Science.gov

Sample records for aerobic glucose metabolism

  1. Fructose modifies the hormonal response and modulates lipid metabolism during aerobic exercise after glucose supplementation.

    PubMed

    Fernández, Juan M; Da Silva-Grigoletto, Marzo E; Ruano-Ruíz, Juan A; Caballero-Villarraso, Javier; Moreno-Luna, Rafael; Túnez-Fiñana, Isaac; Tasset-Cuevas, Inmaculada; Pérez-Martínez, Pablo; López-Miranda, José; Pérez-Jiménez, Francisco

    2009-01-01

    The metabolic response when aerobic exercise is performed after the ingestion of glucose plus fructose is unclear. In the present study, we administered two beverages containing GluF (glucose+fructose) or Glu (glucose alone) in a randomized cross-over design to 20 healthy aerobically trained volunteers to compare the hormonal and lipid responses provoked during aerobic exercise and the recovery phase. After ingesting the beverages and a 15-min resting period, volunteers performed 30 min of moderate aerobic exercise. Urinary and blood samples were taken at baseline (t(-15)), during the exercise (t(0), t(15) and t(30)) and during the recovery phase (t(45), t(75) and t(105)). Plasma insulin concentrations were higher halfway through the exercise period and during acute recuperation (t(15) and t(75); P<0.05) following ingestion of GluF than after Glu alone, without any differences between the effects of either intervention on plasma glucose concentrations. Towards the end of the exercise period, urinary catecholamine concentrations were lower following GluF (t(45); P<0.05). Plasma triacylglycerol (triglyceride) concentrations were higher after the ingestion of GluF compared with Glu (t(15), t(30), t(45) and t(105); P<0.05). Furthermore, with GluF, we observed higher levels of lipoperoxides (t(15), t(30), t(45) and t(105); P<0.05) and oxidized LDL (low-density lipoprotein; t(30); P<0.05) compared with after the ingestion of Glu alone. In conclusion, hormonal and lipid alterations are provoked during aerobic exercise and recovery by the addition of a dose of fructose to the pre-exercise ingestion of glucose.

  2. Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses.

    PubMed

    Lara, Alvaro R; Taymaz-Nikerel, Hilal; Mashego, Mlawule R; van Gulik, Walter M; Heijnen, Joseph J; Ramírez, Octavio T; van Winden, Wouter A

    2009-12-15

    The response of Escherichia coli cells to transient exposure (step increase) in substrate concentration and anaerobiosis leading to mixed-acid fermentation metabolism was studied in a two-compartment bioreactor system consisting of a stirred tank reactor (STR) connected to a mini-plug-flow reactor (PFR: BioScope, 3.5 mL volume). Such a system can mimic the situation often encountered in large-scale, fed-batch bioreactors. The STR represented the zones of a large-scale bioreactor that are far from the point of substrate addition and that can be considered as glucose limited, whereas the PFR simulated the region close to the point of substrate addition, where glucose concentration is much higher than in the rest of the bioreactor. In addition, oxygen-poor and glucose-rich regions can occur in large-scale bioreactors. The response of E. coli to these large-scale conditions was simulated by continuously pumping E. coli cells from a well stirred, glucose limited, aerated chemostat (D = 0.1 h(-1)) into the mini-PFR. A glucose pulse was added at the entrance of the PFR. In the PFR, a total of 11 samples were taken in a time frame of 92 s. In one case aerobicity in the PFR was maintained in order to evaluate the effects of glucose overflow independently of oxygen limitation. Accumulation of acetate and formate was detected after E. coli cells had been exposed for only 2 s to the glucose-rich (aerobic) region in the PFR. In the other case, the glucose pulse was also combined with anaerobiosis in the PFR. Glucose overflow combined with anaerobiosis caused the accumulation of formate, acetate, lactate, ethanol, and succinate, which were also detected as soon as 2 s after of exposure of E. coli cells to the glucose and O(2) gradients. This approach (STR-mini-PFR) is useful for a better understanding of the fast dynamic phenomena occurring in large-scale bioreactors and for the design of modified strains with an improved behavior under large-scale conditions. PMID:19685524

  3. Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses.

    PubMed

    Lara, Alvaro R; Taymaz-Nikerel, Hilal; Mashego, Mlawule R; van Gulik, Walter M; Heijnen, Joseph J; Ramírez, Octavio T; van Winden, Wouter A

    2009-12-15

    The response of Escherichia coli cells to transient exposure (step increase) in substrate concentration and anaerobiosis leading to mixed-acid fermentation metabolism was studied in a two-compartment bioreactor system consisting of a stirred tank reactor (STR) connected to a mini-plug-flow reactor (PFR: BioScope, 3.5 mL volume). Such a system can mimic the situation often encountered in large-scale, fed-batch bioreactors. The STR represented the zones of a large-scale bioreactor that are far from the point of substrate addition and that can be considered as glucose limited, whereas the PFR simulated the region close to the point of substrate addition, where glucose concentration is much higher than in the rest of the bioreactor. In addition, oxygen-poor and glucose-rich regions can occur in large-scale bioreactors. The response of E. coli to these large-scale conditions was simulated by continuously pumping E. coli cells from a well stirred, glucose limited, aerated chemostat (D = 0.1 h(-1)) into the mini-PFR. A glucose pulse was added at the entrance of the PFR. In the PFR, a total of 11 samples were taken in a time frame of 92 s. In one case aerobicity in the PFR was maintained in order to evaluate the effects of glucose overflow independently of oxygen limitation. Accumulation of acetate and formate was detected after E. coli cells had been exposed for only 2 s to the glucose-rich (aerobic) region in the PFR. In the other case, the glucose pulse was also combined with anaerobiosis in the PFR. Glucose overflow combined with anaerobiosis caused the accumulation of formate, acetate, lactate, ethanol, and succinate, which were also detected as soon as 2 s after of exposure of E. coli cells to the glucose and O(2) gradients. This approach (STR-mini-PFR) is useful for a better understanding of the fast dynamic phenomena occurring in large-scale bioreactors and for the design of modified strains with an improved behavior under large-scale conditions.

  4. A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse.

    PubMed

    Kesten, Duygu; Kummer, Ursula; Sahle, Sven; Hübner, Katrin

    2015-11-01

    The onset of aerobic fermentation (the so-called Crabtree effect) in yeast has long been of interest. However, the underlying mechanisms at the metabolic level are not yet fully understood. We developed a detailed kinetic model of the aerobic central metabolism of Saccharomyces cerevisiae comprising glycolysis, TCA cycle and major transport reactions across the mitochondrial membrane to investigate this phenomenon. It is the first one of this extent in the literature. The model is able to reproduce experimental steady state fluxes and time-course behavior after a glucose pulse. Due to the lack of parameter identifiability in the model, we analyze a model ensemble consisting of a set of differently parameterized models for robust findings. The model predicts that the cooperativity of pyruvate decarboxylase with respect to pyruvate and the capacity difference between alcohol dehydrogenase and the pyruvate dehydrogenase bypass play a major role for the onset of the Crabtree effect. PMID:26176974

  5. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    PubMed

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. PMID:26683700

  6. Delayed labelling of brain glutamate after an intra-arterial [13C]glucose bolus: evidence for aerobic metabolism of guinea pig brain glycogen store.

    PubMed

    Griffin, J L; Rae, C; Radda, G K; Matthews, P M

    1999-07-01

    Glycogen in glial cells is the largest store of glucose equivalents in the brain. Here we describe evidence that brain glycogen contributes to aerobic energy metabolism of the guinea pig brain in vivo. Five min after an intra-arterial bolus injection of d-[U-14C]glucose, 28+/-11% of the radioactivity in brain tissue was associated with the glycogen fraction, indicating that a significant proportion of labelled glucose taken up by the brain is converted to glycogen shortly after bolus infusion. Incorporation of 13C-label into lactate generated by brains made ischaemic after d-[1-13C]glucose injection confirms that these glucose equivalents can be mobilised for anaerobic glucose metabolism. Aerobic metabolism was monitored by following the time course of 13C-incorporation into glutamate in guinea pig cortex and cerebellum in vivo. After an intra-arterial bolus injection of d-[1-13C]glucose, glutamate labelling reached a maximum 40-60 min after injection, suggesting that a slowly metabolised pool of labelled glucose equivalents was present. As the concentration of 13C-labelled glucose in blood was shown to decrease below detectable levels within 5 min of bolus injection, this late phase of glutamate labelling must occur with mobilisation of a brain storage pool of labelled glucose equivalents. We interpret this as evidence that glucose equivalents in glycogen may contribute to energy metabolism in the aerobic guinea pig brain.

  7. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation.

    PubMed

    Veit, Andrea; Polen, Tino; Wendisch, Volker F

    2007-02-01

    During aerobic growth on glucose, Escherichia coli produces acetate in the so-called overflow metabolism. DNA microarray analysis was used to determine the global gene expression patterns of chemostat cultivations of E. coli MG1655 that were characterized by different acetate formation rates during aerobic growth on glucose. A correlation analysis identified that expression of ten genes (sdhCDAB, sucB, sucC, acnB, lpdA, fumC and mdh) encoding the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, aconitase, fumarase and malate dehydrogenase, respectively, and of the acs-yjcH-actP operon for acetate utilization correlated negatively with acetate formation. Relieving transcriptional control of the sdhCDAB-b0725-sucABCD operon by chromosomal promoter exchange mutagenesis yielded a strain with increased specific activities of the TCA cycle enzymes succinate dehydrogenase, alpha-ketoglutarate dehydrogenase and succinyl-CoA synthetase, which are encoded by this operon. The resulting strain produced less acetate and directed more carbon towards carbon dioxide formation than the parent strain MG1655 while maintaining high growth and glucose consumption rates. PMID:17273855

  8. A 12 week aerobic exercise program improves fitness, hepatic insulin sensitivity and glucose metabolism in obese Hispanic adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rise in obesity related morbidity in children and adolescents requires urgent prevention and treatment strategies. Strictly controlled exercise programs might be useful tools to improve insulin sensitivity and glucose kinetics. Our objective was to test the hypothesis that a 12-wk aerobic exerci...

  9. Improvements in blood pressure, glucose metabolism, and lipoprotein lipids after aerobic exercise plus weight loss in obese, hypertensive middle-aged men.

    PubMed

    Dengel, D R; Hagberg, J M; Pratley, R E; Rogus, E M; Goldberg, A P

    1998-09-01

    The clustering of metabolic abnormalities often associated with hypertension, including insulin resistance, glucose intolerance, and dyslipidemia, in middle-aged men may be the result of a decrease in cardiovascular fitness (VO2max) and the accumulation of body fat with aging. This study examines the effects of a 6-month program of aerobic exercise training plus weight loss (AEX+WL) on VO2max, body composition, blood pressure (BP), glucose and insulin responses during an oral glucose tolerance test (OGTT), glucose infusion rates (GIR) during 3-dose hyperinsulinemic-euglycemic clamps at insulin infusion rates of 120, 600, and 3,000 pmol x m(-2) x min(-1), and plasma lipoprotein levels. Compared with eight non-obese, normotensive, sedentary men (age, 62+/-2 years; 19%+/-2% fat; BP, 117+/-4/72+/-2 mm Hg), the nine obese, hypersensitive, sedentary men studied (age, 56+/-1 year; 32%+/-1% body fat; BP, 147+/-3/93+/-2 mm Hg) initially had a larger waist girth and waist-to-hip ratio (WHR) and were more hyperinsulinemic and insulin resistant with lower GIR at the two lower insulin infusion rates of the clamp and had a 2.9-fold higher EC50, the insulin concentration producing a half-maximal increase in GIR. They had higher triglyceride (TG) and lower high-density lipoprotein cholesterol (HDL-C) levels. The AEX+WL intervention reduced body weight by 9%, percent body fat by 21%, waist girth by 9%, and WHR by 3%, and increased VO2max by 16% (P < .01 for all). This was associated with decreases of 14+/-3 mm Hg in systolic and 10+/-2 mm Hg in diastolic BP, significant changes in GIR at the low (+42%) and intermediate (+39%) insulin infusion rates and EC50 (-39%) and in glucose (-21%) and insulin (-51%) responses during OGTT (P < .02 for all). AEX+WL also lowered total cholesterol by 14% and TG by 34%, and raised HDL2-C levels twofold (P < .01 for all). Thus, a 6-month AEX+WL intervention substantially lowers BP and improves glucose and lipid metabolism in obese, sedentary

  10. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  11. Extracellular glucose supports lactate production but not aerobic metabolism in cardiomyocytes from both normoglycemic Atlantic cod and low glycemic short-horned sculpin.

    PubMed

    Clow, Kathy A; Short, Connie E; Driedzic, William R

    2016-05-01

    Fish exhibit a wide range of species-specific blood glucose levels. How this relates to glucose utilization is yet to be fully realized. Here, we assessed glucose transport and metabolism in myocytes isolated from Atlantic cod (Gadus morhua) and short-horned sculpin (Myoxocephalus scorpius), species with blood glucose levels of 3.7 and 0.57 mmol l(-1), respectively. Glucose metabolism was assessed by the production of (3)H2O from [2-(3)H]glucose. Glucose metabolism was 3.5- to 6-fold higher by myocytes from Atlantic cod than by those from short-horned sculpin at the same level of extracellular glucose. In Atlantic cod myocytes, glucose metabolism displayed what appears to be a saturable component with respect to extracellular glucose, and cytochalasin B inhibited glucose metabolism. These features revealed a facilitated glucose diffusion mechanism that accounts for between 30% and 55% of glucose entry at physiological levels of extracellular glucose. Facilitated glucose diffusion appears to be minimal in myocytes for short-horned sculpin. Glucose entry by simple diffusion occurs in both cell types with the same linear relationship between glucose metabolism and extracellular glucose concentration, presumably due to similarities in membrane composition. Oxygen consumption by myocytes incubated in medium containing physiological levels of extracellular glucose (Atlantic cod 5 mmol l(-1), short-horned sculpin 0.5 mmol l(-1)) was similar in the two species and was not decreased by cytochalasin B, suggesting that these cells have the capability of oxidizing alternative on-board metabolic fuels. Cells produced lactate at low rates but glycogen levels did not change during the incubation period. In cells from both species, glucose utilization assessed by both simple chemical analysis of glucose disappearance from the medium and (3)H2O production was half the rate of lactate production and as such extracellular glucose was not available for oxidative metabolism

  12. Antihypertensive drugs and glucose metabolism

    PubMed Central

    Rizos, Christos V; Elisaf, Moses S

    2014-01-01

    Hypertension plays a major role in the development and progression of micro- and macrovascular disease. Moreover, increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance. As a result the need for a comprehensive management of hypertensive patients is critical. However, the various antihypertensive drug categories have different effects on glucose metabolism. Indeed, angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis. Calcium channel blockers (CCBs) have an overall neutral effect on glucose metabolism. However, some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis. On the other hand, diuretics and β-blockers have an overall disadvantageous effect on glucose metabolism. Of note, carvedilol as well as nebivolol seem to differentiate themselves from the rest of the β-blockers class, being more attractive options regarding their effect on glucose homeostasis. The adverse effects of some blood pressure lowering drugs on glucose metabolism may, to an extent, compromise their cardiovascular protective role. As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment, especially in patients which are at high risk for developing diabetes. PMID:25068013

  13. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  14. Protons and glucose metabolism in shock

    SciTech Connect

    Hochachka, P.W.

    1983-01-01

    When oxygen is limiting, animals can ferment glucose via several metabolic pathways varying in energetic efficiency and leading to various end products (such as lactate, succinate, or propionate). Because the pH dependence of H/sup +/ production by fermentation is opposite to that by hydrolysis of adenosine triphosphate formed in the fermentation, the total number of moles of protons generated is always two per mole of fermentable substrate. However, two and three times more adenosine triphosphate can be turned over per mole of protons produced in succinate and propionate fermentations, respectively, than in lactate fermentation. At its limit, this advantage would achieve the same balance between H/sup +/ production and H/sup +/ consumption during ATP cycling that is observed in aerobic metabolism, a situation observed in certain alcohol fermentations. Since proton balance during anaerobiosis is clearly adaptable, we consider possible impact and functions of net H/sup +/ accumulation during carbohydrate metabolism in endotoxin shock.

  15. Glucose metabolism in gastric cancer: The cutting-edge

    PubMed Central

    Yuan, Lian-Wen; Yamashita, Hiroharu; Seto, Yasuyuki

    2016-01-01

    Glucose metabolism in gastric cancer cells differs from that of normal epithelial cells. Upregulated aerobic glycolysis (Warburg effect) in gastric cancer meeting the demands of cell proliferation is associated with genetic mutations, epigenetic modification and proteomic alteration. Understanding the mechanisms of aerobic glycolysis may contribute to our knowledge of gastric carcinogenesis. Metabolomic studies offer novel, convenient and practical tools in the search for new biomarkers for early detection, diagnosis, prognosis, and chemosensitivity prediction of gastric cancer. Interfering with the process of glycolysis in cancer cells may provide a new and promising therapeutic strategy for gastric cancer. In this article, we present a brief review of recent studies of glucose metabolism in gastric cancer, with primary focus on the clinical applications of new biomarkers and their potential therapeutic role in gastric cancer. PMID:26877609

  16. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia.

  17. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia. PMID:27319094

  18. Modeling Glucose Metabolism in the Kidney.

    PubMed

    Chen, Ying; Fry, Brendan C; Layton, Anita T

    2016-06-01

    The mammalian kidney consumes a large amount of energy to support the reabsorptive work it needs to excrete metabolic wastes and to maintain homeostasis. Part of that energy is supplied via the metabolism of glucose. To gain insights into the transport and metabolic processes in the kidney, we have developed a detailed model of the renal medulla of the rat kidney. The model represents water and solute flows, transmural fluxes, and biochemical reactions in the luminal fluid of the nephrons and vessels. In particular, the model simulates the metabolism of oxygen and glucose. Using that model, we have identified parameters concerning glucose transport and basal metabolism that yield predicted blood glucose concentrations that are consistent with experimental measurements. The model predicts substantial axial gradients in blood glucose levels along various medullary structures. Furthermore, the model predicts that in the inner medulla, owing to the relatively limited blood flow and low tissue oxygen tension, anaerobic metabolism of glucose dominates. PMID:27371260

  19. Sex steroids and glucose metabolism.

    PubMed

    Allan, Carolyn A

    2014-01-01

    Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM) and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference) is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain. PMID:24457840

  20. Sex steroids and glucose metabolism

    PubMed Central

    Allan, Carolyn A

    2014-01-01

    Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM) and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference) is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain. PMID:24457840

  1. Impact of early fructose intake on metabolic profile and aerobic capacity of rats

    PubMed Central

    2011-01-01

    Background Metabolic syndrome is a disease that today affects millions of people around the world. Therefore, it is of great interest to implement more effective procedures for preventing and treating this disease. In search of a suitable experimental model to study the role of exercise in prevention and treatment of metabolic syndrome, this study examined the metabolic profile and the aerobic capacity of rats kept early in life on a fructose-rich diet, a substrate that has been associated with metabolic syndrome. Methods We used adult female Wistar rats fed during pregnancy and lactation with two diets: balanced or fructose-rich 60%. During breastfeeding, the pups were distributed in small (4/mother) or adequate (8/mother) litters. At 90 days of age, they were analyzed with respect to: glucose tolerance, peripheral insulin sensitivity, aerobic capacity and serum glucose, insulin, triglycerides, total cholesterol, LDL cholesterol and HDL cholesterol concentrations as well as measures of glycogen synthesis and glucose oxidation by the soleus muscle. Results It was found that the fructose rich diet led the animals to insulin resistance. The fructose fed rats kept in small litters also showed dyslipidemia, with increased serum concentrations of total cholesterol and triglycerides. Conclusion Neither the aerobic capacity nor the glucose oxidation rates by the skeletal muscle were altered by fructose-rich diet, indicating that the animal model evaluated is potentially interesting for the study of the role of exercise in metabolic syndrome. PMID:21223589

  2. Environmental metabolomics reveal geographic variation in aerobic metabolism and metabolic substrates in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Shi, Yao-Long; Chi, Qing-Sheng; Liu, Wei; Fu, He-Ping; Wang, De-Hua

    2015-06-01

    Mongolian gerbils (Meriones unguiculatus) have a large-scale distribution in northern China. Geographic physiological variations which related to energy and water metabolism are critical to animals' local adaptation and distribution. However, the underlying biochemical mechanism of such variation and its role in adaptation remains largely unknown. We used GC-MS metabolomics approach to investigate the biochemical adaptation of Mongolian gerbils from xeric (desert), transition (desert steppe) and mesic (typical steppe) environments. Gerbils in desert population had lower resting metabolic rate (RMR) and total evaporative water loss (TEWL) than mesic population. Serum metabolomics revealed that concentrations of five tricarboxylic acid cycle intermediates (citrate, cis-aconitate, α-ketoglutarate, fumarate and malate) were lower in desert population than mesic population. Gastrocnemius metabolomics and citrate synthase activity analysis showed a lower concentration of citrate and lower citrate synthase activity in desert population. These findings suggest that desert dwelling gerbils decrease RMR and TEWL via down-regulation of aerobic respiration. Gastrocnemius metabolomics also revealed that there were higher concentrations of glucose and glycolytic intermediates, but lower concentrations of lipids, amino acids and urea in desert population than mesic population. This geographic variation in metabolic substrates may enhance metabolic water production per oxygen molecule for desert population while constraining aerobic respiration to reduce RMR and TEWL. PMID:25817427

  3. Exercise training reverses impaired skeletal muscle metabolism induced by artificial selection for low aerobic capacity.

    PubMed

    Lessard, Sarah J; Rivas, Donato A; Stephenson, Erin J; Yaspelkis, Ben B; Koch, Lauren G; Britton, Steven L; Hawley, John A

    2011-01-01

    We have used a novel model of genetically imparted endurance exercise capacity and metabolic health to study the genetic and environmental contributions to skeletal muscle glucose and lipid metabolism. We hypothesized that metabolic abnormalities associated with low intrinsic running capacity would be ameliorated by exercise training. Selective breeding for 22 generations resulted in rat models with a fivefold difference in intrinsic aerobic capacity. Low (LCR)- and high (HCR)-capacity runners remained sedentary (SED) or underwent 6 wk of exercise training (EXT). Insulin-stimulated glucose transport, insulin signal transduction, and rates of palmitate oxidation were lower in LCR SED vs. HCR SED (P < 0.05). Decreases in glucose and lipid metabolism were associated with decreased β₂-adrenergic receptor (β₂-AR), and reduced expression of Nur77 target proteins that are critical regulators of muscle glucose and lipid metabolism [uncoupling protein-3 (UCP3), fatty acid transporter (FAT)/CD36; P < 0.01 and P < 0.05, respectively]. EXT reversed the impairments to glucose and lipid metabolism observed in the skeletal muscle of LCR, while increasing the expression of β₂-AR, Nur77, GLUT4, UCP3, and FAT/CD36 (P < 0.05) in this tissue. However, no metabolic improvements were observed following exercise training in HCR. Our results demonstrate that metabolic impairments resulting from genetic factors (low intrinsic aerobic capacity) can be overcome by an environmental intervention (exercise training). Furthermore, we identify Nur77 as a potential mechanism for improved skeletal muscle metabolism in response to EXT.

  4. D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae.

    PubMed

    Stewart, Benjamin J; Navid, Ali; Kulp, Kristen S; Knaack, Jennifer L S; Bench, Graham

    2013-02-01

    Methylglyoxal, a reactive, toxic dicarbonyl, is generated by the spontaneous degradation of glycolytic intermediates. Methylglyoxal can form covalent adducts with cellular macromolecules, potentially disrupting cellular function. We performed experiments using the model organism Saccharomyces cerevisiae, grown in media containing low, moderate and high glucose concentrations, to determine the relationship between glucose consumption and methylglyoxal metabolism. Normal growth experiments and glutathione depletion experiments showed that metabolism of methylglyoxal by log-phase yeast cultured aerobically occurred primarily through the glyoxalase pathway. Growth in high-glucose media resulted in increased generation of the methylglyoxal metabolite D-lactate and overall lower efficiency of glucose utilization as measured by growth rates. Cells grown in high-glucose media maintained higher glucose uptake flux than cells grown in moderate-glucose or low-glucose media. Computational modelling showed that increased glucose consumption may impair catabolism of triose phosphates as a result of an altered NAD⁺:NADH ratio.

  5. D-Lactate Production as a Function of Glucose Metabolism in Saccharomyces cerevisiae

    PubMed Central

    Stewart, Benjamin J.; Navid, Ali; Kulp, Kristen S.; Knaack, Jennifer L. S.; Bench, Graham

    2013-01-01

    Methylglyoxal, a reactive, toxic dicarbonyl, is generated by the spontaneous degradation of glycolytic intermediates. Methylglyoxal can form covalent adducts with cellular macromolecules, potentially disrupting cellular function. We performed experiments using the model organism Saccharomyces cerevisiae grown in media containing low, moderate, and high glucose concentrations to determine the relationship between glucose consumption and methylglyoxal metabolism. Normal growth experiments and glutathione depletion experiments showed that metabolism of methylglyoxal by log-phase yeast cultured aerobically occurred primarily through the glyoxalase pathway. Growth in high-glucose media resulted in increased generation of the methylglyoxal metabolite D-lactate and overall lower efficiency of glucose utilization as measured by growth rates. Cells grown in high-glucose media maintained higher glucose uptake flux than cells grown in moderate-glucose or low-glucose media. Computational modeling showed that increased glucose consumption may impair catabolism of triose phosphates as a result of an altered NAD+/NADH ratio. PMID:23361949

  6. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    PubMed Central

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  7. Severe acute oxidant exposure: morphological damage and aerobic metabolism in the lung

    SciTech Connect

    Montgomery, M.R.; Teuscher, F.; LaSota, I.; Niewoehner, D.E.

    1986-09-01

    Groups of male rats were exposed to acute doses of oxygen, ozone, or paraquat which produced equivalent mortality (25-30%) over a 28 day post-exposure period. Quantitative evaluation of morphological changes indicated the primary response to be edema and inflammation with only slight fibrosis being apparent by the end of the observation period. Aerobic pulmonary metabolism was inhibited in lungs from animals exposed to oxygen and ozone as evidenced by decreased oxygen consumption; however, this was transient and O/sub 2/ consumption returned to normal within 24 hours after removal from the exposure chamber. Conversely, treatment with paraquat caused an immediate, transient stimulation of O/sub 2/ consumption. Glucose metabolism was unaltered by the gas exposures and, as previously reported, was initially stimulated by paraquat treatment. In vitro, only paraquat altered both O/sub 2/ consumption and glucose metabolism when added to lung slice preparations; ozone had no effect. Oxygen did not alter O/sub 2/ consumption but caused a slight biphasic response in glucose metabolism. Aerobic metabolism is relatively unchanged by these doses of oxygen and ozone which result in the death of 25-30% of all treated animals. Even though paraquat produces similar morphologic changes, it may represent a more severe metabolic insult than ''equivalent'' doses of oxygen or ozone. Also, if interstitial pulmonary fibrosis is a desired result of experimental exposure, rats may not be a suitable model for oxidant induced lung injury.

  8. Glucose metabolism in diabetic blood vessels

    SciTech Connect

    Brown, B.J.; Crass, M.F. III

    1986-03-05

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U/sup -14/ C. Norepinephrine (NE) (10/sup -6/ M) and/or insulin (I) (150 ..mu..U/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and /sup 14/CO/sub 2/ and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), /sup 14/CO/sub 2/ (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose.

  9. Glucose metabolism in Acetobacter aceti.

    PubMed

    Flückiger, J; Ettlinger, L

    1977-08-26

    Acetobacter aceti NCIB 8554 grows on a minimal medium with ethanol but not with glucose as carbon and energy source. Addition of glucose to a wild type culture on ethanol has no influence on growth of the organism. Growth of a glucose sensitive mutant A5 is inhibited by the addition of glucose until all glucose has disappeared from the medium. In order to determine the routes by which glucose is metabolised in wild type and mutant, radiorespirometric, enzymatic, and uptake experiments have been performed. For the radiorespirometric experiments of the "continuous substrate feeding" type as apparatus has been constructed. Of the glucose entering the cells about 30% is excreted as gluconate and 6% metabolised with liberation of C-1 as CO2. The rest is accumulated intracellularly. No differences were found between wild type and mutant. Under different growth conditions and with different enzymatic assay methods no pyruvate kinase activity (EC 2.7.1.40) could be detected. This might explain the inability of A. aceti to grow on glucose.

  10. Lipid profile, BMI, body fat distribution, and aerobic fitness in men with metabolic syndrome.

    PubMed

    Bertoli, A; Di Daniele, N; Ceccobelli, M; Ficara, A; Girasoli, C; De Lorenzo, A

    2003-10-01

    Obesity, impaired glucose tolerance, type 2 diabetes, hyperlipidemia, hypertension, and insulin resistance are wellknown components of metabolic syndrome and are associated to increased cardiovascular morbidity. The present study aimed to evaluate the relationships between cardiorespiratory fitness, body fat distribution, and selected coronary heart disease risk factors. A total of 22 untrained subjects affected by one or more features of metabolic syndrome and without clinical history of cardiovascular disease were studied. Nondiabetic subjects underwent an oral glucose tolerance test for glucose and insulin measurement; fasting glucose and insulin were measured in diabetic patients. Complete lipid profile, thyroid hormones, and thyroid-stimulating hormone were measured in all subjects. Basal energy expenditure and cardiorespiratory fitness were measured using a K4 analyzer. Cardiorespiratory fitness ( VO(2max)/kg) was assessed using a treadmill graded exercise test. Peak aerobic capacity ( VO(2max)/kg) was predicted by body fat distribution, insulin sensitivity index, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol ( p<0.001). A significant relationship was found between cardiorespiratory fitness ( VO(2max)/kg) and body mass index (BMI), insulin sensitivity index, and LDL cholesterol ( r=0.60, p<0.05; r=0.66, p<0.01 and r=0.54, p<0.05, respectively). Data demonstrated that aerobic fitness is related to metabolic parameters and to body fat distribution, and suggest that its modification may improve well-known predictors of coronary artery disease.

  11. The Role of Glucose Metabolism and Glucose-Associated Signalling in Cancer

    PubMed Central

    Wittig, Rainer; Coy, Johannes F.

    2007-01-01

    Aggressive carcinomas ferment glucose to lactate even in the presence of oxygen. This particular metabolism, termed aerobic glycolysis, the glycolytic phenotype, or the Warburg effect, was discovered by Nobel laureate Otto Warburg in the 1920s. Since these times, controversial discussions about the relevance of the fermentation of glucose by tumours took place; however, a majority of cancer researchers considered the Warburg effect as a non-causative epiphenomenon. Recent research demonstrated, that several common oncogenic events favour the expression of the glycolytic phenotype. Moreover, a suppression of the phenotypic features by either substrate limitation, pharmacological intervention, or genetic manipulation was found to mediate potent tumour-suppressive effects. The discovery of the transketolase-like 1 (TKTL1) enzyme in aggressive cancers may deliver a missing link in the interpretation of the Warburg effect. TKTL1-activity could be the basis for a rapid fermentation of glucose in aggressive carcinoma cells via the pentose phosphate pathway, which leads to matrix acidification, invasive growth, and ultimately metastasis. TKTL1 expression in certain non-cancerous tissues correlates with aerobic formation of lactate and rapid fermentation of glucose, which may be required for the prevention of advanced glycation end products and the suppression of reactive oxygen species. There is evidence, that the activity of this enzyme and the Warburg effect can be both protective or destructive for the organism. These results place glucose metabolism to the centre of pathogenesis of several civilisation related diseases and raise concerns about the high glycaemic index of various food components commonly consumed in western diets. PMID:19812737

  12. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

    PubMed Central

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-01-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism. DOI: http://dx.doi.org/10.7554/eLife.04810.001 PMID:25929283

  13. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits.

    PubMed

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-05-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism.

  14. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress. PMID:16475003

  15. MicroRNA 33 Regulates Glucose Metabolism

    PubMed Central

    Ramírez, Cristina M.; Goedeke, Leigh; Rotllan, Noemi; Yoon, Je-Hyun; Cirera-Salinas, Daniel; Mattison, Julie A.; Suárez, Yajaira; de Cabo, Rafael; Gorospe, Myriam

    2013-01-01

    Metabolic diseases are characterized by the failure of regulatory genes or proteins to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators, recent discoveries have shown the remarkable role of small noncoding RNAs (microRNAs [miRNAs]) in the posttranscriptional regulation of gene expression. In this regard, we have recently demonstrated that miR-33a and miR33b, intronic miRNAs located within the sterol regulatory element-binding protein (SREBP) genes, regulate lipid metabolism in concert with their host genes. Here, we show that miR-33b also cooperates with SREBP1 in regulating glucose metabolism by targeting phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), key regulatory enzymes of hepatic gluconeogenesis. Overexpression of miR-33b in human hepatic cells inhibits PCK1 and G6PC expression, leading to a significant reduction of glucose production. Importantly, hepatic SREBP1c/miR-33b levels correlate inversely with the expression of PCK1 and G6PC upon glucose infusion in rhesus monkeys. Taken together, these results suggest that miR-33b works in concert with its host gene to ensure a fine-tuned regulation of lipid and glucose homeostasis, highlighting the clinical potential of miR-33a/b as novel therapeutic targets for a range of metabolic diseases. PMID:23716591

  16. Glucose and fructose metabolism in Zymomonas anaerobia

    PubMed Central

    McGill, D. J.; Dawes, E. A.

    1971-01-01

    Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner–Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence of weak phosphofructokinase and fructose 1,6-diphosphate aldolase activities but phosphoketolase, transketolase and transaldolase were not detected. Fermentation balances for glucose and fructose are reported; acetaldehyde accumulated in both fermentations, to a greater extent with fructose which also yielded glycerol and dihydroxyacetone as minor products. PMID:4259336

  17. Distinct effects of aerobic exercise training and weight loss on glucose homeostasis in obese sedentary men.

    PubMed

    Dengel, D R; Pratley, R E; Hagberg, J M; Rogus, E M; Goldberg, A P

    1996-07-01

    The decline in glucose homeostasis with aging may be due to the physical deconditioning and obesity that often develop with aging. The independent and combined effects of aerobic exercise training (AEX) and weight loss (WL) on glucose metabolism were studied in 47 nondiabetic sedentary older men. There were 14 men in a weekly behavioral modification/WL program, 10 in a 3 times/wk AEX program, 14 in an AEX+WL program, and 9 in the control (Con) group. The 10-mo intervention increased maximal oxygen consumption (VO2max) in both the AEX and AEX+WL groups [0.33 +/- 0.05 and 0.37 +/- 0.09 (SE) l/min, respectively], but VO2max did not significantly change in the WL (0.01 +/- 0.06 l/min) and Con groups (-0.04 +/- 0.05 l/min; P > 0.05). The AEX+WL and WL groups had comparable reductions in body weight (-8.5 +/- 0.9 and -8.8 +/- 1.2 kg, respectively) and percent fat (-5.5 +/- 0.7 and -5.9 +/- 1.1%, respectively) that were significantly greater than those in the Con and AEX groups. Oral glucose tolerance tests showed significant reductions in insulin responses in the AEX, WL, and AEX+WL groups, but the decrease in insulin response in the AEX+WL group was significantly greater than that in the other three groups. The glucose area decreased significantly in the WL and AEX+WL groups but did not change in the Con or AEX groups. There were significant increases in insulin-mediated glucose disposal rates as measured by the hyperinsulinemic (600 pmol.m-2.min-1) euglycemic clamps in the AEX and AEX+WL groups [1.66 +/- 0.50 and 1.76 +/- 0.41 mg.kg fat-free mass (FFM)-1.min-1, respectively] that were significantly greater than those in the WL (0.13 +/- 0.31 mg.kg FFM-1.min-1) and Con groups (-0.05 +/- 0.51 mg.kg FFM-1.min-1; n = 5). These data suggest that AEX and WL improve glucose metabolism through different mechanisms and that the combined intervention of AEX+WL is necessary to improve both glucose tolerance and insulin sensitivity in older men.

  18. Hepatic glucose and lipid metabolism.

    PubMed

    Jones, John G

    2016-06-01

    The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael

  19. Insulin Control of Glucose Metabolism in Man

    PubMed Central

    Insel, Paul A.; Liljenquist, John E.; Tobin, Jordan D.; Sherwin, Robert S.; Watkins, Paul; Andres, Reubin; Berman, Mones

    1975-01-01

    Analyses of the control of glucose metabolism by insulin have been hampered by changes in bloog glucose concentration induced by insulin administration with resultant activation of hypoglycemic counterregulatory mechanisms. To eliminate such mechanisms, we have employed the glucose clamp technique which allows maintenance of fasting blood glucose concentration during and after the administration of insulin. Analyses of six studies performed in young healthy men in the postabsorptive state utilizing the concurrent administration of [14C]glucose and 1 mU/kg per min (40 mU/m2 per min) porcine insulin led to the development of kinetic models for insulin and for glucose. These models account quantitatively for the control of insulin on glucose utilization and on endogenous glucose production during nonsteady states. The glucose model, a parallel three-compartment model, has a central compartment (mass = 68±7 mg/kg; space of distribution = blood water volume) in rapid equilibrium with a smaller compartment (50±17 mg/kg) and in slow equilibrium with a larger compartment (96±21 mg/kg). The total plasma equivalent space for the glucose system averaged 15.8 liters or 20.3% body weight. Two modes of glucose loss are introduced in the model. One is a zero-order loss (insulin and glucose independent) from blood to the central nervous system; its magnitude was estimated from published data. The other is an insulin-dependent loss, occurring from the rapidly equilibrating compartment and, in the basal period, is smaller than the insulin-independent loss. Endogenous glucose production averaged 1.74 mg/kg per min in the basal state and enters the central compartment directly. During the glucose clamp experiments plasma insulin levels reached a plateau of 95±8 μU/ml. Over the entire range of insulin levels studied, glucose losses were best correlated with levels of insulin in a slowly equilibrating insulin compartment of a three-compartment insulin model. A proportional control

  20. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-01

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  1. Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises.

    PubMed

    Dienel, Gerald A; Wang, Robert Y; Cruz, Nancy F

    2002-12-01

    Interpretation of functional metabolic brain images requires understanding of metabolic shifts in working brain. Because the disproportionately higher uptake of glucose compared with oxygen ("aerobic glycolysis") during sensory stimulation is not fully explained by changes in levels of lactate or glycogen, metabolic labeling by [6-14C]glucose was used to evaluate utilization of glucose during brief brain activation. Increased labeling of tricarboxylic acid cycle-derived amino acids, mainly glutamate but also gamma-aminobutyric acid, reflects a rise in oxidative metabolism during aerobic glycolysis. The size of the glutamate, lactate, alanine, and aspartate pools changed during stimulation. Brain lactate was derived from blood-borne glucose and its specific activity was twice that of alanine, revealing pyruvate compartmentation. Glycogen labeling doubled during recovery compared with rest and activation; only 4% to 8% of the total 14C was recovered in lactate plus glycogen. Restoration of glycogen levels was slow, and diversion of glucose from oxidative pathways to restore its level could cause a prolonged reduction of the global O2/glucose uptake ratio. The rise in the brain glucose-oxygen uptake ratio during activation does not simply reflect an upward shift of glycolysis under aerobic conditions; instead, it involves altered fluxes into various (oxidative and biosynthetic) pathways with different time courses.

  2. A combined continuous and interval aerobic training improves metabolic syndrome risk factors in men

    PubMed Central

    Sari-Sarraf, Vahid; Aliasgarzadeh, Akbar; Naderali, Mohammad-Mahdi; Esmaeili, Hamid; Naderali, Ebrahim K

    2015-01-01

    Individuals with metabolic syndrome have significantly higher risk of cardiovascular disease and type 2 diabetes leading to premature death mortality. Metabolic syndrome has a complex etiology; thus, it may require a combined and multi-targeted aerobic exercise regimen to improve risk factors associated with it. Therefore, the aim of this study was to evaluate the effect of combined continuous and interval aerobic training on patients with metabolic syndrome. Thirty adult male with metabolic syndrome (54±8 years) were randomly divided into two groups: test training group (TTG; n=15) and control group (CG; n=15). Subjects in TTG performed combined continuous and interval aerobic training using a motorized treadmill three times per week for 16 weeks. Subjects in CG were advised to continue with their normal activities of life. Twenty-two men completed the study (eleven men in each group). At the end of the study, in TTG, there were significant (for all, P<0.05) reductions in total body weight (−3.2%), waist circumference (−3.43 cm), blood pressure (up to −12.7 mmHg), and plasma insulin, glucose, and triacylglyceride levels. Moreover, there were significant (for all, P<0.05) increases VO2max (−15.3%) and isometric strength of thigh muscle (28.1%) and high-density lipoprotein in TTG. None of the above indices were changed in CG at the end of 16-week study period. Our study suggests that adoption of a 16-week combined continuous and interval aerobic training regimen in men with metabolic syndrome could significantly reduce cardiovascular risk factors in these patients. PMID:26056487

  3. Thermodynamics of Microbial Growth Coupled to Metabolism of Glucose, Ethanol, Short-Chain Organic Acids, and Hydrogen ▿ †

    PubMed Central

    Roden, Eric E.; Jin, Qusheng

    2011-01-01

    A literature compilation demonstrated a linear relationship between microbial growth yield and the free energy of aerobic and anaerobic (respiratory and/or fermentative) metabolism of glucose, ethanol, formate, acetate, lactate, propionate, butyrate, and H2. This relationship provides a means to estimate growth yields for modeling microbial redox metabolism in soil and sedimentary environments. PMID:21216913

  4. Diabetes and Altered Glucose Metabolism with Aging

    PubMed Central

    Kalyani, Rita Rastogi; Egan, Josephine M.

    2013-01-01

    I. Synopsis Diabetes and impaired glucose tolerance affect a substantial proportion of older adults. While the aging process can be associated with alterations in glucose metabolism, including both relative insulin resistance and islet cell dysfunction, abnormal glucose metabolism is not a necessary component of aging. Instead, older adults with diabetes and altered glucose status likely represent a vulnerable subset of the population at high-risk for complications and adverse geriatric syndromes such as accelerated muscle loss, functional disability, frailty, and early mortality. Goals for treatment of diabetes in the elderly include control of hyperglycemia, prevention and treatment of diabetic complications, avoidance of hypoglycemia and preservation of quality of life. Given the heterogeneity of the elderly population with regards to the presence of comorbidities, life expectancy, and functional status, an individualized approach to diabetes management is often appropriate. A growing area of research seeks to explore associations of dysglycemia and insulin resistance with the development of adverse outcomes in the elderly and may ultimately inform guidelines on the use of future glucose-lowering therapies in this population. PMID:23702405

  5. Glucose transport and metabolism in rat renal proximal tubules: multicomponent effects of insulin.

    PubMed

    Kleinzeller, A; McAvoy, E M

    1986-04-25

    Glucose transport and metabolism, and the effect of insulin thereon, was studied using suspensions of rat renal tubules enriched in the proximal component. [U-14C]Glucose oxidation is a saturable process (Km 3.1 +/- 0.2 mM; Vmax 14 +/- 0.2 mumole 14CO2 formed/g tissue protein per h). Glucose oxidation and [14C]lactate formation from glucose are inhibited in part by phlorizin and phloretin: the data suggest that the rate-limiting entry of glucose into the cell metabolic pool occurs by both the Na-glucose cotransport system (at the brush border) and the equilibrating, phloretin-sensitive system (at the basal-lateral membrane). Raising external glucose from 5 to 30 mM markedly increases aerobic and anaerobic lactate formation. Gluconeogenesis from lactate is not affected by variations of glucose concentrations. 24 h after streptozotocin administration, aerobic lactate formation is enhanced, as is the uptake of methyl alpha-D-glucoside by the tubules, while anaerobic glycolysis is depressed. Streptozotocin treatment (ST) increases both the Km and Vmax of glucose oxidation; gluconeogenesis and lactate oxidation are not affected. The effect of streptozotocin treatment on lactate formation are abolished by 1 mU/ml insulin. Streptozotocin treatment increases tissue hexokinase activity, decreases glucose-6-phosphatase, but has no significant effect on fructose-1,6-diphosphatase; phosphoenolpyruvate carboxykinase and pyruvate dehydrogenase. The data demonstrate fast streptozotocin-induced changes in cellular enzymes of carbohydrate metabolism. The enhancing effect of streptozotocin on methyl alpha-glucoside uptake is transient: 8 days after administration of the agent, no significant difference from controls is found. It is concluded that under the given experimental conditions insulin enhances the equilibrating glucose entry by the phloretin-sensitive pathway at the basal-lateral membrane, and transiently inhibits the Na-glucose cotransport system.

  6. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation.

    PubMed

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  7. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

    PubMed Central

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  8. Trimetallic Au/Pt/Rh Nanoparticles as Highly Active Catalysts for Aerobic Glucose Oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Cao, Yingnan; Lu, Lilin; Cheng, Zhong; Zhang, Shaowei

    2015-02-01

    This paper reports the findings of an investigation of the correlations between the catalytic activity for aerobic glucose oxidation and the composition of Au/Pt/Rh trimetallic nanoparticles (TNPs) with average diameters of less than 2.0 nm prepared by rapid injection of NaBH4. The prepared TNPs were characterized by UV-Vis, TEM, and HR-TEM. The catalytic activity of the alloy-structured TNPs for aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with nearly the same particle size. The catalytic activities of the TNP catalysts were dependent not only on the composition, but also on the electronic structure. The high catalytic activities of the Au/Pt/Rh TNPs can be ascribed to the formed negative-charged Au atoms due to electron donation of Rh neighboring atoms acting as catalytically active sites for aerobic glucose oxidation.

  9. Intracellular Shuttle: The Lactate Aerobic Metabolism

    PubMed Central

    Cruz, Rogério Santos de Oliveira; de Aguiar, Rafael Alves; Turnes, Tiago; Penteado Dos Santos, Rafael; Fernandes Mendes de Oliveira, Mariana; Caputo, Fabrizio

    2012-01-01

    Lactate is a highly dynamic metabolite that can be used as a fuel by several cells of the human body, particularly during physical exercise. Traditionally, it has been believed that the first step of lactate oxidation occurs in cytosol; however, this idea was recently challenged. A new hypothesis has been presented based on the fact that lactate-to-pyruvate conversion cannot occur in cytosol, because the LDH enzyme characteristics and cytosolic environment do not allow the reaction in this way. Instead, the Intracellular Lactate Shuttle hypothesis states that lactate first enters in mitochondria and only then is metabolized. In several tissues of the human body this idea is well accepted but is quite resistant in skeletal muscle. In this paper, we will present not only the studies which are protagonists in this discussion, but the potential mechanism by which this oxidation occurs and also a link between lactate and mitochondrial proliferation. This new perspective brings some implications and comes to change our understanding of the interaction between the energy systems, because the product of one serves as a substrate for the other. PMID:22593684

  10. Cerebral glucose metabolism in Parkinson's disease.

    PubMed

    Martin, W R; Beckman, J H; Calne, D B; Adam, M J; Harrop, R; Rogers, J G; Ruth, T J; Sayre, C I; Pate, B D

    1984-02-01

    Local cerebral glucose utilization was measured in patients with predominantly unilateral Parkinson's disease using 18F-2-fluoro-deoxyglucose and positron emission tomography. Preliminary results indicate the presence of asymmetric metabolic rates in the inferior basal ganglia. The structure comprising the largest portion of basal ganglia at this level is globus pallidus. These findings are consistent with metabolic studies on animals with unilateral nigrostriatal lesions in which pallidal hypermetabolism on the lesioned side has been demonstrated. Increased pallidal activity is likely secondary to a loss of inhibitory dopaminergic input to the striatum from substantia nigra.

  11. Regulation of glucose metabolism in T cells: new insight into the role of Phosphoinositide 3-kinases

    PubMed Central

    Finlay, David K.

    2012-01-01

    Naïve T cells are relatively quiescent cells that only require energy to prevent atrophy and for survival and migration. However, in response to developmental or extrinsic cues T cells can engage in rapid growth and robust proliferation, produce of a range of effector molecules and migrate through peripheral tissues. To meet the significantly increased metabolic demands of these activities, T cells switch from primarily metabolizing glucose to carbon dioxide through oxidative phosphorylation to utilizing glycolysis to convert glucose to lactate (termed aerobic glycolysis). This metabolic switch allows glucose to be used as a source of carbon to generate biosynthetic precursors for the production of protein, DNA, and phospholipids, and is crucial for T cells to meet metabolic demands. Phosphoinositide 3-kinases (PI3K) are a family of inositol lipid kinases linked with a broad range of cellular functions in T lymphocytes that include cell growth, proliferation, metabolism, differentiation, survival, and migration. Initial research described a critical role for PI3K signaling through Akt (also called protein kinase B) for the increased glucose uptake and glycolysis that accompanies T cell activation. This review article relates this original research with more recent data and discusses the evidence for and against a role for PI3K in regulating the metabolic switch to aerobic glycolysis in T cells. PMID:22891069

  12. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  13. Aerobic plus resistance training improves bone metabolism and inflammation in adolescents who are obese.

    PubMed

    Campos, Raquel M S; de Mello, Marco T; Tock, Lian; Silva, Patrícia L; Masquio, Deborah C L; de Piano, Aline; Sanches, Priscila L; Carnier, June; Corgosinho, Flávia C; Foschini, Denis; Tufik, Sergio; Dâmaso, Ana R

    2014-03-01

    Obesity is a worldwide epidemic with a high prevalence of comorbidities, including alterations in bone mineral metabolism. The purpose of this yearlong study was to evaluate the role of 2 types of exercise training (aerobic and aerobic plus resistance exercise) on adipokines parameters and bone metabolism in adolescents who are obese. This was a clinical trial study with interdisciplinary weight loss therapy. Forty-two postpubertal adolescents who are obese were subjected to interdisciplinary weight loss therapy with physical exercise, medical monitoring, nutritional intervention, and psychological intervention. Data were collected from serum analyses of leptin, ghrelin, adiponectin, glucose, and insulin. Anthropometric measurements of body composition, bone mineral density, visceral, and subcutaneous fat were also performed. Statistical tests were applied using repeated-measures analysis of variance. Correlations were established using the Pearson test, and dependencies of variables were established using simple linear regression test. Both training types promoted reductions in body mass index, total central, visceral and subcutaneous fat, insulin concentration, and homeostasis model assessment insulin resistance (HOMA-IR) index, but only aerobic plus resistance training showed statistical improvements in the bone mineral content, adiponectin concentration, and lean tissue. Effective reduction in the visceral/subcutaneous ratio, central/peripheral ratio, and leptin concentration was observed. Insulin and the HOMA-IR index were negative predictors of bone mineral content in the combined training group. Moreover, fat distribution was a negative predictor for bone mineral density in both groups. Aerobic plus resistance training promotes a protective role in bone mineral content associated with an improvement in adiponectin and leptin concentrations, favoring the control of the inflammatory state related to obesity in adolescents. Aerobic plus resistance training

  14. Aerobic plus resistance training improves bone metabolism and inflammation in adolescents who are obese.

    PubMed

    Campos, Raquel M S; de Mello, Marco T; Tock, Lian; Silva, Patrícia L; Masquio, Deborah C L; de Piano, Aline; Sanches, Priscila L; Carnier, June; Corgosinho, Flávia C; Foschini, Denis; Tufik, Sergio; Dâmaso, Ana R

    2014-03-01

    Obesity is a worldwide epidemic with a high prevalence of comorbidities, including alterations in bone mineral metabolism. The purpose of this yearlong study was to evaluate the role of 2 types of exercise training (aerobic and aerobic plus resistance exercise) on adipokines parameters and bone metabolism in adolescents who are obese. This was a clinical trial study with interdisciplinary weight loss therapy. Forty-two postpubertal adolescents who are obese were subjected to interdisciplinary weight loss therapy with physical exercise, medical monitoring, nutritional intervention, and psychological intervention. Data were collected from serum analyses of leptin, ghrelin, adiponectin, glucose, and insulin. Anthropometric measurements of body composition, bone mineral density, visceral, and subcutaneous fat were also performed. Statistical tests were applied using repeated-measures analysis of variance. Correlations were established using the Pearson test, and dependencies of variables were established using simple linear regression test. Both training types promoted reductions in body mass index, total central, visceral and subcutaneous fat, insulin concentration, and homeostasis model assessment insulin resistance (HOMA-IR) index, but only aerobic plus resistance training showed statistical improvements in the bone mineral content, adiponectin concentration, and lean tissue. Effective reduction in the visceral/subcutaneous ratio, central/peripheral ratio, and leptin concentration was observed. Insulin and the HOMA-IR index were negative predictors of bone mineral content in the combined training group. Moreover, fat distribution was a negative predictor for bone mineral density in both groups. Aerobic plus resistance training promotes a protective role in bone mineral content associated with an improvement in adiponectin and leptin concentrations, favoring the control of the inflammatory state related to obesity in adolescents. Aerobic plus resistance training

  15. Berberine improves glucose metabolism through induction of glycolysis.

    PubMed

    Yin, Jun; Gao, Zhanguo; Liu, Dong; Liu, Zhijun; Ye, Jianping

    2008-01-01

    Berberine, a botanical alkaloid used to control blood glucose in type 2 diabetes in China, has recently been reported to activate AMPK. However, it is not clear how AMPK is activated by berberine. In this study, activity and action mechanism of berberine were investigated in vivo and in vitro. In dietary obese rats, berberine increased insulin sensitivity after 5-wk administration. Fasting insulin and HOMA-IR were decreased by 46 and 48%, respectively, in the rats. In cell lines including 3T3-L1 adipocytes, L6 myotubes, C2C12 myotubes, and H4IIE hepatocytes, berberine was found to increase glucose consumption, 2-deoxyglucose uptake, and to a less degree 3-O-methylglucose (3-OMG) uptake independently of insulin. The insulin-induced glucose uptake was enhanced by berberine in the absence of change in IRS-1 (Ser307/312), Akt, p70 S6, and ERK phosphorylation. AMPK phosphorylation was increased by berberine at 0.5 h, and the increase remained for > or =16 h. Aerobic and anaerobic respiration were determined to understand the mechanism of berberine action. The long-lasting phosphorylation of AMPK was associated with persistent elevation in AMP/ATP ratio and reduction in oxygen consumption. An increase in glycolysis was observed with a rise in lactic acid production. Berberine exhibited no cytotoxicity, and it protected plasma membrane in L6 myotubes in the cell culture. These results suggest that berberine enhances glucose metabolism by stimulation of glycolysis, which is related to inhibition of glucose oxidation in mitochondria. Berberine-induced AMPK activation is likely a consequence of mitochondria inhibition that increases the AMP/ATP ratio.

  16. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis.

    PubMed

    Zhang, J; Gao, Q; Zhou, Y; Dier, U; Hempel, N; Hochwald, S N

    2016-04-14

    Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.

