubMed Central

    Forage, R G; Lin, E C

    1982-01-01

    In Klebsiella pneumoniae NCIB 418, the pathways normally responsible for aerobic growth on glycerol and sn-glycerol 3-phosphate (the glp system) are superrepressed. However, aerobic growth on glycerol can take place by the intervention of the NAD-linked glycerol dehydrogenase and the ATP-dependent dihydroxyacetone kinase of the dha system normally inducible only anaerobically by glycerol or dihydroxyacetone. Conclusive evidence that the dha system is responsible for both aerobic and anaerobic dissimilation of glycerol was provided by a Tn5 insertion mutant lacking dihydroxyacetone kinase. An enzymatically coupled assay specific for this enzyme was devised. Spontaneous reactivation of the glp system was achieved by selection for aerobic growth on sn-glycerol 3-phosphate or on limiting glycerol as the sole carbon and energy source. However, the expression of this system became constitutive. Aerobic operation of the glp system highly represses synthesis of the dha system enzymes by catabolite repression. Images PMID:6284704

  14. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    SciTech Connect

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits and environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.

  15. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    DOE PAGES

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less

  16. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  17. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment.

    PubMed

    Pretel, R; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-01-15

    The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions. In addition, significant reductions can be achieved in different aspects of environmental impact (global warming potential (GWP), abiotic depletion, acidification, etc.) and LCC over existing UWW treatment technologies.

  18. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Text: Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N)...

  19. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N). This...

  20. The role of glutamine synthetase in energy production and glutamine metabolism during oxidative stress.

    PubMed

    Aldarini, Nohaiah; Alhasawi, Azhar A; Thomas, Sean C; Appanna, Vasu D

    2017-01-17

    Oxidative stress is known to severely impede aerobic adenosine triphosphate (ATP) synthesis. However, the metabolically-versatile Pseudomonas fluorescens survives this challenge by invoking alternative ATP-generating networks. When grown in a medium with glutamine as the sole organic nutrient in the presence of H2O2, the microbe utilizes glutamine synthetase (GS) to modulate its energy budget. The activity of this enzyme that mediates the release of energy stored in glutamine was sharply increased in the stressed cells compared to the controls. The enhanced activities of such enzymes as acetate kinase, adenylate kinase and nucleotide diphosphate kinase ensured the efficacy of this ATP producing-machine by transferring the high energy phosphate. The elevated amounts of phosphoenol pyruvate carboxylase and pyruvate orthophosphate dikinase recorded in the H2O2 exposed cells provided another route to ATP independent of the reduction of O2. This is the first demonstration of a metabolic pathway involving GS dedicated to ATP synthesis. The phospho-transfer network that is pivotal to the survival of the microorganism under oxidative stress may reveal therapeutic targets against infectious microbes reliant on glutamine for their proliferation.

  1. Factors that promote renewable energy production in U.S. states: A fixed effect estimation

    NASA Astrophysics Data System (ADS)

    Nwokeji, Ekwuniru Chika

    2011-12-01

    The unsustainability of conventional energy sources and its environmental destructions are well-known; the sustainability of renewable energy and its environmental benefits are also well-documented. The United States in common with many other countries is increasingly focused on developing renewable energy. At first, the pursuit of this strategy in U.S. was seen more as a way to reduce dependence on oil importation. With increased awareness of environmental challenges resulting from the consumption and production of conventional energy, an additional strategy for the continued interest in renewable energy development in the United States was as a result of its potential to ameliorate environmental problems. The U.S. government are utilizing policy measures and dedicating funding to encourage the development of renewable energy technologies. Beside government policies, there are contextual factors that also affect renewable energy production. These include, but not limited to population growth, energy demand, economic growth, and public acceptance. Given the pressing need to develop a sustainable energy, this study embarks on an outcome assessment of the nature of relationship of renewable energy policy incentives, and selected contextual factors on renewable energy production in the United States. The policy incentive evaluated in this study is the Renewable Energy Production Incentive program. The contextual factors evaluated in this study are energy consumption, population growth, employment, and poverty. Understanding the contextual factors within which policies are placed is essential to defining the most appropriate policy features. The methodological approach to the study is quantitative, using panel data from 1976 to 2007. The study tested two hypotheses using fixed effect estimation with robust standard error as a statistical model. Statistical analyses reveal several interesting results which lend support that besides policy incentives, contextual factors

  2. 75 FR 12144 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... Conservation Standards for Residential Furnaces AGENCY: Office of Energy Efficiency and Renewable Energy... for certain residential furnaces, and the analytical approach, models, and tools that DOE is using to... furnaces, which is available at:...

  3. Metabolism of 2-methylpropene (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1.

    PubMed

    Kottegoda, Samanthi; Waligora, Elizabeth; Hyman, Michael

    2015-03-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h(-1)) with a yield of 0.38 mg (dry weight) mg 2-methylpropene(-1). Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates.