  17. Metabolic pathways for glucose in astrocytes.

    PubMed

    Wiesinger, H; Hamprecht, B; Dringen, R

    1997-09-01

    Cultured astroglial cells are able to utilize the monosaccharides glucose, mannose, or fructose as well as the sugar alcohol sorbitol as energy fuel. Astroglial uptake of the aldoses is carrier-mediated, whereas a non-saturable transport mechanism is operating for fructose and sorbitol. The first metabolic step for all sugars, including fructose being generated by enzymatic oxidation of sorbitol, is phosphorylation by hexokinase. Besides glucose only mannose may serve as substrate for build-up of astroglial glycogen. Whereas glycogen synthase appears to be present in astrocytes as well as neurons, the exclusive localization of glycogen phosphorylase in astrocytes and ependymal cells of central nervous tissue correlates well with the occurrence of glycogen in these cells. The identification of lactic acid rather than glucose as degradation product of astroglial glycogen appears to render the presence of glucose-6-phosphatase in cultured astrocytes an enigma. The colocalization of pyruvate carboxylase, phosphenolpyruvate carboxykinase and fructose-1,6-bisphosphatase points to astrocytes as being the gluconeogenic cell type of the CNS. PMID:9298844

  18. Therapeutic potential of targeting glucose metabolism in glioma stem cells.

    PubMed

    Nakano, Ichiro

    2014-11-01

    Glioblastoma is a highly lethal cancer. Glioma stem cells (GSCs) are potentially an attractive therapeutic target and eradication of GSCs may impact tumor growth and sensitize tumors to conventional therapies. The brain is one of the most metabolically active organs with glucose representing the most important, but not the only, source of energy and carbon. Like all other cancers, glioblastoma requires a continuous source of energy and molecular resources for new cell production with a preferential use of aerobic glycolysis, recognized as the Warburg effect. As selected metabolic nodes are amenable to therapeutic targeting, we observed that the Warburg effect may causally contribute to glioma heterogeneity. This Editorial summarizes recent studies that examine the relationship between GSCs and metabolism and briefly provides our views for the future directions. The ultimate goal is to establish a new concept by incorporating both the cellular hierarchical theory and the cellular evolution theory to explain tumor heterogeneity. Such concept may better elucidate the mechanisms of how tumors gain cellular and molecular complexity and guide us develop novel and effective targeted therapies.

  19. Efficient utilization of aerobic metabolism helps Tibetan locusts conquer hypoxia

    PubMed Central

    2013-01-01

    Background Responses to hypoxia have been investigated in many species; however, comparative studies between conspecific geographical populations at different altitudes are rare, especially for invertebrates. The migratory locust, Locusta migratoria, is widely distributed around the world, including on the high-altitude Tibetan Plateau (TP) and the low-altitude North China Plain (NP). TP locusts have inhabited Tibetan Plateau for over 34,000 years and thus probably have evolved superior capacity to cope with hypoxia. Results Here we compared the hypoxic responses of TP and NP locusts from morphological, behavioral, and physiological perspectives. We found that TP locusts were more tolerant of extreme hypoxia than NP locusts. To evaluate why TP locusts respond to extreme hypoxia differently from NP locusts, we subjected them to extreme hypoxia and compared their transcriptional responses. We found that the aerobic metabolism was less affected in TP locusts than in NP locusts. RNAi disruption of PDHE1β, an entry gene from glycolysis to TCA cycle, increased the ratio of stupor in TP locusts and decreased the ATP content of TP locusts in hypoxia, confirming that aerobic metabolism is critical for TP locusts to maintain activity in hypoxia. Conclusions Our results indicate that TP and NP locusts have undergone divergence in hypoxia tolerance. These findings also indicate that insects can adapt to hypoxic pressure by modulating basic metabolic processes. PMID:24047108

  20. Role of exercise intensity on GLUT4 content, aerobic fitness and fasting plasma glucose in type 2 diabetic mice.

    PubMed

    Cunha, Verusca Najara; de Paula Lima, Mérica; Motta-Santos, Daisy; Pesquero, Jorge Luiz; de Andrade, Rosangela Vieira; de Almeida, Jeeser Alves; Araujo, Ronaldo Carvalho; Grubert Campbell, Carmen Silvia; Lewis, John E; Simões, Herbert Gustavo

    2015-10-01

    Type 2 diabetes mellitus (T2D) results in several metabolic and cardiovascular dysfunctions, clinically characterized by hyperglycaemia due to lower glucose uptake and oxidation. Physical exercise is an effective intervention for glycaemic control. However, the effects of exercising at different intensities have not yet been addressed. The present study analysed the effects of 8 weeks of training performed at different exercise intensities on type 4 glucose transporters (GLUT4) content and glycaemic control of T2D (ob/ob) and non-diabetic mice (ob/OB). The animals were divided into six groups, with four groups being subjected either to low-intensity (ob/obL and ob/OBL: 3% body weight, three times/week/40 min) or high-intensity (ob/obH and ob/OBH: 6% body weight, three times per week per 20 min) swimming training. An incremental swimming test was performed to measure aerobic fitness. After the training intervention period, glycaemia and the content of GLUT4 were quantified. Although both training intensities were beneficial, the high-intensity regimen induced a more significant improvement in GLUT4 levels and glycaemic profile compared with sedentary controls (p < 0.05). Only animals in the high-intensity exercise group improved aerobic fitness. Thus, our study shows that high-intensity training was more effective for increasing GLUT4 content and glycaemia reduction in insulin-resistant mice, perhaps because of a higher metabolic demand imposed by this form of exercise.

  1. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration.

    PubMed

    Gdynia, Georg; Sauer, Sven W; Kopitz, Jürgen; Fuchs, Dominik; Duglova, Katarina; Ruppert, Thorsten; Miller, Matthias; Pahl, Jens; Cerwenka, Adelheid; Enders, Markus; Mairbäurl, Heimo; Kamiński, Marcin M; Penzel, Roland; Zhang, Christine; Fuller, Jonathan C; Wade, Rebecca C; Benner, Axel; Chang-Claude, Jenny; Brenner, Hermann; Hoffmeister, Michael; Zentgraf, Hanswalter; Schirmacher, Peter; Roth, Wilfried

    2016-01-01

    The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer. PMID:26948869

  2. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration

    PubMed Central

    Gdynia, Georg; Sauer, Sven W.; Kopitz, Jürgen; Fuchs, Dominik; Duglova, Katarina; Ruppert, Thorsten; Miller, Matthias; Pahl, Jens; Cerwenka, Adelheid; Enders, Markus; Mairbäurl, Heimo; Kamiński, Marcin M.; Penzel, Roland; Zhang, Christine; Fuller, Jonathan C.; Wade, Rebecca C.; Benner, Axel; Chang-Claude, Jenny; Brenner, Hermann; Hoffmeister, Michael; Zentgraf, Hanswalter; Schirmacher, Peter; Roth, Wilfried

    2016-01-01

    The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer. PMID:26948869

  3. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration.

    PubMed

    Gdynia, Georg; Sauer, Sven W; Kopitz, Jürgen; Fuchs, Dominik; Duglova, Katarina; Ruppert, Thorsten; Miller, Matthias; Pahl, Jens; Cerwenka, Adelheid; Enders, Markus; Mairbäurl, Heimo; Kamiński, Marcin M; Penzel, Roland; Zhang, Christine; Fuller, Jonathan C; Wade, Rebecca C; Benner, Axel; Chang-Claude, Jenny; Brenner, Hermann; Hoffmeister, Michael; Zentgraf, Hanswalter; Schirmacher, Peter; Roth, Wilfried

    2016-03-07

    The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer.

  4. Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer's disease.

    PubMed

    Baker, Laura D; Frank, Laura L; Foster-Schubert, Karen; Green, Pattie S; Wilkinson, Charles W; McTiernan, Anne; Cholerton, Brenna A; Plymate, Stephen R; Fishel, Mark A; Watson, G Stennis; Duncan, Glen E; Mehta, Pankaj D; Craft, Suzanne

    2010-01-01

    Impaired glucose regulation is a defining characteristic of type 2 diabetes mellitus (T2DM) pathology and has been linked to increased risk of cognitive impairment and dementia. Although the benefits of aerobic exercise for physical health are well-documented, exercise effects on cognition have not been examined for older adults with poor glucose regulation associated with prediabetes and early T2DM. Using a randomized controlled design, twenty-eight adults (57-83 y old) meeting 2-h tolerance test criteria for glucose intolerance completed 6 months of aerobic exercise or stretching, which served as the control. The primary cognitive outcomes included measures of executive function (Trails B, Task Switching, Stroop, Self-ordered Pointing Test, and Verbal Fluency). Other outcomes included memory performance (Story Recall, List Learning), measures of cardiorespiratory fitness obtained via maximal-graded exercise treadmill test, glucose disposal during hyperinsulinemic-euglycemic clamp, body fat, and fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulin-like growth factor-1, amyloid-β (Aβ40 and Aβ42). Six months of aerobic exercise improved executive function (MANCOVA, p=0.04), cardiorespiratory fitness (MANOVA, p=0.03), and insulin sensitivity (p=0.05). Across all subjects, 6-month changes in cardiorespiratory fitness and insulin sensitivity were positively correlated (p=0.01). For Aβ42, plasma levels tended to decrease for the aerobic group relative to controls (p=0.07). The results of our study using rigorous controlled methodology suggest a cognition-enhancing effect of aerobic exercise for older glucose intolerant adults. Although replication in a larger sample is needed, our findings potentially have important therapeutic implications for a growing number of adults at increased risk of cognitive decline.

  5. Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer's disease.

    PubMed

    Baker, Laura D; Frank, Laura L; Foster-Schubert, Karen; Green, Pattie S; Wilkinson, Charles W; McTiernan, Anne; Cholerton, Brenna A; Plymate, Stephen R; Fishel, Mark A; Watson, G Stennis; Duncan, Glen E; Mehta, Pankaj D; Craft, Suzanne

    2010-01-01

    Impaired glucose regulation is a defining characteristic of type 2 diabetes mellitus (T2DM) pathology and has been linked to increased risk of cognitive impairment and dementia. Although the benefits of aerobic exercise for physical health are well-documented, exercise effects on cognition have not been examined for older adults with poor glucose regulation associated with prediabetes and early T2DM. Using a randomized controlled design, twenty-eight adults (57-83 y old) meeting 2-h tolerance test criteria for glucose intolerance completed 6 months of aerobic exercise or stretching, which served as the control. The primary cognitive outcomes included measures of executive function (Trails B, Task Switching, Stroop, Self-ordered Pointing Test, and Verbal Fluency). Other outcomes included memory performance (Story Recall, List Learning), measures of cardiorespiratory fitness obtained via maximal-graded exercise treadmill test, glucose disposal during hyperinsulinemic-euglycemic clamp, body fat, and fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulin-like growth factor-1, amyloid-β (Aβ40 and Aβ42). Six months of aerobic exercise improved executive function (MANCOVA, p=0.04), cardiorespiratory fitness (MANOVA, p=0.03), and insulin sensitivity (p=0.05). Across all subjects, 6-month changes in cardiorespiratory fitness and insulin sensitivity were positively correlated (p=0.01). For Aβ42, plasma levels tended to decrease for the aerobic group relative to controls (p=0.07). The results of our study using rigorous controlled methodology suggest a cognition-enhancing effect of aerobic exercise for older glucose intolerant adults. Although replication in a larger sample is needed, our findings potentially have important therapeutic implications for a growing number of adults at increased risk of cognitive decline. PMID:20847403

  6. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  7. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus.

    PubMed

    Santos, M M; Lemos, P C; Reis, M A; Santos, H

    1999-09-01

    Phosphorus and carbon metabolism in Microlunatus phosphovorus was investigated by using a batch reactor to study the kinetics of uptake and release of extracellular compounds, in combination with (31)P and (13)C nuclear magnetic resonance (NMR) to characterize intracellular pools and to trace the fate of carbon substrates through the anaerobic and aerobic cycles. The organism was subjected to repetitive anaerobic and aerobic cycles to induce phosphorus release and uptake in a sequential batch reactor; an ultrafiltration membrane module was required since cell suspensions did not sediment. M. phosphovorus fermented glucose to acetate via an Embden-Meyerhof pathway but was unable to grow under anaerobic conditions. A remarkable time shift was observed between the uptake of glucose and excretion of acetate, resulting in an intracellular accumulation of acetate. The acetate produced was oxidized in the subsequent aerobic stage. Very high phosphorus release and uptake rates were measured, 3.34 mmol g of cell(-1) h(-1) and 1.56 mmol g of cell(-1) h(-1), respectively, values only comparable with those determined in activated sludge. In the aerobic period, growth was strictly dependent on the availability of external phosphate. Natural abundance (13)C NMR showed the presence of reserves of glutamate and trehalose in cell suspensions. Unexpectedly, [1-(13)C]glucose was not significantly channeled to the synthesis of internal reserves in the anaerobic phase, and acetate was not during the aerobic stage, although the glutamate pool became labeled via the exchange with intermediates of the tricarboxylic acid cycle at the level of glutamate dehydrogenase. The intracellular pool of glutamate increased under anaerobic conditions and decreased during the aerobic period. The contribution of M. phosphovorus for phosphorus removal in wastewater treatment plants is discussed on the basis of the metabolic features disclosed by this study.

  8. Disturbance of aerobic metabolism accompanies neurobehavioral changes induced by nickel in mice.

    PubMed

    He, Min-Di; Xu, Shang-Cheng; Zhang, Xin; Wang, Yan; Xiong, Jia-Chuan; Zhang, Xiao; Lu, Yong-Hui; Zhang, Lei; Yu, Zheng-Ping; Zhou, Zhou

    2013-09-01

    The oral ingestion of soluble nickel compounds leads to neurological symptoms in humans. Deficiencies in aerobic metabolism induced by neurotoxic stimulus can cause an energy crisis in the brain that results in a variety of neurotoxic effects. In the present study, we focused on the aerobic metabolic states to investigate whether disturbance of aerobic metabolism was involved in nickel-induced neurological effects in mice. Mice were orally administered nickel chloride, and neurobehavioral performance was evaluated using the Morris water maze and open field tests at different time points. Aerobic metabolic states in the cerebral cortex were analyzed at the same time points at which neurobehavioral changes were evident. We found that nickel exposure caused deficits in both spatial memory and exploring activity in mice and that nickel was deposited in their cerebral cortex. Deficient aerobic metabolism manifested as decreased O2 consumption and ATP concentrations, lactate and NADH accumulation, and oxidative stress. Meanwhile, the activity of prototypical iron-sulfur clusters (ISCs) containing enzymes that are known to control aerobic metabolism, including complex I and aconitase, and the expression of ISC assembly scaffold protein (ISCU) were inhibited following nickel deposition. Overall, these data suggest that aerobic metabolic disturbances, which accompanied the neurobehavioral changes, may participate in nickel-induced neurologic effects. The inactivation of ISC containing metabolic enzymes may result in the disturbance of aerobic metabolism. A better understanding of how nickel impacts the energy metabolic processes may provide insight into the prevention of nickel neurotoxicity.

  9. Impaired glucose metabolism treatment and carcinogenesis

    PubMed Central

    MATYSZEWSKI, ARTUR; CZARNECKA, ANNA; KAWECKI, MACIEJ; KORZEŃ, PIOTR; SAFIR, ILAN J.; KUKWA, WOJCIECH; SZCZYLIK, CEZARY

    2015-01-01

    Carbohydrate metabolism disorders increase the risk of carcinogenesis. Diabetes mellitus alters numerous physiological processes that may encourage cancer growth. However, treating impaired glucose homeostasis may actually promote neoplasia; maintaining proper glucose plasma concentrations reduces metabolic stresses, however, certain medications may themselves result in oncogenic effects. A number of previous studies have demonstrated that metformin reduces the cancer risk. However, the use of sulfonylurea derivatives correlates with an increased risk of developing a malignancy. Another form of treatment, insulin therapy, involves using various forms of insulin that differ in pharmacodynamics, pharmacokinetics and efficacy. Previous studies have indicated that certain insulin variants also affect the cancer risk. The results from analyses that address the safety of long-lasting insulin types raise the most concern regarding the increased risk of malignancy. Rapid development of novel diabetic medications and their widespread use carries the risk of potentially increased rates of cancer, unnoticeable in limited, randomized, controlled trials. In the present review, the results of clinical and epidemiological studies are evaluated to assess the safety of anti-hyperglycemic medications and their effect on cancer risk and outcomes. PMID:26622538

  10. Hormonal and metabolic response in middle-aged women to moderate physical effort during aerobics.

    PubMed

    Charmas, Małgorzata; Opaszowski, Benedykt H; Charmas, Robert; Rózańska, Dorota; Jówko, Ewa; Sadowski, Jerzy; Dorofeyeva, Lena

    2009-05-01

    The aim of this study is to estimate the metabolic and hormone response in middle-aged women to acute physical aerobic exercise accompanied by music, the so-called "aerobics." The experiment (single 60-minute aerobics session) included 11 women aged between 30 and 50. The following variables were determined in blood samples collected from the participants four times (in fasting state [I], before exercise [II], after exercise [III], and after 12 hours of rest [IV]): concentration of lactic acid, glucose, free fatty acids, leptin, insulin, growth hormone, testosterone, and cortisol. Furthermore, the measurements included body mass before and after the exercise, and body temperature was taken in the auditory canal and on the forehead. The heart rate was registered during the exercise on a continuous basis. In all cases, the heart rate did not reach its maximum level, and on average, it amounted to approximately 70% of the maximum pulse rate. Therefore, this effort can be considered as submaximal. In all cases, we observed loss of body mass (from 0.2 to 0.7 kg) (p > 0.02) increase in the temperature measured on forehead. Significantly, accompanied by nonsignificant increase in the temperature measured on the tympanic membrane was registered. Single loading gives rise to change in hormone and metabolic profiles. Furthermore, a decrease in blood concentration of glucose before and after aerobics (p > 0.001) could be observed, and if the determination taken at measurement IV of glucose in blood is taken into consideration, then the value taken in measurement I is significantly the highest in relation to other measurements. Concentration of free fatty acids were increased (p > 0.002) after exercise and remained on the same level until the following day. The levels of insulin were significantly decreased, but growth hormone levels were increased. The exercise had no impact on testosterone concentration, whereas average blood concentration of leptin in the successive

  11. Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: Simulation and model verification

    SciTech Connect

    Pham, H.T.B.; Larsson, G.; Enfors, S.O.

    1998-11-20

    Some yeast species are classified as being glucose sensitive, which means that they may produce ethanol also under aerobic conditions when the sugar concentration is high. A kinetic model of overflow metabolism in Saccharomyces cerevisiae was used for simulation of aerobic fed-batch cultivations. An inhibitory effect of ethanol on the maximum respiration of the yeast was observed in the experiments and included in the model. The model predicts respiration, biomass, and ethanol formation and the subsequent ethanol consumption, and was experimentally validated in fed-batch cultivations. Oscillating sugar feed with resulting oscillating carbon dioxide production did not influence the maximum respiration rate, which indicates that the pyruvate dehydrogenase complex is not involved as a bottleneck causing aerobic ethanol formation.

  12. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    NASA Technical Reports Server (NTRS)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  13. mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity

    PubMed Central

    Cheng, Shih-Chin; Quintin, Jessica; Cramer, Robert A.; Shepardson, Kelly M.; Saeed, Sadia; Kumar, Vinod; Giamarellos-Bourboulis, Evangelos J; Martens, Joost H.A.; Rao, Nagesha Appukudige; Aghajanirefah, Ali; Manjeri, Ganesh R.; Li, Yang; Ifrim, Daniela C.; Arts, Rob J.W.; van der Meer, Brian M.J.W.; Deen, Peter M.T.; Logie, Colin; O’Neill, Luke A.; Willems, Peter; van de Veerdonk, Frank L.; van der Meer, Jos W.M.; Ng, Aylwin; Joosten, Leo A.B.; Wijmenga, Cisca; Stunnenberg, Hendrik G.; Xavier, Ramnik J.; Netea, Mihai G.

    2014-01-01

    Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD+/NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity. PMID:25258083

  14. Fermentation and aerobic metabolism of cellodextrins by yeasts. [Candida wickerhamii; C. guiliermondii; C. molischiana; Debaryomyces polymorphus; Pichia guilliermondii; Clavispora lusitaniae; Kluyveromyces lactis; Brettanomyces claussenii; Rhodotorula minuta; Dekkera intermedia

    SciTech Connect

    Freer, S.N. )

    1991-03-01

    The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wicherhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization {<=} 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettanomyces claussenii, Brettanomyces anomalus, Kluyveromyces dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization >3 produced an enzyme(s) that hydrolyzed cellotretose.

  15. Microcalorimetric Measurements of Glucose Metabolism by Marine Bacterium Vibrio alginolyticus

    PubMed Central

    Gordon, Andrew S.; Millero, Frank J.; Gerchakov, Sol M.

    1982-01-01

    Microcalorimetric measurements of heat production from glucose by Vibrio alginolyticus were made to assess the viability of calorimetry as a technique for studying the metabolism of marine bacteria at organic nutrient concentrations found in marine waters. The results show that the metabolism of glucose by this bacterium can be measured by calorimetry at submicromolar concentrations. A linear correlation between glucose concentration and total heat production was observed over a concentration range of 8 mM to 0.35 μM. It is suggested that these data indicate a constant efficiency of metabolism for this bacterium over the wide range of glucose concentrations studied. PMID:16346131

  16. Advances in glucose metabolism research in colorectal cancer

    PubMed Central

    Fang, Sitian; Fang, Xiao

    2016-01-01

    Cancer cells uptake glucose at a higher rate and produce lactic acid rather than metabolizing pyruvate through the tricarboxylic acid cycle. This adaptive metabolic shift is termed the Warburg effect. Recently progress had been made regarding the mechanistic understanding of glucose metabolism and associated diagnostic and therapeutic methods, which have been investigated in colorectal cancer. The majority of novel mechanisms involve important glucose metabolism associated genes and miRNA regulation. The present review discusses the contribution of these research results to facilitate with the development of novel diagnosis and anticancer treatment options. PMID:27602209

  17. Advances in glucose metabolism research in colorectal cancer

    PubMed Central

    Fang, Sitian; Fang, Xiao

    2016-01-01

    Cancer cells uptake glucose at a higher rate and produce lactic acid rather than metabolizing pyruvate through the tricarboxylic acid cycle. This adaptive metabolic shift is termed the Warburg effect. Recently progress had been made regarding the mechanistic understanding of glucose metabolism and associated diagnostic and therapeutic methods, which have been investigated in colorectal cancer. The majority of novel mechanisms involve important glucose metabolism associated genes and miRNA regulation. The present review discusses the contribution of these research results to facilitate with the development of novel diagnosis and anticancer treatment options.

  18. Nutritional complementation of oxidative glucose metabolism in Escherichia coli via pyrroloquinoline quinone-dependent glucose dehydrogenase and the Entner-Doudoroff pathway

    SciTech Connect

    Adamowicz, M.; Conway, T.; Nickerson, K.W. )

    1991-07-01

    Two glucose-negative Escherichia coli mutants (ZSC113 and DF214) were unable to grow on glucose as the sole carbon source unless supplemented with pyrroloquinoline quinone (PQQ). PQQ is the cofactor for the periplasmic enzyme glucose dehydrogenase, which converts glucose to gluconate. Aerobically, E. Coli ZSC113 grew on glucose plus PQQ with a generation time of 65 min, a generation time about the same as that for wild-type E. coli in a defined glucose-salts medium. Thus, for E. coli ZSC113 the Entner-Doudoroff pathway was fully able to replace the Embden-Meyerhof-Parnas pathway. In the presence of 5% sodium dodecyl sulfate, PQQ no longer acted as a growth factor. Sodium dodecyl sulfate inhibited the formation of gluconate from glucose but not gluconate metabolism. Adaptation to PQQ-dependent growth exhibited long lag periods, except under low-phosphate conditions, in which the PhoE porin would be expressed. The authors suggest that E. coli has maintained the apoenzyme for glucose dehydrogenase and the Entner-Doudoroff pathway as adaptations to an aerobic, low-phosphate, and low-detergent aquatic environment.

  19. Molecular evolution of aerobic energy metabolism in primates.

    PubMed

    Grossman, L I; Schmidt, T R; Wildman, D E; Goodman, M

    2001-01-01

    As part of our goal to reconstruct human evolution at the DNA level, we have been examining changes in the biochemical machinery for aerobic energy metabolism. We find that protein subunits of two of the electron transfer complexes, complex III and complex IV, and cytochrome c, the protein carrier that connects them, have all undergone a period of rapid protein evolution in the anthropoid lineage that ultimately led to humans. Indeed, subunit IV of cytochrome c oxidase (COX; complex IV) provides one of the best examples of positively selected changes of any protein studied. The rate of subunit IV evolution accelerated in our catarrhine ancestors in the period between 40 to 18 million years ago and then decelerated in the descendant hominid lineages, a pattern of rate changes indicative of positive selection of adaptive changes followed by purifying selection acting against further changes. Besides clear evidence that adaptive evolution occurred for cytochrome c and subunits of complexes III (e.g., cytochrome c(1)) and IV (e.g., COX2 and COX4), modest rate accelerations in the lineage that led to humans are seen for other subunits of both complexes. In addition the contractile muscle-specific isoform of COX subunit VIII became a pseudogene in an anthropoid ancestor of humans but appears to be a functional gene in the nonanthropoid primates. These changes in the aerobic energy complexes coincide with the expansion of the energy-dependent neocortex during the emergence of the higher primates. Discovering the biochemical adaptations suggested by molecular evolutionary analysis will be an exciting challenge.

  20. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model.

    PubMed

    Capiotti, Katiucia Marques; Antonioli, Régis; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2014-05-01

    Diabetes mellitus (DM) affects over 10% of the world's population. Hyperglycemia is the main feature for the diagnosis of this disease. The zebrafish (Danio rerio) is an established model organism for the study of various metabolic diseases. In this paper, hyperglycemic zebrafish, when immersed in a 111 mM glucose solution for 14 days, developed increased glycation of proteins from the eyes, decreased mRNA levels of insulin receptors in the muscle, and a reversion of high blood glucose level after treatment with anti-diabetic drugs (glimepiride and metformin) even after 7 days of glucose withdrawal. Additionally, hyperglycemic zebrafish developed an impaired response to exogenous insulin, which was recovered after 7 days of glucose withdrawal. These data suggest that the exposure of adult zebrafish to high glucose concentration is able to induce persistent metabolic changes probably underlined by a hyperinsulinemic state and impaired peripheral glucose metabolism. PMID:24704522

  1. The Entner-Doudoroff pathway in Escherichia coli is induced for oxidative glucose metabolism via pyrroloquinoline quinone-dependent glucose dehydrogenase

    SciTech Connect

    Fliege, R.; Suxiang Tong; Shibata, A.; Nickerson, K.W.; Conway, T. )

    1992-12-01

    The Entner-Doudoroff pathway forms the core of central metabolism in many bacteria. However, the physiological role of the Entner-Doudoroff pathway in Escherichia coli is still unclear, and formal proof that oxidative glucose metabolism occurs via this pathway has not been reported. This paper provides direct evidence that the Entner-Doudoroff pathway is turned on by oxidation of glucose to gluconate in the periplasm. In addition the role of limiting phosphate in regulating the Entener-Doudoroff pathway is examined in this study, and it is concluded that, for E. coli, a low phosphate concentration promotes use of the Entner-Doudoroff pathway indirectly by providing access of pyrroloquinoline quinone (PQQ) into the periplasm rather than directly by derepressing edd and eda. Oxidative glucose metabolism, as opposed to phosphotransferase transport and glycolysis, may provide an advantage in aerobic, low phosphate, aquatic environments.

  2. A metabolic trade-off between phosphate and glucose utilization in Escherichia coli.

    PubMed

    Behrends, Volker; Maharjan, Ram P; Ryall, Ben; Feng, Lu; Liu, Bin; Wang, Lei; Bundy, Jacob G; Ferenci, Thomas

    2014-11-01

    Getting the most out of available nutrients is a key challenge that all organisms face. Little is known about how they optimize and balance the simultaneous utilization of multiple elemental resources. We investigated the effects of long-term phosphate limitation on carbon metabolism of the model organism Escherichia coli using chemostat cultures. We profiled metabolic changes in the growth medium over time and found evidence for an increase in fermentative metabolism despite the aerobic conditions. Using full-genome sequencing and competition experiments, we found that fitness under phosphate-limiting conditions was reproducibly increased by a mutation preventing flux through succinate in the tricarboxylic acid cycle. In contrast, these mutations reduced competitive ability under carbon limitation, and thus reveal a conflicting metabolic benefit in the role of the TCA cycle in environments limited by inorganic phosphate and glucose.

  3. Functional characterization of Yersinia pestis aerobic glycerol metabolism.

    PubMed

    Willias, Stephan P; Chauhan, Sadhana; Motin, Vladimir L

    2014-11-01

    Yersinia pestis biovar Orientalis isolates have lost the capacity to ferment glycerol. Herein we provide experimental validation that a 93 bp in-frame deletion within the glpD gene encoding the glycerol-3-phosphate dehydrogenase present in all biovar Orientalis strains is sufficient to disrupt aerobic glycerol fermentation. Furthermore, the inability to ferment glycerol is often insured by a variety of additional mutations within the glpFKX operon which prevents glycerol internalization and conversion to glycerol-3-phosphate. The physiological impact of functional glpFKX in the presence of dysfunctional glpD was assessed. Results demonstrate no change in growth kinetics at 26 °C and 37 °C. Mutants deficient in glpD displayed decreased intracellular accumulation of glycerol-3-phosphate, a characterized inhibitor of cAMP receptor protein (CRP) activation. Since CRP is rigorously involved in global regulation Y. pestis virulence, we tested a possible influence of a single glpD mutation on virulence. Nonetheless, subcutaneous and intranasal murine challenge was not impacted by glycerol metabolism. As quantified by crystal violet assay, biofilm formation of the glpD-deficient KIM6+ mutant was mildly repressed; whereas, chromosomal restoration of glpD in CO92 resulted in a significant increase in biofilm formation. PMID:25220241

  4. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis

    PubMed Central

    Zhang, Jianliang; Gao, Qile; Zhou, Ying; Dier, Usawadee; Hempel, Nadine; Hochwald, Steven N.

    2015-01-01

    Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability, and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC. PMID:26119934

  5. Regional glucose metabolism using PETT in normal and psychiatric populations

    SciTech Connect

    Brodie, J.D.; Wolf, A.P.; Volkow, N.

    1982-01-01

    The metabolism of /sup 18/F-2-deoxy-2-fluoro-D-glucose (/sup 18/FDG) in 150 subjects including normals, schizophrenics, senile dementias, and primary affective disorders was studied. Some of the data analyzed to date are discussed.

  6. Glucose metabolism in pregnant sheep when placental growth is restricted

    SciTech Connect

    Owens, J.A.; Falconer, J.; Robinson, J.S. )

    1989-08-01

    The effect of restricting placental growth on glucose metabolism in pregnant sheep in late gestation was determined by primed constant infusions of D-(U-{sup 14}C)- and D-(2-{sup 3}H)glucose and antipyrine into fetuses of six control sheep and six sheep from which endometrial caruncles had been removed before pregnancy (caruncle sheep). In the latter, placental and fetal weights were reduced, as was the concentration of glucose in fetal arterial blood. Fetal glucose turnover in caruncle sheep was only 52-59% of that in controls, largely because of lower umbilical loss of glucose back to the placenta (38-39% of control) and lower fetal glucose utilization (61-74% of control). However, fetal glucose utilization on a weight-specific basis was similar in control and caruncle sheep. Significant endogenous glucose production occurred in control and caruncle fetal sheep. Maternal glucose production and partition of glucose between the gravid uterus and other maternal tissues were similar in control and caruncle sheep. In conclusion, when placental and fetal growth are restricted, fetal glucose utilization is maintained by reduced loss of glucose back to the placenta and mother and by maintaining endogenous glucose production.

  7. Glucose and insulin metabolism in cirrhosis.

    PubMed

    Petrides, A S; DeFronzo, R A

    1989-01-01

    Glucose intolerance, overt diabetes mellitus, and insulin resistance are characteristic features of patients with cirrhosis. Insulin secretion, although increased in absolute terms, is insufficient to offset the presence of insulin resistance. The defect in insulin-mediated glucose disposal involves peripheral tissues, primarily muscle, and most likely reflects a disturbance in glycogen synthesis. Hepatic glucose production is normally sensitive to insulin; at present, it is unknown whether hepatic glucose uptake is impaired in cirrhosis. One of the more likely candidates responsible for the insulin-resistant state is insulin itself. The hyperinsulinemia results from three abnormalities: diminished hepatic extraction, portosystemic/intrahepatic shunting, and enhanced insulin secretion. PMID:2646365

  8. Glucose Metabolism: A Sweet Relief of Alzheimer's Disease.

    PubMed

    Duran-Aniotz, Claudia; Hetz, Claudio

    2016-09-12

    Patients and individuals at risk for Alzheimer's disease show reduced glucose metabolism in the brain. A new study takes advantage of a fly model of Alzheimer's disease to demonstrate that enhancing glucose uptake in neurons has strong neuroprotective effects involving improved proteostasis. PMID:27623263

  9. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells.

    PubMed

    Cao, Yilin; Rathmell, Jeffrey C; Macintyre, Andrew N

    2014-01-01

    T lymphocytes (T cells) undergo metabolic reprogramming after activation to provide energy and biosynthetic materials for growth, proliferation and differentiation. Distinct T cell subsets, however, adopt metabolic programs specific to support their needs. As CD4 T cells coordinate adaptive immune responses while CD8 T cells become cytotoxic effectors, we compared activation-induced proliferation and metabolic reprogramming of these subsets. Resting CD4 and CD8 T cells were metabolically similar and used a predominantly oxidative metabolism. Following activation CD8 T cells proliferated more rapidly. Stimulation led both CD4 and CD8 T cells to sharply increase glucose metabolism and adopt aerobic glycolysis as a primary metabolic program. Activated CD4 T cells, however, remained more oxidative and had greater maximal respiratory capacity than activated CD8 T cells. CD4 T cells were also associated with greater levels of ROS and increased mitochondrial content, irrespective of the activation context. CD8 cells were better able, however, to oxidize glutamine as an alternative fuel source. The more glycolytic metabolism of activated CD8 T cells correlated with increased capacity for growth and proliferation, along with reduced sensitivity of cell growth to metabolic inhibition. These specific metabolic programs may promote greater growth and proliferation of CD8 T cells and enhance survival in diverse nutrient conditions.

  10. Regulation of glucose metabolism from a liver-centric perspective

    PubMed Central

    Han, Hye-Sook; Kang, Geon; Kim, Jun Seok; Choi, Byeong Hoon; Koo, Seung-Hoi

    2016-01-01

    Glucose homeostasis is tightly regulated to meet the energy requirements of the vital organs and maintain an individual's health. The liver has a major role in the control of glucose homeostasis by controlling various pathways of glucose metabolism, including glycogenesis, glycogenolysis, glycolysis and gluconeogenesis. Both the acute and chronic regulation of the enzymes involved in the pathways are required for the proper functioning of these complex interwoven systems. Allosteric control by various metabolic intermediates, as well as post-translational modifications of these metabolic enzymes constitute the acute control of these pathways, and the controlled expression of the genes encoding these enzymes is critical in mediating the longer-term regulation of these metabolic pathways. Notably, several key transcription factors are shown to be involved in the control of glucose metabolism including glycolysis and gluconeogenesis in the liver. In this review, we would like to illustrate the current understanding of glucose metabolism, with an emphasis on the transcription factors and their regulators that are involved in the chronic control of glucose homeostasis. PMID:26964834

  11. AMPK and autophagy in glucose/glycogen metabolism.

    PubMed

    Ha, Joohun; Guan, Kun-Liang; Kim, Joungmok

    2015-12-01

    Glucose/glycogen metabolism is a primary metabolic pathway acting on a variety of cellular needs, such as proliferation, growth, and survival against stresses. The multiple regulatory mechanisms underlying a specific metabolic fate have been documented and explained the molecular basis of various pathophysiological conditions, including metabolic disorders and cancers. AMP-activated protein kinase (AMPK) has been appreciated for many years as a central metabolic regulator to inhibit energy-consuming pathways as well as to activate the compensating energy-producing programs. In fact, glucose starvation is a potent physiological AMPK activating condition, in which AMPK triggers various subsequent metabolic events depending on cells or tissues. Of note, the recent studies show bidirectional interplay between AMPK and glycogen. A growing number of studies have proposed additional level of metabolic regulation by a lysosome-dependent catabolic program, autophagy. Autophagy is a critical degradative pathway not only for maintenance of cellular homeostasis to remove potentially dangerous constituents, such as protein aggregates and dysfunctional subcellular organelles, but also for adaptive responses to metabolic stress, such as nutrient starvation. Importantly, many lines of evidence indicate that autophagy is closely connected with nutrient signaling modules, including AMPK, to fine-tune the metabolic pathways in response to many different cellular cues. In this review, we introduce the studies demonstrating the role of AMPK and autophagy in glucose/glycogen metabolism. Also, we describe the recent advances on their contributions to the metabolic disorders.

  12. Aerobic and anaerobic metabolism of bovine ciliary process: effects of metabolic and transport inhibitors.

    PubMed

    Braunagel, S C; Yorio, T

    1987-01-01

    In the present study we have measured the oxygen consumption and lactic acid production, under aerobic and anaerobic conditions, in the bovine ciliary process epithelium (CPE) in the presence and absence of transport modifiers. Basal oxygen consumption was 8-15 microliters O2 consumed/mg protein/hr and decreased by 35% when sodium was removed or ouabain was added to the media. Anaerobic metabolism as measured by lactate production was also attenuated by sodium-free or ouabain treatment. When O2 consumption was severely limited by cyanide, lactic acid production increased significantly ("Pasteur effect"), whereas 2-deoxyglucose reduced lactate formation. Both chloride-free and acetazolamide treated CPE increased their dependency on aerobic glycolysis, and this response was also observed under anaerobic conditions, suggesting the presence of an anion transport mechanism. A net lactate production was also found to occur across the aqueous epithelium under aerobic and anaerobic conditions. These results are consistent with the presence of a bicarbonate-sensitive anion transport system located in the ciliary process epithelium.

  13. Association of pentraxin 3 with insulin resistance and glucose response following maximal aerobic exercise in obese and normal-mass individuals.

    PubMed

    Slusher, Aaron L; Huang, Chun-Jung

    2016-07-01

    Pentraxin 3 (PTX3), a cardioprotective protein, has recently been shown to be associated with improved insulin resistance (IR) and glucose metabolism. Therefore, the primary purpose of this study was to examine whether or not increased plasma PTX3 following maximal aerobic exercise would differ between obese and normal-mass subjects, and its association with the homeostatic model assessment of insulin resistance (HOMA-IR) and glucose response. Twenty-five untrained obese (n = 13 [6 males and 7 females]) and normal-mass (n = 12 [5 males and 7 females]) subjects performed an acute bout of maximal aerobic exercise to assess maximal oxygen consumption (VO2max). At baseline, plasma PTX3 concentrations are decreased in obese compared with normal-mass subjects and are negatively associated with plasma insulin and HOMA-IR values. In response to maximal exercise, plasma PTX3 responses were similar in obese and normal-mass subjects while the intensity of plasma PTX3 response as indicated by area under the curve analysis (AUCi) was not associated with HOMA-IR or glucose AUCi. However, PTX3 AUCi was positively associated with cardiorespiratory fitness levels (relative VO2max). These findings suggest that PTX3 could serve as a biomarker for both metabolic health, as well as a measurement to monitor the effectiveness of exercise interventions in obesity. PMID:27152505

  14. Association of pentraxin 3 with insulin resistance and glucose response following maximal aerobic exercise in obese and normal-mass individuals.

    PubMed

    Slusher, Aaron L; Huang, Chun-Jung

    2016-07-01

    Pentraxin 3 (PTX3), a cardioprotective protein, has recently been shown to be associated with improved insulin resistance (IR) and glucose metabolism. Therefore, the primary purpose of this study was to examine whether or not increased plasma PTX3 following maximal aerobic exercise would differ between obese and normal-mass subjects, and its association with the homeostatic model assessment of insulin resistance (HOMA-IR) and glucose response. Twenty-five untrained obese (n = 13 [6 males and 7 females]) and normal-mass (n = 12 [5 males and 7 females]) subjects performed an acute bout of maximal aerobic exercise to assess maximal oxygen consumption (VO2max). At baseline, plasma PTX3 concentrations are decreased in obese compared with normal-mass subjects and are negatively associated with plasma insulin and HOMA-IR values. In response to maximal exercise, plasma PTX3 responses were similar in obese and normal-mass subjects while the intensity of plasma PTX3 response as indicated by area under the curve analysis (AUCi) was not associated with HOMA-IR or glucose AUCi. However, PTX3 AUCi was positively associated with cardiorespiratory fitness levels (relative VO2max). These findings suggest that PTX3 could serve as a biomarker for both metabolic health, as well as a measurement to monitor the effectiveness of exercise interventions in obesity.

  15. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-01

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. PMID:27292539

  16. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    SciTech Connect

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  17. Transport and metabolism of glucose and arabinose in Bifidobacterium breve.

    PubMed

    Degnan, B A; Macfarlane, G T

    1993-01-01

    Glucose was required for the transport of arabinose into Bifidobacterium breve. The non-metabolisable glucose analogue 2-deoxy-D-glucose (2-DG) did not facilitate assimilation of arabinose. Studies using D-[U-14C]-labelled arabinose showed that it was fermented to pyruvate, formate, lactate and acetate, whereas the principal metabolic products of D-[U-14C]-labelled glucose were acetate and formate. In contrast to glucose, arabinose was not incorporated into cellular macromolecules. A variety of metabolic inhibitors and inhibitors of sugar transport (proton ionophores, metal ionophores, compounds associated with electron transport) were used to investigate the mechanisms of sugar uptake. Only NaF, an inhibitor of substrate level phosphorylation, and 2-DG inhibited glucose assimilation. 2-DC had no effect on arabinose uptake, but NaF was stimulatory. High levels of phosphorylation of glucose and 2-DC by PEP and to a lesser degree, ATP were seen in phosphoenolpyruvate: phosphotransferase (PEP:PTS) assays. These data together with strong inhibition of glucose uptake by NaF suggest a role for phosphorylation in the transport process. Arabinose uptake in B. breve was not directly dependent on phosphorylation or any other energy-linked form of transport but may be assimilated by glucose-dependent facilitated diffusion.

  18. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    SciTech Connect

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  19. Effect of oxygen on glucose metabolism: utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies.

    PubMed

    Ferreira, Maria Teresa; Manso, Ana S; Gaspar, Paula; Pinho, Mariana G; Neves, Ana Rute

    2013-01-01

    The ability to successfully adapt to changing host conditions is crucial for full virulence of bacterial pathogens. Staphylococcus aureus has to cope with fluctuating oxygen concentrations during the course of infection. Hence, we studied the effect of oxygen on glucose metabolism in non-growing S. aureus COL-S cells by in vivo(13)C-NMR. Glucose catabolism was probed at different oxygen concentrations in suspensions of cells grown aerobically (direct effects on metabolism) or anaerobically (transcriptional adjustment to oxygen deprivation). In aerobically-grown cells, the rate of glucose consumption diminished progressively with decreasing oxygen concentrations. Additionally, oxygen deprivation resulted in biphasic glucose consumption, with the second phase presenting a higher rate. The fructose-1,6-bisphosphate pool peaked while glucose was still abundant, but the transient maximum varied with the oxygen concentration. As oxygen became limiting mannitol/mannitol-1-phosphate were detected as products of glucose catabolism. Under anoxic conditions, accumulation of mannitol-1-phosphate ceased with the switch to higher glucose consumption rates, which implies the activation of a more efficient means by which NAD(+) can be regenerated. The distribution of end-products deriving from glucose catabolism was dramatically affected by oxygen: acetate increased and lactate decreased with the oxygen concentration; ethanol was formed only anaerobically. Moreover, oxygen promoted the energetically favourable conversion of lactate into acetate, which was particularly noticeable under fully oxygenated conditions. Interestingly, under aerobiosis growing S. aureus cells also converted lactate to acetate, used simultaneously glucose and lactate as substrates for growth, and grew considerably well on lactate-medium. We propose that the efficient lactate catabolism may endow S. aureus with a metabolic advantage in its ecological niche.

  20. Metabolism of tritiated D-glucose in rat erythrocytes

    SciTech Connect

    Manuel y Keenoy, B.; Malaisse-Lagae, F.; Malaisse, W.J. )

    1991-09-01

    The metabolism of D-(U-14C)glucose, D-(1-14C)glucose, D-(6-14C)glucose, D-(1-3H)glucose, D-(2-3H)glucose, D-(3-3H)glucose, D-(3,4-3H)glucose, D-(5-3H)glucose, and D-(6-3H)glucose was examined in rat erythrocytes. There was a fair agreement between the rate of 3HOH production from either D-(3-3H)glucose and D-(5-3H)glucose, the decrease in the 2,3-diphosphoglycerate pool, its fractional turnover rate, the production of 14C-labeled lactate from D-(U-14C)glucose, and the total lactate output. The generation of both 3HOH and tritiated acidic metabolites from D-(3,4-3H)glucose indicated incomplete detritiation of the C4 during interconversion of fructose-1,6-bisphosphate and triose phosphates. Erythrocytes unexpectedly generated 3HOH from D-(6-3H)glucose, a phenomenon possibly attributable to the detritiation of (3-3H)pyruvate in the reaction catalyzed by glutamate pyruvate transaminase. The production of 3HOH from D-(2-3H)glucose was lower than that from D-(5-3H)glucose, suggesting enzyme-to-enzyme tunneling of glycolytic intermediates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. The production of 3HOH from D-(1-3H)glucose largely exceeded that of 14CO2 from D-(1-14C)glucose, a situation tentatively ascribed to the generation of 3HOH in the phosphomannoisomerase reaction. It is further speculated that the adjustment in specific radioactivity of D-(1-3H)glucose-6-phosphate cannot simultaneously match the vastly different degrees of isotopic discrimination in velocity at the levels of the reactions catalyzed by either glucose-6-phosphate dehydrogenase or phosphoglucoisomerase. The interpretation of the present findings thus raises a number of questions, which are proposed as a scope for further investigations.

  1. STRATEGIES FOR THE AEROBIC CO-METABOLISM OF CHLORINATED SOLVENTS. (R825689C019)

    EPA Science Inventory

    Abstract

    Recent field and laboratory studies have evaluated the potential for aerobic co-metabolism of chlorinated solvents. Different co-metabolic substrates and different methods of application have been tried, including growing indigenous microbes in situ, an...

  2. Glucose metabolism in cultured trophoblasts from human placenta

    SciTech Connect

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H. )

    1990-02-26

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with {sup 14}C-labeled glucose and reactions were stopped by addition of perchloric acid. {sup 14}CO{sub 2} production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more {sup 14}C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO{sub 2} by the phosphogluconate (PG) pathway was estimated from specific yields of {sup 14}CO{sub 2} from (1-{sup 14}C)-D-glucose and (6-{sup 14}C)-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro.

  3. Patterns of human local cerebral glucose metabolism during epileptic seizures

    SciTech Connect

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  4. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum

    PubMed Central

    Litsanov, Boris; Kabus, Armin; Brocker, Melanie; Bott, Michael

    2012-01-01

    Summary Corynebacterium glutamicum, an established industrial amino acid producer, has been genetically modified for efficient succinate production from the renewable carbon source glucose under fully aerobic conditions in minimal medium. The initial deletion of the succinate dehydrogenase genes (sdhCAB) led to an accumulation of 4.7 g l−1 (40 mM) succinate as well as high amounts of acetate (125 mM) as by‐product. By deleting genes for all known acetate‐producing pathways (pta‐ackA, pqo and cat) acetate production could be strongly reduced by 83% and succinate production increased up to 7.8 g l−1 (66 mM). Whereas overexpression of the glyoxylate shunt genes (aceA and aceB) or overproduction of the anaplerotic enzyme pyruvate carboxylase (PCx) had only minor effects on succinate production, simultaneous overproduction of pyruvate carboxylase and PEP carboxylase resulted in a strain that produced 9.7 g l−1 (82 mM) succinate with a specific productivity of 1.60 mmol g (cdw)−1 h−1. This value represents the highest productivity among currently described aerobic bacterial succinate producers. Optimization of the production conditions by decoupling succinate production from cell growth using the most advanced producer strain (C. glutamicumΔpqoΔpta‐ackAΔsdhCABΔcat/pAN6‐pycP458Sppc) led to an additional increase of the product yield to 0.45 mol succinate mol−1 glucose and a titre of 10.6 g l−1 (90 mM) succinate. PMID:22018023

  5. Skeleton and glucose metabolism: a bone-pancreas loop.

    PubMed

    Faienza, Maria Felicia; Luce, Vincenza; Ventura, Annamaria; Colaianni, Graziana; Colucci, Silvia; Cavallo, Luciano; Grano, Maria; Brunetti, Giacomina

    2015-01-01

    Bone has been considered a structure essential for mobility, calcium homeostasis, and hematopoietic function. Recent advances in bone biology have highlighted the importance of skeleton as an endocrine organ which regulates some metabolic pathways, in particular, insulin signaling and glucose tolerance. This review will point out the role of bone as an endocrine "gland" and, specifically, of bone-specific proteins, as the osteocalcin (Ocn), and proteins involved in bone remodeling, as osteoprotegerin, in the regulation of insulin function and glucose metabolism. PMID:25873957

  6. Glucose metabolic phenotype of pancreatic cancer

    PubMed Central

    Chan, Anthony KC; Bruce, Jason IE; Siriwardena, Ajith K

    2016-01-01

    AIM: To construct a global “metabolic phenotype” of pancreatic ductal adenocarcinoma (PDAC) reflecting tumour-related metabolic enzyme expression. METHODS: A systematic review of the literature was performed using OvidSP and PubMed databases using keywords “pancreatic cancer” and individual glycolytic and mitochondrial oxidative phosphorylation (MOP) enzymes. Both human and animal studies investigating the oncological effect of enzyme expression changes and inhibitors in both an in vitro and in vivo setting were included in the review. Data reporting changes in enzyme expression and the effects on PDAC cells, such as survival and metastatic potential, were extracted to construct a metabolic phenotype. RESULTS: Seven hundred and ten papers were initially retrieved, and were screened to meet the review inclusion criteria. 107 unique articles were identified as reporting data involving glycolytic enzymes, and 28 articles involving MOP enzymes in PDAC. Data extraction followed a pre-defined protocol. There is consistent over-expression of glycolytic enzymes and lactate dehydrogenase in keeping with the Warburg effect to facilitate rapid adenosine-triphosphate production from glycolysis. Certain isoforms of these enzymes were over-expressed specifically in PDAC. Altering expression levels of HK, PGI, FBA, enolase, PK-M2 and LDA-A with metabolic inhibitors have shown a favourable effect on PDAC, thus identifying these as potential therapeutic targets. However, the Warburg effect on MOP enzymes is less clear, with different expression levels at different points in the Krebs cycle resulting in a fundamental change of metabolite levels, suggesting that other essential anabolic pathways are being stimulated. CONCLUSION: Further characterisation of the PDAC metabolic phenotype is necessary as currently there are few clinical studies and no successful clinical trials targeting metabolic enzymes. PMID:27022229

  7. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks.

    PubMed

    Lessard, Sarah J; Rivas, Donato A; Alves-Wagner, Ana B; Hirshman, Michael F; Gallagher, Iain J; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L; Qi, Nathan R; Gustafsson, Thomas; Fielding, Roger A; Timmons, James A; Britton, Steven L; Koch, Lauren G; Goodyear, Laurie J

    2013-08-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are "exercise-resistant" and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease.

  8. Effects of Aerobic Exercise on Postprandial Carbohydrate and Lipoprotein Metabolism Following Cookie Ingestion in Healthy Young Women.

    PubMed

    Hashimoto, Sayuki; Mizutani, Erika; Suzuki, Maiko; Yoshida, Akihiro; Naito, Michitaka

    2015-01-01

    We examined the acute effects of postprandial aerobic exercise on glucose and lipid metabolism following cookie ingestion. Fifteen healthy young women with a sedentary lifestyle, normal weight and apolipoprotein E3/3 participated. After a 12-h overnight fast, each subject ingested a cookie (1.53 g/kg, Meal Test C) and then performed two trials, one with postprandial exercise (E trial) and one without exercise (C trial), in a randomized crossover design. A single 30-min bout of walking exercise was performed 20 min after the cookie intake. Venous blood samples were drawn before (0 h) and 20 min and 1, 2, 4, and 6 h after cookie ingestion. The Δglucose concentration was not significantly different between the two trials, but the Δinsulin concentration at 1 h and the incremental area under the curve (IAUC) (0-2 h)-insulin in the E trial were significantly lower than in the C trial. The ratio of glucose/insulin at 1 h was significantly higher in the E trial than in the C trial. The ΔTG, ΔRLP-TG, ΔapoB48 and ΔRemL-C concentrations at 1 h in the E trial were significantly higher than in the C trial. The IAUC (0-2 h)-apoB48 in the E trial was significantly larger than in the C trial. Postprandial exercise showed an insulin-sparing effect following the cookie ingestion by increasing insulin sensitivity. However, postprandial exercise transiently stimulated the secretion of exogenous apoB48-containing lipoprotein during the early period, and no further effects were observed. These results suggest that postprandial aerobic exercise is effective for the promotion of postprandial carbohydrate metabolism, but not lipidemia.

  9. Glucose metabolism and effect of acetate in ovine adipocytes.

    PubMed

    Yang, Y T; White, L S; Muir, L A

    1982-08-01

    Isolated ovine adipocytes were incubated in vitro with specifically labeled 14C-glucose in the presence or absence of acetate. The flux patterns of glucose carbon through major metabolic pathways were estimated. When glucose was added as the sole substrate, approximately equal portions of glucose carbon (10%) were oxidized to CO2 in the pentose phosphate pathway, in the pyruvate dehydrogenase reaction and in the citrate cycle. Fifteen percent of the glucose carbon was incorporated into fatty acids and 43% was released as lactate and pyruvate. Addition of acetate to the medium increased glucose carbon uptake by 1.5-fold. Most of this increase was accounted for by a sevenfold increase in the activity of the pentose phosphate pathway. Acetate increased glucose carbon fluxes via pentose phosphate pathway to triose phosphates, from triose phosphate to pyruvate, into glyceride glycerol, into lactate and pyruvate and into pyruvate dehydrogenase and citrate cycle CO2. Glucose carbon incorporated into fatty acids was decreased 50% by acetate while, carbon fluxes through the phosphofructokinase-aldolase reactions were not significantly increased. Results of this study suggest that, when glucose is the sole substrate, the conversion of glucose to fatty acids in ovine adipocytes may not be limited by the maximum capacity of hexokinase, the pentose phosphate pathway or enzymes involved in the conversion of triose phosphates to pyruvate and of pyruvate to fatty acid. Acetate increased glucose utilization apparently by increasing activity of the pentose phosphate pathway as a result of enhanced NADPH utilization for fatty acid synthesis. PMID:7142048

  10. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose.

    PubMed

    Ackermann, R F; Lear, J L

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  11. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  12. Tff3, as a Novel Peptide, Regulates Hepatic Glucose Metabolism

    PubMed Central

    Xue, Yuan; Shen, Lian; Cui, Ying; Zhang, Huabing; Chen, Qi; Cui, Anfang; Fang, Fude; Chang, Yongsheng

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder strongly associated with hepatic glucose intolerance and insulin resistance. The trefoil peptides are a family of small regulatory proteins and Tff3 is widely expressed in multiple tissues including liver. But the roles of Tff3 in regulation of glucose metabolism and insulin sensitivity in liver remain unclear. Here we show that the hepatic Tff3 expression levels were decreased in ob/ob and high-fat diet-induced obese mice. Overexpression of Tff3 in primary mouse hepatocytes inhibited the expression of gluconeogenic genes, including G6pc, PEPCK and PGC-1α, subsequently decreasing cellular glucose output. GTT and ITT experiments revealed that adenovirus-mediated overexpression of Tff3 in diabetic or obese mice improved glucose tolerance and insulin sensitivity. Collectively, our results indicated that Tff3 peptides are involved in glucose homeostasis and insulin sensitivity, providing a promising peptide on new therapies against the metabolic disorders associated with T2DM. PMID:24086476

  13. Overexpression of a Water-Forming NADH Oxidase Improves the Metabolism and Stress Tolerance of Saccharomyces cerevisiae in Aerobic Fermentation.

    PubMed

    Shi, Xinchi; Zou, Yanan; Chen, Yong; Zheng, Cheng; Ying, Hanjie

    2016-01-01

    Redox homeostasis is fundamental to the maintenance of metabolism. Redox imbalance can cause oxidative stress, which affects metabolism and growth. Water-forming NADH oxidase regulates the redox balance by oxidizing cytosolic NADH to NAD(+), which relieves cytosolic NADH accumulation through rapid glucose consumption in Saccharomyces cerevisiae, thus decreasing the production of the by product glycerol in industrial ethanol production. Here, we studied the effects of overexpression of a water-forming NADH oxidase from Lactococcus lactis on the stress response of S. cerevisiae in aerobic batch fermentation, and we constructed an interaction network of transcriptional regulation and metabolic networks to study the effects of and mechanisms underlying NADH oxidase regulation. The oxidase-overexpressing strain (NOX) showed increased glucose consumption, growth, and ethanol production, while glycerol production was remarkably lower. Glucose was exhausted by NOX at 26 h, while 18.92 ± 0.94 g/L residual glucose was left in the fermentation broth of the control strain (CON) at this time point. At 29.5 h, the ethanol concentration for NOX peaked at 35.25 ± 1.76 g/L, which was 14.37% higher than that for CON (30.82 ± 1.54 g/L). Gene expression involved in the synthesis of thiamine, which is associated with stress responses in various organisms, was increased in NOX. The transcription factor HAP4 was significantly upregulated in NOX at the late-exponential phase, indicating a diauxic shift in response to starvation. The apoptosis-inducing factor Nuc1 was downregulated while the transcription factor Sok2, which regulates the production of the small signaling molecule ammonia, was upregulated at the late-exponential phase, benefiting young cells on the rim. Reactive oxygen species production was decreased by 10% in NOX, supporting a decrease in apoptosis. The HOG pathway was not activated, although the osmotic stress was truly higher, indicating improved osmotolerance. Thus

  14. Overexpression of a Water-Forming NADH Oxidase Improves the Metabolism and Stress Tolerance of Saccharomyces cerevisiae in Aerobic Fermentation

    PubMed Central

    Shi, Xinchi; Zou, Yanan; Chen, Yong; Zheng, Cheng; Ying, Hanjie

    2016-01-01

    Redox homeostasis is fundamental to the maintenance of metabolism. Redox imbalance can cause oxidative stress, which affects metabolism and growth. Water-forming NADH oxidase regulates the redox balance by oxidizing cytosolic NADH to NAD+, which relieves cytosolic NADH accumulation through rapid glucose consumption in Saccharomyces cerevisiae, thus decreasing the production of the by product glycerol in industrial ethanol production. Here, we studied the effects of overexpression of a water-forming NADH oxidase from Lactococcus lactis on the stress response of S. cerevisiae in aerobic batch fermentation, and we constructed an interaction network of transcriptional regulation and metabolic networks to study the effects of and mechanisms underlying NADH oxidase regulation. The oxidase-overexpressing strain (NOX) showed increased glucose consumption, growth, and ethanol production, while glycerol production was remarkably lower. Glucose was exhausted by NOX at 26 h, while 18.92 ± 0.94 g/L residual glucose was left in the fermentation broth of the control strain (CON) at this time point. At 29.5 h, the ethanol concentration for NOX peaked at 35.25 ± 1.76 g/L, which was 14.37% higher than that for CON (30.82 ± 1.54 g/L). Gene expression involved in the synthesis of thiamine, which is associated with stress responses in various organisms, was increased in NOX. The transcription factor HAP4 was significantly upregulated in NOX at the late-exponential phase, indicating a diauxic shift in response to starvation. The apoptosis-inducing factor Nuc1 was downregulated while the transcription factor Sok2, which regulates the production of the small signaling molecule ammonia, was upregulated at the late-exponential phase, benefiting young cells on the rim. Reactive oxygen species production was decreased by 10% in NOX, supporting a decrease in apoptosis. The HOG pathway was not activated, although the osmotic stress was truly higher, indicating improved osmotolerance. Thus

  15. Overexpression of a Water-Forming NADH Oxidase Improves the Metabolism and Stress Tolerance of Saccharomyces cerevisiae in Aerobic Fermentation

    PubMed Central

    Shi, Xinchi; Zou, Yanan; Chen, Yong; Zheng, Cheng; Ying, Hanjie

    2016-01-01

    Redox homeostasis is fundamental to the maintenance of metabolism. Redox imbalance can cause oxidative stress, which affects metabolism and growth. Water-forming NADH oxidase regulates the redox balance by oxidizing cytosolic NADH to NAD+, which relieves cytosolic NADH accumulation through rapid glucose consumption in Saccharomyces cerevisiae, thus decreasing the production of the by product glycerol in industrial ethanol production. Here, we studied the effects of overexpression of a water-forming NADH oxidase from Lactococcus lactis on the stress response of S. cerevisiae in aerobic batch fermentation, and we constructed an interaction network of transcriptional regulation and metabolic networks to study the effects of and mechanisms underlying NADH oxidase regulation. The oxidase-overexpressing strain (NOX) showed increased glucose consumption, growth, and ethanol production, while glycerol production was remarkably lower. Glucose was exhausted by NOX at 26 h, while 18.92 ± 0.94 g/L residual glucose was left in the fermentation broth of the control strain (CON) at this time point. At 29.5 h, the ethanol concentration for NOX peaked at 35.25 ± 1.76 g/L, which was 14.37% higher than that for CON (30.82 ± 1.54 g/L). Gene expression involved in the synthesis of thiamine, which is associated with stress responses in various organisms, was increased in NOX. The transcription factor HAP4 was significantly upregulated in NOX at the late-exponential phase, indicating a diauxic shift in response to starvation. The apoptosis-inducing factor Nuc1 was downregulated while the transcription factor Sok2, which regulates the production of the small signaling molecule ammonia, was upregulated at the late-exponential phase, benefiting young cells on the rim. Reactive oxygen species production was decreased by 10% in NOX, supporting a decrease in apoptosis. The HOG pathway was not activated, although the osmotic stress was truly higher, indicating improved osmotolerance. Thus

  16. Altered glucose metabolism in mouse and humans conceived by IVF.

    PubMed

    Chen, Miaoxin; Wu, Linda; Zhao, Junli; Wu, Fang; Davies, Michael J; Wittert, Gary A; Norman, Robert J; Robker, Rebecca L; Heilbronn, Leonie K

    2014-10-01

    In vitro fertilization (IVF) may influence the metabolic health of children. However, in humans, it is difficult to separate out the relative contributions of genetics, environment, or the process of IVF, which includes ovarian stimulation (OS) and embryo culture. Therefore, we examined glucose metabolism in young adult humans and in adult male C57BL/6J mice conceived by IVF versus natural birth under energy-balanced and high-fat-overfeeding conditions. In humans, peripheral insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp (80 mU/m(2)/min), was lower in IVF patients (n = 14) versus control subjects (n = 20) after 3 days of an energy-balanced diet (30% fat). In response to 3 days of overfeeding (+1,250 kcal/day, 45% fat), there was a greater increase in systolic blood pressure in IVF versus controls (P = 0.02). Mice conceived after either OS alone or IVF weighed significantly less at birth versus controls (P < 0.01). However, only mice conceived by IVF displayed increased fasting glucose levels, impaired glucose tolerance, and reduced insulin-stimulated Akt phosphorylation in the liver after 8 weeks of consuming either a chow or high-fat diet (60% fat). Thus, OS impaired fetal growth in the mouse, but only embryo culture resulted in changes in glucose metabolism that may increase the risk of the development of metabolic diseases later in life, in both mice and humans. PMID:24760136

  17. Metabolic Profiling of the Response to an Oral Glucose Tolerance Test Detects Subtle Metabolic Changes

    PubMed Central

    Wopereis, Suzan; Rubingh, Carina M.; van Erk, Marjan J.; Verheij, Elwin R.; van Vliet, Trinette; Cnubben, Nicole H. P.; Smilde, Age K.; van der Greef, Jan; van Ommen, Ben; Hendriks, Henk F. J.

    2009-01-01

    Background The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one such tool that can provide novel insights into the impact of treatments on metabolism. Methodology To study the metabolic changes induced by a mild anti-inflammatory drug intervention, plasma metabolic profiling was applied in overweight human volunteers with elevated levels of the inflammatory plasma marker C-reactive protein. Liquid and gas chromatography mass spectrometric methods were used to detect high and low abundant plasma metabolites both in fasted conditions and during an oral glucose tolerance test. This is based on the concept that the resilience of the system can be assessed after perturbing a homeostatic situation. Conclusions Metabolic changes were subtle and were only detected using metabolic profiling in combination with an oral glucose tolerance test. The repeated measurements during the oral glucose tolerance test increased statistical power, but the metabolic perturbation also revealed metabolites that respond differentially to the oral glucose tolerance test. Specifically, multiple metabolic intermediates of the glutathione synthesis pathway showed time-dependent suppression in response to the glucose challenge test. The fact that this is an insulin sensitive pathway suggests that inflammatory modulation may alter insulin signaling in overweight men. PMID:19242536

  18. Quantitative on-line monitoring of hippocampus glucose and lactate metabolism in organotypic cultures using biosensor technology.

    PubMed

    Gramsbergen, Jan Bert; Leegsma-Vogt, Gea; Venema, Kor; Noraberg, Jens; Korf, Jakob

    2003-04-01

    Quantitative glucose and lactate metabolism was assessed in continuously perfused organotypic hippocampal slices under control conditions and during exposure to glutamate and drugs that interfere with aerobic and anaerobic metabolism. On-line detection was possible with a system based on slow perfusion rates, a half-open (medium/air interface) tissue chamber and a flow injection analytic system equipped with biosensors for glucose and lactate. Under basal conditions about 50% of consumed glucose was converted to lactate in hippocampal slice cultures. Using medium containing lactate (5 mm) instead of glucose (5 mm) significant lactate uptake was observed, but this uptake was less than the net uptake of lactate equivalents in glucose-containing medium. Glucose deprivation experiments suggested lactate efflux from glycogen stores. The effects of drugs compromising or stimulating energy metabolism, i.e. 2-deoxyglucose, 3-nitropropionic acid, alpha-cyano-4-hydroxycinnamate, l-glutamate, d-asparate, ouabain and monensin, were tested in this flow system. The data show that maintaining Na+ and K+ gradients consumed much of the energy but do not support the hypothesis that l-glutamate stimulates glycolysis in hippocampal slice cultures.

  19. Phosphoenolpyruvate metabolism in Teladorsagia circumcincta: a critical junction between aerobic and anaerobic metabolism.

    PubMed

    Simcock, D C; Walker, L R; Pedley, K C; Simpson, H V; Brown, S

    2012-10-01

    Nematodes which have adapted to an anaerobic lifestyle in their adult stages oxidise phosphoenolpyruvate (PEP) to oxaloacetate rather than pyruvate as the final product of glycolysis. This adaptation involves selective expression of the enzyme phosphoenolpyruvate carboxykinase (PEPCK), instead of pyruvate kinase (PK). However, such adaptation is not absolute in aerobic nematode species. We have examined the activity and kinetics of PEPCK and PK in larvae (L(3)) and adults of Teladorsagia circumcincta, a parasite known to exhibit oxygen uptake. Results revealed that PK and PEPCK activity existed in both L(3)s and adults. The enzymes had differing affinity for nucleotide diphosphates: while both can utilise GDP, only PK utilised ADP and only PEPCK utilised IDP. In both life cycle stages, enzymes showed similar affinity for PEP. PK activity was predominant in both stages, although activity of this enzyme was lower in adults. When combined, both the activity levels and the enzyme kinetics showed that pyruvate production is probably favoured in both L(3) and adult stages of T. circumcincta and suggest that metabolism of PEP to oxaloacetate is a minor metabolic pathway in this species.

  20. Cerebral glucose metabolism in the course of subacute sclerosing panencephalitis

    SciTech Connect

    Huber, M.; Herholz, K.; Pawlik, G.; Szelies, B.; Juergens, R.H.; Heiss, W.D.

    1989-01-01

    Regional cerebral glucose metabolism was studied in a 15-year-old boy with subacute sclerosing panencephalitis before and after therapy with human interferon beta, using positron emission tomography of fluorine 18-2-fluoro-2-deoxyglucose. At first examination, metabolism was symmetrically decreased in the thalamus, cerebellum, and all cortical areas except prerolandic motor cortex, but increased in lentiform nucleus. A computed tomographic scan was normal. Six months later, bilateral focal necrosis centered in the previously hypermetabolic putamen was demonstrated by computed tomography and magnetic resonance imaging. The caudate nucleus and the superoposterior part of the putamen were spared, still showing increased metabolism. Corresponding with some clinical improvement, cortical glucose consumption rates had returned to a normal level.

  1. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states.

    PubMed

    Naftalin, Richard J

    2016-01-01

    A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP

  2. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states

    PubMed Central

    Naftalin, Richard J.

    2016-01-01

    A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP

  3. Glucose availability and glycolytic metabolism dictate glycosphingolipid levels.

    PubMed

    Stathem, Morgan; Marimuthu, Subathra; O'Neal, Julie; Rathmell, Jeffrey C; Chesney, Jason A; Beverly, Levi J; Siskind, Leah J

    2015-01-01

    Cancer therapeutics has seen an emergence and re-emergence of two metabolic fields in recent years, those of bioactive sphingolipids and glycolytic metabolism. Anaerobic glycolysis and its implications in cancer have been at the forefront of cancer research for over 90 years. More recently, the role of sphingolipids in cancer cell metabolism has gained recognition, notably ceramide's essential role in programmed cell death and the role of the glucosylceramide synthase (GCS) in chemotherapeutic resistance. Despite this knowledge, a direct link between these two fields has yet to be definitively drawn. Herein, we show that in a model of highly glycolytic cells, generation of the glycosphingolipid (GSL) glucosylceramide (GlcCer) by GCS was elevated in response to increased glucose availability, while glucose deprivation diminished GSL levels. This effect was likely substrate dependent, independent of both GCS levels and activity. Conversely, leukemia cells with elevated GSLs showed a significant change in GCS activity, but no change in glucose uptake or GCS expression. In a leukemia cell line with elevated GlcCer, treatment with inhibitors of glycolysis or the pentose phosphate pathway (PPP) significantly decreased GlcCer levels. When combined with pre-clinical inhibitor ABT-263, this effect was augmented and production of pro-apoptotic sphingolipid ceramide increased. Taken together, we have shown that there exists a definitive link between glucose metabolism and GSL production, laying the groundwork for connecting two distinct yet essential metabolic fields in cancer research. Furthermore, we have proposed a novel combination therapeutic option targeting two metabolic vulnerabilities for the treatment of leukemia.

  4. Changed pattern of regional glucose metabolism during yoga meditative relaxation.

    PubMed

    Herzog, H; Lele, V R; Kuwert, T; Langen, K J; Rota Kops, E; Feinendegen, L E

    Using positron emission tomography (PET), measurements of the regional cerebral metabolic rate of glucose (rCMRGlc) are able to delineate cerebral metabolic responses to external or mental stimulation. In order to examine possible changes of brain metabolism due to Yoga meditation PET scans were performed in 8 members of a Yoga meditation group during the normal control state (C) and Yoga meditative relaxation (YMR). Whereas there were intraindividual changes of the total CMRGlc, the alterations were not significant for intergroup comparison; specific focal changes or changes in the interhemispheric differences in metabolism were also not seen; however the ratios of frontal vs. occipital rCMRGlc were significantly elevated (p less than 0.05) during YMR. These altered ratios were caused by a slight increase of frontal rCMRGlc and a more pronounced reduction in primary and secondary visual centers. These data indicate a holistic behavior of the brain metabolism during the time of altered state of consciousness during YMR.

  5. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  6. Female rats selectively bred for high intrinsic aerobic fitness are protected from ovariectomy-associated metabolic dysfunction

    PubMed Central

    Padilla, Jaume; Park, Young-Min; Welly, Rebecca J.; Scroggins, Rebecca J.; Britton, Steven L.; Koch, Lauren G.; Jenkins, Nathan T.; Crissey, Jacqueline M.; Zidon, Terese; Morris, E. Matthew; Meers, Grace M. E.; Thyfault, John P.

    2015-01-01

    Ovariectomized rodents model human menopause in that they rapidly gain weight, reduce spontaneous physical activity (SPA), and develop metabolic dysfunction, including insulin resistance. How contrasting aerobic fitness levels impacts ovariectomy (OVX)-associated metabolic dysfunction is not known. Female rats selectively bred for high and low intrinsic aerobic fitness [high-capacity runners (HCR) and low-capacity runners (LCR), respectively] were maintained under sedentary conditions for 39 wk. Midway through the observation period, OVX or sham (SHM) operations were performed providing HCR-SHM, HCR-OVX, LCR-SHM, and LCR-OVX groups. Glucose tolerance, energy expenditure, and SPA were measured before and 4 wk after surgery, while body composition via dual-energy X-ray absorptiometry and adipose tissue distribution, brown adipose tissue (BAT), and skeletal muscle phenotype, hepatic lipid content, insulin resistance via homeostatic assessment model of insulin resistance and AdipoIR, and blood lipids were assessed at death. Remarkably, HCR were protected from OVX-associated increases in adiposity and insulin resistance, observed only in LCR. HCR rats were ∼30% smaller, had ∼70% greater spontaneous physical activity (SPA), consumed ∼10% more relative energy, had greater skeletal muscle proliferator-activated receptor coactivator 1-alpha, and ∼40% more BAT. OVX did not increase energy intake and reduced SPA to the same extent in both HCR and LCR. LCR were particularly affected by an OVX-associated reduction in resting energy expenditure and experienced a reduction in relative BAT; resting energy expenditure correlated positively with BAT across all animals (r = 0.6; P < 0.001). In conclusion, despite reduced SPA following OVX, high intrinsic aerobic fitness protects against OVX-associated increases in adiposity and insulin resistance. The mechanism may involve preservation of resting energy expenditure. PMID:25608751

  7. Aerobic fitness ecological validity in elite soccer players: a metabolic power approach.

    PubMed

    Manzi, Vincenzo; Impellizzeri, Franco; Castagna, Carlo

    2014-04-01

    The aim of this study was to examine the association between match metabolic power (MP) categories and aerobic fitness in elite-level male soccer players. Seventeen male professional soccer players were tested for VO2max, maximal aerobic speed (MAS), VO2 at ventilatory threshold (VO2VT and %VO2VT), and speed at a selected blood lactate concentration (4 mmol·L(-1), V(L4)). Aerobic fitness tests were performed at the end of preseason and after 12 and 24 weeks during the championship. Aerobic fitness and MP variables were considered as mean of all seasonal testing and of 16 Championship home matches for all the calculations, respectively. Results showed that VO2max (from 0.55 to 0.68), MAS (from 0.52 to 0.72), VO2VT (from 0.72 to 0.83), %VO2maxVT (from 0.62 to 0.65), and V(L4) (from 0.56 to 0.73) were significantly (p < 0.05 to 0.001) large to very large associated with MP variables. These results provide evidence to the ecological validity of aerobic fitness in male professional soccer. Strength and conditioning professionals should consider aerobic fitness in their training program when dealing with professional male soccer players. The MP method resulted an interesting approach for tracking external load in male professional soccer players.

  8. Aerobic and anaerobic metabolism in smooth muscle cells of taenia coli in relation to active ion transport.

    PubMed

    Casteels, R; Wuytack, F

    1975-09-01

    1. The O2 consumption and lactic acid production of the guinea-pig's taenia coli have been studied in relation to the active Na-K transport, in order to estimate the ratio: active Na extrusion/active K uptake/ATP hydrolysis. 2. By applying different procedures of partial metabolic ingibition, it was found that a reactivation of the active Na-K transport in K-depleted tissues could occur in an anaerobic medium, provided glucose was present and in an aerobic medium free of added metabolizable substrate. The active Na-K transport was rapidly blocked in an anaerobic-substrate free medium. 3. Readmission of K to K-depleted tissues under aerobic conditions stimulates both O2 consumption and lactic acid production. While the O2 consumption creeps up slowly and requires 50 min to reach control values, the aerobic lactic acid production increases to a maximum within 10 min and decreases again during the next 50 min to its steady-state value. 4. A reactivation of the Na-pump in K-depleted cells in a N2-glucose medium causes an immediate increase of the lactic acid production, which decreases to its control value after 60 min. The maximal increase in anaerobic lactic acid production during reactivation of the Na-K pump is a function of [K]O. The system can be cescribed with first order kinetics having a Vmax = 0-72 mumole.g-1 f. wt. min-1 and a Km = 1-1 mM. 5. By varying the glucose concentration of [K]O during reactivation of the Na-K pump, different Na-K pumping rates can be obtained. The ratios net Na extrusion/ATP or net K accumulation/ATP amount to -1-32 +/- 0-19 (36) and 1-02 +/- 0-11 (36), in the experiments with different glucose concentrations. Taking into account the interference by net passive fluxes, one can estimate a ratio:active Na transport/active K transport/ATP, of 1-7/0-8/1. This ratio is not very different from the values observed in other tissues.

  9. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop

    PubMed Central

    Wang, Jiajia; Zhang, Junxia; Qian, Jin; Li, Ri; Tao, Tao; Wei, Wenjin; Hu, Qi; Liu, Ning; You, Yongping

    2015-01-01

    Tumor cells metabolize more glucose to lactate in aerobic or hypoxic conditions than non-tumor cells. Pyruvate kinase isoenzyme type M2 (PKM2) is crucial for tumor cell aerobic glycolysis. We established a role for let-7a/c-Myc/hnRNPA1/PKM2 signaling in glioma cell glucose metabolism. PKM2 depletion via siRNA inhibits cell proliferation and aerobic glycolysis in glioma cells. C-Myc promotes up-regulation of hnRNPA1 expression, hnRNPA1 binding to PKM pre-mRNA, and the subsequent formation of PKM2. This pathway is downregulated by the microRNA let-7a, which functionally targets c-Myc, whereas hnRNPA1 blocks the biogenesis of let-7a to counteract its ability to downregulate the c-Myc/hnRNPA1/PKM2 signaling pathway. The down-regulation of c-Myc/hnRNPA1/PKM2 by let-7a is verified using a glioma xenograft model. These results suggest that let-7a, c-Myc and hnRNPA1 from a feedback loop, thereby regulating PKM2 expression to modulate glucose metabolism of glioma cells. These findings elucidate a new pathway mediating aerobic glycolysis in gliomas and provide an attractive potential target for therapeutic intervention. PMID:25948776

  10. Genetic Models of PGC-1 and Glucose Metabolism and Homeostasis

    PubMed Central

    Rowe, Glenn C.; Arany, Zolt

    2013-01-01

    Type II diabetes and its complications are a tremendous health burden throughout the world. Our understanding of the changes that lead to glucose imbalance and insulin resistance and ultimately diabetes remain incompletely understood. Many signaling and transcriptional pathways have been identified as being important to maintain normal glucose balance, including that of the peroxisome proliferator activated receptor gamma coactivator (PGC-1) family. This family of transcriptional coactivators strongly regulates mitochondrial and metabolic biology in numerous organs. The use of genetic models of PGC-1s, including both tissue-specific overexpression and knock-out models, has helped to reveal the specific roles that these coactivators play in each tissue. This review will thus focus on the PGC-1s and recently developed genetic rodent models that have highlighted the importance of these molecules in maintaining normal glucose homeostasis. PMID:24057597

  11. A Flux Balance of Glucose Metabolism Clarifies the Requirements of the Warburg Effect.

    PubMed

    Dai, Ziwei; Shestov, Alexander A; Lai, Luhua; Locasale, Jason W

    2016-09-01

    The Warburg effect, or aerobic glycolysis, is marked by the increased metabolism of glucose to lactate in the presence of oxygen. Despite its widespread prevalence in physiology and cancer biology, the causes and consequences remain incompletely understood. Here, we show that a simple balance of interacting fluxes in glycolysis creates constraints that impose the necessary conditions for glycolytic flux to generate lactate as opposed to entering into the mitochondria. These conditions are determined by cellular redox and energy demands. By analyzing the constraints and sampling the feasible region of the model, we further study how cell proliferation rate and mitochondria-associated NADH oxidizing and ATP producing fluxes are interlinked. Together this analysis illustrates the simplicity of the origins of the Warburg effect by identifying the flux distributions that are necessary for its instantiation. PMID:27602736

  12. Bone and Glucose Metabolism: A Two-Way Street

    PubMed Central

    Motyl, Katherine J.; McCabe, Laura R.; Schwartz, Ann V.

    2010-01-01

    Evidence from rodent models indicates that undercarboxylated osteocalcin (ucOC), a product of osteoblasts, is a hormone affecting insulin production by the pancreas and insulin sensitivity in peripheral tissues, at least in part through enhanced secretion of adiponectin from adipocytes. Clinical research to test whether this relationship is found in humans is just beginning to emerge. Cross-sectional studies confirm associations between total osteocalcin (OC), ucOC and glucose metabolism but cannot distinguish causality. To date, longitudinal studies have not provided a consistent picture of the effects of ucOC or OC on fasting glucose and insulin sensitivity. Further exploration into the physiological and mechanistic effects of ucOC and OC, in rodent models and clinical studies, is necessary to determine to what extent the skeleton regulates energy metabolism in humans. PMID:20682281

  13. Cerebral metabolism of glucose in benign hereditary chorea

    SciTech Connect

    Suchowersky, O.; Hayden, M.R.; Martin, W.R.; Stoessl, A.J.; Hildebrand, A.M.; Pate, B.D.

    1986-01-01

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using YF-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC.

  14. Reproducibility of cerebral glucose metabolic measurements in resting human subjects.

    PubMed

    Bartlett, E J; Brodie, J D; Wolf, A P; Christman, D R; Laska, E; Meissner, M

    1988-08-01

    Positron emission tomography with 11C-2-deoxyglucose was used to determine the test-retest variability of regional cerebral glucose metabolism in 22 young normal right-handed men scanned twice in a 24-h period under baseline (resting) conditions. To assess the effects of scan order and time of day on variability, 12 subjects were scanned in the morning and afternoon of the same day (a.m.-p.m.) and 10 in the reverse order (p.m.-a.m.) with a night in between. The effect of anxiety on metabolism was also assessed. Seventy-three percent of the total subject group showed changes in whole brain metabolism from the first to the second measurement of 10% or less, with comparable changes in various cortical and subcortical regions. When a scaling factor was used to equate the whole brain metabolism in the two scans for each individual, the resulting average regional changes for each group were no more than 1%. This suggests that the proportion of the whole brain metabolism utilized regionally is stable in a group of subjects over time. Both groups of subjects had lower morning than afternoon metabolism, but the differences were slight in the p.m.-a.m. group. One measure of anxiety (pulse at run 1) was correlated with run 1 metabolism and with the percentage of change from run 1 to run 2. No significant run 2 correlations were observed. This is the first study to measure test-retest variability in cerebral glucose metabolism in a large sample of young normal subjects. It demonstrates that the deoxyglucose method yields low intrasubject variability and high stability over a 24-h period. PMID:3260593

  15. The Lin28/let-7 axis regulates glucose metabolism.

    PubMed

    Zhu, Hao; Shyh-Chang, Ng; Segrè, Ayellet V; Shinoda, Gen; Shah, Samar P; Einhorn, William S; Takeuchi, Ayumu; Engreitz, Jesse M; Hagan, John P; Kharas, Michael G; Urbach, Achia; Thornton, James E; Triboulet, Robinson; Gregory, Richard I; Altshuler, David; Daley, George Q

    2011-09-30

    The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism. PMID:21962509

  16. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions.

    PubMed

    Choi, Donggeon; Lee, Sae Bom; Kim, Sohyun; Min, Byoungnam; Choi, In-Geol; Chang, In Seop

    2014-02-01

    Comparative genome analysis of Shewanella strains predicted that the strains metabolize preferably two- and three-carbon carbohydrates as carbon/electron source because many Shewanella genomes are deficient of the key enzymes in glycolysis (e.g., glucokinase). In addition, all Shewanella genomes are known to have only one set of genes associated with the phosphotransferase system required to uptake sugars. To engineer Shewanella strains that can utilize five- and six-carbon carbohydrates, we constructed glucose-utilizing Shewanella oneidensis MR-1 by introducing the glucose facilitator (glf; ZMO0366) and glucokinase (glk; ZMO0369) genes of Zymomonas mobilis. The engineered MR-1 strain was able to grow on glucose as a sole carbon/electron source under anaerobic conditions. The glucose affinity (Ks) and glucokinase activity in the engineered MR-1 strain were 299.46 mM and 0.259 ± 0.034 U/g proteins. The engineered strain was successfully applied to a microbial fuel cell system and exhibited current generation using glucose as the electron source.

  17. Dietary patterns in men and women are simultaneously determinants of altered glucose metabolism and bone metabolism.

    PubMed

    Langsetmo, Lisa; Barr, Susan I; Dasgupta, Kaberi; Berger, Claudie; Kovacs, Christopher S; Josse, Robert G; Adachi, Jonathan D; Hanley, David A; Prior, Jerilynn C; Brown, Jacques P; Morin, Suzanne N; Davison, Kenneth S; Goltzman, David; Kreiger, Nancy

    2016-04-01

    We hypothesized that diet would have direct effects on glucose metabolism with direct and indirect effects on bone metabolism in a cohort of Canadian adults. We assessed dietary patterns (Prudent [fruit, vegetables, whole grains, fish, and legumes] and Western [soft drinks, potato chips, French fries, meats, and desserts]) from a semiquantitative food frequency questionnaire. We used fasting blood samples to measure glucose, insulin, homeostatic model assessment insulin resistance (HOMA-IR), 25-hydroxyvitamin D (25OHD), parathyroid hormone, bone-specific alkaline phosphatase (a bone formation marker), and serum C-terminal telopeptide (CTX; a bone resorption marker). We used multivariate regression models adjusted for confounders and including/excluding body mass index. In a secondary analysis, we examined relationships through structural equations models. The Prudent diet was associated with favorable effects on glucose metabolism (lower insulin and HOMA-IR) and bone metabolism (lower CTX in women; higher 25OHD and lower parathyroid hormone in men). The Western diet was associated with deleterious effects on glucose metabolism (higher glucose, insulin, and HOMA-IR) and bone metabolism (higher bone-specific alkaline phosphatase and lower 25OHD in women; higher CTX in men). Body mass index adjustment moved point estimates toward the null, indicating partial mediation. The structural equation model confirmed the hypothesized linkage with strong effects of Prudent and Western diet on metabolic risk, and both direct and indirect effects of a Prudent diet on bone turnover. In summary, a Prudent diet was associated with lower metabolic risk with both primary and mediated effects on bone turnover, suggesting that it is a potential target for reducing fracture risk. PMID:27001278

  18. Dietary patterns in men and women are simultaneously determinants of altered glucose metabolism and bone metabolism.

    PubMed

    Langsetmo, Lisa; Barr, Susan I; Dasgupta, Kaberi; Berger, Claudie; Kovacs, Christopher S; Josse, Robert G; Adachi, Jonathan D; Hanley, David A; Prior, Jerilynn C; Brown, Jacques P; Morin, Suzanne N; Davison, Kenneth S; Goltzman, David; Kreiger, Nancy

    2016-04-01

    We hypothesized that diet would have direct effects on glucose metabolism with direct and indirect effects on bone metabolism in a cohort of Canadian adults. We assessed dietary patterns (Prudent [fruit, vegetables, whole grains, fish, and legumes] and Western [soft drinks, potato chips, French fries, meats, and desserts]) from a semiquantitative food frequency questionnaire. We used fasting blood samples to measure glucose, insulin, homeostatic model assessment insulin resistance (HOMA-IR), 25-hydroxyvitamin D (25OHD), parathyroid hormone, bone-specific alkaline phosphatase (a bone formation marker), and serum C-terminal telopeptide (CTX; a bone resorption marker). We used multivariate regression models adjusted for confounders and including/excluding body mass index. In a secondary analysis, we examined relationships through structural equations models. The Prudent diet was associated with favorable effects on glucose metabolism (lower insulin and HOMA-IR) and bone metabolism (lower CTX in women; higher 25OHD and lower parathyroid hormone in men). The Western diet was associated with deleterious effects on glucose metabolism (higher glucose, insulin, and HOMA-IR) and bone metabolism (higher bone-specific alkaline phosphatase and lower 25OHD in women; higher CTX in men). Body mass index adjustment moved point estimates toward the null, indicating partial mediation. The structural equation model confirmed the hypothesized linkage with strong effects of Prudent and Western diet on metabolic risk, and both direct and indirect effects of a Prudent diet on bone turnover. In summary, a Prudent diet was associated with lower metabolic risk with both primary and mediated effects on bone turnover, suggesting that it is a potential target for reducing fracture risk.

  19. Decreased Expression of Fructose-1,6-bisphosphatase Associates with Glucose Metabolism and Tumor Progression in Hepatocellular Carcinoma.

    PubMed

    Hirata, Hidenari; Sugimachi, Keishi; Komatsu, Hisateru; Ueda, Masami; Masuda, Takaaki; Uchi, Ryutaro; Sakimura, Shotaro; Nambara, Sho; Saito, Tomoko; Shinden, Yoshiaki; Iguchi, Tomohiro; Eguchi, Hidetoshi; Ito, Shuhei; Terashima, Kotaro; Sakamoto, Katsumi; Hirakawa, Masakazu; Honda, Hiroshi; Mimori, Koshi

    2016-06-01

    Fructose-1,6-bisphosphatase (FBP1), the rate-limiting enzyme in gluconeogenesis, is reduced in expression in certain cancers where it has been hypothesized to act as a tumor suppressor, including in hepatocellular carcinoma (HCC). Here, we report functional evidence supporting this hypothesis, providing a preclinical rationale to develop FBP1 as a therapeutic target for HCC treatment. Three independent cohorts totaling 594 cases of HCC were analyzed to address clinical significance. Lower FBP1 expression associated with advanced tumor stage, poor overall survival, and higher tumor recurrence rates. In HCC cell lines, where endogenous FBP1 expression is low, engineering its ectopic overexpression inhibited tumor growth and intracellular glucose uptake by reducing aerobic glycolysis. In patient specimens, promoter methylation and copy-number loss of FBP1 were independently associated with decreased FBP1 expression. Similarly, FBP1 downregulation in HCC cell lines was also associated with copy-number loss. HCC specimens exhibiting low expression of FBP1 had a highly malignant phenotype, including large tumor size, poor differentiation, impaired gluconeogenesis, and enhanced aerobic glycolysis. The effects of FBP1 expression on prognosis and glucose metabolism were confirmed by gene set enrichment analysis. Overall, our findings established that FBP1 downregulation in HCC contributed to tumor progression and poor prognosis by altering glucose metabolism, and they rationalize further study of FBP1 as a prognostic biomarker and therapeutic target in HCC patients. Cancer Res; 76(11); 3265-76. ©2016 AACR. PMID:27197151

  20. Metabolic Engineering of Gluconobacter oxydans for Improved Growth Rate and Growth Yield on Glucose by Elimination of Gluconate Formation▿

    PubMed Central

    Krajewski, Vera; Simić, Petra; Mouncey, Nigel J.; Bringer, Stephanie; Sahm, Hermann; Bott, Michael

    2010-01-01

    Gluconobacter oxydans N44-1, an obligatory aerobic acetic acid bacterium, oxidizes glucose primarily in the periplasm to the end products 2-ketogluconate and 2,5-diketogluconate, with intermediate formation of gluconate. Only a minor part of the glucose (less than 10%) is metabolized in the cytoplasm after conversion to gluconate or after phosphorylation to glucose-6-phosphate via the only functional catabolic routes, the pentose phosphate pathway and the Entner-Doudoroff pathway. This unusual method of glucose metabolism results in a low growth yield. In order to improve it, we constructed mutants of strain N44-1 in which the gene encoding the membrane-bound glucose dehydrogenase was inactivated either alone or together with the gene encoding the cytoplasmic glucose dehydrogenase. The growth and product formation from glucose of the resulting strains, N44-1 mgdH::kan and N44-1 ΔmgdH sgdH::kan, were analyzed. Both mutant strains completely consumed the glucose but produced neither gluconate nor the secondary products 2-ketogluconate and 2,5-diketogluconate. Instead, carbon dioxide formation of the mutants increased by a factor of 4 (N44-1 mgdH::kan) or 5.5 (N44-1 ΔmgdH sgdH::kan), and significant amounts of acetate were produced, presumably by the activities of pyruvate decarboxylase and acetaldehyde dehydrogenase. Most importantly, the growth yields of the two mutants increased by 110% (N44-1 mgdH::kan) and 271% (N44-1 ΔmgdH sgdH::kan). In addition, the growth rates improved by 39% (N44-1 mgdH::kan) and 78% (N44-1 ΔmgdH sgdH::kan), respectively, compared to the parental strain. These results show that the conversion of glucose to gluconate and ketogluconates has a strong negative impact on the growth of G. oxydans. PMID:20453146

  1. Coordinated Metabolic Transitions During Drosophila Embryogenesis and the Onset of Aerobic Glycolysis

    PubMed Central

    Tennessen, Jason M.; Bertagnolli, Nicolas M.; Evans, Janelle; Sieber, Matt H.; Cox, James; Thummel, Carl S.

    2014-01-01

    Rapidly proliferating cells such as cancer cells and embryonic stem cells rely on a specialized metabolic program known as aerobic glycolysis, which supports biomass production from carbohydrates. The fruit fly Drosophila melanogaster also utilizes aerobic glycolysis to support the rapid growth that occurs during larval development. Here we use singular value decomposition analysis of modENCODE RNA-seq data combined with GC-MS-based metabolomic analysis to analyze the changes in gene expression and metabolism that occur during Drosophila embryogenesis, spanning the onset of aerobic glycolysis. Unexpectedly, we find that the most common pattern of co-expressed genes in embryos includes the global switch to glycolytic gene expression that occurs midway through embryogenesis. In contrast to the canonical aerobic glycolytic pathway, however, which is accompanied by reduced mitochondrial oxidative metabolism, the expression of genes involved in the tricarboxylic cycle (TCA cycle) and the electron transport chain are also upregulated at this time. Mitochondrial activity, however, appears to be attenuated, as embryos exhibit a block in the TCA cycle that results in elevated levels of citrate, isocitrate, and α-ketoglutarate. We also find that genes involved in lipid breakdown and β-oxidation are upregulated prior to the transcriptional initiation of glycolysis, but are downregulated before the onset of larval development, revealing coordinated use of lipids and carbohydrates during development. These observations demonstrate the efficient use of nutrient stores to support embryonic development, define sequential metabolic transitions during this stage, and demonstrate striking similarities between the metabolic state of late-stage fly embryos and tumor cells. PMID:24622332

  2. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    PubMed Central

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and

  3. Impact of salinity on the aerobic metabolism of phosphate-accumulating organisms.

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2015-04-01

    The use of saline water in urban areas for non-potable purposes to cope with fresh water scarcity, intrusion of saline water, and disposal of industrial saline wastewater into the sewerage lead to elevated salinity levels in wastewaters. Consequently, saline wastewater is generated, which needs to be treated before its discharge into surface water bodies. The objective of this research was to study the effects of salinity on the aerobic metabolism of phosphate-accumulating organisms (PAO), which belong to the microbial populations responsible for enhanced biological phosphorus removal (EBPR) in activated sludge systems. In this study, the short-term impact (hours) of salinity (as NaCl) was assessed on the aerobic metabolism of a PAO culture, enriched in a sequencing batch reactor (SBR). All aerobic PAO metabolic processes were drastically affected by elevated salinity concentrations. The aerobic maintenance energy requirement increased, when the salinity concentration rose up to a threshold concentration of 2 % salinity (on a W/V basis as NaCl), while above this concentration, the maintenance energy requirements seemed to decrease. All initial rates were affected by salinity, with the NH4- and PO4-uptake rates being the most sensitive. A salinity increase from 0 to 0.18 % caused a 25, 46, and 63 % inhibition of the O2, PO4, and NH4-uptake rates. The stoichiometric ratios of the aerobic conversions confirmed that growth was the process with the highest inhibition, followed by poly-P and glycogen formation. The study indicates that shock loads of 0.18 % salt, which corresponds to the use or intrusion of about 5 % seawater may severely affect the EBPR process already in wastewater treatment plants not exposed regularly to high salinity concentrations. PMID:25524698

  4. Impact of salinity on the aerobic metabolism of phosphate-accumulating organisms.

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2015-04-01

    The use of saline water in urban areas for non-potable purposes to cope with fresh water scarcity, intrusion of saline water, and disposal of industrial saline wastewater into the sewerage lead to elevated salinity levels in wastewaters. Consequently, saline wastewater is generated, which needs to be treated before its discharge into surface water bodies. The objective of this research was to study the effects of salinity on the aerobic metabolism of phosphate-accumulating organisms (PAO), which belong to the microbial populations responsible for enhanced biological phosphorus removal (EBPR) in activated sludge systems. In this study, the short-term impact (hours) of salinity (as NaCl) was assessed on the aerobic metabolism of a PAO culture, enriched in a sequencing batch reactor (SBR). All aerobic PAO metabolic processes were drastically affected by elevated salinity concentrations. The aerobic maintenance energy requirement increased, when the salinity concentration rose up to a threshold concentration of 2 % salinity (on a W/V basis as NaCl), while above this concentration, the maintenance energy requirements seemed to decrease. All initial rates were affected by salinity, with the NH4- and PO4-uptake rates being the most sensitive. A salinity increase from 0 to 0.18 % caused a 25, 46, and 63 % inhibition of the O2, PO4, and NH4-uptake rates. The stoichiometric ratios of the aerobic conversions confirmed that growth was the process with the highest inhibition, followed by poly-P and glycogen formation. The study indicates that shock loads of 0.18 % salt, which corresponds to the use or intrusion of about 5 % seawater may severely affect the EBPR process already in wastewater treatment plants not exposed regularly to high salinity concentrations.

  5. Bone Regulates Glucose Metabolism as an Endocrine Organ through Osteocalcin.

    PubMed

    Shao, Jin; Wang, Zhi; Yang, Tieyi; Ying, Hui; Zhang, Yan; Liu, Shuyi

    2015-01-01

    Skeleton was considered as a dynamic connective tissue, which was essential for mobility, calcium homeostasis, and hematopoietic niche. However more and more evidences indicate that skeleton works not only as a structural scaffold but also as an endocrine organ, which regulates several metabolic processes. Besides osteoprotegerin (OPG), sclerostin (SOST), and Dickopf (DKK) which play essential roles in bone formation, modelling, remodelling, and homeostasis, bone can also secret hormones, such as osteocalcin (OCN), which promotes proliferation of β cells, insulin secretion, and insulin sensitivity. Additionally OCN can also regulate the fat cells and male gonad endocrine activity and be regulated by insulin and the neural system. In summary, skeleton has endocrine function via OCN and plays an important role in energy metabolism, especially in glucose metabolism. PMID:25873961

  6. Aerobic metabolism during predation by a boid snake.

    PubMed

    Canjani, Camila; Andrade, Denis V; Cruz-Neto, Ariovaldo P; Abe, Augusto S

    2002-11-01

    We quantified the oxygen uptake rates (VO(2)) and time spent, during the constriction, inspection, and ingestion of prey of different relative sizes, by the prey-constricting boid snake Boa constrictor amarali. Time spent in prey constriction varied from 7.6 to 16.3 min, and VO(2) during prey constriction increased 6.8-fold above resting values. This was the most energy expensive predation phase but neither time spent nor metabolic rate during this phase were correlated with prey size. Similarly, prey size did not affect the VO(2) or duration of prey inspection. Prey ingestion time, on the other hand, increased linearly with prey size although VO(2) during this phase, which increased 4.9-fold above resting levels, was not affected by prey size. The increase in mechanical difficulty of ingesting larger prey, therefore, was associated with longer ingestion times rather than proportional increases in the level of metabolic effort. The data indicate that prey constriction and ingestion are largely sustained by glycolysis and the intervening phase of prey inspection may allow recovery between these two predatory phases with high metabolic demands. The total amount of energy spent by B. c. amarali to constrict, inspect, and ingest prey of sizes varying from 5 to 40% of snake body mass varied inversely from 0.21 to 0.11% of the energy assimilated from the prey, respectively. Thus, prey size was not limited by the energetic cost of predation. On the contrary, snakes feeding on larger prey were rewarded with larger energetic returns, in accordance with explanations of the evolution of snake feeding specializations.

  7. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.

    PubMed

    Hou, Jin; Vemuri, Goutham N; Bao, Xiaoming; Olsson, Lisbeth

    2009-04-01

    During growth of Saccharomyces cerevisiae on glucose, the redox cofactors NADH and NADPH are predominantly involved in catabolism and biosynthesis, respectively. A deviation from the optimal level of these cofactors often results in major changes in the substrate uptake and biomass formation. However, the metabolism of xylose by recombinant S. cerevisiae carrying xylose reductase and xylitol dehydrogenase from the fungal pathway requires both NADH and NADPH and creates cofactor imbalance during growth on xylose. As one possible solution to overcoming this imbalance, the effect of overexpressing the native NADH kinase (encoded by the POS5 gene) in xylose-consuming recombinant S. cerevisiae directed either into the cytosol or to the mitochondria was evaluated. The physiology of the NADH kinase containing strains was also evaluated during growth on glucose. Overexpressing NADH kinase in the cytosol redirected carbon flow from CO(2) to ethanol during aerobic growth on glucose and to ethanol and acetate during anaerobic growth on glucose. However, cytosolic NADH kinase has an opposite effect during anaerobic metabolism of xylose consumption by channeling carbon flow from ethanol to xylitol. In contrast, overexpressing NADH kinase in the mitochondria did not affect the physiology to a large extent. Overall, although NADH kinase did not increase the rate of xylose consumption, we believe that it can provide an important source of NADPH in yeast, which can be useful for metabolic engineering strategies where the redox fluxes are manipulated.

  8. Heart rate and aerobic metabolism in Humboldt penguins, Spheniscus humboldti, during voluntary dives.

    PubMed

    Butler, P J; Woakes, A J

    1984-01-01

    Heart rate and aerobic metabolism have been recorded from three Humboldt penguins, Spheniscus humboldti, freely diving on a freshwater pond (9 X 4.6 X 2.7 m deep), using an implanted radiotransmitter and an open circuit respirometer. Oxygen uptake at mean dive duration (46.2s) was 26% greater than the resting value, but the difference was not statistically significant. Heart rate was also similar to the resting value. It is concluded that voluntary dives of penguins are completely aerobic and that oxygen stores are sufficient to allow metabolism to continue at the rate estimated in the present study for 2.27 min during voluntary submersion. This is longer than that calculated for tufted ducks, probably because the penguins are more efficient at underwater locomotion and because they are almost neutrally buoyant. PMID:6423763

  9. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia

    PubMed Central

    2015-01-01

    Glucose and lipid metabolism are linked to each other in many ways. The most important clinical manifestation of this interaction is diabetic dyslipidemia, characterized by elevated triglycerides, low high density lipoprotein cholesterol (HDL-C), and predominance of small-dense LDL particles. However, in the last decade we have learned that the interaction is much more complex. Hypertriglyceridemia and low HDL-C cannot only be the consequence but also the cause of a disturbed glucose metabolism. Furthermore, it is now well established that statins are associated with a small but significant increase in the risk for new onset diabetes. The underlying mechanisms are not completely understood but modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA)-reductase may play a central role as genetic data indicate that mutations resulting in lower HMG CoA-reductase activity are also associated with obesity, higher glucose concentrations and diabetes. Very interestingly, this statin induced increased risk for new onset type 2 diabetes is not detectable in subjects with familial hypercholesterolemia. Furthermore, patients with familial hypercholesterolemia seem to have a lower risk for type 2 diabetes, a phenomenon which seems to be dose-dependent (the higher the low density lipoprotein cholesterol, the lower the risk). Whether there is also an interaction between lipoprotein(a) and diabetes is still a matter of debate. PMID:26566492

  10. Selective reductions in prefrontal glucose metabolism in murderers.

    PubMed

    Raine, A; Buchsbaum, M S; Stanley, J; Lottenberg, S; Abel, L; Stoddard, J

    1994-09-15

    This study tests the hypothesis that seriously violent offenders pleading not guilty by reason of insanity or incompetent to stand trial are characterized by prefrontal dysfunction. This hypothesis was tested in a group of 22 subjects accused of murder and 22 age-matched and gender-matched controls by measuring local cerebral uptake of glucose using positron emission tomography during the continuous performance task. Murderers had significantly lower glucose metabolism in both lateral and medial prefrontal cortex relative to controls. No group differences were observed for posterior frontal, temporal, and parietal glucose metabolism, indicating regional specificity for the prefrontal deficit. Group differences were not found to be a function of raised levels of left-handedness, schizophrenia, ethnic minority status, head injury, or motivation deficits in the murder group. These preliminary results suggest that deficits localized to the prefrontal cortex may be related to violence in a selected group of offenders, although further studies are needed to establish the generalizability of these findings to violent offenders in the community.

  11. Inhibition of glucose metabolism by n-hexadecane in Cladosporium (Amorphotheca) resinae.

    PubMed Central

    Siporin, C; Cooney, J J

    1976-01-01

    When Cladosporium resinae is provided with n-hexadecane and glucose, n-hexadecane is used preferentially. Studies using [14C]glucose indicated that n-hexadecane did not inhibit glucose uptake but did retard oxidation of glucose to CO2 and assimilation of glucose carbon into trichloroacetic acid-insoluble material. Glucose could be recovered quantitatively from hydrocarbon-grown cells that had been transferred to glucose. Four enzymes that may be involved in glucose metabolism, hexokinase, glucose-6-phosphate dehydrogenase, glucose-phosphate isomerase, and succinate dehydrogenase, were not detected in cells grown on hexadecane but were present in cells grown on glucose. Addition of hexadecane to extracts of glucose-grown cells resulted in immediate loss of activity for each of the four enzymes, but two other enzymes did not directly involved in glucose metabolism, adenosine triphosphatase and alanine-ketoacid aminotransferase, were not inhibited by hexadecane in vitro. Cells grown on hexadecane and transferred to glucose metabolize intracellular hexadecane; after 1 day, activity of hexokinase, glucose-6-phosphate dehydrogenase, glucosephosphate isomerase, and succinate dehydrogenase could be detected and 22% of the intracellular hydrocarbon had been metabolized. Hexadecane-grown cells transferred to glucose plus cycloheximide showed the same level of activity of all the four enzymes as cells transferred to glucose alone. Thus, intracellular n-hexadecane or a metabolite of hexadecane can inthesis of those enzymes is not inhibited. PMID:135754

  12. Delivery-Corrected Imaging of Fluorescently-Labeled Glucose Reveals Distinct Metabolic Phenotypes in Murine Breast Cancer

    PubMed Central

    Frees, Amy E.; Rajaram, Narasimhan; McCachren, Samuel S.; Fontanella, Andrew N.; Dewhirst, Mark W.; Ramanujam, Nimmi

    2014-01-01

    When monitoring response to cancer therapy, it is important to differentiate changes in glucose tracer uptake caused by altered delivery versus a true metabolic shift. Here, we propose an optical imaging method to quantify glucose uptake and correct for in vivo delivery effects. Glucose uptake was measured using a fluorescent D-glucose derivative 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-deoxy-D-glucose (2-NBDG) in mice implanted with dorsal skin flap window chambers. Additionally, vascular oxygenation (SO2) was calculated using only endogenous hemoglobin contrast. Results showed that the delivery factor proposed for correction, “RD”, reported on red blood cell velocity and injected 2-NBDG dose. Delivery-corrected 2-NBDG uptake (2-NBDG60/RD) inversely correlated with blood glucose in normal tissue, indicating sensitivity to glucose demand. We further applied our method in metastatic 4T1 and nonmetastatic 4T07 murine mammary adenocarcinomas. The ratio 2-NBDG60/RD was increased in 4T1 tumors relative to 4T07 tumors yet average SO2 was comparable, suggesting a shift toward a “Warburgian” (aerobic glycolysis) metabolism in the metastatic 4T1 line. In heterogeneous regions of both 4T1 and 4T07, 2-NBDG60/RD increased slightly but significantly as vascular oxygenation decreased, indicative of the Pasteur effect in both tumors. These data demonstrate the utility of delivery-corrected 2-NBDG and vascular oxygenation imaging for differentiating metabolic phenotypes in vivo. PMID:25526261

  13. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  14. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.

    PubMed

    Chen, Tao; Zhu, Nianqing; Xia, Huihua

    2014-01-01

    Arabinose is considered as an ideal feedstock for the microbial production of value-added chemicals due to its abundance in hemicellulosic wastes. In this study, the araBAD operon from Escherichia coli was introduced into succinate-producing Corynebacterium glutamicum, which enabled aerobic production of succinate using arabinose as sole carbon source. The engineered strain ZX1 (pXaraBAD, pEacsAgltA) produced 74.4 mM succinate with a yield of 0.58 mol (mol arabinose)(-1), which represented 69.9% of the theoretically maximal yield. Moreover, this strain produced 110.2 mM succinate using combined substrates of glucose and arabinose. To date, this is the highest succinate production under aerobic conditions in minimal medium.

  15. GSM mobile phone radiation suppresses brain glucose metabolism

    PubMed Central

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-01-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  16. Metabolic profile of normal glucose-tolerant subjects with elevated 1-h plasma glucose values

    PubMed Central

    Pramodkumar, Thyparambil Aravindakshan; Priya, Miranda; Jebarani, Saravanan; Anjana, Ranjit Mohan; Mohan, Viswanathan; Pradeepa, Rajendra

    2016-01-01

    Aim: The aim of this study was to compare the metabolic profiles of subjects with normal glucose tolerance (NGT) with and without elevated 1-h postglucose (1HrPG) values during an oral glucose tolerance test (OGTT). Methodology: The study group comprised 996 subjects without known diabetes seen at tertiary diabetes center between 2010 and 2014. NGT was defined as fasting plasma glucose <100 mg/dl (5.5 mmol/L) and 2-h plasma glucose <140 mg/dl (7.8 mmol/L) after an 82.5 g oral glucose (equivalent to 75 g of anhydrous glucose) OGTT. Anthropometric measurements and biochemical investigations were done using standardized methods. The prevalence rate of generalized and central obesity, hypertension, dyslipidemia, and metabolic syndrome (MS) was determined among the NGT subjects stratified based on their 1HrPG values as <143 mg/dl, ≥143–<155 mg/dl, and ≥155 mg/dl, after adjusting for age, sex, body mass index (BMI), waist circumference, alcohol consumption, smoking, and family history of diabetes. Results: The mean age of the 996 NGT subjects was 48 ± 12 years and 53.5% were male. The mean glycated hemoglobin for subjects with 1HrPG <143 mg/dl was 5.5%, for those with 1HrPG ≥143–<155 mg/dl, 5.6% and for those with 1HrPG ≥155 mg/dl, 5.7%. NGT subjects with 1HrPG ≥143–<155 mg/dl and ≥155 mg/dl had significantly higher BMI, waist circumference, systolic and diastolic blood pressure, triglyceride, total cholesterol/high-density lipoprotein (HDL) ratio, triglyceride/HDL ratio, leukocyte count, and gamma glutamyl aminotransferase (P < 0.05) compared to subjects with 1HrPG <143 mg/dl. The odds ratio for MS for subjects with 1HrPG ≥143 mg/dl was 1.84 times higher compared to subjects with 1HrPG <143 mg/dl taken as the reference. Conclusion: NGT subjects with elevated 1HrPG values have a worse metabolic profile than those with normal 1HrPG during an OGTT. PMID:27730069

  17. Glucose metabolism and thermogenesis during glucose and insulin infusion in severely underweight patients.

    PubMed

    Gallen, I W; Macdonald, I A; Allison, S P

    1992-01-01

    This study investigates the effects of gross loss of body weight on glucose disposal (GD), storage (GS), oxidation (GO), and the thermogenic response (TR) during hyperinsulinemic euglycemic glucose infusion in 9 underweight but nourished patients (UP) and in 3 of the patients after weight gain (WGP). In UP, baseline metabolic rate (MR) was 4.1 +/- 0.2 kJ/min and respiratory exchange ratio (RER) 0.97 +/- 0.02. During the final 30 minutes of hyperinsulinemia MR rose by 0.32 +/- 0.07 kJ/min (p less than .01) and RER rose to 1.09 +/- 0.03 (p less than .01). GD was 61 +/- 3 mumol/kg per minute, GO 35 +/- 1 mumol/kg per minute, and GS 26 +/- 4 mumol/kg per minute. The energy cost of glucose storage as glycogen was 0.15 kJ/min, and as lipid was 0.2 kJ/min. In WGP baseline MR was 4.5 +/- 0.4 kJ/min and RER was 0.91 +/- 0.03. During hyperinsulinemia MR rose by 0.63 +/- 0.2 kJ/min, RER rose to 0.93 +/- 0.02, GD was 53 +/- 4 mumol/kg per minute, GO was 30 +/- 3 mumol/kg per minute, and GS was 23 +/- 1 mumol/kg per minute. The energy cost for this glucose storage was 0.22 kJ/min. Therefore, during hyperinsulinemia in UP, GD, and TR are similar, but GO is greater and GS is less than previously reported in healthy subjects. However, this TR is entirely accounted for by the energy cost of glucose storage with no evidence of facultative thermogenesis. In WGP, all responses were similar to those in healthy subjects, and the TR was in excess of that required of the energy cost of glucose storage.