  4. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h−1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene−1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  5. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    PubMed

    Hagman, Arne; Piškur, Jure

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.

  6. 76 FR 57612 - Energy Efficiency Program for Consumer Products: Test Procedures for Residential Refrigerators...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... for making representations regarding energy usage until June 14, 2011. Concurrently with this Final... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AB92 Energy Efficiency Program for Consumer Products: Test Procedures for...

  7. 77 FR 3559 - Energy Conservation Program for Consumer Products: Test Procedures for Refrigerators...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... inability to capture all energy usage during defrost cycles when using the second (defrost) part of the test... / Wednesday, January 25, 2012 / Rules and Regulations#0;#0; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AB92 Energy Conservation Program for Consumer Products: Test Procedures for Refrigerators,...

  8. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  9. Products cooked in preheated versus non-preheated ovens. Baking times, calculated energy consumption, and product quality compared.

    PubMed

    Odland, D; Davis, C

    1982-08-01

    Plain muffins, yellow cake, baked custard, apple pie, tuna casserole, frozen tuna casserole, cheese soufflé, and meat loaf were baked in preheated and non-preheated standard gas, continuous-clean gas, standard electric, and self-cleaning electric ovens. Products generally required 5 min. or less extra baking time when cooked in non-preheated rather than in preheated ovens. The variability in baking times often was less between preheated and non-preheated ovens than among oven types. Calculated energy consumption values showed that usually less energy was required to bake products in non-preheated than in preheated ovens; savings averaged about 10 percent. Few significant differences were found in physical measurements or eating quality either between preheated and non-preheated ovens or among oven types. Overall, for the products tested, findings confirmed that preheating the oven is not essential for good product quality and, therefore, is an unnecessary use of energy.

  10. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    NASA Astrophysics Data System (ADS)

    Liodakis, Emmanouel Georgiou

    2011-06-01

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  11. Soft particle production in very high energy hadron interactions

    NASA Astrophysics Data System (ADS)

    Ebr, Jan; Nečesal, Petr; Ridky, Jan

    2017-04-01

    Indications of a discrepancy between simulations and data on the number of muons in cosmic ray (CR) showers exist over a large span of energies. We focus in particular on the excess of multi-muon bundles observed by the DELPHI detector at LEP and on the excess in the muon number in general reported by the Pierre Auger Observatory. Even though the primary CR energies relevant for these experiments differ by orders of magnitude, we can find a single mechanism which can simultaneously increase predicted muon counts for both, while not violating constraints from accelerators or from the longitudinal shower development as observed by the Pierre Auger Observatory. We present a brief motivation and describe a practical implementation of such a model, based on the addition of soft particles to interactions above a chosen energy threshold. Results of an extensive set of simulations show the behavior of this model in various parts of a simplified parameter space.

  12. Production, Delivery and Application of Vibration Energy in Healthcare

    NASA Astrophysics Data System (ADS)

    Abundo, Paolo; Trombetta, Chiara; Foti, Calogero; Rosato, Nicola

    2011-02-01

    In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.

  13. Future U.S. water consumption : The role of energy production.

    SciTech Connect

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  14. Energy star product specification development framework: Using data and analysis to make program decisions

    SciTech Connect

    McWhinney, Marla; Fanara, Andrew; Clark, Robin; Hershberg, Craig; Schmeltz, Rachel; Roberson, Judy

    2003-09-12

    The Product Development Team (PD) in the US Environmental Protection Agency's ENERGY STAR Labeling Program fuels the long-term market transformation process by delivering new specifications. PD's goal is to expand the reach and visibility of ENERGY STAR as well as the market for new energy-efficient products. Since 2000, PD has launched nine new ENERGY STAR specifications and continues to evaluate new program opportunities. To evaluate the ENERGY STAR carbon savings potential for a diverse group of products, PD prepared a framework for developing new and updating existing specifications that rationalizes new product opportunities and draws upon the expertise and resources of other stakeholders, including manufacturers, utilities, environmental groups and other government agencies. By systematically reviewing the potential of proposed product areas, PD makes informed decisions as to whether or not to proceed with developing a specification. In support of this strategy, PD ensures that new product specifications are consistent with the ENERGY STAR guidelines and that these guidelines are effectively communicated to stakeholders during the product development process. To date, the framework has been successful in providing consistent guidance on collecting the necessary information on which to base sound program decisions. Through the application of this framework, PD increasingly recognizes that each industry has unique market and product characteristics that can require reconciliation with the ENERGY STAR guidelines. The new framework allows PD to identify where reconciliation is needed to justify program decisions.

  15. The influence of training characteristics on the effect of aerobic exercise training in patients with chronic heart failure: A meta-regression analysis.