  18. Glucose metabolism alterations in patients with bipolar disorder.

    PubMed

    Rosso, Gianluca; Cattaneo, Annamaria; Zanardini, Roberta; Gennarelli, Massimo; Maina, Giuseppe; Bocchio-Chiavetto, Luisella

    2015-09-15

    Patients with bipolar disorder (BD) are more frequently affected by metabolic syndrome (MetS) than the general population, but the neurobiological correlates underlying such association are still not clarified and few studies in BD have evaluated the role of regulators of lipid and glucose metabolism. The present study was aimed to investigate putative alterations in markers linked to metabolic dysfunctions as C-peptide, Ghrelin, GIP, GLP-1, Glucagon, Insulin, Leptin, PAI-1 (total), Resistin and Visfatin in a sample of BD patients compared to controls. Furthermore, associations between changes of metabolic markers and relevant clinical features, such as severity of symptomatology, number and type of past mood episodes, drug treatments and presence/absence of metabolic alterations (MetS, diabetes and cardiovascular disease) were analyzed. A total of 57 patients with BD and 49 healthy controls were recruited. The main results showed lower serum levels of Glucagon, GLP-1, Ghrelin, and higher levels of GIP in BD patients as compared to controls (p = 0.018 for Ghrelin; p < 0.0001 for Glucagon; p < 0.0001 for GLP-1; p < 0.0001 for GIP). Further, Glucagon and GLP-1 levels were significantly associated with the number of past mood episodes. These findings support the hypothesis that alterations in Glucagon, GLP-1, GIP and Ghrelin might be involved in BD pathogenesis and might represent useful biomarkers for the development of preventive and personalized therapies in this disorder. PMID:26120808

  19. Effects of salts on aerobic metabolism of Debaryomyces hansenii.

    PubMed

    Sánchez, Norma Silvia; Arreguín, Roberto; Calahorra, Martha; Peña, Antonio

    2008-12-01

    Debaryomyces hansenii was grown in YPD medium without or with 1.0 M NaCl or KCl. Respiration was higher with salt, but decreased if it was present during incubation. However, carbonylcyanide-3-chlorophenylhydrazone (CCCP) markedly increased respiration when salt was present during incubation. Salt also stimulated proton pumping that was partially inhibited by CCCP; this uncoupling of proton pumping may contribute to the increased respiratory rate. The ADP increase produced by CCCP in cells grown in NaCl was similar to that observed in cells incubated with or without salts. The alternative oxidase is not involved. Cells grown with salts showed increased levels of succinate and fumarate, and a decrease in isocitrate and malate. Undetectable levels of citrate and low-glutamate dehydrogenase activity were present only in NaCl cells. Both isocitrate dehydrogenase decreased, and isocitrate lyase and malate synthase increased. Glyoxylate did not increase, indicating an active metabolism of this intermediary. Higher phosphate levels were also found in the cells grown in salt. An activation of the glyoxylate cycle results from the salt stress, as well as an increased respiratory capacity, when cells are grown with salt, and a 'coupling' effect on respiration when incubated in the presence of salt.

  20. Insulin signalling and the regulation of glucose and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  1. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect

    PubMed Central

    Zhang, Shiwu; Yang, Chuanwei; Yang, Zhenduo; Zhang, Dan; Ma, Xiaoping; Mills, Gordon; Liu, Zesheng

    2015-01-01

    Glucose metabolism in mitochondria through oxidative phosphorylation (OXPHOS) for generation of adenosine triphosphate (ATP) is vital for cell function. However, reactive oxygen species (ROS), a by-product from OXPHOS, is a major source of endogenously produced toxic stressors on the genome. In fact, ATP could be efficiently produced in a high throughput manner without ROS generation in cytosol through glycolysis, which could be a unique and critical metabolic pathway to prevent spontaneous mutation during DNA replication. Therefore glycolysis is dominant in robust proliferating cells. Indeed, aerobic glycolysis, or the Warburg effect, in normal proliferating cells is an example of homeostasis of redox status by transiently shifting metabolic flux from OXPHOS to glycolysis to avoid ROS generation during DNA synthesis and protect genome integrity. The process of maintaining redox homeostasis is driven by genome wide transcriptional clustering with mitochondrial retrograde signaling and coupled with the glucose metabolic pathway and cell division cycle. On the contrary, the Warburg effect in cancer cells is the results of the alteration of redox status from a reprogramed glucose metabolic pathway caused by the dysfunctional OXPHOS. Mutations in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) disrupt mitochondrial structural integrity, leading to reduced OXPHOS capacity, sustained glycolysis and excessive ROS leak, all of which are responsible for tumor initiation, progression and metastasis. A “plumbing model” is used to illustrate how redox status could be regulated through glucose metabolic pathway and provide a new insight into the understanding of the Warburg effect in both normal and cancer cells. PMID:26101696

  2. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect

    PubMed Central

    Zhang, Shiwu; Yang, Chuanwei; Yang, Zhenduo; Zhang, Dan; Ma, Xiaoping; Mills, Gordon; Liu, Zesheng

    2015-01-01

    Glucose metabolism in mitochondria through oxidative phosphorylation (OXPHOS) for generation of adenosine triphosphate (ATP) is vital for cell function. However, reactive oxygen species (ROS), a by-product from OXPHOS, is a major source of endogenously produced toxic stressors on the genome. In fact, ATP could be efficiently produced in a high throughput manner without ROS generation in cytosol through glycolysis, which could be a unique and critical metabolic pathway to prevent spontaneous mutation during DNA replication. Therefore glycolysis is dominant in robust proliferating cells. Indeed, aerobic glycolysis, or the Warburg effect, in normal proliferating cells is an example of homeostasis of redox status by transiently shifting metabolic flux from OXPHOS to glycolysis to avoid ROS generation during DNA synthesis and protect genome integrity. The process of maintaining redox homeostasis is driven by genome wide transcriptional clustering with mitochondrial retrograde signaling and coupled with the glucose metabolic pathway and cell division cycle. On the contrary, the Warburg effect in cancer cells is the results of the alteration of redox status from a reprogramed glucose metabolic pathway caused by the dysfunctional OXPHOS. Mutations in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) disrupt mitochondrial structural integrity, leading to reduced OXPHOS capacity, sustained glycolysis and excessive ROS leak, all of which are responsible for tumor initiation, progression and metastasis. A “plumbing model” is used to illustrate how redox status could be regulated through glucose metabolic pathway and provide a new insight into the understanding of the Warburg effect in both normal and cancer cells. PMID:26045978

  3. Effect of glucose load and of insulin on the metabolism of glucose and of palmitate in sheep

    PubMed Central

    West, C. E.; Passey, R. F.

    1967-01-01

    1. Simultaneous measurements of the entry rates of palmitate and glucose have been made in Merino sheep (wethers), starved for 24hr., by using constant infusions of [9,10-3H2]palmitate and [U-14C]glucose. 2. The infusion of glucose into the peripheral circulation of the sheep lowered the endogenous entry of both glucose and palmitate. Since palmitate is roughly metabolically representative of the free fatty acid fraction, there was no marked change in the calories available to the sheep. 3. The infusion of insulin into either the peripheral or portal circulation increased the uptake of glucose and decreased the uptake of palmitate by the tissues of the sheep. 4. The infusion of insulin into the peripheral circulation produced a depression in glucose entry after about 80min., whereas the infusion of insulin into the portal circulation produced an almost immediate depression in glucose entry. 5. The hypoglycaemia produced gave rise to an increase in free fatty acid production followed by an increase in glucose production. 6. No direct effect of insulin on the metabolism of free fatty acids has been demonstrated by the techniques used. The effect of insulin on the metabolism of free fatty acids is apparently mediated through its effect on glucose metabolism. PMID:6030300

  4. Direct conversion of glucose to malate by synthetic metabolic engineering.

    PubMed

    Ye, Xiaoting; Honda, Kohsuke; Morimoto, Yumi; Okano, Kenji; Ohtake, Hisao

    2013-03-10

    Synthetic metabolic engineering enables us to construct an in vitro artificial synthetic pathways specialized for chemical manufacturing through the simple heat-treatment of the recombinant mesophiles having thermophilic enzymes, followed by rational combination of those biocatalytic modules. In this work, we constructed a synthetic pathway capable of direct conversion of glucose to malate. The reversible carboxylation of pyruvate catalyzed by a malic enzyme derived from Thermococcus kodakarensis (TkME) (ΔG°'=+7.3kJmol(-1)) was coupled with a thermodynamically favorable non-ATP-forming Embden-Meyerhof pathway to balance the consumption and regeneration of redox cofactors and to shift the overall equilibrium toward malate production (glucose+2HCO3(-)+2H→2 malate+2H2O; ΔG°'=-121.4kJmol(-1)). TkME exhibited both pyruvate carboxylation (malate-forming) and pyruvate reduction (lactate-forming) activities. By increasing HCO3(-) concentration, the reaction specificity could be redirected to malate production. As a result, the direct conversion of glucose to malate was achieved with a molar yield of 60%.

  5. Polysaccharides from Enteromorpha prolifera Improve Glucose Metabolism in Diabetic Rats

    PubMed Central

    Lin, Wenting; Wang, Wenxiang; Liao, Dongdong; Chen, Damiao; Zhu, Pingping; Cai, Guoxi; Kiyoshi, Aoyagi

    2015-01-01

    This study investigated the effects of polysaccharides from Enteromorpha prolifera (PEP) on glucose metabolism in a rat model of diabetes mellitus (DM). PEP (0, 150, 300, and 600 mg/kg) was administered intragastrically to rats for four weeks. After treatment, fasting blood glucose (FBG) and insulin (INS) levels were measured, and the insulin sensitivity index (ISI) was calculated. The morphopathological changes in the pancreas were observed. Serum samples were collected to measure the oxidant-antioxidant status. The mRNA expression levels of glucokinase (GCK) and insulin receptor (InsR) in liver tissue and glucose transporter type 4 (GLUT-4) and adiponectin (APN) in adipose tissue were determined. Compared with the model group, the FBG and INS levels were lower, the ISI was higher, and the number of islet β-cells was significantly increased in all the PEP groups. In the medium- and high-dose PEP groups, MDA levels decreased, and the enzymatic activities of SOD and GSH-Px increased. The mRNA expression of InsR and GCK increased in all the PEP groups; APN mRNA expression increased in the high-dose PEP group, and GLUT-4 mRNA expression increased in adipose tissue. These findings suggest that PEP is a potential therapeutic agent that can be utilized to treat DM. PMID:26347892

  6. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    PubMed

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling.

  7. Hindlimb muscle fibre size and glycogen stores in bank voles with increased aerobic exercise metabolism.

    PubMed

    Jaromin, Ewa; Wyszkowska, Julia; Labecka, Anna Maria; Sadowska, Edyta Teresa; Koteja, Paweł

    2016-02-01

    To test hypotheses concerning physiological factors limiting the rate of aerobic exercise metabolism, we used a unique experimental evolution model: lines of bank voles selected for high swim-induced aerobic metabolism (A) and unselected, control lines (C). We investigated putative adaptations that result in the increased performance of the hindlimb muscle (gastrocnemius joined with plantaris). The body mass-adjusted muscle mass was higher in A-lines (0.093 g) than in C-lines (0.083 g; P=0.01). However, selection did not affect mean muscle fibre cross-sectional area (P=0.34) or glycogen content assessed with a histochemical periodic acid-Schiff reaction (PAS; P=0.82). The results suggest that the increased aerobic performance is achieved by an increase of total muscle mass, without major qualitative changes in the muscle fibre architecture. However, such a conclusion should be treated with caution, because other modifications, such as increased density of capillaries or mitochondria, could occur. PMID:26685167

  8. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans.

    PubMed Central

    Boyle, P J; Scott, J C; Krentz, A J; Nagy, R J; Comstock, E; Hoffman, C

    1994-01-01

    Systemic glucose utilization declines during sleep in man. We tested the hypothesis that this decline in utilization is largely accounted for by reduced brain glucose metabolism. 10 normal subjects underwent internal jugular and radial artery cannulation to determine cerebral blood flow by N2O equilibrium technique and to quantitate cross-brain glucose and oxygen differences before and every 3 h during sleep. Sleep stage was graded by continuous electroencephalogram, and systemic glucose turnover was estimated by isotope dilution. Brain glucose metabolism fell from 33.6 +/- 2.2 mumol/100 g per min (mean +/- SE) before sleep (2300 h) to a mean nadir of 24.3 +/- 1.1 mumol/100 g per min at 0300 h during sleep (P = 0.001). Corresponding rates of systemic glucose utilization fell from 13.2 +/- 0.8 to 11.0 +/- 0.5 mumol/kg per min (P = 0.003). Diminished brain glucose metabolism was the product of a reduced arteriovenous glucose difference, 0.643 +/- 0.024 to 0.546 +/- 0.020 mmol/liter (P = 0.002), and cerebral blood flow, 50.3 +/- 2.8 to 44.6 +/- 1.4 cc/100 g per min (P = 0.021). Brain oxygen metabolism fell commensurately from 153.4 +/- 11.8 to 128.0 +/- 8.4 mumol/100 g per min (P = 0.045). The observed reduction in brain metabolism occurred independent of stage of central nervous system electrical activity (electroencephalographic data), and was more closely linked to duration of sleep. We conclude that a decline in brain glucose metabolism is a significant determinant of falling rates of systemic glucose utilization during sleep. Images PMID:8113391

  9. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation

    PubMed Central

    Zheng, Xinde; Boyer, Leah; Jin, Mingji; Mertens, Jerome; Kim, Yongsung; Ma, Li; Ma, Li; Hamm, Michael; Gage, Fred H; Hunter, Tony

    2016-01-01

    How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size. DOI: http://dx.doi.org/10.7554/eLife.13374.001 PMID:27282387

  10. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    PubMed Central

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G.; Kuipers, Oscar P.; Vinga, Susana; Neves, Ana R.

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  11. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    PubMed

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  12. Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism.

    PubMed

    Chen, Guo-Qing; Tang, Cheng-Fang; Shi, Xiao-Ke; Lin, Cheng-Yuan; Fatima, Sarwat; Pan, Xiao-Hua; Yang, Da-Jian; Zhang, Ge; Lu, Ai-Ping; Lin, Shu-Hai; Bian, Zhao-Xiang

    2015-09-15

    The Akt/mTORC1 pathway plays a central role in the activation of Warburg effect in cancer. Here, we present for the first time that halofuginone (HF) treatment inhibits colorectal cancer (CRC) growth both in vitro and in vivo through regulation of Akt/mTORC1 signaling pathway. Halofuginone treatment of human CRC cells inhibited cell proliferation, induced the generation of reactive oxygen species and apoptosis. As expected, reduced level of NADPH was also observed, at least in part due to inactivation of glucose-6-phosphate dehydrogenase in pentose phosphate pathway upon HF treatment. Given these findings, we further investigated metabolic regulation of HF through Akt/mTORC1-mediated aerobic glycolysis and found that HF downregulated Akt/mTORC1 signaling pathway. Moreover, metabolomics delineated the slower rates in both glycolytic flux and glucose-derived tricarboxylic acid cycle flux. Meanwhile, both glucose transporter GLUT1 and hexokinase-2 in glycolysis were suppressed in CRC cells upon HF treatment, to support our notion that HF regulates Akt/mTORC1 signaling pathway to dampen glucose uptake and glycolysis in CRC cells. Furthermore, HF retarded tumor growth in nude mice inoculated with HCT116 cells, showing the anticancer activity of HF through metabolic regulation of Akt/mTORC1 in CRC. PMID:26160839

  13. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model.

    PubMed

    Szary, Nicholas; Rector, R Scott; Uptergrove, Grace M; Ridenhour, Suzanne E; Shukla, Shivendra D; Thyfault, John P; Koch, Lauren G; Britton, Steven L; Ibdah, Jamal A

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide "metabolic protection" from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and β-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  14. Epithelial and Mesenchymal Tumor Compartments Exhibit In Vivo Complementary Patterns of Vascular Perfusion and Glucose Metabolism1

    PubMed Central

    Galie, Mirco; Farace, Paolo; Nanni, Cristina; Spinelli, Antonello; Nicolato, Elena; Boschi, Federico; Magnani, Paolo; Trespidi, Silvia; Ambrosini, Valentina; Fanti, Stefano; Merigo, Flavia; Osculati, Francesco; Marzola, Pasquina; Sbarbati, Andrea

    2007-01-01

    Glucose transport and consumption are increased in tumors, and this is considered a diagnostic index of malignancy. However, there is recent evidence that carcinoma-associated stromal cells are capable of aerobic metabolism with low glucose consumption, at least partly because of their efficient vascular supply. In the present study, using dynamic contrast-enhanced magnetic resonance imaging and [F-18]fluorodeoxyglucose (FDG) positron emission tomography (PET), we mapped in vivo the vascular supply and glucose metabolism in syngeneic experimental models of carcinoma and mesenchymal tumor. We found that in both tumor histotypes, regions with high vascular perfusion exhibited a significantly lower FDG uptake. This reciprocity was more conspicuous in carcinomas than in mesenchymal tumors, and regions with a high-vascular/low-FDG uptake pattern roughly overlapped with a stromal capsule and intratumoral large connectival septa. Accordingly, mesenchymal tumors exhibited a higher vascular perfusion and a lower FDG uptake than carcinomas. Thus, we provide in vivo evidence of vascular/metabolic reciprocity between epithelial and mesenchymal histotypes in tumors, suggesting a new intriguing aspect of epithelial-stromal interaction. Our results suggests that FDG-PET-based clinical analysis can underestimate the malignity or tumor extension of carcinomas exhibiting any trait of “mesenchymalization” such as desmoplasia or epithelial-mesenchymal transition. PMID:18030358

  15. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation.

    PubMed

    Holmes, Andrew P; Turner, Philip J; Carter, Paul; Leadbeater, Wendy; Ray, Clare J; Hauton, David; Buckler, Keith J; Kumar, Prem

    2014-10-15

    The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate PO2 led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge.

  16. Integration of ChREBP-Mediated Glucose Sensing into Whole Body Metabolism.

    PubMed

    Baraille, Floriane; Planchais, Julien; Dentin, Renaud; Guilmeau, Sandra; Postic, Catherine

    2015-11-01

    Since glucose is the principal energy source for most cells, many organisms have evolved numerous and sophisticated mechanisms to sense glucose and respond to it appropriately. In this context, cloning of the carbohydrate responsive element binding protein has unraveled a critical molecular link between glucose metabolism and transcriptional reprogramming induced by glucose. In this review, we detail major findings that have advanced our knowledge of glucose sensing.

  17. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.

    PubMed

    Panfoli, Isabella; Ravera, Silvia; Podestà, Marina; Cossu, Claudia; Santucci, Laura; Bartolucci, Martina; Bruschi, Maurizio; Calzia, Daniela; Sabatini, Federica; Bruschettini, Matteo; Ramenghi, Luca Antonio; Romantsik, Olga; Marimpietri, Danilo; Pistoia, Vito; Ghiggeri, Gianmarco; Frassoni, Francesco; Candiano, Giovanni

    2016-04-01

    Exosomes are secreted nanovesicles that are able to transfer RNA and proteins to target cells. The emerging role of mesenchymal stem cell (MSC) exosomes as promoters of aerobic ATP synthesis restoration in damaged cells, prompted us to assess whether they contain an extramitochondrial aerobic respiration capacity. Exosomes were isolated from culture medium of human MSCs from umbilical cord of ≥37-wk-old newborns or between 28- to 30-wk-old newborns (i.e.,term or preterm infants). Characterization of samples was conducted by cytofluorometry. Oxidative phosphorylation capacity was assessed by Western blot analysis, oximetry, and luminometric and fluorometric analyses. MSC exosomes express functional respiratory complexes I, IV, and V, consuming oxygen. ATP synthesis was only detectable in exosomes from term newborns, suggestive of a specific mechanism that is not completed at an early gestational age. Activities are outward facing and comparable to those detected in mitochondria isolated from term MSCs. MSC exosomes display an unsuspected aerobic respiratory ability independent of whole mitochondria. This may be relevant for their ability to rescue cell bioenergetics. The differential oxidative metabolism of pretermvs.term exosomes sheds new light on the preterm newborn's clinical vulnerability. A reduced ability to repair damaged tissue and an increased capability to cope with anoxic environment for preterm infants can be envisaged.-Panfoli, I., Ravera, S., Podestà, M., Cossu, C., Santucci, L., Bartolucci, M., Bruschi, M., Calzia, D., Sabatini, F., Bruschettini, M., Ramenghi, L. A., Romantsik, O., Marimpietri, D., Pistoia, V., Ghiggeri, G., Frassoni, F., Candiano, G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.

  18. Sex-Specific Differences in Lipid and Glucose Metabolism

    PubMed Central

    Varlamov, Oleg; Bethea, Cynthia L.; Roberts, Charles T.

    2014-01-01

    Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-utilization patterns; i.e., females store more lipids and have higher whole-body insulin sensitivity than males, while males tend to oxidize more lipids than females. These patterns are influenced by the menstrual phase in females, and by nutritional status and exercise intensity in both sexes. This minireview focuses on sex-specific mechanisms in lipid and glucose metabolism and their regulation by sex hormones, with a primary emphasis on studies in humans and the most relevant pre-clinical model of human physiology, non-human primates. PMID:25646091

  19. Synergistic mechanism for tetrandrine on fluconazole against Candida albicans through the mitochondrial aerobic respiratory metabolism pathway.

    PubMed

    Guo, Hui; Xie, Si Ming; Li, Shui Xiu; Song, Yan Jun; Lv, Xia Lin; Zhang, Hong

    2014-07-01

    We found that tetrandrine (TET) can reverse the resistance of Candida albicans to fluconazole (FLC) and that this interaction is associated with the inhibition of drug efflux pumps. Mitochondrial aerobic respiration, which plays a major role in C. albicans metabolism, is the primary source of ATP for cellular processes, including the activation of efflux pumps. However, it was unclear if TET exerts its synergistic action against C. albicans via its impact on the mitochondrial aerobic respiratory metabolism. To investigate this mechanism, we examined the impact of FLC in the presence or absence of TET on two C. albicans strains obtained from a single parental source (FLC-sensitive strain CA-1 and FLC-resistant strain CA-16). We analysed key measures of energy generation and conversion, including the activity of respiration chain complexes I and III (CI and CIII), ATP synthase (CV) activity, and the generation of reactive oxygen species (ROS), and studied intracellular ATP levels and the mitochondrial membrane potential (ΔΨm), which has a critical impact on energy transport. Mitochondrial morphology was observed by confocal microscopy. Our functional analyses revealed that, compared with strains treated only with FLC, TET+FLC increased the ATP levels and decreased ΔΨm in CA-1, but decreased ATP levels and increased ΔΨm in CA-16 (P<0.05). Additionally, CI, CIII and CV activity decreased by 23-48%. The production of ROS increased by two- to threefold and mitochondrial morphology was altered in both strains. Our data suggested that TET impacted mitochondrial aerobic respiratory metabolism by influencing the generation and transport of ATP, reducing the utilization of ATP, and resulting in the inhibition of drug efflux pump activity. This activity contributed to the synergistic action of TET on FLC against C. albicans. PMID:24790082

  20. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h−1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene−1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  1. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  2. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    PubMed Central

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-01-01

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922

  3. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.

    PubMed

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-05-22

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×10⁷ cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  4. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes.

    PubMed

    Liao, Yi-Hung; Sung, Yu-Chi; Chou, Chun-Chung; Chen, Chung-Yu

    2016-01-01

    Changes in an athlete's physiological and health metabolic profiles after detraining have not been studied in elite Taekwondo (TKD) athletes. To enable a better understanding of these physiological changes to training cessation, this study examined the effects of 8-weeks detraining on the aerobic capacity, body composition, inflammatory status and health metabolic profile in elite TKD athletes. Sixteen elite TKD athletes (age: 21.0 ± 0.8 yrs, BMI: 22.4 ± 3.9 kg/m2; Mean ± SD; 11 males and 5 females) participated in this study. Physical activity level assessment using computerized physical activity logs was performed during the competitive preparation season (i.e. one-week before national competition) and at two week intervals throughout the detraining period. Participant aerobic capacity, body fat, and blood biomarkers were measured before and after detraining, and the blood biomarker analyses included leukocyte subpopulations, blood glucose, insulin, dehydroepiandrosterone-sulfate (DHEA-S), and cortisol. Eight-week detraining increased DHEA-S/cortisol ratio (+57.3%, p = 0.004), increased insulin/cortisol ratio (+59.9%, p = 0.004), reduced aerobic power (-2.43%, p = 0.043), increased body fat accumulation (body fat%: +21.3%, p < 0.001), decreased muscle mass (muscle mass%: -4.04%, p < 0.001), and elevated HOMA-IR (the biomarker of systemic insulin resistance; +34.2%, p = 0.006). The neutrophil-to-lymphocyte ratio (NLR), a systemic inflammatory index, increased by 48.2% (p = 0.005). The change in aerobic capacity was correlated with the increased fat mass (r = -0.429, p = 0.049) but not with muscle loss. An increase in the NLR was correlated to the changes in HOMA-IR (r = 0.44, p = 0.044) and aerobic capacity (r = -0.439, p = 0.045). We demonstrate that 8-week detraining suppresses physiological stress but rapidly results in declines in athletic performance and health metabolic profiles, including reduced aerobic capacity, increased body fat, muscle loss, insulin

  5. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes

    PubMed Central

    Liao, Yi-Hung; Sung, Yu-Chi

    2016-01-01

    Changes in an athlete’s physiological and health metabolic profiles after detraining have not been studied in elite Taekwondo (TKD) athletes. To enable a better understanding of these physiological changes to training cessation, this study examined the effects of 8-weeks detraining on the aerobic capacity, body composition, inflammatory status and health metabolic profile in elite TKD athletes. Sixteen elite TKD athletes (age: 21.0 ± 0.8 yrs, BMI: 22.4 ± 3.9 kg/m2; Mean ± SD; 11 males and 5 females) participated in this study. Physical activity level assessment using computerized physical activity logs was performed during the competitive preparation season (i.e. one-week before national competition) and at two week intervals throughout the detraining period. Participant aerobic capacity, body fat, and blood biomarkers were measured before and after detraining, and the blood biomarker analyses included leukocyte subpopulations, blood glucose, insulin, dehydroepiandrosterone-sulfate (DHEA-S), and cortisol. Eight-week detraining increased DHEA-S/cortisol ratio (+57.3%, p = 0.004), increased insulin/cortisol ratio (+59.9%, p = 0.004), reduced aerobic power (–2.43%, p = 0.043), increased body fat accumulation (body fat%: +21.3%, p < 0.001), decreased muscle mass (muscle mass%: –4.04%, p < 0.001), and elevated HOMA-IR (the biomarker of systemic insulin resistance; +34.2%, p = 0.006). The neutrophil-to-lymphocyte ratio (NLR), a systemic inflammatory index, increased by 48.2% (p = 0.005). The change in aerobic capacity was correlated with the increased fat mass (r = –0.429, p = 0.049) but not with muscle loss. An increase in the NLR was correlated to the changes in HOMA-IR (r = 0.44, p = 0.044) and aerobic capacity (r = –0.439, p = 0.045). We demonstrate that 8-week detraining suppresses physiological stress but rapidly results in declines in athletic performance and health metabolic profiles, including reduced aerobic capacity, increased body fat, muscle

  6. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes.

    PubMed

    Liao, Yi-Hung; Sung, Yu-Chi; Chou, Chun-Chung; Chen, Chung-Yu

    2016-01-01

    Changes in an athlete's physiological and health metabolic profiles after detraining have not been studied in elite Taekwondo (TKD) athletes. To enable a better understanding of these physiological changes to training cessation, this study examined the effects of 8-weeks detraining on the aerobic capacity, body composition, inflammatory status and health metabolic profile in elite TKD athletes. Sixteen elite TKD athletes (age: 21.0 ± 0.8 yrs, BMI: 22.4 ± 3.9 kg/m2; Mean ± SD; 11 males and 5 females) participated in this study. Physical activity level assessment using computerized physical activity logs was performed during the competitive preparation season (i.e. one-week before national competition) and at two week intervals throughout the detraining period. Participant aerobic capacity, body fat, and blood biomarkers were measured before and after detraining, and the blood biomarker analyses included leukocyte subpopulations, blood glucose, insulin, dehydroepiandrosterone-sulfate (DHEA-S), and cortisol. Eight-week detraining increased DHEA-S/cortisol ratio (+57.3%, p = 0.004), increased insulin/cortisol ratio (+59.9%, p = 0.004), reduced aerobic power (-2.43%, p = 0.043), increased body fat accumulation (body fat%: +21.3%, p < 0.001), decreased muscle mass (muscle mass%: -4.04%, p < 0.001), and elevated HOMA-IR (the biomarker of systemic insulin resistance; +34.2%, p = 0.006). The neutrophil-to-lymphocyte ratio (NLR), a systemic inflammatory index, increased by 48.2% (p = 0.005). The change in aerobic capacity was correlated with the increased fat mass (r = -0.429, p = 0.049) but not with muscle loss. An increase in the NLR was correlated to the changes in HOMA-IR (r = 0.44, p = 0.044) and aerobic capacity (r = -0.439, p = 0.045). We demonstrate that 8-week detraining suppresses physiological stress but rapidly results in declines in athletic performance and health metabolic profiles, including reduced aerobic capacity, increased body fat, muscle loss, insulin

  7. Failure of Hyperglycemia and Hyperinsulinemia to Compensate for Impaired Metabolic Response to an Oral Glucose Load

    PubMed Central

    Hussain, M; Janghorbani, M; Schuette, S; Considine, RV; Chisholm, RL; Mather, KJ

    2014-01-01

    Objective To evaluate whether the augmented insulin and glucose response to a glucose challenge is sufficient to compensate for defects in glucose utilization in obesity and type 2 diabetes, using a breath test measurement of integrated glucose metabolism. Methods Non-obese, obese normoglycemic and obese Type 2 diabetic subjects were studied on 2 consecutive days. A 75g oral glucose load spiked with 13C-glucose was administered, measuring exhaled breath 13CO2 as an integrated measure of glucose metabolism and oxidation. A hyperinsulinemic euglycemic clamp was performed, measuring whole body glucose disposal rate. Body composition was measured by DEXA. Multivariable analyses were performed to evaluate the determinants of the breath 13CO2. Results Breath 13CO2 was reduced in obese and type 2 diabetic subjects despite hyperglycemia and hyperinsulinemia. The primary determinants of breath response were lean mass, fat mass, fasting FFA concentrations, and OGTT glucose excursion. Multiple approaches to analysis showed that hyperglycemia and hyperinsulinemia were not sufficient to compensate for the defect in glucose metabolism in obesity and diabetes. Conclusions Augmented insulin and glucose responses during an OGTT are not sufficient to overcome the underlying defects in glucose metabolism in obesity and diabetes. PMID:25511878

  8. CYB5R3: a key player in aerobic metabolism and aging?

    PubMed

    de Cabo, Rafael; Siendones, Emilio; Minor, Robin; Navas, Plácido

    2010-01-01

    Aging results from a complex and not completely understood chain of processes that are associated with various negative metabolic consequences and ultimately leads to senescence and death. The intracellular ratio of pyridine nucleotides (NAD(+)/NADH), has been proposed to be at the center stage of age-related biochemical changes in organisms, and may help to explain the observed influence of calorie restriction and energy-sensitive proteins on lifespan in model organisms. Indeed, the NAD(+)/NADH ratios affect the activity of a number of proteins, including sirtuins, which have gained prominence in the aging field as potential mediators of the beneficial effects of calorie restriction and mediating lifespan. Here we review the activities of a redox enzyme (NQR1 in yeast and CYB5R3 in mammals) that also influences the NAD(+)/NADH ratio and may play a regulatory role that connects aerobic metabolism with aging. PMID:20228936

  9. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones.

    PubMed

    Pichette, Jennifer; Gagnon, Jeffrey

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  10. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones

    PubMed Central

    Pichette, Jennifer

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  11. Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers.

    PubMed Central

    Thompson, C H; Kemp, G J; Sanderson, A L; Dixon, R M; Styles, P; Taylor, D J; Radda, G K

    1996-01-01

    OBJECTIVE: To examine the effect of a relatively low dose of creatine on skeletal muscle metabolism and oxygen supply in a group of training athletes. METHODS: 31P magnetic resonance and near-infrared spectroscopy were used to study calf muscle metabolism in a group of 10 female members of a university swimming team. Studies were performed before and after a six week period of training during which they took either 2 g creatine daily or placebo. Calf muscle metabolism and creatine/choline ratios were studied in resting muscle, during plantar flexion exercise (10-15 min), and during recovery from exercise. RESULTS: There was no effect of creatine on metabolite ratios at rest or on metabolism during exercise and recovery from exercise. Muscle oxygen supply and exercise performance were not improved by creatine if compared to placebo treated subjects. CONCLUSIONS: Oral creatine supplementation at 2 g daily has no effect on muscle creatine concentration, muscle oxygen supply or muscle aerobic or anaerobic metabolism during endurance exercise. PMID:8889115

  12. The interplay between aerobic metabolism and antipredator performance: vigilance is related to recovery rate after exercise.

    PubMed

    Killen, Shaun S; Reid, Donald; Marras, Stefano; Domenici, Paolo

    2015-01-01

    When attacked by a predator, fish respond with a sudden fast-start motion away from the threat. Although this anaerobically-powered swimming necessitates a recovery phase which is fueled aerobically, little is known about links between escape performance and aerobic traits such as aerobic scope (AS) or recovery time after exhaustive exercise. Slower recovery ability or a reduced AS could make some individuals less likely to engage in a fast-start response or display reduced performance. Conversely, increased vigilance in some individuals could permit faster responses to an attack but also increase energy demand and prolong recovery after anaerobic exercise. We examined how AS and the ability to recover from anaerobic exercise relates to differences in fast-start escape performance in juvenile golden gray mullet at different acclimation temperatures. Individuals were acclimated to either 18, 22, or 26°C, then measured for standard and maximal metabolic rates and AS using intermittent flow respirometry. Anaerobic capacity and the time taken to recover after exercise were also assessed. Each fish was also filmed during a simulated attack to determine response latency, maximum speed and acceleration, and turning rate displayed during the escape response. Across temperatures, individuals with shorter response latencies during a simulated attack are those with the longest recovery time after exhaustive anaerobic exercise. Because a short response latency implies high preparedness to escape, these results highlight the trade-off between the increased vigilance and metabolic demand, which leads to longer recovery times in fast reactors. These results improve our understanding of the intrinsic physiological traits that generate inter-individual variability in escape ability, and emphasize that a full appreciation of trade-offs associated with predator avoidance and energy balance must include energetic costs associated with vigilance and recovery from anaerobic exercise.

  13. The interplay between aerobic metabolism and antipredator performance: vigilance is related to recovery rate after exercise

    PubMed Central

    Killen, Shaun S.; Reid, Donald; Marras, Stefano; Domenici, Paolo

    2015-01-01

    When attacked by a predator, fish respond with a sudden fast-start motion away from the threat. Although this anaerobically-powered swimming necessitates a recovery phase which is fueled aerobically, little is known about links between escape performance and aerobic traits such as aerobic scope (AS) or recovery time after exhaustive exercise. Slower recovery ability or a reduced AS could make some individuals less likely to engage in a fast-start response or display reduced performance. Conversely, increased vigilance in some individuals could permit faster responses to an attack but also increase energy demand and prolong recovery after anaerobic exercise. We examined how AS and the ability to recover from anaerobic exercise relates to differences in fast-start escape performance in juvenile golden gray mullet at different acclimation temperatures. Individuals were acclimated to either 18, 22, or 26°C, then measured for standard and maximal metabolic rates and AS using intermittent flow respirometry. Anaerobic capacity and the time taken to recover after exercise were also assessed. Each fish was also filmed during a simulated attack to determine response latency, maximum speed and acceleration, and turning rate displayed during the escape response. Across temperatures, individuals with shorter response latencies during a simulated attack are those with the longest recovery time after exhaustive anaerobic exercise. Because a short response latency implies high preparedness to escape, these results highlight the trade-off between the increased vigilance and metabolic demand, which leads to longer recovery times in fast reactors. These results improve our understanding of the intrinsic physiological traits that generate inter-individual variability in escape ability, and emphasize that a full appreciation of trade-offs associated with predator avoidance and energy balance must include energetic costs associated with vigilance and recovery from anaerobic exercise

  14. Aerobic metabolism and cardiac activity in the descendants of zebrafish exposed to pyrolytic polycyclic aromatic hydrocarbons.

    PubMed

    Lucas, Julie; Perrichon, Prescilla; Nouhaud, Marine; Audras, Alexandre; Leguen, Isabelle; Lefrancois, Christel

    2014-12-01

    The increase of anthropogenic activities on coastal areas induces discharges of polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystem. PAH effects depend not only on their concentration and the way of contamination but also on the different developmental stages of the organism. Zebrafish were exposed to relevant concentration of pyrolytic PAHs from the first meal (i.e., 5-day post fertilization, dpf) to mature adults. Parental effect of this type of exposure was evaluated through the assessment of aerobic metabolic scope, cardiac frequency, and cardiac mRNA expression on larval and/or embryo progeny of contaminated fish. Our results suggest that cardiac frequency increased in larval descendants of fish exposed to the environmental concentration of pyrolytic PAHs (i.e., 5 ng.g(-1) of food), while a lack of effect on aerobic metabolism in 5 dpf larvae was highlighted. A surexpression of mRNA related to the cardiac calcium transporting ATPase atp2a2a, a protein essential for contraction, is in accordance with this increasing cardiac frequency. Even if cardiac development genes cmlc1 and tnnt2a were not affected at early life stages tested, complementary work on cardiac structure could be interesting to better understand PAHs action.

  15. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells

    PubMed Central

    Kontro, Heidi; Cannino, Giuseppe; Rustin, Pierre; Dufour, Eric; Kainulainen, Heikki

    2015-01-01

    Introduction Diabetes Associated Protein in Insulin-sensitive Tissues (DAPIT) is a subunit of mitochondrial ATP synthase and has also been found to associate with the vacuolar H+-ATPase. Its expression is particularly high in cells with elevated aerobic metabolism and in epithelial cells that actively transport nutrients and ions. Deletion of DAPIT is known to induce loss of mitochondrial ATP synthase but the effects of its over-expression are obscure. Results In order to study the consequences of high expression of DAPIT, we constructed a transgenic cell line that constitutively expressed DAPIT in human embryonal kidney cells, HEK293T. Enhanced DAPIT expression decreased mtDNA content and mitochondrial mass, and saturated respiratory chain by decreasing H+-ATP synthase activity. DAPIT over-expression also increased mitochondrial membrane potential and superoxide level, and translocated the transcription factors hypoxia inducible factor 1α (Hif1α) and β-catenin to the nucleus. Accordingly, cells over-expressing DAPIT used more glucose and generated a larger amount of lactate compared to control cells. Interestingly, these changes were associated with an epithelial to mesenchymal (EMT)-like transition by changing E-cadherin to N-cadherin and up-regulating several key junction/adhesion proteins. At physiological level, DAPIT over-expression slowed down cell growth by G1 arrest and migration, and enhanced cell detachment. Several cancers also showed an increase in genomic copy number of Usmg5 (gene encoding DAPIT), thereby providing strong correlative evidence for DAPIT possibly having oncogenic function in cancers. Conclusions DAPIT over-expression thus appears to modulate mitochondrial functions and alter cellular regulations, promote anaerobic metabolism and induce EMT-like transition. We propose that DAPIT over-expression couples the changes in mitochondrial metabolism to physiological and pathophysiological regulations, and suggest it could play a critical

  16. Effects of dietary phosphate on glucose and lipid metabolism.

    PubMed

    Abuduli, Maerjianghan; Ohminami, Hirokazu; Otani, Tamaki; Kubo, Hitoshi; Ueda, Haruka; Kawai, Yoshichika; Masuda, Masashi; Yamanaka-Okumura, Hisami; Sakaue, Hiroshi; Yamamoto, Hironori; Takeda, Eiji; Taketani, Yutaka

    2016-04-01

    Recent epidemiological and animal studies have suggested that excess intake of phosphate (Pi) is a risk factor for the progression of chronic kidney disease and its cardiovascular complications. However, little is known about the impact of dietary high Pi intake on the development of metabolic disorders such as obesity and type 2 diabetes. In this study, we investigated the effects of dietary Pi on glucose and lipid metabolism in healthy rats. Male 8-wk-old Sprague-Dawley rats were divided into three groups and given experimental diets containing varying amounts of Pi, i.e., 0.2 [low Pi(LP)], 0.6 [control Pi(CP)], and 1.2% [high Pi(HP)]. After 4 wk, the HP group showed lower visceral fat accumulation compared with other groups, accompanied by a low respiratory exchange ratio (V̇CO2/V̇O2) without alteration of locomotive activity. The HP group had lower levels of plasma insulin and nonesterified fatty acids. In addition, the HP group also showed suppressed expression of hepatic lipogenic genes, including sterol regulatory element-binding protein-1c, fatty acid synthase, and acetyl-CoA carboxylase, whereas there was no difference in hepatic fat oxidation among the groups. On the other hand, uncoupling protein (UCP) 1 and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression were significantly increased in the brown adipose tissue (BAT) of the HP group. Our data demonstrated that a high-Pi diet can negatively regulate lipid synthesis in the liver and increase mRNA expression related to lipid oxidation and UCP1 in BAT, thereby preventing visceral fat accumulation. Thus, dietary Pi is a novel metabolic regulator. PMID:26786774

  17. pVHL is a regulator of glucose metabolism and insulin secretion in pancreatic β cells

    PubMed Central

    Zehetner, Jens; Danzer, Carsten; Collins, Stephan; Eckhardt, Katrin; Gerber, Philipp A.; Ballschmieter, Pia; Galvanovskis, Juris; Shimomura, Kenju; Ashcroft, Frances M.; Thorens, Bernard; Rorsman, Patrik; Krek, Wilhelm

    2008-01-01

    Insulin secretion from pancreatic β cells is stimulated by glucose metabolism. However, the relative importance of metabolizing glucose via mitochondrial oxidative phosphorylation versus glycolysis for insulin secretion remains unclear. von Hippel-Lindau (VHL) tumor suppressor protein, pVHL, negatively regulates hypoxia-inducible factor HIF1α, a transcription factor implicated in promoting a glycolytic form of metabolism. Here we report a central role for the pVHL–HIF1α pathway in the control of β-cell glucose utilization, insulin secretion, and glucose homeostasis. Conditional inactivation of Vhlh in β cells promoted a diversion of glucose away from mitochondria into lactate production, causing cells to produce high levels of glycolytically derived ATP and to secrete elevated levels of insulin at low glucose concentrations. Vhlh-deficient mice exhibited diminished glucose-stimulated changes in cytoplasmic Ca2+ concentration, electrical activity, and insulin secretion, which culminate in impaired systemic glucose tolerance. Importantly, combined deletion of Vhlh and Hif1α rescued these phenotypes, implying that they are the result of HIF1α activation. Together, these results identify pVHL and HIF1α as key regulators of insulin secretion from pancreatic β cells. They further suggest that changes in the metabolic strategy of glucose metabolism in β cells have profound effects on whole-body glucose homeostasis. PMID:19056893

  18. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    PubMed

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  19. Interaction between facilitated diffusion of glucose across the plasma membrane and its metabolism in Trichomonas vaginalis.

    PubMed

    ter Kuile, B H; Müller, M

    1993-06-01

    The parasitic protist Trichomonas vaginalis transports glucose across the plasma membrane by facilitated diffusion. The Km of the transporter for glucose was 1.6 mM. The uptake of labelled glucose in a minimal medium not allowing growth reached saturation only after 2.5 h, indicating the turnover of storage carbohydrate. Organisms grown on glucose showed higher activities both of the transporter and of the subsequent metabolic pathway than organisms grown on maltose. At low external glucose concentrations the transport step was rate limiting, at higher levels a subsequent enzymatic step. The uptake mechanism for glucose of T. vaginalis resembled that of parasitic kinetoplastid protists and Entamoeba histolytica.

  20. Peritoneal Dialysate Glucose Load and Systemic Glucose Metabolism in Non-Diabetics: Results from the GLOBAL Fluid Cohort Study

    PubMed Central

    Chess, James; Do, Jun-Young; Noh, Hyunjin; Lee, Hi-Bahl; Kim, Yong-Lim; Summers, Angela; Williams, Paul Ford; Davison, Sara; Dorval, Marc

    2016-01-01

    Background and Objectives Glucose control is a significant predictor of mortality in diabetic peritoneal dialysis (PD) patients. During PD, the local toxic effects of intra-peritoneal glucose are well recognized, but despite large amounts of glucose being absorbed, the systemic effects of this in non-diabetic patients are not clear. We sought to clarify whether dialysate glucose has an effect upon systemic glucose metabolism. Methods and Materials We analysed the Global Fluid Study cohort, a prospective, observational cohort study initiated in 2002. A subset of 10 centres from 3 countries with high data quality were selected (368 incident and 272 prevalent non-diabetic patients), with multilevel, multivariable analysis of the reciprocal of random glucose levels, and a stratified-by-centre Cox survival analysis. Results The median follow up was 5.6 and 6.4 years respectively in incident and prevalent patients. On multivariate analysis, serum glucose increased with age (β = -0.007, 95%CI -0.010, -0.004) and decreased with higher serum sodium (β = 0.002, 95%CI 0.0005, 0.003) in incident patients and increased with dialysate glucose (β = -0.0002, 95%CI -0.0004, -0.00006) in prevalent patients. Levels suggested undiagnosed diabetes in 5.4% of prevalent patients. Glucose levels predicted death in unadjusted analyses of both incident and prevalent groups but in an adjusted survival analysis they did not (for random glucose 6–10 compared with <6, Incident group HR 0.92, 95%CI 0.58, 1.46, Prevalent group HR 1.42, 95%CI 0.86, 2.34). Conclusions In prevalent non-diabetic patients, random glucose levels at a diabetic level are under-recognised and increase with dialysate glucose load. Random glucose levels predict mortality in unadjusted analyses, but this association has not been proven in adjusted analyses. PMID:27249020

  1. Decreased Insulin Receptors but Normal Glucose Metabolism in Duchenne Muscular Dystrophy

    NASA Astrophysics Data System (ADS)

    de Pirro, Roberto; Lauro, Renato; Testa, Ivano; Ferretti, Ginofabrizio; de Martinis, Carlo; Dellantonio, Renzo

    1982-04-01

    Compared to matched controls, 17 patients with Duchenne muscular dystrophy showed decreased insulin binding to monocytes due to decreased receptor concentration. These patients showed no signs of altered glucose metabolism and retrospective analysis of the clinical records of a further 56 such patients revealed no modification in carbohydrate metabolism. These data suggest that reduced insulin receptor number does not produce overt modifications of glucose metabolism in Duchenne muscular dystrophy.

  2. The effect of chlorpyrifos on thermogenic capacity of bank voles selected for increased aerobic exercise metabolism.

    PubMed

    Dheyongera, Geoffrey; Grzebyk, Katherine; Rudolf, Agata M; Sadowska, Edyta T; Koteja, Paweł

    2016-04-01

    Agro-chemicals potentially cause adverse effects in non-target organisms. The rate of animal energy metabolism can influence their susceptibility to pesticides by influencing food consumption, biotransformation and elimination rates of toxicants. We used experimental evolution to study the effects of inherent differences in energy metabolism rate and exposure to the organophosphate insecticide, chlorpyrifos (CPF) on thermogenic capacity in a wild rodent, the bank vole (Myodes = Clethrionomys glareolus). The voles were sampled from four replicate lines selected for high swim-induced aerobic metabolism (A) and four unselected control (C) lines. Thermogenic capacity, measured as the maximum cold-induced rate of oxygen consumption (VO2cold), was higher in the A - than C lines, and it decreased after continuous exposure to CPF via food or after a single dose administered via oral gavage, but only when measured shortly after exposure. VO2cold measured 24 h after repeated exposure was not affected. In addition, gavage with a single dose led to decreased food consumption and loss in body mass. Importantly, the adverse effects of CPF did not differ between the selected and control lines. Therefore, exposure to CPF has adverse effects on thermoregulatory performance and energy balance in this species. The effects are short-lived and their magnitude is not associated with the inherent level of energy metabolism. Even without severe symptoms of poisoning, fitness can be compromised under harsh environmental conditions, such as cold and wet weather.

  3. The effect of chlorpyrifos on thermogenic capacity of bank voles selected for increased aerobic exercise metabolism.

    PubMed

    Dheyongera, Geoffrey; Grzebyk, Katherine; Rudolf, Agata M; Sadowska, Edyta T; Koteja, Paweł

    2016-04-01

    Agro-chemicals potentially cause adverse effects in non-target organisms. The rate of animal energy metabolism can influence their susceptibility to pesticides by influencing food consumption, biotransformation and elimination rates of toxicants. We used experimental evolution to study the effects of inherent differences in energy metabolism rate and exposure to the organophosphate insecticide, chlorpyrifos (CPF) on thermogenic capacity in a wild rodent, the bank vole (Myodes = Clethrionomys glareolus). The voles were sampled from four replicate lines selected for high swim-induced aerobic metabolism (A) and four unselected control (C) lines. Thermogenic capacity, measured as the maximum cold-induced rate of oxygen consumption (VO2cold), was higher in the A - than C lines, and it decreased after continuous exposure to CPF via food or after a single dose administered via oral gavage, but only when measured shortly after exposure. VO2cold measured 24 h after repeated exposure was not affected. In addition, gavage with a single dose led to decreased food consumption and loss in body mass. Importantly, the adverse effects of CPF did not differ between the selected and control lines. Therefore, exposure to CPF has adverse effects on thermoregulatory performance and energy balance in this species. The effects are short-lived and their magnitude is not associated with the inherent level of energy metabolism. Even without severe symptoms of poisoning, fitness can be compromised under harsh environmental conditions, such as cold and wet weather. PMID:26878110

  4. Effects of Exhaustive Aerobic Exercise on Tryptophan-Kynurenine Metabolism in Trained Athletes.

    PubMed

    Strasser, Barbara; Geiger, Daniela; Schauer, Markus; Gatterer, Hannes; Burtscher, Martin; Fuchs, Dietmar

    2016-01-01

    Exhaustive exercise can cause a transient depression of immune function. Data indicate significant effects of immune activation cascades on the biochemistry of monoamines and amino acids such as tryptophan. Tryptophan can be metabolized through different pathways, a major route being the kynurenine pathway, which is often systemically up-regulated when the immune response is activated. The present study was undertaken to examine the effect of exhaustive aerobic exercise on biomarkers of immune activation and tryptophan metabolism in trained athletes. After a standardized breakfast 2 h prior to exercise, 33 trained athletes (17 women, 16 men) performed an incremental cycle ergometer exercise test at 60 rpm until exhaustion. After a 20 min rest phase, the participants performed a 20 min maximal time-trial on a cycle ergometer (RBM Cyclus 2, Germany). During the test, cyclists were strongly encouraged to choose a maximal pedalling rate that could be maintained for the respective test duration. Serum concentrations of amino acids tryptophan, kynurenine, phenylalanine, and tyrosine were determined by HPLC and immune system biomarker neopterin by ELISA at rest and immediately post exercise. Intense exercise was associated with a strong increase in neopterin concentrations (p<0.001), indicating increased immune activation following intense exercise. Exhaustive exercise significantly reduced tryptophan concentrations by 12% (p<0.001) and increased kynurenine levels by 6% (p = 0.022). Also phenylalanine to tyrosine ratios were lower after exercise as compared with baseline (p<0.001). The kynurenine to tryptophan ratio correlated with neopterin (r = 0.560, p<0.01). Thus, increased tryptophan catabolism by indoleamine 2,3-dioxygenase appears likely. Peak oxygen uptake correlated with baseline tryptophan and kynurenine concentrations (r = 0.562 and r = 0.511, respectively, both p<0.01). Findings demonstrate that exhaustive aerobic exercise is associated with increased immune

  5. Severe Obesity Shifts Metabolic Thresholds but Does Not Attenuate Aerobic Training Adaptations in Zucker Rats

    PubMed Central

    Rosa, Thiago S.; Simões, Herbert G.; Rogero, Marcelo M.; Moraes, Milton R.; Denadai, Benedito S.; Arida, Ricardo M.; Andrade, Marília S.; Silva, Bruno M.