    PubMed

    Vromen, T; Kraal, J J; Kuiper, J; Spee, R F; Peek, N; Kemps, H M

    2016-04-01

    Although aerobic exercise training has shown to be an effective treatment for chronic heart failure patients, there has been a debate about the design of training programs and which training characteristics are the strongest determinants of improvement in exercise capacity. Therefore, we performed a meta-regression analysis to determine a ranking of the individual effect of the training characteristics on the improvement in exercise capacity of an aerobic exercise training program in chronic heart failure patients. We focused on four training characteristics; session frequency, session duration, training intensity and program length, and their product; total energy expenditure. A systematic literature search was performed for randomized controlled trials comparing continuous aerobic exercise training with usual care. Seventeen unique articles were included in our analysis. Total energy expenditure appeared the only training characteristic with a significant effect on improvement in exercise capacity. However, the results were strongly dominated by one trial (HF-action trial), accounting for 90% of the total patient population and showing controversial results compared to other studies. A repeated analysis excluding the HF-action trial confirmed that the increase in exercise capacity is primarily determined by total energy expenditure, followed by session frequency, session duration and session intensity. These results suggest that the design of a training program requires high total energy expenditure as a main goal. Increases in training frequency and session duration appear to yield the largest improvement in exercise capacity.

  16. NASA Products to Enhance Energy Utility Load Forecasting

    NASA Technical Reports Server (NTRS)

    Lough, G.; Zell, E.; Engel-Cox, J.; Fungard, Y.; Jedlovec, G.; Stackhouse, P.; Homer, R.; Biley, S.

    2012-01-01

    Existing energy load forecasting tools rely upon historical load and forecasted weather to predict load within energy company service areas. The shortcomings of load forecasts are often the result of weather forecasts that are not at a fine enough spatial or temporal resolution to capture local-scale weather events. This project aims to improve the performance of load forecasting tools through the integration of high-resolution, weather-related NASA Earth Science Data, such as temperature, relative humidity, and wind speed. Three companies are participating in operational testing one natural gas company, and two electric providers. Operational results comparing load forecasts with and without NASA weather forecasts have been generated since March 2010. We have worked with end users at the three companies to refine selection of weather forecast information and optimize load forecast model performance. The project will conclude in 2012 with transitioning documented improvements from the inclusion of NASA forecasts for sustained use by energy utilities nationwide in a variety of load forecasting tools. In addition, Battelle has consulted with energy companies nationwide to document their information needs for long-term planning, in light of climate change and regulatory impacts.

  17. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    SciTech Connect

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  18. Energy requirement for the production of silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Morrison, A.

    1977-01-01

    An assessment of potential changes and alternative technologies which could impact the photovoltaic manufacturing process is presented. Topics discussed include: a multiple wire saw, ribbon growth techniques, silicon casting, and a computer model for a large-scale solar power plant. Emphasis is placed on reducing the energy demands of the manufacturing process.

  19. Photon and dilepton production in high energy heavy ion collisions

    SciTech Connect

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  20. Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model

    EIA Publications

    2011-01-01

    The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products

  1. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    NASA Astrophysics Data System (ADS)

    Diaz-Elsayed, Nancy

    Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the

  2. Energy conservation in ethanol production from renewable resources and non-petroleum energy sources

    SciTech Connect

    Not Available

    1981-03-01

    The dry milling process for the conversion of grain to fuel ethanol is reviewed for the application of energy conservation technology, which will reduce the energy consumption to 70,000 Btu per gallon, a reduction of 42% from a distilled spirits process. Specific energy conservation technology applications are outlined and guidelines for the owner/engineer for fuel ethanol plants to consider in the selection on the basis of energy conservation economics of processing steps and equipment are provided. The process was divided into 5 sections and the energy consumed in each step was determined based on 3 sets of conditions; a conventional distilled spirits process; a modern process incorporating commercially proven energy conservation; and a second generation process incorporating advanced conservation technologies which have not yet been proven. Steps discussed are mash preparation and cooking, fermentation, distillation, and distillers dried grains processing. The economics of cogeneration of electricity on fuel ethanol plants is also studied. (MCW)

  3. Production of D*+ (2010) mesons by high-energy neutrinos from the Tevatron

    SciTech Connect

    Asratian, A.E.; Aderholz, M.; Ammosov, V.V.; Barth, M.; Bingham, H.H.; Brucker, E.B.; Burnstein, R.A.; Chatterjee, T.K.; Clayton, E.C.; Ermolov, P.F.; Erofeeva, I.N.; Faulkner, P.J.W.; Gapienko, G.S.; Guy, J.; Hanlon, J.; Harigel, G.; Ivanilov, A.A.; Jain, V.; Jones, G.T.; Jones, M.D.; Kafka, T.; /UC, Berkeley /Birmingham U. /Brussels U., IIHE /CERN /Panjab U. /Fermilab /Hawaii U. /Serpukhov, IHEP /IIT, Chicago /Imperial Coll., London /Moscow, ITEP /Jammu U. /Munich, Max Planck Inst. /Moscow State U. /Oxford U. /Rutgers U., Piscataway /Rutherford /DAPNIA, Saclay /Stevens Tech. /Tufts U.

    1997-08-01

    Charged vector D*{sup +}(2010) meson production is studied in a high energy neutrino bubble chamber experiment with mean neutrino energy of 141 GeV. The D*{sup +} are produced in (5.6 {+-} 1.8)% of the neutrino charged current interactions, indicating a steep increase of cross section with energy. The mean fractional hadronic energy of the D*{sup +} meson is 0.55 {+-} 0.06.

  4. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM.

    PubMed

    Shi, Zhuang; Zhang, Yu; Zhou, Jiti; Chen, Mingxiang; Wang, Xiaojun

    2013-11-01

    The bacterium isolated from sea sludge Paracoccus versutus LYM was characterized with the ability of aerobic denitrification. Strain LYM performs perfect activity in aerobically converting over 95% NO3(-)-N (approximate 400mg L(-1)) to gaseous products via nitrite with maximum reduction rate 33 mg NO3(-)-N L(-1) h(-1). Besides characteristic of aerobic denitrification, strain LYM was confirmed in terms of the ability to be heterotrophic nitrification and aerobic denitrification (HNAD) with few accumulations of intermediates. After the nitrogen balance and enzyme assays, the putative nitrogen pathway of HNAD could be NH4(+) → NH2OH → NO2(-)→ NO3(-), then NO3(-) was denitrified to gaseous products via nitrite. N2 was sole denitrification product without any detection of N2O by gas chromatography. Strain LYM could also simultaneously remove ammonium and additional nitrate. Meanwhile, the accumulated nitrite had inhibitory effect on ammonium reduction rate.

  5. Energy and precious fuels requirements of fuel alcohol production. Volume 2, appendices A and B: Ethanol from grain

    NASA Technical Reports Server (NTRS)

    Weinblatt, H.; Reddy, T. S.; Turhollow, A., Jr.

    1982-01-01

    Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed.

  6. 75 FR 66360 - Transportation and Energy Products and Services Trade Mission; Doha, Qatar, and Abu Dhabi and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... exceed five percent.\\1\\ U.S. business opportunities also exist in alternative energy products and... likely increase the need for alternative energy products and services. \\1\\ World Trade Organization... to opportunities in the energy sector in Qatar involve alternative energy products and...

  7. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  8. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  9. Post-processing, energy production use of sugarcane bagasse ash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane bagasse ash (SBA) is a multi-process by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 2.7 mt of bagasse each year. In ...

  10. Low Energy Technology. A Unit of Instruction in Citrus Production.

    ERIC Educational Resources Information Center

    Olson, Jeanne A.; Becker, William J.

    This unit of instruction on citrus production was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate their students and clients…

  11. Identifying Productive Resources in Secondary School Students' Discourse about Energy

    ERIC Educational Resources Information Center

    Harrer, Benedikt

    2013-01-01

    A growing program of research in science education acknowledges the beginnings of disciplinary reasoning in students' ideas and seeks to inform instruction that responds productively to these disciplinary progenitors in the moment to foster their development into sophisticated scientific practice. This dissertation examines secondary school…

  12. Post-processing, energy production use of sugarcane bagasse ash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane bagasse ash (SBA) is a multi-processed by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 3 million tons of bagasse each...

  13. Inertial fusion: an energy-production option for the future

    SciTech Connect

    Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

    1982-05-01

    The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

  14. Energy recovery from solid waste. [production engineering model

    NASA Technical Reports Server (NTRS)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  15. Energy and materials flows in the production of liquid and gaseous oxygen

    SciTech Connect

    Shen, S.; Wolsky, A.M.

    1980-08-01

    Liquid and gaseous oxygen is produced in an energy-intensive air separation processo that also generates nitrogen. More than 65% of the cost of oxygen is attributable to energy costs. Energy use and materials flows are analyzed for various air separation methods. Effective approaches to energy and material conservation in air separation plants include efficient removal of contaminants (carbon dioxide and water), centralization of air products user-industries so that large air separation plants are cost-effective and the energy use in transportation is minimized, and increased production of nitrogen. Air separation plants can produce more than three times more nitrogen than oxygen, but present markets demand, at most, only 1.5 times more. Full utlization of liquid and gaseous nitrogen should be encouraged, so that the wasted separation energy is minimized. There are potential markets for nitrogen in, for example, cryogenic separation of metallic and plastic wastes, cryogenic particle size reduction, and production of ammonia for fertilizer.

  16. Effect of beetroot juice supplementation on aerobic response during swimming.

    PubMed

    Pinna, Marco; Roberto, Silvana; Milia, Raffaele; Marongiu, Elisabetta; Olla, Sergio; Loi, Andrea; Migliaccio, Gian Mario; Padulo, Johnny; Orlandi, Carmine; Tocco, Filippo; Concu, Alberto; Crisafulli, Antonio

    2014-01-29

    The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO₂), carbon dioxide production (VCO₂), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5 l/day organic beetroot juice containing about 5.5 mmol of NO₃⁻). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg⁻¹1·h⁻¹ during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold.