    2016-01-01

    Severe obesity affects metabolism with potential to influence the lactate and glycemic response to different exercise intensities in untrained and trained rats. Here we evaluated metabolic thresholds and maximal aerobic capacity in rats with severe obesity and lean counterparts at pre- and post-training. Zucker rats (obese: n = 10, lean: n = 10) were submitted to constant treadmill bouts, to determine the maximal lactate steady state, and an incremental treadmill test, to determine the lactate threshold, glycemic threshold and maximal velocity at pre and post 8 weeks of treadmill training. Velocities of the lactate threshold and glycemic threshold agreed with the maximal lactate steady state velocity on most comparisons. The maximal lactate steady state velocity occurred at higher percentage of the maximal velocity in Zucker rats at pre-training than the percentage commonly reported and used for training prescription for other rat strains (i.e., 60%) (obese = 78 ± 9% and lean = 68 ± 5%, P < 0.05 vs. 60%). The maximal lactate steady state velocity and maximal velocity were lower in the obese group at pre-training (P < 0.05 vs. lean), increased in both groups at post-training (P < 0.05 vs. pre), but were still lower in the obese group at post-training (P < 0.05 vs. lean). Training-induced increase in maximal lactate steady state, lactate threshold and glycemic threshold velocities was similar between groups (P > 0.05), whereas increase in maximal velocity was greater in the obese group (P < 0.05 vs. lean). In conclusion, lactate threshold, glycemic threshold and maximal lactate steady state occurred at similar exercise intensity in Zucker rats at pre- and post-training. Severe obesity shifted metabolic thresholds to higher exercise intensity at pre-training, but did not attenuate submaximal and maximal aerobic training adaptations. PMID:27148063

  6. Effects of Exhaustive Aerobic Exercise on Tryptophan-Kynurenine Metabolism in Trained Athletes

    PubMed Central

    Strasser, Barbara; Geiger, Daniela; Schauer, Markus; Gatterer, Hannes; Burtscher, Martin; Fuchs, Dietmar

    2016-01-01

    Exhaustive exercise can cause a transient depression of immune function. Data indicate significant effects of immune activation cascades on the biochemistry of monoamines and amino acids such as tryptophan. Tryptophan can be metabolized through different pathways, a major route being the kynurenine pathway, which is often systemically up-regulated when the immune response is activated. The present study was undertaken to examine the effect of exhaustive aerobic exercise on biomarkers of immune activation and tryptophan metabolism in trained athletes. After a standardized breakfast 2 h prior to exercise, 33 trained athletes (17 women, 16 men) performed an incremental cycle ergometer exercise test at 60 rpm until exhaustion. After a 20 min rest phase, the participants performed a 20 min maximal time-trial on a cycle ergometer (RBM Cyclus 2, Germany). During the test, cyclists were strongly encouraged to choose a maximal pedalling rate that could be maintained for the respective test duration. Serum concentrations of amino acids tryptophan, kynurenine, phenylalanine, and tyrosine were determined by HPLC and immune system biomarker neopterin by ELISA at rest and immediately post exercise. Intense exercise was associated with a strong increase in neopterin concentrations (p<0.001), indicating increased immune activation following intense exercise. Exhaustive exercise significantly reduced tryptophan concentrations by 12% (p<0.001) and increased kynurenine levels by 6% (p = 0.022). Also phenylalanine to tyrosine ratios were lower after exercise as compared with baseline (p<0.001). The kynurenine to tryptophan ratio correlated with neopterin (r = 0.560, p<0.01). Thus, increased tryptophan catabolism by indoleamine 2,3-dioxygenase appears likely. Peak oxygen uptake correlated with baseline tryptophan and kynurenine concentrations (r = 0.562 and r = 0.511, respectively, both p<0.01). Findings demonstrate that exhaustive aerobic exercise is associated with increased immune

  7. The relationship between fasting serum glucose and cerebral glucose metabolism in late-life depression and normal aging

    PubMed Central

    Marano, Christopher M.; Workman, Clifford I.; Lyman, Christopher H.; Kramer, Elisse; Hermann, Carol R.; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S.

    2015-01-01

    Evidence exists for late-life depression (LLD) as both a prodrome of and risk factor for Alzheimer’s disease (AD). The underlying neurobiological mechanisms are poorly understood. Impaired peripheral glucose metabolism may explain the association between depression and AD given the connection between type 2 diabetes mellitus with both depression and AD. Positron emission tomography (PET) measures of cerebral glucose metabolism are sensitive to detecting changes in neural circuitry in LLD and AD. Fasting serum glucose (FSG) in non-diabetic young (YC; n=20) and elderly controls (EC; n=12) and LLD patients (n=16) was correlated with PET scans of cerebral glucose metabolism on a voxel-wise basis. The negative correlations were more extensive in EC versus YC and in LLD patients versus EC. Increased FSG correlated with decreased cerebral glucose metabolism in LLD patients to a greater extent than in EC in heteromodal association cortices involved in mood symptoms and cognitive deficits observed in LLD and dementia. Negative correlations in YC were observed in sensory and motor regions. Understanding the neurobiological consequences of diabetes and associated conditions will have substantial public health significance given that this is a modifiable risk factor for which prevention strategies could have an important impact on lowering dementia risk. PMID:24650451

  8. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation.

    PubMed

    Soeters, Maarten R; Soeters, Peter B; Schooneman, Marieke G; Houten, Sander M; Romijn, Johannes A

    2012-12-15

    The human organism has tools to cope with metabolic challenges like starvation that are crucial for survival. Lipolysis, lipid oxidation, ketone body synthesis, tailored endogenous glucose production and uptake, and decreased glucose oxidation serve to protect against excessive erosion of protein mass, which is the predominant supplier of carbon chains for synthesis of newly formed glucose. The starvation response shows that the adaptation to energy deficit is very effective and coordinated with different adaptations in different organs. From an evolutionary perspective, this lipid-induced effect on glucose oxidation and uptake is very strong and may therefore help to understand why insulin resistance in obesity and type 2 diabetes mellitus is difficult to treat. The importance of reciprocity in lipid and glucose metabolism during human starvation should be taken into account when studying lipid and glucose metabolism in general and in pathophysiological conditions in particular.

  9. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats

    SciTech Connect

    Jakobsen, J.; Nedergaard, M.; Aarslew-Jensen, M.; Diemer, N.H. )

    1990-04-01

    Brain regional glucose metabolism and regional blood flow were measured from autoradiographs by the uptake of ({sup 3}H)-2-deoxy-D-glucose and ({sup 14}C)iodoantipyrine in streptozocin-induced diabetic (STZ-D) rats. After 2 days of diabetes, glucose metabolism in the neocortex, basal ganglia, and white matter increased by 34, 37, and 8%, respectively, whereas blood flow was unchanged. After 4 mo, glucose metabolism in the same three regions was decreased by 32, 43, and 60%. This reduction was paralleled by a statistically nonsignificant reduction in blood flow in neocortex and basal ganglia. It is suggested that the decrease of brain glucose metabolism in STZ-D reflects increased ketone body oxidation and reduction of electrochemical work.

  10. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    SciTech Connect

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  11. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells.

    PubMed

    Salabei, Joshua K; Lorkiewicz, Pawel K; Mehra, Parul; Gibb, Andrew A; Haberzettl, Petra; Hong, Kyung U; Wei, Xiaoli; Zhang, Xiang; Li, Qianhong; Wysoczynski, Marcin; Bolli, Roberto; Bhatnagar, Aruni; Hill, Bradford G

    2016-06-24

    Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair. PMID:27151219

  12. Systemic Oxidative Stress Is Associated With Lower Aerobic Capacity and Impaired Skeletal Muscle Energy Metabolism in Patients With Metabolic Syndrome

    PubMed Central

    Yokota, Takashi; Kinugawa, Shintaro; Yamato, Mayumi; Hirabayashi, Kagami; Suga, Tadashi; Takada, Shingo; Harada, Kuniaki; Morita, Noriteru; Oyama-Manabe, Noriko; Kikuchi, Yasuka; Okita, Koichi; Tsutsui, Hiroyuki

    2013-01-01

    OBJECTIVE Systemic oxidative stress is associated with insulin resistance and obesity. We tested the hypothesis that systemic oxidative stress is linked to lower aerobic capacity and skeletal muscle dysfunction in metabolic syndrome (MetS). RESEARCH DESIGN AND METHODS The incremental exercise testing with cycle ergometer was performed in 14 male patients with MetS and 13 age-, sex-, and activity-matched healthy subjects. Systemic lipid peroxidation was assessed by serum thiobarbituric acid reactive substances (TBARS), and systemic antioxidant defense capacity was assessed by serum total thiols and enzymatic activity of superoxide dismutase (SOD). To assess skeletal muscle energy metabolism, we measured high-energy phosphates in the calf muscle during plantar flexion exercise and intramyocellular lipid (IMCL) in the resting leg muscle, using 31P- and 1proton-magnetic resonance spectroscopy, respectively. RESULTS Serum TBARS were elevated (12.4 ± 7.1 vs. 3.7 ± 1.1 μmol/L; P < 0.01), and serum total thiols and SOD activity were decreased (290.8 ± 51.2 vs. 398.7 ± 105.2 μmol/L, P < 0.01; and 22.2 ± 8.4 vs. 31.5 ± 8.5 units/L, P < 0.05, respectively) in patients with MetS compared with healthy subjects. Peak VO2 and anaerobic threshold normalized to body weight were significantly lower in MetS patients by 25 and 31%, respectively, and inversely correlated with serum TBARS (r = −0.49 and r = −0.50, respectively). Moreover, muscle phosphocreatine loss during exercise was 1.4-fold greater in patients with MetS (P < 0.05), and IMCL content was 2.9-fold higher in patients with MetS (P < 0.01), indicating impaired skeletal muscle energy metabolism, and these indices positively correlated with serum TBARS (r = 0.45 and r = 0.63, respectively). CONCLUSIONS Systemic oxidative stress was associated with lower aerobic capacity and impaired skeletal muscle energy metabolism in patients with MetS. PMID:23393211

  13. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis.

    PubMed

    Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J; Møller, Arne; Globinsky, Ronen; Fulbright, Robert K; Rothman, Douglas L; Gjedde, Albert

    2016-05-01

    Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means, regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF≈0.4) and glucose oxidation (OGI ≈ 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphorylation rates, with globally optimal maximum ATP turnover rates (VATP ≈ 9.4 µmol/g/min), in good agreement with (31)P and (13)C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization artefacts from relative PET measurements. PMID:26755443

  14. Three different [NiFe] hydrogenases confer metabolic flexibility in the obligate aerobe Mycobacterium smegmatis.

    PubMed

    Berney, Michael; Greening, Chris; Hards, Kiel; Collins, Desmond; Cook, Gregory M

    2014-01-01

    Mycobacterium smegmatis is an obligate aerobe that harbours three predicted [NiFe] hydrogenases, Hyd1 (MSMEG_2262–2263), Hyd2 (MSMEG_2720-2719) and Hyd3 (MSMEG_3931-3928). We show here that these three enzymes differ in their phylogeny, regulation and catalytic activity. Phylogenetic analysis revealed that Hyd1 groups with hydrogenases that oxidize H2 produced by metabolic processes, and Hyd2 is homologous to a novel group of putative high-affinity hydrogenases. Hyd1 and Hyd2 respond to carbon and oxygen limitation, and, in the case of Hyd1, hydrogen supplementation. Hydrogen consumption measurements confirmed that both enzymes can oxidize hydrogen. In contrast, the phylogenetic analysis and activity measurements of Hyd3 are consistent with the enzyme evolving hydrogen. Hyd3 is controlled by DosR, a regulator that responds to hypoxic conditions. The strict dependence of hydrogen oxidation of Hyd1 and Hyd2 on oxygen suggests that the enzymes are oxygen tolerant and linked to the respiratory chain. This unique combination of hydrogenases allows M. smegmatis to oxidize hydrogen at high (Hyd1) and potentially tropospheric (Hyd2) concentrations, as well as recycle reduced equivalents by evolving hydrogen (Hyd3). The distribution of these hydrogenases throughout numerous soil and marine species of actinomycetes suggests that oxic hydrogen metabolism provides metabolic flexibility in environments with changing nutrient fluxes.

  15. Effects of Simultaneous or Sequential Weight Loss Diet and Aerobic Interval Training on Metabolic Syndrome.

    PubMed

    Mora-Rodriguez, R; Ortega, J F; Guio de Prada, V; Fernández-Elías, V E; Hamouti, N; Morales-Palomo, F; Martinez-Vizcaino, V; Nelson, R K

    2016-04-01

    Our purpose in this study was to investigate efficient and sustainable combinations of exercise and diet-induced weight loss (DIET), in order to combat obesity in metabolic syndrome (MetS) patients. We examined the impact of aerobic interval training (AIT), followed by or concurrent to a DIET on MetS components. 36 MetS patients (54±9 years old; 33±4 BMI; 27 males and 9 females) underwent 16 weeks of AIT followed by another 16 weeks without exercise from the fall of 2013 to the spring of 2014. Participants were randomized to AIT without DIET (E CON, n=12), AIT followed by DIET (E-then-D, n=12) or AIT concurrent with DIET (E+D, n=12) groups. Body weight decreased below E CON similarly in the E-then-D and E+D groups (~5%). Training improved blood pressure and cardiorespiratory fitness (VO2peak) in all groups with no additional effect of concurrent weight loss. However, E+D improved insulin sensitivity (HOMA) and lowered plasma triglycerides and blood cholesterol below E CON and E-then-D (all P<0.05). Weight loss in E-then-D in the 16 weeks without exercise lowered HOMA to the E+D levels and maintained blood pressure at trained levels. Our data suggest that a new lifestyle combination consisting of aerobic interval training followed by weight loss diet is similar, or even more effective on improving metabolic syndrome factors than concurrent exercise plus diet.

  16. Restriction of Aerobic Metabolism by Acquired or Innate Arylsulfatase B Deficiency: A New Approach to the Warburg Effect

    PubMed Central

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K.

    2016-01-01

    Aerobic respiration is required for optimal efficiency of metabolism in mammalian cells. Under circumstances when oxygen utilization is impaired, cells survive by anerobic metabolism. The malignant cell has cultivated the use of anerobic metabolism in an aerobic environment, the Warburg effect, but the explanation for this preference is not clear. This paper presents evidence that deficiency of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), either innate or acquired, helps to explain the Warburg phenomenon. ARSB is the enzyme that removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate. Previous reports indicated reduced ARSB activity in malignancy and replication of the effects of hypoxia by decline in ARSB. Hypoxia reduced ARSB activity, since molecular oxygen is needed for post-translational modification of ARSB. In this report, studies were performed in human HepG2 cells and in hepatocytes from ARSB-deficient and normal C57BL/6J control mice. Decline of ARSB, in the presence of oxygen, profoundly reduced the oxygen consumption rate and increased the extracellular acidification rate, indicating preference for aerobic glycolysis. Specific study findings indicate that decline in ARSB activity enhanced aerobic glycolysis and impaired normal redox processes, consistent with a critical role of ARSB and sulfate reduction in mammalian metabolism. PMID:27605497

  17. Restriction of Aerobic Metabolism by Acquired or Innate Arylsulfatase B Deficiency: A New Approach to the Warburg Effect.

    PubMed

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K

    2016-01-01

    Aerobic respiration is required for optimal efficiency of metabolism in mammalian cells. Under circumstances when oxygen utilization is impaired, cells survive by anerobic metabolism. The malignant cell has cultivated the use of anerobic metabolism in an aerobic environment, the Warburg effect, but the explanation for this preference is not clear. This paper presents evidence that deficiency of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), either innate or acquired, helps to explain the Warburg phenomenon. ARSB is the enzyme that removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate. Previous reports indicated reduced ARSB activity in malignancy and replication of the effects of hypoxia by decline in ARSB. Hypoxia reduced ARSB activity, since molecular oxygen is needed for post-translational modification of ARSB. In this report, studies were performed in human HepG2 cells and in hepatocytes from ARSB-deficient and normal C57BL/6J control mice. Decline of ARSB, in the presence of oxygen, profoundly reduced the oxygen consumption rate and increased the extracellular acidification rate, indicating preference for aerobic glycolysis. Specific study findings indicate that decline in ARSB activity enhanced aerobic glycolysis and impaired normal redox processes, consistent with a critical role of ARSB and sulfate reduction in mammalian metabolism. PMID:27605497

  18. Intraspecific Correlations of Basal and Maximal Metabolic Rates in Birds and the Aerobic Capacity Model for the Evolution of Endothermy

    PubMed Central

    Swanson, David L.; Thomas, Nathan E.; Liknes, Eric T.; Cooper, Sheldon J.

    2012-01-01

    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, Msum (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; Msum and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and Msum only) and examined correlations among these variables. We also measured BMR and Msum in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either Msum or MMR in juncos. Moreover, no significant correlation between Msum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and Msum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and Msum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic links between

  19. Glucose metabolism via the Embden-Meyerhof pathway is not involved in ATP production during spore germination of bacillus megaterium QM B1551. A study with a mutant lacking hexokinase.

    PubMed

    Sano, K; Otani, M; Umezawa, C

    1988-02-29

    In order to investigate contributions by glucose metabolism via the Embden-Meyerhof pathway and that via the direct oxidation route to gluconate to initial ATP production during spore germination, respiratory activity and RNA synthesis were compared between the mutant lacking hexokinase and the parent spores of Bacillus megaterium QM B1551. We found that time courses of those metabolic events were almost identical between those spores, thus clearly indicating that NADH formed by a spore-specific enzyme glucose dehydrogenase (EC 1.1.1.47) is solely responsible for aerobic production of ATP at this stage.

  20. Dissociation between sensing and metabolism of glucose in sugar sensing neurones

    PubMed Central

    Gonzàlez, J Antonio; Reimann, Frank; Burdakov, Denis

    2009-01-01

    Some of the neurones controlling sleep, appetite and hormone release act as specialized detectors of ambient glucose. Their sugar sensing is conventionally thought to involve glucokinase-dependent metabolism of glucose to ATP, which then alters membrane excitability by modulating ATP-dependent channels or transporters, such as ATP-inhibited K+ channels (KATP). However, recent studies also provide examples of both glucose-excited (GE) and glucose-inhibited (GI) neurones that sense glucose independently of such metabolic pathways. Two-thirds of hypothalamic GE neurones in primary cultures are also excited by the non-metabolizable glucose analogue α-methylglucopyranoside (α-MDG), which acts as a substrate for electrogenic (depolarizing) sodium–glucose cotransporter (SGLT). The excitatory responses to both glucose and α-MDG are abolished by arresting SGLT activity by sodium removal or the SGLT inhibitor phloridzin. Direct depolarization and excitation by glucose-triggered SGLT activity may ensure that GE neurones continue to sense glucose in ‘high-energy’ states, when KATP channels are closed. A major class of hypothalamic GI neurones, the orexin/hypocretin cells, also appear to use a non-metabolic sensing strategy. In these cells, glucose-induced hyperpolarization and inhibition are unaffected by glucokinase inhibitors such as alloxan, d-glucosamine, and N-acetyl-d-glucosamine, and mimicked by the non-metabolizable glucose analogue 2-deoxyglucose, but not by stimulating intracellular ATP production with lactate. The dissociation between sensing and metabolism of sugar may allow the brain to predict and prevent adverse changes in extracellular glucose levels with minimal impact on the flow of intracellular fuel. PMID:18981030

  1. Cerebrospinal fluid ionic regulation, cerebral blood flow, and glucose use during chronic metabolic alkalosis

    SciTech Connect

    Schroeck, H.K.; Kuschinsky, W. )

    1989-10-01

    Chronic metabolic alkalosis was induced in rats by combining a low K+ diet with a 0.2 M NaHCO3 solution as drinking fluid for either 15 or 27 days. Local cerebral blood flow and local cerebral glucose utilization were measured in 31 different structures of the brain in conscious animals by means of the iodo-(14C)antipyrine and 2-(14C)deoxy-D-glucose method. The treatment induced moderate (15 days, base excess (BE) 16 mM) to severe (27 days, BE 25 mM) hypochloremic metabolic alkalosis and K+ depletion. During moderate metabolic alkalosis no change in cerebral glucose utilization and blood flow was detectable in most brain structures when compared with controls. Cerebrospinal fluid (CSF) K+ and H+ concentrations were significantly decreased. During severe hypochloremic alkalosis, cerebral blood flow was decreased by 19% and cerebral glucose utilization by 24% when compared with the control values. The decrease in cerebral blood flow during severe metabolic alkalosis is attributed mainly to the decreased cerebral metabolism and to a lesser extent to a further decrease of the CSF H+ concentration. CSF K+ concentration was not further decreased. The results show an unaltered cerebral blood flow and glucose utilization together with a decrease in CSF H+ and K+ concentrations at moderate metabolic alkalosis and a decrease in cerebral blood flow and glucose utilization together with a further decreased CSF H+ concentration at severe metabolic alkalosis.

  2. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells.

    PubMed

    Amaral, Ana I; Hadera, Mussie G; Tavares, Joana M; Kotter, Mark R N; Sonnewald, Ursula

    2016-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS.

  3. Relationships of lipid and glucose metabolism with waist-hip ratio and physical fitness in obese men.

    PubMed

    Kumagai, S; Tanaka, H; Kitajima, H; Kono, S; Ogawa, K; Yamauchi, M; Morita, N; Inoue, M; Shindo, M

    1993-08-01

    The waist-hip ratio (WHR) is an indirect index of abdominal type obesity which has been shown to be strongly correlated with the risk of coronary heart disease. Empirically, men who have a higher WHR seem to have a lower level of physical fitness. In the present study, the relationships of lipid and glucose metabolism with WHR and physical fitness were examined in 207 Japanese obese men. Physical fitness was evaluated by the oxygen uptake at the onset of blood lactate accumulation (OBLA-VO2; ml/kg/min) which corresponds to 4 mmol/l of blood lactate during graded exercise test and is one of the best indicators of the muscle oxidative capacity. The WHR and percentage of body fat (% body fat) were significantly correlated with OBLA-VO2. The WHR and % body fat were significantly related to each other. After adjusting for % body fat, a significant negative correlation was observed between the WHR and OBLA-VO2 (r = -0.24; P < 0.05). A multiple linear regression was calculated for parameters relating to lipids, and glucose and insulin areas separately, when the WHR, OBLA-VO2, % body fat and age were entered as independent variables. OBLA-VO2 significantly showed a negative relationship with triglyceride (TG), HDL-C/total cholesterol, and the insulin area, while the WHR was only independently related to TG. From these results, we conclude that the physical fitness level evaluated by OBLA-VO2, which represents the capacity of the aerobic metabolism in muscle, may thus be a determinant of lipid and glucose metabolism in obese men.

  4. Biodegradation of industrial-strength 2,4-dichlorophenoxyacetic acid wastewaters in the presence of glucose in aerobic and anaerobic sequencing batch reactors.

    PubMed

    Elefsiniotis, Panagiotis; Wareham, David G

    2013-01-01

    This research explored the biodegradability of 2,4-dichlorophenoxyacetic acid (2,4-D) in two laboratory-scale sequencing batch reactors (SBRs) that operated under aerobic and anaerobic conditions. The potential limit of 2,4-D degradation was investigated at a hydraulic retention time of 48 h, using glucose as a supplemental substrate and increasing feed concentrations of 2,4-D; namely 100 to 700 mg/L (i.e. industrial strength) for the aerobic system and 100 to 300 mg/L for the anaerobic SBR. The results revealed that 100 mg/L of 2,4-D was completely degraded following an acclimation period of 29 d (aerobic SBR) and 70 d (anaerobic SBR). The aerobic system achieved total 2,4-D removal at feed concentrations up to 600 mg/L which appeared to be a practical limit, since a further increase to 700 mg/L impaired glucose degradation while 2,4-D biodegradation was non-existent. In all cases, glucose was consumed before the onset of 2,4-D degradation. In the anaerobic SBR, 2,4-D degradation was limited to 120 mg/L.

  5. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    SciTech Connect

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  6. Computational model of cellular metabolic dynamics: effect of insulin on glucose disposal in human skeletal muscle.

    PubMed

    Li, Yanjun; Solomon, Thomas P J; Haus, Jacob M; Saidel, Gerald M; Cabrera, Marco E; Kirwan, John P

    2010-06-01

    Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase, pyruvate dehydrogenase); or M.3, parallel activation by a phenomenological insulin-mediated intracellular signal that modifies reaction rate coefficients. These simulations indicated that models M.1 and M.2 were not sufficient to explain the experimentally measured metabolic responses. However, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development of type 2 diabetes.

  7. Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida.

    PubMed

    Sasnow, Samantha S; Wei, Hua; Aristilde, Ludmilla

    2016-02-01

    Decreased biomass growth in iron (Fe)-limited Pseudomonas is generally attributed to downregulated expression of Fe-requiring proteins accompanied by an increase in siderophore biosynthesis. Here, we applied a stable isotope-assisted metabolomics approach to explore the underlying carbon metabolism in glucose-grown Pseudomonas putida KT2440. Compared to Fe-replete cells, Fe-limited cells exhibited a sixfold reduction in growth rate but the glucose uptake rate was only halved, implying an imbalance between glucose uptake and biomass growth. This imbalance could not be explained by carbon loss via siderophore production, which accounted for only 10% of the carbon-equivalent glucose uptake. In lieu of the classic glycolytic pathway, the Entner-Doudoroff (ED) pathway in Pseudomonas is the principal route for glucose catabolism following glucose oxidation to gluconate. Remarkably, gluconate secretion represented 44% of the glucose uptake in Fe-limited cells but only 2% in Fe-replete cells. Metabolic (13) C flux analysis and intracellular metabolite levels under Fe limitation indicated a decrease in carbon fluxes through the ED pathway and through Fe-containing metabolic enzymes. The secreted siderophore was found to promote dissolution of Fe-bearing minerals to a greater extent than the high extracellular gluconate. In sum, bypasses in the Fe-limited glucose metabolism were achieved to promote Fe availability via siderophore secretion and to reroute excess carbon influx via enhanced gluconate secretion. PMID:26377487

  8. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.

    PubMed

    Chen, Zhichun; Zhong, Chunjiu

    2013-09-01

    Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding

  9. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.

    PubMed

    Chen, Zhichun; Zhong, Chunjiu

    2013-09-01

    Alzheimer's disease (AD) is an age-related devastating neurodegenerative disorder, which severely impacts on the global economic development and healthcare system. Though AD has been studied for more than 100 years since 1906, the exact cause(s) and pathogenic mechanism(s) remain to be clarified. Also, the efficient disease-modifying treatment and ideal diagnostic method for AD are unavailable. Perturbed cerebral glucose metabolism, an invariant pathophysiological feature of AD, may be a critical contributor to the pathogenesis of this disease. In this review, we firstly discussed the features of cerebral glucose metabolism in physiological and pathological conditions. Then, we further reviewed the contribution of glucose transportation abnormality and intracellular glucose catabolism dysfunction in AD pathophysiology, and proposed a hypothesis that multiple pathogenic cascades induced by impaired cerebral glucose metabolism could result in neuronal degeneration and consequently cognitive deficits in AD patients. Among these pathogenic processes, altered functional status of thiamine metabolism and brain insulin resistance are highly emphasized and characterized as major pathogenic mechanisms. Finally, considering the fact that AD patients exhibit cerebral glucose hypometabolism possibly due to impairments of insulin signaling and altered thiamine metabolism, we also discuss some potential possibilities to uncover diagnostic biomarkers for AD from abnormal glucose metabolism and to develop drugs targeting at repairing insulin signaling impairment and correcting thiamine metabolism abnormality. We conclude that glucose metabolism abnormality plays a critical role in AD pathophysiological alterations through the induction of multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, and so forth. To clarify the causes, pathogeneses and consequences of cerebral hypometabolism in AD will help break the bottleneck of current AD study in finding

  10. Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo

    PubMed Central

    Harris, James M.; Esain, Virginie; Frechette, Gregory M.; Harris, Lauren J.; Cox, Andrew G.; Cortes, Mauricio; Garnaas, Maija K.; Carroll, Kelli J.; Cutting, Claire C.; Khan, Tahsin; Elks, Philip M.; Renshaw, Stephen A.; Dickinson, Bryan C.; Chang, Christopher J.; Murphy, Michael P.; Paw, Barry H.; Vander Heiden, Matthew G.

    2013-01-01

    Many pathways regulating blood formation have been elucidated, yet how each coordinates with embryonic biophysiology to modulate the spatiotemporal production of hematopoietic stem cells (HSCs) is currently unresolved. Here, we report that glucose metabolism impacts the onset and magnitude of HSC induction in vivo. In zebrafish, transient elevations in physiological glucose levels elicited dose-dependent effects on HSC development, including enhanced runx1 expression and hematopoietic cluster formation in the aorta-gonad-mesonephros region; embryonic-to-adult transplantation studies confirmed glucose increased functional HSCs. Glucose uptake was required to mediate the enhancement in HSC development; likewise, metabolic inhibitors diminished nascent HSC production and reversed glucose-mediated effects on HSCs. Increased glucose metabolism preferentially impacted hematopoietic and vascular targets, as determined by gene expression analysis, through mitochondrial-derived reactive oxygen species (ROS)–mediated stimulation of hypoxia-inducible factor 1α (hif1α). Epistasis assays demonstrated that hif1α regulates HSC formation in vivo and mediates the dose-dependent effects of glucose metabolism on the timing and magnitude of HSC production. We propose that this fundamental metabolic-sensing mechanism enables the embryo to respond to changes in environmental energy input and adjust hematopoietic output to maintain embryonic growth and ensure viability. PMID:23341543

  11. Glucose metabolism and gene expression in juvenile zebrafish (Danio rerio) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life.

    PubMed

    Rocha, Filipa; Dias, Jorge; Engrola, Sofia; Gavaia, Paulo; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane

    2015-02-14

    Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹⁴C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹⁴C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.

  12. Immune system and glucose metabolism interaction in schizophrenia: a chicken-egg dilemma.

    PubMed

    Steiner, Johann; Bernstein, Hans-Gert; Schiltz, Kolja; Müller, Ulf J; Westphal, Sabine; Drexhage, Hemmo A; Bogerts, Bernhard

    2014-01-01

    Impaired glucose metabolism and the development of metabolic syndrome contribute to a reduction in the average life expectancy of individuals with schizophrenia. It is unclear whether this association simply reflects an unhealthy lifestyle or whether weight gain and impaired glucose tolerance in patients with schizophrenia are directly attributable to the side effects of atypical antipsychotic medications or disease-inherent derangements. In addition, numerous previous studies have highlighted alterations in the immune system of patients with schizophrenia. Increased concentrations of interleukin (IL)-1, IL-6, and transforming growth factor-beta (TGF-β) appear to be state markers, whereas IL-12, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and soluble IL-2 receptor (sIL-2R) appear to be trait markers of schizophrenia. Moreover, the mononuclear phagocyte system (MPS) and microglial activation are involved in the early course of the disease. This review illustrates a "chicken-egg dilemma", as it is currently unclear whether impaired cerebral glucose utilization leads to secondary disturbances in peripheral glucose metabolism, an increased risk of cardiovascular complications, and accompanying pro-inflammatory changes in patients with schizophrenia or whether immune mechanisms may be involved in the initial pathogenesis of schizophrenia, which leads to disturbances in glucose metabolism such as metabolic syndrome. Alternatively, shared underlying factors may be responsible for the co-occurrence of immune system and glucose metabolism disturbances in schizophrenia.

  13. Metabolic inflexibility is a common feature of impaired fasting glycaemia and impaired glucose tolerance.

    PubMed

    Færch, Kristine; Vaag, Allan

    2011-12-01

    Metabolic flexibility reflects the ability to switch from lipid to carbohydrate oxidation during insulin stimulation. Impaired metabolic flexibility is related to insulin resistance and type 2 diabetes, but whether metabolic flexibility is impaired in individuals with the pre-diabetic states isolated impaired fasting glycaemia (i-IFG) and isolated impaired glucose tolerance (i-IGT) is unknown. Using the gold standard euglycaemic hyperinsulinaemic clamp technique combined with indirect calorimetry, we measured peripheral insulin sensitivity, lipid and glucose oxidation, and thus metabolic flexibility in 66 individuals with normal glucose tolerance (NGT, n = 20), i-IFG (n = 18) and i-IGT (n = 28). During insulin stimulation, individuals with i-IGT displayed reduced insulin sensitivity including reduced glucose oxidation. Interestingly, those with i-IFG exhibited reduced glucose oxidation and a slightly elevated lipid oxidation rate during insulin infusion despite having normal total peripheral glucose disposal. Thus, metabolic flexibility was significantly reduced in individuals with both i-IFG and i-IGT even after adjustment for BMI and insulin sensitivity. The data indicate that metabolic inflexibility may precede the development of overt peripheral insulin resistance in pre-diabetic individuals. However, prospective studies are needed to confirm this notion. PMID:21207234

  14. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    SciTech Connect

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  15. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome.

    PubMed

    Larsen, I; Welde, B; Martins, C; Tjønna, A E

    2014-06-01

    Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ±  .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P < 0.001) between 4-AIT, CME, and 1-AIT. Total EPOC was highest after 4-AIT. These data suggest that exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome.

  16. Adiposity and aerobic fitness are associated with metabolic disease risk in children.

    PubMed

    Parrett, Anne L; Valentine, Rudy J; Arngrímsson, Sigurbjörn A; Castelli, Darla M; Evans, Ellen M

    2011-02-01

    To examine the relative association of physical activity, cardiorespiratroy fitness (CRF), and adiposity with risk for metabolic disease in prepubescent children. Forty-six prepubescent children (age, 9.4 ± 1.7 years; 24 males) were assessed for adiposity (%fat) via dual-energy X-ray absorptiometry, CRF with a peak graded exercise test, and physical activity using pedometers. Metabolic disease risk was assessed by a composite score of the following factors: waist circumference (WC), mean arterial pressure (MAP), triacylglycerol (TAG), total cholesterol to high-density lipoprotein cholesterol ratio (TC/HDL-C ratio), glucose, and insulin. Adiposity was correlated with metabolic disease risk score, as well as homeostasis model assessment of insulin resistance (HOMA-IR), TAG, TC/HDL-C ratio, WC, insulin, and MAP (r range = 0.33 to 0.95, all p < 0.05). Physical activity was negatively associated with metabolic disease risk score, as well as HOMA-IR, TAG, WC, insulin, and MAP (r range = -0.32 to -0.49, all p < 0.05). CRF was inversely associated with metabolic disease risk score and HOMA-IR, TAG, TC/HDL-C ratio, WC, insulin, and MAP (r range = -0.32 to -0.63, all p < 0.05). Compared across fitness-physical activity and fatness groups, the low-fit-high-fat and the low-activity-high-fat groups had higher metabolic risk scores than both low-fat groups. Regression analyses revealed sexual maturity (β = 0.27, p = 0.044) and %fat (β = 0.49, p = 0.005) were the only independent predictors of metabolic disease risk score, explaining 4.7% and 9.5% of the variance, respectively. Adiposity appears to be an influential factor for metabolic disease risk in prepubescent children, and fitness is protective against metabolic disease risk in the presence of high levels of adiposity.

  17. The Role of Glucose and Lipid Metabolism in Growth and Survival of Cancer Cells.

    PubMed

    Brault, Charlene; Schulze, Almut

    2016-01-01

    One of the prerequisites for cell growth and proliferation is the synthesis of macromolecules, including proteins, nucleic acids and lipids. Cells have to alter their metabolism to allow the production of metabolic intermediates that are the precursors for biomass production. It is now evident that oncogenic signalling pathways target metabolic processes on several levels and metabolic reprogramming has emerged as a hallmark of cancer. The increased metabolic demand of cancer cells also produces selective dependencies that could be targeted for therapeutic intervention. Understanding the role of glucose and lipid metabolism in supporting cancer cell growth and survival is crucial to identify essential processes that could provide therapeutic windows for cancer therapy. PMID:27557532

  18. Longitudinal Studies of Cerebral Glucose Metabolism in Late-Life Depression and Normal Aging

    PubMed Central

    Marano, Christopher M.; Workman, Clifford I.; Kramer, Elisse; Hermann, Carol R.; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S.

    2014-01-01

    Objective Late-life depression (LLD) has a substantial public health impact and is both a risk factor for and prodrome of dementia. Positron Emission Tomography (PET) studies of cerebral glucose metabolism have demonstrated sensitivity in evaluating neural circuitry involved in depression, aging, incipient cognitive decline and dementia. The present study evaluated the long term effects of a course of antidepressant treatment on glucose metabolism in LLD patients. Methods Nine LLD patients and 7 non-depressed control subjects underwent clinical and cognitive evaluations as well as brain magnetic resonance imaging and PET studies of cerebral glucose metabolism at baseline, after 8 weeks of treatment with citalopram for a major depressive episode (patients only), and at an approximately 2 year follow-up. Results The majority of LLD patients were remitted at follow-up (7/9). Neither patients nor controls showed significant cognitive decline. The patients showed greater increases in glucose metabolism than the controls in regions associated with mood symptoms (anterior cingulate and insula). Both groups showed decreases in metabolism in posterior association cortices implicated in dementia. Conclusions Longitudinal changes in cerebral glucose metabolism are observed in controls and LLD patients without significant cognitive decline that are more extensive than the decreases in brain volume. Longer duration follow-up studies and the integration of other molecular imaging methods will have implications for understanding the clinical and neurobiological significance of these metabolic changes. PMID:22740289

  19. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    PubMed

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area. PMID:12140675

  20. Genetic variances and covariances of aerobic metabolic rates in laboratory mice

    PubMed Central

    Wone, Bernard; Sears, Michael W.; Labocha, Marta K.; Donovan, Edward R.; Hayes, Jack P.

    2009-01-01

    The genetic variances and covariances of traits must be known to predict how they may respond to selection and how covariances among them might affect their evolutionary trajectories. We used the animal model to estimate the genetic variances and covariances of basal metabolic rate (BMR) and maximal metabolic rate (MMR) in a genetically heterogeneous stock of laboratory mice. Narrow-sense heritability (h2) was approximately 0.38 ± 0.08 for body mass, 0.26 ± 0.08 for whole-animal BMR, 0.24 ± 0.07 for whole-animal MMR, 0.19 ± 0.07 for mass-independent BMR, and 0.16 ± 0.06 for mass-independent MMR. All h2 estimates were significantly different from zero. The phenotypic correlation of whole animal BMR and MMR was 0.56 ± 0.02, and the corresponding genetic correlation was 0.79 ± 0.12. The phenotypic correlation of mass-independent BMR and MMR was 0.13 ± 0.03, and the corresponding genetic correlation was 0.72 ± 0.03. The genetic correlations of metabolic rates were significantly different from zero, but not significantly different from one. A key assumption of the aerobic capacity model for the evolution of endothermy is that BMR and MMR are linked. The estimated genetic correlation between BMR and MMR is consistent with that assumption, but the genetic correlation is not so high as to preclude independent evolution of BMR and MMR. PMID:19656796

  1. Remodeling of Glucose Metabolism Precedes Pressure Overload -Induced Left Ventricular Hypertrophy: Review of a Hypothesis

    PubMed Central

    Kundu, Bijoy K.; Zhong, Min; Sen, Shiraj; Davogustto, Giovanni; Keller, Susanna R.; Taegtmeyer, Heinrich

    2015-01-01

    When subjected to pressure overload, the ventricular myocardium shifts from fatty acids to glucose as its main source for energy provision and frequently increases its mass. Here, we review the evidence in support of the concept that metabolic remodeling, measured as increased myocardial glucose uptake using dynamic positron emission tomography (PET) with the glucose analogue 2-deoxy-2-[18F]-fluoro-D-glucose (FDG), precedes the onset of left ventricular hypertrophy (LVH) and heart failure. Consistent with this, early intervention with propranolol, which attenuates glucose uptake, prevents the maladaptive metabolic response and preserves cardiac function in vivo. We also review ex vivo studies suggesting a link between dysregulated myocardial glucose metabolism, intracellular accumulation of glucose 6-phosphate (G6P) and contractile dysfunction of the heart. G6P levels correlate with activation of mTOR (mechanistic target of rapamycin) and endoplasmic reticulum stress. This sequence of events could be prevented by pre-treatment with rapamycin (mTOR inhibition) or metformin (enzyme 5′-AMP-activated protein kinase activation ). In conclusion, we propose that metabolic imaging with FDG PET may provide a novel approach to guide the treatment of patients with hypertension-induced LVH. PMID:25791172

  2. Optimized [1-13C]glucose infusion protocol for 13C magnetic resonance spectroscopy at 3 Tesla of human brain glucose metabolism under euglycemic and hypoglycemic conditions

    PubMed Central

    van de Ven, Kim C.C.; van der Graaf, Marinette; Tack, Cees J.J.; Klomp, Dennis W.J.; Heerschap, Arend; de Galan, Bastiaan E.

    2009-01-01

    The effect of insulin-induced hypoglycemia on cerebral glucose metabolism is largely unknown. 13C MRS is a unique tool to study cerebral glucose metabolism, but the concurrent requirement for [1-13C]glucose administration limits its use under hypoglycemic conditions. To facilitate 13C MRS data analysis we designed separate [1-13C]glucose infusion protocols for hyperinsulinemic euglycemic and hypoglycemic clamps in such a way that plasma isotopic enrichment of glucose was stable and comparable under both glycemic conditions. 13C MR spectra were acquired with optimized 13C MRS measurement techniques to obtain high quality 13C MR spectra with these protocols. PMID:19913052

  3. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  4. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters.

    PubMed

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the "structure-activity" relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au(3+) ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  5. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  6. miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle.

    PubMed

    Zhang, Duo; Li, Yan; Yao, Xuan; Wang, Hui; Zhao, Lei; Jiang, Haowen; Yao, Xiaohan; Zhang, Shengjie; Ye, Cheng; Liu, Wei; Cao, Hongchao; Yu, Shuxian; Wang, Yu-Cheng; Li, Qiong; Jiang, Jingjing; Liu, Yi; Zhang, Ling; Liu, Yun; Iwai, Naoharu; Wang, Hui; Li, Jingya; Li, Jia; Li, Xihua; Jin, Zi-Bing; Ying, Hao

    2016-07-19

    Understanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC). Short-term high-fat diet (HFD) feeding reduces muscle miR-182 levels by tumor necrosis factor α (TNFα), which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control. PMID:27396327

  7. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism

    PubMed Central

    Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018

  8. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    PubMed

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  9. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome.

    PubMed

    Kang, Seol-Jung; Kim, Eon-Ho; Ko, Kwang-Jun

    2016-06-01

    [Purpose] The purpose of this study was to investigate the effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness or female patients with metabolic syndrome. [Subjects and Methods] Subjects were randomly assigned to an exercise group (n=12) or a control group (n=11). Subjects in the exercise group performed aerobic exercise at 60-80% of maximum heart rate for 40 min 5 times a week for 12 weeks. The changes in metabolic syndrome risk factors, resting heart rate, physical fitness, and arterial stiffness were measured and analyzed before and after initiation of the exercise program to determine the effect of exercise. Arterial stiffness was assessed based on brachial-ankle pulse wave velocity (ba-PWV). [Results] Compared to the control group; The metabolic syndrome risk factors (weight, % body fat, waist circumference, systolic blood pressure, diastolic blood pressure, and HDL-Cholesterol) were significantly improved in the exercise: resting heart rate was significantly decreased; VO2max, muscle strength and muscle endurance were significantly increased; and ba-PWV was significantly decreased. [Conclusion] Aerobic exercise had beneficial effects on the resting heart rate, physical fitness, and arterial stiffness of patients with metabolic syndrome.

  10. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome

    PubMed Central

    Kang, Seol-Jung; Kim,, Eon-ho; Ko, Kwang-Jun

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness or female patients with metabolic syndrome. [Subjects and Methods] Subjects were randomly assigned to an exercise group (n=12) or a control group (n=11). Subjects in the exercise group performed aerobic exercise at 60–80% of maximum heart rate for 40 min 5 times a week for 12 weeks. The changes in metabolic syndrome risk factors, resting heart rate, physical fitness, and arterial stiffness were measured and analyzed before and after initiation of the exercise program to determine the effect of exercise. Arterial stiffness was assessed based on brachial-ankle pulse wave velocity (ba-PWV). [Results] Compared to the control group; The metabolic syndrome risk factors (weight, % body fat, waist circumference, systolic blood pressure, diastolic blood pressure, and HDL-Cholesterol) were significantly improved in the exercise: resting heart rate was significantly decreased; VO2max, muscle strength and muscle endurance were significantly increased; and ba-PWV was significantly decreased. [Conclusion] Aerobic exercise had beneficial effects on the resting heart rate, physical fitness, and arterial stiffness of patients with metabolic syndrome. PMID:27390411

  11. Postoperative glucose metabolism in patients with gastrointestinal malignancy.

    PubMed

    Copeland, G P; Leinster, S J; Davis, J C; Hipkin, L H

    1988-12-01

    Patients with gastrointestinal malignancy demonstrate impaired postoperative glucose disposal (17.5 +/- 1.4 mumol/kg min vs 28.9 +/- 2.5 mumol/kg min; P less than 0.001) and a reduced insulin response, during steady state hyperglycaemia, when compared with control. Analysis of glucose disposal when compared with insulin concentration suggested insulin resistance as a factor in the causation of impaired glucose disposal. In the control group both glucose disposal and insulin response demonstrated a negative correlation with malnutrition score (as assessed by a 13 factor, three grade scoring system), whereas in the cancer group only the insulin response was related to malnutrition score. However, the insulin response in the cancer group was quantitatively different from control subjects. The possible clinical implications of these findings are discussed.

  12. The role of osteocalcin in human glucose metabolism: marker or mediator?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence supports an association between the skeleton and energy metabolism. These interactions are mediated by a variety of hormones, cytokines, and nutrients. Here, the evidence for a role of osteocalcin in the regulation of glucose metabolism in humans is reviewed. Osteocalcin is a bon...

  13. Glucose metabolism in the newborn rat. Temporal studies in vivo.

    PubMed

    Snell, K; Walker, D G

    1973-04-01

    1. The concentrations of plasma d-glucose, l-lactate, free fatty acids and ketone bodies and of liver glycogen were measured in caesarian-delivered newborn rats at time-intervals up to 4h after delivery. Glucose and lactate concentrations decreased markedly during the first hours after delivery, but there was a delay of 60-90min before significant glycogen mobilization occurred. 2. The specific radioactivity of plasma d-glucose was measured as a function of time for up to 75min after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into caesarian-delivered rats at 0, 1 and 2h after delivery. Calculations revealed that there was an appreciable rate of glucose formation at all ages studied, but immediately after delivery this was exceeded by the rate of glucose utilization. Around 2h post partum the rate of glucose utilization decreased dramatically and this coincided with a reversal of the immediately postnatal hypoglycaemia. 3. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose and liver glycogen was measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into rats immediately after delivery. The logarithm of the specific radioactivity of plasma l-[U-(14)C]lactate decreased linearly with time for at least 60min after injection and the calculated rate of lactate utilization exceeded the rate of lactate formation. 4. (14)C incorporation into plasma d-glucose was maximal from 30-60min after injection of l-[U-(14)C]lactate and the amount incorporated at 60min was 23% of that present in plasma lactate. Although (14)C was also incorporated into liver glycogen the amount was always less than 3% of that present in plasma glucose. 5. The results are discussed in relationship to the adaptation of the newly born rat to the extra-uterine environment and the possible involvement of gluconeogenesis at this time before feeding is established.

  14. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice.

    PubMed

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice.

  15. Impaired glucose and lipid metabolism in ageing aryl hydrocarbon receptor deficient mice

    PubMed Central

    Biljes, Daniel; Hammerschmidt-Kamper, Christiane; Kadow, Stephanie; Diel, Patrick; Weigt, Carmen; Burkart, Volker; Esser, Charlotte

    2015-01-01

    Disturbed homeostasis of glucose and lipid metabolism are dominant features of the so-called metabolic syndrome (MetS) and can increase the risk for the development of type 2 diabetes (T2D), a severe metabolic disease. T2D prevalence increases with age. The aryl hydrocarbon receptor (AHR) is a sensor of small molecules including dietary components. AHR has been identified as potential regulator of glucose homeostasis and lipid metabolism. Epidemiologically, exposure to xenobiotic AHR ligands such as polycyclic aromatic hydrocarbons is linked to T2D. We assess here the potential role of the AHR in disturbances of glucose and lipid metabolism in young (age 2-5 months) and old (age > 1,5 years) AHR-deficient (AHR KO) mice. Fasted young wildtype (WT) and AHR-KO mice displayed similar blood glucose kinetics after challenge with intra-peritoneal glucose injection. However, old AHR-KO mice showed lower tolerance than WT to i.p. administered glucose, i.e. glucose levels rose higher and returned more slowly to normal levels. Old mice had overall higher insulin levels than young mice, and old AHR-KO had a somewhat disturbed insulin kinetic in the serum after glucose challenge. Surprisingly, young AHR-KO mice had significantly lower triglycerides, cholesterol, high density lipoprotein values than WT, i.e., a dyslipidemic profile. With ageing, AHR-KO and WT mice did not differ in these lipid levels, except for slightly reduced levels of triglycerides and cholesterol. In conclusion, our findings in AHR KO mice suggest that AHR expression is relevant for the maintenance of glucose and lipid homeostasis in old mice. PMID:26664351

  16. Subcellular Localization of Hexokinases I and II Directs the Metabolic Fate of Glucose

    PubMed Central

    John, Scott; Weiss, James N.; Ribalet, Bernard

    2011-01-01

    Background The first step in glucose metabolism is conversion of glucose to glucose 6-phosphate (G-6-P) by hexokinases (HKs), a family with 4 isoforms. The two most common isoforms, HKI and HKII, have overlapping tissue expression, but different subcellular distributions, with HKI associated mainly with mitochondria and HKII associated with both mitochondrial and cytoplasmic compartments. Here we tested the hypothesis that these different subcellular distributions are associated with different metabolic roles, with mitochondrially-bound HK's channeling G-6-P towards glycolysis (catabolic use), and cytoplasmic HKII regulating glycogen formation (anabolic use). Methodology/Principal Findings To study subcellular translocation of HKs in living cells, we expressed HKI and HKII linked to YFP in CHO cells. We concomitantly recorded the effects on glucose handling using the FRET based intracellular glucose biosensor, FLIPglu-600 mM, and glycogen formation using a glycogen-associated protein, PTG, tagged with GFP. Our results demonstrate that HKI remains strongly bound to mitochondria, whereas HKII translocates between mitochondria and the cytosol in response to glucose, G-6-P and Akt, but not ATP. Metabolic measurements suggest that HKI exclusively promotes glycolysis, whereas HKII has a more complex role, promoting glycolysis when bound to mitochondria and glycogen synthesis when located in the cytosol. Glycogen breakdown upon glucose removal leads to HKII inhibition and dissociation from mitochondria, probably mediated by increases in glycogen-derived G-6-P. Conclusions/Significance These findings show that the catabolic versus anabolic fate of glucose is dynamically regulated by extracellular glucose via signaling molecules such as intracellular glucose, G-6-P and Akt through regulation and subcellular translocation of HKII. In contrast, HKI, which activity and regulation is much less sensitive to these factors, is mainly committed to glycolysis. This may be an

  17. Regulation of Glucose Metabolism and Cell Wall Synthesis in Avena Stem Segments by Gibberellic Acid 1

    PubMed Central

    Montague, Michael J.; Ikuma, Hiroshi

    1978-01-01

    Gibberellic acid (GA) stimulated both the elongation of Avena sativa stem segments and increased synthesis of cell wall material. The effects of GA on glucose metabolism, as related to cell wall synthesis, have been investigated in order to find specific events regulated by GA. GA caused a decline in the levels of glucose, glucose 6-phosphate, and fructose 6-phosphate if exogenous sugar was not supplied to the segments, whereas the hormone caused no change in the levels of glucose 6-phosphate, fructose 6-phosphate, UDP-glucose, or the adenylate energy charge if the segments were incubated in 0.1 m glucose. No GA-induced change could be demonstrated in the activities of hexokinase, phosphoglucomutase, UDP-glucose pyrophosphorylase, or polysaccharide synthetases using UDP-glucose, UDP-galactose, UDP-xylose, and UDP-arabinose as substrates. GA stimulated the activity of GDP-glucose-dependent β-glucan synthetase by 2- to 4-fold over the control. When glucan synthetase was assayed using UDP-glucose as substrate, only β-1,3-linked glucan was synthesized in vitro, whereas with GDP-glucose, only β-1,4-linked glucan was synthesized. These results suggest that one part of the mechanism by which GA stimulates cell wall synthesis concurrently with elongation in Avena stem segments may be through a stimulation of cell wall polysaccharide synthetase activity. PMID:16660524

  18. Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data are limited on the effects of controlled aerobic exercise programs (without weight loss) on insulin sensitivity and glucose metabolism in children and adolescents. To determine whether a controlled aerobic exercise program (without weight loss) improves peripheral and hepatic insulin sensitivi...

  19. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    SciTech Connect

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using (18F)fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men.

  20. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  1. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    SciTech Connect

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. )

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  2. Temporal analysis of myocardial glucose metabolism by 2-( sup 18 F)fluoro-2-deoxy-D-glucose

    SciTech Connect

    Nguyen, V.T.; Mossberg, K.A.; Tewson, T.J.; Wong, W.H.; Rowe, R.W.; Coleman, G.M.; Taegtmeyer, H. )

    1990-10-01

    To assess kinetic changes of myocardial glucose metabolism after physiological interventions, we perfused isolated working rat hearts with glucose and 2-(18F)fluoro-2-deoxy-D-glucose (2-FDG). Tissue uptake of 2-FDG and the input function were measured on-line by external detection. The fractional rate of 2-FDG phosphorylation was determined by graphical analysis of time-activity curves. The steady-state uptake of 2-FDG was linear with time, and the tracer was retained predominantly in its phosphorylated form. Tissue accumulation of 2-FDG decreased with a reduction in work load and with the addition of competing substrates. Insulin caused a significant increase in 2-FDG accumulation in hearts from fasted but not from fed animals. We conclude that in the isolated working rat heart there is rapid adjustment of exogenous substrate utilization and that most interventions known to alter glucose metabolism induce parallel changes in 2-FDG uptake. Qualitative differences in the in vitro response to insulin may be affected by the presence of either endogenous insulin or glycogen.

  3. Effects of aerobic exercise on blood glucose in continuous ambulatory peritoneal dialysis patients

    PubMed Central

    Shahgholian, Nahid; KarimiFard, Ozra; Shahidi, Shahrzad

    2015-01-01

    Background: Peritoneal dialysis has a number of complications including increased blood glucose. Although exercise has been suggested to resolve this complication, most patients are not active. The present study aimed at determining the effects of twice-weekly, 40-min sessions of pedaling on a stationary bicycle on mean fasting blood sugar (FBS) and 2-h postprandial blood sugar (PPBS) among continuous ambulatory peritoneal dialysis patients. Materials and Methods: In this clinical trial, convenience sampling was used to select 22 patients [age: 51.4 (12.3) years] undergoing continuous ambulatory peritoneal dialysis [mean duration: 12.5 (8.5) months] from university hospitals in Isfahan, Iran. The subjects were randomly divided into two groups (test and control). The test group participated in an 8-week exercise program in which they pedaled a stationary bicycle with an intensity of four on Borg Scale of Perceived Exertion. FBS and PPBS were measured at baseline and at the end of the 8th and 16th sessions of exercise. Data were analyzed with Student's t-test and repeated measures analysis of variance. Results: After the eighth session, the mean FBS and PPBS levels were lower in the test group than in the control group. However, the differences were not statistically significant. After 16 sessions of exercise, the mean FBS and PPBS levels in the intervention group were significantly less than the in control group. Conclusions: Forty minutes of pedaling on a stationary bicycle for two times a week can significantly reduce mean FBS and PPBS levels in continuous ambulatory peritoneal dialysis patients. PMID:25878690

  4. Cerebral Metabolism and the Role of Glucose Control in Acute Traumatic Brain Injury.

    PubMed

    Buitrago Blanco, Manuel M; Prashant, Giyarpuram N; Vespa, Paul M

    2016-10-01

    This article reviews key concepts of cerebral glucose metabolism, neurologic outcomes in clinical trials, the biology of the neurovascular unit and its involvement in secondary brain injury after traumatic brain insults, and current scientific and clinical data that demonstrate a better understanding of the biology of metabolic dysfunction in the brain, a concept now known as cerebral metabolic energy crisis. The use of neuromonitoring techniques to better understand the pathophysiology of the metabolic crisis is reviewed and a model that summarizes the triphasic view of cerebral metabolic disturbance supported by existing scientific data is outlined. The evidence is summarized and a template for future research provided. PMID:27637395

  5. Repeated sprint performance and metabolic recovery curves: effects of aerobic and anaerobic characteristics.

    PubMed

    de Aguiar, Rafael Alves; Turnes, Tiago; Santos de Oliveira Cruz, Rogério; Salvador, Amadeo Félix; Caputo, Fabrizio

    2015-05-01

    To examine the influence of aerobic and anaerobic indices on repeated sprint (RS) performance and ability (RSA), 8 sprinters (SPR), 8 endurance runners (END), and 8 active participants (ACT) performed the following tests: (i) incremental test; (ii) 1-min test to determine first decay time constant of pulmonary oxygen uptake off-kinetics and parameters related to anaerobic energy supply, lactate exchange, and removal abilities from blood lactate kinetics; and (iii) RS test (ten 35-m sprints, departing every 20 s) to determine best (RSbest) and mean (RSmean) sprint times and percentage of sprint decrement (%Dec). While SPR had a 98%-100% likelihood of having the fastest RSbest (Cohen's d of 1.8 and 1.4 for ACT and END, respectively) and RSmean (2.1 and 0.9 for ACT and END, respectively), END presented a 97%-100% likelihood of having the lowest %Dec (0.9 and 2.2 for ACT and SPR, respectively). RSmean was very largely correlated with RSbest (r=0.85) and moderately correlated with estimates of anaerobic energy supply (r=-0.40 to -0.49). RSmean adjusted for RSbest (which indirectly reflects RSA) was largely correlated with lactate exchange ability (r=0.55). Our results confirm the importance of locomotor- and anaerobic-related variables to RS performance, and highlight the importance of disposal of selected metabolic by-products to RSA.