  17. Effect of Beetroot Juice Supplementation on Aerobic Response during Swimming

    PubMed Central

    Pinna, Marco; Roberto, Silvana; Milia, Raffaele; Marongiu, Elisabetta; Olla, Sergio; Loi, Andrea; Migliaccio, Gian Mario; Padulo, Johnny; Orlandi, Carmine; Tocco, Filippo; Concu, Alberto; Crisafulli, Antonio

    2014-01-01

    The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a pool during which workload, oxygen uptake (VO2), carbon dioxide production (VCO2), pulmonary ventilation (VE), and aerobic energy cost (AEC) of swimming were measured. One was a control swimming test (CSW) and the other a swimming test after six days of BJS (0.5l/day organic beetroot juice containing about 5.5 mmol of NO3−). Results show that workload at anaerobic threshold was significantly increased by BJS as compared to the CSW test (6.3 ± 1 and 6.7 ± 1.1 kg during the CSW and the BJS test respectively). Moreover, AEC was significantly reduced during the BJS test (1.9 ± 0.5 during the SW test vs. 1.7 ± 0.3 kcal·kg−1·h−1 during the BJS test). The other variables lacked a statistically significant effect with BJS. The present investigation provides evidence that BJS positively affects performance of swimmers as it reduces the AEC and increases the workload at anaerobic threshold. PMID:24481133

  18. Angular correlations in gluon production at high energy

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-02-01

    We present a general, model independent argument demonstrating that gluons produced in high energy hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the correlation depends on the process and on the structure/model of the colliding particles. In particular we argue that it is strongly affected (and underestimated) by factorized approximations frequently used to quantify the effect.

  19. Traveling-Wave Direct Energy Converter for Fusion Products

    NASA Astrophysics Data System (ADS)

    Sato, Kunihiro; Katayama, Hideaki

    1999-11-01

    A Traveling-Wave Direct Energy Converter (TWDEC), which is designed to recover kinetic energy of fusion protons escaped from a FRC/ D^3He fusion reactor, is studied by numerical calculation and computer simulation. To develop a simulation code, a transmission line loop for an electrostatic traveling wave is designed using lumped constant elements L, C, R. Electrostatic coupling between proton beam and circuits is treated by directly solving Poisson's equation. Circuit equations are transformed to temporal finite-difference equations, which are solved following the leap-flog scheme. Simulation results display desirable performance characteristics of the TWDEC. Traveling wave with a fixed frequency is excited spontaneously without any external electric power supply. High energy conversion rate of the TWDEC up to 0.8 is obtained both from orbit calculation and from computer simulation as a result of improvement of proton beam bunching. The wave keeps its equilibrium state under loading, and the wave responds to variation of the electric load stably.

  20. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... pursuant to the Energy Policy and Conservation Act. The five sources are electricity, natural gas, No. 2... after-tax costs found in this notice. The representative average unit after-tax costs for electricity... energy Btu \\1\\ In commonly used terms test procedure Electricity $34.14 11.65 /kWh \\2,3\\...

  1. 75 FR 13123 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... pursuant to the Energy Policy and Conservation Act. The five sources are electricity, natural gas, No. 2...-tax costs found in this notice. The representative average unit after-tax costs for electricity... energy \\1\\ In commonly used terms procedure Electricity $33.70 11.50 /kWh 2 3...... $.1150/kWh...

  2. 78 FR 77607 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Standards for Residential Furnace Fans AGENCY: Office of Energy Efficiency and Renewable Energy, Department... conservation standards for residential furnace fans, with a comment period that was scheduled to close December... conservation standards for residential furnace fans published on October 25, 2013 (78 FR 64067) is extended...

  3. 78 FR 12969 - Energy Conservation Program for Consumer Products: Energy Conservation Standards for Residential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ....'' One joint comment was from three efficiency advocates, the American Council for an Energy Efficient... further research to quantify the value of overall system efficiencies of grid-interactive water heaters... utilize more efficient, less expensive energy sources. Many utility companies stated that participation...

  4. A comparative analysis of environmental impacts of non-fossil energy production methods

    NASA Astrophysics Data System (ADS)

    Kiss, Adam

    2014-12-01

    The widespread proliferation of other then fossil based energy production methods is a development, which inevitable comes in the next future. It is proven that the photovoltaic conversion or the use of heat of Sun radiation, the water energy, the utilization of the wind, the biomass production, the use of geothermal energy can all produce big amounts of energy for human use. In addition, the nuclear energy from fission is a technology, which has already long history and is widely used. However, these all, like the fossil energy sources, have great impacts on the environment. Nevertheless, the comparison of the environmental effects of these alternative energy sources is not easy. The effects are of considerable different natures and their spatial and the time distributions vary on large scales. The present work overviews the principles and the methodological prerequisites of performing a comparative analysis of the environmental effects for the non-fossil energy production methods. After establishing the basic principles for comparison, we shall go through all the non-fossil energy sources and analyze the most important environmental impacts of each energy production method. In conclusion, the comparison of the environmental effects will be discussed.

  5. 78 FR 53446 - Energy Conservation Program for Consumer Products: Decision and Order Granting a Waiver to ASKO...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... T744C, T754C, and T794C product models of condensing clothes dryer. The applicable test procedure is... of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Decision... Dryer Test Procedure AGENCY: Office of Energy Efficiency and Renewable Energy, Department of...

  6. Strange hadron production at SIS energies: an update from HADES

    NASA Astrophysics Data System (ADS)

    Lorenz, M.; Adamczewski-Musch, J.; Arnold, O.; Atomssa, E. T.; Behnke, C.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Deveaux, C.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Hlavac, S.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Kardan, B.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Kuc, G.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Mahmoud, T.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Petousis, V.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rost, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schmidt-Sommerfeld, K.; Schuldes, H.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Yu. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Wendisch, C.; Wirth, J.; Wüstenfeld, J.; Zanevsky, Y.; Zumbruch, P.

    2016-01-01

    We present and discuss recent experimental activities of the HADES collaboration on open and hidden strangeness production close or below the elementary NN threshold. Special emphasis is put on the feed-down from ϕ mesons to antikaons, the presence of the Ξ- excess in cold nuclear matter and the comparison of statistical model rates to elementary p+p data. The implications for the interpretation of heavy-ion data are discussed as well.

  7. Energy conversion and fuel production from electrochemical interfaces

    NASA Astrophysics Data System (ADS)

    Markovic, Nenad

    2012-02-01

    Design and synthesis of energy efficient and stable electrochemical interfaces (materials and double layer components) with tailor properties for accelerating and directing chemical transformations is the key to developing new alternative energy systems -- fuel cells, electrolizers and batteries. In aqueous electrolytes, depending on the nature of the reacting species, the supporting electrolyte, and the metal electrodes, two types of interactions have traditionally been considered: (i) direct -- covalent - bond formation between adsorbates and electrodes, involving chemisorption, electron transfer, and release of the ion hydration shell; and (ii) relatively weak non-covalent metal-ion forces that may affect the concentration of ions in the vicinity of the electrode but do not involve direct metal-adsorbate bonding. The range of physical phenomena associated with these two classes of bonds is unusually broad, and are of paramount importance to understand activity of both metal-electrolyte two phase interfaces and metal-Nafion-electrolyte three phase interfaces. Furthermore, in the past, researcher working in the field of fuel cells (converting hydrogen and oxygen into water) and electrolyzers (splitting water back to H2 and O2) ) seldom focused on understanding the electrochemical compliments of these reactions in battery systems, e.g., the lithium-air system. In this lecture, we address the importance of both covalent and non-covalent interactions in controlling catalytic activity at the two-phase and three-phase interfaces. Although the field is still in its infancy, a great deal has already been learned and trends are beginning to emerge that give new insight into the relationship between the nature of bonding interactions and catalytic activity/stability of electrochemical interfaces. In addition, to bridge the gap between the ``water battery'' (fuel cell <-> electrolyzer) and the Li-air battery systems we demonstrate that this would require fundamentally new

  8. Renewable Energy Production and Urban Remediation: Modeling the biogeochemical cycle at contaminated urban brownfields and the potential for renewable energy production and mitigation of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.

    2014-12-01

    Brownfields or urban sites that have been contaminated as a result of historic practices are present throughout the world. In the United States alone, the National Research Council has estimated that there are approximately 300,000 to 400,000 sites which have been contaminated by improper use and disposal of chemicals (NRC 1993). The land available at these sites is estimated at several million acres; however, the presence of high levels of contamination in the soil and groundwater makes it difficult to utilize these sites for traditional purposes such as agriculture. Further, the time required to remediate these contaminants to regulated levels is in the order of decades, which often results in long-term economic consequences for the areas near these sites. There has been significant interest in developing these sites as potential sources of renewable energy production in order to increase the economic viability of these sites and to provide alternative land resources for renewable energy production (EPA 2012). Solar energy, wind energy, and bioenergy from lignocellulosic biomass production have been identified as the main sources of renewable energy that can be produced at these locations. However, the environmental impacts of such a policy and the implications for greenhouse gas emissions, particularly resulting from changes in land-use impacting the biogeochemical cycle at these sites, have not been studied extensively to date. This study uses the biogeochemical process-based model DNDC to simulate carbon sequestration, nitrous oxide emissions and methane emissions from typical urban brownfield systems in the United States, when renewable energy systems are deployed. Photovoltaic solar energy and lignocellulosic biomass energy systems are evaluated here. Plants modeled include those most widely used for both bioenergy and remediation such as woody trees. Model sensitivity to soil conditions, contaminant levels and local weather data and the resulting impacts on

  9. Squeezed States and Particle Production in High Energy Collisions

    NASA Technical Reports Server (NTRS)

    Bambah, Bindu A.