  6. [Effectiveness of two aerobic exercise programs in the treatment of metabolic syndrome: a preliminary study].

    PubMed

    Salas-Romero, Rebeca; Sánchez-Muñoz, Verónica; Franco-Sánchez, José Gilberto; Del Villar-Morales, Ariadna; Pegueros-Pérez, Andrea

    2014-01-01

    The effectiveness of two aerobic exercise programs on the modification of the metabolic syndrome (MS) components and its influence in reducing cardiovascular risk was evaluated in 16 sedentary women (30-66 years old). Patients were randomly divided into two exercise groups: continuous training (CE: 45 minutes at 65-70% of heart rate reserve or HRR) or interval training (IE: 5 x 3 minute intervals at 80-85% HRR with two minutes of active recovery at 65-70% HRR), and each participant gave previous informed consent. The components of MS were assessed according to the criteria for women of the National Cholesterol Education/Third Treatment Adult Panel, and cardiovascular risk factors at baseline and 16 weeks later. Data analyses were performed with the Wilcoxon signed test and the Mann-Whitney U-test (SPSS v. 12.0 Windows: p < 0.05). Both exercise programs were effective in the modification of a number of MS components (triglycerides, systolic/diastolic blood pressure), however IE had a higher percentage of patients without MS diagnosis at the end of the study (62.5%). The CE improved the physical fitness by increasing the VO₂peak and METs and decreasing heart rate recovery, which is reflected on the reduction of cardiovascular risk.

  7. Glucose metabolic adaptations in the intrauterine growth-restricted adult female rat offspring.

    PubMed

    Garg, Meena; Thamotharan, Manikkavasagar; Rogers, Lisa; Bassilian, Sara; Lee, W N Paul; Devaskar, Sherin U

    2006-06-01

    We studied glucose metabolic adaptations in the intrauterine growth-restricted (IUGR) rat offspring to decipher glucose homeostasis in metabolic programming. Glucose futile cycling (GFC), which is altered when there is imbalance between glucose production and utilization, was studied during a glucose tolerance test (GTT) in 2-day-old (n = 8), 2-mo-old (n = 22), and 15-mo-old (n = 22) female rat offspring. The IUGR rats exposed to either prenatal (CM/SP, n = 5 per age), postnatal (SM/CP, n = 6), or pre- and postnatal (SM/SP, n = 6) nutrient restriction were compared with age-matched controls (CM/CP, n = 5). At 2 days, IUGR pups (SP) were smaller and glucose intolerant and had increased hepatic glucose production and increased glucose disposal (P < 0.01) compared with controls (CP). At 2 mo, the GTT, glucose clearance, and GFC did not change. However, a decline in hepatic glucose-6-phosphatase (P < 0.05) and fructose-1,6-biphosphatase (P < 0.05) enzyme activities in the IUGR offspring was detected. At 15 mo, prenatal nutrient restriction (CM/SP) resulted in greater weight gain (P < 0.01) and hyperinsulinemia (P < 0.001) compared with postnatal nutrient restriction (SM/CP). A decline in GFC in the face of a normal GTT occurred in both the prenatal (CM/SP, P < 0.01) and postnatal calorie (SM/CP, P < 0.03) and growth-restricted offspring. The IUGR offspring with pre- and postnatal nutrient restriction (SM/SP) were smaller, hypoinsulinemic (P < 0.03), and hypoleptinemic (P < 0.03), with no change in GTT, hepatic glucose production, GFC, or glucose clearance. We conclude that there is pre- and postnatal programming that affects the postnatal compensatory adaptation of GFC and disposal initiated by changes in circulating insulin concentrations, thereby determining hepatic insulin sensitivity in a phenotype-specific manner. PMID:16449299

  8. Glucose consumption of inflammatory cells masks metabolic deficits in the brain

    PubMed Central

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A.; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R.; Schroeter, Michael; Graf, Rudolf

    2016-01-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  9. Retinal lipid and glucose metabolism dictates angiogenesis through lipid sensor Ffar1

    PubMed Central

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L.; Shao, Zhuo; Evans, Lucy P.; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M.; Hurst, Christian G.; Hatton, Colman J.; Cui, Zhenghao; Pierce, Kerry A.; Bherer, Patrick; Aguilar, Edith; Powner, Michael B.; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A.; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B.; Smith, Lois E.H.

    2016-01-01

    Tissues with high metabolic rates often use lipid as well as glucose for energy, conferring a survival advantage during feast and famine.1 Current dogma suggests that high-energy consuming photoreceptors depend on glucose.2,3 Here we show that retina also uses fatty acids (FA) β-oxidation for energy. Moreover, we identify a lipid sensor Ffar1 that curbs glucose uptake when FA are available. Very low-density lipoprotein receptor (VLDLR), expressed in tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived FA.4,5 Vldlr is present in photoreceptors.6 In Vldlr−/− retinas, Ffar1, sensing high circulating lipid levels despite decreased FA uptake5, suppresses glucose transporter Glut1. This impaired glucose entry into photoreceptors results in a dual lipid/glucose fuel shortage and reduction in the Krebs cycle intermediate α-ketoglutarate (KG). Low α-KG levels promote hypoxia-induced factor-1α (Hif1a) stabilization and vascular endothelial growth factor (Vegfa) secretion by starved Vldlr−/− photoreceptors, attracting neovessels to supply fuel. These aberrant vessels invading normally avascular photoreceptors in Vldlr−/− retinas are reminiscent of retinal angiomatous proliferation (RAP), a subset of neovascular age-related macular degeneration (AMD)7, associated with high vitreous VEGF levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in neovascular AMD and other retinal diseases. PMID:26974308

  10. Analysis of glucose metabolism in farmed European sea bass (Dicentrarchus labrax L.) using deuterated water.

    PubMed

    Viegas, Ivan; Mendes, Vera M; Leston, Sara; Jarak, Ivana; Carvalho, Rui A; Pardal, Miguel Â; Manadas, Bruno; Jones, John G

    2011-11-01

    Glucose metabolism in free-swimming fasted and fed seabass was studied using deuterated water ((2)H(2)O). After transfer to seawater enriched with 4.9% (2)H(2)O for 6-h or for 72-h, positional and mole percent enrichment (MPE) of plasma glucose and water were quantified by (2)H NMR and ESI-MS/MS. Plasma water (2)H-enrichment reached that of seawater within 6h. In both fasted and fed fish, plasma glucose MPE increased asymptotically attaining ~55% of plasma water enrichment by 72 h. The distribution of (2)H-enrichment between the different glucose positions was relatively uniform. The gluconeogenic contribution to glucose that was synthesized during (2)H(2)O administration was estimated from the ratio of position 5 and 2 glucose enrichments. For both fed and fasted fish, gluconeogenesis accounted for 98±1% of the glucose that was produced during the 72-h (2)H(2)O administration period. For fasted fish, gluconeogenic contributions measured after 6h were identical to 72-h values (94±3%). For fed fish, the apparent gluconeogenic contribution at 6-h was significantly lower compared to 72-h (79±5% versus 98±1%, p<0.05). This may reflect a brief augmentation of gluconeogenic flux by glycogenolysis after feeding and/or selective enrichment of plasma glucose position 2 via futile glucose-glucose-6-phosphate cycling. PMID:21777686

  11. Microbial Regulation of Glucose Metabolism and Cell-Cycle Progression in Mammalian Colonocytes

    PubMed Central

    Donohoe, Dallas R.; Wali, Aminah; Brylawski, Bruna P.; Bultman, Scott J.

    2012-01-01

    A prodigious number of microbes inhabit the human body, especially in the lumen of the gastrointestinal (GI) tract, yet our knowledge of how they regulate metabolic pathways within our cells is rather limited. To investigate the role of microbiota in host energy metabolism, we analyzed ATP levels and AMPK phosphorylation in tissues isolated from germfree and conventionally-raised C57BL/6 mice. These experiments demonstrated that microbiota are required for energy homeostasis in the proximal colon to a greater extent than other segments of the GI tract that also harbor high densities of bacteria. This tissue-specific effect is consistent with colonocytes utilizing bacterially-produced butyrate as their primary energy source, whereas most other cell types utilize glucose. However, it was surprising that glucose did not compensate for butyrate deficiency. We measured a 3.5-fold increase in glucose uptake in germfree colonocytes. However, 13C-glucose metabolic-flux experiments and biochemical assays demonstrated that they shifted their glucose metabolism away from mitochondrial oxidation/CO2 production and toward increased glycolysis/lactate production, which does not yield enough ATPs to compensate. The mechanism responsible for this metabolic shift is diminished pyruvate dehydrogenase (PDH) levels and activity. Consistent with perturbed PDH function, the addition of butyrate, but not glucose, to germfree colonocytes ex vivo stimulated oxidative metabolism. As a result of this energetic defect, germfree colonocytes exhibited a partial block in the G1-to-S-phase transition that was rescued by a butyrate-fortified diet. These data reveal a mechanism by which microbiota regulate glucose utilization to influence energy homeostasis and cell-cycle progression of mammalian host cells. PMID:23029553

  12. A low-protein diet during pregnancy alters glucose metabolism and insulin secretion.

    PubMed

    Souza, Denise de Fátima I; Ignácio-Souza, Letícia M; Reis, Sílvia Regina de L; Reis, Marise Auxiliadora de B; Stoppiglia, Luiz Fabrizio; Carneiro, Everardo Magalhães; Boschero, Antonio Carlos; Arantes, Vanessa Cristina; Latorraca, Márcia Queiroz

    2012-03-01

    In pancreatic islets, glucose metabolism is a key process for insulin secretion, and pregnancy requires an increase in insulin secretion to compensate for the typical insulin resistance at the end of this period. Because a low-protein diet decreases insulin secretion, this type of diet could impair glucose homeostasis, leading to gestational diabetes. In pancreatic islets, we investigated GLUT2, glucokinase and hexokinase expression patterns as well as glucose uptake, utilization and oxidation rates. Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. The insulin secretion in 2.8 mmol l(-1) of glucose was higher in islets from LPP rats than that in islets from CP, CNP and LPNP rats. Maximal insulin release was obtained at 8.3 and 16.7 mmol l(-1) of glucose in LPP and CP groups, respectively. The glucose dose-response curve from LPNP group was shifted to the right in relation to the CNP group. In the CP group, the concentration-response curve to glucose was shifted to the left compared with the CNP group. The LPP groups exhibited an "inverted U-shape" dose-response curve. The alterations in the GLUT2, glucokinase and hexokinase expression patterns neither impaired glucose metabolism nor correlated with glucose islet sensitivity, suggesting that β-cell sensitivity to glucose requires secondary events other than the observed metabolic/molecular events. PMID:22034157

  13. Fuel metabolism in Canada geese: effects of glucagon on glucose kinetics

    PubMed Central

    Weber, Jean-Michel

    2015-01-01

    During prolonged fasting, birds must rely on glucose mobilization to maintain normoglycemia. Glucagon is known to modulate avian energy metabolism during prolonged fasting, but the metabolic effects of this hormone on long-distance migrant birds have never been investigated. Our goal was to determine whether glucagon regulates the mobilization of the main lipid and carbohydrate fuels in migrant birds. Using the Canada goose (Branta canadensis) as a model species, we looked for evidence of fuel mobilization via changes in metabolite concentrations. No changes could be found for any lipid fraction, but glucagon elicited a strong increase in glucose concentration. Therefore, we aimed to quantify the effects of this hormone on glucose kinetics using continuous infusion of 6-[3H]-d-glucose. Glucagon was found to cause a 50% increase in glucose mobilization (from 22.2 ± 2.4 μmol·kg−1·min−1 to 33.5 ± 3.3 μmol·kg−1·min−1) and, together with an unchanged rate of carbohydrate oxidation, led to a 90% increase in plasma glucose concentration. This hormone also led to a twofold increase in plasma lactate concentration. No changes in plasma lipid concentration or composition were observed. This study is the first to demonstrate how glucagon modulates glucose kinetics in a long-distance migrant bird and to quantify its rates of glucose mobilization. PMID:26108869

  14. Reinvestigation of a New Type of Aerobic Benzoate Metabolism in the Proteobacterium Azoarcus evansii

    PubMed Central

    Mohamed, Magdy El-Said; Zaar, Annette; Ebenau-Jehle, Christa; Fuchs, Georg

    2001-01-01

    The aerobic metabolism of benzoate in the proteobacterium Azoarcus evansii was reinvestigated. The known pathways leading to catechol or protocatechuate do not operate in this bacterium. The presumed degradation via 3-hydroxybenzoyl-coenzyme A (CoA) and gentisate could not be confirmed. The first committed step is the activation of benzoate to benzoyl-CoA by a specifically induced benzoate-CoA ligase (AMP forming). This enzyme was purified and shown to differ from an isoenzyme catalyzing the same reaction under anaerobic conditions. The second step postulated involves the hydroxylation of benzoyl-CoA to a so far unknown product by a novel benzoyl-CoA oxygenase, presumably a multicomponent enzyme system. An iron-sulfur flavoprotein, which may be a component of this system, was purified and characterized. The homodimeric enzyme had a native molecular mass of 98 kDa as determined by gel filtration and contained 0.72 mol flavin adenine dinucleotide (FAD), 10.4 to 18.4 mol of Fe, and 13.3 to 17.9 mol of acid-labile sulfur per mol of native protein, depending on the method of protein determination. This benzoate-induced enzyme catalyzed a benzoyl-CoA-, FAD-, and O2-dependent NADPH oxidation surprisingly without hydroxylation of the aromatic ring; however, H2O2 was formed. The gene (boxA, for benzoate oxidation) coding for this protein was cloned and sequenced. It coded for a protein of 46 kDa with two amino acid consensus sequences for two [4Fe-4S] centers at the N terminus. The deduced amino acid sequence showed homology with subunits of ferredoxin-NADP reductase, nitric oxide synthase, NADPH-cytochrome P450 reductase, and phenol hydroxylase. Upstream of the boxA gene, another gene, boxB, encoding a protein of 55 kDa was found. The boxB gene exhibited homology to open reading frames in various other bacteria which code for components of a putative aerobic phenylacetyl-CoA oxidizing system. The boxB gene product was one of at least five proteins induced when A. evansii

  15. IL4 receptor α mediates enhanced glucose and glutamine metabolism to support breast cancer growth.

    PubMed

    Venmar, Katherine T; Kimmel, Danielle W; Cliffel, David E; Fingleton, Barbara

    2015-05-01

    The type II interleukin-4 receptor (IL4R) is expressed in human breast cancer, and in murine models thereof. It is activated by interleukin-4 (IL4), a cytokine produced predominantly by immune cells. Previously, we showed that expression of IL4Rα, a signaling component of IL4R, mediates enhanced metastatic growth through promotion of tumor cell survival and proliferation. In lymphocytes, these processes are supported by increased glucose and glutamine metabolism, and B lymphocyte survival is dependent upon IL4/IL4R-induced glucose metabolism. However, it is unknown whether IL4R-mediated metabolic reprogramming could support tumor growth. Here, we show that IL4Rα expression increases proliferation thus enhancing primary mammary tumor growth. In vitro, IL4-enhanced glucose consumption and lactate production in 4T1 cells was mediated by IL4Rα. Expression of the glucose transporter GLUT1 increased in response to IL4 in vitro, and enhanced GLUT1 expression was associated with the presence of IL4Rα in 4T1 mammary tumors in vivo. Although IL4 treatment did not induce changes in glucose metabolism in MDA-MB-231 human breast cancer cells, it increased expression of the main glutamine transporter, ASCT2, and enhanced glutamine consumption in both MDA-MB-231 and 4T1 cells. Pharmacologic inhibition of glutamine metabolism with compound 968 blocked IL4/IL4Rα-increased cell number in both cell lines. Our results demonstrate that IL4R mediates enhanced glucose and glutamine metabolism in 4T1 cancer cells, and that IL4-induced growth is supported by IL4/IL4R-enhanced glutamine metabolism in both human and murine mammary cancer cells. This highlights IL4Rα as a possible target for effective breast cancer therapy.

  16. The effect of pregnancy on metabolic responses during rest, immersion, and aerobic exercise in the water.

    PubMed

    McMurray, R G; Katz, V L; Berry, M J; Cefalo, R C

    1988-03-01

    To examine the effects of advancing pregnancy on metabolic responses, 12 women, who were recruited early in pregnancy, were studied during 20 minutes of immersion in 30 degrees C water, followed by 20 minutes of exercise in the water (60% of predicted maximal capacity) and 20 minutes of lateral supine recovery. Each subject completed the trials during the fifteenth, twenty-fifth, and thirty-fifth weeks of pregnancy, as well as a control period 8 to 10 weeks post partum. Resting oxygen uptake increased with advancing pregnancy. Resting oxygen uptake was higher in the water than on land but was not altered by pregnancy. Exercise oxygen uptakes were similar for all trials, but the work load required to elicit the VO2 decreased during the thirty-fifth week of pregnancy. Exercise heart rates followed the same pattern as oxygen uptake. Lactate concentrations declined with advancing pregnancy after exercise. Blood glucose levels were normal for pregnancy but declined slightly during exercise. Blood triglyceride levels were elevated with exercise, with a tendency to increase with advancing pregnancy. Resting plasma cortisol concentrations increased with pregnancy but remained lower during immersion and exercise. These results suggest that pregnancy significantly alters metabolic responses to exercise in the water.

  17. HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis

    PubMed Central

    Antunes, Ana; Golfieri, Giacomo; Ferlicca, Francesca; Giuliani, Marzia M.; Scarlato, Vincenzo

    2015-01-01

    ABSTRACT Neisseria meningitidis, an exclusively human pathogen and the leading cause of bacterial meningitis, must adapt to different host niches during human infection. N. meningitidis can utilize a restricted range of carbon sources, including lactate, glucose, and pyruvate, whose concentrations vary in host niches. Microarray analysis of N. meningitidis grown in a chemically defined medium in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. Most such genes are implicated in energy metabolism and transport, and some are implicated in virulence. In particular, genes involved in glucose catabolism were upregulated, whereas genes involved in the tricarboxylic acid cycle were downregulated. Several genes encoding surface-exposed proteins, including the MafA adhesins and Neisseria surface protein A, were upregulated in the presence of glucose. Our microarray analysis led to the identification of a glucose-responsive hexR-like transcriptional regulator that controls genes of the central carbon metabolism of N. meningitidis in response to glucose. We characterized the HexR regulon and showed that the hexR gene is accountable for some of the glucose-responsive regulation; in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of the bacterium. Based on DNA sequence alignment of the target sites, we propose a 17-bp pseudopalindromic consensus HexR binding motif. Furthermore, N. meningitidis strains lacking hexR expression were deficient in establishing successful bacteremia in an infant rat model of infection, indicating the importance of this regulator for the survival of this pathogen in vivo. IMPORTANCE Neisseria meningitidis grows on a limited range of nutrients during infection. We analyzed the gene expression of N. meningitidis in response to glucose, the main energy source available in human blood, and we found that glucose regulates many genes

  18. Diabetes, insulin-mediated glucose metabolism and Sertoli/blood-testis barrier function

    PubMed Central

    Alves, Marco G.; Martins, Ana D.; Cavaco, José E.; Socorro, Sílvia; Oliveira, Pedro F.

    2013-01-01

    Blood testis barrier (BTB) is one of the tightest blood-barriers controlling the entry of substances into the intratubular fluid. Diabetes Mellitus (DM) is an epidemic metabolic disease concurrent with falling fertility rates, which provokes severe detrimental BTB alterations. It induces testicular alterations, disrupting the metabolic cooperation between the cellular constituents of BTB, with dramatic consequences on sperm quality and fertility. As Sertoli cells are involved in the regulation of spermatogenesis, providing nutritional support for germ cells, any metabolic alteration in these cells derived from DM may be responsible for spermatogenesis disruption, playing a crucial role in fertility/subfertility associated with this pathology. These cells have a glucose sensing machinery that reacts to hormonal fluctuations and several mechanisms to counteract hyper/hypoglycemic events. The role of DM on Sertoli/BTB glucose metabolism dynamics and the metabolic molecular mechanisms through which DM and insulin deregulation alter its functioning, affecting male reproductive potential will be discussed. PMID:24665384

  19. A Physiology-Based Model Describing Heterogeneity in Glucose Metabolism

    PubMed Central

    Maas, Anne H.; Rozendaal, Yvonne J. W.; van Pul, Carola; Hilbers, Peter A. J.; Cottaar, Ward J.; Haak, Harm R.; van Riel, Natal A. W.

    2014-01-01

    Background: Current diabetes education methods are costly, time-consuming, and do not actively engage the patient. Here, we describe the development and verification of the physiological model for healthy subjects that forms the basis of the Eindhoven Diabetes Education Simulator (E-DES). E-DES shall provide diabetes patients with an individualized virtual practice environment incorporating the main factors that influence glycemic control: food, exercise, and medication. Method: The physiological model consists of 4 compartments for which the inflow and outflow of glucose and insulin are calculated using 6 nonlinear coupled differential equations and 14 parameters. These parameters are estimated on 12 sets of oral glucose tolerance test (OGTT) data (226 healthy subjects) obtained from literature. The resulting parameter set is verified on 8 separate literature OGTT data sets (229 subjects). The model is considered verified if 95% of the glucose data points lie within an acceptance range of ±20% of the corresponding model value. Results: All glucose data points of the verification data sets lie within the predefined acceptance range. Physiological processes represented in the model include insulin resistance and β-cell function. Adjusting the corresponding parameters allows to describe heterogeneity in the data and shows the capabilities of this model for individualization. Conclusion: We have verified the physiological model of the E-DES for healthy subjects. Heterogeneity of the data has successfully been modeled by adjusting the 4 parameters describing insulin resistance and β-cell function. Our model will form the basis of a simulator providing individualized education on glucose control. PMID:25526760

  20. Changes in metabolism during a fasting period and a subsequent vegetarian diet with particular reference to glucose metabolism.

    PubMed

    Lithell, H; Vessby, B; Hellsing, K; Ljunghall, K; Höglund, N J; Werner, I; Bruce, A

    1983-01-01

    During an investigation on the effect of fasting and a vegetarian diet on the symptoms and signs in chronic cutaneous and arthritic diseases studies were made of glucose metabolism, liver function and the plasma concentration and urine excretion of some minerals. The study was performed on 27 patients who stayed as in-patients on a metabolic ward for five weeks. After the fasting period the blood glucose and serum insulin concentrations were lower (p less than 0.01) than before the fast. At the end of the period on the vegetarian (vegan) diet (three weeks) the insulin/glucose ratio was lower than at the start of the fast. Serum enzyme concentrations reflecting liver function increased during the fast, but normalized during the vegan diet. The intake of vitamin B12 and of selenium due to the vegan diets was very low, which may give reason for some concern during long-term use of this type of vegetarian diet.

  1. Computational model of cellular metabolic dynamics: effect of insulin on glucose disposal in human skeletal muscle

    PubMed Central

    Li, Yanjun; Solomon, Thomas P. J.; Haus, Jacob M.; Saidel, Gerald M.; Cabrera, Marco E.

    2010-01-01

    Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase, pyruvate dehydrogenase); or M.3, parallel activation by a phenomenological insulin-mediated intracellular signal that modifies reaction rate coefficients. These simulations indicated that models M.1 and M.2 were not sufficient to explain the experimentally measured metabolic responses. However, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development of type 2 diabetes. PMID:20332360

  2. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    SciTech Connect

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy(/sup 3/H)glucose convert this glucose analogue to 2-deoxy(/sup 3/H)glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O/sub 2/ and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  3. Mechanism of bile acid-regulated glucose and lipid metabolism in duodenal-jejunal bypass

    PubMed Central

    Chai, Jie; Zou, Lei; Li, Xirui; Han, Dali; Wang, Shan; Hu, Sanyuan; Guan, Jie

    2015-01-01

    Bile acid plays an important role in regulating blood glucose, lipid and energy metabolism. The present study was implemented to determine the effect of duodenal-jejunal bypass (DJB) on FXR, TGR-5expression in terminal ileum and its bile acid-related mechanism on glucose and lipid metabolism. Immunohistochemistry was used to detect relative gene or protein expression in liver and intestine. Firstly, we found that expression of FXR in liver and terminal ileum of DJB group was significantly higher than that in S-DJB group (P<0.05). In addition, DJB dramatically increased the activation of TGR-5 in the liver of rats. Furthermore, PEPCK, G6Pase, FBPase 1 and GLP-1 were up-regulated by DJB. In conclusion, these results showed that bile acid ameliorated glucose and lipid metabolism through bile acid-FXR and bile acid- TGR-5 signaling pathway. PMID:26884847

  4. Oxidative stress in the etiology of age-associated decline in glucose metabolism.

    PubMed

    Salmon, Adam B

    2012-01-01

    One of the most common pathologies in aging humans is the development of glucose metabolism dysfunction. The high incidence of metabolic dysfunction, in particular type 2 diabetes mellitus, is a significant health and economic burden on the aging population. However, the mechanisms that regulate this age-related physiological decline, and thus potential preventative treatments, remain elusive. Even after accounting for age-related changes in adiposity, lean mass, blood lipids, etc., aging is an independent factor for reduced glucose tolerance and increased insulin resistance. Oxidative stress has been shown to have significant detrimental impacts on the regulation of glucose homeostasis in vitro and in vivo. Furthermore, oxidative stress has been shown to be modulated by age and diet in several model systems. This review provides an overview of these data and addresses whether increases in oxidative stress with aging may be a primary determinant of age-related metabolic dysfunction.

  5. Honeybee Retinal Glial Cells Transform Glucose and Supply the Neurons with Metabolic Substrate

    NASA Astrophysics Data System (ADS)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  6. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate.

    PubMed

    Tsacopoulos, M; Evêquoz-Mercier, V; Perrottet, P; Buchner, E

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  7. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides.

    PubMed

    Birsoy, Kıvanç; Possemato, Richard; Lorbeer, Franziska K; Bayraktar, Erol C; Thiru, Prathapan; Yucel, Burcu; Wang, Tim; Chen, Walter W; Clish, Clary B; Sabatini, David M

    2014-04-01

    As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

  8. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides

    NASA Astrophysics Data System (ADS)

    Birsoy, Kıvanç; Possemato, Richard; Lorbeer, Franziska K.; Bayraktar, Erol C.; Thiru, Prathapan; Yucel, Burcu; Wang, Tim; Chen, Walter W.; Clish, Clary B.; Sabatini, David M.

    2014-04-01

    As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

  9. Three Peptides from Soy Glycinin Modulate Glucose Metabolism in Human Hepatic HepG2 Cells.

    PubMed

    Lammi, Carmen; Zanoni, Chiara; Arnoldi, Anna

    2015-11-16

    Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA), Ile-Ala-Val-Pro-Thr-Gly-Val-Ala (IAVPTGVA) and Leu-Pro-Tyr-Pro (LPYP), three peptides deriving from soy glycinin hydrolysis, are known to regulate cholesterol metabolism in human hepatic HepG2 cells. We have recently demonstrated that the mechanism of action involves the activation of adenosine monophosphate-activated protein kinase (AMPK). This fact suggested a potential activity of the same peptides on glucose metabolism that prompted us to also investigate this aspect in the same cells. After treatment with IAVPGEVA, IAVPTGVA and LPYP, HepG2 cells were analyzed using a combination of molecular techniques, including western blot analysis, glucose uptake experiments and fluorescence microscopy evaluation. The results showed that these peptides are indeed able to enhance the capacity of HepG2 cells to uptake glucose, via glucose transporter 1 GLUT1 and glucose transporter 4 GLUT4 activation, through the stimulation of protein kinase B Akt and adenosine monophosphate-activated protein kinase AMPK pathways, both involved in glucose metabolism.

  10. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    PubMed

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. PMID:26908609

  11. Energizing eukaryotic cell-free protein synthesis with glucose metabolism.

    PubMed

    Anderson, Mark J; Stark, Jessica C; Hodgman, C Eric; Jewett, Michael C

    2015-07-01

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 μg mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (μg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms.

  12. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism.

    PubMed

    McWhorter, Todd J; Bakken, Bradley Hartman; Karasov, William H; del Rio, Carlos Martínez

    2006-03-22

    Twenty years ago, the highest active glucose transport rate and lowest passive glucose permeability in vertebrates were reported in Rufous and Anna's hummingbirds (Selasphorus rufus, Calypte anna). These first measurements of intestinal nutrient absorption in nectarivores provided an unprecedented physiological foundation for understanding their foraging ecology. They showed that physiological processes are determinants of feeding behaviour. The conclusion that active, mediated transport accounts for essentially all glucose absorption in hummingbirds influenced two decades of subsequent research on the digestive physiology and nutritional ecology of nectarivores. Here, we report new findings demonstrating that the passive permeability of hummingbird intestines to glucose is much higher than previously reported, suggesting that not all sugar uptake is mediated. Even while possessing the highest active glucose transport rates measured in vertebrates, hummingbirds must rely partially on passive non-mediated intestinal nutrient absorption to meet their high mass-specific metabolic demands.

  13. The effects of a combined strength and aerobic exercise program on glucose control and insulin action in women with type 2 diabetes.

    PubMed

    Tokmakidis, Savvas P; Zois, Christos E; Volaklis, Konstantinos A; Kotsa, Kaliopi; Touvra, Anna-Maria

    2004-08-01

    The purpose of the present study was to investigate the short- and long-term effects of a combined strength and aerobic training program on glycemic control, insulin action, exercise capacity and muscular strength in postmenopausal women with type 2 diabetes. Nine postmenopausal women, aged 55.2 (6.7) years, with type 2 diabetes participated in a supervised training program for 4 months consisting of two strength training sessions (3 sets of 12 repetitions at 60% one-repetition maximum strength) and two aerobic training sessions (60-70% of maximum heart rate at the beginning, and 70-80% of maximum heart rate after 2 months). Anthropometrical measurements, percentage glycated hemoglobin, a 2-h oral glucose tolerance test, exercise stress testing and maximum strength were measured at the beginning, and after 4 and 16 weeks of the exercise program. Significant reductions were observed in both the glucose (8.1% P<0.01) and insulin areas under the curve (20.7%, P<0.05) after 4 weeks of training. These adaptations were further improved after 16 weeks (glucose 12.5%, insulin 38%, P<0.001). Glycated hemoglobin was significantly decreased after 4 weeks [7.7 (1.7) vs 7.1 (1.3)%, P<0.05] and after 16 weeks [7.7 (1.7) vs 6.9 (1.0)%, P<0.01] of exercise training. Furthermore, exercise time and muscular strength were significantly improved after 4 weeks (P<0.01) as well as after 16 weeks (P<0.001) of training. Body mass and body-mass index, however, were not significantly altered throughout the study. The results indicated that a combined training program of strength and aerobic exercise could induce positive adaptations on glucose control, insulin action, muscular strength and exercise tolerance in women with type 2 diabetes. PMID:15232701

  14. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis

    PubMed Central

    Wang, Yan; Quagliarini, Fabiana; Gusarova, Viktoria; Gromada, Jesper; Valenzuela, David M.; Cohen, Jonathan C.; Hobbs, Helen H.

    2013-01-01

    Angiopoietin-like protein (ANGPTL)8 (alternatively called TD26, RIFL, Lipasin, and Betatrophin) is a newly recognized ANGPTL family member that has been implicated in both triglyceride (TG) and glucose metabolism. Hepatic overexpression of ANGPTL8 causes hypertriglyceridemia and increased insulin secretion. Here we examined the effects of inactivating Angptl8 on TG and glucose metabolism in mice. Angptl8 knockout (Angptl8−/−) mice gained weight more slowly than wild-type littermates due to a selective reduction in adipose tissue accretion. Plasma levels of TGs of the Angptl8−/− mice were similar to wild-type animals in the fasted state but paradoxically decreased after refeeding. The lower TG levels were associated with both a reduction in very low density lipoprotein secretion and an increase in lipoprotein lipase (LPL) activity. Despite the increase in LPL activity, the uptake of very low density lipoprotein-TG is markedly reduced in adipose tissue but preserved in hearts of fed Angptl8−/− mice. Taken together, these data indicate that ANGPTL8 plays a key role in the metabolic transition between fasting and refeeding; it is required to direct fatty acids to adipose tissue for storage in the fed state. Finally, glucose and insulin tolerance testing revealed no alterations in glucose homeostasis in mice fed either a chow or high fat diet. Thus, although absence of ANGPTL8 profoundly disrupts TG metabolism, we found no evidence that it is required for maintenance of glucose homeostasis. PMID:24043787

  15. Leptin Gene Epigenetic Adaptation to Impaired Glucose Metabolism During Pregnancy

    PubMed Central

    Bouchard, Luigi; Thibault, Stéphanie; Guay, Simon-Pierre; Santure, Marta; Monpetit, Alexandre; St-Pierre, Julie; Perron, Patrice; Brisson, Diane

    2010-01-01

    OBJECTIVE To verify whether the leptin gene epigenetic (DNA methylation) profile is altered in the offspring of mothers with gestational impaired glucose tolerance (IGT). RESEARCH DESIGN AND METHODS Placental tissues and maternal and cord blood samples were obtained from 48 women at term including 23 subjects with gestational IGT. Leptin DNA methylation, gene expression levels, and circulating concentration were measured using the Sequenom EpiTYPER system, quantitative real-time RT-PCR, and enzyme-linked immunosorbent assay, respectively. IGT was assessed after a 75-g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. RESULTS We have shown that placental leptin gene DNA methylation levels were correlated with glucose levels (2-h post-OGTT) in women with IGT (fetal side: ρ = −0.44, P ≤ 0.05; maternal side: ρ = 0.53, P ≤ 0.01) and with decreased leptin gene expression (n = 48; ρ ≥ −0.30, P ≤ 0.05) in the whole cohort. Placental leptin mRNA levels accounted for 16% of the variance in maternal circulating leptin concentration (P < 0.05). CONCLUSIONS IGT during pregnancy was associated with leptin gene DNA methylation adaptations with potential functional impacts. These epigenetic changes provide novel mechanisms that could contribute to explaining the detrimental health effects associated with fetal programming, such as long-term increased risk of developing obesity and type 2 diabetes. PMID:20724651

  16. Effects of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in bovine mammary epithelial cells.

    PubMed

    Liu, Hongyun; Zhao, Ke; Liu, Jianxin

    2013-01-01

    As the main precursor for lactose synthesis, large amounts of glucose are required by lactating dairy cows. Milk yield greatly depends on mammary lactose synthesis due to its osmoregulatory property for mammary uptake of water. Thus, glucose availability to the mammary gland could be a potential regulator of milk production. In the present study, the effect of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in vitro was investigated. Bovine mammary epithelial cells (BMEC) were treated for 12 h with various concentrations of glucose (2.5, 5, 10 or 20 mmol/L). The higher concentrations of glucose (10-20 mmol/L) did not affect the mRNA expression of acetyl-CoA carboxylase, diacyl glycerol acyl transferase, glycerol-3 phosphate acyl transferase and α-lactalbumin, whereas fatty acid synthase, sterol regulatory element binding protein-1 and beta-1, 4-galactosyl transferase mRNA expression increased at 10 mmol/L and then decreased at 20 mmol/L. The content of lactose synthase increased with increasing concentration of glucose, with addition of highest value at 20 mmol/L of glucose. Moreover, the increased glucose concentration stimulated the activities of pyruvate kinase and glucose-6-phosphate dehydrogenase, and elevated the energy status of the BMEC. Therefore, it was deduced that after increasing glucose availability, the extra absorbed glucose was partitioned to entering the synthesis of milk fat and lactose by the regulation of the mRNA expression of key genes, promoting glucose metabolism by glycolysis and pentose phosphate pathway as well as energy status. These results indicated that the sufficient availability of glucose in BMEC may promote glucose metabolism, and affect the synthesis of milk composition.

  17. Metabolic response of different high-intensity aerobic interval exercise protocols.

    PubMed

    Gosselin, Luc E; Kozlowski, Karl F; DeVinney-Boymel, Lee; Hambridge, Caitlin

    2012-10-01

    Although high-intensity sprint interval training (SIT) employing the Wingate protocol results in significant physiological adaptations, it is conducted at supramaximal intensity and is potentially unsafe for sedentary middle-aged adults. We therefore evaluated the metabolic and cardiovascular response in healthy young individuals performing 4 high-intensity (~90% VO2max) aerobic interval training (HIT) protocols with similar total work output but different work-to-rest ratio. Eight young physically active subjects participated in 5 different bouts of exercise over a 3-week period. Protocol 1 consisted of 20-minute continuous exercise at approximately 70% of VO2max, whereas protocols 2-5 were interval based with a work-active rest duration (in seconds) of 30/30, 60/30, 90/30, and 60/60, respectively. Each interval protocol resulted in approximately 10 minutes of exercise at a workload corresponding to approximately 90% VO2max, but differed in the total rest duration. The 90/30 HIT protocol resulted in the highest VO2, HR, rating of perceived exertion, and blood lactate, whereas the 30/30 protocol resulted in the lowest of these parameters. The total caloric energy expenditure was lowest in the 90/30 and 60/30 protocols (~150 kcal), whereas the other 3 protocols did not differ (~195 kcal) from one another. The immediate postexercise blood pressure response was similar across all the protocols. These finding indicate that HIT performed at approximately 90% of VO2max is no more physiologically taxing than is steady-state exercise conducted at 70% VO2max, but the response during HIT is influenced by the work-to-rest ratio. This interval protocol may be used as an alternative approach to steady-state exercise training but with less time commitment.

  18. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis

    PubMed Central

    2010-01-01

    Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera) embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose metabolism during Aedes

  19. Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides

    PubMed Central

    McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin

    2014-01-01

    Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain. PMID:24169853

  20. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future.

    PubMed

    Sandblom, Erik; Gräns, Albin; Axelsson, Michael; Seth, Henrik

    2014-11-01

    Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations. PMID:25232133

  1. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future.

    PubMed

    Sandblom, Erik; Gräns, Albin; Axelsson, Michael; Seth, Henrik

    2014-11-01

    Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations.

  2. Mitochondrial function and glucose metabolism in the placenta with gestational diabetes mellitus: role of miR-143

    PubMed Central

    Muralimanoharan, Sribalasubashini; Maloyan, Alina; Myatt, Leslie

    2016-01-01

    A predisposing factor for development of the hyperglycaemic state of gestational diabetes mellitus (GDM) is obesity. We previously showed that increasing maternal obesity is associated with significant reductions in placental mitochondrial respiration. MicroRNA (miR)-143 has been previously shown to regulate the metabolic switch from oxidative phosphorylation to aerobic glycolysis in cancer tissues. We hypothesized that mitochondrial respiration is reduced and aerobic glycolysis is up-regulated via changes in miR-143 expression in the placenta of women with GDM. Placental tissue was collected at term from women with A1GDM (controlled by diet), A2GDM (controlled by medication) and body mass index (BMI)-matched controls (CTRL). miR-143 expression was measured by RT-PCR. Expression of mitochondrial complexes, transcription factors peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α) and peroxisome proliferator-activated receptor γ (PPARγ), components of mammalian target of rapamycin (mTOR) signalling, glucose transporter GLUT1 and glycolytic enzymes [hexokinase-2 (HK-2), phosphofructokinase (PFK) and lactate dehydrogenase (LDH)] were measured by Western blot. Trophoblast respiration was measured by XF24 Analyser. Expression of miR-143, mitochondrial complexes, and PPARγ and PGC1α, which act downstream of miR-143, were significantly decreased in A2GDM placentae compared with A1GDM and CTRL (P<0.01). Placental hPL (human placental lactogen) levels, expression of glycolytic enzymes, GLUT1 and mTOR signalling were also significantly increased by more than 2-fold in A2GDM compared with A1GDM and CTRL (P<0.05). There was a 50% reduction in mitochondrial respiration in trophoblast cells isolated from A2GDM placentae. Overexpression of miR-143 was able to increase mitochondrial respiration, increase protein expression of mitochondrial complexes and decrease expression of glycolytic enzymes by 40% compared with A2GDM. Down-regulation of miR-143 mediates

  3. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling.

    PubMed

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane; Faure, Robert; Marceau, Normand

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  4. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    SciTech Connect

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane; Faure, Robert; Marceau, Normand

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  5. [Bone diseases caused by impaired glucose and lipid metabolism].

    PubMed

    Kanazawa, Ippei; Sugimoto, Toshitsugu

    2013-11-01

    The number of patients with lifestyle-related diseases is rapidly increasing in Japan. Metabolic syndrome caused by abdominal fat accumulation induces diabetes mellitus, dyslipidemia, and hypertension, resulting in an increase in cardiovascular diseases. On the other hand, recent studies have shown that the lifestyle-related diseases are risk factors of osteoporotic fractures. Although it remains still unclear how metabolic disorders affect bone tissue, oxidative stress and/or glycation stress might directly have negative impacts on bone tissue and increase the risk of fractures. In this review, we describe the association of diabetes mellitus and dyslipidemia with the fracture risk through oxidative stress and glycation stress.

  6. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  7. Ethanol induced impairment of glucose metabolism involves alterations of GABAergic signaling in pancreatic β-cells.

    PubMed

    Wang, Shuanglian; Luo, Yan; Feng, Allen; Li, Tao; Yang, Xupeng; Nofech-Mozes, Roy; Yu, Meng; Wang, Changhui; Li, Ziwei; Yi, Fan; Liu, Chuanyong; Lu, Wei-Yang

    2014-12-01

    Alcohol overindulgence is a risk factor of type 2 diabetes mellitus. However, the mechanisms by which alcohol overindulgence damages glucose metabolism remain unclear. Pancreatic islet β-cells are endowed with type-A γ-aminobutyric acid receptor (GABAAR) mediated autocrine signaling mechanism, which regulates insulin secretion and fine-tunes glucose metabolism. In neurons GABAAR is one of the major targets for alcohol. This study investigated whether ethanol alters glucose metabolism by affecting GABAAR signaling in pancreatic β-cells. Blood glucose level of test mice was measured using a blood glucose meter. Insulin secretion by the pancreatic β-cell line INS-1 cells was examined using a specific insulin ELISA kit. Whole-cell patch-clamp recording was used to evaluate GABA-elicited current in INS-1 cells. Western blot and immunostaining were used to measure the expression of GABAAR subunits in mouse pancreatic tissues or in INS-1 cells. Intraperitoneal (i.p.) administration of ethanol (3.0g/kg body weight) to mice altered glucose metabolism, which was associated with decreased expression of GABAAR α1- and δ- subunits on the surface of pancreatic β-cells. Acute treatment of cultured INS-1cells with ethanol (60mM) decreased the GABA-induced current and reduced insulin secretion. In contrast, treating INS-1 cells with GABA (100μM) largely prevented the ethanol-induced reduction of insulin release. Importantly, pre-treating mice with GABA (i.p., 1.5mg/kg body weight) partially reversed ethanol-induced impairment of glucose homeostasis in mice. Our data suggest a novel role of pancreatic GABA signaling in protecting pancreatic islet β-cells from ethanol-induced dysfunction.

  8. Carbohydrate and Amino Acid Metabolism in the Ectomycorrhizal Ascomycete Sphaerosporella brunnea during Glucose Utilization 1

    PubMed Central

    Martin, Francis; Ramstedt, Mauritz; Söderhäll, Kenneth; Canet, Daniel

    1988-01-01

    Nuclear magnetic resonance spectroscopy was utilized to study the metabolism of [1-13C]glucose in mycelia of the ectomycorrhizal ascomycete Sphaerosporella brunnea. The main purpose was to assess the biochemical pathways for the assimilation of glucose and to identify the compounds accumulated during glucose assimilation. The majority of the 13C label was incorporated into mannitol, while glycogen, trehalose and free amino acids were labeled to a much lesser extent. The high enrichment of the C1/C6 position of mannitol indicated that the polyol was formed via a direct route from absorbed glucose. Randomization of the 13C label was observed to occur in glucose and trehalose leading to the accumulation of [1,6-13C]trehalose and [1,6-13C]glucose. This suggests that the majority of the glucose carbon used to form trehalose was cycled through the metabolically active mannitol pool. The proportion of label entering the free amino acids represented 38% of the soluble 13C after 6 hours of continuous glucose labeling. Therefore, amino acid biosynthesis is an important sink of assimilated carbon. Carbon-13 was incorporated into [3-13C]alanine and [2-13C]-, [3-13C]-, and [4-13C]glutamate and glutamine. From the analysis of the intramolecular 13C enrichment of these amino acids, it is concluded that [3-13C]pyruvate, arising from [1-13C]glucose catabolism, was used by alanine aminotransferase, pyruvate dehydrogenase, and pyruvate carboxylase (or phosphoenolpyruvate carboxykinase). Intramolecular 13C labeling patterns of glutamate and glutamine were similar and are consistent with the operation of the Krebs cycle. There is strong evidence for (a) randomization of the label on C2 and C3 positions of oxaloacetate via malate dehydrogenase and fumarase, and (b) the dual biosynthetic and respiratory role of the citrate synthase, aconitase, and isocitrate dehydrogenase reactions. The high flux of carbon through the carboxylation (presumably pyruvate carboxylase) step indicates that CO

  9. Sex-specific effects of prenatal stress on glucose homoeostasis and peripheral metabolism in rats.

    PubMed

    Brunton, Paula J; Sullivan, Katie M; Kerrigan, David; Russell, John A; Seckl, Jonathan R; Drake, Amanda J

    2013-05-01

    Glucocorticoid overexposure during pregnancy programmes offspring physiology and predisposes to later disease. However, any impact of ethologically relevant maternal stress is less clear, yet of physiological importance. Here, we investigated in rats the short- and long-term effects in adult offspring of repeated social stress (exposure to an aggressive lactating female) during late pregnancy on glucose regulation following stress, glucose-insulin homoeostasis and peripheral expression of genes important in regulating glucose and lipid metabolism and glucocorticoid action. Prenatal stress (PNS) was associated with reduced birth weight in female, but not male, offspring. The increase in blood glucose with restraint was exaggerated in adult PNS males compared with controls, but not in females. Oral glucose tolerance testing showed no effects on plasma glucose or insulin concentrations in either sex at 3 months; however, at 6 months, PNS females were hyperinsulinaemic following an oral glucose load. In PNS males, plasma triglyceride concentrations were increased, with reduced hepatic mRNA expression of 5α-reductase and peroxisome proliferator-activated receptor α (Pparα (Ppara)) and a strong trend towards reduced peroxisome proliferator-activated receptor gamma coactivator 1α (Pgc1α (Ppargc1a)) and Pparγ (Pparg) expression, whereas only Pgc1α mRNA was affected in PNS females. Conversely, in subcutaneous fat, PNS reduced mRNA expression of 11β-hydroxysteroid dehydrogenase type 1 (11βhsd1), phosphoenolpyruvate carboxykinase (Pepck (Pck1)), adipose triglyceride lipase (Atgl) and diglyceride acyltransferase 2 (Dgat2) in females, but only Pepck mRNA expression was reduced in PNS males. Thus, prenatal social stress differentially programmes glucose homoeostasis and peripheral metabolism in male and female offspring. These long-term alterations in physiology may increase susceptibility to metabolic disease.

  10. Glucose metabolism derangements in adults with the MELAS m.3243A>G mutation.

    PubMed

    El-Hattab, Ayman W; Emrick, Lisa T; Hsu, Jean W; Chanprasert, Sirisak; Jahoor, Farook; Scaglia, Fernando; Craigen, William J

    2014-09-01

    The m.3243A>G mutation in the mitochondrial gene MT-TL1 leads to a wide clinical spectrum ranging from asymptomatic carriers to MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) at the severe end. Diabetes mellitus (DM) occurs in mitochondrial diseases, with the m.3243A>G mutation being the most common mutation associated with mitochondrial DM. The pathogenesis of mitochondrial DM remains largely unknown, with previous studies suggesting that impaired insulin secretion is the major factor. In this study we used stable isotope infusion techniques to assess glucose metabolism in vivo and under physiological conditions in 5 diabetic and 11 non-diabetic adults with the m.3243A>G mutation and 10 healthy adult controls. Our results revealed increased glucose production due to increased gluconeogenesis in both diabetic and non-diabetic subjects with the m.3243A>G mutation. In addition, diabetic subjects demonstrated insulin resistance and relative insulin deficiency, resulting in an inability to increase glucose oxidation which can explain the development of DM in these subjects. Non-diabetic subjects showed normal insulin sensitivity; and therefore, they were able to increase their glucose oxidation rate. The ability to increase glucose utilization can act as a compensatory mechanism that explains why these subjects do not have DM despite the higher rate of glucose production. These results suggest that increased gluconeogenesis is not enough to cause DM and the occurrence of combined insulin resistance and relative insulin deficiency are needed to develop DM in individuals with the m.3243A>G mutation. Therefore, multiple defects in insulin and glucose metabolism are required for DM to occur in individuals with mitochondrial diseases. The results of this study uncover previously undocumented alterations in glucose metabolism in individuals with the m.3243A>G mutation that contribute significantly to our understanding of the pathogenesis

  11. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.

    PubMed

    Rosewarne, P J; Wilson, J M; Svendsen, J C

    2016-01-01

    Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology. PMID:26768978

  12. Metabolic Engineering of an Aerobic Sulfate Reduction Pathway and Its Application to Precipitation of Cadmium on the Cell Surface

    PubMed Central

    Wang, Clifford L.; Maratukulam, Priya D.; Lum, Amy M.; Clark, Douglas S.; Keasling, J. D.

    2000-01-01

    The conversion of sulfate to an excess of free sulfide requires stringent reductive conditions. Dissimilatory sulfate reduction is used in nature by sulfate-reducing bacteria for respiration and results in the conversion of sulfate to sulfide. However, this dissimilatory sulfate reduction pathway is inhibited by oxygen and is thus limited to anaerobic environments. As an alternative, we have metabolically engineered a novel aerobic sulfate reduction pathway for the secretion of sulfides. The assimilatory sulfate reduction pathway was redirected to overproduce cysteine, and excess cysteine was converted to sulfide by cysteine desulfhydrase. As a potential application for this pathway, a bacterium was engineered with this pathway and was used to aerobically precipitate cadmium as cadmium sulfide, which was deposited on the cell surface. To maximize sulfide production and cadmium precipitation, the production of cysteine desulfhydrase was modulated to achieve an optimal balance between the production and degradation of cysteine. PMID:11010904

  13. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography. [Dogs

    SciTech Connect

    Schelbert, H.R.; Phelps, M.E.

    1980-06-01

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (/sup 13/N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique.

  14. Accumulation of d-Glucose from Pentoses by Metabolically Engineered Escherichia coli

    PubMed Central

    Xia, Tian; Han, Qi; Costanzo, William V.; Zhu, Yixuan; Urbauer, Jeffrey L.

    2015-01-01

    Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway. PMID:25746993

  15. Effect of preceding resistance exercise on metabolism during subsequent aerobic session.

    PubMed

    Kang, Jie; Rashti, Stefanie L; Tranchina, Christopher P; Ratamess, Nicholas A; Faigenbaum, Avery D; Hoffman, Jay R

    2009-09-01

    The present study was undertaken to evaluate the acute effect of prior resistance training of varying intensities on energy expenditure and substrate utilization during subsequent aerobic exercise. Eleven males and 21 females completed three experimental trials consisting of (1) aerobic exercise only (C), (2) aerobic exercise preceded by a high-intensity resistance training (HI), and (3) aerobic exercise preceded by a low-intensity resistance training (LO). Resistance training produced an equal volume between HI and LO and consisted of six exercises with each performed for three sets of eight repetitions at 90% of 8-RM in HI and three sets of 12 repetitions at 60% of 8-RM in LO. Aerobic exercise was performed on a cycle ergometer at 50% VO(2)peak for 20 min in all trials. Oxygen uptake (VO2), and carbohydrate and fat oxidation were determined throughout each aerobic exercise session. Fat oxidation rate was higher (P < 0.05) in HI than either LO or C in both males and females. VO2 was also higher (P < 0.05) in HI than either LO or C in females. In males, although between-trial differences in VO2 did not reach statistical significance, they were consistent with the trend seen in females. No differences in carbohydrate oxidation rates were observed across the three trials in either gender group. It appears that in training that combines both aerobic and resistance exercises, performing a comparatively higher intensity resistance exercise first would augment fat utilization and energy expenditure during subsequent aerobic exercise.

  16. Control of Hepatic Glucose Metabolism by Islet and Brain

    PubMed Central

    Rojas, Jennifer M.; Schwartz, Michael W.

    2014-01-01

    Dysregulation of hepatic glucose uptake (HGU) and inability of insulin to suppress hepatic glucose production (HGP), both contribute to hyperglycemia in patients with type 2 diabetes (T2D). Growing evidence suggests that insulin can inhibit HGP not only through a direct effect on the liver, but also via a mechanism involving the brain. Yet the notion that insulin action in the brain plays a physiological role in the control of HGP continues to be controversial. Although studies in dogs suggest that the direct hepatic effect of insulin is sufficient to explain day-to-day control of HGP, a surprising outcome has been revealed by recent studies in mice investigating whether the direct hepatic action of insulin is necessary for normal HGP: when hepatic insulin signaling pathway was genetically disrupted, HGP was maintained normally even in the absence of direct input from insulin. Here we present evidence that points to a potentially important role of the brain in the physiological control of both HGU and HGP in response to input from insulin as well as other hormones and nutrients. PMID:25200294

  17. Aerobic metabolism of the anglerfish Melanocetus johnsoni, a deep-pelagic marine sit-and-wait predator

    NASA Astrophysics Data System (ADS)

    Cowles, David L.; Childress, James J.

    1995-09-01

    Melanocetus johnsoni (Teleostei:Melanocetidae), a bathypelagic marine sit-and-wait predatory fish captured off Hawaii, has an average aerobic metabolism of 0.486 μmol OZ g -1 h',a rate much lower than that of more active species from similar depths but similar to that of other sit-and-wait predators. Larger individuals have a lower mass-specific metabolic rate than do small ones (the slope of the allometric relationship between wet mass and mass-specific metabolism is -0.46). This species, a resident of the oxygen minimum layer, is capable of regulating its oxygen consumption down to the lowest oxygen pressures encountered in its environment off Hawaii, and can also survive for hours under severely hypoxic or anaerobic conditions.

  18. The effect of increased phosphoglucose isomerase on glucose metabolism in Saccharomyces cerevisiae.

    PubMed

    Benevolensky, S V; Clifton, D; Fraenkel, D G

    1994-02-18

    Comparison of microbial strains with normal and high content of single enzymes is coming into use for metabolic analysis and in vivo assessment of enzyme function. We present an example for phosphoglucose isomerase and glucose metabolism in the yeast Saccharomyces cerevisiae. We use cell suspensions in conditions of inhibited protein synthesis and respiration, with low assimilation, rapid and linear glucose utilization, fermentation almost quantitative, and high enough cell density for direct preparation of extracts for metabolite analysis. The mass action ratio and fitting of fructose-6-P and glucose-6-P concentrations and kinetic parameters of the enzyme are not inconsistent with near equilibrium of the reaction in the wild-type strain and small if any change in the high level strain. However, this conclusion would require that the Vmax values underestimate the activity in the cell. On the other hand, the specific activities of glucose-6-P and fructose-1,6-P2 during metabolism of [2-3H]glucose are quite high which, together with knowledge of tritium exchange and isotope effects for the reaction in vitro, would point to the reaction in the wild-type strain being far from equilibrium; the specific activities are lower in the high level strain, indicating that extra enzyme is functional. One way to reconcile the latter results would be for tritium exchange to be considerably lower in vivo than known in vitro.