    1996-01-01

    Using the 'quantum optical approach' we propose a model of multiplicity distributions in high energy collisions based on squeezed coherent states. We show that the k-mode squeezed coherent state is the most general one in describing hadronic multiplicity distributions in particle collision processes, describing not only p(bar-p) collisions but e(+)e(-), vp and diffractive collisions as well. The reason for this phenomenological fit has been gained by working out a microscopic theory in which the squeezed coherent sources arise naturally if one considers the Lorentz squeezing of hadrons and works in the covariant phase space formalism.

  10. A geospatial assessment of the relationship between reef flat community calcium carbonate production and wave energy

    NASA Astrophysics Data System (ADS)

    Hamylton, S. M.; Pescud, A.; Leon, J. X.; Callaghan, D. P.

    2013-12-01

    The ability of benthic communities inhabiting coral reefs to produce calcium carbonate underpins the development of reef platforms and associated sedimentary landforms, as well as the fixation of inorganic carbon and buffering of diurnal pH fluctuations in ocean surface waters. Quantification of the relationship between reef flat community calcium carbonate production and wave energy provides an empirical basis for understanding and managing this functionally important process. This study employs geospatial techniques across the reef platform at Lizard Island, Great Barrier Reef, to (1) map the distribution and estimate the total magnitude of reef community carbonate production and (2) empirically ascertain the influence of wave energy on community carbonate production. A World-View-2 satellite image and a field data set of 364 ground referencing points are employed, along with data on physical reef characteristics (e.g. bathymetry, rugosity) to map and validate the spatial distribution of the four major community carbonate producers (live coral, carbonate sand, green calcareous macroalgae and encrusting calcified algae) across the reef platform. Carbonate production is estimated for the complete reef platform from the composition of these community components. A synoptic model of wave energy is developed using the Simulating WAves Nearshore (SWAN) two-dimensional model for the entire reef platform. The relationship between locally derived measures of carbonate production and wave energy is evaluated at both the global scale and local scale along spatial gradients of wave energy traversing the reef platform. A wave energy threshold is identified, below which carbonate production levels appear to increase with wave energy and above which mechanical forcing reduces community production. This implies an optimal set of hydrodynamic conditions characterized by wave energy levels of approximately 300 J m-2, providing an empirical basis for management of potential changes

  11. Muscle deoxygenation in aerobic and anaerobic exercise.

    PubMed

    Nioka, S; Moser, D; Lech, G; Evengelisti, M; Verde, T; Chance, B; Kuno, S

    1998-01-01

    It has been generally accepted that the use of oxygen is a major contributor of ATP synthesis in endurance exercise but not in short sprints. In anaerobic exercise, muscle energy is thought to be initially supported by the PCr-ATP system followed by glycolysis, not through mitochondrial oxidative phosphorylation. However, in real exercise practice, we do not know how much of this notion is true when an athlete approaches his/her maximal capacity of aerobic and anaerobic exercise, such as during a graded VO2max test. This study investigates the use of oxygen in aerobic and anaerobic exercise by monitoring oxygen concentration of the vastus lateralis muscle at maximum intensity using Near Infra-red Spectroscopy (NIRS). We tested 14 sprinters from the University of Penn track team, whose competitive events are high jump, pole vault, 100 m, 200 m, 400 m, and 800 m. The Wingate anaerobic power test was performed on a cycle ergometer with 10% body weight resistance for 30 seconds. To compare oxygenation during aerobic exercise, a steady-state VO2max test with a cycle ergometer was used with 25 watt increments every 2 min. until exhaustion. Results showed that in the Wingate test, total power reached 774 +/- 86 watt, about 3 times greater than that in the VO2max test (270 +/- 43 watt). In the Wingate test, the deoxygenation reached approximately 80% of the established maximum value, while in the VO2max test resulted in approximately 36% deoxygenation. There was no delay in onset of deoxygenation in the Wingate test, while in the VO2max test, deoxygenation did not occur under low intensity work. The results indicate that oxygen was used from the beginning of sprint test, suggesting that the mitochondrial ATP synthesis was triggered after a surprisingly brief exercise duration. One explanation is that prior warm-up (unloaded exercise) was enough to provide the mitochondrial substrates; ADP and Pi to activate oxidative phosphorylation by the type II a and type I myocytes. In

  12. [National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1992-01-01

    The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

  13. Energy use in pig production: an examination of current Iowa systems.

    PubMed

    Lammers, P J; Kenealy, M D; Kliebenstein, J B; Harmon, J D; Helmers, M J; Honeyman, M S

    2012-03-01

    This paper compares energy use for different pig production systems in Iowa, a leader in US swine production. Pig production systems include not only the growth and performance of the pigs, but also the supporting infrastructure of pig production. This supporting infrastructure includes swine housing, facility management, feedstuff provision, swine diets, and manure management. Six different facility type × diet formulation × cropping sequence scenarios were modeled and compared. The baseline system examined produces 15,600 pigs annually using confinement facilities and a corn-soybean cropping sequence. Diet formulations for the baseline system were corn-soybean meal diets that included the synthetic AA l-lysine and exogenous phytase. The baseline system represents the majority of current US pork production in the Upper Midwest, where most US swine are produced. This system was found to require 744.6 MJ per 136-kg market pig. An alternative system that uses bedded hoop barns for grow-finish pigs and gestating sows would require 3% less (720.8 MJ) energy per 136-kg market pig. When swine production systems were assessed, diet type and feed ingredient processing were the major influences on energy use, accounting for 61 and 79% of total energy in conventional and hoop barn-based systems, respectively. Improving feed efficiency and better matching the diet formulation with the thermal environment and genetic potential are thus key aspects of reducing energy use by pig production, particularly in a hoop barn-based system. The most energy-intensive aspect of provisioning pig feed is the production of synthetic N for crop production; thus, effectively recycling manure nutrients to cropland is another important avenue for future research. Almost 25% of energy use by a conventional farrow-to-finish pig production system is attributable to operation of the swine buildings. Developing strategies to minimize energy use for heating and ventilation of swine buildings while

  14. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    NASA Astrophysics Data System (ADS)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  15. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  16. 78 FR 57922 - American Energy Production, Inc., Best Energy Services, Inc., Community Central Bank Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ..., Explortex Energy, Inc., HemoBioTech, Inc., Larrea Biosciences Corporation, MBI Financial, Inc., and Million... a lack of current and accurate information concerning the securities of HemoBioTech, Inc. because...

  17. Effect of time of day on aerobic contribution to the 30-s Wingate test performance.

    PubMed

    Souissi, Nizar; Bessot, Nicolas; Chamari, Karim; Gauthier, Antoine; Sesboüé, Bruno; Davenne, Damien

    2007-01-01

    The purpose of this study was to evaluate the effects of time of day on aerobic contribution during high-intensity exercise. A group of 11 male physical education students performed a Wingate test against a resistance of 0.087 kg . kg(-1) body mass. Two different times of day were chosen, corresponding to the minimum (06:00 h) and the maximum (18:00 h) levels of power. Oxygen uptake (.VO(2)) was recorded breath by breath during the test (30 sec). Blood lactate concentrations were measured at rest, just after the Wingate test, and again 5 min later. Oral temperature was measured before each test and on six separate occasions at 02:00, 06:00, 10:00, 14:00, 18:00, and 22:00 h. A significant circadian rhythm was found in body temperature with a circadian acrophase at 18:16+/-00:25 h as determined by cosinor analysis. Peak power (P(peak)), mean power (P(mean)), total work done, and .VO(2) increased significantly from morning to afternoon during the Wingate Test. As a consequence, aerobic contribution recorded during the test increased from morning to afternoon. However, no difference in blood lactate concentrations was observed from morning to afternoon. Furthermore, power decrease was greater in the morning than afternoon. Altogether, these results indicate that the time-of-day effect on performances during the Wingate test is mainly due to better aerobic participation in energy production during the test in the afternoon than in the morning.

  18. Sustainability evaluation of Sicily's lemon and orange production: an energy, economic and environmental analysis.

    PubMed

    Pergola, M; D'Amico, M; Celano, G; Palese, A M; Scuderi, A; Di Vita, G; Pappalardo, G; Inglese, P

    2013-10-15

    The island of Sicily has a long standing tradition in citrus growing. We evaluated the sustainability of orange and lemon orchards, under organic and conventional farming, using an energy, environmental and economic analysis of the whole production cycle by using a life cycle assessment approach. These orchard systems differ only in terms of a few of the inputs used and the duration of the various agricultural operations. The quantity of energy consumption in the production cycle was calculated by multiplying the quantity of inputs used by the energy conversion factors drawn from the literature. The production costs were calculated considering all internal costs, including equipment, materials, wages, and costs of working capital. The performance of the two systems (organic and conventional), was compared over a period of fifty years. The results, based on unit surface area (ha) production, prove the stronger sustainability of the organic over the conventional system, both in terms of energy consumption and environmental impact, especially for lemons. The sustainability of organic systems is mainly due to the use of environmentally friendly crop inputs (fertilizers, not use of synthetic products, etc.). In terms of production costs, the conventional management systems were more expensive, and both systems were heavily influenced by wages. In terms of kg of final product, the organic production system showed better environmental and energy performances.

  19. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  20. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    SciTech Connect

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.