  19. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    PubMed Central

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  20. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism.

    PubMed

    Hao, Qin; Yadav, Rachita; Basse, Astrid L; Petersen, Sidsel; Sonne, Si B; Rasmussen, Simon; Zhu, Qianhua; Lu, Zhike; Wang, Jun; Audouze, Karine; Gupta, Ramneek; Madsen, Lise; Kristiansen, Karsten; Hansen, Jacob B

    2015-03-01

    We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen metabolism, and the pentose phosphate pathway was observed in BAT from cold-exposed animals. In addition, glycerol-3-phosphate dehydrogenase 1 expression was induced in BAT from cold-challenged mice, suggesting increased synthesis of glycerol from glucose. Similarly, expression of lactate dehydrogenases was induced by cold in BAT. Pyruvate dehydrogenase kinase 2 (Pdk2) and Pdk4 were expressed at significantly higher levels in BAT than in WAT, and Pdk2 was induced in BAT by cold. Of notice, only a subset of the changes detected in BAT was observed in WAT. Based on changes in gene expression during cold exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating triacylglycerol synthesis/fatty acid re-esterification; 3) glycogen turnover and lactate production are increased; and 4) entry of glucose carbon into the tricarboxylic acid cycle is restricted by PDK2 and PDK4. In summary, our results demonstrate extensive and diverse gene expression changes related to glucose handling in activated BAT. PMID:25516548

  1. Chronic unpredictable stress regulates visceral adipocyte‐mediated glucose metabolism and inflammatory circuits in male rats

    PubMed Central

    Karagiannides, Iordanes; Golovatscka, Viktoriya; Bakirtzi, Kyriaki; Sideri, Aristea; Salas, Martha; Stavrakis, Dimitris; Polytarchou, Christos; Iliopoulos, Dimitrios; Pothoulakis, Charalabos; Bradesi, Sylvie

    2014-01-01

    Abstract Chronic psychological stress is a prominent risk factor involved in the pathogenesis of many complex diseases, including major depression, obesity, and type II diabetes. Visceral adipose tissue is a key endocrine organ involved in the regulation of insulin action and an important component in the development of insulin resistance. Here, we examined for the first time the changes on visceral adipose tissue physiology and on adipocyte‐associated insulin sensitivity and function after chronic unpredictable stress in rats. Male rats were subjected to chronic unpredictable stress for 35 days. Total body and visceral fat was measured. Cytokines and activated intracellular kinase levels were determined using high‐throughput multiplex assays. Adipocyte function was assessed via tritiated glucose uptake assay. Stressed rats showed no weight gain, and their fat/lean mass ratio increased dramatically compared to control animals. Stressed rats had significantly higher mesenteric fat content and epididymal fat pad weight and demonstrated reduced serum glucose clearing capacity following glucose challenge. Alterations in fat depot size were mainly due to changes in adipocyte numbers and not size. High‐throughput molecular screening in adipocytes isolated from stressed rats revealed activation of intracellular inflammatory, glucose metabolism, and MAPK networks compared to controls, as well as significantly reduced glucose uptake capacity in response to insulin stimulation. Our study identifies the adipocyte as a key regulator of the effects of chronic stress on insulin resistance, and glucose metabolism, with important ramifications in the pathophysiology of several stress‐related disease states. PMID:24819750

  2. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  3. Insulin resistance for glucose metabolism in disused soleus muscle of mice

    NASA Technical Reports Server (NTRS)

    Seider, M. J.; Nicholson, W. F.; Booth, F. W.

    1981-01-01

    Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes.

  4. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  5. Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1992-01-01

    A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)

  6. Low Cerebral Glucose Metabolism: A Potential Predictor for the Severity of Vascular Parkinsonism and Parkinson's Disease.

    PubMed

    Xu, Yunqi; Wei, Xiaobo; Liu, Xu; Liao, Jinchi; Lin, Jiaping; Zhu, Cansheng; Meng, Xiaochun; Xie, Dongsi; Chao, Dongman; Fenoy, Albert J; Cheng, Muhua; Tang, Beisha; Zhang, Zhuohua; Xia, Ying; Wang, Qing

    2015-11-01

    This study explored the association between cerebral metabolic rates of glucose (CMRGlc) and the severity of Vascular Parkinsonism (VP) and Parkinson's disease (PD). A cross-sectional study was performed to compare CMRGlc in normal subjects vs. VP and PD patients. Twelve normal subjects, 22 VP, and 11 PD patients were evaluated with the H&Y and MMSE, and underwent 18F-FDG measurements. Pearson's correlations were used to identify potential associations between the severity of VP/PD and CMRGlc. A pronounced reduction of CMRGlc in the frontal lobe and caudate putamen was detected in patients with VP and PD when compared with normal subjects. The VP patients displayed a slight CMRGlc decrease in the caudate putamen and frontal lobe in comparison with PD patients. These decreases in CMRGlc in the frontal lobe and caudate putamen were significantly correlated with the VP patients' H&Y, UPDRS II, UPDRS III, MMSE, cardiovascular, and attention/memory scores. Similarly, significant correlations were observed in patients with PD. This is the first clinical study finding strong evidence for an association between low cerebral glucose metabolism and the severity of VP and PD. Our findings suggest that these changes in glucose metabolism in the frontal lobe and caudate putamen may underlie the pathophysiological mechanisms of VP and PD. As the scramble to find imaging biomarkers or predictors of the disease intensifies, a better understanding of the roles of cerebral glucose metabolism may give us insight into the pathogenesis of VP and PD. PMID:26618044

  7. Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crossbred steers (n = 20; 235 +/- 4 kg) were fed 53 days during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brandChromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0...

  8. Chromium supplementation alters the glucose and lipid metabolism of feedlot cattle during the receiving period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crossbreed steers (n = 20; 235 ± 4 kg) were fed 53 d during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brand Chromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0 (C...

  9. A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism

    PubMed Central

    Amoasii, Leonela; Holland, William; Sanchez-Ortiz, Efrain; Baskin, Kedryn K.; Pearson, Mackenzie; Burgess, Shawn C.; Nelson, Benjamin R.; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    The Mediator complex governs gene expression by linking upstream signaling pathways with the basal transcriptional machinery. However, how individual Mediator subunits may function in different tissues remains to be investigated. Through skeletal muscle-specific deletion of the Mediator subunit MED13 in mice, we discovered a gene regulatory mechanism by which skeletal muscle modulates the response of the liver to a high-fat diet. Skeletal muscle-specific deletion of MED13 in mice conferred resistance to hepatic steatosis by activating a metabolic gene program that enhances muscle glucose uptake and storage as glycogen. The consequent insulin-sensitizing effect within skeletal muscle lowered systemic glucose and insulin levels independently of weight gain and adiposity and prevented hepatic lipid accumulation. MED13 suppressed the expression of genes involved in glucose uptake and metabolism in skeletal muscle by inhibiting the nuclear receptor NURR1 and the MEF2 transcription factor. These findings reveal a fundamental molecular mechanism for the governance of glucose metabolism and the control of hepatic lipid accumulation by skeletal muscle. Intriguingly, MED13 exerts opposing metabolic actions in skeletal muscle and the heart, highlighting the customized, tissue-specific functions of the Mediator complex. PMID:26883362

  10. A new insulin-glucose metabolic model of type 1 diabetes mellitus: An in silico study.

    PubMed

    Fang, Qiang; Yu, Lei; Li, Peng

    2015-06-01

    Diabetes mellitus is a serious metabolic disease that threatens people's health. The artificial pancreas system (APS) has been generally considered as the ultimate cure of type 1 diabetes mellitus (T1DM). The simulation model of insulin-glucose metabolism is an essential part of an APS as it processes the measured glucose level and generates control signal to the insulin infusion system. This paper presents a new insulin-glucose metabolic model using model reduction methods applied to the popular but complex Cobelli's model. The performances of three different model reduction methods, namely Padé approximation, Routh approximation and system identification, are compared. The results of in silico simulation based on 30 virtual patients of three groups for adults, adolescents, and children show that the approximation error between this new model and the original Cobelli's model is so small that can be neglected. It can be concluded that the proposed simplified model can describe the insulin-glucose metabolism process rather accurately as well as can be easily implemented and integrated into an APS to make the APS technology more mature and closer to clinical use. The FPGA implementation, testing and further simplification possibility will be explored in the next stage of research.

  11. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture.

    PubMed

    Nigam, Anshul; Phale, Prashant S; Wangikar, Pramod P

    2012-06-01

    Pseudomonas putida CSV86 utilizes aromatic compounds preferentially over sugars and co-metabolizes aromatics along with organic acids. In the present study, the metabolic capacity and adaptability of strain CSV86 were assessed in a chemostat at benzyl alcohol concentrations ranging from 1 g l(-1) to 3 g l(-1) and in the presence of glucose and succinate by systematically varying the dilution rate. Complete removal of benzyl alcohol was achieved for loadings up to 640 mg l(-1) h(-1) in presence of benzyl alcohol alone. The strain responded within 1 min towards step changes in substrate loading as indicated by an increase in the oxygen uptake rate, presumably as a result of excess metabolic capacity. These results suggest that CSV86 exhibits considerable metabolic elasticity upon increase in substrate load. Metabolic elasticity of the microorganism is an important parameter in wastewater treatment plants due to the changing substrate loads. PMID:22494573

  12. Viral affects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection

    PubMed Central

    Yu, Yongjun; Clippinger, Amy J.; Alwine, James C.

    2011-01-01

    Human cytomegalovirus (HCMV) infection causes dramatic alterations of intermediary metabolism, similar to those found in tumor cells. In infected cells, glucose carbon is not completely broken down by the tricarboxylic acid (TCA) cycle for energy; instead it is used biosynthetically. This process requires increased glucose uptake, increased glycolysis and the diversion of glucose carbon, in the form of citrate, from the TCA cycle for use in HCMV-induced fatty acid biosynthesis. The diversion of citrate from the TCA cycle (cataplerosis) requires induction of enzymes to promote glutaminolysis, the conversion of glutamine to -ketoglutarate in order to maintain the TCA cycle (anaplerosis) and ATP production. Such changes could result in heretofore uncharacterized pathogenesis, potentially implicating HCMV as a subtle co-factor in many maladies, including oncogenesis. Recognition of the effects of HCMV, and other viruses, on host cell metabolism will provide new understanding of viral pathogenesis and novel avenues for antiviral therapy. PMID:21570293

  13. Differential insulin sensitivities of glucose, amino acid, and albumin metabolism in elderly men and women.

    PubMed

    Boirie, Y; Gachon, P; Cordat, N; Ritz, P; Beaufrère, B

    2001-02-01

    Regulation of glucose homeostasis by insulin is modified during aging, but whether this alteration is associated with changes in protein metabolism is less defined. Insulin dose responses of whole body glucose, leucine, and albumin metabolism have been investigated using isotopic dilution of D-[6, 6-(2)H(2)]glucose and L-[1-(13)C]leucine in 14 young (Y; 24.0 +/- 0.9 yr; mean +/- SEM, 20.5 +/- 0.4 kg/m(2)) and 12 healthy elderly subjects (E; 69.4 +/- 0.6 yr; 24.6 +/- 0.8 kg/m(2)) using a euglycemic and euaminoacidemic hyperinsulinemic clamp at two insulin infusion rates of 0.2 and 0.5 mU/kg.min (CL1 and CL2, respectively). Despite significantly higher plasma insulin in E than in Y, the glucose disposal rate was lower in E than in Y at both insulin levels, whereas glucose production was normally suppressed. Whole body protein breakdown was less inhibited by insulin in E than in Y at CL1 (-13.5 +/- 1.4% vs. -8.8 +/- 1.3%, Y vs. E, P < 0.05), but not significantly at CL2 (-22.0 +/- 1.4% vs. -18.8 +/- 1.7%, Y vs. E, P = NS). The albumin synthesis rate was identical and stimulated to the same extent by insulin in groups Y and E. Gender affected basal leucine metabolism, but the response to insulin was similar in both groups. In conclusion, decreased insulin action on glucose disposal is associated with a reduced insulin sensitivity for protein breakdown in healthy elderly subjects at low insulin concentrations. Higher insulin levels compensate for a reduced insulin action on protein metabolism in elderly subjects. PMID:11158022

  14. A new application of electrical impedance spectroscopy for measuring glucose metabolism: a phantom study

    NASA Astrophysics Data System (ADS)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin

    2015-03-01

    Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.

  15. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    PubMed Central

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  16. Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1.

    PubMed

    Joyal, Jean-Sébastien; Sun, Ye; Gantner, Marin L; Shao, Zhuo; Evans, Lucy P; Saba, Nicholas; Fredrick, Thomas; Burnim, Samuel; Kim, Jin Sung; Patel, Gauri; Juan, Aimee M; Hurst, Christian G; Hatton, Colman J; Cui, Zhenghao; Pierce, Kerry A; Bherer, Patrick; Aguilar, Edith; Powner, Michael B; Vevis, Kristis; Boisvert, Michel; Fu, Zhongjie; Levy, Emile; Fruttiger, Marcus; Packard, Alan; Rezende, Flavio A; Maranda, Bruno; Sapieha, Przemyslaw; Chen, Jing; Friedlander, Martin; Clish, Clary B; Smith, Lois E H

    2016-04-01

    Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid β-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases. PMID:26974308

  17. Brain magnetic resonance imaging, aerobic power, and metabolic parameters among 30 asymptomatic scuba divers.

    PubMed

    Tripodi, D; Dupas, B; Potiron, M; Louvet, S; Geraut, C

    2004-11-01

    The aim of the study was to evaluate the presence of cerebral lesions in asymptomatic scuba divers and explain the causes of them: potential risk factors associating cardiovascular risk factors, low aerobic capacity, or characteristics of diving (maximum depth, ascent rate). Experienced scuba divers, over 40 years of age, without any decompression sickness (DCS) history were included. We studied 30 scuba divers (instructors) without any clinical symptoms. For all of them, we carried out a clinical examination with fatty body mass determination and we questioned them about their diving habits. A brain Magnetic Resonance imaging (MRI), an assessment of maximal oxygen uptake, glycemia, triglyceridemia, and cholesterolemia were systematically carried out. Cerebral spots of high intensity were found at 33 % in the scuba diving group and 30 % in the control group. In the diving group, abnormalities were related to unsafe scuba-diving or metabolic abnormalities. In our study, we did not find a significant relationship between the lesions of the central nervous system, and the age, depth of the dives, number of dives, and ergometric performances (maximal oxygen uptake, V.O (2max), serum level of blood lactate). Nevertheless, we found a significant relationship between the lesions of the central nervous system and ascent rate faster than 10 meters per minute (r = 0.57; p = 0.003) or presence of high level of cholesterolemia (r = 0.6; p = 0.001). We found concordant results using the Cochran's Test: meaningful link between the number of brain lesions and the speed of decompression (Uexp = 14 < Utable = 43; alpha = 0.05, p < 0.01). We concluded that hyperintensities can be explained by preformed nitrogen gas microbubbles and particularly in presence of cholesterol, when the ascent rate is up to 10 meters per minute. So, it was remarkable to note that asymptomatic patients practicing scuba diving either professionally or recreationally, presented lesions of the central nervous

  18. Extra-mitochondrial aerobic metabolism in retinal rod outer segments: new perspectives in retinopathies.

    PubMed

    Panfoli, I; Calzia, D; Ravera, S; Morelli, A M; Traverso, C E

    2012-04-01

    Vertebrate retinal rods are photoreceptors for dim-light vision. They display extreme sensitivity to light thanks to a specialized subcellular organelle, the rod outer segment. This is filled with a stack of membranous disks, expressing the proteins involved in visual transduction, a very energy demanding process. Our previous proteomic and biochemical studies have shed new light on the chemical energy processes that supply ATP to the outer segment, suggesting the presence of an extra-mitochondrial aerobic metabolism in rod outer segment, devoid of mitochondria, which would account for a quantitatively adequate ATP supply for phototransduction. Here the functional presence of an oxidative phosphorylation in the rod outer limb is examined for its relationship to many physiological and pathological data on the rod outer segment. We hypothesize that the rod outer limb is at risk of oxidative stress, in any case of impairment in the respiratory chain functioning, or of blood supply. In fact, the electron transfer chain is a major source of reactive O(2) species, known to produce severe alteration to the membrane lipids, especially those of the outer segment that are rich in polyunsaturated fatty acids. We propose that the disk membrane may become the target of reactive oxygen species that may be released by the electron transport chain under pathologic conditions. For example, during aging reactive oxygen species production increases, while cellular antioxidant capacity decreases. Also the apoptosis of the rod observed after exposure to bright or continuous illumination can be explained considering that an overfunctioning of phototransduction may damage the disk membrane to a point at which cytochrome c escapes from the intradiskal space, where it is presently supposed to be, activating a putative caspase 9 and the apoptosome. A pathogenic mechanism for many inherited and acquired retinal degenerations, representing a major problem in clinical ophthalmology, is

  19. Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats

    PubMed Central

    Chung, Soo Im; Ryu, Su Noh; Kang, Mi Young

    2016-01-01

    The effect of germinated Superhongmi, a reddish brown pigmented rice cultivar, on the glucose profile and bone turnover in the postmenopausal-like model of ovariectomized rats was determined. The ovariectomized Sprague-Dawley rats were randomly divided into three dietary groups (n = 10): normal control diet (NC) and normal diet supplemented with non-germinated Superhongmi (SH) or germinated Superhongmi (GSH) rice powder. After eight weeks, the SH and GSH groups showed significantly lower body weight, glucose and insulin concentrations, levels of bone resorption markers and higher glycogen and 17-β-estradiol contents than the NC group. The glucose metabolism improved through modulation of adipokine production and glucose-regulating enzyme activities. The GSH rats exhibited a greater hypoglycemic effect and lower bone resorption than SH rats. These results demonstrate that germinated Superhongmi rice may potentially be useful in the prevention and management of postmenopausal hyperglycemia and bone turnover imbalance. PMID:27775654

  20. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    SciTech Connect

    Dalgaard, Louise T.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  1. Similarities of cerebral glucose metabolism in Alzheimer's and Parkinsonian dementia

    SciTech Connect

    Kuhl, D.E.; Metter, E.J.; Benson, D.F.; Ashford, J.W.; Riege, W.H.; Fujikawa, D.G.; Markham, C.H.; Maltese, A.

    1985-05-01

    In the dementia of probable Alzheimer's Disease (AD), there is a decrease in the metabolic ratio of parietal cortex/caudate-thalamus which relates measures in the most and in the least severely affected locations. Since some demented patients with Parkinson's Disease (PDD) are known to share pathological and neurochemical features with AD patients, the authors evaluated if the distribution of cerebral hypometabolism in PDD and AD were the same. Local cerebral metabolic rates were determined using the FDG method and positron tomography in subjects with AD (N=23), and PDD (N=7), multiple infarct dementia (MID)(N=6), and controls (N=10). In MID, the mean par/caudthal ratio was normal (0.79 +- 0.9, N=6). In AD and PDD patients, this ratio correlated negatively with both the severity (r=-0.624, rho=0.001) and duration (r=-0.657, rho=0.001) of dementia. The ratio was markedly decreased in subjects with mild to severe dementia (0.46 +- 0.09, N=21) and with dementia duration greater than two years (0.44 +- 0.08, N=18), but the ratio was also significantly decreased in patients with less advanced disease, i.e., when dementia was only questionable (0.64 +- 0.14, N=9) (t=2.27, rho<0.037) and when duration was two years or less (0.62 +- 0.13, N=12)(t=2.88, rho<0.009). This similarity of hypometabolism in AD and PDD is additional evidence that a common mechanism may operate in both disorders. The par/caud-thal metabolic ratio may be an index useful in the differential diagnosis of early dementia.

  2. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    PubMed

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  3. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    PubMed

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  4. Soil metabolism of [14C]methiozolin under aerobic and anaerobic flooded conditions.

    PubMed

    Hwang, Ki-Hwan; Lim, Jong-Soo; Kim, Sung-Hun; Chang, Hee-Ra; Kim, Kyun; Koo, Suk-Jin; Kim, Jeong-Han

    2013-07-17

    Methiozolin is a new turf herbicide controlling annual bluegrass in various cool- and warm-season turfgrasses. This study was conducted to investigate the fate of methiozolin in soil under aerobic and anaerobic flooded conditions using two radiolabeled tracers, [benzyl-(14)C]- and [isoxazole-(14)C]methiozolin. The mass balance of applied radioactivity ranged from 91.7 to 104.5% in both soil conditions. In the soil under the aerobic condition, [(14)C]methiozolin degraded with time to remain by 17.9 and 15.9% of the applied in soil at 120 days after treatment (DAT). [(14)C]Carbon dioxide and the nonextractable radioactivity increased as the soil aged to reach up to 41.5 and 35.7% for [benzyl-(14)C]methiozolin at 120 DAT, respectively, but 36.1 and 39.8% for [isoxazole-(14)C]methiozolin, respectively, during the same period. The nonextractable residue was associated more with humin and fulvic acid fractions under the aerobic condition. No significant volatile products or metabolites were detected during this study. The half-life of [(14)C]methiozolin was approximately 49 days in the soil under the aerobic condition; however, it could not be estimated in the soil under the anaerobic flooded condition because [(14)C]methiozolin degradation was limited. On the basis of these results, methiozolin is considered to undergo fast degradation by aerobic microbes, but not by anaerobic microbes in soil. PMID:23772889

  5. Soil metabolism of [14C]methiozolin under aerobic and anaerobic flooded conditions.

    PubMed

    Hwang, Ki-Hwan; Lim, Jong-Soo; Kim, Sung-Hun; Chang, Hee-Ra; Kim, Kyun; Koo, Suk-Jin; Kim, Jeong-Han

    2013-07-17

    Methiozolin is a new turf herbicide controlling annual bluegrass in various cool- and warm-season turfgrasses. This study was conducted to investigate the fate of methiozolin in soil under aerobic and anaerobic flooded conditions using two radiolabeled tracers, [benzyl-(14)C]- and [isoxazole-(14)C]methiozolin. The mass balance of applied radioactivity ranged from 91.7 to 104.5% in both soil conditions. In the soil under the aerobic condition, [(14)C]methiozolin degraded with time to remain by 17.9 and 15.9% of the applied in soil at 120 days after treatment (DAT). [(14)C]Carbon dioxide and the nonextractable radioactivity increased as the soil aged to reach up to 41.5 and 35.7% for [benzyl-(14)C]methiozolin at 120 DAT, respectively, but 36.1 and 39.8% for [isoxazole-(14)C]methiozolin, respectively, during the same period. The nonextractable residue was associated more with humin and fulvic acid fractions under the aerobic condition. No significant volatile products or metabolites were detected during this study. The half-life of [(14)C]methiozolin was approximately 49 days in the soil under the aerobic condition; however, it could not be estimated in the soil under the anaerobic flooded condition because [(14)C]methiozolin degradation was limited. On the basis of these results, methiozolin is considered to undergo fast degradation by aerobic microbes, but not by anaerobic microbes in soil.

  6. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. PMID:26614654

  7. Effect of insulin and glucose on adenosine metabolizing enzymes in human B lymphocytes.

    PubMed

    Kocbuch, Katarzyna; Sakowicz-Burkiewicz, Monika; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2009-01-01

    In diabetes several aspects of immunity are altered, including the immunomodulatory action of adenosine. Our study was undertaken to investigate the effect of different glucose and insulin concentrations on activities of adenosine metabolizing enzymes in human B lymphocytes line SKW 6.4. The activity of adenosine deaminase in the cytosolic fraction was very low and was not affected by different glucose concentration, but in the membrane fraction of cells cultured with 25 mM glucose it was decreased by about 35% comparing to the activity in cells maintained in 5 mM glucose, irrespective of insulin concentration. The activities of 5'-nucleotidase (5'-NT) and ecto-5'-NT in SKW 6.4 cells depended on insulin concentration, but not on glucose. Cells cultured with 10(-8) M insulin displayed an about 60% lower activity of cytosolic 5'-NT comparing to cells maintained at 10(-11) M insulin. The activity of ecto-5'-NT was decreased by about 70% in cells cultured with 10(-8) M insulin comparing to cells grown in 10(-11) M insulin. Neither insulin nor glucose had an effect on adenosine kinase (AK) activity in SKW 6.4 cells or in human B cells isolated from peripheral blood. The extracellular level of adenosine and inosine during accelerated catabolism of cellular ATP depended on glucose, but not on insulin concentration. Concluding, our study demonstrates that glucose and insulin differentially affect the activities of adenosine metabolizing enzymes in human B lymphocytes, but changes in those activities do not correlate with the adenosine level in cell media during accelerated ATP catabolism, implying that nucleoside transport is the primary factor determining the extracellular level of adenosine.

  8. Cereal Processing Influences Postprandial Glucose Metabolism as Well as the GI Effect

    PubMed Central

    Vinoy, Sophie; Normand, Sylvie; Meynier, Alexandra; Sothier, Monique; Louche-Pelissier, Corinne; Peyrat, Jocelyne; Maitrepierre, Christine; Nazare, Julie-Anne; Brand-Miller, Jeannie; Laville, Martine

    2013-01-01

    Objective: Technological processes may influence the release of glucose in starch. The aim of this study was to compare the metabolic response and the kinetics of appearance of exogenous glucose from 2 cereal products consumed at breakfast. Methods: Twenty-five healthy men were submitted to a randomized, open, crossover study that was divided into 2 parts: 12 of the 25 subjects were included in the “isotope part,” and the 13 other subjects were included in the “glycemic part.” On test days, subjects received biscuits (low glycemic index [GI], high slowly available glucose [SAG]) or extruded cereals (medium GI, low SAG) as part of a breakfast similar in terms of caloric and macronutrient content. The postprandial phase lasted 270 minutes. Results: The rate of appearance (RaE) of exogenous glucose was significantly lower after consumption of biscuits in the first part of the morning (90–150 minutes) than after consumption of extruded cereals (p ≤ 0.05). Conversely, at 210 minutes, it was significantly higher with biscuits (p ≤ 0.01). For the first 2 hours, plasma glucose and insulin were significantly lower after biscuits during the glycemic part. C-peptide plasma concentrations were significantly lower at 90, 120, and 150 minutes after ingestion of the biscuits (p ≤ 0.05). Conclusion: The consumption of biscuits with a high content of slowly digestible starch reduces the appearance rate of glucose in the first part of the morning and prolongs this release in the late phase of the morning (210 minutes). Our results also emphasize that modulation of glucose availability at breakfast is an important factor for metabolic control throughout the morning in healthy subjects due to the lowering of blood glucose and insulin excursions. PMID:24015715

  9. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution

    PubMed Central

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-01-01

    The 13C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden–Meyerhof–Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid–liquid separation of the KWSS, the addition of Fe3+ during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe3+ addition), the flux to the EMP with the addition of Fe3+ (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe3+ also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l−1, an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn2+ showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  10. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study.

    PubMed

    Park, So Hyeon; Park, Hyun Soo; Kim, Sang Eun

    2016-08-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after (18)F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  11. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    PubMed Central

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  12. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution.

  13. 2-Deoxy-2-fluoro-d-glucose metabolism in Arabidopsis thaliana

    PubMed Central

    Fatangare, Amol; Paetz, Christian; Saluz, Hanspeter; Svatoš, Aleš

    2015-01-01

    2-Deoxy-2-fluoro-d-glucose (FDG) is glucose analog routinely used in clinical and animal radiotracer studies to trace glucose uptake but it has rarely been used in plants. Previous studies analyzed FDG translocation and distribution pattern in plants and proposed that FDG could be used as a tracer for photoassimilates in plants. Elucidating FDG metabolism in plants is a crucial aspect for establishing its application as a radiotracer in plant imaging. Here, we describe the metabolic fate of FDG in the model plant species Arabidopsis thaliana. We fed FDG to leaf tissue and analyzed leaf extracts using MS and NMR. On the basis of exact mono-isotopic masses, MS/MS fragmentation, and NMR data, we identified 2-deoxy-2-fluoro-gluconic acid, FDG-6-phosphate, 2-deoxy-2-fluoro-maltose, and uridine-diphosphate-FDG as four major end products of FDG metabolism. Glycolysis and starch degradation seemed to be the important pathways for FDG metabolism. We showed that FDG metabolism in plants is considerably different than animal cells and goes beyond FDG-phosphate as previously presumed. PMID:26579178

  14. Determination of patterns of regional cerebral glucose metabolism in normal aging and dementia

    SciTech Connect

    Alavi, A.; Chawluk, J.; Hurtig, H.; Dann, R.; Rosen, M.; Kushner, M.; Silver, F.; Reivich, M.

    1985-05-01

    Regional cerebral metabolic rates for glucose (rCMRGlc) were measured using 18F-FDG and positron emission tomography (PET) in 14 patients with probable Alzheimer's disease (AD) (age=64), 9 elderly controls (age=61), and 9 young controls (age=28). PET studies were performed without sensory stimulation or deprivation. Metabolic rates in individual brain regions were determined using an atlas overlay. Relative metabolic rates (rCMRGl c/global CMRGlc) were determined for all subjects. Comparison of young and elderly controls demonstrated significant decreases in frontal metabolism (rho<0.005) and right inferior parietal (IP) metabolism (rho<0.02) with normal aging. Patients with mild-moderate AD (NMAD) (n=8) when compared to age-matched controls, showed further reduction in right IP metabolism (rho<0.02). SAD patients also demonstrated metabolic decrements in left hemisphere language areas (rho<0.01). This latter finding is consistent with language disturbance observed late in the course of the disease. Out data reveal progressive changes in patterns of cerebral glucose utilization with aging and demential with reflect salient clinical features of these processes.

  15. Glucose, Obesity, Metabolic Syndrome, and Diabetes: Relevance to Incidence of Heart Failure

    PubMed Central

    Horwich, Tamara B.; Fonarow, Gregg C.

    2010-01-01

    Heart failure (HF) is common, results in poor clinical outcomes, and is associated with large health-care costs. The incidence of HF continues to rise, with approximately 670,000 new cases per year and a 20% lifetime risk of HF for persons 40 years and older in the United States. Risk factors for HF have been identified and thus preventative strategies should have a positive effect on disease burden, morbidity, and mortality. Although coronary artery disease and hypertension have traditionally been considered among the most important modifiable risk factors for the development of HF, recent studies have highlighted the importance of increasingly prevalent metabolic risk factors – glucose, diabetes, obesity, and the metabolic syndrome. This paper will present evidence for the link between glucose, diabetes, obesity, metabolic syndrome and incident HF. Furthermore, we will discuss how risk factor modification and other preventive therapies may help curb the rising incidence of HF. PMID:20117431

  16. Deoxyglucose method for the estimation of local myocardial glucose metabolism with positron computed tomography

    SciTech Connect

    Ratib, O.; Phelps, M.E.; Huang, S.C.; Henze, E.; Selin, C.E.; Schelbert, H.R.

    1981-01-01

    The deoxyglucose method originally developed for measurements of the local cerebral metabolic rate for glucose has been investigated in terms of its application to studies of the heart with positron computed tomography (PCT) and FDG. Studies were performed in dogs to measure the tissue kinetics of FDG with PCT and by direct arterial-venous sampling. The operational equation developed in our laboratory as an extension of the Sokoloff model was used to analyze the data. The FDG method accurately predicted the true MMRGlc even when the glucose metabolic rate was normal but myocardial blood flow (MBF) was elevated 5 times the control value or when metabolism was reduced to 10% of normal and MBF increased 5 times normal. Improvements in PCT resolution are required to improve the accuracy of the estimates of the rate constants and the MMRGlc.

  17. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production.

    PubMed

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production.

  18. Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of Saccharomyces cerevisiae for microbial electrical current production

    PubMed Central

    Mao, Longfei; Verwoerd, Wynand S

    2013-01-01

    Saccharomyces cerevisiae possesses numerous advantageous biological features, such as being robust, easily handled, mostly non-pathogenic and having high catabolic rates, etc., which can be considered as merits for being used as a promising biocatalyst in microbial fuel cells (MFCs) for electricity generation. Previous studies have developed efficient MFC configurations to convert metabolic electron shuttles, such as cytoplasmic NADH, into usable electric current. However, no studies have elucidated the maximum potential of S. cerevisiae for current output and the underlying metabolic pathways, resulting from the interaction of thousands of reactions inside the cell during MFC operation. To address these two key issues, this study used in silico metabolic engineering techniques, flux balance analysis (FBA), and flux variability analysis with target flux minimization (FATMIN), to model the metabolic perturbation of S. cerevisiae under the MFC-energy extraction. The FBA results showed that, in the cytoplasmic NADH-dependent mediated electron transfer (MET) mode, S. cerevisiae had a potential to produce currents at up to 5.781 A/gDW for the anaerobic and 6.193 A/gDW for the aerobic environments. The FATMIN results showed that the aerobic and anaerobic metabolisms are resilient, relying on six and five contributing reactions respectively for high current production. Two reactions, catalyzed by glutamate dehydrogenase (NAD) (EC 1.4.1.3) and methylene tetrahydrofolate dehydrogenase (NAD) (EC 1.5.1.5), were shared in both current-production modes and contributed to over 80% of the identified maximum current outputs. It is also shown that the NADH regeneration was much less energy costly than biomass production rate. Taken together, our finding suggests that S. cerevisiae should receive more research effort for MFC electricity production. PMID:23969939

  19. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation.

    PubMed

    Kosman, Daniel J

    2013-01-01

    Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron's aqueous chemistry, occurs as 'rust', insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H(2)O)(6)](3+). Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting Fe(II) which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the 'rusting out' of Fe(III) and the ROS-generating autoxidation of Fe(II) so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology. PMID:23264695

  20. Acute Alcohol Intoxication Decreases Glucose Metabolism but Increases Acetate Uptake in the Human Brain

    PubMed Central

    Volkow, Nora D.; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S.; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2012-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in thalamus. In contrast, alcohol intoxication caused a significant increase in [1-11C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in cerebellum and the smallest in thalamus. In heavy alcohol drinkers [1-11C]acetate brain uptake during alcohol challenge trended to be higher than in occasional drinkers (p <0.06) and the increases in [1-11C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-11C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (ie ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  1. Acute alcohol intoxication decreases glucose metabolism but increases acetate uptake in the human brain.

    PubMed

    Volkow, Nora D; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2013-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also the metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in the thalamus. In contrast, alcohol intoxication caused a significant increase in [1-(11)C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in the cerebellum and the smallest in the thalamus. In heavy alcohol drinkers [1-(11)C]acetate brain uptake during alcohol challenge tended to be higher than in occasional drinkers (p<0.06) and the increases in [1-(11)C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-(11)C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (i.e. ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  2. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  3. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes?

    PubMed

    Nehlig, Astrid; Coles, Jonathan A

    2007-09-01

    Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified. PMID:17659529

  4. Lactate as a cerebral metabolic fuel for glucose-6-phosphatase deficient children.

    PubMed

    Fernandes, J; Berger, R; Smit, G P

    1984-04-01

    The main substrates for brain energy metabolism were measured in blood samples taken from the carotid artery and the internal jugular bulb of four children with glycogen storage disease caused by deficiency of glucose-6-phosphatase. Multiple paired arterial and venous blood samples were analyzed for glucose, lactate, pyruvate, D-beta-hydroxybutyrate, acetoacetate, glycerol and O2, and the arteriovenous differences of the concentrations were calculated. In the first three patients the substrates were measured in two successive conditions with lower and higher glucose-intake, respectively, inducing reciprocally higher and lower concentrations of blood lactate. In the fourth patient medium chain triglycerides were administered simultaneously with the glucose-containing gastric drip feeding. Lactate appeared to be taken up significantly. It consumed, if completely oxidized, between 40-50% of the total O2 uptake in most cases. Only once in one patient the uptake of lactate switched to its release, when the blood lactate level decreased to normal. D-beta-hydroxybutyrate and acetoacetate arteriovenous (A-V) differences were small to negligible and these ketone bodies, therefore, did not contribute substantially to the brain's energy expenditure. Glycerol was not metabolized by the brain. Lactate thus appeared to be the second brain fuel next to glucose. It may protect the brain against fuel depletion in case of hypoglycemia.

  5. Assessment of metabolic status in young Japanese females using postprandial glucose and insulin levels.

    PubMed

    Sakuma, Masae; Sasaki, Megumi; Katsuda, Sayaka; Kobayashi, Kana; Takaya, Chiaki; Umeda, Minako; Arai, Hidekazu

    2014-05-01

    Lifestyle-related diseases develop through the accumulation of undesirable lifestyle habits both prior to the onset of disease as well as during normal healthy life. Accordingly, early detection of, and intervention in, metabolic disorders is desirable, but is hampered by the lack of an established evaluation index for young individuals. The purpose of this study was to investigate the utility of a biomarker of health in young female subjects. The subjects were young healthy Japanese females in whom energy expenditure was measured for a period of 210 min after a test meal. In addition, Δplasma glucose and Δserum insulin were calculated from the fasting and 30 min values. ΔPlasma glucose and Δserum insulin levels varied widely compared to fasting levels. Both the area under the curve of carbohydrate oxidation rate and serum free fatty acid levels were higher in individuals in the high Δplasma glucose group. Moreover, Δplasma glucose was higher in individuals in the high Δserum insulin group than in the low Δserum insulin group. We conclude that nutritional balanced liquid loading test using Δplasma glucose and Δserum insulin as the evaluation index is useful for the detection of primary metabolic disorders in young females.

  6. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes?

    PubMed

    Nehlig, Astrid; Coles, Jonathan A

    2007-09-01

    Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified.

  7. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster

    PubMed Central

    Wagner, Anika E.; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-01-01

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies. PMID:26375250

  8. Effect of enoxacin, felbinac, and sparfloxacin on fatty acid metabolism and glucose concentrations in rat tissues.

    PubMed

    Kasuya, Fumiyo; Miwa, Yasushi; Kazumi, Maya; Inoue, Hiroyuki; Ohta, Hiroyuki

    2011-05-01

    Multiple changes in metabolic levels could be useful for understanding physiological toxicity. To explore further risk factors for the convulsions induced by the interaction of nonsteroidal anti-inflammatory and new quinolone antimicrobial drugs, the effect of sparfloxacin, enoxacin, and felbinac on fatty acid metabolism and glucose concentrations in the liver, brain, and blood of rats was investigated. The levels of long-chain acyl-CoAs (C(18:1) and C(20:4)) in the liver and brain were decreased at the onset of convulsions induced by the coadministration of enoxacin with felbinac. Then, glucose concentrations in the liver and blood were decreased, whereas they were increased in a dose-dependant manner in the brain. However, the formation of acyl-CoAs and glucose levels in the liver, brain, and blood was not significantly influenced by enoxacin, felbinac, and sparfloxacin alone, respectively. The disturbance of both fatty acid metabolism and glucose levels might be associated with the increased susceptibility to convulsions, which may contribute to further understanding of the toxic effects associated with these drugs.

  9. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

    PubMed

    Wagner, Anika E; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-10-13

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

  10. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy

    PubMed Central

    Tricò, Domenico; Baldi, Simona; Frascerra, Silvia; Venturi, Elena; Marraccini, Paolo; Neglia, Danilo; Natali, Andrea

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217. PMID:26798650

  11. Myocardial glucose transporters and glycolytic metabolism during ischemia in hyperglycemic diabetic swine.

    PubMed

    Stanley, W C; Hall, J L; Smith, K R; Cartee, G D; Hacker, T A; Wisneski, J A

    1994-01-01

    We assessed the effects of 4 weeks of streptozocin-induced diabetes on regional myocardial glycolytic metabolism during ischemia in anesthetized open-chest domestic swine. Diabetic animals were hyperglycemic (12.0 +/- 2.1 v 6.6 +/- .5 mmol/L), and had lower fasting insulin levels (27 +/- 8 v 79 +/- 19 pmol/L). Myocardial glycolytic metabolism was studied with coronary flow controlled by an extracorporeal perfusion circuit. Left anterior descending coronary artery (LAD) flow was decreased by 50% for 45 minutes and left circumflex (CFX) flow was constant. Myocardial glucose uptake and extraction were measured with D-[6-3H]-2-deoxyglucose (DG) and myocardial blood flow was measured with microspheres. The rate of glucose conversion to lactate and lactate uptake and output were assessed with a continuous infusion of [6-14C]glucose and [U-13C]lactate into the coronary perfusion circuit. Both diabetic and nondiabetic animals had sharp decreases in subendocardial blood flow during ischemia (from 1.21 +/- .10 to 0.43 +/- .08 mL.g-1.min-1 in the nondiabetic group, and from 1.30 +/- .15 to 0.55 +/- .11 in the diabetic group). Diabetes had no significant effect on myocardial glucose uptake or glucose conversion to lactate under either well-perfused or ischemic conditions. Forty-five minutes of ischemia resulted in significant glycogen depletion in the subendocardium in both nondiabetic and diabetic animals, with no differences between the two groups. Glycolytic metabolism is not impaired in hyperglycemic diabetic swine after 1 month of the disease when compared with that in normoglycemic nondiabetic animals. The myocardial content of the insulin-regulatable glucose transporter (GLUT 4) was measured in left ventricular biopsies.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Abnormal Glucose Tolerance Is Associated with a Reduced Myocardial Metabolic Flexibility in Patients with Dilated Cardiomyopathy.

    PubMed

    Tricò, Domenico; Baldi, Simona; Frascerra, Silvia; Venturi, Elena; Marraccini, Paolo; Neglia, Danilo; Natali, Andrea

    2016-01-01

    Dilated cardiomyopathy (DCM) is characterized by a metabolic shift from fat to carbohydrates and failure to increase myocardial glucose uptake in response to workload increments. We verified whether this pattern is influenced by an abnormal glucose tolerance (AGT). In 10 patients with DCM, 5 with normal glucose tolerance (DCM-NGT) and 5 with AGT (DCM-AGT), and 5 non-DCM subjects with AGT (N-AGT), we measured coronary blood flow and arteriovenous differences of oxygen and metabolites during Rest, Pacing (at 130 b/min), and Recovery. Myocardial lactate exchange and oleate oxidation were also measured. At Rest, DCM patients showed a reduced nonesterified fatty acids (NEFA) myocardial uptake, while glucose utilization increased only in DCM-AGT. In response to Pacing, glucose uptake promptly rose in N-AGT (from 72 ± 21 to 234 ± 73 nmol/min/g, p < 0.05), did not change in DCM-AGT, and slowly increased in DCM-NGT. DCM-AGT sustained the extra workload by increasing NEFA oxidation (from 1.3 ± 0.2 to 2.9 ± 0.1 μmol/min/gO2 equivalents, p < 0.05), while DCM-NGT showed a delayed increase in glucose uptake. Substrate oxidation rates paralleled the metabolites data. The presence of AGT in patients with DCM exacerbates both the shift from fat to carbohydrates in resting myocardial metabolism and the reduced myocardial metabolic flexibility in response to an increased workload. This trial is registered with ClinicalTrial.gov NCT02440217.

  13. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    PubMed Central

    Varma, Vijayalakshmi; Boros, László G.; Nolen, Greg T.; Chang, Ching-Wei; Wabitsch, Martin; Beger, Richard D.; Kaput, Jim

    2015-01-01

    Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001). However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA) cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway) one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes. PMID:26087138

  14. Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs.

    PubMed

    Thorngren-Jerneck, K; Ley, D; Hellström-Westas, L; Hernandez-Andrade, E; Lingman, G; Ohlsson, T; Oskarsson, G; Pesonen, E; Sandell, A; Strand, S E; Werner, O; Marsal, K

    2001-12-01

    The effects of fetal asphyxia on cerebral function and development, involve the transition from fetal to neonatal life. Changes in cerebral glucose metabolism may be an early postnatal indicator of fetal asphyxia. The objective is to develop an experimental lamb model involving the transition from fetal to neonatal life and to examine the effect of fetal asphyxia with cerebral hypoxic ischemia on early postnatal cerebral glucose metabolism. Fetal asphyxia was induced by total umbilical cord occlusion in eight near-term fetal lambs (134-138 days) with the ewe under isoflurane-opiate anesthesia. The mean occlusion time until cardiac arrest was 14.5 (4.2) min (SD). Lambs were immediately delivered and standardized resuscitation was instituted after 2 min asystole. At 4 hr postnatal age, [18-F]Fluoro-2-deoxy-glucose (18-FDG) was injected intravenously in eight asphyxiated lambs and in eight controls. Cerebral glucose metabolism was examined by positron emission tomography (PET). As a result the mean arterial blood pressure, acid-base values, blood glucose and serum lactate at 4 hr postnatal age did not differ significantly between lambs subjected to umbilical cord occlusion and controls. EEG was abnormal in all lambs subjected to cord occlusion and normal in the controls at 4 hr postnatal age. Global cerebral metabolic rate (CMRgl) as determined by PET was significantly lower in lambs subjected to cord occlusion mean/median (SD) 22.2/19.6 (8.4) micromol/min/100 g) than in controls mean/median (SD) 37.8/35.9 (6.1); P < 0.01). Global CMRgl is significantly reduced in newborn lambs 4 hr after fetal asphyxia induced by umbilical cord occlusion. A reduction in CMRgl is an early indicator of global hypoxic cerebral ischemia.

  15. Effect of peripheral 5-HT on glucose and lipid metabolism in wether sheep.

    PubMed

    Watanabe, Hitoshi; Saito, Ryo; Nakano, Tatsuya; Takahashi, Hideyuki; Takahashi, Yu; Sumiyoshi, Keisuke; Sato, Katsuyoshi; Chen, Xiangning; Okada, Natsumi; Iwasaki, Shunsuke; Harjanti, Dian W; Sekiguchi, Natsumi; Sano, Hiroaki; Kitazawa, Haruki; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2014-01-01

    In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species.

  16. Diabetes, Glucose Metabolism, and Glaucoma: The 2005–2008 National Health and Nutrition Examination Survey

    PubMed Central

    Zhao, Di; Cho, Juhee; Kim, Myung Hun; Friedman, David; Guallar, Eliseo

    2014-01-01

    Background Diabetes may affect vascular autoregulation of the retina and optic nerve and may be associated with an increased risk of glaucoma,but the association of prediabetes, insulin resistance, markers of glucose metabolismwith glaucoma has not beenevaluated in general population samples. Objective To examine the relation between diabetes, pre-diabetes, metabolic syndrome and its components and the levels of fasting glucose, HbA1c and HOMA-IR with the prevalence of glaucoma in the general U.S. population. Methods Cross-sectional study of 3,299 adult men and women from the 2005–2008 National Health and NutritionExamination Survey (NHANES). The presence of diabetes, prediabetes, the metabolic syndrome and its individual components and biomarkers of glucose metabolisms were based on standardized questionnaire and physical exam data and laboratory tests. The history of glaucoma was assessed through questionnaire during the home interview. Results Diabetes was strongly associated with prevalent glaucoma.In fully adjusted models, the odds ratiofor glaucoma comparing participants with diabetes with participants in the reference group with neither pre-diabetes nor diabetes was 2.12 (95% CI: 1.23, 3.67). The corresponding odd ratio comparing participants with pre-diabetes to those in the reference group was 1.01 (95% CI: 0.57, 1.82). Patients with 5 or more years of diabetes duration hadan OR for glaucoma of 3.90 (95% CI: 1.63, 9.32) compared with patients with <5 years of diabetes duration. We also found a hockey-stick shaped associations between biomarkers of glucose metabolisms and the prevalence of glaucoma. Conclusions Diabetes was associated with higher risk of glaucoma. Participants without diabetes but at the higher levels of fasting glucose, fasting insulin, HbA1c and HOMA-IR spectrum may also be at greater risk of glaucoma. PMID:25393836

  17. Nighttime Administration of Nicotine Improves Hepatic Glucose Metabolism via the Hypothalamic Orexin System in Mice.

    PubMed

    Tsuneki, Hiroshi; Nagata, Takashi; Fujita, Mikio; Kon, Kanta; Wu, Naizhen; Takatsuki, Mayumi; Yamaguchi, Kaoru; Wada, Tsutomu; Nishijo, Hisao; Yanagisawa, Masashi; Sakurai, Takeshi; Sasaoka, Toshiyasu

    2016-01-01

    Nicotine is known to affect the metabolism of glucose; however, the underlying mechanism remains unclear. Therefore, we here investigated whether nicotine promoted the central regulation of glucose metabolism, which is closely linked to the circadian system. The oral intake of nicotine in drinking water, which mainly occurred during the nighttime active period, enhanced daily hypothalamic prepro-orexin gene expression and reduced hyperglycemia in type 2 diabetic db/db mice without affecting body weight, body fat content, and serum levels of insulin. Nicotine administered at the active period appears to be responsible for the effect on blood glucose, because nighttime but not daytime injections of nicotine lowered blood glucose levels in db/db mice. The chronic oral treatment with nicotine suppressed the mRNA levels of glucose-6-phosphatase, the rate-limiting enzyme of gluconeogenesis, in the liver of db/db and wild-type control mice. In the pyruvate tolerance test to evaluate hepatic gluconeogenic activity, the oral nicotine treatment moderately suppressed glucose elevations in normal mice and mice lacking dopamine receptors, whereas this effect was abolished in orexin-deficient mice and hepatic parasympathectomized mice. Under high-fat diet conditions, the oral intake of nicotine lowered blood glucose levels at the daytime resting period in wild-type, but not orexin-deficient, mice. These results indicated that the chronic daily administration of nicotine suppressed hepatic gluconeogenesis via the hypothalamic orexin-parasympathetic nervous system. Thus, the results of the present study may provide an insight into novel chronotherapy for type 2 diabetes that targets the central cholinergic and orexinergic systems. PMID:26492471

  18. [Role of the sweet taste receptor in glucose metabolism: no sweets for diabetes?].

    PubMed

    Nomura, Masatoshi; Kawahara, Yuta

    2015-01-01

    Type 2 diabetes is closely associated with our daily diets and has become a global health problem with increasing number of patients. Maintaining energy homeostasis is essentially required for the treatment of diabetes. Energy metabolism starts with taking in a meal. Nutrients including amino acids, fatty acids and glucose in the digest have been shown to act on the neuroendocrine cells in the gastrointestinal (GI) tract, and thereby play important roles in energy homeostasis. Therefore, the GI tract is now recognized as a sensor system for nutrient signals. Taste receptor type 1 member 2 (T1R2) is known to function as a co-receptor with T1R3 to detect sweet chemicals in the taste buds. It has been proposed that the T1R2/T1R3 receptor complex acts as sweet sensor in the intestine, and plays a pivotal role in sensing sugars and maintaining glucose homeostasis through incretin secretion. To clarify the physiological roles of T1R2 in glucose homeostasis, T1r2-lacZ knock-in/knock-out mice were generated. We found lacZ gene expression in the GI tract where T1r3 expression has been reported. Interestingly, the T1r2-lacZ knock-in mice showed impaired glucose tolerance on oral glucose challenge but not on intraperitoneal injection. However, the fasting glucose level in T1r2-lacZ knock-in mice was comparable to that in wild type mice. These results suggest an important role of the sweet taste receptor system in the intestine when stimulated by glucose. Therefore, the roles of T1R2 will be presented and the mechanism for metabolic homeostasis will be discussed.

  19. Nighttime Administration of Nicotine Improves Hepatic Glucose Metabolism via the Hypothalamic Orexin System in Mice.

    PubMed

    Tsuneki, Hiroshi; Nagata, Takashi; Fujita, Mikio; Kon, Kanta; Wu, Naizhen; Takatsuki, Mayumi; Yamaguchi, Kaoru; Wada, Tsutomu; Nishijo, Hisao; Yanagisawa, Masashi; Sakurai, Takeshi; Sasaoka, Toshiyasu

    2016-01-01

    Nicotine is known to affect the metabolism of glucose; however, the underlying mechanism remains unclear. Therefore, we here investigated whether nicotine promoted the central regulation of glucose metabolism, which is closely linked to the circadian system. The oral intake of nicotine in drinking water, which mainly occurred during the nighttime active period, enhanced daily hypothalamic prepro-orexin gene expression and reduced hyperglycemia in type 2 diabetic db/db mice without affecting body weight, body fat content, and serum levels of insulin. Nicotine administered at the active period appears to be responsible for the effect on blood glucose, because nighttime but not daytime injections of nicotine lowered blood glucose levels in db/db mice. The chronic oral treatment with nicotine suppressed the mRNA levels of glucose-6-phosphatase, the rate-limiting enzyme of gluconeogenesis, in the liver of db/db and wild-type control mice. In the pyruvate tolerance test to evaluate hepatic gluconeogenic activity, the oral nicotine treatment moderately suppressed glucose elevations in normal mice and mice lacking dopamine receptors, whereas this effect was abolished in orexin-deficient mice and hepatic parasympathectomized mice. Under high-fat diet conditions, the oral intake of nicotine lowered blood glucose levels at the daytime resting period in wild-type, but not orexin-deficient, mice. These results indicated that the chronic daily administration of nicotine suppressed hepatic gluconeogenesis via the hypothalamic orexin-parasympathetic nervous system. Thus, the results of the present study may provide an insight into novel chronotherapy for type 2 diabetes that targets the central cholinergic and orexinergic systems.

  20. A Kinetic Model of Whole-Body Glucose Metabolism with Reference to the Domestic Dog (Canis lupus familiaris).

    PubMed

    McKnight, Leslie L; Shoveller, Anna K; Lopez, Secundino; France, James

    2015-01-01

    A new two-pool model to describe glucose kinetics in the steady state is presented. The pools are plasma glucose, Q 1, and tissue glucose, Q 2 (both µmol). The flows (all µmol/min) into the plasma pool (Pool 1) are absorbed glucose entry from dietary sources, labelled glucose infusion, and hepatic glucose production. There is one flow out of Pool 1, glucose uptake by the tissues. Inflows to the tissues pool (Pool 2) are from plasma and glycogenolysis. Outflows from Pool 2 are to plasma, glucose oxidation, and glycogenesis and other metabolism. Application of the model was illustrated using experimental data derived from healthy adult Labrador Retrievers in the fasted and fed (repeated meal feeding) states. In general, model derived estimates of glucose kinetics were representative of normal glucose metabolism, where rates of glucose production and uptake are similar and act to maintain blood glucose concentrations. Furthermore, estimates of within tissue glucose cycling indicated glycogenolysis in fasting and glycogenesis when fed. In the fasted state, model outputs were consistent with those reported in the canine literature derived using a single pool model.

  1. TAp63 is a master transcriptional regulator of lipid and glucose metabolism

    PubMed Central

    Su, Xiaohua; Gi, Young Jin; Chakravarti, Deepavali; Chan, Io Long; Zhang, Aijun; Xia, Xuefeng; Tsai, Kenneth Y.; Flores, Elsa R.

    2012-01-01

    SUMMARY TAp63 prevents premature aging suggesting a link to genes that regulate longevity. Further characterization of TAp63−/− mice revealed that these mice develop obesity, insulin resistance, and glucose intolerance, similar to those seen in mice lacking two key metabolic regulators, Silent information regulator T1 (Sirt1) and AMPK. While the roles of Sirt1 and AMPK in metabolism have been well studied, their upstream regulators are not well understood. We found that TAp63 is important in regulating energy metabolism by accumulating in response to metabolic stress and transcriptionally activating Sirt1, AMPKα2, and LKB1 resulting in increased fatty acid synthesis and decreased fatty acid oxidation. Moreover, we found that TAp63 lowers blood glucose levels in response to metformin. Restoration of Sirt1, AMPKα2, and LKB1 in TAp63−/− mice rescued some of the metabolic defects of the TAp63−/− mice. Our study defines a role for TAp63 in metabolism and weight control. PMID:23040072

  2. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism

    PubMed Central

    Molehin, Deborah

    2016-01-01

    Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557

  3. Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism.

    PubMed

    Molehin, Deborah; Dekker Nitert, Marloes; Richard, Kerry

    2016-01-01

    Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557

  4. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis

    SciTech Connect

    Minoshima, Satoshi; Frey, K.A.; Foster, N.L.; Kuhl, D.W.

    1995-07-01

    Our goal was to examine regional preservation of energy metabolism in Alzheimer disease (AD) and to evaluate effects of PET data normalization to reference regions. Regional metabolic rates in the pons, thalamus, putamen, sensorimotor cortex, visual cortex, and cerebellum (reference regions) were determined stereotaxically and examined in 37 patients with probable AD and 22 normal controls based on quantitative {sup 18}FDG-PET measurements. Following normalization of metabolic rates of the parietotemporal association cortex and whole brain to each reference region, distinctions of the two groups were assessed. The pons showed the best preservation of glucose metabolism in AD. Other reference regions showed relatively preserved metabolism compared with the parietotemporal association cortex and whole brain, but had significant metabolic reduction. Data normalization to the pons not only enhanced statistical significance of metabolic reduction in the parietotemporal association cortex, but also preserved the presence of global cerebral metabolic reduction indicated in analysis of the quantitative data. Energy metabolism in the pons in probable AD is well preserved. The pons is a reliable reference for data normalization and will enhance diagnostic accuracy and efficiency of quantitative and nonquantitative functional brain imaging. 39 refs., 2 figs., 3 tabs.

  5. Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach.

    PubMed

    Mallad, Ashwini; Hinshaw, Ling; Schiavon, Michele; Dalla Man, Chiara; Dadlani, Vikash; Basu, Rita; Lingineni, Ravi; Cobelli, Claudio; Johnson, Matthew L; Carter, Rickey; Kudva, Yogish C; Basu, Ananda

    2015-06-15

    To determine the effects of exercise on postprandial glucose metabolism and insulin action in type 1 diabetes (T1D), we applied the triple tracer technique to study 16 T1D subjects on insulin pump therapy before, during, and after 75 min of moderate-intensity exercise (50% V̇o2max) that started 120 min after a mixed meal containing 75 g of labeled glucose. Prandial insulin bolus was administered as per each subject's customary insulin/carbohydrate ratio adjusted for meal time meter glucose and the level of physical activity. Basal insulin infusion rates were not altered. There were no episodes of hypoglycemia during the study. Plasma dopamine and norepinephrine concentrations rose during exercise. During exercise, rates of endogenous glucose production rose rapidly to baseline levels despite high circulating insulin and glucose concentrations. Interestingly, plasma insulin concentrations increased during exercise despite no changes in insulin pump infusion rates, implying increased mobilization of insulin from subcutaneous depots. Glucagon concentrations rose before and during exercise. Therapeutic approaches for T1D management during exercise will need to account for its effects on glucose turnover, insulin mobilization, glucagon, and sympathetic response and possibly other blood-borne feedback and afferent reflex mechanisms to improve both hypoglycemia and hyperglycemia.

  6. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET

    SciTech Connect

    Redies, C.; Hoffer, L.J.; Beil, C.; Marliss, E.B.; Evans, A.C.; Lariviere, F.; Marrett, S.; Meyer, E.; Diksic, M.; Gjedde, A.

    1989-06-01

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylation fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.

  7. Obesity-Related Hormones and Metabolic Risk Factors: A Randomized Trial of Diet plus Either Strength or Aerobic Training versus Diet Alone in Overweight Participants

    PubMed Central

    Geliebter, Allan; Ochner, Christopher N; Dambkowski, Carl L; Hashim, Sami A

    2014-01-01

    There is debate about the additive effects of exercise in conjunction with diet to treat obesity, and not much is known about the differential effects of strength versus aerobic training. This randomized controlled trial examined the effects of diet plus strength training, diet plus aerobic training, or diet only on metabolic risk factors associated with obesity. Eighty-one overweight and obese participants completed the 8-week intervention. All participants received an energy-restrictive formula diet with an energy content based on 70% of measured resting metabolic rate (RMR). Participants assigned to an exercise group trained 3 days/week under supervision. Anthropometrics and fasting hormones were assessed pre- and post-intervention. Mean weight loss (8.5 ± 4.3kg SD) did not differ between groups nor did reductions in BMI or body fat, although the diet plus strength training group showed marginally greater lean mass retention. There were significant improvements in the values and number of metabolic syndrome risk factors, and decreases in insulin concentrations and insulin resistance, which did not vary between groups. For men, testosterone increased significantly more in the diet plus aerobic training as compared to the other groups. As compared to diet alone, the addition of strength or aerobic training did not improve changes in BMI, body fat or metabolic risk factors although the diet plus strength training group showed a trend toward preservation of lean mass, and the diet plus aerobic group in men resulted in increased testosterone concentrations. PMID:25599089

  8. Estrogen regulation of glucose metabolism and mitochondrial function: therapeutic implications for prevention of Alzheimer's disease.

    PubMed

    Brinton, Roberta Diaz

    2008-01-01

    Estrogen-induced signaling pathways in hippocampal and cortical neurons converge upon the mitochondria to enhance mitochondrial function and to sustain aerobic glycolysis and citric acid cycle-driven oxidative phosphorylation and ATP generation. Data derived from experimental and clinical paradigms investigating estrogen intervention in healthy systems and prior to neurodegenerative insult indicate enhanced neural defense and survival through maintenance of calcium homeostasis, enhanced glycolysis coupled to the citric acid cycle (aerobic glycolysis), sustained and enhanced mitochondrial function, protection against free radical damage, efficient cholesterol trafficking and beta amyloid clearance. The convergence of E(2) mechanisms of action onto mitochondrial is also a potential point of vulnerability when activated in a degenerating neural system and could exacerbate the degenerative processes through increased load on dysregulated calcium homeostasis. The data indicate that as the continuum of neurological health progresses from healthy to unhealthy so too do the benefits of estrogen or hormone therapy. If neurons are healthy at the time of estrogen exposure, their response to estrogen is beneficial for both neuronal survival and neurological function. In contrast, if neurological health is compromised, estrogen exposure over time exacerbates neurological demise. The healthy cell bias of estrogen action hypothesis provides a lens through which to assess the disparities in outcomes across the basic to clinical domains of scientific inquiry and on which to predict future applications of estrogen and hormone therapeutic interventions sustain neurological health and to prevent age-associated neurodegenerative diseases such as Alzheimer's. Overall, E(2) promotes the energetic capacity of brain mitochondria by maximizing aerobic glycolysis (oxidative phosphorylation coupled to pyruvate metabolism). The enhanced aerobic glycolysis in the aging brain would be predicted

  9. The “Metabolic Syndrome” Is Less Useful than Random Plasma Glucose to Screen for Glucose Intolerance

    PubMed Central

    El Bassuoni, Eman A.; Ziemer, David C.; Kolm, Paul; Rhee, Mary K.; Vaccarino, Viola; Tsui, Circe W.; Kaufman, Jack M.; Osinski, G. Eileen; Koch, David D.; Venkat Narayan, K. M.; Weintraub, William S.; Phillips, Lawrence S.

    2008-01-01

    Aims To compare the utility of metabolic syndrome (MetS) to random plasma glucose (RPG) in identifying people with diabetes or prediabetes. Methods RPG was measured and an OGTT was performed in 1,155 adults. Test performance was measured by are under the receiver-operating-characteristic curve (AROC). Results Diabetes was found in 5.1% and prediabetes in 20.0%. AROC for MetS with FPG was 0.80 to detect diabetes, and 0.76 for diabetes or prediabetes – similar to RPG (0.82 and 0.72). However, the AROC for MetS excluding fasting plasma glucose (FPG) was lower: 0.69 for diabetes (p<0.01 vs. both RPG and MetS with FPG), and 0.69 for diabetes or prediabetes. AROCs for MetS with FPG and RPG were comparable and higher for recognizing diabetes in blacks vs. whites, and females vs. males. MetS with FPG was superior to RPG for identifying diabetes only in subjects with age <40 or BMI <25. Conclusions MetS features can be used to identify risk of diabetes, but predictive usefulness is driven largely by FPG. Overall, to identify diabetes or prediabetes in blacks and whites with varying age and BMI, MetS is no better than RPG – a more convenient and less expensive test. PMID:18779039

  10. Oxidative stress contributes to abnormal glucose metabolism and insulin sensitivity in two hyperlipidemia models

    PubMed Central

    Bai, Jiefei; Zheng, Shuang; Jiang, Dongdong; Han, Tingting; Li, Yangxue; Zhang, Yao; Liu, Wei; Cao, Yunshan; Hu, Yaomin

    2015-01-01

    Objective: Lipid metabolism disturbance can result in insulin resistance and glucose intolerance; however, the features of glucose metabolism are still elusive in different dyslipidemia. Our study intended to explore the characteristics and molecular mechanisms of glucose metabolism abnormal in hypercholesterolemia and hypertriglyceridemia models. Methods: Two mouse models were used in this study, one was lipoprotein lipase gene-deleted (LPL+/-) mice, and the other was high fat dietary (HFD) mice. Levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterin (HDL-c) and low-density lipoprotein-cholesterin (LDL-c) in serum were measured by full-automatic biochemical analyzer. Intraperitoneal glucose tolerance test (IPGTT) was performed to evaluate insulin sensitivity and β-cell function. Malondialdehyde (MDA) and total superoxide dismutase (T-SOD) levels in serum were measured by colorimetric determination. mRNA expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 1 (Gpx1), nuclear factor erythroid 2-related factor 2 (Nrf2a) and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) in liver, skeletal muscle, visceral fat and subcutaneous fat were measured by Real-Time PCR. Results: Compared with HFD mice, the levels of serum TG were significantly higher in LPL+/- mice, whereas the levels of TC, HDL-c, LDL-c were significantly lower. The plasma glucose levels were increased at each time point of intra-peritoneal glucose tolerance test (IPGTT) in both groups. Furthermore, the level of serum fasting insulin and homeostasis model assessment index-insulin resistance (HOMA-IR) increased with a decreased ISI in both groups. In addition, the plasma MDA of HFD group was higher than that of lipoprotein lipase-deficiency (LPL+/-) group, while the activity of T-SOD in HFD group was lower than that in LPL+/- group. Real-Time PCR revealed that the expressions of SOD1, CAT and Gpx1 in liver and

  11. Glucose and Fat Metabolism in Acromegaly: From Mice Models to Patient Care.

    PubMed

    Dal, Jakob; List, Edward O; Jørgensen, Jens Otto L; Berryman, Darlene E

    2016-01-01

    Patients with active acromegaly are frequently insulin resistant, glucose intolerant, and at risk for developing overt type 2 diabetes. At the same time, these patients have a relatively lean phenotype associated with mobilization and oxidation of free fatty acids. These features are reversed by curative surgical removal of the growth hormone (GH)-producing adenoma. Mouse models of acromegaly share many of these characteristics, including a lean phenotype and proneness to type 2 diabetes. There are, however, also species differences with respect to oxidation rates of glucose and fat as well as the specific mechanisms underlying GH-induced insulin resistance. The impact of acromegaly treatment on insulin sensitivity and glucose tolerance depends on the treatment modality (e.g. somatostatin analogs also suppress insulin secretion, whereas the GH antagonist restores insulin sensitivity). The interplay between animal research and clinical studies has proven useful in the field of acromegaly and should be continued in order to understand the metabolic actions of GH.

  12. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.

  13. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice.

    PubMed

    De Angelis, Katia; Senador, Danielle D; Mostarda, Cristiano; Irigoyen, Maria C; Morris, Mariana

    2012-04-15

    Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 ± 2 and F60: 118 ± 2 mmHg) and dark periods (F15: 136 ± 4 and F60: 136 ± 5 mmHg) compared with controls (light: 111 ± 2 and dark: 117 ± 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.

  14. Impact of expression of EMP enzymes on glucose metabolism in Zymomonas mobilis.

    PubMed

    Chen, Rachel Ruizhen; Agrawal, Manoj; Mao, Zichao

    2013-06-01

    Zymomonas mobilis is the only known microorganism that utilizes the Entner-Doudoroff (ED) pathway anaerobically. In this work, we investigated whether the overexpression of a phosphofructokinase (PFK), the only missing Embden-Meyerhof-Parnas (EMP) pathway enzyme, could establish the pathway in this organism. Introduction of a pyrophosphate-dependent PFK, along with co-expression of homologous fructose-1,6-bisphosphate aldolase and triosephosphate isomerase, did not result in an EMP flux to any appreciable level. However, the metabolism of glucose was impacted significantly. Eight percent of glucose was metabolized to form a new metabolite, dihydroxyacetone. Reducing flux through the ED pathway by as much as 40 % through antisense of a key enzyme, ED aldolase, did not result in a fully functional EMP pathway, suggesting that the ED pathway, especially the lower arm, downstream from glyceraldehyde-3-phosphate, is very rigid, possibly due to redox balance.

  15. [Comparative characteristics of glucose metabolism in the liver of rats under acute alcohol and morphine intoxication].

    PubMed

    Lelevich, S V

    2011-01-01

    The comparative analysis effect of acute alcohol and morphine intoxications on rats on hepatic glycolysis and pentose phosphate pathway was done. The dose-dependent inhibitory effect of ethanol on activity of limiting enzymes of these metabolic ways, as well as anaerobic reorientation of glucose metabolism was recognised with the increase of the dose of the intake alcohol. Morfine (10 mg/kg) activated enymes of glycolysis and pentose phosphate pathway, but in contrast to ethanol it did not influence these parameters at the dose 20 or 40 mg/kg.

  16. Type 2 Diabetes and Breast Cancer: The Interplay between Impaired Glucose Metabolism and Oxidant Stress

    PubMed Central

    Ferroni, Patrizia; Riondino, Silvia; Buonomo, Oreste; Palmirotta, Raffaele; Guadagni, Fiorella; Roselli, Mario

    2015-01-01

    Metabolic disorders, especially type 2 diabetes and its associated complications, represent a growing public health problem. Epidemiological findings indicate a close relationship between diabetes and many types of cancer (including breast cancer risk), which regards not only the dysmetabolic condition, but also its underlying risk factors and therapeutic interventions. This review discusses the advances in understanding of the mechanisms linking metabolic disorders and breast cancer. Among the proposed mechanisms to explain such an association, a major role is played by the dysregulated glucose metabolism, which concurs with a chronic proinflammatory condition and an associated oxidative stress to promote tumour initiation and progression. As regards the altered glucose metabolism, hyperinsulinaemia, both endogenous due to insulin-resistance and drug-induced, appears to promote tumour cell growth through the involvement of innate immune activation, platelet activation, increased reactive oxygen species, exposure to protumorigenic and proangiogenic cytokines, and increased substrate availability to neoplastic cells. In this context, understanding the relationship between metabolic disorders and cancer is becoming imperative, and an accurate analysis of these associations could be used to identify biomarkers able to predict disease risk and/or prognosis and to help in the choice of proper evidence-based diagnostic and therapeutic protocols. PMID:26171112

  17. Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp. ATCC 39727.

    PubMed

    Gunnarsson, Nina; Bruheim, Per; Nielsen, Jens

    2004-12-01

    The actinomycete Nonomuraea sp. ATCC 39727, producer of the glycopeptide A40926 that is used as precursor for the novel antibiotic dalbavancin, has an unusual carbon metabolism. Glucose is primarily metabolized via the Entner-Doudoroff (ED) pathway, although the energetically more favorable Embden-Meyerhof-Parnas (EMP) pathway is present in this organism. Moreover, Nonomuraea utilizes a PPi-dependent phosphofructokinase, an enzyme that has been connected with anaerobic metabolism in eukaryotes and higher plants, but recently has been recognized in several actinomycetes. In order to study its primary carbon metabolism in further detail, Nonomuraea was cultivated with [1-13C] glucose as the only carbon source and the 13C-labeling patterns of proteinogenic amino acids were determined by GC-MS analysis. Through this method, the fluxes in the central carbon metabolism during balanced growth were estimated. Moreover, a shift in the label incorporation pattern was observed in connection with phosphate limitation and increased antibiotic productivity in Nonomuraea. The shift indicated an increased flux through the EMP pathway at the expense of the flux through the ED pathway, a suggestion that was supported by alterations in intracellular metabolite levels during phosphate limitation. In contrast, expression levels of genes encoding enzymes in the ED and EMP pathways were not affected by phosphate limitation.

  18. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    PubMed Central

    2011-01-01

    Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age. PMID:21943199

  19. Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells.

    PubMed

    Gao, Yuan; Walder, Ken; Sunderland, Terry; Kantham, Lakshmi; Feng, Helen C; Quick, Melissa; Bishara, Natalie; de Silva, Andrea; Augert, Guy; Tenne-Brown, Janette; Collier, Gregory R

    2003-04-01

    Increased hepatic glucose output and decreased glucose utilization are implicated in the development of type 2 diabetes. We previously reported that the expression of a novel gene, Tanis, was upregulated in the liver during fasting in the obese/diabetic animal model Psammomys obesus. Here, we have further studied the protein and its function. Cell fractionation indicated that Tanis was localized in the plasma membrane and microsomes but not in the nucleus, mitochondria, or soluble protein fraction. Consistent with previous gene expression data, hepatic Tanis protein levels increased more significantly in diabetic P. obesus than in nondiabetic controls after fasting. We used a recombinant adenovirus to increase Tanis expression in hepatoma H4IIE cells and investigated its role in metabolism. Tanis overexpression reduced glucose uptake, basal and insulin-stimulated glycogen synthesis, and glycogen content and attenuated the suppression of PEPCK gene expression by insulin, but it did not affect insulin-stimulated insulin receptor phosphorylation or triglyceride synthesis. These results suggest that Tanis may be involved in the regulation of glucose metabolism, and increased expression of Tanis could contribute to insulin resistance in the liver.

  20. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle.

    PubMed

    Choi, Youngwoo; Kwon, Yonghoon; Kim, Dae-Kyum; Jeon, Jinseong; Jang, Su Chul; Wang, Taejun; Ban, Minjee; Kim, Min-Hye; Jeon, Seong Gyu; Kim, Min-Sun; Choi, Cheol Soo; Jee, Young-Koo; Gho, Yong Song; Ryu, Sung Ho; Kim, Yoon-Keun

    2015-01-01

    Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be non-infectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD.

  1. The effects of glibenclamide on glucose homeostasis and lipoprotein metabolism in poorly controlled type 2 diabetes.

    PubMed

    Baynes, C; Elkeles, R S; Henderson, A D; Richmond, W; Johnston, D G

    1993-02-01

    Six patients with type 2 diabetes underwent detailed metabolic studies before and after a minimum of 3 months' glibenclamide therapy. Treatment was associated with a small but significant increase in body weight. Despite improvements in almost all the measured parameters of glucose homeostasis (plasma glucose, glycosylated haemoglobin (HbA1), hepatic glucose production and insulin-mediated glucose disposal) neither fasting serum triglycerides nor HDL cholesterol changed and apoprotein A1 concentrations actually decreased significantly. NEFA and glycerol in fasting plasma and during the clamp studies did not change significantly with treatment. Post-heparin lipoprotein lipase and hepatic lipase activity did not change significantly. Thus, despite substantial improvements in glycaemic control and insulin sensitivity with sulphonylurea therapy, several aspects of lipid and lipoprotein metabolism remain largely unaffected. This small study suggests either that lipoprotein concentrations in type 2 diabetes are not influenced by insulin sensitivity or that the improvement is offset by another change that occurs during this form of therapy. It also suggests that other forms of therapy will be required to improve these cardiovascular risk factors in type 2 diabetes. PMID:8458616

  2. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle.

    PubMed

    Choi, Youngwoo; Kwon, Yonghoon; Kim, Dae-Kyum; Jeon, Jinseong; Jang, Su Chul; Wang, Taejun; Ban, Minjee; Kim, Min-Hye; Jeon, Seong Gyu; Kim, Min-Sun; Choi, Cheol Soo; Jee, Young-Koo; Gho, Yong Song; Ryu, Sung Ho; Kim, Yoon-Keun

    2015-01-01

    Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be non-infectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD. PMID:26510393

  3. The Role of Circulating Amino Acids in the Hypothalamic Regulation of Liver Glucose Metabolism.

    PubMed

    Arrieta-Cruz, Isabel; Gutiérrez-Juárez, Roger

    2016-07-01

    A pandemic of diabetes and obesity has been developing worldwide in close association with excessive nutrient intake and a sedentary lifestyle. Variations in the protein content of the diet have a direct impact on glucose homeostasis because amino acids (AAs) are powerful modulators of insulin action. In this work we review our recent findings on how elevations in the concentration of the circulating AAs leucine and proline activate a metabolic mechanism located in the mediobasal hypothalamus of the brain that sends a signal to the liver via the vagus nerve, which curtails glucose output. This neurogenic signal is strictly dependent on the metabolism of leucine and proline to acetyl-coenzyme A (CoA) and the subsequent production of malonyl-CoA; the signal also requires functional neuronal ATP-sensitive potassium channels. The liver then responds by lowering the rate of gluconeogenesis and glycogenolysis, ultimately leading to a net decrease in glucose production and in concentrations of circulating glucose. Furthermore, we review here how our work with proline suggests a new role of astrocytes in the central regulation of glycemia. Last, we outline how factors such as the consumption of fat-rich diets can interfere with glucoregulatory mechanisms and, in the long term, may contribute to the development of hyperglycemia, a hallmark of type 2 diabetes. PMID:27422516

  4. High-fat/low-carbohydrate diets regulate glucose metabolism via a long-term transcriptional loop.

    PubMed

    Sparks, Lauren M; Xie, Hui; Koza, Robert A; Mynatt, Randall; Bray, George A; Smith, Steven R

    2006-11-01

    Insulin sensitivity is characterized by insulin-stimulated glucose metabolism in skeletal muscle. We hypothesized that carbohydrate metabolism and storage might be under transcriptional control. To test this hypothesis, we fed insulin-sensitive males (glucose disposal rate, 14.7 +/- 4.1 mg/kg fat-free mass [FFM] per minute) an isoenergetic high-fat/low-carbohydrate diet (HF/LCD) for 3 days with muscle biopsies before and after intervention. Oligonucleotide microarrays revealed a total of 369 genes of 18861 genes on the arrays were differentially regulated in response to diet (Bonferonni adjusted P < .01). A similar experiment was conducted in mice with a 3-week intervention using a control group and an HF/LCD group to offset the lack of a control group within the human cohort. As part of an analysis of results previously published from this data set, 7 genes in the carbohydrate metabolism pathway changed in response to the HF/LCD, and 3 genes were confirmed by quantitative reverse transcriptase-polymerase chain reaction: fructose-2,6-biphosphatase 3 (PFKFB3), pyruvate dehydrogenase kinase, isoenzyme 4 (PDK4), and glycogen synthase 1 (muscle). In a separate experiment, we fed C57Bl/6J mice an HF/LCD for 3 weeks and found that the same glucose metabolism genes were changed by approximately 70% on average. Fructose-2,6-biphosphatase 3 and pyruvate dehydrogenase kinase, isoenzyme 4 increased and glycogen synthase 1 (muscle) decreased. Combined, these results suggest a mechanism whereby HF/LCD regulates the genes necessary for glucose utilization and storage vis-á-vis transcriptional control. PMID:17046547

  5. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction.

    PubMed

    Rahtu-Korpela, Lea; Karsikas, Sara; Hörkkö, Sohvi; Blanco Sequeiros, Roberto; Lammentausta, Eveliina; Mäkelä, Kari A; Herzig, Karl-Heinz; Walkinshaw, Gail; Kivirikko, Kari I; Myllyharju, Johanna; Serpi, Raisa; Koivunen, Peppi

    2014-10-01

    Obesity is a major public health problem, predisposing subjects to metabolic syndrome, type 2 diabetes, and cardiovascular diseases. Specific prolyl 4-hydroxylases (P4Hs) regulate the stability of the hypoxia-inducible factor (HIF), a potent governor of metabolism, with isoenzyme 2 being the main regulator. We investigated whether HIF-P4H-2 inhibition could be used to treat obesity and its consequences. Hif-p4h-2-deficient mice, whether fed normal chow or a high-fat diet, had less adipose tissue, smaller adipocytes, and less adipose tissue inflammation than their littermates. They also had improved glucose tolerance and insulin sensitivity. Furthermore, the mRNA levels of the HIF-1 targets glucose transporters, glycolytic enzymes, and pyruvate dehydrogenase kinase-1 were increased in their tissues, whereas acetyl-CoA concentration was decreased. The hepatic mRNA level of the HIF-2 target insulin receptor substrate-2 was higher, whereas that of two key enzymes of fatty acid synthesis was lower. Serum cholesterol levels and de novo lipid synthesis were decreased, and the mice were protected against hepatic steatosis. Oral administration of an HIF-P4H inhibitor, FG-4497, to wild-type mice with metabolic dysfunction phenocopied these beneficial effects. HIF-P4H-2 inhibition may be a novel therapy that not only protects against the development of obesity and its consequences but also reverses these conditions.

  6. Yeast mitochondria import ATP through the calcium-dependent ATP-Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose.

    PubMed

    Traba, Javier; Froschauer, Elisabeth Maria; Wiesenberger, Gerlinde; Satrústegui, Jorgina; Del Arco, Araceli

    2008-08-01

    Sal1p, a novel Ca2+-dependent ATP-Mg/Pi carrier, is essential in yeast lacking all adenine nucleotide translocases. By targeting luciferase to the mitochondrial matrix to monitor mitochondrial ATP levels, we show in isolated mitochondria that both ATP-Mg and free ADP are taken up by Sal1p with a K(m) of 0.20 +/- 0.03 mM and 0.28 +/- 0.06 mM respectively. Nucleotide transport along Sal1p is strictly Ca2+ dependent. Ca2+ increases the V(max) with a S(0.5) of 15 muM, and no changes in the K(m) for ATP-Mg. Glucose sensing in yeast generates Ca2+ transients involving Ca2+ influx from the external medium. We find that carbon-deprived cells respond to glucose with an immediate increase in mitochondrial ATP levels which is not observed in the presence of EGTA or in Sal1p-deficient cells. Moreover, we now report that during normal aerobic growth on glucose, yeast mitochondria import ATP from the cytosol and hydrolyse it through H+-ATP synthase. We identify two pathways for ATP uptake in mitochondria, the ADP/ATP carriers and Sal1p. Thus, during exponential growth on glucose, mitochondria are ATP consumers, as those from cells growing in anaerobic conditions or deprived of mitochondrial DNA which depend on cytosolic ATP and mitochondrial ATPase working in reverse to generate a mitochondrial membrane potential. In conclusion, the results show that growth on glucose requires ATP hydrolysis in mitochondria and recruits Sal1p as a Ca2+-dependent mechanism to import ATP-Mg from the cytosol. Whether this mechanism is used under similar settings in higher eukaryotes is an open question.

  7. Exposure to 2,4-dichlorophenoxyacetic acid alters glucose metabolism in immature rat Sertoli cells.

    PubMed

    Alves, M G; Neuhaus-Oliveira, A; Moreira, P I; Socorro, S; Oliveira, P F

    2013-07-01

    The purpose of this study was to determine the effects of 2,4-D, an herbicide used worldwide also known as endocrine disruptor, in Sertoli cell (SC) metabolism. Immature rat SCs were maintained 50h under basal conditions or exposed to 2,4-D (100nM, 10μM and 1mM). SCs exposed to 10μM and 1mM of 2,4-D presented lower intracellular glucose and lactate content. Exposure to 10μM of 2,4-D induced a significant decrease in glucose transporter-3 mRNA levels and phosphofructokinase-1 mRNA levels decreased in cells exposed to 100nM and 10μM of 2,4-D. Exposure to 100nM and 10μM also induced a decrease in lactate dehydrogenase (LDH) mRNA levels while the LDH protein levels were only decreased in cells exposed to 1mM of 2,4-D. Exposure to 2,4-D altered glucose uptake and metabolization in SCs, as well as lactate metabolism and export that may result in impaired spermatogenesis.

  8. The role of hepatic mitochondria in the regulation of glucose metabolism in BHE rats

    SciTech Connect

    Kim, M.J.C.

    1988-01-01

    The interacting effects of dietary fat source and thyroxine treatment on the hepatic mitochondrial function and glucose metabolism were studied. In the first study, three different sources of dietary fatty acids and thyroxine treatment were used to investigate the hepatic mitochondrial thermotropic behavior in two strains of rat. The NIDDM BHE and Sprague-Dawley rats were used. Feeding coconut oil increased serum T{sub 4} levels and T{sub 4} treatment increased serum T{sub 3} levels in the BHE rats. In the mitochondria from BHE rats fed coconut oil and treated with T{sub 4}, the transition temperature disappeared due to a decoupling of succinate supported respiration. This was not observed in the Sprague-Dawley rats. In the second study, two different sources of dietary fat and T{sub 4} treatment were used to investigate hepatic mitochondrial function. Coconut oil feeding increased Ca{sup ++}Mg{sup ++}ATPase and Mg{sup ++}ATPase. T{sub 4} treatment had potentiated this effect. T{sub 4} increased the malate-aspartate shuttle and {alpha}-glycerophosphate shuttle activities. In the third study, the glucose turnover rate from D-({sup 14}C-U)/(6-{sup 3}H)-glucose and gluconeogeneis from L-({sup 14}C-U)-alanine was examined. Dietary fat or T{sub 4} did not affect the glucose mass. T{sub 4} increased the irreversible fractional glucose turnover rate.

  9. Low Glucose but Not Galactose Enhances Oxidative Mitochondrial Metabolism in C2C12 Myoblasts and Myotubes

    PubMed Central

    Elkalaf, Moustafa; Anděl, Michal; Trnka, Jan

    2013-01-01

    Background Substituting galactose for glucose in cell culture media has been suggested to enhance mitochondrial metabolism in a variety of cell lines. We studied the effects of carbohydrate availability on growth, differentiation and metabolism of C2C12 myoblasts and myotubes. Methodology/Principal Findings We measured growth rates, ability to differentiate, citrate synthase and respiratory chain activities and several parameters of mitochondrial respiration in C2C12 cells grown in media with varying carbohydrate availability (5 g/l glucose, 1 g/l glucose, 1 g/l galactose, and no added carbohydrates). C2C12 myoblasts grow more slowly without glucose irrespective of the presence of galactose, which is not consumed by the cells, and they fail to differentiate without glucose in the medium. Cells grown in a no-glucose medium (with or without galactose) have lower maximal respiration and spare respiratory capacity than cells grown in the presence of glucose. However, increasing glucose concentration above physiological levels decreases the achievable maximal respiration. C2C12 myotubes differentiated at a high glucose concentration showed higher dependency on oxidative respiration under basal conditions but had lower maximal and spare respiratory capacity when compared to cells differentiated under low glucose condition. Citrate synthase activity or mitochondrial yield were not significantly affected by changes in the available substrate concentration but a trend towards a higher respiratory chain activity was observed at reduced glucose levels. Conclusions/Significance Our results show that using galactose to increase oxidative metabolism may not be applicable to every cell line, and the changes in mitochondrial respiratory parameters associated with treating cells with galactose are mainly due to glucose deprivation. Moderate concentrations of glucose (1 g/l) in a growth medium are optimal for mitochondrial respiration in C2C12 cell line while supraphysiological

  10. Cerebral glucose metabolism in an immature rat model of pediatric traumatic brain injury.

    PubMed

    Robertson, Courtney L; Saraswati, Manda; Scafidi, Susanna; Fiskum, Gary; Casey, Paula; McKenna, Mary C

    2013-12-15

    Altered cerebral metabolism and mitochondrial function have been identified in experimental and clinical studies of pediatric traumatic brain injury (TBI). Metabolic changes detected using (1)H (proton) magnetic resonance spectroscopy correlate with long-term outcomes in children after severe TBI. We previously identified early (4-h) and sustained (24-h and 7-day) abnormalities in brain metabolites after controlled cortical impact (CCI) in immature rats. The current study aimed to identify specific alterations of cerebral glucose metabolism at 24 h after TBI in immature rats. Rats (postnatal days 16-18) underwent CCI to the left parietal cortex. Sham rats underwent craniotomy only. Twenty-four hours after CCI, rats were injected (intraperitoneally) with [1,6-(13)C]glucose. Brains were removed, separated into hemispheres, and frozen. Metabolites were extracted with perchloric acid and analyzed using (1)H and (13)C-nuclear magnetic resonance spectroscopy. TBI resulted in decreases in N-acetylaspartate in both hemispheres, compared to sham contralateral. At 24 h after TBI, there was significant decrease in the incorporation of (13)C label into [3-(13)C]glutamate and [2-(13)C]glutamate in the injured brain. There were no differences in percent enrichment of [3-(13)C]glutamate, [4-(13)C]glutamate, [3-(13)C]glutamine, or [4-(13)C]glutamine. There was significantly lower percent enrichment of [2-(13)C]glutamate in both TBI sides and the sham craniotomy side, compared to sham contralateral. No differences were detected in enrichment of (13)C glucose label in [2-(13)C]glutamine, [2-(13)C]GABA (gamma-aminobutyric acid), [3-(13)C]GABA, or [4-(13)C]GABA, [3-(13)C]lactate, or [3-(13)C]alanine between groups. Results suggest that overall oxidative glucose metabolism in the immature brain recovers at 24 h after TBI. Specific reductions in [2-(13)C]glutamate could be the result of impairments in either neuronal or astrocytic metabolism. Future studies should aim to identify

  11. Enhanced Neuronal Glucose Transporter Expression Reveals Metabolic Choice in a HD Drosophila Model

    PubMed Central

    Besson, Marie Thérèse; Alegría, Karin; Garrido-Gerter, Pamela; Barros, Luis Felipe; Liévens, Jean-Charles

    2015-01-01

    Huntington’s disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3

  12. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model.

    PubMed

    Besson, Marie Thérèse; Alegría, Karin; Garrido-Gerter, Pamela; Barros, Luis Felipe; Liévens, Jean-Charles

    2015-01-01

    Huntington's disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3

  13. Metabolic fate of fructose ingested with and without glucose in a mixed meal.

    PubMed

    Theytaz, Fanny; de Giorgi, Sara; Hodson, Leanne; Stefanoni, Nathalie; Rey, Valentine; Schneiter, Philippe; Giusti, Vittorio; Tappy, Luc

    2014-07-15

    Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G) or 13C-labelled fructose, lipids and protein, but without glucose (Fr), or protein and lipids alone (ProLip). After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4%) and 13CO2 production (36.6% ± 1.9%) were higher (p < 0.05) than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG). This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.

  14. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution. PMID:23489617

  15. Association between DNA Methylation in Whole Blood and Measures of Glucose Metabolism: KORA F4 Study.

    PubMed

    Kriebel, Jennifer; Herder, Christian; Rathmann, Wolfgang; Wahl, Simone; Kunze, Sonja; Molnos, Sophie; Volkova, Nadezda; Schramm, Katharina; Carstensen-Kirberg, Maren; Waldenberger, Melanie; Gieger, Christian; Peters, Annette; Illig, Thomas; Prokisch, Holger; Roden, Michael; Grallert, Harald

    2016-01-01

    Epigenetic regulation has been postulated to affect glucose metabolism, insulin sensitivity and the risk of type 2 diabetes. Therefore, we performed an epigenome-wide association study for measures of glucose metabolism in whole blood samples of the population-based Cooperative Health Research in the Region of Augsburg F4 study using the Illumina HumanMethylation 450 BeadChip. We identified a total of 31 CpG sites where methylation level was associated with measures of glucose metabolism after adjustment for age, sex, smoking, and estimated white blood cell proportions and correction for multiple testing using the Benjamini-Hochberg (B-H) method (four for fasting glucose, seven for fasting insulin, 25 for homeostasis model assessment-insulin resistance [HOMA-IR]; B-H-adjusted p-values between 9.2x10(-5) and 0.047). In addition, DNA methylation at cg06500161 (annotated to ABCG1) was associated with all the aforementioned phenotypes and 2-hour glucose (B-H-adjusted p-values between 9.2x10(-5) and 3.0x10(-3)). Methylation status of additional three CpG sites showed an association with fasting insulin only after additional adjustment for body mass index (BMI) (B-H-adjusted p-values = 0.047). Overall, effect strengths were reduced by around 30% after additional adjustment for BMI, suggesting that this variable has an influence on the investigated phenotypes. Furthermore, we found significant associations between methylation status of 21 of the aforementioned CpG sites and 2-hour insulin in a subset of samples with seven significant associations persisting after additional adjustment for BMI. In a subset of 533 participants, methylation of the CpG site cg06500161 (ABCG1) was inversely associated with ABCG1 gene expression (B-H-adjusted p-value = 1.5x10(-9)). Additionally, we observed an enrichment of the top 1,000 CpG sites for diabetes-related canonical pathways using Ingenuity Pathway Analysis. In conclusion, our study indicates that DNA methylation and diabetes

  16. Association between DNA Methylation in Whole Blood and Measures of Glucose Metabolism: KORA F4 Study

    PubMed Central

    Wahl, Simone; Kunze, Sonja; Molnos, Sophie; Volkova, Nadezda; Schramm, Katharina; Carstensen-Kirberg, Maren; Waldenberger, Melanie; Gieger, Christian; Peters, Annette; Illig, Thomas; Prokisch, Holger; Roden, Michael; Grallert, Harald

    2016-01-01

    Epigenetic regulation has been postulated to affect glucose metabolism, insulin sensitivity and the risk of type 2 diabetes. Therefore, we performed an epigenome-wide association study for measures of glucose metabolism in whole blood samples of the population-based Cooperative Health Research in the Region of Augsburg F4 study using the Illumina HumanMethylation 450 BeadChip. We identified a total of 31 CpG sites where methylation level was associated with measures of glucose metabolism after adjustment for age, sex, smoking, and estimated white blood cell proportions and correction for multiple testing using the Benjamini-Hochberg (B-H) method (four for fasting glucose, seven for fasting insulin, 25 for homeostasis model assessment-insulin resistance [HOMA-IR]; B-H-adjusted p-values between 9.2x10-5 and 0.047). In addition, DNA methylation at cg06500161 (annotated to ABCG1) was associated with all the aforementioned phenotypes and 2-hour glucose (B-H-adjusted p-values between 9.2x10-5 and 3.0x10-3). Methylation status of additional three CpG sites showed an association with fasting insulin only after additional adjustment for body mass index (BMI) (B-H-adjusted p-values = 0.047). Overall, effect strengths were reduced by around 30% after additional adjustment for BMI, suggesting that this variable has an influence on the investigated phenotypes. Furthermore, we found significant associations between methylation status of 21 of the aforementioned CpG sites and 2-hour insulin in a subset of samples with seven significant associations persisting after additional adjustment for BMI. In a subset of 533 participants, methylation of the CpG site cg06500161 (ABCG1) was inversely associated with ABCG1 gene expression (B-H-adjusted p-value = 1.5x10-9). Additionally, we observed an enrichment of the top 1,000 CpG sites for diabetes-related canonical pathways using Ingenuity Pathway Analysis. In conclusion, our study indicates that DNA methylation and diabetes-related traits

  17. Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblast-like Synoviocytes

    PubMed Central

    Garcia-Carbonell, Ricard; Divakaruni, Ajit S.; Lodi, Alessia; Vicente-Suarez, Ildefonso; Saha, Arindam; Cheroutre, Hilde; Boss, Gerry R.; Tiziani, Stefano; Murphy, Anne N.; Guma, Monica

    2016-01-01

    Objective Up-regulation of glucose metabolism has been implicated not only in tumor cell growth but also in immune cells upon activation. However, little is known about the metabolite profile in rheumatoid arthritis (RA), particularly in fibroblast-like synoviocytes (FLS). This study was undertaken to evaluate whether changes in glucose metabolism in RA FLS could play a role in inflammation and joint damage. Methods Synovium and FLS were obtained from patients with RA and patients with osteoarthritis (OA). The rate of glycolysis after stimulation of FLS with lipopolysaccharide and platelet-derived growth factor BB was measured using glycolysis stress test technology. FLS function was evaluated using a glycolysis inhibitor, 2-deoxy-D-glucose (2-DG). After stimulation of the FLS, a migration scratch assay, MTT assay, and enzyme-linked immunosorbent assay were performed to measure the effect of 2-DG on FLS migration, viability of the FLS, and cytokine secretion, respectively. IRDye 800CW 2-DG was used to assess glucose uptake in the arthritic joints and stromal cells of mice after K/BxN mouse serum transfer. The mice were injected daily, intraperitoneally, with 3-bromopyruvate (BrPa; 5 mg/kg) to assess the effect of inhibition of glycolysis in vivo. Results Compared to human OA FLS, the balance between glycolysis and oxidative phosphorylation was shifted toward glycolysis in RA FLS. Glucose transporter 1 (GLUT1) messenger RNA (mRNA) expression correlated with baseline functions of the RA FLS. Glucose deprivation or incubation of the FLS with glycolytic inhibitors impaired cytokine secretion and decreased the rate of proliferation and migration of the cells. In a mouse model of inflammatory arthritis, GLUT1 mRNA expression in the synovial lining cells was observed, and increased levels of glucose uptake and glycolytic gene expression were detected in the stromal compartment of the arthritic mouse joints. Inhibition of glycolysis by BrPa, administered in vivo

  18. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving.

    PubMed

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Görs, S; Röntgen, M; Sauerwein, H; Bruckmaier, R M; Metges, C C; Kuhla, B; Hammon, H M

    2016-08-01

    Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC <24% total fat/dry matter (DM); n=9] and high (HLFC; LFC >24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified

  19. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice

    PubMed Central

    Xirouchaki, Chrysovalantou E.; Mangiafico, Salvatore P.; Bate, Katherine; Ruan, Zheng; Huang, Amy M.; Tedjosiswoyo, Bing Wilari; Lamont, Benjamin; Pong, Wynne; Favaloro, Jenny; Blair, Amy R.; Zajac, Jeffrey D.; Proietto, Joseph; Andrikopoulos, Sofianos

    2016-01-01

    Objective Muscle glucose storage and muscle glycogen synthase (gys1) defects have been associated with insulin resistance. As there are multiple mechanisms for insulin resistance, the specific role of glucose storage defects is not clear. The aim of this study was to examine the effects of muscle-specific gys1 deletion on glucose metabolism and exercise capacity. Methods Tamoxifen inducible and muscle specific gys-1 KO mice were generated using the Cre/loxP system. Mice were subjected to glucose tolerance tests, euglycemic/hyperinsulinemic clamps and exercise tests. Results gys1-KO mice showed ≥85% reduction in muscle gys1 mRNA and protein concentrations, 70% reduction in muscle glycogen levels, postprandial hyperglycaemia and hyperinsulinaemia and impaired glucose tolerance. Under insulin-stimulated conditions, gys1-KO mice displayed reduced glucose turnover and muscle glucose uptake, indicative of peripheral insulin resistance, as well as increased plasma and muscle lactate levels and reductions in muscle hexokinase II levels. gys1-KO mice also exhibited markedly reduced exercise and endurance capacity. Conclusions Thus, muscle-specific gys1 deletion in adult mice results in glucose intolerance due to insulin resistance and reduced muscle glucose uptake as well as impaired exercise and endurance capacity. In brief This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity. PMID:26977394

  20. Effect of Chromium Supplementation on Glucose Metabolism and Lipids: A Systematic Review with Meta-Analysis of Randomized Controlled Trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. A systematic review of the effect of chromium supplementation on glucose metabolism and lipid levels. Research Design and Methods. Literature search conducted in MEDLINE and Commonwealth Agricultural Bureau. Eligible studies were English language randomized controlled trials of chromium ...

  1. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    PubMed

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  2. Cattle temperament influences metabolism: 1. Metabolic response to a glucose tolerance test in beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperamental cattle are behaviorally, physiologically, and immunologically different in comparison to calm cattle. Recently, the metabolic differences between temperamental and calm cattle have begun to be explored; temperamental cattle maintain greater circulating concentrations of non-esterified ...

  3. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    DOE PAGES

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less

  4. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal.

  5. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    SciTech Connect

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; Kojori, Eshan Shokri; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared to placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.

  6. Alcohol Decreases Baseline Brain Glucose Metabolism More in Heavy Drinkers Than Controls But Has No Effect on Stimulation-Induced Metabolic Increases

    PubMed Central

    Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S.; Benveniste, Helene; Tomasi, Dardo

    2015-01-01

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-18FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. PMID:25698759

  7. ChREBP, a glucose-responsive transcriptional factor, enhances glucose metabolism to support biosynthesis in human cytomegalovirus-infected cells.

    PubMed

    Yu, Yongjun; Maguire, Tobi G; Alwine, James C

    2014-02-01

    Carbohydrate-response element binding protein (ChREBP) plays a key role in regulating glucose metabolism and de novo lipogenesis in metabolic tissues and cancer cells. Here we report that ChREBP is also a critical regulator of the metabolic alterations induced during human cytomegalovirus (HCMV) infection. The expression of both ChREBP-α and ChREBP-β is robustly induced in HCMV-infected human fibroblasts; this induction is required for efficient HCMV infection. Depletion of ChREBP in HCMV-infected cells results in reduction of HCMV-induced glucose transporter 4 and glucose transporter 2 expression, leading to inhibition of glucose uptake, lactate production, nucleotide biosynthesis, and NADPH generation. We previously reported that HCMV infection induces lipogenesis through the activation of sterol regulatory element binding protein 1, which is mediated by the induction of PKR-like endoplasmic reticulum kinase. Data from the present study show that HCMV-induced lipogenesis is also controlled by the induction of ChREBP, in a second mechanism involved in the regulation of HCMV-induced de novo lipogenesis. These results suggest that ChREBP plays a key role in reprogramming glucose and lipid metabolism in HCMV infection.

  8. The effects of aerobic and anaerobic exercise conditioning on resting metabolic rate and the thermic effect of a meal.

    PubMed

    Schmidt, W D; Hyner, G C; Lyle, R M; Corrigan, D; Bottoms, G; Melby, C L

    1994-12-01

    This study examined resting metabolic rate (RMR) and thermic effect of a meal (TEM) among athletes who had participated in long-term anaerobic or aerobic exercise. Nine collegiate wrestlers were matched for age, weight, and fat-free weight with 9 collegiate swimmers. Preliminary testing included maximal oxygen consumption, maximal anaerobic capacity (MAnC) for both the arms and the legs, and percent body fat. On two separate occasions, RMR and TEM were measured using indirect calorimetry. VO2max was significantly higher in the swimmers while MAnC was significantly higher in the wrestlers for both the arms and the legs. RMR adjusted for fat-free weight was not significantly different between groups. The differences in total and percentage of TEM between the groups were not statistically significant, and there were no differences in baseline thyroid hormones. These data suggest that despite significant differences in VO2max and WAnT values following long-term aerobic and anaerobic exercise training, resting energy expenditure does not differ between these college athletes. PMID:7874150

  9. Fetal deficiency of lin28 programs life-long aberrations in growth and glucose metabolism.

    PubMed

    Shinoda, Gen; Shyh-Chang, Ng; Soysa, T Yvanka de; Zhu, Hao; Seligson, Marc T; Shah, Samar P; Abo-Sido, Nora; Yabuuchi, Akiko; Hagan, John P; Gregory, Richard I; Asara, John M; Cantley, Lewis C; Moss, Eric G; Daley, George Q

    2013-08-01

    LIN28A/B are RNA binding proteins implicated by genetic association studies in human growth and glucose metabolism. Mice with ectopic over-expression of Lin28a have shown related phenotypes. Here, we describe the first comprehensive analysis of the physiologic consequences of Lin28a and Lin28b deficiency in knockout (KO) mice. Lin28a/b-deficiency led to dwarfism starting at different ages, and compound gene deletions showed a cumulative dosage effect on organismal growth. Conditional gene deletion at specific developmental stages revealed that fetal but neither neonatal nor adult deficiency resulted in growth defects and aberrations in glucose metabolism. Tissue-specific KO mice implicated skeletal muscle-deficiency in the abnormal programming of adult growth and metabolism. The effects of Lin28b KO could be rescued by Tsc1 haplo-insufficiency in skeletal muscles. Our data implicate fetal expression of Lin28a/b in the regulation of life-long effects on metabolism and growth, and demonstrate that fetal Lin28b acts at least in part via mTORC1 signaling.

  10. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    PubMed

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  11. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  12. The influence of social status on hepatic glucose metabolism in rainbow trout Oncorhynchus mykiss.

    PubMed

    Gilmour, Kathleen M; Kirkpatrick, Sheryn; Massarsky, Andrey; Pearce, Brenda; Saliba, Sarah; Stephany, Céleste-Élise; Moon, Thomas W

    2012-01-01

    The effects of chronic social stress on hepatic glycogen metabolism were examined in rainbow trout Oncorhynchus mykiss by comparing hepatocyte glucose production, liver glycogen phosphorylase (GP) activity, and liver β-adrenergic receptors in dominant, subordinate, control, fasted, and cortisol-treated fish. Hepatocyte glucose production in subordinate fish was approximately half that of dominant fish, reflecting hepatocyte glycogen stores in subordinate trout that were just 16% of those in dominant fish. Fasting and/or chronic elevation of cortisol likely contributed to these differences based on similarities among subordinate, fasted, and cortisol-treated fish. However, calculation of the "glycogen gap"--the difference between glycogen stores used and glucose produced--suggested an enhanced gluconeogenic potential in subordinate fish that was not present in fasted or cortisol-treated trout. Subordinate, fasted, and cortisol-treated trout also exhibited similar GP activities (both total activity and that of the active or a form), and these activities were in all cases significantly lower than those in control trout, perhaps reflecting an attempt to protect liver glycogen stores or a modified capacity to activate GP. Dominant trout exhibited the lowest GP activities (20%-24% of the values in control trout). Low GP activities, presumably in conjunction with incoming energy from feeding, allowed dominant fish to achieve the highest liver glycogen concentrations (double the value in control trout). Liver membrane β-adrenoceptor numbers (assessed as the number of (3)H-CGP binding sites) were significantly lower in subordinate than in dominant trout, although this difference did not translate into attenuated adrenergic responsiveness in hepatocyte glucose production in vitro. Transcriptional regulation, likely as a result of fasting, was indicated by significantly lower β(2)-adrenoceptor relative mRNA levels in subordinate and fasted trout. Collectively, the data

  13. Aerobic Capacity, Physical Activity and Metabolic Risk Factors in Firefighters Compared with Police Officers and Sedentary Clerks

    PubMed Central

    Leischik, Roman; Foshag, Peter; Strauß, Markus; Littwitz, Henning; Garg, Pankaj; Dworrak, Birgit; Horlitz, Marc

    2015-01-01

    Background This study examined the association between the physical work environment and physiological performance measures, physical activity levels and metabolic parameters among German civil servants. A main focus in this study was to examine the group differences rather than measuring the absolute values in an occupational group. Methods We prospectively examined 198 male German civil servants (97 firefighters [FFs], 55 police officers [POs] and 46 sedentary clerks [SCs]). For each parameter, the groups were compared using a linear regression adjusted for age. Results The 97 FFs showed a similar maximal aerobic power (VO2max l/min) of 3.17±0.44 l/min compared with the POs, who had a maximal aerobic power of 3.13±0.62 l/min (estimated difference, POs vs. FFs: 0.05, CI: -0.12-0.23, p=0.553). The maximal aerobic power of the FFs was slightly higher than that of the SCs, who had a maximal aerobic power of 2.85±0.52 l/min (-0.21, CI: -0.39-0.04, p=0.018 vs. FFs). The average physical activity (in metabolic equivalents [METS]/week) of the FFs was 3818.8±2843.5, whereas those of the POs and SCs were 2838.2±2871.9 (-808.2, CI: 1757.6-141.2, p=0.095) and 2212.2±2292.8 (vs. FFs: -1417.1, CI: -2302-531.88, p=0.002; vs. POs: -2974.4, CI: -1611.2-393.5, p=0.232), respectively. For the FFs, the average body fat percentage was 17.7%±6.2, whereas it was 21.4%±5.6 for the POs (vs. FFs: 2.75, CI: 0.92-4.59, p=0.004) and 20.8%±6.5 for the SCs (vs. FFs: 1.98, CI: -0.28-4.25, p=0.086; vs. POs: -0.77, CI: 3.15-1.61, p=0.523). The average waist circumference was 89.8 cm±10.0 for the FFs, 97.8 cm±12.4 (5.63, CI: 2.10-9.15, p=0.002) for the POs, and 97.3±11.7 (vs. FFs: -4.89, CI: 1.24-8.55, p=0.009; vs. POs: -0.73, CI: -5.21-3.74, p=0.747) for the SCs. Conclusions The FFs showed significantly higher physical activity levels compared with the SCs. The PO group had the highest cardiovascular risk of all of the groups because it included more participants with metabolic

  14. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism

    PubMed Central

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Davidson, Shawn M.; Wirth, Gregory J.; Fiske, Brian; Mayers, Jared R.; Schwab, Matthias; Bellinger, Gary; Csibi, Alfredo; Patnaik, Akash; Jose Blouin, Marie; Cantley, Lewis C.; Guarente, Leonard; Blenis, John; Pollak, Michael N.; Olumi, Aria F.

    2013-01-01

    Metformin inhibits cancer cell proliferation and epidemiology studies suggest an association with increased survival in cancer patients taking metformin, however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation while increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer. PMID:23687346

  15. Impact of switching from lopinavir/ritonavir to boosted and un-boosted atazanavir on glucose metabolism: the ATAzanavir & GLUcose metabolism (ATAGLU) study.

    PubMed

    d'Ettorre, Gabriella; Ceccarelli, Giancarlo; Zaccarelli, Mauro; Ascoli-Bartoli, Tommaso; Bianchi, Luigi; Bellelli, Valeria; De Girolamo, Gabriella; Serafino, Sara; Giustini, Noemi; Mastroianni, Claudio M; Vullo, Vincenzo

    2016-07-01

    Previous studies have reported that protease inhibitors (PIs) can contribute to glycaemic alterations. However, there are few trials examining the direct effect of a single PI. The objective of the study was to evaluate the modifications of glucose and lipid profiles after a switch from lopinavir/ritonavir (LPV/r) to atazanavir, used as ritonavir-boosted (ATV/r) or un-boosted. We conducted a retrospective observational cohort study on the effect of ATV/(r) on glycaemic metabolism (ATAGLU) in patients with undetectable levels of HIV-RNA who switched from LPV/r. In total, 235 patients treated for 48 weeks with LPV/r plus two nucleoside reverse transcriptase inhibitors (NRTIs) and with undetectable HIV-RNA were included: 134 continued LPV/r after the initial 48 weeks and 101 switched to ATV(/r) (18.3% to ATV; 24.7% to ATV/r). A significant decrease in mean glucose level and insulin resistance was observed in patients who switched to ATV(/r). The mean cholesterol triglyceride levels increased in the LPV/r group and decreased among the patients who switched. A significant increase of CD4 T cells with undetectable levels of HIV-RNA was observed in all groups. The long-term results obtained in this real-life study suggest that patients who have achieved initial suppression on a regimen including LPV/r + two NRTIs can switch to ATV/(r) + two NRTIs with an improvement in lipid and glycaemic metabolism.

  16. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats.

    PubMed

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M; Lam, Tony K T; Gutiérrez-Juárez, Roger

    2013-04-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well. PMID:23274895

  17. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    PubMed Central

    Elshahed, Mostafa S.; Najar, Fares Z.; Krumholz, Lee R.

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542

  18. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism.

    PubMed

    Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542

  19. Effects of Excess Energy Intake on Glucose and Lipid Metabolism in C57BL/6 Mice.

    PubMed

    Pang, Jing; Xi, Chao; Huang, Xiuqing; Cui, Ju; Gong, Huan; Zhang, Tiemei

    2016-01-01

    Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin r