Science.gov

Sample records for aerobic glycolysis resulting

  1. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  2. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  3. Brain aerobic glycolysis and motor adaptation learning.

    PubMed

    Shannon, Benjamin J; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G; Shimony, Joshua S; Rutlin, Jerrel; Raichle, Marcus E

    2016-06-28

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual-motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  4. Aggression is associated with aerobic glycolysis in the honey bee brain1

    PubMed Central

    Chandrasekaran, S.; Rittschof, C. C.; Djukovic, D.; Gu, H.; Raftery, D.; Price, N. D.; Robinson, G. E.

    2015-01-01

    Aerobic glycolysis involves increased glycolysis and decreased oxidative catabolism of glucose even in the presence of an ample oxygen supply. Aerobic glycolysis, a common metabolic pattern in cancer cells, was recently discovered in both the healthy and diseased human brain, but its functional significance is not understood. This metabolic pattern in the brain is surprising because it results in decreased efficiency of adenosine triphosphate (ATP) production in a tissue with high energetic demands. We report that highly aggressive honey bees (Apis mellifera) show a brain transcriptomic and metabolic state consistent with aerobic glycolysis, i.e. increased glycolysis in combination with decreased oxidative phosphorylation. Furthermore, exposure to alarm pheromone, which provokes aggression, causes a metabolic shift to aerobic glycolysis in the bee brain. We hypothesize that this metabolic state, which is associated with altered neurotransmitter levels, increased glycolytically derived ATP and a reduced cellular redox state, may lead to increased neuronal excitability and oxidative stress in the brain. Our analysis provides evidence for a robust, distinct and persistent brain metabolic response to aggression-inducing social cues. This finding for the first time associates aerobic glycolysis with naturally occurring behavioral plasticity, which has important implications for understanding both healthy and diseased brain function. PMID:25640316

  5. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    PubMed Central

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840

  6. Aerobic glycolysis: a novel target in kidney cancer.

    PubMed

    Shuch, Brian; Linehan, W Marston; Srinivasan, Ramaprasad

    2013-06-01

    Renal cell carcinoma (RCC) is a heterogenous group of cancers that arise from the nephron. While there are distinct histologic subtypes associated with common genetic alterations, most forms of RCC are linked by a common pathway of dysregulated metabolism. Reliance on aerobic glycolysis, a feature of cancer first hypothesized by Warburg, is a common feature in sporadic and hereditary forms of kidney cancer. Two hereditary forms of RCC, succinate dehydrogenase (SDH) and hereditary leiomyomatosis and RCC (HLRCC), are characterized by mutations in Krebs cycle enzymes, rendering them dependent on glycolysis for energy requirements. The reliance on these pathways may make them vulnerable to novel metabolic strategies, including inhibition of glycolysis, glucose uptake and macromolecule biosynthesis. PMID:23773105

  7. Aerobic glycolysis tunes YAP/TAZ transcriptional activity

    PubMed Central

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-01-01

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ. PMID:25796446

  8. Obesity promotes aerobic glycolysis in prostate cancer cells.

    PubMed

    Cavazos, David A; deGraffenried, Matthew J; Apte, Shruti A; Bowers, Laura W; Whelan, Kaitlin A; deGraffenried, Linda A

    2014-01-01

    Obesity is the leading preventable comorbidity associated with increased prostate cancer-related recurrence and mortality. Epidemiological and clinical studies indicate that a body mass index >30 is associated with increased oxidative DNA damage within the prostate gland and increased prostate cancer-related mortality. Here we provide evidence that obesity promotes worse clinical outcome through induction of metabolic abnormalities known to promote genotoxic stress. We have previously reported that blood serum derived from obese mice may enhance the proliferative and invasive potential of human prostate cancer cell lines ex vivo. Here we show that a 1-h exposure of LNCaP or PacMetUT1 prostate cancer cell lines and nonmalignant RWPE-1 prostate epithelial cells to 2% serum from obese mice induces markers of aerobic glycolysis relative to those exposed to serum from nonobese mice. This metabolic change was correlated with accumulation of reactive oxygen species (ROS) and increased frequency of DNA double-strand breaks. Interestingly, N-tert-Butylhydroxylamine, an antioxidant, significantly suppressed markers of aerobic glycolysis in the cells exposed to the blood serum of obese mice, suggesting that ROS contributes to a metabolic shift toward aerobic glycolysis. Here we describe obesity-induced changes in key metabolic markers that impact prostate cancer cell progression and explore the role of antioxidants in ameliorating these effects. PMID:25264717

  9. Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma

    PubMed Central

    2013-01-01

    Background While aerobic glycolysis is linked to unconstrained proliferation in cancer, less is known about its physiological role. Why this metabolic program that promotes tumor growth is preserved in the genome has thus been unresolved. We tested the hypothesis that aerobic glycolysis derives from developmental processes that regulate rapid proliferation. Methods We performed an integrated analysis of metabolism and gene expression in cerebellar granule neuron progenitors (CGNPs) with and without Sonic Hedgehog (Shh), their endogenous mitogen. Because our analysis highlighted Hexokinase-2 (Hk2) as a key metabolic regulator induced by Shh, we studied the effect of conditional genetic Hk2 deletion in CGNP development. We then crossed Hk2 conditional knockout mice with transgenic SmoM2 mice that develop spontaneous medulloblastoma and determined changes in SmoM2-driven tumorigenesis. Results We show that Shh and phosphoinositide 3-kinase (PI3K) signaling combine to induce an Hk2-dependent glycolytic phenotype in CGNPs. This phenotype is recapitulated in medulloblastoma, a malignant tumor of CGNP origin. Importantly, cre-mediated ablation of Hk2 abrogated aerobic glycolysis, disrupting CGNP development and Smoothened-induced tumorigenesis. Comparing tumorigenesis in medulloblastoma-prone SmoM2 mice with and without functional Hk2, we demonstrate that loss of aerobic glycolysis reduces the aggressiveness of medulloblastoma, causing tumors to grow as indolent lesions and allowing long-term survival of tumor bearing mice. Conclusions Our investigations demonstrate that aerobic glycolysis in cancer derives from developmental mechanisms that persist in tumorigenesis. Moreover, we demonstrate in a primary tumor model the anti-cancer potential of blocking aerobic glycolysis by targeting Hk2. See commentary article:http://www.biomedcentral.com/1741-7007/11/3 PMID:24280485

  10. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug.

    PubMed

    Cardaci, Simone; Desideri, Enrico; Ciriolo, Maria Rosa

    2012-02-01

    The Warburg effect refers to the phenomenon whereby cancer cells avidly take up glucose and produce lactic acid under aerobic conditions. Although the molecular mechanisms underlying tumor reliance on glycolysis remains not completely clear, its inhibition opens feasible therapeutic windows for cancer treatment. Indeed, several small molecules have emerged by combinatorial studies exhibiting promising anticancer activity both in vitro and in vivo, as a single agent or in combination with other therapeutic modalities. Therefore, besides reviewing the alterations of glycolysis that occur with malignant transformation, this manuscript aims at recapitulating the most effective pharmacological therapeutics of its targeting. In particular, we describe the principal mechanisms of action and the main targets of 3-bromopyruvate, an alkylating agent with impressive antitumor effects in several models of animal tumors. Moreover, we discuss the chemo-potentiating strategies that would make unparalleled the putative therapeutic efficacy of its use in clinical settings. PMID:22328057

  11. Coordinated Metabolic Transitions During Drosophila Embryogenesis and the Onset of Aerobic Glycolysis

    PubMed Central

    Tennessen, Jason M.; Bertagnolli, Nicolas M.; Evans, Janelle; Sieber, Matt H.; Cox, James; Thummel, Carl S.

    2014-01-01

    Rapidly proliferating cells such as cancer cells and embryonic stem cells rely on a specialized metabolic program known as aerobic glycolysis, which supports biomass production from carbohydrates. The fruit fly Drosophila melanogaster also utilizes aerobic glycolysis to support the rapid growth that occurs during larval development. Here we use singular value decomposition analysis of modENCODE RNA-seq data combined with GC-MS-based metabolomic analysis to analyze the changes in gene expression and metabolism that occur during Drosophila embryogenesis, spanning the onset of aerobic glycolysis. Unexpectedly, we find that the most common pattern of co-expressed genes in embryos includes the global switch to glycolytic gene expression that occurs midway through embryogenesis. In contrast to the canonical aerobic glycolytic pathway, however, which is accompanied by reduced mitochondrial oxidative metabolism, the expression of genes involved in the tricarboxylic cycle (TCA cycle) and the electron transport chain are also upregulated at this time. Mitochondrial activity, however, appears to be attenuated, as embryos exhibit a block in the TCA cycle that results in elevated levels of citrate, isocitrate, and α-ketoglutarate. We also find that genes involved in lipid breakdown and β-oxidation are upregulated prior to the transcriptional initiation of glycolysis, but are downregulated before the onset of larval development, revealing coordinated use of lipids and carbohydrates during development. These observations demonstrate the efficient use of nutrient stores to support embryonic development, define sequential metabolic transitions during this stage, and demonstrate striking similarities between the metabolic state of late-stage fly embryos and tumor cells. PMID:24622332

  12. High Concentrations of H2O2 Make Aerobic Glycolysis Energetically More Favorable for Cellular Respiration.

    PubMed

    Molavian, Hamid R; Kohandel, Mohammad; Sivaloganathan, Sivabal

    2016-01-01

    Since the original observation of the Warburg Effect in cancer cells, over 8 decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2) above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP) in response to the production of reactive oxygen species (ROS) H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources). This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production) to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis. PMID:27601999

  13. High Concentrations of H2O2 Make Aerobic Glycolysis Energetically More Favorable for Cellular Respiration

    PubMed Central

    Molavian, Hamid R.; Kohandel, Mohammad; Sivaloganathan, Sivabal

    2016-01-01

    Since the original observation of the Warburg Effect in cancer cells, over 8 decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2) above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP) in response to the production of reactive oxygen species (ROS) H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources). This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production) to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis. PMID:27601999

  14. Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma.

    PubMed

    Mao, Lulu; Dauchy, Robert T; Blask, David E; Dauchy, Erin M; Slakey, Lauren M; Brimer, Samantha; Yuan, Lin; Xiang, Shulin; Hauch, Adam; Smith, Kara; Frasch, Tripp; Belancio, Victoria P; Wren, Melissa A; Hill, Steven M

    2016-03-01

    Leiomyosarcoma (LMS) represents a highly malignant, rare soft tissue sarcoma with high rates of morbidity and mortality. Previously, we demonstrated that tissue-isolated human LMS xenografts perfused in situ are highly sensitive to the direct anticancer effects of physiological nocturnal blood levels of melatonin which inhibited tumour cell proliferative activity, linoleic acid (LA) uptake and metabolism to 13-hydroxyoctadecadienoic acid (13-HODE). Here, we show the effects of low pharmacological blood concentrations of melatonin following oral ingestion of a melatonin supplement by healthy adult human female subjects on tumour proliferative activity, aerobic glycolysis (Warburg effect) and LA metabolic signalling in tissue-isolated LMS xenografts perfused in situ with this blood. Melatonin markedly suppressed aerobic glycolysis and induced a complete inhibition of tumour LA uptake, 13-HODE release, as well as significant reductions in tumour cAMP levels, DNA content and [(3) H]-thymidine incorporation into DNA. Furthermore, melatonin completely suppressed the phospho-activation of ERK 1/2, AKT, GSK3β and NF-kB (p65). The addition of S20928, a nonselective melatonin antagonist, reversed these melatonin inhibitory effects. Moreover, in in vitro cell culture studies, physiological concentrations of melatonin repressed cell proliferation and cell invasion. These results demonstrate that nocturnal melatonin directly inhibited tumour growth and invasion of human LMS via suppression of the Warburg effect, LA uptake and other related signalling mechanisms. An understanding of these novel signalling pathway(s) and their association with aerobic glycolysis and LA metabolism in human LMS may lead to new circadian-based therapies for the prevention and treatment of LMS and potentially other mesenchymally derived solid tumours. PMID:26607298

  15. RRAD inhibits aerobic glycolysis, invasion, and migration and is associated with poor prognosis in hepatocellular carcinoma.

    PubMed

    Shang, Runze; Wang, Jianlin; Sun, Wei; Dai, Bin; Ruan, Bai; Zhang, Zhuochao; Yang, Xisheng; Gao, Yuan; Qu, Shibin; Lv, Xing; Tao, Kaishan; Wang, Lin; Dou, Kefeng; Wang, Desheng

    2016-04-01

    Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancer worldwide. However, the mechanism underlying the HCC development remains unclear. Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase which has been implicated in metabolic disease and several types of cancer, yet its functions in HCC remain unknown. A tissue microarray constructed by 90 paired HCC tissues and adjacent non-cancerous liver tissues was used to examine the protein levels of RRAD, and the messenger RNA (mRNA) expression of RRAD was also detected in a subset of this cohort. The prognostic significance of RRAD was estimated by the Kaplan-Meier analysis and Cox regression. The glucose utilization assay and lactate production assay were performed to measure the role of RRAD in HCC glycolysis. The effect of RRAD in HCC invasion and metastasis was analyzed by transwell assays. Our results suggested that the expression of RRAD was downregulated in HCC tissues compared to the adjacent non-tumorous liver tissues both in mRNA and protein levels and lower RRAD expression served as an independent prognostic indicator for the survival of HCC patients. Moreover, RRAD inhibited hepatoma cell aerobic glycolysis by negatively regulating the expression of glucose transporter 1 (GLUT1) and hexokinase II (HK-II). In addition, RRAD inhibition dramatically increased hepatoma cell invasion and metastasis. In conclusion, our study revealed that RRAD expression was decreased in HCC tumor tissues and predicted poor clinical outcome for HCC patients and played an important role in regulating aerobic glycolysis and cell invasion and metastasis and may represent potential targets for improving the treatment of HCC. PMID:26546438

  16. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step

    PubMed Central

    Shestov, Alexander A; Liu, Xiaojing; Ser, Zheng; Cluntun, Ahmad A; Hung, Yin P; Huang, Lei; Kim, Dongsung; Le, Anne; Yellen, Gary; Albeck, John G; Locasale, Jason W

    2014-01-01

    Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, negative flux control was found and confirmed for several steps thought to be rate-limiting in glycolysis. Together, these findings enumerate the biochemical determinants of the WE and suggest strategies for identifying the contexts in which agents that target glycolysis might be most effective. DOI: http://dx.doi.org/10.7554/eLife.03342.001 PMID:25009227

  17. Increased aerobic glycolysis is important for the motility of activated VSMC and inhibited by indirubin-3′-monoxime

    PubMed Central

    Heiss, Elke H.; Schachner, Daniel; Donati, Maddalena; Grojer, Christoph S.; Dirsch, Verena M.

    2016-01-01

    Increased aerobic glycolysis is a recognized feature of multiple cellular phenotypes and offers a potential point for drug interference, as pursued by anti-tumor agents targeting the Warburg effect. This study aimed at examining the role of aerobic glycolysis for migration of vascular smooth muscle cells (VSMC) and its susceptibility to the small molecule indirubin-3′-monoxime (I3MO). Activation of VSMC with platelet-derived growth factor (PDGF) resulted in migration and increased glycolytic activity which was accompanied by an increased glucose uptake and hexokinase (HK) 2 expression. Inhibition of glycolysis or hexokinase by pharmacological agents or siRNA-mediated knockdown significantly reduced the migratory behavior in VSMC without affecting cell viability or early actin cytoskeleton rearrangement. I3MO, previously recognized as inhibitor of VSMC migration, was able to counteract the PDGF-activated increase in glycolysis and HK2 abundance. Activation of signal transducer and activator of transcription (STAT) 3 could be identified as crucial event in upregulation of HK2 and glycolytic activity in PDGF-stimulated VSMC and as point of interference for I3MO. I3MO did not inhibit hypoxia-inducible factor (HIF)1α-dependent transcription nor influence miRNA 143 levels, other potential regulators of HK2 levels. Overall, we demonstrate that increased aerobic glycolysis is an important factor for the motility of activated VSMC and that the anti-migratory property of I3MO may partly depend on impairment of glycolysis via a compromised STAT3/HK2 signaling axis. PMID:27185663

  18. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    PubMed

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  19. Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis

    SciTech Connect

    Akakura, Shin; Ostrakhovitch, Elena; Sanokawa-Akakura, Reiko; Tabibzadeh, Siamak

    2014-06-13

    Highlights: • Some cancer cells recover from severe damage that causes cell death in majority of cells. • Damage-Recovered (DR) cancer cells show reduced mitochondria, mDNA and mitochondrial enzymes. • DR cells show increased aerobic glycolysis, ATP, cell proliferation, and resistance to damage. • DR cells recovered from in vivo damage also show increased glycolysis and proliferation rate. - Abstract: Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as “the Warburg effect”. We considered that this effect is a direct consequence of damage which persists in cancer cells that recover from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (T{sup DR}) cells from tumors. We demonstrate that T{sup DR} cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage.

  20. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane

    PubMed Central

    2014-01-01

    Background Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. Results We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Conclusions Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but

  1. Inhibition of Aerobic Glycolysis Attenuates Disease Progression in Polycystic Kidney Disease

    PubMed Central

    Riwanto, Meliana; Kapoor, Sarika; Rodriguez, Daniel; Edenhofer, Ilka; Segerer, Stephan; Wüthrich, Rudolf P.

    2016-01-01

    Dysregulated signaling cascades alter energy metabolism and promote cell proliferation and cyst expansion in polycystic kidney disease (PKD). Here we tested whether metabolic reprogramming towards aerobic glycolysis (“Warburg effect”) plays a pathogenic role in male heterozygous Han:SPRD rats (Cy/+), a chronic progressive model of PKD. Using microarray analysis and qPCR, we found an upregulation of genes involved in glycolysis (Hk1, Hk2, Ldha) and a downregulation of genes involved in gluconeogenesis (G6pc, Lbp1) in cystic kidneys of Cy/+ rats compared with wild-type (+/+) rats. We then tested the effect of inhibiting glycolysis with 2-deoxyglucose (2DG) on renal functional loss and cyst progression in 5-week-old male Cy/+ rats. Treatment with 2DG (500 mg/kg/day) for 5 weeks resulted in significantly lower kidney weights (-27%) and 2-kidney/total-body-weight ratios (-20%) and decreased renal cyst index (-48%) compared with vehicle treatment. Cy/+ rats treated with 2DG also showed higher clearances of creatinine (1.98±0.67 vs 1.41±0.37 ml/min), BUN (0.69±0.26 vs 0.40±0.10 ml/min) and uric acid (0.38±0.20 vs 0.21±0.10 ml/min), and reduced albuminuria. Immunoblotting analysis of kidney tissues harvested from 2DG-treated Cy/+ rats showed increased phosphorylation of AMPK-α, a negative regulator of mTOR, and restoration of ERK signaling. Assessment of Ki-67 staining indicated that 2DG limits cyst progression through inhibition of epithelial cell proliferation. Taken together, our results show that targeting the glycolytic pathway may represent a promising therapeutic strategy to control cyst growth in PKD. PMID:26752072

  2. Inhibition of Aerobic Glycolysis Attenuates Disease Progression in Polycystic Kidney Disease.

    PubMed

    Riwanto, Meliana; Kapoor, Sarika; Rodriguez, Daniel; Edenhofer, Ilka; Segerer, Stephan; Wüthrich, Rudolf P

    2016-01-01

    Dysregulated signaling cascades alter energy metabolism and promote cell proliferation and cyst expansion in polycystic kidney disease (PKD). Here we tested whether metabolic reprogramming towards aerobic glycolysis ("Warburg effect") plays a pathogenic role in male heterozygous Han:SPRD rats (Cy/+), a chronic progressive model of PKD. Using microarray analysis and qPCR, we found an upregulation of genes involved in glycolysis (Hk1, Hk2, Ldha) and a downregulation of genes involved in gluconeogenesis (G6pc, Lbp1) in cystic kidneys of Cy/+ rats compared with wild-type (+/+) rats. We then tested the effect of inhibiting glycolysis with 2-deoxyglucose (2DG) on renal functional loss and cyst progression in 5-week-old male Cy/+ rats. Treatment with 2DG (500 mg/kg/day) for 5 weeks resulted in significantly lower kidney weights (-27%) and 2-kidney/total-body-weight ratios (-20%) and decreased renal cyst index (-48%) compared with vehicle treatment. Cy/+ rats treated with 2DG also showed higher clearances of creatinine (1.98±0.67 vs 1.41±0.37 ml/min), BUN (0.69±0.26 vs 0.40±0.10 ml/min) and uric acid (0.38±0.20 vs 0.21±0.10 ml/min), and reduced albuminuria. Immunoblotting analysis of kidney tissues harvested from 2DG-treated Cy/+ rats showed increased phosphorylation of AMPK-α, a negative regulator of mTOR, and restoration of ERK signaling. Assessment of Ki-67 staining indicated that 2DG limits cyst progression through inhibition of epithelial cell proliferation. Taken together, our results show that targeting the glycolytic pathway may represent a promising therapeutic strategy to control cyst growth in PKD. PMID:26752072

  3. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression.

    PubMed

    Goyal, Manu S; Hawrylycz, Michael; Miller, Jeremy A; Snyder, Abraham Z; Raichle, Marcus E

    2014-01-01

    Aerobic glycolysis (AG; i.e., nonoxidative metabolism of glucose despite the presence of abundant oxygen) accounts for 10%-12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with the persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938

  4. MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation.

    PubMed

    Liu, L; Wang, Y; Bai, R; Yang, K; Tian, Z

    2016-01-01

    Deregulation of microRNAs in human malignancies has been well documented, among which microRNA-186 (miR-186) has an antiproliferative role in some carcinomas. Here we demonstrate that low expression of miR-186 facilitates aerobic glycolysis in gastric cancer. MiR-186 suppresses cell proliferation induced by hypoxia inducible factor 1 alpha (HIF-1α) in gastric cancer cell lines MKN45 and SGC7901. Cellular glycolysis, including cellular glucose uptake, lactate, ATP/ADP and NAD+/NADH ratios, are also inhibited by miR-186. The negative regulation of miR-186 on HIF-1α effects its downstream targets, including programmed death ligand 1 and two glycolytic key enzymes, hexokinase 2 and platelet-type phosphofructokinase. The antioncogenic effects of miR-186 are proved by in vivo xenograft tumor experiment. The results demonstrate that the miR-186/HIF-1α axis has an antioncogenic role in gastric cancer. PMID:27159677

  5. Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance.

    PubMed

    Bauernfeind, Amy L; Barks, Sarah K; Duka, Tetyana; Grossman, Lawrence I; Hof, Patrick R; Sherwood, Chet C

    2014-07-01

    Glucose metabolism produces, by oxidative phosphorylation, more than 15 times the amount of energy generated by aerobic glycolysis. Nonetheless, aerobic glycolysis remains a prevalent metabolic pathway in the brain. Here we review evidence suggesting that this pathway contributes essential molecules to the biomass of the brain. Aerobic metabolism is the dominant metabolic pathway during early postnatal development when lipids and proteins are needed for the processes of axonal elongation, synaptogenesis, and myelination. Furthermore, aerobic metabolism may continue into adulthood to supply biomolecules for activity-related changes at the synapse and turnover of constituent structural components of neurons. Conversely, oxidative phosphorylation appears to be the main metabolic support for synaptic transmission, and, therefore, this pathway seems to be more dominant in brain structures and at time points in the lifespan that are characterized by increased synaptic density. We present the case for differing relationships between aerobic glycolysis and oxidative phosphorylation across primates in association with species-specific variation in neurodevelopmental trajectories. In doing so, we provide an alternative interpretation for the assessment of radiolabeled glucose positron emission tomography studies that regularly attribute increases in glucose uptake to neural activity alone, and propose a new model for the contribution of metabolic pathways for energetic demand and neural tissue growth. We conclude that comparative studies of metabolic appropriation in the brain may contribute to the discussion of human cognitive evolution and to the understanding of human-specific aging and the etiology of neuropsychiatric diseases. PMID:24185460

  6. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice

    PubMed Central

    Xia, Yujing; He, Lei; Chen, Kan; Li, Jingjing; Li, Sainan; Liu, Tong; Zheng, Yuanyuan; Wang, Jianrong; Lu, Wenxia; Zhou, Yuqing; Yin, Qin; Abudumijiti, Huerxidan; Chen, Rongxia; Zhang, Rong; Zhou, Li; Zhou, Zheng; Zhu, Rong; Yang, Jing; Wang, Chengfen; Zhang, Huawei; Zhou, Yingqun; Xu, Ling; Guo, Chuanyong

    2015-01-01

    Cancer cells exhibit an altered metabolic phenotype known as the aerobic glycolysis. The expression of HK2 changes the metabolic phenotype of cells to support cancerous growth. In the present study, we investigated the inhibitory effect of resveratrol on HK2 expression and hepatocellular carcinoma (HCC) cell glycolysis. Aerobic glycolysis was observed in four HCC cell lines compared to the normal hepatic cells. Resveratrol sensitized aerobic glycolytic HCC cells to apoptosis, and this effect was attenuated by glycolytic inhibitors. The induction of mitochondrial apoptosis was associated with the decrease of HK2 expression by resveratrol in HCC cells. In addition, resveratrol enhanced sorafenib induced cell growth inhibition in aerobic glycolytic HCC cells. Combination treatment with both reagents inhibited the growth and promoted apoptosis of HCC-bearing mice. The reduction of HK2 by resveratrol provides a new dimension to clinical HCC therapies aimed at preventing disease progression. PMID:25938543

  7. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation

    PubMed Central

    Zheng, Xinde; Boyer, Leah; Jin, Mingji; Mertens, Jerome; Kim, Yongsung; Ma, Li; Ma, Li; Hamm, Michael; Gage, Fred H; Hunter, Tony

    2016-01-01

    How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size. DOI: http://dx.doi.org/10.7554/eLife.13374.001 PMID:27282387

  8. Curcumin inhibits aerobic glycolysis in hepatic stellate cells associated with activation of adenosine monophosphate-activated protein kinase.

    PubMed

    Lian, Naqi; Jin, Huanhuan; Zhang, Feng; Wu, Li; Shao, Jiangjuan; Lu, Yin; Zheng, Shizhong

    2016-07-01

    Activation of hepatic stellate cells (HSCs) is characterized by expression of extracellular matrix and loss of adipogenic phenotype during liver fibrogenesis. Emerging evidence suggests that HSCs adopt aerobic glycolysis during activation. The present work aimed at investigating whether the anti-fibrogenic effects of curcumin was associated with interfering with glycolysis in HSCs. Primary rat HSCs were cultured in vitro. We demonstrated that inhibition of glycolysis by 2-deoxyglucose or galloflavin reduced the expression of α-smooth muscle actin (α-SMA) and α1(I)procollagen at both mRNA and protein levels, and increased the intracellular lipid contents and upregulated the gene and protein expression of adipogenic transcription factors C/EBPα and PPAR-γ in HSCs. Curcumin at 20 μM produced similar effects. Moreover, curcumin decreased the expression of hexokinase (HK), phosphofructokinase-2 (PFK2), and glucose transporter 4 (glut4), three key glycolytic parameters, at both mRNA and protein levels. Curcumin also reduced lactate production concentration-dependently in HSCs. Furthermore, curcumin increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), but AMPK inhibitor BML-275 significantly abolished the curcumin downregulation of HK, PFK2, and glut4. In addition, curcumin inhibition of α-SMA and α1(I)procollagen was rescued by BML-275, and curcumin upregulation of C/EBPα and PPAR-γ was abrogated by BML-275. These results collectively indicated that curcumin inhibited glycolysis in an AMPK activation-dependent manner in HSCs. We revealed a novel mechanism for curcumin suppression of HSC activation implicated in antifibrotic therapy. © 2016 IUBMB Life, 68(7):589-596, 2016. PMID:27278959

  9. Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells

    PubMed Central

    Woo, Yu Mi; Shin, Yubin; Lee, Eun Ji; Lee, Sunyoung; Jeong, Seung Hun; Kong, Hyun Kyung; Park, Eun Young; Kim, Hyoung Kyu; Han, Jin; Chang, Minsun; Park, Jong-Hoon

    2015-01-01

    Tamoxifen resistance is often observed in the majority of estrogen receptor–positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9—tamoxifen-resistant human breast cancer cell lines derived from MCF7— are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O2-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer. PMID:26158266

  10. mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity

    PubMed Central

    Cheng, Shih-Chin; Quintin, Jessica; Cramer, Robert A.; Shepardson, Kelly M.; Saeed, Sadia; Kumar, Vinod; Giamarellos-Bourboulis, Evangelos J; Martens, Joost H.A.; Rao, Nagesha Appukudige; Aghajanirefah, Ali; Manjeri, Ganesh R.; Li, Yang; Ifrim, Daniela C.; Arts, Rob J.W.; van der Meer, Brian M.J.W.; Deen, Peter M.T.; Logie, Colin; O’Neill, Luke A.; Willems, Peter; van de Veerdonk, Frank L.; van der Meer, Jos W.M.; Ng, Aylwin; Joosten, Leo A.B.; Wijmenga, Cisca; Stunnenberg, Hendrik G.; Xavier, Ramnik J.; Netea, Mihai G.

    2014-01-01

    Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD+/NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity. PMID:25258083

  11. Costimulation Endows Immunotherapeutic CD8 T Cells with IL-36 Responsiveness during Aerobic Glycolysis.

    PubMed

    Tsurutani, Naomi; Mittal, Payal; St Rose, Marie-Clare; Ngoi, Soo Mun; Svedova, Julia; Menoret, Antoine; Treadway, Forrest B; Laubenbacher, Reinhard; Suárez-Ramírez, Jenny E; Cauley, Linda S; Adler, Adam J; Vella, Anthony T

    2016-01-01

    CD134- and CD137-primed CD8 T cells mount powerful effector responses upon recall, but even without recall these dual-costimulated T cells respond to signal 3 cytokines such as IL-12. We searched for alternative signal 3 receptor pathways and found the IL-1 family member IL-36R. Although IL-36 alone did not stimulate effector CD8 T cells, in combination with IL-12, or more surprisingly IL-2, it induced striking and rapid TCR-independent IFN-γ synthesis. To understand how signal 3 responses functioned in dual-costimulated T cells we showed that IL-2 induced IL-36R gene expression in a JAK/STAT-dependent manner. These data help delineate a sequential stimulation process where IL-2 conditioning must precede IL-36 for IFN-γ synthesis. Importantly, this responsive state was transient and functioned only in effector T cells capable of aerobic glycolysis. Specifically, as the effector T cells metabolized glucose and consumed O2, they also retained potential to respond through IL-36R. This suggests that T cells use innate receptor pathways such as the IL-36R/axis when programmed for aerobic glycolysis. To explore a function for IL-36R in vivo, we showed that dual costimulation therapy reduced B16 melanoma tumor growth while increasing IL-36R gene expression. In summary, cytokine therapy to eliminate tumors may target effector T cells, even outside of TCR specificity, as long as the effectors are in the correct metabolic state. PMID:26573834

  12. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis.

    PubMed

    Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J; Møller, Arne; Globinsky, Ronen; Fulbright, Robert K; Rothman, Douglas L; Gjedde, Albert

    2016-05-01

    Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means, regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF≈0.4) and glucose oxidation (OGI ≈ 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphorylation rates, with globally optimal maximum ATP turnover rates (VATP ≈ 9.4 µmol/g/min), in good agreement with (31)P and (13)C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization artefacts from relative PET measurements. PMID:26755443

  13. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  14. Insulin Receptor Substrate 2-mediated Phosphatidylinositol 3-kinase Signaling Selectively Inhibits Glycogen Synthase Kinase 3β to Regulate Aerobic Glycolysis*

    PubMed Central

    Landis, Justine; Shaw, Leslie M.

    2014-01-01

    Insulin receptor substrate 1 (IRS-1) and IRS-2 are cytoplasmic adaptor proteins that mediate the activation of signaling pathways in response to ligand stimulation of upstream cell surface receptors. Despite sharing a high level of homology and the ability to activate PI3K, only Irs-2 positively regulates aerobic glycolysis in mammary tumor cells. To determine the contribution of Irs-2-dependent PI3K signaling to this selective regulation, we generated an Irs-2 mutant deficient in the recruitment of PI3K. We identified four tyrosine residues (Tyr-649, Tyr-671, Tyr-734, and Tyr-814) that are essential for the association of PI3K with Irs-2 and demonstrate that combined mutation of these tyrosines inhibits glucose uptake and lactate production, two measures of aerobic glycolysis. Irs-2-dependent activation of PI3K regulates the phosphorylation of specific Akt substrates, most notably glycogen synthase kinase 3β (Gsk-3β). Inhibition of Gsk-3β by Irs-2-dependent PI3K signaling promotes glucose uptake and aerobic glycolysis. The regulation of unique subsets of Akt substrates by Irs-1 and Irs-2 may explain their non-redundant roles in mammary tumor biology. Taken together, our study reveals a novel mechanism by which Irs-2 signaling preferentially regulates tumor cell metabolism and adds to our understanding of how this adaptor protein contributes to breast cancer progression. PMID:24811175

  15. /sup 31/P NMR saturation-transfer and /sup 13/C NMR kinetic studies of glycolytic regulation during anaerobic and aerobic glycolysis

    SciTech Connect

    Campbell-Burk, S.L.; den Hollander, J.A.; Alger, J.R.; Shulman, R.G.

    1987-11-17

    /sup 31/P NMR saturation-transfer techniques have been employed in glucose-gown derepressed yeast to determine unidirectional fluxes in the upper part of the Embden-Meyerhof-Parnas pathway. The experiments were performed during anaerobic and aerobic glycolysis by saturating the ATP/sub ..gamma../ resonances and monitoring changes in the phosphomonoester signals from glucose 6-phosphate and fructose 1,6-bisphosphate. These experiments were supplemented with /sup 13/C NMR measurements of glucose utilization rates and /sup 13/C NMR label distribution studies. Combined with data obtained previously from radioisotope measurement, these /sup 31/P and /sup 13/C NMR kinetic studies allowed estimation of the net glycolytic flow in addition to relative flows through phosphofructokinase (PFK) and Fru-1,6-P/sub 2/ase during anaerobic and aerobic glycolysis. The /sup 31/P NMR saturation-transfer results are consistent with previous results obtained from measurements of metabolite levels, radioisotope data, and /sup 13/C NMR studies, providing additional support for in vivo measurement of the flows during glycolysis.

  16. Nifurtimox reduces N-Myc expression and aerobic glycolysis in neuroblastoma

    PubMed Central

    Cabanillas Stanchi, Karin Melanie; Bruchelt, Gernot; Handgretinger, Rupert; Holzer, Ursula

    2015-01-01

    Neuroblastoma is one of the most common solid tumors in childhood and usually accompanied with poor prognosis and rapid tumor progression when diagnosed with amplification of the proto-oncogene N-Myc. The amplification of N-Myc has major influence on the maintenance of aerobic glycolysis, also known as the Warburg effect. This specific switch in the conversion of pyruvate to lactate instead of the conversion of pyruvate to acetyl-coenzyme A even in the presence of oxygen has important benefits for the tumor, e.g. increased production of enzymes and enzyme substrates that are involved in tumor progression, angiogenesis and inhibition of apoptosis. The antiprotozoal drug nifurtimox, which is generally used for the treatment of infections with the parasitic protozoan Trypanosoma cruzi, has been reported to have cytotoxic properties in the therapy of neuroblastoma. However, its action of mechanism has not been described in detail yet. The presented in vitro study on the neuroblastoma cell lines LA-N-1, IMR-32, LS and SK-N-SH shows an increased production of oxidative stress, a reduced lactate dehydrogenase enzyme activity and reduced lactate production after nifurtimox treatment. Furthermore, nifurtimox leads to reduced mRNA and protein levels of the proto-oncogene protein N-Myc. Thus, the current work gives new insights into the effect of nifurtimox on tumor metabolism revealing a shifted glucose metabolism from production of lactate to oxidative phosphorylation and a reduced expression of the major molecular prognostic factor in neuroblastoma N-Myc, presenting nifurtimox as a possible adjuvant therapeutic agent against (high risk) neuroblastoma. PMID:26177922

  17. Metabolomic Analysis Reveals Increased Aerobic Glycolysis and Amino Acid Deficit in a Cellular Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Valbuena, Gabriel N; Rizzardini, Milena; Cimini, Sara; Siskos, Alexandros P; Bendotti, Caterina; Cantoni, Lavinia; Keun, Hector C

    2016-05-01

    Defects in energy metabolism are potential pathogenic mechanisms in amyotrophic lateral sclerosis (ALS), a rapidly fatal disease with no cure. The mechanisms through which this occurs remain elusive and their understanding may prove therapeutically useful. We used metabolomics and stable isotope tracers to examine metabolic changes in a well-characterized cell model of familial ALS, the motor neuronal NSC-34 line stably expressing human wild-type Cu/Zn superoxide dismutase (wtSOD1) or mutant G93A (G93ASOD1). Our findings indicate that wt and G93ASOD1 expression both enhanced glucose metabolism under serum deprivation. However, in wtSOD1 cells, this phenotype increased supply of amino acids for protein and glutathione synthesis, while in G93ASOD1 cells it was associated with death, aerobic glycolysis, and a broad dysregulation of amino acid homeostasis. Aerobic glycolysis was mainly due to induction of pyruvate dehydrogenase kinase 1. Our study thus provides novel insight into the role of deranged energy metabolism as a cause of poor adaptation to stress and a promoter of neural cell damage in the presence of mutant SOD1. Furthermore, the metabolic alterations we report may help explain why mitochondrial dysfunction and impairment of the endoplasmic reticulum stress response are frequently seen in ALS. PMID:25963727

  18. Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis

    PubMed Central

    Harris, Richard A.; Tindale, Lauren; Lone, Asad; Singh, Olivia; Macauley, Shannon L.; Stanley, Molly; Holtzman, David M.; Bartha, Robert

    2016-01-01

    Aerobic glycolysis and lactate production in the brain plays a key role in memory, yet the role of this metabolism in the cognitive decline associated with Alzheimer's disease (AD) remains poorly understood. Here we examined the relationship between cerebral lactate levels and memory performance in an APP/PS1 mouse model of AD, which progressively accumulates amyloid-β. In vivo 1H-magnetic resonance spectroscopy revealed an age-dependent decline in lactate levels within the frontal cortex of control mice, whereas lactate levels remained unaltered in APP/PS1 mice from 3 to 12 months of age. Analysis of hippocampal interstitial fluid by in vivo microdialysis revealed a significant elevation in lactate levels in APP/PS1 mice relative to control mice at 12 months of age. An age-dependent decline in the levels of key aerobic glycolysis enzymes and a concomitant increase in lactate transporter expression was detected in control mice. Increased expression of lactate-producing enzymes correlated with improved memory in control mice. Interestingly, in APP/PS1 mice the opposite effect was detected. In these mice, increased expression of lactate producing enzymes correlated with poorer memory performance. Immunofluorescent staining revealed localization of the aerobic glycolysis enzymes pyruvate dehydrogenase kinase and lactate dehydrogenase A within cortical and hippocampal neurons in control mice, as well as within astrocytes surrounding amyloid plaques in APP/PS1 mice. These observations collectively indicate that production of lactate, via aerobic glycolysis, is beneficial for memory function during normal aging. However, elevated lactate levels in APP/PS1 mice indicate perturbed lactate processing, a factor that may contribute to cognitive decline in AD. SIGNIFICANCE STATEMENT Lactate has recently emerged as a key metabolite necessary for memory consolidation. Lactate is the end product of aerobic glycolysis, a unique form of metabolism that occurs within certain

  19. Inhibition of hexokinase-2 with targeted liposomal 3-bromopyruvate in an ovarian tumor spheroid model of aerobic glycolysis

    PubMed Central

    Gandham, Srujan Kumar; Talekar, Meghna; Singh, Amit; Amiji, Mansoor M

    2015-01-01

    Background The objective of this study was to evaluate the expression levels of glycolytic markers, especially hexokinase-2 (HK2), using a three-dimensional multicellular spheroid model of human ovarian adenocarcinoma (SKOV-3) cells and to develop an epidermal growth factor receptor-targeted liposomal formulation for improving inhibition of HK2 and the cytotoxicity of 3-bromopyruvate (3-BPA). Methods Multicellular SKOV-3 tumor spheroids were developed using the hanging drop method and expression levels of glycolytic markers were examined. Non-targeted and epidermal growth factor receptor-targeted liposomal formulations of 3-BPA were formulated and characterized. Permeability and cellular uptake of the liposomal formulations in three-dimensional SKOV-3 spheroids was evaluated using confocal microscopy. The cytotoxicity and HK2 inhibition potential of solution form of 3-BPA was compared to the corresponding liposomal formulation by using cell proliferation and HK2 enzymatic assays. Results SKOV-3 spheroids were reproducibly developed using the 96-well hanging drop method, with an average size of 900 µm by day 5. HK2 enzyme activity levels under hypoxic conditions were found to be higher than under normoxic conditions (P<0.0001, Student’s t-test, unpaired and two-tailed). Liposomal formulations (both non-targeted and targeted) of 3-BPA showed a more potent inhibitory effect (P<0.001, Student’s t-test, unpaired and two-tailed) at a dose of 50 µM than the aqueous solution form at 3, 6, and 24 hours post administration. Similarly, the cytotoxic activity 3-BPA at various concentrations (10 µM–100 µM) showed that the liposomal formulations had an enhanced cytotoxic effect of 2–5-fold (P<0.0001, Student’s t-test, unpaired and two-tailed) when compared to the aqueous solution form for both 10 µM and 25 µM concentrations. Conclusion SKOV-3 spheroids developed by the hanging drop method can be used as a tumor aerobic glycolysis model for evaluation of therapies

  20. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides

    PubMed Central

    Liu, Wei; Hancock, Chad N.; Fischer, Joseph W.; Harman, Meredith; Phang, James M.

    2015-01-01

    The metabolism of the nonessential amino acid proline contributes to tumor metabolic reprogramming. Previously we showed that MYC increases proline biosynthesis (PB) from glutamine. Here we show MYC increases the expression of the enzymes in PB at both protein and mRNA levels. Blockade of PB decreases tumor cell growth and energy production. Addition of Δ1-pyrroline-5-carboxylate (P5C) or proline reverses the effects of P5C synthase knockdown but not P5C reductases knockdown. Importantly, the reversal effect of proline was blocked by concomitant proline dehydrogenase/oxidase (PRODH/POX) knockdown. These findings suggest that the important regulatory contribution of PB to tumor growth derives from metabolic cycling between proline and P5C rather than product proline or intermediate P5C. We further document the critical role of PB in maintaining pyridine nucleotide levels by connecting the proline cycle to glycolysis and to the oxidative arm of the pentose phosphate pathway. These findings establish a novel function of PB in tumorigenesis, linking the reprogramming of glucose, glutamine and pyridine nucleotides, and may provide a novel target for antitumor therapy. PMID:26598224

  1. Mitochondrial functions of RECQL4 are required for the prevention of aerobic glycolysis-dependent cell invasion.

    PubMed

    Kumari, Jyoti; Hussain, Mansoor; De, Siddharth; Chandra, Suruchika; Modi, Priyanka; Tikoo, Shweta; Singh, Archana; Sagar, Chandrasekhar; Sepuri, Naresh Babu V; Sengupta, Sagar

    2016-04-01

    Germline mutations in RECQL4 helicase are associated with Rothmund-Thomson syndrome, which is characterized by a predisposition to cancer. RECQL4 localizes to the mitochondria, where it acts as an accessory factor during mitochondrial DNA replication. To understand the specific mitochondrial functions of RECQL4, we created isogenic cell lines, in which the mitochondrial localization of the helicase was either retained or abolished. The mitochondrial integrity was affected due to the absence of RECQL4 in mitochondria, leading to a decrease in F1F0-ATP synthase activity. In cells where RECQL4 does not localize to mitochondria, the membrane potential was decreased, whereas ROS levels increased due to the presence of high levels of catalytically inactive SOD2. Inactive SOD2 accumulated owing to diminished SIRT3 activity. Lack of the mitochondrial functions of RECQL4 led to aerobic glycolysis that, in turn, led to an increased invasive capability within these cells. Together, this study demonstrates for the first time that, owing to its mitochondrial functions, the accessory mitochondrial replication helicase RECQL4 prevents the invasive step in the neoplastic transformation process. PMID:26906415

  2. Aerobic Glycolysis in Osteoblasts

    PubMed Central

    Esen, Emel; Long, Fanxin

    2014-01-01

    Osteoblasts, the chief bone-making cells in the body, are a focus of osteoporosis research. Although teriparatite, a synthetic fragment of the human parathyroid hormone (PTH), has been an effective bone anabolic drug, there remains a clinical need for additional therapeutics that safely stimulates osteoblast number and function. Work in the past several decades has provided unprecedented clarity about the roles of growth factors and transcription factors in regulating osteoblast differentiation and activity, but whether these factors may regulate cellular metabolism to influence cell fate and function has been largely unexplored. The past few years have witnessed a resurgence of interest in the cellular metabolism of osteoblasts, with the hope that elucidation of their metabolic profile may open new avenues for developing bone anabolic agents. Here we review the current understanding about glucose metabolism in osteoblasts. PMID:25200872

  3. RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1α-mediated mitochondrial oxidative phosphorylation and glycolysis

    PubMed Central

    Chen, W; Wang, Q; Bai, L; Chen, W; Wang, X; Tellez, C S; Leng, S; Padilla, M T; Nyunoya, T; Belinsky, S A; Lin, Y

    2014-01-01

    Aerobic glycolysis or the Warburg effect contributes to cancer cell proliferation; however, how this glucose metabolism pathway is precisely regulated remains elusive. Here we show that receptor-interacting protein 1 (RIP1), a cell death and survival signaling factor, regulates mitochondrial oxidative phosphorylation and aerobic glycolysis. Loss of RIP1 in lung cancer cells suppressed peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression, impairing mitochondrial oxidative phosphorylation and accelerating glycolysis, resulting in spontaneous DNA damage and p53-mediated cell proliferation inhibition. Thus, although aerobic glycolysis within a certain range favors cancer cell proliferation, excessive glycolysis causes cytostasis. Our data suggest that maintenance of glycolysis by RIP1 is pivotal to cancer cell energy homeostasis and DNA integrity and may be exploited for use in anticancer therapy. PMID:24583643

  4. Changes in the expression of proteins associated with aerobic glycolysis and cell migration are involved in tumorigenic ability of two glioma cell lines

    PubMed Central

    2012-01-01

    Background The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. Results We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. Conclusions Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors. PMID:22943417

  5. In human alloreactive CD4+ T-cells, dichloroacetate inhibits aerobic glycolysis, induces apoptosis and favors differentiation towards the regulatory T-cell subset instead of effector T-cell subsets.

    PubMed

    Eleftheriadis, Theodoros; Sounidaki, Maria; Pissas, Georgios; Antoniadi, Georgia; Liakopoulos, Vassilios; Stefanidis, Ioannis

    2016-04-01

    Although kidney transplantation is the best therapy for end-stage renal disease, rejection remains a concern, and currently available immunosuppressive agents contribute to morbidity and mortality. Thus, novel immunosuppressive drugs are required. Dichloroacetate (DCA) is already used in the treatment of congenital lactic acidosis and characterized by limited toxicity. As DCA inhibits aerobic glycolysis, which is a prerequisite for CD4+ T-cell proliferation and differentiation into effector T-cells, its possible immunosuppressive role in mixed lymphocyte reaction (MLR), a model of alloreactivity, was investigated. Glucose and lactate concentrations were measured in the supernatants, and cell proliferation was assessed immunoenzymatically. CD4+ T‑cells were then isolated from the MLRs and the expression of cleaved caspase‑3, various enzymes involved in glycolysis, and the signature transcription factors of CD4+ T‑cell subsets were evaluated by western blotting. In MLRs, DCA decreased glucose consumption and aerobic glycolysis, while it exerted a negligible effect on cell proliferation. In CD4+ T‑cells, DCA induced apoptosis, and decreased the expression of glucose trasporter‑1, hexokinase II, lactate dehydrogenase‑A and phosphorylated pyruvate dehydrogenase, while it increased total pyruvate dehydrogenase. In addition, DCA increased the expression of transcription factor forkhead box P3, whereas it decreased the expression of T‑box transcription factor TBX21, trans‑acting T-cell-specific transcription factor GATA‑3 and retinoic acid receptor related orphan receptor‑γt. In conclusion, in alloreactive CD4+ T‑cells, DCA inhibits aerobic glycolysis, induces apoptosis and favors differentiation towards the regulatory T‑cell subset. These characteristics render it a promising immunosuppressive agent in the field of transplantation. PMID:26935268

  6. Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis

    PubMed Central

    Dengler, Michael A.; Staiger, Annette M.; Gutekunst, Matthias; Hofmann, Ute; Doszczak, Malgorzata; Scheurich, Peter; Schwab, Matthias; Aulitzky, Walter E.; van der Kuip, Heiko

    2011-01-01

    In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death. During the first 30 hours after imatinib deprivation, Bcr-Abl hyper-activation did not affect proliferation but resulted in cellular swelling, vacuolization, and induction of eIF2α phosphorylation, CHOP expression, as well as alternative splicing of XPB, indicating endoplasmic reticulum stress response. Cell death was dependent on p38 and RIP1 signaling, whereas classical death effectors of ER stress, namely CHOP-BIM were antagonized by concomitant up-regulation of Bcl-xL. Screening of 1,120 compounds for their potential effects on oncogenic stress-induced cell death uncovered that corticosteroids antagonize cell death upon Bcr-Abl hyper-activation by normalizing cellular metabolism. This protective effect is further demonstrated by the finding that corticosteroids rendered lymphocytes permissive to the transforming activity of Bcr-Abl. As corticosteroids are used together with imatinib for treatment of Bcr-Abl positive acute lymphoblastic leukemia these data could have important implications for the design of

  7. Glycolysis Wordsearch

    NASA Astrophysics Data System (ADS)

    Helser, Terry L.

    2001-04-01

    This puzzle embeds 30 names, terms, and acronyms about glycolysis and fermentation in a 13- x 15-letter matrix. A descriptive narrative beside it describes important features of the pathway. All the terms a student needs to find are given there with the first letter followed by underlined spaces to be completed. Thus, the students usually must find the terms in their text to know how to spell them, correctly fill in the blanks in the narrative with the terms, and find and highlight the terms in the letter matrix. When all are found, the 20 unused letters complete a sentence that describes a major function of this central pathway. The puzzle may be used as homework, an extra credit project, or a group project in the classroom in any course where basic metabolism is learned. It disguises as fun the hard work needed to learn the names of the intermediates, enzymes, and cofactors required.

  8. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis.

    PubMed

    Zhu, Ying; Ramos da Silva, Suzane; He, Meilan; Liang, Qiming; Lu, Chun; Feng, Pinghui; Jung, Jae U; Gao, Shou-Jiang

    2016-05-01

    Aerobic glycolysis is essential for supporting the fast growth of a variety of cancers. However, its role in the survival of cancer cells under stress conditions is unclear. We have previously reported an efficient model of gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cellular transformation of rat primary mesenchymal stem cells. KSHV-transformed cells efficiently induce tumors in nude mice with pathological features reminiscent of Kaposi's sarcoma tumors. Here, we report that KSHV promotes cell survival and cellular transformation by suppressing aerobic glycolysis and oxidative phosphorylation under nutrient stress. Specifically, KSHV microRNAs and vFLIP suppress glycolysis by activating the NF-κB pathway to downregulate glucose transporters GLUT1 and GLUT3. While overexpression of the transporters rescues the glycolytic activity, it induces apoptosis and reduces colony formation efficiency in softagar under glucose deprivation. Mechanistically, GLUT1 and GLUT3 inhibit constitutive activation of the AKT and NF-κB pro-survival pathways. Strikingly, GLUT1 and GLUT3 are significantly downregulated in KSHV-infected cells in human KS tumors. Furthermore, we have detected reduced levels of aerobic glycolysis in several KSHV-infected primary effusion lymphoma cell lines compared to a Burkitt's lymphoma cell line BJAB, and KSHV infection of BJAB cells reduced aerobic glycolysis. These results reveal a novel mechanism by which an oncogenic virus regulates a key metabolic pathway to adapt to stress in tumor microenvironment, and illustrate the importance of fine-tuning the metabolic pathways for sustaining the proliferation and survival of cancer cells, particularly under stress conditions. PMID:27187079

  9. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis

    PubMed Central

    Zhu, Ying; Ramos da Silva, Suzane; He, Meilan; Liang, Qiming; Lu, Chun; Feng, Pinghui; Jung, Jae U.; Gao, Shou-Jiang

    2016-01-01

    Aerobic glycolysis is essential for supporting the fast growth of a variety of cancers. However, its role in the survival of cancer cells under stress conditions is unclear. We have previously reported an efficient model of gammaherpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV)-induced cellular transformation of rat primary mesenchymal stem cells. KSHV-transformed cells efficiently induce tumors in nude mice with pathological features reminiscent of Kaposi’s sarcoma tumors. Here, we report that KSHV promotes cell survival and cellular transformation by suppressing aerobic glycolysis and oxidative phosphorylation under nutrient stress. Specifically, KSHV microRNAs and vFLIP suppress glycolysis by activating the NF-κB pathway to downregulate glucose transporters GLUT1 and GLUT3. While overexpression of the transporters rescues the glycolytic activity, it induces apoptosis and reduces colony formation efficiency in softagar under glucose deprivation. Mechanistically, GLUT1 and GLUT3 inhibit constitutive activation of the AKT and NF-κB pro-survival pathways. Strikingly, GLUT1 and GLUT3 are significantly downregulated in KSHV-infected cells in human KS tumors. Furthermore, we have detected reduced levels of aerobic glycolysis in several KSHV-infected primary effusion lymphoma cell lines compared to a Burkitt’s lymphoma cell line BJAB, and KSHV infection of BJAB cells reduced aerobic glycolysis. These results reveal a novel mechanism by which an oncogenic virus regulates a key metabolic pathway to adapt to stress in tumor microenvironment, and illustrate the importance of fine-tuning the metabolic pathways for sustaining the proliferation and survival of cancer cells, particularly under stress conditions. PMID:27187079

  10. Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis.

    PubMed

    Zhang, J; Gao, Q; Zhou, Y; Dier, U; Hempel, N; Hochwald, S N

    2016-04-14

    Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC. PMID:26119934

  11. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells

    PubMed Central

    Shiraishi, Takumi; Verdone, James E.; Huang, Jessie; Kahlert, Ulf D.; Hernandez, James R.; Torga, Gonzalo; Zarif, Jelani C.; Epstein, Tamir; Gatenby, Robert; McCartney, Annemarie; Elisseeff, Jennifer H.; Mooney, Steven M.; An, Steven S.; Pienta, Kenneth J.

    2015-01-01

    The ability of a cancer cell to detach from the primary tumor and move to distant sites is fundamental to a lethal cancer phenotype. Metabolic transformations are associated with highly motile aggressive cellular phenotypes in tumor progression. Here, we report that cancer cell motility requires increased utilization of the glycolytic pathway. Mesenchymal cancer cells exhibited higher aerobic glycolysis compared to epithelial cancer cells while no significant change was observed in mitochondrial ATP production rate. Higher glycolysis was associated with increased rates of cytoskeletal remodeling, greater cell traction forces and faster cell migration, all of which were blocked by inhibition of glycolysis, but not by inhibition of mitochondrial ATP synthesis. Thus, our results demonstrate that cancer cell motility and cytoskeleton rearrangement is energetically dependent on aerobic glycolysis and not oxidative phosphorylation. Mitochondrial derived ATP is insufficient to compensate for inhibition of the glycolytic pathway with regard to cellular motility and CSK rearrangement, implying that localization of ATP derived from glycolytic enzymes near sites of active CSK rearrangement is more important for cell motility than total cellular ATP production rate. These results extend our understanding of cancer cell metabolism, potentially providing a target metabolic pathway associated with aggressive disease. PMID:25426557

  12. Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer.

    PubMed

    Marini, Cecilia; Bianchi, Giovanna; Buschiazzo, Ambra; Ravera, Silvia; Martella, Roberto; Bottoni, Gianluca; Petretto, Andrea; Emionite, Laura; Monteverde, Elena; Capitanio, Selene; Inglese, Elvira; Fabbi, Marina; Bongioanni, Francesca; Garaboldi, Lucia; Bruzzi, Paolo; Orengo, Anna Maria; Raffaghello, Lizzia; Sambuceti, Gianmario

    2016-01-01

    Emerging evidence demonstrates that targeting energy metabolism is a promising strategy to fight cancer. Here we show that combining metformin and short-term starvation markedly impairs metabolism and growth of colon and breast cancer. The impairment in glycolytic flux caused by starvation is enhanced by metformin through its interference with hexokinase II activity, as documented by measurement of 18F-fluorodeoxyglycose uptake. Oxidative phosphorylation is additively compromised by combined treatment: metformin virtually abolishes Complex I function; starvation determines an uncoupled status of OXPHOS and amplifies the activity of respiratory Complexes II and IV thus combining a massive ATP depletion with a significant increase in reactive oxygen species. More importantly, the combined treatment profoundly impairs cancer glucose metabolism and virtually abolishes lesion growth in experimental models of breast and colon carcinoma. Our results strongly suggest that energy metabolism is a promising target to reduce cancer progression. PMID:26794854

  13. Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer

    PubMed Central

    Marini, Cecilia; Bianchi, Giovanna; Buschiazzo, Ambra; Ravera, Silvia; Martella, Roberto; Bottoni, Gianluca; Petretto, Andrea; Emionite, Laura; Monteverde, Elena; Capitanio, Selene; Inglese, Elvira; Fabbi, Marina; Bongioanni, Francesca; Garaboldi, Lucia; Bruzzi, Paolo; Orengo, Anna Maria; Raffaghello, Lizzia; Sambuceti, Gianmario

    2016-01-01

    Emerging evidence demonstrates that targeting energy metabolism is a promising strategy to fight cancer. Here we show that combining metformin and short-term starvation markedly impairs metabolism and growth of colon and breast cancer. The impairment in glycolytic flux caused by starvation is enhanced by metformin through its interference with hexokinase II activity, as documented by measurement of 18F-fluorodeoxyglycose uptake. Oxidative phosphorylation is additively compromised by combined treatment: metformin virtually abolishes Complex I function; starvation determines an uncoupled status of OXPHOS and amplifies the activity of respiratory Complexes II and IV thus combining a massive ATP depletion with a significant increase in reactive oxygen species. More importantly, the combined treatment profoundly impairs cancer glucose metabolism and virtually abolishes lesion growth in experimental models of breast and colon carcinoma. Our results strongly suggest that energy metabolism is a promising target to reduce cancer progression. PMID:26794854

  14. Glycolysis recycling of rigid waste polyurethane foam from refrigerators.

    PubMed

    Zhu, P; Cao, Z B; Chen, Y; Zhang, X J; Qian, G R; Chu, Y L; Zhou, M

    2014-01-01

    Rapid growth of rigid waste polyurethane (WPUR) foam from refrigerators attracts the attention all over the world. In this study, glycolysis was chosen to treat WPUR from scrapped refrigerators collected in Shanghai, China. Glycolysis reagents and catalysts were selected. The results indicated that the glycolysis efficiency of ethylene glycol (EG) was higher than that of diethylene glycol, and the catalytic efficiency of alkali metal salts (NaOH) was more excellent than that of triethanolamine and organic salts of alkali metal (NaAc). When EG was 100%WPUR as a glycolysis reagent and NaOH was 1%WPUR as a catalyst at a constant temperature of 197.85°C for 2 h, the glycolysis product had the highest glycolysis conversion rate. In order to maximize the recycling of WPUR, regenerative Polyurethane was performed by adding 10% distilled mixed polyol, which conformed to the QB/T 26689-2011 requirements. PMID:25176301

  15. Drosophila melanogaster Activating Transcription Factor 4 Regulates Glycolysis During Endoplasmic Reticulum Stress

    PubMed Central

    Lee, Ji Eun; Oney, McKenna; Frizzell, Kimberly; Phadnis, Nitin; Hollien, Julie

    2015-01-01

    Endoplasmic reticulum (ER) stress results from an imbalance between the load of proteins entering the secretory pathway and the ability of the ER to fold and process them. The response to ER stress is mediated by a collection of signaling pathways termed the unfolded protein response, which plays important roles in development and disease. Here we show that in Drosophila melanogaster S2 cells, ER stress induces a coordinated change in the expression of genes involved in carbon metabolism. Genes encoding enzymes that carry out glycolysis were up-regulated, whereas genes encoding proteins in the tricarboxylic acid cycle and respiratory chain complexes were down-regulated. The unfolded protein response transcription factor Atf4 was necessary for the up-regulation of glycolytic enzymes and Lactate dehydrogenase (Ldh). Furthermore, Atf4 binding motifs in promoters for these genes could partially account for their regulation during ER stress. Finally, flies up-regulated Ldh and produced more lactate when subjected to ER stress. Together, these results suggest that Atf4 mediates a shift from a metabolism based on oxidative phosphorylation to one more heavily reliant on glycolysis, reminiscent of aerobic glycolysis or the Warburg effect observed in cancer and other proliferative cells. PMID:25681259

  16. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models.

    PubMed

    Xintaropoulou, Chrysi; Ward, Carol; Wise, Alan; Marston, Hugh; Turnbull, Arran; Langdon, Simon P

    2015-09-22

    Many cancer cells rely on aerobic glycolysis for energy production and targeting of this pathway is a potential strategy to inhibit cancer cell growth. In this study, inhibition of five glycolysis pathway molecules (GLUT1, HKII, PFKFB3, PDHK1 and LDH) using 9 inhibitors (Phloretin, Quercetin, STF31, WZB117, 3PO, 3-bromopyruvate, Dichloroacetate, Oxamic acid, NHI-1) was investigated in panels of breast and ovarian cancer cell line models. All compounds tested blocked glycolysis as indicated by increased extracellular glucose and decreased lactate production and also increased apoptosis. Sensitivity to several inhibitors correlated with the proliferation rate of the cell lines. Seven compounds had IC50 values that were associated with each other consistent with a shared mechanism of action. A synergistic interaction was revealed between STF31 and Oxamic acid when combined with the antidiabetic drug metformin. Sensitivity to glycolysis inhibition was also examined under a range of O2 levels (21% O2, 7% O2, 2% O2 and 0.5% O2) and greater resistance to the inhibitors was found at low oxygen conditions (7% O2, 2% O2 and 0.5% O2) relative to 21% O2 conditions. These results indicate growth of breast and ovarian cancer cell lines is dependent on all the targets examined in the glycolytic pathway with increased sensitivity to the inhibitors under normoxic conditions. PMID:26259240

  17. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models

    PubMed Central

    Xintaropoulou, Chrysi; Ward, Carol; Wise, Alan; Marston, Hugh; Turnbull, Arran; Langdon, Simon P.

    2015-01-01

    Many cancer cells rely on aerobic glycolysis for energy production and targeting of this pathway is a potential strategy to inhibit cancer cell growth. In this study, inhibition of five glycolysis pathway molecules (GLUT1, HKII, PFKFB3, PDHK1 and LDH) using 9 inhibitors (Phloretin, Quercetin, STF31, WZB117, 3PO, 3-bromopyruvate, Dichloroacetate, Oxamic acid, NHI-1) was investigated in panels of breast and ovarian cancer cell line models. All compounds tested blocked glycolysis as indicated by increased extracellular glucose and decreased lactate production and also increased apoptosis. Sensitivity to several inhibitors correlated with the proliferation rate of the cell lines. Seven compounds had IC50 values that were associated with each other consistent with a shared mechanism of action. A synergistic interaction was revealed between STF31 and Oxamic acid when combined with the antidiabetic drug metformin. Sensitivity to glycolysis inhibition was also examined under a range of O2 levels (21% O2, 7% O2, 2% O2 and 0.5% O2) and greater resistance to the inhibitors was found at low oxygen conditions (7% O2, 2% O2 and 0.5% O2) relative to 21% O2 conditions. These results indicate growth of breast and ovarian cancer cell lines is dependent on all the targets examined in the glycolytic pathway with increased sensitivity to the inhibitors under normoxic conditions. PMID:26259240

  18. HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer.

    PubMed

    Mondal, Susmita; Roy, Debarshi; Camacho-Pereira, Juliana; Khurana, Ashwani; Chini, Eduardo; Yang, Lifeng; Baddour, Joelle; Stilles, Katherine; Padmabandu, Seth; Leung, Sam; Kalloger, Steve; Gilks, Blake; Lowe, Val; Dierks, Thomas; Hammond, Edward; Dredge, Keith; Nagrath, Deepak; Shridhar, Viji

    2015-10-20

    Warburg effect has emerged as a potential hallmark of many cancers. However, the molecular mechanisms that led to this metabolic state of aerobic glycolysis, particularly in ovarian cancer (OVCA) have not been completely elucidated. HSulf-1 predominantly functions by limiting the bioavailability of heparan binding growth factors and hence their downstream signaling. Here we report that HSulf-1, a known putative tumor suppressor, is a negative regulator of glycolysis. Silencing of HSulf-1 expression in OV202 cell line increased glucose uptake and lactate production by upregulating glycolytic genes such as Glut1, HKII, LDHA, as well as metabolites. Conversely, HSulf-1 overexpression in TOV21G cells resulted in the down regulation of glycolytic enzymes and reduced glycolytic phenotype, supporting the role of HSulf-1 loss in enhanced aerobic glycolysis. HSulf-1 deficiency mediated glycolytic enhancement also resulted in increased inhibitory phosphorylation of pyruvate dehydrogenase (PDH) thus blocking the entry of glucose flux into TCA cycle. Consistent with this, metabolomic and isotope tracer analysis showed reduced glucose flux into TCA cycle. Moreover, HSulf-1 loss is associated with lower oxygen consumption rate (OCR) and impaired mitochondrial function. Mechanistically, lack of HSulf-1 promotes c-Myc induction through HB-EGF-mediated p-ERK activation. Pharmacological inhibition of c-Myc reduced HB-EGF induced glycolytic enzymes implicating a major role of c-Myc in loss of HSulf-1 mediated altered glycolytic pathway in OVCA. Similarly, PG545 treatment, an agent that binds to heparan binding growth factors and sequesters growth factors away from their ligand also blocked HB-EGF signaling and reduced glucose uptake in vivo in HSulf-1 deficient cells. PMID:26378042

  19. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats

    PubMed Central

    Cox-York, Kimberly A; Sheflin, Amy M; Foster, Michelle T; Gentile, Christopher L; Kahl, Amber; Koch, Lauren G; Britton, Steven L; Weir, Tiffany L

    2015-01-01

    The increased risk for cardiometabolic disease with the onset of menopause is widely studied and likely precipitated by the decline in endogenous estradiol (E2), yet the precise mechanisms are unknown. The gut microbiome is involved in estrogen metabolism and has been linked to metabolic disease, suggesting its potential involvement in the postmenopausal phenotype. Furthermore, menopause-associated risk factors, as well as gut ecology, are altered with exercise. Therefore, we studied microbial changes in an ovariectomized (OVX vs. Sham) rat model of high (HCR) and low (LCR) intrinsic aerobic capacity (n = 8–10/group) in relation to changes in body weight/composition, glucose tolerance, and liver triglycerides (TG). Nine weeks after OVX, HCR rats were moderately protected against regional adipose tissue gain and liver TG accumulation (P < 0.05 for both). Microbial diversity and number of the Bacteroidetes phylum were significantly increased in LCR with OVX, but unchanged in HCR OVX relative to Sham. Plasma short-chain fatty acids (SCFA), produced by bacteria in the gut and recognized as metabolic signaling molecules, were significantly greater in HCR Sham relative to LCR Sham rats (P = 0.05) and were decreased with OVX in both groups. These results suggest that increased aerobic capacity may be protective against menopause-associated cardiometabolic risk and that gut ecology, and production of signaling molecules such as SCFA, may contribute to the mediation. PMID:26265751

  20. Glycolysis in energy metabolism during seizures.

    PubMed

    Yang, Heng; Wu, Jiongxing; Guo, Ren; Peng, Yufen; Zheng, Wen; Liu, Ding; Song, Zhi

    2013-05-15

    Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment. PMID:25206426

  1. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication

    PubMed Central

    Lee, Minjong; Yoon, Jung-Hwan

    2015-01-01

    Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the “reverse Warburg effect”. Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors. PMID:26322173

  2. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases

    PubMed Central

    Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.

    2016-01-01

    Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor

  3. Warburg-like Glycolysis and Lactate Shuttle in Mouse Decidua during Early Pregnancy.

    PubMed

    Zuo, Ru-Juan; Gu, Xiao-Wei; Qi, Qian-Rong; Wang, Tong-Song; Zhao, Xu-Yu; Liu, Ji-Long; Yang, Zeng-Ming

    2015-08-28

    Decidualization is an essential process of maternal endometrial stromal cells to support pregnancy. Although it is known that enhanced glucose influx is critical for decidualization, the underlying mechanism in regulating glucose metabolism in decidua remains insufficiently understood. Here, we demonstrate that aerobic glycolysis-related genes and factors are all substantially induced during decidualization, indicating the existence of Warburg-like glycolysis in decidua. In vitro, progesterone activates hypoxia-inducible factor 1α (Hif1α) and c-Myc through Pi3k-Akt signaling pathway to maintain aerobic glycolysis in decidualizing cells. Knocking down of pyruvate kinase M2 (Pkm2) attenuates the induction of decidual marker gene. Decidual formation in vivo is also impaired by glycolysis inhibitor 3-bromopyruvate. Besides, lactate exporter monocarboxylate transporter 4 (Mct4) is induced in newly formed decidual cells, whereas lactate importer Mct1 and proliferation marker Ki-67 are complementarily located in the surrounding undifferentiated cells, which are supposed to consume lactate for proliferation. Hif1α activation is required for lactate-dependent proliferation of the undifferentiated cells. Inhibition of lactate flux leads to compromised decidualization and decelerated lactate-dependent proliferation. In summary, we reveal that Warburg-like glycolysis and local lactate shuttle are activated in decidua and play important roles for supporting early pregnancy. PMID:26178372

  4. Glycolysis Inhibitor Screening Identifies the Bis-geranylacylphloroglucinol Protonophore Moronone from Moronobea coccinea

    PubMed Central

    Datta, Sandipan; Li, Jun; Mahdi, Fakhri; Jekabsons, Mika B.; Nagle, Dale G.; Zhou, Yu-Dong

    2012-01-01

    Tumor cells exhibit enhanced glucose consumption and lactate production even when supplied with adequate oxygen (a phenomenon known as the Warburg effect, or aerobic glycolysis). Pharmacological inhibition of aerobic glycolysis represents a potential tumor-selective approach that targets the metabolic differences between normal and malignant tissues. Human breast tumor MDA-MB-231 cells were used to develop an assay system to discover natural product-based glycolysis inhibitors. The assay employed was based on hypersensitivity to glycolytic inhibition in tumor cells treated with the mitochondrial electron transport inhibitor rotenone. Under such conditions, ATP supply, and hence cell viability, depends exclusively on glycolysis. This assay system was used to evaluate 10,648 plant and marine organism extracts from the U.S. National Cancer Institute's Open Repository. Bioassay-guided isolation of an active Moronobea coccinea extract yielded the new bis-geranylacylphloroglucinol derivative moronone (1). Compound 1 exhibited enhanced antiproliferative/cytotoxic activity in the presence of rotenone-imposed metabolic stress on tumor cells. Surprisingly, mechanistic studies revealed that 1 did not inhibit glycolysis, but rather functions as a protonophore that dissipates the mitochondrial proton gradient. In the presence of rotenone, tumor cells may be hypersensitive to protonophores due to increased ATP utilization by the ATP synthase. PMID:23245650

  5. Aerobic Capacity Following Long Duration International Spaces Station (ISS) Missions: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.

    2010-01-01

    Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting <15 d, but has not been measured following long-duration missions. The purpose of this study is to measure VO2max and maximum work rate (WRmax) data from astronauts following ISS flights (91 to 188 d). Methods: Five astronauts [3 M, 2 F: 47+/-6 yr, 174+/-6 cm, 71.9+/-10.9 kg (mean +/- SD)] have participated in the study. Subjects performed upright cycle exercise tests to symptom-limited maximum. An initial test was done approx.270 d before flight to establish work rates for subsequent tests. Subsequent tests, conducted approx.45 d before flight and repeated on the first or second day (R+1/2) and at approx.10 d (R+10) following landing, consisted of 3 5 min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W(dot)/min increases. VO2, WR, and heart rate (HR) were measured using the ISS Portable Pulmonary Function System [Damec, Odense, DK]. Descriptive statistics are reported. Results: On R+1/2 mean VO2max decreased compared to preflight (Pre: 2.98+/-0.99, R+1/2: 2.63+/-0.56 L(dot)/min); 4 of 5 subjects demonstrated a loss of > 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.

  6. Anti-cancer agents counteracting tumor glycolysis

    PubMed Central

    Granchi, Carlotta

    2012-01-01

    Can we consider cancer as a “metabolic disease”? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have to deal with increased needs for both energy and biosynthetic intermediates, in order to support their growth and invasiveness. However, their high proliferation rate often generates regions that are not sufficiently oxygenated. Therefore, their carbohydrate metabolism has to rely mostly on a glycolytic process that is uncoupled from oxidative phosphorylation. This metabolic switch, also known as the “Warburg Effect”, constitutes a fundamental adaptation of the tumor cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumor glycolysis may constitute an attractive target for cancer therapy. This approach has often raised concerns that anti-glycolytic agents may cause serious side effects on normal cells. Actually, the key for a selective action against cancer cells can be found in their hyperbolic addiction to glycolysis, which may be exploited to generate new anti-cancer drugs showing minimal toxicity. In fact, there is growing evidence that supports many glycolytic enzymes and transporters as suitable candidate targets for cancer therapy. Herein we review some of the most relevant anti-glycolytic agents that have been investigated so far for the treatment of cancer. PMID:22684868

  7. Flux Control in Glycolysis Varies Across the Tree of Life.

    PubMed

    Orlenko, Alena; Hermansen, Russell A; Liberles, David A

    2016-03-01

    Biochemical thought posits that rate-limiting steps (defined here as points of flux control) are strongly selected as points of pathway regulation and control and are thus expected to be evolutionarily conserved. Conversely, population genetic thought based upon the concepts of mutation-selection-drift balance at the pathway level might suggest variation in flux controlling steps over evolutionary time. Glycolysis, as one of the most conserved and best characterized pathways, was studied to evaluate its evolutionary conservation. The flux controlling step in glycolysis was found to vary over the tree of life. Further, phylogenetic analysis suggested at least 60 events of gene duplication and additional events of putative positive selection that might alter pathway kinetic properties. Together, these results suggest that even with presumed largely negative selection on pathway output on glycolysis, the co-evolutionary process under the hood is dynamic. PMID:26920685

  8. Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis

    PubMed Central

    Doherty, Joanne R.; Yang, Chunying; Scott, Kristen E. N.; Cameron, Michael D.; Fallahi, Mohammad; Li, Weimin; Hall, Mark A.; Amelio, Antonio L.; Mishra, Jitendra K.; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J.; Lu, Yunqi; Dang, Chi. V.; Kumar, K. Ganesh; Butler, Andrew A.; Bannister, Thomas D.; Hooper, Andrea T.; Unsal-Kacmaz, Keziban; Roush, William R.; Cleveland, John L.

    2014-01-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1, and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, and reductions in glucose transport, and in levels of ATP, NADPH and glutathione. Reductions in glutathione then lead to increases in hydrogen peroxide, mitochondrial damage and, ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  9. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing

    PubMed Central

    Tesori, Valentina; Piscaglia, Anna Chiara; Samengo, Daniela; Barba, Marta; Bernardini, Camilla; Scatena, Roberto; Pontoglio, Alessandro; Castellini, Laura; Spelbrink, Johannes N.; Maulucci, Giuseppe; Puglisi, Maria Ausiliatrice; Pani, Giovambattista; Gasbarrini, Antonio

    2015-01-01

    Although the only effective drug against primary hepatocarcinoma, the multikinase inhibitor Sorafenib (SFB) usually fails to eradicate liver cancer. Since SFB targets mitochondria, cell metabolic reprogramming may underlie intrinsic tumor resistance. To characterize cancer cell metabolic response to SFB, we measured oxygen consumption, generation of reactive oxygen species (ROS) and ATP content in rat LCSC (Liver Cancer Stem Cells) -2 cells exposed to the drug. Genome wide analysis of gene expression was performed by Affymetrix technology. SFB cytotoxicity was evaluated by multiple assays in the presence or absence of metabolic inhibitors, or in cells genetically depleted of mitochondria. We found that low concentrations (2.5–5 μM) of SFB had a relatively modest effect on LCSC-2 or 293 T cell growth, but damaged mitochondria and increased intracellular ROS. Gene expression profiling of SFB-treated cells was consistent with a shift toward aerobic glycolysis and, accordingly, SFB cytotoxicity was dramatically increased by glucose withdrawal or the glycolytic inhibitor 2-DG. Under metabolic stress, activation of the AMP dependent Protein Kinase (AMPK), but not ROS blockade, protected cells from death. We conclude that mitochondrial damage and ROS drive cell killing by SFB, while glycolytic cell reprogramming may represent a resistance strategy potentially targetable by combination therapies. PMID:25779766

  10. On the relevance of glycolysis process on brain gliomas.

    PubMed

    Kounelakis, M G; Zervakis, M E; Giakos, G C; Postma, G J; Buydens, L M C; Kotsiakis, X

    2013-01-01

    The proposed analysis considers aspects of both statistical and biological validation of the glycolysis effect on brain gliomas, at both genomic and metabolic level. In particular, two independent datasets are analyzed in parallel, one engaging genomic (Microarray Expression) data and the other metabolomic (Magnetic Resonance Spectroscopy Imaging) data. The aim of this study is twofold. First to show that, apart from the already studied genes (markers), other genes such as those involved in the human cell glycolysis significantly contribute in gliomas discrimination. Second, to demonstrate how the glycolysis process can open new ways towards the design of patient-specific therapeutic protocols. The results of our analysis demonstrate that the combination of genes participating in the glycolytic process (ALDOA, ALDOC, ENO2, GAPDH, HK2, LDHA, LDHB, MDH1, PDHB, PFKM, PGI, PGK1, PGM1 and PKLR) with the already known tumor suppressors (PTEN, Rb, TP53), oncogenes (CDK4, EGFR, PDGF) and HIF-1, enhance the discrimination of low versus high-grade gliomas providing high prediction ability in a cross-validated framework. Following these results and supported by the biological effect of glycolytic genes on cancer cells, we address the study of glycolysis for the development of new treatment protocols. PMID:22614725

  11. Cerebral glycolysis: a century of persistent misunderstanding and misconception.

    PubMed

    Schurr, Avital

    2014-01-01

    Since its discovery in 1780, lactate (lactic acid) has been blamed for almost any illness outcome in which its levels are elevated. Beginning in the mid-1980s, studies on both muscle and brain tissues, have suggested that lactate plays a role in bioenergetics. However, great skepticism and, at times, outright antagonism has been exhibited by many to any perceived role for this monocarboxylate in energy metabolism. The present review attempts to trace the negative attitudes about lactate to the first four or five decades of research on carbohydrate metabolism and its dogma according to which lactate is a useless anaerobic end-product of glycolysis. The main thrust here is the review of dozens of scientific publications, many by the leading scientists of their times, through the first half of the twentieth century. Consequently, it is concluded that there exists a barrier, described by Howard Margolis as "habit of mind," that many scientists find impossible to cross. The term suggests "entrenched responses that ordinarily occur without conscious attention and that, even if noticed, are hard to change." Habit of mind has undoubtedly played a major role in the above mentioned negative attitudes toward lactate. As early as the 1920s, scientists investigating brain carbohydrate metabolism had discovered that lactate can be oxidized by brain tissue preparations, yet their own habit of mind redirected them to believe that such an oxidation is simply a disposal mechanism of this "poisonous" compound. The last section of the review invites the reader to consider a postulated alternative glycolytic pathway in cerebral and, possibly, in most other tissues, where no distinction is being made between aerobic and anaerobic glycolysis; lactate is always the glycolytic end product. Aerobically, lactate is readily shuttled and transported into the mitochondrion, where it is converted to pyruvate via a mitochondrial lactate dehydrogenase (mLDH) and then is entered the tricarboxylic

  12. Cerebral glycolysis: a century of persistent misunderstanding and misconception

    PubMed Central

    Schurr, Avital

    2014-01-01

    Since its discovery in 1780, lactate (lactic acid) has been blamed for almost any illness outcome in which its levels are elevated. Beginning in the mid-1980s, studies on both muscle and brain tissues, have suggested that lactate plays a role in bioenergetics. However, great skepticism and, at times, outright antagonism has been exhibited by many to any perceived role for this monocarboxylate in energy metabolism. The present review attempts to trace the negative attitudes about lactate to the first four or five decades of research on carbohydrate metabolism and its dogma according to which lactate is a useless anaerobic end-product of glycolysis. The main thrust here is the review of dozens of scientific publications, many by the leading scientists of their times, through the first half of the twentieth century. Consequently, it is concluded that there exists a barrier, described by Howard Margolis as “habit of mind,” that many scientists find impossible to cross. The term suggests “entrenched responses that ordinarily occur without conscious attention and that, even if noticed, are hard to change.” Habit of mind has undoubtedly played a major role in the above mentioned negative attitudes toward lactate. As early as the 1920s, scientists investigating brain carbohydrate metabolism had discovered that lactate can be oxidized by brain tissue preparations, yet their own habit of mind redirected them to believe that such an oxidation is simply a disposal mechanism of this “poisonous” compound. The last section of the review invites the reader to consider a postulated alternative glycolytic pathway in cerebral and, possibly, in most other tissues, where no distinction is being made between aerobic and anaerobic glycolysis; lactate is always the glycolytic end product. Aerobically, lactate is readily shuttled and transported into the mitochondrion, where it is converted to pyruvate via a mitochondrial lactate dehydrogenase (mLDH) and then is entered the

  13. Carnosine Inhibits the Proliferation of Human Gastric Cancer SGC-7901 Cells through Both of the Mitochondrial Respiration and Glycolysis Pathways

    PubMed Central

    Shen, Yao; Yang, Jianbo; Li, Juan; Shi, Xiaojie; Ouyang, Li; Tian, Yueyang; Lu, Jianxin

    2014-01-01

    Carnosine, a naturally occurring dipeptide, has been recently demonstrated to possess anti-tumor activity. However, its underlying mechanism is unclear. In this study, we investigated the effect and mechanism of carnosine on the cell viability and proliferation of the cultured human gastric cancer SGC-7901 cells. Carnosine treatment did not induce cell apoptosis or necrosis, but reduced the proliferative capacity of SGC-7901 cells. Seahorse analysis showed SGC-7901 cells cultured with pyruvate have active mitochondria, and depend on mitochondrial oxidative phosphorylation more than glycolysis pathway for generation of ATP. Carnosine markedly decreased the absolute value of mitochondrial ATP-linked respiration, and reduced the maximal oxygen consumption and spare respiratory capacity, which may reduce mitochondrial function correlated with proliferative potential. Simultaneously, carnosine also reduced the extracellular acidification rate and glycolysis of SGC-7901 cells. Our results suggested that carnosine is a potential regulator of energy metabolism of SGC-7901 cells both in the anaerobic and aerobic pathways, and provided a clue for preclinical and clinical evaluation of carnosine for gastric cancer therapy. PMID:25115854

  14. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration.

    PubMed

    Gdynia, Georg; Sauer, Sven W; Kopitz, Jürgen; Fuchs, Dominik; Duglova, Katarina; Ruppert, Thorsten; Miller, Matthias; Pahl, Jens; Cerwenka, Adelheid; Enders, Markus; Mairbäurl, Heimo; Kamiński, Marcin M; Penzel, Roland; Zhang, Christine; Fuller, Jonathan C; Wade, Rebecca C; Benner, Axel; Chang-Claude, Jenny; Brenner, Hermann; Hoffmeister, Michael; Zentgraf, Hanswalter; Schirmacher, Peter; Roth, Wilfried

    2016-01-01

    The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer. PMID:26948869

  15. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration

    PubMed Central

    Gdynia, Georg; Sauer, Sven W.; Kopitz, Jürgen; Fuchs, Dominik; Duglova, Katarina; Ruppert, Thorsten; Miller, Matthias; Pahl, Jens; Cerwenka, Adelheid; Enders, Markus; Mairbäurl, Heimo; Kamiński, Marcin M.; Penzel, Roland; Zhang, Christine; Fuller, Jonathan C.; Wade, Rebecca C.; Benner, Axel; Chang-Claude, Jenny; Brenner, Hermann; Hoffmeister, Michael; Zentgraf, Hanswalter; Schirmacher, Peter; Roth, Wilfried

    2016-01-01

    The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer. PMID:26948869

  16. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis?

    PubMed

    Gillies, Robert J; Gatenby, Robert A

    2007-06-01

    Investigating the causes of increased aerobic glycolysis in tumors (Warburg Effect) has gone in and out of fashion many times since it was first described almost a century ago. The field is currently in ascendance due to two factors. Over a million FDG-PET studies have unequivocally identified increased glucose uptake as a hallmark of metastatic cancer in humans. These observations, combined with new molecular insights with HIF-1alpha and c-myc, have rekindled an interest in this important phenotype. A preponderance of work has been focused on the molecular mechanisms underlying this effect, with the expectation that a mechanistic understanding may lead to novel therapeutic approaches. There is also an implicit assumption that a mechanistic understanding, although fundamentally reductionist, will nonetheless lead to a more profound teleological understanding of the need for altered metabolism in invasive cancers. In this communication, we describe an alternative approach that begins with teleology; i.e. adaptive landscapes and selection pressures that promote emergence of aerobic glycolysis during the somatic evolution of invasive cancer. Mathematical models and empirical observations are used to define the adaptive advantage of aerobic glycolysis that would explain its remarkable prevalence in human cancers. These studies have led to the hypothesis that increased consumption of glucose in metastatic lesions is not used for substantial energy production via Embden-Meyerhoff glycolysis, but rather for production of acid, which gives the cancer cells a competitive advantage for invasion. Alternative hypotheses, wherein the glucose is used for generation of reducing equivalents (NADPH) or anabolic precursors (ribose) are also discussed. PMID:17624581

  17. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response.

    PubMed

    Gill, Kheshwant S; Fernandes, Philana; O'Donovan, Tracey R; McKenna, Sharon L; Doddakula, Kishore K; Power, Derek G; Soden, Declan M; Forde, Patrick F

    2016-08-01

    Increased glycolysis is the main source of energy supply in cancer cells that use this metabolic pathway for ATP generation. Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the "hallmarks of cancer". The immune system can prevent tumour growth by eliminating cancer cells but this editing process ultimately results in poorly immunogenic cells remaining allowing for unchallenged tumour growth. In this review we look at the glycolysis pathway as a target for cancer treatments. We also examine the interplay between the glycolysis modulation and the immune response as an anti-cancer therapy. PMID:27373814

  18. Incomplete and transitory decrease of glycolysis

    PubMed Central

    Schoors, Sandra; Cantelmo, Anna Rita; Georgiadou, Maria; Stapor, Peter; Wang, Xingwu; Quaegebeur, Annelies; Cauwenberghs, Sandra; Wong, Brian W; Bifari, Francesco; Decimo, Ilaria; Schoonjans, Luc; De Bock, Katrien; Dewerchin, Mieke; Carmeliet, Peter

    2014-01-01

    During vessel sprouting, a migratory endothelial tip cell guides the sprout, while proliferating stalk cells elongate the branch. Tip and stalk cell phenotypes are not genetically predetermined fates, but are dynamically interchangeable to ensure that the fittest endothelial cell (EC) leads the vessel sprout. ECs increase glycolysis when forming new blood vessels. Genetic deficiency of the glycolytic activator PFKFB3 in ECs reduces vascular sprouting by impairing migration of tip cells and proliferation of stalk cells. PFKFB3-driven glycolysis promotes the tip cell phenotype during vessel sprouting, since PFKFB3 overexpression overrules the pro-stalk activity of Notch signaling. Furthermore, PFKFB3-deficient ECs cannot compete with wild-type neighbors to form new blood vessels in chimeric mosaic mice. In addition, pharmacological PFKFB3 blockade reduces pathological angiogenesis with modest systemic effects, likely because it decreases glycolysis only partially and transiently. PMID:24335389

  19. BIRC5/Survivin as a target for glycolysis inhibition in high-stage neuroblastoma.

    PubMed

    Hagenbuchner, J; Kiechl-Kohlendorfer, U; Obexer, P; Ausserlechner, M J

    2016-04-21

    Adverse forms of neuroblastoma (NB), a childhood malignancy that develops from immature neuronal progenitor cells frequently carry a gain of chromosome 17q, which leads to overexpression of the antiapoptotic protein BIRC5/Survivin. We have recently shown that high Survivin expression shuts down mitochondrial complex I activity and shifts NB cells from oxidative phosphorylation to aerobic glycolysis, which further increases resistance to cell death induction. This increased glucose consumption sensitized tumor cells to glycolysis inhibitors. Interestingly, in Survivin-overexpressing cells 2-deoxy-d-glucose (2DG) treatment induces re-fusion of mitochondrial networks after 4 h, which coincides with Survivin repression. 2DG selectively acts on Survivin-expressing NB cells and induces autophagic degradation of Survivin via activation of the E3-ubiquitin ligase Parkin, a downstream target of PINK1. Survivin degradation further releases bound Beclin-1, which enhances autophagy and cell death induction. Knockdown of Parkin, however, reduces the sensitivity of Survivin-expressing NB cells to glycolysis inhibition. The selective activity of 2DG treatment on Survivin-overexpressing tumor cells was also confirmed in a xenograft mouse model, which further supports our hypothesis that glycolysis inhibitors might be useful drugs in the treatment of NB. PMID:26148234

  20. Managing for Improved Aerobic Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic deterioration or spoilage of silage is the result of aerobic microorganisms metabolizing components of the silage using oxygen. In the almost 40 years over which these silage conferences have been held, we have come to recognize the typical pattern of aerobic microbial development by which s...

  1. Control of the growth of Microthrix parvicelle by using an aerobic selector--results of pilot and full scale plant operation.

    PubMed

    Lebek, M; Rosenwinkel, K H

    2002-01-01

    A two-stage wastewater treatment plant experiences bulking sludge problems in winter, correlating with Microthixparvicella abundance. Pilot and full-scale studies of the use of an aerobic selector to control M. parvicella had little success, probably resulting from long chain fatty acid retention in foam at the tank surface. Initial pilot studies with reduced foam retention showed better results. PMID:12216674

  2. Polyurethane waste recycling; glycolysis and hydroglycolysis of water-blown foams

    SciTech Connect

    Gerlock, J.; Braslaw, J.; Zinbo, M.

    1984-07-01

    In this paper, glycolysis of toluenediisocyanate based water-blown polyurethane foam has been examined by high performance liquid chromatography and gel permeation chromatography to determine the product distribution. Glycolysis with diethylene glycol (DEG) yields toluenediamine (TDA), TDA mono- and di- DEG carbamates, a series of urea-linked mono- and di- DEG carbamate TDA oligomers, and polyether triol (polyol). The complexity of the product mixture suggests problems in applying simple glycolysis to the recovery of mixed and/or contaminated polyurethane wastes. A simpler product mixture results when water and a base catalyst are added to the glycolysis reaction (hydroglycolysis). Hydroglycolysis yields TDA and polyol as principal products. Data for the rate of the hydroglycolysis reaction are presented in the temperature range of 150 to 190/sup 0/C. These results suggest that hydroglycolysis could be used to recover polyols from mixed and/or contaminated water-blown polyurethane wastes.

  3. Mitochondrial Electron Transport and Glycolysis are coupled in Articular Cartilage

    PubMed Central

    Martin, James A.; Martini, Anne; Molinari, Alexander; Morgan, Walter; Ramalingam, Wendy; Buckwalter, Joseph A.; McKinley, Todd O.

    2012-01-01

    Objective Although the majority of the ATP in chondrocytes is made by glycolysis rather than by oxidative phosphorylation in mitochondria there is evidence to suggest that reactive oxygen species produced by mitochondrial electron transport help to maintain cellular redox balance in favor of glycolysis. The objective of this study was to test this hypothesis by determining if rotenone, which inhibits electron transport and blocks oxidant production inhibits glycolytic ATP synthesis. Design Bovine osteochondral explants were treated with rotenone, an electron transport inhibitor; or oligomycin an ATP synthase inhibitor; or 2-fluoro-2-deoxy-D-glucose, a glycolysis inhibiter; or peroxide, an exogenous oxidant; or mitoquinone, a mitochondria-targeted anti-oxidant. Cartilage extracts were assayed for ATP, NAD+, and NADH, and culture medium was assayed for pyruvate and lactate after 24 hours of treatment. Imaging studies were used to measure superoxide production in cartilage. Results Rotenone and 2-fluoro-2-deoxy-D-glucose caused a significant decline in cartilage ATP (p < 0.001). In contrast, ATP levels were not affected by oligomycin. Peroxide treatment blocked rotenone effects on ATP, while treatment with MitoQ significantly suppressed ATP levels. Rotenone and 2-fluoro-2-deoxy-D-glucose caused a significant decline in pyruvate, but not in lactate production. NADH:NAD+ ratios decreased significantly in both rotenone and 2-fluoro-2-deoxy-D-glucose-treated explants (p < 0.05). Rotenone also significantly reduced superoxide production Conclusions These findings showing a link between glycolysis and electron transport are consistent with previous reports on the critical need for oxidants to support normal chondrocyte metabolism. They suggest a novel role for mitochondria in cartilage homeostasis that is independent of oxidative phosphorylation. PMID:22305999

  4. Regulation of glycolysis during acclimation of scallops (Patinopecten yessoensis Jay) to anaerobiosis.

    PubMed

    Enomoto, T; Nakao, C; Ohyama, H

    2000-09-01

    Some glycolytic metabolites in the adductor muscle were measured after transfer of scallops from aerobic to anaerobic saltwater for 12 h. The level of octopine increased gradually during the initial 3 h incubation, and thereafter the level increased rapidly up to 12 h. The ATP level also did not show any significant change for the initial 3 h, and then decreased rapidly. The fructose 2,6-biphosphate (Fru 2,6-BP) level increased drastically during the initial 3 h incubation, but thereafter the level did not show any significant change up to 12 h. In the short-term effects of anaerobiosis for 90 min, the level of fructose 6-phosphate (Fru 6-P) increased just after transfer to anaerobiosis, and then its level decreased. In contrast, the fructose 1,6-biphosphate (Fru 1,6-BP) level increased greatly, at the time when both glucose 6-phosphate (Glc 6-P) and Fru 6-P decreased. The Fru 2,6-BP level did not any significant change during the initial 15 min incubation, but thereafter the level increased gradually up to 90 min. Scallop 6-phosphofructo 1-kinase (EC 2.7.1.11) (PFK1) was strongly activated by 1 microM Fru 2,6-BP when 0.2 mM Fru 6-P was used as a substrate, but the activity was not affected at 5 mM Fru 6-P. In view of these results, the regulation mechanism of glycolysis is discussed. PMID:11126751

  5. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle.

    PubMed

    Li, Zhongwen; Li, Xin; Wang, Zhenyu; Shen, Qingwu W; Zhang, Dequan

    2016-07-01

    Although exhaustive research has established that preslaughter stress is a major factor contributing to pale, soft, exudative (PSE) meat, questions remain regarding the biochemistry of postmortem glycolysis. In this study, the influence of preslaughter stress on protein acetylation in relationship to glycolysis was studied. The data show that antemortem swimming significantly enhanced glycolysis and the total acetylated proteins in postmortem longissimus dorsi (LD) muscle of mice. Inhibition of protein acetylation by histone acetyltransferase (HAT) inhibitors eliminated stress induced increase in glycolysis. Inversely, antemortem injection of histone deacetylase (HDAC) inhibitors, trichostatin A (TSA) and nicotinamide (NAM), further increased protein acetylation early postmortem and the glycolysis. These data provide new insight into the biochemistry of postmortem glycolysis by showing that protein acetylation regulates glycolysis, which may participate in the regulation of preslaughter stress on glycolysis in postmortem muscle. PMID:26920270

  6. Glycolysis inhibition by palmitate in renal cells cultured in a two-chamber system.

    PubMed

    Bolon, C; Gauthier, C; Simonnet, H

    1997-11-01

    A major shortcoming of renal proximal tubular cells (RPTC) in culture is the gradual modification of their energy metabolism from the oxidative type to the glycolytic type. To test the possible reduction of glycolysis by naturally occurring long-chain fatty acids, RPTC were cultured in a two-chamber system, with albumin-bound palmitate (0.4 mM) added to the basolateral chamber after confluency. Twenty-four hours of contact with palmitate decreased glycolysis by 38% provided that carnitine was present; lactate production was decreased by 38%, and the decrease in glycolysis resulted from a similar decrease of basolateral and apical net uptake of glucose. In contrast to the previously described effect of the nonphysiological oxidative substrate heptanoate, palmitate promoted a long-term decrease in lactate production and sustained excellent cellular growth. After 4 days of contact, decreased glycolysis was maintained even in the absence of carnitine and resulted from a decrease of basolateral uptake only, suggestive of long-term regulation different from the earlier effects. Thus, although cultured RPTC lost their oxidative phenotype, they exhibited a type of regulation (Randle effect) that is found in the oxidative-type but not in the glycolytic-type tissues, therefore unmasking a regulative capacity barely detectable in fresh RPTC. Low PO2 (50 mmHg in the apical chamber) could be a major cause of elevated glycolysis and could hinder the effects of palmitate. PMID:9374661

  7. Efficient utilization of aerobic metabolism helps Tibetan locusts conquer hypoxia

    PubMed Central

    2013-01-01

    Background Responses to hypoxia have been investigated in many species; however, comparative studies between conspecific geographical populations at different altitudes are rare, especially for invertebrates. The migratory locust, Locusta migratoria, is widely distributed around the world, including on the high-altitude Tibetan Plateau (TP) and the low-altitude North China Plain (NP). TP locusts have inhabited Tibetan Plateau for over 34,000 years and thus probably have evolved superior capacity to cope with hypoxia. Results Here we compared the hypoxic responses of TP and NP locusts from morphological, behavioral, and physiological perspectives. We found that TP locusts were more tolerant of extreme hypoxia than NP locusts. To evaluate why TP locusts respond to extreme hypoxia differently from NP locusts, we subjected them to extreme hypoxia and compared their transcriptional responses. We found that the aerobic metabolism was less affected in TP locusts than in NP locusts. RNAi disruption of PDHE1β, an entry gene from glycolysis to TCA cycle, increased the ratio of stupor in TP locusts and decreased the ATP content of TP locusts in hypoxia, confirming that aerobic metabolism is critical for TP locusts to maintain activity in hypoxia. Conclusions Our results indicate that TP and NP locusts have undergone divergence in hypoxia tolerance. These findings also indicate that insects can adapt to hypoxic pressure by modulating basic metabolic processes. PMID:24047108

  8. Glycolysis at the climacteric of bananas.

    PubMed

    Ball, K L; Green, J H; ap Rees, T

    1991-04-10

    This work was carried out to investigate the relative roles of phosphofructokinase and pyrophosphate-fructose-6-phosphate 1-phosphotransferase during the increased glycolysis at the climacteric in ripening bananas (Musa cavendishii Lamb ex Paxton). Fruit were ripened in the dark in a continuous stream of air in the absence of ethylene. CO2 production, the contents of glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate and PPi; and the maximum catalytic activities of pyrophosphate-fructose-6-phosphate 1-phosphotransferase, 6-phosphofructokinase, pyruvate kinase and phosphoenolpyruvate carboxylase were measured over a 12-day period that included the climacteric. Cytosolic fructose-1,6- bisphosphatase could not be detected in extracts of climacteric fruit. The peak of CO2 production was preceded by a threefold rise in phosphofructokinase, and accompanied by falls in fructose 6-phosphate and glucose 6-phosphate, and a rise in fructose 1,6-bisphosphate. No change in pyrophosphate-fructose-6-phosphate 1-phosphotransferase or pyrophosphate was found. It is argued that phosphofructokinase is primarily responsible for the increased entry of fructose 6-phosphate into glycolysis at the climacteric. PMID:1849821

  9. Methylglyoxal, the dark side of glycolysis

    PubMed Central

    Allaman, Igor; Bélanger, Mireille; Magistretti, Pierre J.

    2015-01-01

    Glucose is the main energy substrate for the brain. There is now extensive evidence indicating that the metabolic profile of neural cells with regard to glucose utilization and glycolysis rate is not homogenous, with a marked propensity for glycolytic glucose processing in astrocytes compared to neurons. Methylglyoxal, a highly reactive dicarbonyl compound, is inevitably formed as a by-product of glycolysis. Methylglyoxal is a major cell-permeant precursor of advanced glycation end-products (AGEs), which are associated with several pathologies including diabetes, aging and neurodegenerative diseases. In normal situations, cells are protected against methylglyoxal toxicity by different mechanisms and in particular the glyoxalase system, which represents the most important pathway for the detoxification of methylglyoxal. While the neurotoxic effects of methylglyoxal and AGEs are well characterized, our understanding the glyoxalase system in the brain is more scattered. Considering the high energy requirements (i.e., glucose) of the brain, one should expect that the cerebral glyoxalase system is adequately fitted to handle methylglyoxal toxicity. This review focuses on our actual knowledge on the cellular aspects of the glyoxalase system in brain cells, in particular with regard to its activity in astrocytes and neurons. A main emerging concept is that these two neural cell types have different and energetically adapted glyoxalase defense mechanisms which may serve as protective mechanism against methylglyoxal-induced cellular damage. PMID:25709564

  10. Heterogeneity of glycolysis in cancers and therapeutic opportunities

    PubMed Central

    Warmoes, Marc O.; Locasale, Jason W.

    2014-01-01

    Upregulated glycolysis, both in normoxic and hypoxic environments, is a nearly universal trait of cancer cells. The enormous difference in glucose metabolism offers a target for therapeutic intervention with a potentially low toxicity profile. The past decade has seen a steep rise in the development and clinical assessment of small molecules that target glycolysis. The enzymes in glycolysis have a highly heterogenous nature that allows for the different bioenergetic, biosynthetic, and signaling demands needed for various tissue functions. In cancers, these properties enable them to respond to the variable requirements of cell survival, proliferation and adaptation to nutrient availability. Heterogeneity in glycolysis occurs through the expression of different isoforms, post-translational modifications that affect the kinetic and regulatory properties of the enzyme. In this review we will explore this vast heterogeneity of glycolysis and discuss how this information might be exploited to better target glucose metabolism and offer possibilities for biomarker development. PMID:25093285

  11. Heterogeneity of glycolysis in cancers and therapeutic opportunities.

    PubMed

    Warmoes, Marc O; Locasale, Jason W

    2014-11-01

    Upregulated glycolysis, both in normoxic and hypoxic environments, is a nearly universal trait of cancer cells. The enormous difference in glucose metabolism offers a target for therapeutic intervention with a potentially low toxicity profile. The past decade has seen a steep rise in the development and clinical assessment of small molecules that target glycolysis. The enzymes in glycolysis have a highly heterogeneous nature that allows for the different bioenergetic, biosynthetic, and signaling demands needed for various tissue functions. In cancers, these properties enable them to respond to the variable requirements of cell survival, proliferation and adaptation to nutrient availability. Heterogeneity in glycolysis occurs through the expression of different isoforms, posttranslational modifications that affect the kinetic and regulatory properties of the enzyme. In this review, we will explore this vast heterogeneity of glycolysis and discuss how this information might be exploited to better target glucose metabolism and offer possibilities for biomarker development. PMID:25093285

  12. A modelling study of feedforward activation in human erythrocyte glycolysis.

    PubMed

    Bali, M; Thomas, S R

    2001-03-01

    Though feedforward activation (FA) is a little known principle of control in metabolic networks, there is one well-known example; namely, the activation of pyruvate kinase (PK) by fructose-1,6-biphosphate (FBP) in glycolysis. The effects of this activation on the enzyme's kinetics are well characterised, but its possible role in glycolytic control has not been determined, and, experimentally, there is as yet no direct way of modifying the enzyme to remove just the FBP activation without affecting other aspects of the enzyme's kinetics. Given this limitation, we used a detailed numerical simulation of human erythrocyte glycolysis to simulate the effects of selective removal of the activation of PK by FBP on steady-state metabolite concentrations and on the dynamic response of glycolytic flux to a sudden increase of the cell's demand for ATP. Our modelling results predict that in the absence of FA steady-state levels of metabolites within the activation loop, i.e. from FBP to phosphoenolpyruvate, would be four- to thirteen-fold higher than normal, whereas levels of ATP and metabolites outside the loop, i.e. glucose-6-phosphate, fructose-6-phosphate and pyruvate, would be lower than normal. Existing clinical evidence in a patient with haemolytic anaemia, correlated with a lack of activation of PK by FBP (Paglia D.E., Valentine W.N., Holbrook C.T., Brockway R., Blood (1983) 62 972-979), is consistent with this prediction. In response to changing demand for ATP, the model predicts that the corresponding change of glycolytic flux would entail changes of metabolite concentrations in the absence of FA, but that in its presence the levels of metabolites within the activation loop remain essentially unperturbed. Thus, our results suggest that by stabilising metabolite pools in the face of variable glycolytic flux, FA may serve to avoid perturbations of the oxygen affinity of haemoglobin (sensitive to the levels of 2,3-phosphoglycerate) and of cell osmolality that would

  13. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis.

    PubMed

    Hu, D; Luo, W; Fan, L F; Liu, F L; Gu, J; Deng, H M; Zhang, C; Huang, L H; Feng, Q L

    2016-04-01

    Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis. PMID:26683413

  14. The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma

    PubMed Central

    Levy, Alejandro G.; Akers, Lauren J.; Ghisoli, Maurizio L.; Chen, Zhao; Fang, Wendy; Kannan, Sankaranarayanan; Graham, Timothy; Zeng, Lizhi; Franklin, Anna R.; Huang, Peng; Zweidler-McKay, Patrick A.

    2016-01-01

    Summary Children with high-risk and recurrent neuroblastoma have poor survival rates, and novel therapies are needed. Many cancer cells have been found to preferentially employ the glycolytic pathway for energy generation, even in the presence of oxygen. 3-BrOP is a novel inhibitor of glycolysis, and has demonstrated efficacy against a wide range of tumor types. To determine whether human neuroblastoma cells are susceptible to glycolysis inhibition, we evaluated the role of 3-BrOP in neuroblastoma model systems. Neuroblastoma tumor cell lines demonstrated high rates of lactate accumulation and low rates of oxygen consumption, suggesting a potential susceptibility to inhibitors of glycolysis. In all ten human tested neuroblastoma tumor cell lines, 3-BrOP induced cell death via apoptosis in a dose and time dependent manner. Furthermore, 3-BrOP-induced depletion of ATP levels correlated with decreased neuroblastoma cell viability. In a mouse neuroblastoma xenograft model, glycolysis inhibition with 3-BrOP demonstrated significantly reduced final tumor weight. In neuroblastoma tumor cells, treatment with 3-BrOP induced mTOR activation, and the combination of 3-BrOP and mTOR inhibition with rapamycin demonstrated synergistic efficacy. Based on these results, neuroblastoma tumor cells are sensitive to treatment with inhibitors of glycolysis, and the demonstrated synergy with rapamycin suggests that the combination of glycolysis and mTOR inhibitors represents a novel therapeutic approach for neuroblastoma that warrants further investigation. PMID:20890785

  15. SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells.

    PubMed

    Du, Wei; Amarachintha, Surya; Wilson, Andrew F; Pang, Qishen

    2016-04-01

    Fanconi anemia (FA) is an inherited bone marrow (BM) failure syndrome, presumably resulting from defects in hematopoietic stem cells (HSCs). Normal HSCs depend more on glycolysis than on oxidative phosphorylation (OXPHOS) for energy production. Here, we show that FA HSCs are more sensitive to the respiration inhibitor NaN3 treatment than to glycolytic inhibitor 2-deoxy-d-glucose (2-DG), indicating more dependence on OXPHOS. FA HSCs undergo glycolysis-to-OXPHOS switch in response to oxidative stress through a p53-dependent mechanism. Metabolic stresses induce upregulation of p53 metabolic targets in FA HSCs. Inactivation of p53 in FA HSCs prevents glycolysis-to-OXPHOS switch. Furthermore, p53-deficient FA HSCs are more sensitive to 2-DG-mediated metabolic stress. Finally, oxidative stress-induced glycolysis-to-OXPHOS switch is mediated by synthesis of cytochrome c oxidase 2 (SCO2). These findings demonstrate p53-mediated OXPHOS function as a compensatory alteration in FA HSCs to ensure a functional but mildly impaired energy metabolism and suggest a cautious approach to manipulating p53 signaling in FA. Stem Cells 2016;34:960-971. PMID:26676373

  16. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis

    PubMed Central

    Andrabi, Shaida A.; Umanah, George K. E.; Chang, Calvin; Stevens, Daniel A.; Karuppagounder, Senthilkumar S.; Gagné, Jean-Philippe; Poirier, Guy G.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated “parthanatos” in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD+ and energetic collapse, which have been thought to be caused by the consumption of cellular NAD+ by PARP-1. Here we show that the bioenergetic collapse following PARP-1 activation is not dependent on NAD+ depletion. Instead PARP-1 activation initiates glycolytic defects via PAR-dependent inhibition of hexokinase, which precedes the NAD+ depletion in N-methyl-N-nitroso-N-nitroguanidine (MNNG)-treated cortical neurons. Mitochondrial defects are observed shortly after PARP-1 activation and are mediated largely through defective glycolysis, because supplementation of the mitochondrial substrates pyruvate and glutamine reverse the PARP-1–mediated mitochondrial dysfunction. Depleting neurons of NAD+ with FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, does not alter glycolysis or mitochondrial function. Hexokinase, the first regulatory enzyme to initiate glycolysis by converting glucose to glucose-6-phosphate, contains a strong PAR-binding motif. PAR binds to hexokinase and inhibits hexokinase activity in MNNG-treated cortical neurons. Preventing PAR formation with PAR glycohydrolase prevents the PAR-dependent inhibition of hexokinase. These results indicate that bioenergetic collapse induced by overactivation of PARP-1 is caused by PAR-dependent inhibition of glycolysis through inhibition of hexokinase. PMID:24987120

  17. Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3.

    PubMed

    Bolaños, Juan P

    2013-06-15

    Besides the necessary changes in the expression of cell cycle-related proteins, cancer cells undergo a profound series of metabolic adaptations focused to satisfy their excessive demand for biomass. An essential metabolic transformation of these cells is increased glycolysis, which is currently the focus of anticancer therapies. Several key players have been identified, so far, that adapt glycolysis to allow an increased proliferation in cancer. In this issue of the Biochemical Journal, Novellasdemunt and colleagues elegantly identify a novel mechanism by which MK2 [MAPK (mitogen-activated protein kinase)-activated protein kinase 2], a key component of the MAPK pathway, up-regulates glycolysis in response to stress in cancer cells. The authors found that, by phosphorylating specific substrate residues, MK2 promotes both increased the gene transcription and allosteric activation of PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), a key glycolysis-promoting enzyme. These results reveal a novel pathway through which MK2 co-ordinates metabolic adaptation to cell proliferation in cancer and highlight PFKFB3 as a potential therapeutic target in this devastating disease. PMID:23725459

  18. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?

    PubMed Central

    du Plessis, Stefan S; Agarwal, Ashok; Mohanty, Gayatri; van der Linde, Michelle

    2015-01-01

    Spermatozoa are highly specialized cells. Adenosine triphosphate (ATP), which provides the energy for supporting the key functions of the spermatozoa, is formed by 2 metabolic pathways, namely glycolysis and oxidative phosphorylation (OXPHOS). It is produced in the mitochondria through OXPHOS as well as in the head and principal piece of the flagellum through glycolysis. However, there is a great discrepancy as to which method of ATP production is primarily utilized by the spermatozoa for successful fertilization. Mitochondrial respiration is considered to be a more efficient metabolic process for ATP synthesis in comparison to glycolysis. However, studies have shown that the diffusion potential of ATP from the mitochondria to the distal end of the flagellum is not sufficient to support sperm motility, suggesting that glycolysis in the tail region is the preferred pathway for energy production. It is suggested by many investigators that although glycolysis forms the major source of ATP along the flagellum, energy required for sperm motility is mainly produced during mitochondrial respiration. Nevertheless, some studies have shown that when glycolysis is inhibited, proper functioning and motility of spermatozoa remains intact although it is unclear whether such motility can be sustained for prolonged periods of time, or is sufficiently vigorous to achieve optimal fertilization. The purpose of this article is to provide an overview of mammalian sperm energy metabolism and identify the preferred metabolic pathway for ATP generation which forms the basis of energy production in human spermatozoa during fertilization. PMID:25475660

  19. Dichloroacetate blocks aerobic glycolytic adaptation to attenuated measles virus and promotes viral replication leading to enhanced oncolysis in glioblastoma.

    PubMed

    Li, Chunyan; Meng, Gang; Su, Lei; Chen, Aiping; Xia, Mao; Xu, Chun; Yu, Decai; Jiang, Aiqin; Wei, Jiwu

    2015-01-30

    Targeting reprogrammed energy metabolism such as aerobic glycolysis is a potential strategy for cancer treatment. However, tumors exhibiting low-rate glycolysis or metabolic heterogeneity might be resistant to such treatment. We hypothesized that a therapeutic modality that drove cancer cells to high-rate glycolysis might sensitize cancer cells to interference directed against metabolic flux. In this study, we found that attenuated oncolytic measles virus Edmonston strain (MV-Edm) caused glioblastoma cells to shift to high-rate aerobic glycolysis; this adaptation was blocked by dichloroacetate (DCA), an inhibitor of glycolysis, leading to profound cell death of cancer cells but not of normal cells. DCA enhanced viral replication by mitigating mitochondrial antiviral signaling protein (MAVS)-mediated innate immune responses. In a subcutaneous glioblastoma (GBM) xenograft mouse model, low-dose MV-Edm and DCA significantly inhibited tumor growth in vivo. We found that DCA impaired glycolysis (blocking bioenergetic generation) and enhanced viral replication (increasing bioenergetic consumption), which, in combination, accelerated bioenergetic exhaustion leading to necrotic cell death. Taken together, oncolytic MV-Edm sensitized cancer cells to DCA, and in parallel, DCA promoted viral replication, thus, improving oncolysis. This novel therapeutic approach should be readily incorporated into clinical trials. PMID:25575816

  20. Importance of glycolysis and oxidative phosphorylation in advanced melanoma

    PubMed Central

    2012-01-01

    Serum lactate dehydrogenase (LDH) is a prognostic factor for patients with stage IV melanoma. To gain insights into the biology underlying this prognostic factor, we analyzed total serum LDH, serum LDH isoenzymes, and serum lactate in up to 49 patients with metastatic melanoma. Our data demonstrate that high serum LDH is associated with a significant increase in LDH isoenzymes 3 and 4, and a decrease in LDH isoenzymes 1 and 2. Since LDH isoenzymes play a role in both glycolysis and oxidative phosphorylation (OXPHOS), we subsequently determined using tissue microarray (TMA) analysis that the levels of proteins associated with mitochondrial function, lactate metabolism, and regulators of glycolysis were all elevated in advanced melanomas compared with nevic melanocytes. To investigate whether in advanced melanoma, the glycolysis and OXPHOS pathways might be linked, we determined expression of the monocarboxylate transporters (MCT) 1 and 4. Analysis of a nevus-to-melanoma progression TMA revealed that MCT4, and to a lesser extend MCT1, were elevated with progression to advanced melanoma. Further analysis of human melanoma specimens using the Seahorse XF24 extracellular flux analyzer indicated that metastatic melanoma tumors derived a large fraction of energy from OXPHOS. Taken together, these findings suggest that in stage IV melanomas with normal serum LDH, glycolysis and OXPHOS may provide metabolic symbiosis within the same tumor, whereas in stage IV melanomas with high serum LDH glycolysis is the principle source of energy. PMID:23043612

  1. The lncRNA MALAT1, acting through HIF-1α stabilization, enhances arsenite-induced glycolysis in human hepatic L-02 cells.

    PubMed

    Luo, Fei; Liu, Xinlu; Ling, Min; Lu, Lu; Shi, Le; Lu, Xiaolin; Li, Jun; Zhang, Aihua; Liu, Qizhan

    2016-09-01

    Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite, a well-established human carcinogen, is unknown. Long non-coding RNAs (lncRNAs) act as regulators in various cancers, but how lncRNAs regulate glucose metabolism remains largely unexplored. We have found that, in human hepatic epithelial (L-02) cells, arsenite increases lactate production; glucose consumption; and expression of glycolysis-related genes, including HK-2, Eno-1, and Glut-4. In L-02 cells exposed to arsenite, the lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and hypoxia inducible factors (HIFs)-α, the transcriptional regulators of cellular response to hypoxia, are over-expressed. In addition, HIF-1α, not HIF-2α, is involved in arsenite-induced glycolysis, and MALAT1 enhances arsenite-induced glycolysis. Although MALAT1 regulates HIF-α and promotes arsenite-induced glycolysis, MALAT1 promotes glycolysis through HIF-1α, not HIF-2α. Moreover, arsenite-increased MALAT1 enhances the disassociation of Von Hippel-Lindau (VHL) tumor suppressor from HIF-1α, alleviating VHL-mediated ubiquitination of HIF-1α, which causes accumulation of HIF-1α. In sum, these findings indicate that MALAT1, acting through HIF-1α stabilization, is a mediator that enhances glycolysis induced by arsenite. These results provide a link between the induction of lncRNAs and the glycolysis in cells exposed to arsenite, and thus establish a previously unknown mechanism for arsenite-induced hepatotoxicity. PMID:27287256

  2. ADAM17 promotes proliferation of collecting duct kidney epithelial cells through ERK activation and increased glycolysis in polycystic kidney disease.

    PubMed

    Beck Gooz, Monika; Maldonado, Eduardo N; Dang, Yujing; Amria, May Y; Higashiyama, Shigeki; Abboud, Hanna E; Lemasters, John J; Bell, P Darwin

    2014-09-01

    Polycystic kidney disease (PKD) is a common genetic disorder leading to cyst formation in the kidneys and other organs that ultimately results in kidney failure and death. Currently, there is no therapy for slowing down or stopping the progression of PKD. In this study, we identified the disintegrin metalloenzyme 17 (ADAM17) as a key regulator of cell proliferation in kidney tissues of conditional knockout Ift88(-/-) mice and collecting duct epithelial cells from Ift88°(rpk) mice, animal models of autosomal recessive polycystic kidney disease (ARPKD). Using Western blotting, an enzyme activity assay, and a growth factor-shedding assay in the presence or absence of the specific ADAM17 inhibitor TMI-005, we show that increased expression and activation of ADAM17 in the cystic kidney and in collecting duct epithelial cells originating from the Ift88°(rpk) mice (designated as PKD cells) lead to constitutive shedding of several growth factors, including heparin-binding EGF-like growth factor (HB-EGF), amphiregulin, and transforming growth factor-α (TGF-α). Increased growth factor shedding induces activation of the EGFR/MAPK/ERK pathway and maintains higher cell proliferation rate in PKD cells compared with control cells. PKD cells also displayed increased lactate formation and extracellular acidification indicative of aerobic glycolysis (Warburg effect), which was blocked by ADAM17 inhibition. We propose that ADAM17 is a key promoter of cellular proliferation in PKD cells by activating the EGFR/ERK axis and a proproliferative glycolytic phenotype. PMID:24899059

  3. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  4. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia.

    PubMed

    Xu, Yang; Chaudhury, Arindam; Zhang, Ming; Savoldo, Barbara; Metelitsa, Leonid S; Rodgers, John; Yustein, Jason T; Neilson, Joel R; Dotti, Gianpietro

    2016-07-01

    Hypoxia occurs in many pathological conditions, including chronic inflammation and tumors, and is considered to be an inhibitor of T cell function. However, robust T cell responses occur at many hypoxic inflammatory sites, suggesting that functions of some subsets are stimulated under low oxygen conditions. Here, we investigated how hypoxic conditions influence human T cell functions and found that, in contrast to naive and central memory T cells (TN and TCM), hypoxia enhances the proliferation, viability, and cytotoxic action of effector memory T cells (TEM). Enhanced TEM expansion in hypoxia corresponded to high hypoxia-inducible factor 1α (HIF1α) expression and glycolytic activity compared with that observed in TN and TCM. We determined that the glycolytic enzyme GAPDH negatively regulates HIF1A expression by binding to adenylate-uridylate-rich elements in the 3'-UTR region of HIF1A mRNA in glycolytically inactive TN and TCM. Conversely, active glycolysis with decreased GAPDH availability in TEM resulted in elevated HIF1α expression. Furthermore, GAPDH overexpression reduced HIF1α expression and impaired proliferation and survival of T cells in hypoxia, indicating that high glycolytic metabolism drives increases in HIF1α to enhance TEM function during hypoxia. This work demonstrates that glycolytic metabolism regulates the translation of HIF1A to determine T cell responses to hypoxia and implicates GAPDH as a potential mechanism for controlling T cell function in peripheral tissue. PMID:27294526

  5. Long noncoding RNA ceruloplasmin promotes cancer growth by altering glycolysis

    PubMed Central

    Rupaimoole, Rajesha; Lee, Jaehyuk; Haemmerle, Monika; Ling, Hui; Previs, Rebecca A.; Pradeep, Sunila; Wu, Sherry Y.; Ivan, Cristina; Ferracin, Manuela; Dennison, Jennifer B.; Zacharias Millward, Niki M.; Nagaraja, Archana S.; Gharpure, Kshipra M.; McGuire, Michael; Sam, Nidhin; Armaiz-Pena, Guillermo N.; Sadaoui, Nouara C.; Rodriguez-Aguayo, Cristian; Calin, George A.; Drapkin, Ronny I.; Kovacs, Jeffery; Mills, Gordon B.; Zhang, Wei; Lopez-Berestein, Gabriel; Bhattacharya, Pratip K.; Sood, Anil K.

    2015-01-01

    SUMMARY Long noncoding RNAs (lncRNAs) significantly influence the development and regulation of genome expression in cells. Here, we demonstrate the role of lncRNA ceruloplasmin (NRCP) in cancer metabolism and elucidate functional effects leading to increased tumor progression. NRCP was highly upregulated in ovarian tumors and knockdown of NRCP resulted in significantly increased apoptosis, decreased cell proliferation, and decreased glycolysis compared with control cancer cells. In an orthotopic mouse model of ovarian cancer, siNRCP delivered via a liposomal carrier significantly reduced tumor growth compared with control treatment. We identified NRCP as an intermediate binding partner between STAT1 and RNA polymerase II, leading to increased expression of downstream target genes such as glucose-6-phosphate isomerase. Collectively, we report a unrecognized role of the lncRNA NRCP in modulating cancer metabolism. As demonstrated, DOPC nanoparticle-incorporated siRNA-mediated silencing of this lncRNA in vivo provides therapeutic avenue towards modulating lncRNAs in cancer. PMID:26686630

  6. Long Noncoding RNA Ceruloplasmin Promotes Cancer Growth by Altering Glycolysis.

    PubMed

    Rupaimoole, Rajesha; Lee, Jaehyuk; Haemmerle, Monika; Ling, Hui; Previs, Rebecca A; Pradeep, Sunila; Wu, Sherry Y; Ivan, Cristina; Ferracin, Manuela; Dennison, Jennifer B; Millward, Niki M Zacharias; Nagaraja, Archana S; Gharpure, Kshipra M; McGuire, Michael; Sam, Nidhin; Armaiz-Pena, Guillermo N; Sadaoui, Nouara C; Rodriguez-Aguayo, Cristian; Calin, George A; Drapkin, Ronny I; Kovacs, Jeffery; Mills, Gordon B; Zhang, Wei; Lopez-Berestein, Gabriel; Bhattacharya, Pratip K; Sood, Anil K

    2015-12-22

    Long noncoding RNAs (lncRNAs) significantly influence the development and regulation of genome expression in cells. Here, we demonstrate the role of lncRNA ceruloplasmin (NRCP) in cancer metabolism and elucidate functional effects leading to increased tumor progression. NRCP was highly upregulated in ovarian tumors, and knockdown of NRCP resulted in significantly increased apoptosis, decreased cell proliferation, and decreased glycolysis compared with control cancer cells. In an orthotopic mouse model of ovarian cancer, siNRCP delivered via a liposomal carrier significantly reduced tumor growth compared with control treatment. We identified NRCP as an intermediate binding partner between STAT1 and RNA polymerase II, leading to increased expression of downstream target genes such as glucose-6-phosphate isomerase. Collectively, we report a previously unrecognized role of the lncRNA NRCP in modulating cancer metabolism. As demonstrated, DOPC nanoparticle-incorporated siRNA-mediated silencing of this lncRNA in vivo provides therapeutic avenue toward modulating lncRNAs in cancer. PMID:26686630

  7. Phosphoglycerate Mutase 1 Coordinates Glycolysis and Biosynthesis to Promote Tumor Growth

    SciTech Connect

    Hitosugi, Taro; Zhou, Lu; Elf, Shannon; Fan, Jun; Kang, Hee-Bum; Seo, Jae Ho; Shan, Changliang; Dai, Qing; Zhang, Liang; Xie, Jianxin; Gu, Ting-Lei; Jin, Peng; Alečković, Masa; LeRoy, Gary; Kang, Yibin; Sudderth, Jessica A.; DeBerardinis, Ralph J.; Luan, Chi-Hao; Chen, Georgia Z.; Muller, Susan; Shin, Dong M.; Owonikoko, Taofeek K.; Lonial, Sagar; Arellano, Martha L.; Khoury, Hanna J.; Khuri, Fadlo R.; Lee, Benjamin H.; Ye, Keqiang; Boggon, Titus J.; Kang, Sumin; He, Chuan; Chen, Jing

    2012-11-12

    It is unclear how cancer cells coordinate glycolysis and biosynthesis to support rapidly growing tumors. We found that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), commonly upregulated in human cancers due to loss of TP53, contributes to biosynthesis regulation partially by controlling intracellular levels of its substrate, 3-phosphoglycerate (3-PG), and product, 2-phosphoglycerate (2-PG). 3-PG binds to and inhibits 6-phosphogluconate dehydrogenase in the oxidative pentose phosphate pathway (PPP), while 2-PG activates 3-phosphoglycerate dehydrogenase to provide feedback control of 3-PG levels. Inhibition of PGAM1 by shRNA or a small molecule inhibitor PGMI-004A results in increased 3-PG and decreased 2-PG levels in cancer cells, leading to significantly decreased glycolysis, PPP flux and biosynthesis, as well as attenuated cell proliferation and tumor growth.

  8. Lower glycolysis carries a higher flux than any biochemically possible alternative

    PubMed Central

    Court, Steven J.; Waclaw, Bartlomiej; Allen, Rosalind J.

    2015-01-01

    The universality of many pathways of core metabolism suggests a strong role for evolutionary selection, but it remains unclear whether existing pathways have been selected from a large or small set of biochemical possibilities. To address this question, we construct in silico all possible biochemically feasible alternatives to the trunk pathway of glycolysis and gluconeogenesis, one of the most highly conserved pathways in metabolism. We show that, even though a large number of alternative pathways exist, the alternatives carry lower flux than the real pathway under typical physiological conditions. We also find that if physiological conditions were different, different pathways could outperform those found in nature. Together, our results demonstrate how thermodynamic and biophysical constraints restrict the biochemical alternatives that are open to evolution, and suggest that the existing trunk pathway of glycolysis and gluconeogenesis may represent a maximal flux solution. PMID:26416228

  9. Lower glycolysis carries a higher flux than any biochemically possible alternative.

    PubMed

    Court, Steven J; Waclaw, Bartlomiej; Allen, Rosalind J

    2015-01-01

    The universality of many pathways of core metabolism suggests a strong role for evolutionary selection, but it remains unclear whether existing pathways have been selected from a large or small set of biochemical possibilities. To address this question, we construct in silico all possible biochemically feasible alternatives to the trunk pathway of glycolysis and gluconeogenesis, one of the most highly conserved pathways in metabolism. We show that, even though a large number of alternative pathways exist, the alternatives carry lower flux than the real pathway under typical physiological conditions. We also find that if physiological conditions were different, different pathways could outperform those found in nature. Together, our results demonstrate how thermodynamic and biophysical constraints restrict the biochemical alternatives that are open to evolution, and suggest that the existing trunk pathway of glycolysis and gluconeogenesis may represent a maximal flux solution. PMID:26416228

  10. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth

    PubMed Central

    Hitosugi, Taro; Zhou, Lu; Elf, Shannon; Fan, Jun; Kang, Hee-Bum; Seo, Jae Ho; Shan, Changliang; Dai, Qing; Zhang, Liang; Xie, Jianxin; Gu, Ting-Lei; Jin, Peng; Aleckovic, Masa; LeRoy, Gary; Kang, Yibin; Sudderth, Jessica A.; DeBerardinis, Ralph J.; Luan, Chi-Hao; Chen, Georgia Z.; Muller, Susan; Shin, Dong M.; Owonikoko, Taofeek K.; Lonial, Sagar; Arellano, Martha L.; Khoury, Hanna J.; Khuri, Fadlo R.; Lee, Benjamin H.; Ye, Keqiang; Boggon, Titus J.; Kang, Sumin; He, Chuan; Chen, Jing

    2012-01-01

    SUMMARY It remains unclear how cancer cells coordinate glycolysis and biosynthesis to support rapidly growing tumors. We found that glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), commonly upregulated in human cancers due to loss of TP53, contributes to biosynthesis regulation in part by controlling intracellular levels of its substrate 3-phosphoglycerate (3-PG) and product 2-phosphoglycerate (2-PG). 3-PG binds to and inhibits 6-phosphogluconate dehydrogenase in the oxidative pentose phosphate pathway (PPP), while 2-PG activates 3-phosphoglycerate dehydrogenase to provide feedback control of 3-PG levels. Inhibition of PGAM1 by shRNA or a small molecule inhibitor PGMI-004A results in increased 3-PG and decreased 2-PG levels in cancer cells, leading to significantly decreased glycolysis, PPP flux and biosynthesis, as well as attenuated cell proliferation and tumor growth. PMID:23153533

  11. Steady-state hydrogen peroxide induces glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Deng, Xin; Liang, Haihua; Ulanovskaya, Olesya A; Ji, Quanjiang; Zhou, Tianhong; Sun, Fei; Lu, Zhike; Hutchison, Alan L; Lan, Lefu; Wu, Min; Cravatt, Benjamin F; He, Chuan

    2014-07-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from human pathogens Staphylococcus aureus and Pseudomonas aeruginosa can be readily inhibited by reactive oxygen species (ROS)-mediated direct oxidation of their catalytic active cysteines. Because of the rapid degradation of H2O2 by bacterial catalase, only steady-state but not one-dose treatment with H2O2 rapidly induces glycolysis and the pentose phosphate pathway (PPP). We conducted transcriptome sequencing (RNA-seq) analyses to globally profile the bacterial transcriptomes in response to a steady level of H2O2, which revealed profound transcriptional changes, including the induced expression of glycolytic genes in both bacteria. Our results revealed that the inactivation of GAPDH by H2O2 induces metabolic levels of glycolysis and the PPP; the elevated levels of fructose 1,6-biphosphate (FBP) and 2-keto-3-deoxy-6-phosphogluconate (KDPG) lead to dissociation of their corresponding glycolytic repressors (GapR and HexR, respectively) from their cognate promoters, thus resulting in derepression of the glycolytic genes to overcome H2O2-stalled glycolysis in S. aureus and P. aeruginosa, respectively. Both GapR and HexR may directly sense oxidative stresses, such as menadione. PMID:24769698

  12. Steady-State Hydrogen Peroxide Induces Glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Deng, Xin; Liang, Haihua; Ulanovskaya, Olesya A.; Ji, Quanjiang; Zhou, Tianhong; Sun, Fei; Lu, Zhike; Hutchison, Alan L.; Lan, Lefu; Wu, Min; Cravatt, Benjamin F.

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from human pathogens Staphylococcus aureus and Pseudomonas aeruginosa can be readily inhibited by reactive oxygen species (ROS)-mediated direct oxidation of their catalytic active cysteines. Because of the rapid degradation of H2O2 by bacterial catalase, only steady-state but not one-dose treatment with H2O2 rapidly induces glycolysis and the pentose phosphate pathway (PPP). We conducted transcriptome sequencing (RNA-seq) analyses to globally profile the bacterial transcriptomes in response to a steady level of H2O2, which revealed profound transcriptional changes, including the induced expression of glycolytic genes in both bacteria. Our results revealed that the inactivation of GAPDH by H2O2 induces metabolic levels of glycolysis and the PPP; the elevated levels of fructose 1,6-biphosphate (FBP) and 2-keto-3-deoxy-6-phosphogluconate (KDPG) lead to dissociation of their corresponding glycolytic repressors (GapR and HexR, respectively) from their cognate promoters, thus resulting in derepression of the glycolytic genes to overcome H2O2-stalled glycolysis in S. aureus and P. aeruginosa, respectively. Both GapR and HexR may directly sense oxidative stresses, such as menadione. PMID:24769698

  13. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells

    PubMed Central

    Zeng, Ling; Zhou, Hai-Yun; Tang, Na-Na; Zhang, Wei-Feng; He, Gui-Jun; Hao, Bo; Feng, Ya-Dong; Zhu, Hong

    2016-01-01

    AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B (PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, mRNA and activity levels of hypoxia inducible factor-1 alpha (HIF-1α), glucose transporter 1, hexokinase-II, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting siRNA to assess impact of the high expression of HIF-1α on glycolysis. RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymes and the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions. CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells. PMID:27239113

  14. Tight Coupling of Na+/K+-ATPase with Glycolysis Demonstrated in Permeabilized Rat Cardiomyocytes

    PubMed Central

    Sepp, Mervi; Sokolova, Niina; Jugai, Svetlana; Mandel, Merle; Peterson, Pearu; Vendelin, Marko

    2014-01-01

    The effective integrated organization of processes in cardiac cells is achieved, in part, by the functional compartmentation of energy transfer processes. Earlier, using permeabilized cardiomyocytes, we demonstrated the existence of tight coupling between some of cardiomyocyte ATPases and glycolysis in rat. In this work, we studied contribution of two membrane ATPases and whether they are coupled to glycolysis - sarcoplasmic reticulum Ca2+ ATPase (SERCA) and plasmalemma Na+/K+-ATPase (NKA). While SERCA activity was minor in this preparation in the absence of calcium, major role of NKA was revealed accounting to ∼30% of the total ATPase activity which demonstrates that permeabilized cell preparation can be used to study this pump. To elucidate the contribution of NKA in the pool of ATPases, a series of kinetic measurements was performed in cells where NKA had been inhibited by 2 mM ouabain. In these cells, we recorded: ADP- and ATP-kinetics of respiration, competition for ADP between mitochondria and pyruvate kinase (PK), ADP-kinetics of endogenous PK, and ATP-kinetics of total ATPases. The experimental data was analyzed using a series of mathematical models with varying compartmentation levels. The results show that NKA is tightly coupled to glycolysis with undetectable flux of ATP between mitochondria and NKA. Such tight coupling of NKA to PK is in line with its increased importance in the pathological states of the heart when the substrate preference shifts to glucose. PMID:24932585

  15. Small Ubiquitin-related Modifier (SUMO)-1 Promotes Glycolysis in Hypoxia*

    PubMed Central

    Agbor, Terence A.; Cheong, Alex; Comerford, Katrina M.; Scholz, Carsten C.; Bruning, Ulrike; Clarke, Ambrose; Cummins, Eoin P.; Cagney, Gerard; Taylor, Cormac T.

    2011-01-01

    Under conditions of hypoxia, most eukaryotic cells undergo a shift in metabolic strategy, which involves increased flux through the glycolytic pathway. Although this is critical for bioenergetic homeostasis, the underlying mechanisms have remained incompletely understood. Here, we report that the induction of hypoxia-induced glycolysis is retained in cells when gene transcription or protein synthesis are inhibited suggesting the involvement of additional post-translational mechanisms. Post-translational protein modification by the small ubiquitin related modifier-1 (SUMO-1) is induced in hypoxia and mass spectrometric analysis using yeast cells expressing tap-tagged Smt3 (the yeast homolog of mammalian SUMO) revealed hypoxia-dependent modification of a number of key glycolytic enzymes. Overexpression of SUMO-1 in mammalian cancer cells resulted in increased hypoxia-induced glycolysis and resistance to hypoxia-dependent ATP depletion. Supporting this, non-transformed cells also demonstrated increased glucose uptake upon SUMO-1 overexpression. Conversely, cells overexpressing the de-SUMOylating enzyme SENP-2 failed to demonstrate hypoxia-induced glycolysis. SUMO-1 overexpressing cells demonstrated focal clustering of glycolytic enzymes in response to hypoxia leading us to hypothesize a role for SUMOylation in promoting spatial re-organization of the glycolytic pathway. In summary, we hypothesize that SUMO modification of key metabolic enzymes plays an important role in shifting cellular metabolic strategies toward increased flux through the glycolytic pathway during periods of hypoxic stress. PMID:21123177

  16. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment

    PubMed Central

    Ciavardelli, D; Rossi, C; Barcaroli, D; Volpe, S; Consalvo, A; Zucchelli, M; De Cola, A; Scavo, E; Carollo, R; D'Agostino, D; Forlì, F; D'Aguanno, S; Todaro, M; Stassi, G; Di Ilio, C; De Laurenzi, V; Urbani, A

    2014-01-01

    A number of studies suggest that cancer stem cells are essential for tumour growth, and failure to target these cells can result in tumour relapse. As this population of cells has been shown to be resistant to radiation and chemotherapy, it is essential to understand their biology and identify new therapeutic approaches. Targeting cancer metabolism is a potential alternative strategy to counteract tumour growth and recurrence. Here we applied a proteomic and targeted metabolomic analysis in order to point out the main metabolic differences between breast cancer cells grown as spheres and thus enriched in cancer stem cells were compared with the same cells grown in adherent differentiating conditions. This integrated approach allowed us to identify a metabolic phenotype associated with the stem-like condition and shows that breast cancer stem cells (BCSCs) shift from mitochondrial oxidative phosphorylation towards fermentative glycolysis. Functional validation of proteomic and metabolic data provide evidences for increased activities of key enzymes of anaerobic glucose fate such as pyruvate kinase M2 isoform, lactate dehydrogenase and glucose 6-phopshate dehydrogenase in cancer stem cells as well as different redox status. Moreover, we show that treatment with 2-deoxyglucose, a well known inhibitor of glycolysis, inhibits BCSC proliferation when used alone and shows a synergic effect when used in combination with doxorubicin. In conclusion, we suggest that inhibition of glycolysis may be a potentially effective strategy to target BCSCs. PMID:25032859

  17. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices

    PubMed Central

    Ivanov, Anton I; Malkov, Anton E; Waseem, Tatsiana; Mukhtarov, Marat; Buldakova, Svetlana; Gubkina, Olena; Zilberter, Misha; Zilberter, Yuri

    2014-01-01

    Network activation triggers a significant energy metabolism increase in both neurons and astrocytes. Questions of the primary neuronal energy substrate (e.g., glucose vs. lactate) as well as the relative contributions of glycolysis and oxidative phosphorylation and their cellular origin (neurons vs. astrocytes) are still a matter of debates. Using simultaneous measurements of electrophysiological and metabolic parameters during synaptic stimulation in hippocampal slices from mature mice, we show that neurons and astrocytes use both glycolysis and oxidative phosphorylation to meet their energy demands. Supplementation or replacement of glucose in artificial cerebrospinal fluid (ACSF) with pyruvate or lactate strongly modifies parameters related to network activity-triggered energy metabolism. These effects are not induced by changes in ATP content, pHi, [Ca2+]i or accumulation of reactive oxygen species. Our results suggest that during network activation, a significant fraction of NAD(P)H response (its overshoot phase) corresponds to glycolysis and the changes in cytosolic NAD(P)H and mitochondrial FAD are coupled. Our data do not support the hypothesis of a preferential utilization of astrocyte-released lactate by neurons during network activation in slices—instead, we show that during such activity glucose is an effective energy substrate for both neurons and astrocytes. PMID:24326389

  18. Phylogenetic Analysis of the Bifidobacterium Genus Using Glycolysis Enzyme Sequences

    PubMed Central

    Brandt, Katelyn; Barrangou, Rodolphe

    2016-01-01

    Bifidobacteria are important members of the human gastrointestinal tract that promote the establishment of a healthy microbial consortium in the gut of infants. Recent studies have established that the Bifidobacterium genus is a polymorphic phylogenetic clade, which encompasses a diversity of species and subspecies that encode a broad range of proteins implicated in complex and non-digestible carbohydrate uptake and catabolism, ranging from human breast milk oligosaccharides, to plant fibers. Recent genomic studies have created a need to properly place Bifidobacterium species in a phylogenetic tree. Current approaches, based on core-genome analyses come at the cost of intensive sequencing and demanding analytical processes. Here, we propose a typing method based on sequences of glycolysis genes and the proteins they encode, to provide insights into diversity, typing, and phylogeny in this complex and broad genus. We show that glycolysis genes occur broadly in these genomes, to encode the machinery necessary for the biochemical spine of the cell, and provide a robust phylogenetic marker. Furthermore, glycolytic sequences-based trees are congruent with both the classical 16S rRNA phylogeny, and core genome-based strain clustering. Furthermore, these glycolysis markers can also be used to provide insights into the adaptive evolution of this genus, especially with regards to trends toward a high GC content. This streamlined method may open new avenues for phylogenetic studies on a broad scale, given the widespread occurrence of the glycolysis pathway in bacteria, and the diversity of the sequences they encode. PMID:27242688

  19. Phylogenetic Analysis of the Bifidobacterium Genus Using Glycolysis Enzyme Sequences.

    PubMed

    Brandt, Katelyn; Barrangou, Rodolphe

    2016-01-01

    Bifidobacteria are important members of the human gastrointestinal tract that promote the establishment of a healthy microbial consortium in the gut of infants. Recent studies have established that the Bifidobacterium genus is a polymorphic phylogenetic clade, which encompasses a diversity of species and subspecies that encode a broad range of proteins implicated in complex and non-digestible carbohydrate uptake and catabolism, ranging from human breast milk oligosaccharides, to plant fibers. Recent genomic studies have created a need to properly place Bifidobacterium species in a phylogenetic tree. Current approaches, based on core-genome analyses come at the cost of intensive sequencing and demanding analytical processes. Here, we propose a typing method based on sequences of glycolysis genes and the proteins they encode, to provide insights into diversity, typing, and phylogeny in this complex and broad genus. We show that glycolysis genes occur broadly in these genomes, to encode the machinery necessary for the biochemical spine of the cell, and provide a robust phylogenetic marker. Furthermore, glycolytic sequences-based trees are congruent with both the classical 16S rRNA phylogeny, and core genome-based strain clustering. Furthermore, these glycolysis markers can also be used to provide insights into the adaptive evolution of this genus, especially with regards to trends toward a high GC content. This streamlined method may open new avenues for phylogenetic studies on a broad scale, given the widespread occurrence of the glycolysis pathway in bacteria, and the diversity of the sequences they encode. PMID:27242688

  20. Synaptosomal lactate dehydrogenase isoenzyme composition is shifted toward aerobic forms in primate brain evolution.

    PubMed

    Duka, Tetyana; Anderson, Sarah M; Collins, Zachary; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  1. SYNAPTOSOMAL LACTATE DEHYDROGENASE ISOENZYME COMPOSITION IS SHIFTED TOWARD AEROBIC FORMS IN PRIMATE BRAIN EVOLUTION

    PubMed Central

    Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  2. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females. PMID:22080322

  3. Quantitative Analysis of the Effective Functional Structure in Yeast Glycolysis

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.

    2012-01-01

    The understanding of the effective functionality that governs the enzymatic self-organized processes in cellular conditions is a crucial topic in the post-genomic era. In recent studies, Transfer Entropy has been proposed as a rigorous, robust and self-consistent method for the causal quantification of the functional information flow among nonlinear processes. Here, in order to quantify the functional connectivity for the glycolytic enzymes in dissipative conditions we have analyzed different catalytic patterns using the technique of Transfer Entropy. The data were obtained by means of a yeast glycolytic model formed by three delay differential equations where the enzymatic rate equations of the irreversible stages have been explicitly considered. These enzymatic activity functions were previously modeled and tested experimentally by other different groups. The results show the emergence of a new kind of dynamical functional structure, characterized by changing connectivity flows and a metabolic invariant that constrains the activity of the irreversible enzymes. In addition to the classical topological structure characterized by the specific location of enzymes, substrates, products and feedback-regulatory metabolites, an effective functional structure emerges in the modeled glycolytic system, which is dynamical and characterized by notable variations of the functional interactions. The dynamical structure also exhibits a metabolic invariant which constrains the functional attributes of the enzymes. Finally, in accordance with the classical biochemical studies, our numerical analysis reveals in a quantitative manner that the enzyme phosphofructokinase is the key-core of the metabolic system, behaving for all conditions as the main source of the effective causal flows in yeast glycolysis. PMID:22393350

  4. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction

    PubMed Central

    Zhao, Ende; Maj, Tomasz; Kryczek, Ilona; Li, Wei; Wu, Ke; Zhao, Lili; Wei, Shuang; Crespo, Joel; Wan, Shanshan; Vatan, Linda; Szeliga, Wojciech; Shao, Irene; Wang, Yin; Liu, Yan; Varambally, Sooryanarayana; Chinnaiyan, Arul M.; Welling, Theodore H.; Marquez, Victor E.; Kotarski, Jan; Wang, Hongbo; Wang, Zehua; Zhang, Yi; Liu, Rebecca; Wang, Guobin; Zou, Weiping

    2015-01-01

    Aerobic glycolysis regulates T cell function. However, if and how primary cancer alters T cell glycolytic metabolism and affects tumor immunity remains a question in cancer patients. Here we report that ovarian cancers imposed glucose restriction on T cells and dampened their function via maintaining high expression of microRNA101 and microRNA26a, which constrained expression of the methyltransferase EZH2. EZH2 activated the Notch pathway by suppressing Notch repressors, Numb and Fbxw7, via H3K27me3, and consequently stimulated T cell polyfunctional cytokine expression and promoted their survival via Bcl-2 signaling. Moreover, human shRNA-knockdown-EZH2-deficient T cells elicited poor anti-tumor immunity. EZH2+CD8+ T cells were associated with improved cancer patient survival. Together, the data unveil a novel metabolic target and mechanism of cancer immune evasion. PMID:26523864

  5. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. PMID:21051843

  6. Physiological responses during aerobic dance of individuals grouped by aerobic capacity and dance experience.

    PubMed

    Thomsen, D; Ballor, D L

    1991-03-01

    This study examined the effects of aerobic capacity (peak oxygen uptake) and aerobic dance experience on the physiological responses to an aerobic dance routine. The heart rate (HR) and VO2 responses to three levels (intensities) of aerobic dance were measured in 27 women. Experienced aerobic dancers (AD) (mean peak VO2 = 42 ml.kg-1.min-1) were compared to subjects with limited aerobic dance experience of high (HI) (peak VO2 greater than 35 ml.kg-1.min-1) and low (LO) (peak VO2 less than 35 ml.kg-1.min-1) aerobic capacities. The results indicated the LO group exercised at a higher percentage of peak heart rate and peak VO2 at all three dance levels than did either the HI or AD groups (HI = AD). Design of aerobic dance routines must consider the exercise tolerance of the intended audience. In mixed groups, individuals with low aerobic capacities should be shown how and encouraged to modify the activity to reduce the level of exertion. PMID:2028095

  7. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells1

    PubMed Central

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M.; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-01-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells. PMID:26476080

  8. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity.

    PubMed

    Schwalbach, M S; Tripp, H J; Steindler, L; Smith, D P; Giovannoni, S J

    2010-02-01

    Bacteria in the SAR11 clade are highly abundant in marine surface waters, but currently little is known about the carbon compounds that support these large heterotrophic populations. To better understand the carbon requirements of these organisms, we conducted a multiphasic exploration of carbohydrate utilization among SAR11 isolates from the Northeast Pacific Ocean and the Sargasso Sea. A comparison of three SAR11 genomes showed they all lacked a recognizable PTS system, the oxidative portion of the pentose phosphate shunt (zwf-, pgl-), genes for the Embden-Meyerhoff-Parnas (pfk-, pyk-) and Entner-Doudoroff (eda-) pathways of glycolysis. Strain HTCC7211, isolated from an ocean gyre, was missing other glycolysis genes as well. Growth assays, radioisotopes, metagenomics and microarrays were used to test the hypothesis that these isolates might be limited in their abilities to transport and oxidize exogenous carbohydrates. Galactose, fucose, rhamnose, arabinose, ribose and mannose could not serve as carbon sources for the isolates tested. However, differences in glucose utilization were detected between coastal and ocean gyre isolates, with the coastal isolates capable of transporting, incorporating and oxidizing glucose while the open ocean isolate could not. Subsequent microarray analysis of a coastal isolate suggested that an operon encoding a variant of the Entner-Doudoroff pathway is likely responsible for the observed differences in glucose utilization. Metagenomic analysis indicated this operon is more commonly found in coastal environments and is positively correlated with chlorophyll a concentrations. Our results indicated that glycolysis is a variable metabolic property of SAR11 metabolism and suggest that glycolytic SAR11 are more common in productive marine environments. PMID:19889000

  9. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  10. Effects of a Rebound Exercise Training Program on Aerobic Capacity and Body Composition.

    ERIC Educational Resources Information Center

    Tomassoni, Teresa L.; And Others

    1985-01-01

    This study was designed to determine if aerobic dancing on rebound exercise equipment (minitrampolines) is an effective way to improve aerobic capacity and body composition. Although aerobic capacity improved, percent body fat did not change. Results were similar to those produced by conventional aerobic dance programs of like intensity. (MT)

  11. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  12. Role of fructose-2,6-bisphosphate in cardiac glycolysis

    SciTech Connect

    Lawson, J.W.R.; Uyeda, K.

    1986-05-01

    To study whether changes in the content of fructose-2,6-bisphosphate (Fru-2,6-P/sub 2/) are important in the control of phosphofructokinase (PFK) and glycolysis in heart. As in liver, isolated rat hearts were perfused as either a Langendorff or working model with various glucose concentrations in the presence or absence of insulin. Glucose utilization was estimated from /sup 3/H/sub 2/O production from (3-/sup 3/H)glucose. Metabolite contents were measured and PFK was isolated from freeze-clamped hearts. Both cardiac work and insulin accelerated glycolysis 4 to 6 fold. Cellular contents of allosteric effects of PFK including ATP, AMP, Pi, Fru-1,6-P/sub 2/, and cytoplasmic citrate did not change or correlate with these increased rates. Increases in Fru-6-P availability and Fru-2,6-P/sub 2/ did appear to correlate with increased glycolytic rate. Higher Fru-6-P appeared more important in regulating the rate increase observed with insulin in Langendorff hearts, while Fru-2,6-P/sub 2/ appeared more important in mediating the increased rate seen with higher workload. In addition, PFK isolated from working hearts was less sensitive to ATP inhibition than PFK from Langendorff hearts. It is concluded that changes in Fru-6-P, Fru-2,6-P/sub 2/, and a covalent modification are important in the control of PFK activity and glycolysis in heart muscle, but the relative importance of the contributions appears to depend on the stimulus. The classic effectors of PFK activity probably play no role in such control.

  13. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  14. [Research advances in aerobic denitrifiers].

    PubMed

    Wang, Wei; Cai, Zu-cong; Zhong, Wen-hui; Wang, Guo-xiang

    2007-11-01

    This paper reviewed the varieties and characteristics of aerobic denitrifiers, their action mechanisms, and the factors affecting aerobic denitrification. Aerobic denitrifiers mainly include Pseudomonas, Alcaligenes, Paracoccus and Bacillus, which are either aerobic or facultative aerobic, and heterotrophic. They can denitrify under aerobic conditions, with the main product being N2O. They can also convert NH4+ -N to gas product. The nitrate reductase which catalyzes the denitrification is periplasmic nitrate reductase rather than membrane-bound nitrate reductase. Dissolved oxygen concentration and C/N ratio are the main factors affecting aerobic denitrification. The main methods for screening aerobic denitrifiers, such as intermittent aeration and selected culture, were also introduced. The research advances in the application of aerobic denitrifiers in aquaculture, waste water processing, and bio-degradation of organic pollutants, as well as the contributions of aerobic denitrifiers to soil nitrogen emission were summarized. PMID:18260473

  15. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes

    PubMed Central

    Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko

    2015-01-01

    Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes. PMID:26677804

  16. Antitumor effects of a drug combination targeting glycolysis, glutaminolysis and de novo synthesis of fatty acids.

    PubMed

    Cervantes-Madrid, Diana; Dueñas-González, Alfonso

    2015-09-01

    There is a strong rationale for targeting the metabolic alterations of cancer cells. The most studied of these are the higher rates of glycolysis, glutaminolysis and de novo synthesis of fatty acids (FAs). Despite the availability of pharmacological inhibitors of these pathways, no preclinical studies targeting them simultaneously have been performed. In the present study it was determined whether three key enzymes for glycolysis, glutaminolysis and de novo synthesis of FAs, hexokinase-2, glutaminase and fatty acid synthase, respectively, were overexpressed as compared to primary fibroblasts. In addition, we showed that at clinically relevant concentrations lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat, known inhibitors of the mentioned enzymes, exerted a cell viability inhibitory effect. Genetic downregulation of the three enzymes also reduced cell viability. The three drugs were highly synergistic when administered as a triple combination. Of note, the cytotoxicity of the triple combination was low in primary fibroblasts and was well tolerated when administered into healthy BALB/c mice. The results suggest the feasibility and potential clinical utility of the triple metabolic targeting which merits to be further studied by using either repositioned old drugs or newer, more selective inhibitors. PMID:26134042

  17. Effect of transportation and pre-slaughter water shower spray with resting on AMP-activated protein kinase, glycolysis and meat quality of broilers during summer.

    PubMed

    Xing, Tong; Xu, Xinglian; Jiang, Nannan; Deng, ShaoLin

    2016-02-01

    The aim of this study was to determine the effects of pre-slaughter transport during summer and subsequent water shower spray on stress, postmortem glycolysis, energy metabolism and adenosine monophosphate-activated protein kinase (AMPK) in Pectoralis major (PM) muscle of broilers. Results indicated that transport during high ambient temperature induced the release of plasma corticosterone, which significantly affected stress conditions. Moreover, we found a lower energy status in the early postmortem period compared to the control group. AMPK was activated in this situation, following by the rapid glycolysis and accumulation of lactic acid, leading to a high incidence of pale, soft, exudative (PSE)-like meat. Water shower spray with resting after transport relieved the stress situation, recovered energy homeostasis and lessened the deterioration of meat quality. As a key molecular target for the control of energy status, AMPK has a similar potential in regulating postmortem muscle glycolysis of broilers as in mammals. PMID:26315350

  18. Glycolysis-associated enzymes existing in the follicular lumen of the thyroid may interfere with energy metabolism

    PubMed Central

    Huang, Huibin; Shi, Yaxiong; Cai, Huiyao; Liang, Bo; Duan, Honghong; Cai, Qingyan

    2016-01-01

    Synthesis and storage of the thyroid hormone precursor, thyroglobulin (TG), occurs within the follicular lumen of the thyroid and the TG is then absorbed into cells for further processing before release into the blood. However, the mechanism of energy metabolism in the follicular lumen of the thyroid remains unknown. In the present study, the three dimensional structure of thyroid follicles was constructed using a primary culture of swine cells and the follicular protein was identified via matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Three glycolysis-associated enzymes, enolase, pyruvate kinase and phosphoglyceraldehyde dehydrogenase were identified in addition to TG. These results support the hypothesis that anaerobic glycolysis of glucose exists in the follicle and supports energy consumption for hormone synthesis. PMID:27602210

  19. Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis

    PubMed Central

    Hart, Peter C.; Ratti, Bianca A.; Mao, Mao; Ansenberger-Fricano, Kristine; Shajahan-Haq, Ayesha N.; Tyner, Angela L.; Minshall, Richard D.; Bonini, Marcelo G.

    2016-01-01

    Aerobic glycolysis is an indispensable component of aggressive cancer cell metabolism. It also distinguishes cancer cells from most healthy cell types in the body. Particularly for this reason, targeting the metabolism to improve treatment outcomes has long been perceived as a potentially valuable strategy. In practice, however, our limited knowledge of why and how metabolic reprogramming occurs has prevented progress towards therapeutic interventions that exploit the metabolic peculiarities of tumors. We recently described that in breast cancer, MnSOD upregulation is both necessary and sufficient to activate glycolysis. Here, we focused on determining the molecular mechanisms of MnSOD upregulation. We found that Caveolin-1 (Cav-1) is a central component of this mechanism due to its suppressive effects of NF-E2-related factor 2 (Nrf2), a transcription factor upstream of MnSOD. In transformed MCF10A(Er/Src) cells, Cav-1 loss preceded the activation of Nrf2 and its induction of MnSOD expression. Consistently, with previous observations, MnSOD expression secondary to Nrf2 activation led to an increase in the glycolytic rate dependent on mtH2O2 production and the activation of AMPK. Moreover, rescue of Cav-1 expression in a breast cancer cell line (MCF7) suppressed Nrf2 and reduced MnSOD expression. Experimental data were reinforced by epidemiologic nested case-control studies showing that Cav-1 and MnSOD are inversely expressed in cases of invasive ductal carcinoma, with low Cav-1 and high MnSOD expression being associated with lower 5-year survival rates and molecular subtypes with poorest prognosis. PMID:26543228

  20. Glycolysis and the significance of lactate in traumatic brain injury

    PubMed Central

    Carpenter, Keri L. H.; Jalloh, Ibrahim; Hutchinson, Peter J.

    2015-01-01

    In traumatic brain injury (TBI) patients, elevation of the brain extracellular lactate concentration and the lactate/pyruvate ratio are well-recognized, and are associated statistically with unfavorable clinical outcome. Brain extracellular lactate was conventionally regarded as a waste product of glucose, when glucose is metabolized via glycolysis (Embden-Meyerhof-Parnas pathway) to pyruvate, followed by conversion to lactate by the action of lactate dehydrogenase, and export of lactate into the extracellular fluid. In TBI, glycolytic lactate is ascribed to hypoxia or mitochondrial dysfunction, although the precise nature of the latter is incompletely understood. Seemingly in contrast to lactate's association with unfavorable outcome is a growing body of evidence that lactate can be beneficial. The idea that the brain can utilize lactate by feeding into the tricarboxylic acid (TCA) cycle of neurons, first published two decades ago, has become known as the astrocyte-neuron lactate shuttle hypothesis. Direct evidence of brain utilization of lactate was first obtained 5 years ago in a cerebral microdialysis study in TBI patients, where administration of 13C-labeled lactate via the microdialysis catheter and simultaneous collection of the emerging microdialysates, with 13C NMR analysis, revealed 13C labeling in glutamine consistent with lactate utilization via the TCA cycle. This suggests that where neurons are too damaged to utilize the lactate produced from glucose by astrocytes, i.e., uncoupling of neuronal and glial metabolism, high extracellular levels of lactate would accumulate, explaining the association between high lactate and poor outcome. Recently, an intravenous exogenous lactate supplementation study in TBI patients revealed evidence for a beneficial effect judged by surrogate endpoints. Here we review the current state of knowledge about glycolysis and lactate in TBI, how it can be measured in patients, and whether it can be modulated to achieve better

  1. Cisplatin suppresses the growth and proliferation of breast and cervical cancer cell lines by inhibiting integrin β5-mediated glycolysis

    PubMed Central

    Wang, Shaojia; Xie, Jie; Li, Jiajia; Liu, Fei; Wu, Xiaohua; Wang, Ziliang

    2016-01-01

    Cancer cells harbor lower energy consumption after rounds of anticancer drugs, but the underlying mechanism remains unclear. In this study, we investigated metabolic alterations in cancer cells exposed to cisplatin. The present study exhibited cisplatin, known as a chemotherapeutic agent interacting with DNA, also acted as an anti-metabolic agent. We found that glycolysis levels of breast and cervical cancer cells were reduced after cisplatin treatment, resulting in cells growth and proliferation inhibition. We demonstrated that cisplatin suppressed glycolysis-related proteins expression, including glucose transporter 1 (GLUT1), glucose transporter 4 (GLUT4) and lactate dehydrogenase B (LDHB), through down-regulating integrin β5 (ITGB5)/focal adhesion kinase (FAK) signaling pathway. ITGB5 overexpression rescued cisplatin-induced inhibition of cancer cell glycolysis, growth and proliferation. Conclusively, we reveal a novel insight into cisplatin-induced anticancer mechanism, suggesting alternative strategies to the current therapeutic approaches of targeting ITGB5, as well as of a combination of cisplatin with glucose up-regulation chemotherapeutic agents to enhance anticancer effect. PMID:27294003

  2. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  3. A Fresh View of Glycolysis and Glucokinase Regulation: History and Current Status*

    PubMed Central

    Lenzen, Sigurd

    2014-01-01

    This minireview looks back at a century of glycolysis research with a focus on the mechanisms of flux regulation. Traditionally, glycolysis is regarded as a feeder pathway that prepares glucose for further catabolism and energy production. However, glycolysis is much more than that, in particular in those tissues that express the low affinity glucose-phosphorylating enzyme glucokinase. This enzyme equips the glycolytic pathway with a special steering function for the regulation of intermediary metabolism. In beta cells, glycolysis acts as a transducer for triggering and amplifying physiological glucose-induced insulin secretion. On the basis of these considerations, I have defined a glycolytic flux regulatory unit composed of the two fructose ester steps of this pathway with various enzymes and metabolites that regulate glycolysis. PMID:24637025

  4. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  5. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  6. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  7. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer

    PubMed Central

    Pate, Kira T; Stringari, Chiara; Sprowl-Tanio, Stephanie; Wang, Kehui; TeSlaa, Tara; Hoverter, Nate P; McQuade, Miriam M; Garner, Chad; Digman, Michelle A; Teitell, Michael A; Edwards, Robert A; Gratton, Enrico; Waterman, Marian L

    2014-01-01

    Much of the mechanism by which Wnt signaling drives proliferation during oncogenesis is attributed to its regulation of the cell cycle. Here, we show how Wnt/β-catenin signaling directs another hallmark of tumorigenesis, namely Warburg metabolism. Using biochemical assays and fluorescence lifetime imaging microscopy (FLIM) to probe metabolism in vitro and in living tumors, we observe that interference with Wnt signaling in colon cancer cells reduces glycolytic metabolism and results in small, poorly perfused tumors. We identify pyruvate dehydrogenase kinase 1 (PDK1) as an important direct target within a larger gene program for metabolism. PDK1 inhibits pyruvate flux to mitochondrial respiration and a rescue of its expression in Wnt-inhibited cancer cells rescues glycolysis as well as vessel growth in the tumor microenvironment. Thus, we identify an important mechanism by which Wnt-driven Warburg metabolism directs the use of glucose for cancer cell proliferation and links it to vessel delivery of oxygen and nutrients. PMID:24825347

  8. Aerobic biodegradation of trichloroethene without auxiliary substrates.

    PubMed

    Schmidt, Kathrin R; Gaza, Sarah; Voropaev, Andrey; Ertl, Siegmund; Tiehm, Andreas

    2014-08-01

    Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites. PMID:24793109

  9. Bistability in Glycolysis Pathway as a Physiological Switch in Energy Metabolism

    PubMed Central

    Daoutidis, Prodromos; Hu, Wei-Shou

    2014-01-01

    The flux of glycolysis is tightly controlled by feed-back and feed-forward allosteric regulations to maintain the body's glucose homeostasis and to respond to cell's growth and energetic needs. Using a mathematical model based on reported mechanisms for the allosteric regulations of the enzymes, we demonstrate that glycolysis exhibits multiple steady state behavior segregating glucose metabolism into high flux and low flux states. Two regulatory loops centering on phosphofructokinase and on pyruvate kinase each gives rise to the bistable behavior, and together impose more complex flux control. Steady state multiplicity endows glycolysis with a robust switch to transit between the two flux states. Under physiological glucose concentrations the glycolysis flux does not move between the states easily without an external stimulus such as hormonal, signaling or oncogenic cues. Distinct combination of isozymes in glycolysis gives different cell types the versatility in their response to different biosynthetic and energetic needs. Insights from the switch behavior of glycolysis may reveal new means of metabolic intervention in the treatment of cancer and other metabolic disorders through suppression of glycolysis. PMID:24911170

  10. Survival Response to Increased Ceramide Involves Metabolic Adaptation through Novel Regulators of Glycolysis and Lipolysis

    PubMed Central

    Walls, Stanley M.; Singh, Alka; Zhu, Lihua Julie; Bamba, Takeshi; Fukusaki, Eiichiro; Srideshikan, Sargur M.; Harris, Greg L.; Ip, Y. Tony; Bodmer, Rolf; Acharya, Usha R.

    2013-01-01

    The sphingolipid ceramide elicits several stress responses, however, organisms survive despite increased ceramide but how they do so is poorly understood. We demonstrate here that the AKT/FOXO pathway regulates survival in increased ceramide environment by metabolic adaptation involving changes in glycolysis and lipolysis through novel downstream targets. We show that ceramide kinase mutants accumulate ceramide and this leads to reduction in energy levels due to compromised oxidative phosphorylation. Mutants show increased activation of Akt and a consequent decrease in FOXO levels. These changes lead to enhanced glycolysis by upregulating the activity of phosphoglyceromutase, enolase, pyruvate kinase, and lactate dehydrogenase to provide energy. A second major consequence of AKT/FOXO reprogramming in the mutants is the increased mobilization of lipid from the gut through novel lipase targets, CG8093 and CG6277 for energy contribution. Ubiquitous reduction of these targets by knockdown experiments results in semi or total lethality of the mutants, demonstrating the importance of activating them. The efficiency of these adaptive mechanisms decreases with age and leads to reduction in adult life span of the mutants. In particular, mutants develop cardiac dysfunction with age, likely reflecting the high energy requirement of a well-functioning heart. The lipases also regulate physiological triacylglycerol homeostasis and are important for energy metabolism since midgut specific reduction of them in wild type flies results in increased sensitivity to starvation and accumulation of triglycerides leading to cardiac defects. The central findings of increased AKT activation, decreased FOXO level and activation of phosphoglyceromutase and pyruvate kinase are also observed in mice heterozygous for ceramide transfer protein suggesting a conserved role of this pathway in mammals. These data reveal novel glycolytic and non-autonomous lipolytic pathways in response to increased

  11. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation.

    PubMed

    Brix, Britta; Mesters, Jeroen R; Pellerin, Luc; Jöhren, Olaf

    2012-07-11

    Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation. PMID:22787058

  12. Negative Feedback of Glycolysis and Oxidative Phosphorylation: Mechanisms of and Reasons for It.

    PubMed

    Sokolov, S S; Balakireva, A V; Markova, O V; Severin, F F

    2015-05-01

    There are two main pathways of ATP biosynthesis: glycolysis and oxidative phosphorylation. As a rule, the two pathways are not fully active in a single cell. In this review, we discuss mechanisms of glycolytic inhibition of respiration (Warburg and Crabtree effects). What are the reasons for the existence of this negative feedback? It is known that maximal activation of both processes can cause generation of reactive oxygen species. Oxidative phosphorylation is more efficient from the energy point of view, while glycolysis is safer and favors biomass synthesis. This might be the reason why quiescent cells are mainly using oxidative phosphorylation, while the quickly proliferating ones - glycolysis. PMID:26071773

  13. Control of glycolysis in vertebrate skeletal muscle during exercise.

    PubMed

    Krause, U; Wegener, G

    1996-04-01

    The gastrocnemius muscle of the frog (Rana temporaria) has a high capacity for anaerobic glycolysis from glycogen. Glycolytic metabolites and effectors of phosphofructokinase, particularly the hexose bisphosphates, were followed in muscle during exercise (swimming between 5 s and 5 min), recovery (rest for up to 2 h after 5 min of swimming), and repeated exercise (swimming for up to 60 s after 2 h of recovery). Glycogen phosphorylase and phosphofructokinase were swiftly activated with exercise. The hexose bisphosphates followed markedly different time courses. Fructose 1,6-bisphosphate was transiently increased in both exercise and repeated exercise. This appears to be an effect rather than a cause of phosphofructokinase activation. Glucose 1,6-biphosphate was accumulated only while phosphofructokinase was active and was unchanged at other times. Fructose 2,6-biphosphate showed a 10-fold transient increase on exercise in rested frogs, almost disappeared from the muscle during recovery, and did not change during repeated exercise. Fructose 2,6-biphosphate is a potent activator of phosphofructokinase in vitro under near physiological assay conditions, and it may serve this function also in vivo during exercise. Glucose 1,6-biphosphate could be an activator of phosphofructokinase in repeated exercise when fructose 2,6-biphosphate is not available. PMID:8967412

  14. LncRNA-MIF, a c-Myc-activated long non-coding RNA, suppresses glycolysis by promoting Fbxw7-mediated c-Myc degradation.

    PubMed

    Zhang, Pengfei; Cao, Limian; Fan, Pingsheng; Mei, Yide; Wu, Mian

    2016-08-01

    The c-Myc proto-oncogene is activated in more than half of all human cancers. However, the precise regulation of c-Myc protein stability is unknown. Here, we show that the lncRNA-MIF (c-Myc inhibitory factor), a c-Myc-induced long non-coding RNA, is a competing endogenous RNA for miR-586 and attenuates the inhibitory effect of miR-586 on Fbxw7, an E3 ligase for c-Myc, leading to increased Fbxw7 expression and subsequent c-Myc degradation. Our data reveal the existence of a feedback loop between c-Myc and lncRNA-MIF, through which c-Myc protein stability is finely controlled. Additionally, we show that the lncRNA-MIF inhibits aerobic glycolysis and tumorigenesis by suppressing c-Myc and miR-586. PMID:27317567

  15. 3-Bromopyruvate and sodium citrate induce apoptosis in human gastric cancer cell line MGC-803 by inhibiting glycolysis and promoting mitochondria-regulated apoptosis pathway.

    PubMed

    Guo, Xingyu; Zhang, Xiaodong; Wang, Tingan; Xian, Shulin; Lu, Yunfei

    2016-06-17

    Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generation and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis. PMID:27163639

  16. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  17. Restriction of Aerobic Metabolism by Acquired or Innate Arylsulfatase B Deficiency: A New Approach to the Warburg Effect

    PubMed Central

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K.

    2016-01-01

    Aerobic respiration is required for optimal efficiency of metabolism in mammalian cells. Under circumstances when oxygen utilization is impaired, cells survive by anerobic metabolism. The malignant cell has cultivated the use of anerobic metabolism in an aerobic environment, the Warburg effect, but the explanation for this preference is not clear. This paper presents evidence that deficiency of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), either innate or acquired, helps to explain the Warburg phenomenon. ARSB is the enzyme that removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate. Previous reports indicated reduced ARSB activity in malignancy and replication of the effects of hypoxia by decline in ARSB. Hypoxia reduced ARSB activity, since molecular oxygen is needed for post-translational modification of ARSB. In this report, studies were performed in human HepG2 cells and in hepatocytes from ARSB-deficient and normal C57BL/6J control mice. Decline of ARSB, in the presence of oxygen, profoundly reduced the oxygen consumption rate and increased the extracellular acidification rate, indicating preference for aerobic glycolysis. Specific study findings indicate that decline in ARSB activity enhanced aerobic glycolysis and impaired normal redox processes, consistent with a critical role of ARSB and sulfate reduction in mammalian metabolism. PMID:27605497

  18. Restriction of Aerobic Metabolism by Acquired or Innate Arylsulfatase B Deficiency: A New Approach to the Warburg Effect.

    PubMed

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K

    2016-01-01

    Aerobic respiration is required for optimal efficiency of metabolism in mammalian cells. Under circumstances when oxygen utilization is impaired, cells survive by anerobic metabolism. The malignant cell has cultivated the use of anerobic metabolism in an aerobic environment, the Warburg effect, but the explanation for this preference is not clear. This paper presents evidence that deficiency of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), either innate or acquired, helps to explain the Warburg phenomenon. ARSB is the enzyme that removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate. Previous reports indicated reduced ARSB activity in malignancy and replication of the effects of hypoxia by decline in ARSB. Hypoxia reduced ARSB activity, since molecular oxygen is needed for post-translational modification of ARSB. In this report, studies were performed in human HepG2 cells and in hepatocytes from ARSB-deficient and normal C57BL/6J control mice. Decline of ARSB, in the presence of oxygen, profoundly reduced the oxygen consumption rate and increased the extracellular acidification rate, indicating preference for aerobic glycolysis. Specific study findings indicate that decline in ARSB activity enhanced aerobic glycolysis and impaired normal redox processes, consistent with a critical role of ARSB and sulfate reduction in mammalian metabolism. PMID:27605497

  19. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride

    SciTech Connect

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2012-11-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl{sub 2}), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl{sub 2} supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl{sub 2} supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl{sub 2} supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning. -- Highlights: ► We supplemented rats with CoCl{sub 2} for 15 days along with training. ► Co

  20. Controlling the catalytic aerobic oxidation of phenols.

    PubMed

    Esguerra, Kenneth Virgel N; Fall, Yacoub; Petitjean, Laurène; Lumb, Jean-Philip

    2014-05-28

    The oxidation of phenols is the subject of extensive investigation, but there are few catalytic aerobic examples that are chemo- and regioselective. Here we describe conditions for the ortho-oxygenation or oxidative coupling of phenols under copper (Cu)-catalyzed aerobic conditions that give rise to ortho-quinones, biphenols or benzoxepines. We demonstrate that each product class can be accessed selectively by the appropriate choice of Cu(I) salt, amine ligand, desiccant and reaction temperature. In addition, we evaluate the effects of substituents on the phenol and demonstrate their influence on selectivity between ortho-oxygenation and oxidative coupling pathways. These results create an important precedent of catalyst control in the catalytic aerobic oxidation of phenols and set the stage for future development of catalytic systems and mechanistic investigations. PMID:24784319

  1. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis

    PubMed Central

    Liu, Xue-Song; Haines, Jenna E.; Mehanna, Elie K.; Genet, Matthew D.; Ben-Sahra, Issam; Asara, John M.; Manning, Brendan D.

    2014-01-01

    Elevated glycolysis is a common metabolic trait of cancer, but what drives such metabolic reprogramming remains incompletely clear. We report here a novel transcriptional repressor-mediated negative regulation of glycolysis. ZBTB7A, a member of the POK (POZ/BTB and Krüppel) transcription repressor family, directly binds to the promoter and represses the transcription of critical glycolytic genes, including GLUT3, PFKP, and PKM. Analysis of The Cancer Genome Atlas (TCGA) data sets reveals that the ZBTB7A locus is frequently deleted in many human tumors. Significantly, reduced ZBTB7A expression correlates with up-regulation of the glycolytic genes and poor survival in colon cancer patients. Remarkably, while ZBTB7A-deficient tumors progress exceedingly fast, they exhibit an unusually heightened sensitivity to glycolysis inhibition. Our study uncovers a novel tumor suppressor role of ZBTB7A in directly suppressing glycolysis. PMID:25184678

  2. Micro Regional Heterogeneity of 64Cu-ATSM and 18F-FDG Uptake in Canine Soft Tissue Sarcomas: Relation to Cell Proliferation, Hypoxia and Glycolysis

    PubMed Central

    Zornhagen, Kamilla Westarp; Hansen, Anders E.; Oxboel, Jytte; Clemmensen, Andreas E.; El Ali, Henrik H.; Kristensen, Annemarie T.; Kjær, Andreas

    2015-01-01

    Objectives Tumour microenvironment heterogeneity is believed to play a key role in cancer progression and therapy resistance. However, little is known about micro regional distribution of hypoxia, glycolysis and proliferation in spontaneous solid tumours. The overall aim was simultaneous investigation of micro regional heterogeneity of 64Cu-ATSM (hypoxia) and 18F-FDG (glycolysis) uptake and correlation to endogenous markers of hypoxia, glycolysis, proliferation and angiogenesis to better therapeutically target aggressive tumour regions and prognosticate outcome. Methods Exploiting the different half-lives of 64Cu-ATSM (13h) and 18F-FDG (2h) enabled simultaneous investigation of micro regional distribution of hypoxia and glycolysis in 145 tumour pieces from four spontaneous canine soft tissue sarcomas. Pairwise measurements of radioactivity and gene expression of endogenous markers of hypoxia (HIF-1α, CAIX), glycolysis (HK2, GLUT1 and GLUT3), proliferation (Ki-67) and angiogenesis (VEGFA and TF) were performed. Dual tracer autoradiography was compared with Ki-67 immunohistochemistry. Results Micro regional heterogeneity in hypoxia and glycolysis within and between tumour sections of each tumour piece was observed. The spatial distribution of 64Cu-ATSM and 18F-FDG was rather similar within each tumour section as reflected in moderate positive significant correlations between the two tracers (ρ = 0.3920–0.7807; p = 0.0180 –<0.0001) based on pixel-to-pixel comparisons of autoradiographies and gamma counting of tumour pieces. 64Cu-ATSM and 18F-FDG correlated positively with gene expression of GLUT1 and GLUT3, but negatively with HIF-1α and CAIX. Significant positive correlations were seen between Ki-67 gene expression and 64Cu-ATSM (ρ = 0.5578, p = 0.0004) and 18F-FDG (ρ = 0.4629–0.7001, p = 0.0001–0.0151). Ki-67 gene expression more consistently correlated with 18F-FDG than with 64Cu-ATSM. Conclusions Micro regional heterogeneity of hypoxia and glycolysis

  3. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  4. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  5. Loss of 11βHSD1 enhances glycolysis, facilitates intrahepatic metastasis, and indicates poor prognosis in hepatocellular carcinoma

    PubMed Central

    Liu, Xu; Tan, Xiao-long; Xia, Meng; Wu, Chao; Song, Jia; Wu, Jing-jing; Laurence, Arian; Xie, Qing-guo; Zhang, Ming-zhi

    2016-01-01

    11Beta-hydroxysteroid dehydrogenase type 1 (11βHSD1), converting glucocorticoids from hormonally inactive cortisone to active cortisol, plays an essential role in glucose homeostasis. Accumulating evidence suggests that enhanced glycolytic activity is closely associated with postoperative recurrence and prognosis of hepatocellular carcinoma (HCC). Whether 11βHSD1 contributes to HCC metastasis and recurrence remains unclear. Here we found that expression of 11βHSD1 in human HCC (310 pairs) was frequently decreased compared to the adjacent non-neoplastic liver tissues (ANT), which correlated well with the intrahepatic-metastatic index, serum glycemia, and other malignant clinicopathological characteristics of HCC and predicted poor prognosis. Knockdown of 11βHSD1 in BEL-7402 cells drastically reduced the pH of culture medium and induced cell death. Meanwhile, overexpression of 11βHSD1 in SMMC-7721 HCC cells resulted in repression of cell migration, invasion, angiogenesis, and proliferation in vitro. When transferred into BALB/c nude mice, 11βHSD1 overexpression resulted in decreased intrahepatic metastasis, angiogenesis, and tumor size. F-18-2-fluoro-2-deoxyglucose accumulation assay measured by positron emission tomography elucidated that 11βHSD1 reduced glucose uptake and glycolysis in SMMC-7721 cells in vitro, and intrahepatic metastasis foci and subcutaneous tumor growth in vivo. We showed that 11βHSD1 repressed cell metastasis, angiogenesis and proliferation of HCC by causing disruption of glycolysis via the HIF-1α and c-MYC pathways. In conclusion, 11βHSD1 inhibits the intrahepatic metastasis of HCC via restriction of tumor glycolysis activity and may serve as a prognostic biomarker for patients. PMID:26700460

  6. Loss of 11βHSD1 enhances glycolysis, facilitates intrahepatic metastasis, and indicates poor prognosis in hepatocellular carcinoma.

    PubMed

    Liu, Xu; Tan, Xiao-Long; Xia, Meng; Wu, Chao; Song, Jia; Wu, Jing-Jing; Laurence, Arian; Xie, Qing-Guo; Zhang, Ming-Zhi; Liang, Hui-Fang; Zhang, Bi-Xiang; Chen, Xiao-Ping

    2016-01-12

    11beta-hydroxysteroid dehydrogenase type 1 (11βHSD1), converting glucocorticoids from hormonally inactive cortisone to active cortisol, plays an essential role in glucose homeostasis. Accumulating evidence suggests that enhanced glycolytic activity is closely associated with postoperative recurrence and prognosis of hepatocellular carcinoma (HCC). Whether 11βHSD1 contributes to HCC metastasis and recurrence remains unclear. Here we found that expression of 11βHSD1 in human HCC (310 pairs) was frequently decreased compared to the adjacent non-neoplastic liver tissues (ANT), which correlated well with the intrahepatic-metastatic index, serum glycemia, and other malignant clinicopathological characteristics of HCC and predicted poor prognosis. Knockdown of 11βHSD1 in BEL-7402 cells drastically reduced the pH of culture medium and induced cell death. Meanwhile, overexpression of 11βHSD1 in SMMC-7721 HCC cells resulted in repression of cell migration, invasion, angiogenesis, and proliferation in vitro. When transferred into BALB/c nude mice, 11βHSD1 overexpression resulted in decreased intrahepatic metastasis, angiogenesis, and tumor size. F-18-2-fluoro-2-deoxyglucose accumulation assay measured by positron emission tomography elucidated that 11βHSD1 reduced glucose uptake and glycolysis in SMMC-7721 cells in vitro, and intrahepatic metastasis foci and subcutaneous tumor growth in vivo. We showed that 11βHSD1 repressed cell metastasis, angiogenesis and proliferation of HCC by causing disruption of glycolysis via the HIF-1α and c-MYC pathways. In conclusion, 11βHSD1 inhibits the intrahepatic metastasis of HCC via restriction of tumor glycolysis activity and may serve as a prognostic biomarker for patients. PMID:26700460

  7. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  8. Sexual dimorphism in primate aerobic capacity: a phylogenetic test.

    PubMed

    Lindenfors, Patrik; Revell, L J; Nunn, C L

    2010-06-01

    Male intrasexual competition should favour increased male physical prowess. This should in turn result in greater aerobic capacity in males than in females (i.e. sexual dimorphism) and a correlation between sexual dimorphism in aerobic capacity and the strength of sexual selection among species. However, physiological scaling laws predict that aerobic capacity should be lower per unit body mass in larger than in smaller animals, potentially reducing or reversing the sex difference and its association with measures of sexual selection. We used measures of haematocrit and red blood cell (RBC) counts from 45 species of primates to test four predictions related to sexual selection and body mass: (i) on average, males should have higher aerobic capacity than females, (ii) aerobic capacity should be higher in adult than juvenile males, (iii) aerobic capacity should increase with increasing sexual selection, but also that (iv) measures of aerobic capacity should co-vary negatively with body mass. For the first two predictions, we used a phylogenetic paired t-test developed for this study. We found support for predictions (i) and (ii). For prediction (iii), however, we found a negative correlation between the degree of sexual selection and aerobic capacity, which was opposite to our prediction. Prediction (iv) was generally supported. We also investigated whether substrate use, basal metabolic rate and agility influenced physiological measures of oxygen transport, but we found only weak evidence for a correlation between RBC count and agility. PMID:20406346

  9. Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei.

    PubMed Central

    Helfert, S; Estévez, A M; Bakker, B; Michels, P; Clayton, C

    2001-01-01

    Kinetoplastid protozoa compartmentalize the first seven enzymes of glycolysis and two enzymes of glycerol metabolism in a microbody, the glycosome. While in its mammalian host, Trypanosoma brucei depends entirely on glucose for ATP generation. Under aerobic conditions, most of the glucose is metabolized to pyruvate. Aerobic metabolism depends on the activities of glycosomal triosephosphate isomerase and a mitochondrial glycerophosphate oxidase, and on glycerophosphate<-->dihydroxyacetone phosphate exchange across the glycosomal membrane. Using a combination of genetics and computer modelling, we show that triosephosphate isomerase is probably essential for bloodstream trypanosome survival, but not for the insect-dwelling procyclics, which preferentially use amino acids as an energy source. When the enzyme level decreased to about 15% of that of the wild-type, the growth rate was halved. Below this level, a lethal rise in dihydroxyacetone phosphate was predicted. Expression of cytosolic triosephosphate isomerase inhibited cell growth. Attempts to knockout the trypanosome alternative oxidase genes (which are needed for glycerophosphate oxidase activity) were unsuccessful, but when we lowered the level of the corresponding mRNA by expressing a homologous double-stranded RNA, oxygen consumption was reduced fourfold and the rate of trypanosome growth was halved. PMID:11415442

  10. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  11. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  12. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  13. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  14. Differential sensitivity of aerobic gram-positive and gram-negative microorganisms to 2,4,6-trinitrotoluene (TNT) leads to dissimilar growth and TNT transformation: Results of soil and pure culture studies

    SciTech Connect

    Fuller, M.E.; Manning, J.F. Jr.

    1996-07-30

    The effects of 2,4,6-trinitrotoluene (TNT) on indigenous soil populations and pure bacterial cultures were examined. The number of colony-forming units (CFU) appearing when TNT-contaminated soil was spread on 0.3% molasses plates decreased by 50% when the agar was amended with 67 {mu}g TNT mL{sup -1}, whereas a 99% reduction was observed when uncontaminated soil was plated. Furthermore, TNT-contaminated soil harbored a greater number of organisms able to grow on plates amended with greater than 10 {mu}g TNT mL{sup -1}. The percentage of gram-positive isolates was markedly less in TNT-contaminated soil (7%; 2 of 30) than in uncontaminated soil (61%; 20 of 33). Pseudomonas aeruginosa, Pseudomonas corrugate, Pseudomonasfluorescens and Alcaligenes xylosoxidans made up the majority of the gram-negative isolates from TNT-contaminated soil. Gram-positive isolates from both soils demonstrated marked growth inhibition when greater than 8-16 {mu}g TNT mL{sup -1} was present in the culture media. Most pure cultures of known aerobic gram-negative organisms readily degraded TNT and evidenced net consumption of reduced metabolites. However, pure cultures of aerobic gram-positive bacteria were sensitive to relatively low concentrations of TNT as indicated by the 50% reduction in growth and TNT transformation which was observed at approximately 10 {mu}g TNT mL{sup -1}. Most non-sporeforming gram-positive organisms incubated in molasses media amended with 80 {mu}g TNT mL{sup -1} or greater became unculturable, whereas all strains tested remained culturable when incubated in mineral media amended with 98 {mu}g TNT mL{sup -1}, indicating that TNT sensitivity is likely linked to cell growth. These results indicate that gram-negative organisms are most likely responsible for any TNT transformation in contaminated soil, due to their relative insensitivity to high TNT concentrations and their ability to transform TNT.

  15. Homeostasis and the glycogen shunt explains aerobic ethanol production in yeast.

    PubMed

    Shulman, Robert G; Rothman, Douglas L

    2015-09-01

    Aerobic glycolysis in yeast and cancer cells produces pyruvate beyond oxidative needs, a paradox noted by Warburg almost a century ago. To address this question, we reanalyzed extensive measurements from (13)C magnetic resonance spectroscopy of yeast glycolysis and the coupled pathways of futile cycling and glycogen and trehalose synthesis (which we refer to as the glycogen shunt). When yeast are given a large glucose load under aerobic conditions, the fluxes of these pathways adapt to maintain homeostasis of glycolytic intermediates and ATP. The glycogen shunt uses glycolytic ATP to store glycolytic intermediates as glycogen and trehalose, generating pyruvate and ethanol as byproducts. This conclusion is supported by studies of yeast with a partial block in the glycogen shunt due to the cif mutation, which found that when challenged with glucose, the yeast cells accumulate glycolytic intermediates and ATP, which ultimately leads to cell death. The control of the relative fluxes, which is critical to maintain homeostasis, is most likely exerted by the enzymes pyruvate kinase and fructose bisphosphatase. The kinetic properties of yeast PK and mammalian PKM2, the isoform found in cancer, are similar, suggesting that the same mechanism may exist in cancer cells, which, under these conditions, could explain their excess lactate generation. The general principle that homeostasis of metabolite and ATP concentrations is a critical requirement for metabolic function suggests that enzymes and pathways that perform this critical role could be effective drug targets in cancer and other diseases. PMID:26283370

  16. [Research of aerobic granule characteristics with different granule age].

    PubMed

    Zhou, Man; Yang, Chang-Zhu; Pu, Wen-Hong; Luo, Ying-Dong; Gong, Jian-Yu

    2012-03-01

    In the SBR reactor, we studied the different style, physicochemical characteristic, pollutants removal and microbial activity between the short age and long age aerobic granule, respectively. The short age aerobic granule was cultivated from activated floccules sludge and the other was gotten from aerobic granular sludge which was operated stably more than one year. The results indicated that the wet density, the specific gravity and integrated coefficient (IC) of the short age aerobic granule were 1.066 g x cm(-1), 1.013 g x cm(-3) and 98.7%, respectively. And that of long age were 1.026 g x cm(-3), 1.010 g x cm(-3) and 98.4%, respectively. All of them were higher than the long age aerobic granule. The mean diameters of them were 1.9 mm and 2.2 mm, respectively. The settling velocity of short age and long age aerobic granule were 0.005-0.032 m x s(-1) and 0.003-0.028 m x s(-1), respectively, and two kinds of aerobic granule settling velocity increased with the diameter increased. SVI of the former was lower. The COD removal rates of two aerobic granules were above 90%, and the NH4(+) -N removal rates of them were about 85%. The results of the COD effluent concentration, NH4(+) -N effluent concentration and the pollutants concentration in a typical cycle indicated that the short age aerobic granule had better pollutants removal efficiency. The TP removal rates of them were between 40% -90% and 32% -85%, respectively. The TN removal rates of them were about 80%. The SOUR(H) SOUR(NH4) and SOUR(NO2) of the short age aerobic granule were 26.4, 14.8 and 11.2 mg x (h x g)(-1), respectively. And that of long age were 25.2, 14.4 and 8.4 mg x (h x g)(-1), respectively. In summary, the aerobic granule had significantly different physical and chemical characteristics because of different granule age, and the short age aerobic granule exhibited better pollutants removal ability, higher microbial activity and more stability than the long age aerobic granule. PMID:22624385

  17. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance

    PubMed Central

    Lee, Z-W; Teo, X-Y; Tay, E Y-W; Tan, C-H; Hagen, T; Moore, P K; Deng, L-W

    2014-01-01

    Background and Purpose Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2S) in cell survival. The present study investigated the effect of H2S on the viability of cancer and non-cancer cells. Experimental Approach Cancer and non-cancer cells were exposed to H2S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi) was determined by ratiometric pHi measurement using BCECF staining. Key Results Continuous, but not a single, exposure to H2S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. Conclusions and Implications Low and continuous exposure to H2S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy. PMID:24827113

  18. High-throughput RNA sequencing profiles and transcriptional evidence of aerobic respiratory enzymes in sporulating oocysts and sporozoites of Eimeria tenella.

    PubMed

    Matsubayashi, Makoto; Hatta, Takeshi; Miyoshi, Takeharu; Anisuzzaman; Sasai, Kazumi; Shimura, Kameo; Isobe, Takashi; Kita, Kiyoshi; Tsuji, Naotoshi

    2013-08-01

    Seven species of Eimeria are responsible for coccidiosis in chickens. Eimeria tenella is one of the most pathogenic parasites since it is associated with high mortality and great economic impact. The life cycle of the parasite includes development in the environment and in the intestinal tract. We conducted RNA sequencing using a next generation sequencer to obtain transcriptome information from the sporulating oocysts, and sporozoites. We collected 2.8 million 75 bp reads of a short-tag sequence, and 25,880 contigs were generated by the Oases assembler. A Blastx search of GenBank databases revealed that 7780 contigs (30.1%) had significant homology with deposited sequence data (E-value <1e-6); among these contigs, 6051 contigs were similar to those of Toxoplasma gondii while only 513 contigs (6.6%) were similar to those of E. tenella. After an orthological analysis conducted with the UniProt database of T. gondii, 6661 contigs were distributed within the categories of cellular components (1528 gene categories), biological processes (861 gene categories), and molecular functions (241 gene categories). The significantly matched contigs contained high numbers of enzymes associated with glycolysis, TCA, and the pentose-phosphate pathway. Most of the enzymes, measured by quantitative reverse transcription-PCR, were up-regulated in sporulating stage. These results suggest that the intracellular carbohydrate amylopectin could be used as an energy source for ATP production including glycolysis and the pentose-phosphate pathway, which generates NADPH and pentoses. Our data also suggest that Eimeria might possess a partial or similar pathway to the TCA cycle essential for aerobic respiration. Furthermore, the newly annotated and non-annotated contigs might contain E. tenella-specific or novel sequences. PMID:23770269

  19. Phosphorylation and inactivation of yeast 6-phosphofructo-2-kinase contribute to the regulation of glycolysis under hypotonic stress.

    PubMed

    Dihazi, H; Kessler, R; Eschrich, K

    2001-12-01

    Phosphorylation of yeast 6-phosphofructo-2-kinase and its role for the regulation of glycolysis under hypoosmotic conditions were investigated. 6-Phosphofructo-2-kinase was found to be phosphorylated in vitro by protein kinase C at serine 652 and thereby inactivated. Protein phosphatase 2A reversed the phosphorylative inhibition of the enzyme. When yeast cells were shifted to hypotonic media, 6-phosphofructo-2-kinase was found to be phosphorylated and inactivated. Under in vivo conditions, two phosphate residues were incorporated into the enzyme. One of them is bound to serine 652, indicating that this modification was probably caused by yeast protein kinase C1. The second phosphate is bound to Ser8 within the N-terminal peptide T(1-41) which contains several serine residues but no protein kinase C recognition sequence. Site-directed mutagenesis confirmed that the phosphorylation of serine 652 but not the N-terminal modification is responsible for the in vivo inactivation of 6-phosphofructo-2-kinase. The obtained results suggest that the phosphorylation of 6-phosphofructo-2-kinase mediates a response of the cells to an activation of the hypoosmolarity MAP kinase pathway. Via a suppression of glycolysis, the inactivation of 6-phosphofructo-2-kinase is expected to be responsible for the observed accumulation of glucose 6-phosphate, an essential precursor of the cell wall glucans, and the decrease of glycerol, an important osmolyte. PMID:11724581

  20. Oligomeric Procyanidins Interfere with Glycolysis of Activated T Cells. A Novel Mechanism for Inhibition of T Cell Function.

    PubMed

    Goto, Masao; Wakagi, Manabu; Shoji, Toshihiko; Takano-Ishikawa, Yuko

    2015-01-01

    Procyanidins, which are flavonoids that are found in a variety of plant species, reduce or prevent immune disorders, such as allergy and autoimmune diseases, through an unknown mechanism. In the present study, we investigated the effects of procyanidins on the T cell receptor (TCR)-mediated responses of CD4⁺ T cells in vitro. Apple procyanidins strongly suppressed the proliferation of splenic CD4⁺ T cells that were stimulated by an anti-CD3ε antibody, as well as splenocytes stimulated by antigen, but did not alter interleukin (IL)-2 secretion from these cells. Furthermore, we found that oligomeric procyanidins strongly suppressed, in a degree of polymerization dependent manner, the proliferation of activated CD4⁺ T cells, as well as their production of effector cytokines, including glycolysis associated-cytokines, without affecting IL-2 secretion. Additionally, we investigated the inhibitory effects of oligomeric procyanidins on the glycolytic activity of activated CD4⁺ T cells. We show that pentameric procyanidin suppressed L-lactate production and glucose uptake in activated CD4⁺ T cells. These results suggest that oligomeric procyanidins suppress the functions of activated CD4⁺ T cells by interfering with glycolysis. PMID:26492229

  1. Stimulation of glycolysis in Ehrlich ascites carcinoma cells with phenylhydrazonopropanedinitrile and others uncouplers of oxidative phosphorylation.

    PubMed

    Sturdík, E; Cullý, J; Sturdíková, M; Durcová, E

    1986-01-01

    The metabolic consequences of the uncoupling effect of phenylhydrazonopropanedinitrile and others uncouplers of oxidative phosphorylation on Ehrlich ascites carcinoma (EAC) cells were investigated. Upon application of uncouplers in concentrations stimulating the respiration of EAC cells the accelerate glucose uptake and lactate production was observed. The maximal glycolysis stimulation was fourfold in relation to control at the given experimental conditions. Simultaneously the degree of conversion of glucose on lactate was increased. The acceleration of glycolysis was accompanied by stimulation of 14C-labeled adenine and valine incorporation indicating the increased rate of biosynthetic processes. The prolongation of uncoupler action time and application of their higher concentrations cause the inhibition of glycolysis and biosynthetic processes which is evoked with nonspecific effects of the compounds. PMID:3785464

  2. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis

    PubMed Central

    Jinesh, GG; Molina, JR; Huang, L; Laing, NM; Mills, GB; Bar-Eli, M; Kamat, AM

    2016-01-01

    Apoptosis culminates in secondary necrosis due to lack of ATP. Cancer stem cells form spheres after apoptosis by evoking the blebbishield emergency program. Hence, determining how blebbishields avoid secondary necrosis is crucial. Here we demonstrate that N-Myc and VEGFR2 control transformation from blebbishields, during which oligomers of K-Ras, p27, BAD, Bax, and Bak boost glycolysis to avoid secondary necrosis. Non-apoptotic cancer cells also utilize oligomers to boost glycolysis, which differentiates the glycolytic function of oligomers from their apoptotic action. Smac mimetic in combination with TNF-α or TRAIL but not in combination with FasL abrogates transformation from blebbishields by inducing secondary necrosis. Thus blebbishield-mediated transformation is dependent on glycolysis, and Smac mimetics represent potential candidates to abrogate the blebbishield emergency program. PMID:27551498

  3. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis.

    PubMed

    Jinesh, G G; Molina, J R; Huang, L; Laing, N M; Mills, G B; Bar-Eli, M; Kamat, A M

    2016-01-01

    Apoptosis culminates in secondary necrosis due to lack of ATP. Cancer stem cells form spheres after apoptosis by evoking the blebbishield emergency program. Hence, determining how blebbishields avoid secondary necrosis is crucial. Here we demonstrate that N-Myc and VEGFR2 control transformation from blebbishields, during which oligomers of K-Ras, p27, BAD, Bax, and Bak boost glycolysis to avoid secondary necrosis. Non-apoptotic cancer cells also utilize oligomers to boost glycolysis, which differentiates the glycolytic function of oligomers from their apoptotic action. Smac mimetic in combination with TNF-α or TRAIL but not in combination with FasL abrogates transformation from blebbishields by inducing secondary necrosis. Thus blebbishield-mediated transformation is dependent on glycolysis, and Smac mimetics represent potential candidates to abrogate the blebbishield emergency program. PMID:27551498

  4. Multi-tasking of biosynthetic and energetic functions of glycolysis explained by supply and demand logic.

    PubMed

    van Heerden, Johan H; Bruggeman, Frank J; Teusink, Bas

    2015-01-01

    After more than a century of research on glycolysis, we have detailed descriptions of its molecular organization, but despite this wealth of knowledge, linking the enzyme properties to metabolic pathway behavior remains challenging. These challenges arise from multi-layered regulation and the context and time dependence of component functions. However, when viewed as a system that functions according to the principles of supply and demand, a simplifying theoretical framework can be applied to study its regulation logic and to assess the coherence of experimental interpretations. These principles are universally applicable, as they emphasize the common metabolic tasks of glycolysis: the provision of free-energy carriers, and precursors for biosynthesis and stress-related compounds. Here we will review the regulation of multi-tasking by glycolysis and consider how an understanding of this central metabolic pathway can be pursued using general principles, rather than focusing on the biochemical details of constituent components. PMID:25350875

  5. Models of glycolysis: Glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    All organisms require energy in a chemical form for maintenance and growth. In contemporary life this chemical energy is obtained by the synthesis of the phosphoanhydride bonds of ATP. Among the biological processes that yield ATP, fermentation is generally considered primitive, because it operates under anaerobic conditions by substrate-level phosphorylation which does not require compartmentation by membranes. Fermentation by the glycolytic pathway, which is found in almost every living cell, is an especially attractive energy source for primitive life. Glycolysis not only produces useful chemical energy (ATP), but intermediates of this pathway are also involved in amino acid synthesis and photosynthetic carbon-fixation. It is believed that energy and substrates needed for the origin of life were provided by nonenzymatic chemical reactions that resemble the enzyme-mediated reactions of glycolysis. These nonenzymatic reactions would have provided a starting point for the evolutionary development of glycolysis.

  6. Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works?

    PubMed

    Hipkiss, Alan R

    2006-05-01

    The mechanisms by which dietary restriction (DR) suppresses aging are not understood. Suppression of glycolysis by DR could contribute to controlling senescence. Many glycolytic intermediates can glycate proteins and other macromolecules. Methyglyoxal (MG), formed from dihydroxyacetone- and glyceraldehyde-3-phosphates, rapidly glycates proteins, damages mitochondria, and induces a prooxidant state to create a senescent-like condition. Ad libitum-fed and DR animals differ in mitochondrial activity and glycolytic flux rates. Persistent glycolysis in the unrestricted condition would increase the intracellular load of glycating agents (e.g., MG) and increase ROS generation by inactive mitochondria. Occasional glycolysis during DR would decrease MG and reactive oxygen species (ROS) production and could be hormetic, inducing synthesis of glyoxalase-1 and anti-glycating agents (carnosine and polyamines). PMID:16804012

  7. Cardioprotective Properties of Aerobic and Resistance Training Against Myocardial Infarction.

    PubMed

    Barboza, C A; Souza, G I H; Oliveira, J C M F; Silva, L M; Mostarda, C T; Dourado, P M M; Oyama, L M; Lira, F S; Irigoyen, M C; Rodrigues, B

    2016-06-01

    We evaluated the effects of aerobic and resistance exercise training on ventricular morphometry and function, physical capacity, autonomic function, as well as on ventricular inflammatory status in trained rats prior to myocardial infarction. Male Wistar rats were divided into the following groups: sedentary+Sham, sedentary+myocardial infarction, aerobic trained+myocardial infarction, and resistance trained+myocardial infarction. Sham and myocardial infarction were performed after training periods. In the days following the surgeries, evaluations were performed. Aerobic training prevents aerobic (to a greater extent) and resistance capacity impairments, ventricular dysfunction, baroreflex sensitivity and autonomic disorders (vagal tonus decrease and sympathetic tonus increase) triggered by myocardial infarction. Resistance training was able to prevent negative changes to aerobic and resistance capacity (to a greater extent) but not to ventricular dysfunction, and it prevented cardiovascular sympathetic increments. Additionally, both types of training reduced left ventricle inflammatory cytokine concentration. Our results suggest that aerobic and, for the first time, dynamic resistance training were able to reduce sympathetic tonus to the heart and vessels, as well as preventing the increase in pro-inflammatory cytokine concentrations in the left ventricle of trained groups. These data emphasizes the positive effects of aerobic and dynamic resistance training on the prevention of the negative changes triggered by myocardial infarction. PMID:26928914

  8. Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis.

    PubMed

    Arsköld, Emma; Lohmeier-Vogel, Elke; Cao, Rong; Roos, Stefan; Rådström, Peter; van Niel, Ed W J

    2008-01-01

    Metabolic flux analysis indicated that the heterofermentative Lactobacillus reuteri strain ATCC 55730 uses both the Embden-Meyerhof pathway (EMP) and phosphoketolase pathway (PKP) when glucose or sucrose is converted into the three-carbon intermediate stage of glycolysis. In all cases studied, the main flux is through the PKP, while the EMP is used as a shunt. In the exponential growth phase, 70%, 73%, and 84% of the flux goes through the PKP in cells metabolizing (i) glucose plus fructose, (ii) glucose alone, and (iii) sucrose alone, respectively. Analysis of the genome of L. reuteri ATCC 55730 confirmed the presence of the genes for both pathways. Further evidence for the simultaneous operation of two central carbon metabolic pathways was found through the detection of fructose-1,6-bisphosphate aldolase, phosphofructokinase, and phosphoglucoisomerase activities and the presence of phosphorylated EMP and PKP intermediates using in vitro 31P NMR. The maximum specific growth rate and biomass yield obtained on glucose were twice as low as on sucrose. This was the result of low ATP levels being present in glucose-metabolizing cells, although the ATP production flux was as high as in sucrose-metabolizing cells due to a twofold increase of enzyme activities in both glycolytic pathways. Growth performance on glucose could be improved by adding fructose as an external electron acceptor, suggesting that the observed behavior is due to a redox imbalance causing energy starvation. PMID:17965151

  9. PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma.

    PubMed

    Leung, Carmen Oi-ning; Wong, Carmen Chak-lui; Fan, Dorothy Ngo-yin; Kai, Alan Ka-lun; Tung, Edmund Kwok-kwan; Xu, Iris Ming-jing; Ng, Irene Oi-lin; Lo, Regina Cheuk-lam

    2015-05-10

    Hepatocellular carcinoma (HCC) is characteristically one of the most rapidly proliferating tumors which outgrows functional blood supply and results in regional oxygen deprivation. Overexpression of PIM1, a serine/threonine kinase, has been identified recently in human cancers. Knowledge on PIM1 in HCC is however, scarce. By immunohistochemical analysis on 56 human primary HCC samples, we observed overexpression of PIM1 in 39% of the cases. In two independent cohorts of paired primary and extra-hepatic metastatic HCC tissues, PIM1 expression was higher (p=0.002) in the extra-hepatic metastatic HCC tissues as compared with the corresponding primary HCCs. PIM1 was markedly up-regulated in multiple HCC cell lines in hypoxic condition (1% O2) versus normoxia (20% O2). Silencing of PIM1 suppressed HCC cell invasion in vitro as compared to non-target control, and decreased HCC cell proliferation in vitro and tumor growth and metastatic potential in vivo. Knockdown of PIM1 significantly reduced glucose uptake by HCC cells and was associated with decreased levels of p-AKT and key molecules in the glycolytic pathway. Taken together, PIM1 is up-regulated by hypoxia in HCC and promotes tumor growth and metastasis through facilitating cancer cell glycolysis. Targeting PIM1 may have potential role in the management of HCC. PMID:25834102

  10. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion

    PubMed Central

    Fouquerel, Elise; Goellner, Eva M.; Yu, Zhongxun; Gagné, Jean-Philippe; de Moura, Michelle Barbi; Feinstein, Tim; Wheeler, David; Redpath, Philip; Li, Jianfeng; Romero, Guillermo; Migaud, Marie; Van Houten, Bennett; Poirier, Guy G.; Sobol, Robert W.

    2014-01-01

    Summary ARTD1 (PARP1) is a key enzyme involved in DNA repair by synthesizing poly(ADP-ribose) (PAR) in response to strand breaks and plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD+ depletion and ATP loss, however the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we directly compared the effects of ARTD1 activation and direct NAD+ depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD+ depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics based PAR-interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing new insight on the importance of nucleus to mitochondria communication via ARTD1 activation. PMID:25220464

  11. Dysfunction of GABAA receptor glycolysis-dependent modulation in human partial epilepsy

    PubMed Central

    Laschet, Jacques J.; Kurcewicz, Irène; Minier, Frédéric; Trottier, Suzanne; Khallou-Laschet, Jamila; Louvel, Jacques; Gigout, Sylvain; Turak, Baris; Biraben, Arnaud; Scarabin, Jean-Marie; Devaux, Bertrand; Chauvel, Patrick; Pumain, René

    2007-01-01

    A reduction in GABAergic neurotransmission has been put forward as a pathophysiological mechanism for human epilepsy. However, in slices of human epileptogenic neocortex, GABAergic inhibition can be clearly demonstrated. In this article we present data showing an increase in the functional lability of GABAergic inhibition in epileptogenic tissue compared with nonepileptogenic human tissue. We have previously shown that the glycolytic enzyme GAPDH is the kinase involved in the glycolysis-dependent endogenous phosphorylation of the α1-subunit of GABAA receptor, a mechanism necessary for maintaining GABAA function. In human epileptogenic cortex obtained during curative surgery of patients with partial seizures, we demonstrate an intrinsic deficiency of GABAA receptor endogenous phosphorylation resulting in an increased lability of GABAergic currents in neurons isolated from this tissue when compared with neurons from nonepileptogenic human tissue. This feature was not related to a reduction in the number of GABAA receptor α1-subunits in the epileptogenic tissue as measured by [3H]flunitrazepam photoaffinity labeling. Maintaining the receptor in a phosphorylated state either by favoring the endogenous phosphorylation or by inhibiting a membrane-associated phosphatase is needed to sustain GABAA receptor responses in epileptogenic cortex. The increased functional lability induced by the deficiency in phosphorylation can account for transient GABAergic disinhibition favoring seizure initiation and propagation. These findings imply new therapeutic approaches and suggest a functional link to the regional cerebral glucose hypometabolism observed in patients with partial epilepsy, because the dysfunctional GABAergic mechanism depends on the locally produced glycolytic ATP. PMID:17360668

  12. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate.

    PubMed

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H Douglas; Munasinghe, Jeeva P; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P; Mitchell, James B; Krishna, Murali C

    2013-05-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2<10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 is the major transporter for pyruvate and the analog 3-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs. PMID:22692861

  13. Wingate test performance in children with asthma: aerobic or anaerobic limitation?

    PubMed

    Counil, F P; Varray, A; Karila, C; Hayot, M; Voisin, M; Préfaut, C

    1997-04-01

    To investigate the anaerobic capacity in children with bronchial asthma, eight male children with atopic asthma (age: 12 +/- 1.7 yr) and seven healthy control subjects (age: 12 +/- 1 yr) performed a 30-s all-out exercise test: the Wingate anaerobic test (WanT). Post-exercise plasma epinephrine (E), norepinephrine (NE), venous blood lactate (La), and blood pH levels were determined. Peak power (Ppeak), mean power (Pm), and total energy expenditure (Wtot) during the WanT were assessed. The relative importance of aerobic (WO2) and anaerobic (Wana) energy release during the WanT was also evaluated. In comparison with control subjects, the children with asthma exhibited lower Ppeak (W.kg-1): 6 +/- 1.14 vs 7.3 +/- 0.5, P < 0.05; lower Pm (W.kg-1): 4.7 +/- 0.8 vs 5.9 +/- 0.5, P < 0.05; and lower Wtot (Jg-1): 140.3 +/- 25 vs 176.9 +/- 19, P < 0.05. The relative contribution of WO2 (26%) and Wana (74%) to the Wtot was identical in both groups. Blood lactate and pH kinetics revealed significantly lower La values and less acidosis in the asthmatic group (P < 0.001). Lastly, E (pg.ml-1) concentrations were lower in the asthmatic group: 274.96 +/- 84.58 vs 901.28 +/- 604.76, P < 0.05. These results suggest a reduced anaerobic capacity in children with asthma. A diminished adrenergic response to exhausting exercise, leading to a decreased anaerobic glycolysis, could partly account for this phenomenon. PMID:9107623

  14. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells

    PubMed Central

    Wen, Ruiling; Xiao, Yingying; Tang, Jun

    2015-01-01

    Cancer metabolism has greatly interested researchers. Mammalian target of rapamycin (mTOR) is dysregulated in a variety of cancers and considered to be an appealing therapeutic target. It has been proven that growth factor signal, mediated by mTOR complex 1 (mTORC1), drives cancer metabolism by regulating key enzymes in metabolic pathways. However, the role of mTORC2 in cancer metabolism has not been thoroughly investigated. In this study, by employing automated spectrophotometry, we found the level of glucose uptake was decreased in non-small-cell lung carcinoma (NSCLC) A549, PC-9 and SK-MES-1 cells treated with rapamycin or siRNA against Raptor, indicating that the inhibition of mTORC1 attenuated glycolytic metabolism in NSCLC cells. Moreover, the inhibition of AKT reduced glucose uptake in the cells as well, suggesting the involvement of AKT pathway in mTORC1 mediated glycolytic metabolism. Furthermore, our results showed a significant decrease in glucose uptake in rictor down-regulated NSCLC cells, implying a critical role of mTORC2 in NSCLC cell glycolysis. In addition, the experiments for MTT, ATP, and clonogenic assays demonstrated a reduction in cell proliferation, cell viability, and colony forming ability in mTOR inhibiting NSCLC cells. Interestingly, the combined application of mTORC1/2 inhibitors and glycolysis inhibitor not only suppressed the cell proliferation and colony formation, but also induced cell apoptosis, and such an effect of the combined application was stronger than that caused by mTORC1/2 inhibitors alone. In conclusion, this study reports a novel effect of mTORC2 on NSCLC cell metabolism, and reveals the synergistic effects between mTOR complex 1/2 and glycolysis inhibitors, suggesting that the combined application of mTORC1/2 and glycolysis inhibitors may be a new promising approach to treat NSCLC. PMID:26176608

  15. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms.

    PubMed

    Yu, Huatao; Wang, Tai

    2016-01-01

    Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms. PMID:27252723

  16. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway

    PubMed Central

    Ma, Ting; Fan, Bo-Yi; Zhang, Chao; Zhao, Hui-Jun; Han, Chao; Gao, Cai-Yun; Luo, Jian-Guang; Kong, Ling-Yi

    2016-01-01

    Metabolomics can be used to identify potential markers and discover new targets for future therapeutic interventions. Here, we developed a novel application of the metabonomics method based on gas chromatography-mass spectrometry (GC/MS) analysis and principal component analysis (PCA) for rapidly exploring the anticancer mechanism of physapubenolide (PB), a cytotoxic withanolide isolated from Physalis species. PB inhibited the proliferation of hepatocellular carcinoma cells in vitro and in vivo, accompanied by apoptosis-related biochemical events, including the cleavage of caspase-3/7/9 and PARP. Metabolic profiling analysis revealed that PB disturbed the metabolic pattern and significantly decreased lactate production. This suggests that the suppression of glycolysis plays an important role in the anti-tumour effects induced by PB, which is further supported by the decreased expression of glycolysis-related genes and proteins. Furthermore, the increased level of p53 and decreased expression of p-Akt were observed, and the attenuated glycolysis and enhanced apoptosis were reversed in the presence of Akt cDNA or p53 siRNA. These results confirm that PB exhibits anti-cancer activities through the Akt-p53 pathway. Our study not only reports for the first time the anti-tumour mechanism of PB, but also suggests that PB is a promising therapeutic agent for use in cancer treatments and that metabolomic approaches provide a new strategy to effectively explore the molecular mechanisms of promising anticancer compounds. PMID:27416811

  17. Proteomic Dissection of Endosperm Starch Granule Associated Proteins Reveals a Network Coordinating Starch Biosynthesis and Amino Acid Metabolism and Glycolysis in Rice Endosperms

    PubMed Central

    Yu, Huatao; Wang, Tai

    2016-01-01

    Starch biosynthesis and starch granule packaging in cereal endosperms involve a coordinated action of starch biosynthesis enzymes and coordination with other metabolisms. Because directly binding to starch granules, starch granule-associated proteins (SGAPs) are essential to understand the underlying mechanisms, however the information on SGAPs remains largely unknown. Here, we dissected developmentally changed SGAPs from developing rice endosperms from 10 to 20 days after flowering (DAF). Starch granule packaging was not completed at 10 DAF, and was finished in the central endosperm at 15 DAF and in the whole endosperm at 20 DAF. Proteomic analysis with two-dimensional differential in-gel electrophoresis and mass spectrometry revealed 115 developmentally changed SGAPs, representing 37 unique proteins. 65% of the unique proteins had isoforms. 39% of the identified SGAPs were involved in starch biosynthesis with main functions in polyglucan elongation and granule structure trimming. Almost all proteins involved in starch biosynthesis, amino acid biosynthesis, glycolysis, protein folding, and PPDK pathways increased abundance as the endosperm developed, and were predicted in an interaction network. The network represents an important mechanism to orchestrate carbon partitioning among starch biosynthesis, amino acid biosynthesis and glycolysis for efficient starch and protein storage. These results provide novel insights into mechanisms of starch biosynthesis and its coordination with amino acid metabolisms and glycolysis in cereal endosperms. PMID:27252723

  18. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    PubMed

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT. PMID:26708213

  19. 3-Bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth

    PubMed Central

    WANG, TING-AN; ZHANG, XIAO-DONG; GUO, XING-YU; XIAN, SHU-LIN; LU, YUN-FEI

    2016-01-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT. PMID:26708213

  20. RESISTANCE TRAINING AS A PRECONDITIONING STRATEGY FOR ENHANCING AEROBIC EXERCISE TRAINING OUTCOMES IN COPD

    PubMed Central

    Covey, Margaret K.; Collins, Eileen G.; Reynertson, Sandra I.; Dilling, Daniel F.

    2014-01-01

    Purpose Aerobic exercise training is a recognized approach for improving functional capacity in COPD. People with greater disease severity often have difficulty achieving higher aerobic exercise training intensity. The effects of resistance training prior to aerobic training were examined to determine if this sequential approach was associated with greater gains in functional status than aerobic training alone or concurrent aerobic and resistance training. Methods Patients were randomized to: 1) sequential resistance then aerobic training (RT-then-AT) (8 weeks resistance training followed by 8 weeks aerobic exercise training), 2) control group (CE-then-AT+RT) (8 weeks of ‘sham’ training followed by 8 weeks concurrent aerobic and resistance training), 3) control group (CE-then-AT) (8 weeks ‘sham’ training followed by 8 weeks aerobic training). Outcomes were assessed at study entry, after week 8, and after week 16: aerobic exercise performance; muscle strength and endurance. Results 75 patients completed training: FEV1 %pred 40±10, V̇O2peak %predicted, 71±22, fat-free mass index 19.5±3.1. RT-then-AT had greater acquisition of peripheral muscle endurance than CE-then-AT+RT and CE-then-AT, but improvements in aerobic exercise performance were similar. Improvements in muscle strength were similar between RT-then-AT and CE-then-AT+RT. Sarcopenia was associated with poorer attendance, and lower aerobic and resistance training volumes. Conclusion Although the sequential approach to resistance and aerobic training yielded a greater increase in muscle endurance and higher resistance training volume compared to concurrent resistance and aerobic training, other training outcomes were similar between the two groups, thus the sequential approach is not clearly superior to the concurrent approach in severe COPD. ClinicalTrials.gov Identifier NCT01058213. PMID:24958605

  1. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae.

    PubMed

    van Rossum, Harmen M; Kozak, Barbara U; Niemeijer, Matthijs S; Duine, Hendrik J; Luttik, Marijke A H; Boer, Viktor M; Kötter, Peter; Daran, Jean-Marc G; van Maris, Antonius J A; Pronk, Jack T

    2016-05-01

    Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction. PMID:26895788

  2. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation. PMID:24211486

  3. Saline storage of aerobic granules and subsequent reactivation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Lin, Lin

    2014-11-01

    Loss of structural stability and bioactivity during long-term storage and operation is primary challenge to field applications of aerobic granular processes. This study for the first time stored aerobic granules in 5%w/w NaCl solution at 4°C for 187d. The stored granules were then successfully reactivated and used for 85d in sequencing batch reactors (SBR) and continuous-flow reactors (CFR) at varying levels of chemical oxygen demand (COD). High-throughput sequencing results reveal that Thauera sp., Paracoccus sp., and Nitrosomonas sp. were the predominant in the stored aerobic granules, and Pseudoxanthomonas sp. accumulated during the reactivation process. Saline storage, in which cells are in an unculturable state by saline stress, is a promising storage process for aerobic granules. PMID:25270079

  4. Aerobic capacity is correlated with the ranking of boxers.

    PubMed

    Bruzas, Vidas; Stasiulis, Arvydas; Cepulenas, Algirdas; Mockus, Pranas; Statkeviciene, Birute; Subacius, Vitalijus

    2014-08-01

    The goal was to assess the aerobic capacity of boxers and its relation with sport mastery. Participants were 12 boxers from the Lithuanian national team (VO₂max - 58.03 ± 3.00 ml/kg/min) of different weight classes. Their sport mastery ranking was established according to their achieved results during the last years of participation in amateur boxing contests. In a graduated treadmill running test, the boxers' aerobic capacity indices were established. Running speed at first and second ventilatory thresholds, VO₂max, and maximal oxygen pulse had moderate to strong correlations with the boxers' sport mastery ranking. Aerobic capacity is an important fitness component of boxers in all weight categories. Special attention should be paid to development of cardiac capacity in the boxers' training processes, as with aerobic power and anaerobic threshold training. PMID:25153738

  5. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge.

    PubMed

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-09-15

    Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1-0.2 mgL(-1)) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH4/hg VSS) and aerobic activity (SOUR: 2.21 mMO2/hg VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and PCP on microbial community. Furthermore, nucleotide sequencing indicated that the main microorganisms for PCP degradation might be related to Actinobacterium and Sphingomonas. These results provided insights into situ bioremediation of environments contaminated by PCP and had practical implications for the strategies of PCP degradation. PMID:25151236

  6. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  7. [Heterotrophic Nitrification and Aerobic Denitrification of the Hypothermia Aerobic Denitrification Bacterium: Arthrobacter arilaitensis].

    PubMed

    He, Teng-xia; Ni, Jiu-pai; Li, Zhen-lun; Sun, Quan; Ye Qing; Xu, Yi

    2016-03-15

    High concentrations of ammonium, nitrate and nitrite nitrogen were employed to clarify the abilities of heterotrophic nitrification and aerobic denitrification of Arthrobacter arilaitensis strain Y-10. Meanwhile, by means of inoculating the strain suspension into the mixed ammonium and nitrate, ammonium and nitrite nitrogen simulated wastewater, we studied the simultaneous nitrification and denitrification ability of Arthrobacter arilaitensis strain Y-10. In addition, cell optical density was assayed in each nitrogen removal process to analyze the relationship of cell growth and nitrogen removal efficiency. The results showed that the hypothermia denitrification strain Arthrobacter arilaitensis Y-10 exhibited high nitrogen removal efficiency during heterotrophic nitrification and aerobic denitrification. The ammonium, nitrate and nitrite removal rates were 65.0%, 100% and 61.2% respectively when strain Y-10 was cultivated for 4 d at 15°C with initial ammonium, nitrate and nitrite nitrogen concentrations of 208.43 mg · L⁻¹, 201.16 mg · L⁻¹ and 194.33 mg · L⁻¹ and initial pH of 7.2. Nitrite nitrogen could only be accumulated in the medium containing nitrate nitrogen during heterotrophic nitrification and aerobic denitrification process. Additionally, the ammonium nitrogen was mainly removed in the inorganic nitrogen mixed synthetic wastewater. In short, Arthrobacter arilaitensis Y-10 could conduct nitrification and denitrification effectively under aerobic condition and the ammonium nitrogen removal rate was more than 80.0% in the inorganic nitrogen mixed synthetic wastewater. PMID:27337904

  8. Effectiveness of citrate buffer-fluoride mixture in Terumo tubes as an inhibitor of in vitro glycolysis

    PubMed Central

    Bonetti, Graziella; Carta, Mariarosa; Montagnana, Martina; Lo Cascio, Claudia; Bonfigli, Anna Rita; Mosca, Andrea; Testa, Roberto

    2016-01-01

    Introduction Glycolysis affects glucose determination in vitro. The placement of sample tubes in ice-water slurry with plasma separation within 30 minutes is recommended, or alternatively the use of a glycolysis inhibitor. The aim of our two-steps study was to evaluate which Terumo tube is best for glucose determination in routine clinical setting. Materials and methods In the first study, blood from 100 volunteers was collected into lithium heparin (LH), NaF/Na heparin (FH) and NaF/citrate buffer/Na2EDTA (FC-Mixture) tubes. LH sample was treated as recommended and considered as reference, while FH and FC-Mixture samples were aliquoted, maintained at room temperature (RT) for 1, 2 and 4 hours; centrifuged and plasma analysed in triplicate. In the second study, samples from 375 volunteers were collected in LH, FH and FC-Mixture tubes and held at RT before centrifugation from 10 to 340 minutes, depending on each laboratory practice. Samples were analysed in one analytical run. Results In the first study, FH glucose concentrations were 5.15 ± 0.66 mmol/L, 5.05 ± 0.65 mmol/L and 5.00 ± 0.65 mmol/L (P < 0.001) in tubes stored at RT for 1, 2 and 4 hours, respectively. Mean biases in all time points exceeded the analytical goal for desirable bias based on biological variation criteria. FC-Mixture glucose concentrations were 5.48 ± 0.65 mmol/L, 5.46 ± 0.6 mmol/L and 5.46 ± 0.64 mmol/L in tubes stored at RT for 1, 2 and 4 hours, respectively. Mean biases for FC-Mixture glucose in all time points reached optimal analytical goals. In the second study, the biases for LH and FH glucose compared to reference FC-Mixture glucose exceeded the preset analytical goals, regardless of the blood collection to centrifugation time interval. Conclusions FC-mixture tubes glucose concentrations were preserved up to 4h storage at RT. We confirmed that NaF alone does not allow immediate glycolysis inhibition in real life pre-centrifugation storage conditions (up to 340 minutes). FC

  9. MicroRNA-138 suppresses proliferation, invasion and glycolysis in malignant melanoma cells by targeting HIF-1α

    PubMed Central

    CHEN, YAO; CAO, KE; WANG, SHAOHUA; CHEN, JIA; HE, BIN; HE, GU; CHEN, YONG; PENG, BIN; ZHOU, JIANDA

    2016-01-01

    MicroRNAs (miRs) may induce mRNA degradation or inhibit protein translation by directly binding to the 3′-untranslational region of target mRNAs. It has been reported that miR-138 is downregulated in malignant melanoma (MM) cells. However, the role of miR-138 in MM cell proliferation, invasion and energy metabolism remains unknown. These were investigated using reverse transcription-quantitative polymerase chain reaction was used to evaluate the expression of miR-138 and the mRNA expression of hypoxia-inducible factor-1α (HIF-1α), as HIF-1α serves a crucial role in glycolysis, which is important for tumor growth. In addition, western blot analysis was used to detected the protein expression of HIF-1α, while MTT and Transwell assays evaluated cell proliferation and invasion, respectively. Furthermore, glucose consumption and lactic acid production were assessed. These tests were conducted using the normal human melanocyte cell line HM and the MM cell line WM451, which was transfected variously with scramble miR mimics, miR-138 mimics, miR-138 inhibitor, non-specific small interfering (si)RNA, HIF-1α siRNA, or co-transfected with miR-138 mimics and pc-DNA3.1(+)-HIF-1α plasmid. The results showed that miR-138 was significantly downregulated in MM WM451 cells compared to a normal melanocyte cell line HM. Overexpression of miR-138 significantly inhibited the proliferation and invasion of WM451 cells. These effects were similar to those induced by the siRNA-mediated knockdown of HIF-1α, a direct target of miR-138. Further investigation found that miR-138 negatively regulated the protein expression of HIF-1α in WM451 cells. Moreover, upregulation of miR-138 notably inhibited the glycolysis level, as demonstrated by reduced glucose consumption and lactic acid production, which could be reversed by the overexpression of HIF-1α. In summary, the present study demonstrated that miR-138 is able to inhibit proliferation, invasion and glycolysis in MM cells

  10. A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse.

    PubMed

    Kesten, Duygu; Kummer, Ursula; Sahle, Sven; Hübner, Katrin

    2015-11-01

    The onset of aerobic fermentation (the so-called Crabtree effect) in yeast has long been of interest. However, the underlying mechanisms at the metabolic level are not yet fully understood. We developed a detailed kinetic model of the aerobic central metabolism of Saccharomyces cerevisiae comprising glycolysis, TCA cycle and major transport reactions across the mitochondrial membrane to investigate this phenomenon. It is the first one of this extent in the literature. The model is able to reproduce experimental steady state fluxes and time-course behavior after a glucose pulse. Due to the lack of parameter identifiability in the model, we analyze a model ensemble consisting of a set of differently parameterized models for robust findings. The model predicts that the cooperativity of pyruvate decarboxylase with respect to pyruvate and the capacity difference between alcohol dehydrogenase and the pyruvate dehydrogenase bypass play a major role for the onset of the Crabtree effect. PMID:26176974

  11. Maternal and fetal responses to low-impact aerobic dance.

    PubMed

    McMurray, R G; Katz, V L; Poe, M P; Hackney, A C

    1995-07-01

    The purpose of this study was to compare the physiologic responses to low-impact aerobics using treadmill walking as a control. Ten pregnant women between 21 and 28 weeks of gestation completed 40 minutes of low-impact aerobic dance. The maternal and fetal responses were then compared to 40 minutes of walking at the same heart rate. The aerobics program consisted of a 10-minute warm-up, 20 minutes of high-intensity exercise, and 10 minutes of decreasing intensity. Heart rates were recorded every 5 minutes, and oxygen uptake (VO2) and fetal response (real-time ultrasound) were obtained every 10 minutes. The maternal heart rates were similar during both trials (overall, 133 +/- 6 beat/min). VO2 values during walking were about 4 mL/kg/min greater than during aerobic dance (p < or = 0.003). Minute ventilation (VE) was also greater during walking (28.7 +/- 6.4 versus 24.1 +/- 3.4 L/min, p < or = 0.001). Respiratory exchange ratios and the ventilatory equivalents for oxygen (VE/VO2) were similar for both trials. Aerobic dance caused greater fetal heart rates than walking (p < or = 0.001), differences being as high as 25 beat/min. The fetal rates had returned toward rest within 5 minutes following exercise. Low-impact aerobic dance, compared with walking at similar heart rates, results in a lower maternal metabolic rate and increases the transient stress on the fetus. PMID:7575837

  12. The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    PubMed Central

    2010-01-01

    Background The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma. Methods In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism. Results In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses. Conclusions Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma. PMID:20691077

  13. Sucralose: lack of effects on sperm glycolysis and reproduction in the rat.

    PubMed

    Kille, J W; Ford, W C; McAnulty, P; Tesh, J M; Ross, F W; Willoughby, C R

    2000-01-01

    Certain chlorine-substituted sugars with chemical similarities to sucralose have been demonstrated previously to diminish or inhibit sperm glycolysis and fertility in the rat ([Ford]). In order to investigate this potential for sucralose, epididymal spermatozoa were recovered from rats exposed in vivo to oral doses of one of three of these substituted sugars: 6-chloroglucose (6-CG, 24mg/kg/day, positive control), sucralose (500mg/kg/day, over 300 times the expected human daily intake), or a 6'-substituted isomer of sucralose, trichloro de-oxy sucrose (TCDS, 100mg/kg/day, a potential trace impurity in commercial sucralose); distilled water served as the negative control. After incubation of the spermatozoa with D-[U-(14)C] glucose, measurements of (14)CO(2) and of ATP content showed no impairment of the glycolytic ability of spermatozoa in any of the groups except for a marked inhibition for those exposed to 6-CG, the positive control. In order to determine whether other parameters of reproduction and fertility could be affected, reproductive endpoints were examined following oral exposure of male and female rats to sucralose. Sucralose was fed in the diet at concentrations of 0, 0.3, 1.0 and 3.0% (approx. 100, 365 and 1150 times the EDI) to groups of 30 male and 30 female rats for 10 weeks prior to mating, and continued through two subsequent generations until weaning of the F(2) pups. Two litters were produced per generation. Food consumption and weight gain in the F(0) and F(1) generations were depressed in all sucralose groups before mating and in all four litters prior to weaning. The decrease in initial average weight for newborn pups probably reflects the increased litter sizes noted for sucralose-treated groups and the reduced food consumption of the dams during gestation and lactation. The latter is a result primarily of the unpalatability of sucralose to rats ([McNeil,]). Caecal enlargement (a common animal response to large doses of indigestible material

  14. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway.

    PubMed

    Payen, Valéry L; Porporato, Paolo E; Baselet, Bjorn; Sonveaux, Pierre

    2016-04-01

    Metabolic adaptations are intimately associated with changes in cell behavior. Cancers are characterized by a high metabolic plasticity resulting from mutations and the selection of metabolic phenotypes conferring growth and invasive advantages. While metabolic plasticity allows cancer cells to cope with various microenvironmental situations that can be encountered in a primary tumor, there is increasing evidence that metabolism is also a major driver of cancer metastasis. Rather than a general switch promoting metastasis as a whole, a succession of metabolic adaptations is more likely needed to promote different steps of the metastatic process. This review addresses the contribution of pH, glycolysis and the pentose phosphate pathway, and a companion paper summarizes current knowledge regarding the contribution of mitochondria, lipids and amino acid metabolism. Extracellular acidification, intracellular alkalinization, the glycolytic enzyme phosphoglucose isomerase acting as an autocrine cytokine, lactate and the pentose phosphate pathway are emerging as important factors controlling cancer metastasis. PMID:26626411

  15. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.

    PubMed

    Ainscow, E K; Brand, M D

    1999-12-01

    Previously [Ainscow, E.K. & Brand, M.D. (1999) Eur. J. Biochem. 263, 671-685], top-down control analysis was used to describe the control pattern of energy metabolism in rat hepatocytes. The system was divided into nine reaction blocks (glycogen breakdown, glucose release, glycolysis, lactate production, NADH oxidation, pyruvate oxidation, mitochondrial proton leak, mitochondrial phosphorylation and ATP consumption) linked by five intermediates (intracellular glucose 6-phosphate, pyruvate and ATP levels, cytoplasmic NADH/NAD ratio and mitochondrial membrane potential). The kinetic responses (elasticities) of reaction blocks to intermediates were determined and used to calculate control coefficients. In the present paper, these elasticities and control coefficients are used to quantify the internal regulatory pathways within the cell. Flux control coefficients were partitioned to give partial flux control coefficients. These describe how strongly one block of reactions controls the flux through another via its effects on the concentration of a particular intermediate. Most flux control coefficients were the sum of positive and negative partial effects acting through different intermediates; these partial effects could be large compared to the final control strength. An important result was the breakdown of the way ATP consumption controlled respiration: changes in ATP level were more important than changes in mitochondrial membrane potential in stimulating oxygen consumption when ATP consumption increased. The partial internal response coefficients to changes in each intermediate were also calculated; they describe how steady state concentrations of intermediates are maintained. Increases in mitochondrial membrane potential were opposed mostly by decreased supply, whereas increases in glucose-6-phosphate, NADH/NAD and pyruvate were opposed mostly by increased consumption. Increases in ATP were opposed significantly by both decreased supply and increased consumption

  16. The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

    PubMed

    Godzik, Katharina; Coleman, Michael P

    2015-04-01

    The axon-protective Wallerian degeneration slow (WLD(S)) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLD(S) partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLD(S) after cut, suggesting that the maintenance of NAD levels in Wld(S) neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1(-/-)), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases. PMID:25352062

  17. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children.

    PubMed

    Chaddock-Heyman, Laura; Erickson, Kirk I; Chappell, Michael A; Johnson, Curtis L; Kienzler, Caitlin; Knecht, Anya; Drollette, Eric S; Raine, Lauren B; Scudder, Mark R; Kao, Shih-Chun; Hillman, Charles H; Kramer, Arthur F

    2016-08-01

    The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL) perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development. PMID:27419884

  18. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  19. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle.

    PubMed

    Slaninova, Vera; Krafcikova, Michaela; Perez-Gomez, Raquel; Steffal, Pavel; Trantirek, Lukas; Bray, Sarah J; Krejci, Alena

    2016-02-01

    Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues. PMID:26887408

  20. Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle

    PubMed Central

    Slaninova, Vera; Krafcikova, Michaela; Perez-Gomez, Raquel; Steffal, Pavel; Trantirek, Lukas; Bray, Sarah J.

    2016-01-01

    Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues. PMID:26887408

  1. "Aerobic" Writing: A Writing Practice Model.

    ERIC Educational Resources Information Center

    Crisp, Sally Chandler

    "Aerobic writing" is a writing center strategy designed to keep students in writing "shape." Like aerobic exercise, aerobic writing is sustained for a certain length of time and done on a regular basis at prescribed time intervals. The program requires students to write at least two times a week for approximately an hour each time. Students write,…

  2. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  3. Causes of upregulation of glycolysis in lymphocytes upon stimulation. A comparison with other cell types.

    PubMed

    Stark, Heiko; Fichtner, Maximilian; König, Rainer; Lorkowski, Stefan; Schuster, Stefan

    2015-11-01

    In this review, we revisit the metabolic shift from respiration to glycolysis in lymphocytes upon activation, which is known as the Warburg effect in tumour cells. We compare the situation in lymphocytes with those in several other cell types, such as muscle cells, Kupffer cells, microglia cells, astrocytes, stem cells, tumour cells and various unicellular organisms (e.g. yeasts). We critically discuss and compare several explanations put forward in the literature for the observation that proliferating cells adopt this apparently less efficient pathway: hypoxia, poisoning of competitors by end products, higher ATP production rate, higher precursor supply, regulatory effects, and avoiding harmful effects (e.g. by reactive oxygen species). We conclude that in the case of lymphocytes, increased ATP production rate and precursor supply are the main advantages of upregulating glycolysis. PMID:26382968

  4. PKM2 and cancer: The function of PKM2 beyond glycolysis

    PubMed Central

    DONG, GAOCHAO; MAO, QIXING; XIA, WENJIE; XU, YOUTAO; WANG, JIE; XU, LIN; JIANG, FENG

    2016-01-01

    Metabolic reprogramming is a hallmark of cancer cells and is used by cancer cells for growth and survival. Pyruvate kinase muscle isozyme M2 (PKM2) is a limiting glycolytic enzyme that catalyzes the final step in glycolysis, which is key in tumor metabolism and growth. The present review discusses the expression and regulation of PKM2, and reports the dominant role that PKM2 plays in glycolysis to achieve the nutrient demands of cancer cell proliferation. In addition, the present study discusses the non-metabolic function of PKM2, and its role as a coactivator and protein kinase, which contributes to tumorigenesis. Furthermore, conflicting studies concerning the role of PKM2 as a therapeutic target are reviewed. The improved understanding of PKM2 may provide a noval approach for cancer treatment. PMID:26998110

  5. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models

    PubMed Central

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H. V.

    2016-01-01

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine’s ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease. PMID:27145922

  6. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models.

    PubMed

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H V

    2016-01-01

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine's ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease. PMID:27145922

  7. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes

    PubMed Central

    Smallbone, Kieran; Messiha, Hanan L.; Carroll, Kathleen M.; Winder, Catherine L.; Malys, Naglis; Dunn, Warwick B.; Murabito, Ettore; Swainston, Neil; Dada, Joseph O.; Khan, Farid; Pir, Pınar; Simeonidis, Evangelos; Spasić, Irena; Wishart, Jill; Weichart, Dieter; Hayes, Neil W.; Jameson, Daniel; Broomhead, David S.; Oliver, Stephen G.; Gaskell, Simon J.; McCarthy, John E.G.; Paton, Norman W.; Westerhoff, Hans V.; Kell, Douglas B.; Mendes, Pedro

    2013-01-01

    We present an experimental and computational pipeline for the generation of kinetic models of metabolism, and demonstrate its application to glycolysis in Saccharomyces cerevisiae. Starting from an approximate mathematical model, we employ a “cycle of knowledge” strategy, identifying the steps with most control over flux. Kinetic parameters of the individual isoenzymes within these steps are measured experimentally under a standardised set of conditions. Experimental strategies are applied to establish a set of in vivo concentrations for isoenzymes and metabolites. The data are integrated into a mathematical model that is used to predict a new set of metabolite concentrations and reevaluate the control properties of the system. This bottom-up modelling study reveals that control over the metabolic network most directly involved in yeast glycolysis is more widely distributed than previously thought. PMID:23831062

  8. Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis.

    PubMed Central

    Poolman, B; Bosman, B; Kiers, J; Konings, W N

    1987-01-01

    The decreased response of the energy metabolism of lactose-starved Streptococcus cremoris upon readdition of lactose is caused by a decrease of the glycolytic activity (B. Poolman, E. J. Smid, and W. N. Konings, J. Bacteriol. 169:1460-1468, 1987). The decrease in glycolysis is accompanied by a decrease in the activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate mutase. The steady-state levels of pathway intermediates upon refeeding with lactose after various periods of starvation indicate that the decreased glycolysis is primarily due to diminished glyceraldehyde-3-phosphate dehydrogenase activity. Furthermore, quantification of the control strength exerted by glyceraldehyde-3-phosphate dehydrogenase on the overall activity of the glycolytic pathway shows that this enzyme can be significantly rate limiting in nongrowing cells. PMID:2824452

  9. NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+

    PubMed Central

    Ruminot, Iván; Gutiérrez, Robin; Peña-Münzenmayer, Gaspar; Añazco, Carolina; Sotelo-Hitschfeld, Tamara; Lerchundi, Rodrigo; Niemeyer, María Isabel; Shull, Gary E.; Barros, L. Felipe

    2011-01-01

    Excitatory synaptic transmission stimulates brain tissue glycolysis. This phenomenon is the signal detected in FDG-PET imaging and, through enhanced lactate production, is also thought to contribute to the fMRI signal. Using a method based on Förster resonance energy transfer in mouse astrocytes, we have recently observed that a small rise in extracellular K+ can stimulate glycolysis by over 300% within seconds. The K+ response was blocked by ouabain, but intracellular engagement of the Na+/K+ ATPase pump with Na+ was ineffective, suggesting that the canonical feedback regulatory pathway involving the Na+ pump and ATP depletion is only permissive and that a second mechanism is involved. Because of their predominant K+ permeability and high expression of the electrogenic Na+/HCO3− cotransporter NBCe1, astrocytes respond to a rise in extracellular K+ with plasma membrane depolarization and intracellular alkalinization. In the present article we show that a fast glycolytic response can be elicited independently of K+ by plasma membrane depolarization or by intracellular alkalinization. The glycolytic response to K+ was absent in astrocytes from NBCe1 null mice (Slc4a4) and was blocked by functional or pharmacological inhibition of the NBCe1. Hippocampal neurons acquired K+-sensitive glycolysis upon heterologous NBCe1 expression. The phenomenon could also be reconstituted in HEK293 cells by co-expression of the NBCe1 and a constitutively-open K+ channel. We conclude that the NBCe1 is a key element in a feedforward mechanism linking excitatory synaptic transmission to fast modulation of glycolysis in astrocytes. PMID:21976511

  10. Taxonomy of Aerobic Marine Eubacteria

    PubMed Central

    Baumann, Linda; Baumann, Paul; Mandel, M.; Allen, Richard D.

    1972-01-01

    Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are

  11. Taxonomy of aerobic marine eubacteria.

    PubMed

    Baumann, L; Baumann, P; Mandel, M; Allen, R D

    1972-04-01

    Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are

  12. SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells

    PubMed Central

    Cui, Yang; Qin, Lili; Wu, Jing; Qu, Xuan; Hou, Chen; Sun, Wenyan; Li, Shiyong; Vaughan, Andrew T. M.; Li, Jian Jian; Liu, Jiankang

    2015-01-01

    SIRT3 is a key NAD+-dependent protein deacetylase in the mitochondria of mammalian cells, functioning to prevent cell aging and transformation via regulation of mitochondrial metabolic homeostasis. However, SIRT3 is also found to express in some human tumors; its role in these SIRT3-expressing tumor cells needs to be elucidated. This study demonstrated that the expression of SIRT3 was elevated in a group of gastric cancer cells compared to normal gastric epithelial cells. Although SIRT3 expression levels were increased in the gastric tumor tissues compared to the adjacent non-tumor tissues, SIRT3 positive cancer cells were more frequently detected in the intestinal type gastric cancers than the diffuse type gastric cancers, indicating that SIRT3 is linked with subtypes of gastric cancer. Overexpression of SIRT3 promoted cell proliferation and enhanced ATP generation, glucose uptake, glycogen formation, MnSOD activity and lactate production, which were inhibited by SIRT3 knockdown, indicating that SIRT3 plays a role in reprogramming the bioenergetics in gastric tumor cells. Further analysis revealed that SIRT3 interacted with and deacetylated the lactate dehydrogenase A (LDHA), a key protein in regulating anaerobic glycolysis, enhancing LDHA activity. In consistence, a cluster of glycolysis-associated genes was upregulated in the SIRT3-overexpressing gastric tumor cells. Thus, in addition to the well-documented SIRT3-mediated mitochondrial homeostasis in normal cells, SIRT3 may enhance glycolysis and cell proliferation in SIRT3-expressing cancer cells. PMID:26121691

  13. RPS7 inhibits colorectal cancer growth via decreasing HIF-1α-mediated glycolysis

    PubMed Central

    Li, Dawei; Li, Jiajia; Cheng, Xi; Wang, Ziliang

    2016-01-01

    Ribosomal protein S7 (RPS7) acts as a tumor suppressor in primary tumorigenesis but its role in cancer metabolism remains unclear. In this study, we demonstrate that RPS7 inhibits the colorectal cancer (CRC) cell glycolysis by suppressing the expression of hypoxia-inducible transcription factor-1α (HIF-1α) and the metabolic promoting proteins glucose transporter 4 (GLUT4) and lactate dehydrogenase B (LDHB). Further study found that the enhanced expression of HIF-1α abrogates the overexpression effects of RPS7 on CRC. In vivo assays also demonstrate that RPS7 suppresses colorectal cancer tumorigenesis and glycolysis. Clinically, the tissue microarray (TMA) analysis discloses the negative regulatory association between RPS7 and HIF-1α in colorectal cancer. Meanwhile, overexpression of RPS7 in colorectal cancer tissues predicts good overall survival and progression-free survival, but high expression level of HIF-1α indicates poor overall survival and progression-free survival. Overall, we reveal that RPS7 inhibits colorectal cancer glycolysis through HIF-1α-associated signaling and may be a promising biomarker for prognosis prediction and a potential target for therapeutic treatment. PMID:26735579

  14. Modeling of the Glycolysis Pathway in Plasmodium falciparum using Petri Nets

    PubMed Central

    Oyelade, Jelili; Isewon, Itunuoluwa; Rotimi, Solomon; Okunoren, Ifeoluwa

    2016-01-01

    Malaria is one of the deadly diseases, which affects a large number of the world’s population. The Plasmodium falciparum parasite during erythrocyte stages produces its energy mainly through anaerobic glycolysis, with pyruvate being converted into lactate. The glycolysis metabolism in P. falci-parum is one of the important metabolic pathways of the parasite because the parasite is entirely dependent on it for energy. Also, several glycolytic enzymes have been proposed as drug targets. Petri nets (PNs) have been recognized as one of the important models for representing biological pathways. In this work, we built a qualitative PN model for the glycolysis pathway in P. falciparum and analyzed the model for its structural and quantitative properties using PN theory. From PlasmoCyc files, a total of 11 reactions were extracted; 6 of these were reversible and 5 were irreversible. These reactions were catalyzed by a total number of 13 enzymes. We extracted some of the essential reactions in the pathway using PN model, which are the possible drug targets without which the pathway cannot function. This model also helps to improve the understanding of the biological processes within this pathway. PMID:27199550

  15. Polyamine Metabolism Is Sensitive to Glycolysis Inhibition in Human Neuroblastoma Cells*

    PubMed Central

    Ruiz-Pérez, M. Victoria; Medina, Miguel Ángel; Urdiales, José Luis; Keinänen, Tuomo A.; Sánchez-Jiménez, Francisca

    2015-01-01

    Polyamines are essential for cell proliferation, and their levels are elevated in many human tumors. The oncogene n-myc is known to potentiate polyamine metabolism. Neuroblastoma, the most frequent extracranial solid tumor in children, harbors the amplification of n-myc oncogene in 25% of the cases, and it is associated with treatment failure and poor prognosis. We evaluated several metabolic features of the human neuroblastoma cell lines Kelly, IMR-32, and SK-N-SH. We further investigated the effects of glycolysis impairment in polyamine metabolism in these cell lines. A previously unknown linkage between glycolysis impairment and polyamine reduction is unveiled. We show that glycolysis inhibition is able to trigger signaling events leading to the reduction of N-Myc protein levels and a subsequent decrease of both ornithine decarboxylase expression and polyamine levels, accompanied by cell cycle blockade preceding cell death. New anti-tumor strategies could take advantage of the direct relationship between glucose deprivation and polyamine metabolism impairment, leading to cell death, and its apparent dependence on n-myc. Combined therapies targeting glucose metabolism and polyamine synthesis could be effective in the treatment of n-myc-expressing tumors. PMID:25593318

  16. Overexpression of Mitochondrial Sirtuins Alters Glycolysis and Mitochondrial Function in HEK293 Cells

    PubMed Central

    Barbi de Moura, Michelle; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S.

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak. PMID:25165814

  17. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    PubMed

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  18. Aerobic and anaerobic microbiology of infections after trauma in children.

    PubMed Central

    Brook, I

    1998-01-01

    OBJECTIVE: To review the recovery of aerobic and anaerobic bacteria from infections after trauma in children over a 20 year period. METHODS: Only specimens that were studied for both aerobic and anaerobic bacteria were included in the analysis. They were collected from seven separate centres in which the microbiology laboratories only accepted specimens that were properly collected without contamination and were submitted in appropriate transport media. Anaerobes and aerobic bacteria were cultured and identified using standard techniques. Clinical records were reviewed to identify post-trauma patients. RESULTS: From 1974 to 1994, 175 specimens obtained from 166 children with trauma showed bacterial growth. The trauma included blunt trauma (71), lacerations (48), bites (42), and open fractures (5). Anaerobic bacteria only were isolated in 38 specimens (22%), aerobic bacteria only in 51 (29%), and mixed aerobic-anaerobic flora in 86 (49%); 363 anaerobic (2.1/specimen) and 158 aerobic or facultative isolates (0.9/specimen) were recovered. The predominant anaerobic bacteria included Peptostreptococcus spp (115 isolates), Prevotella spp (68), Fusobacterium spp (52), B fragilis group (42), and Clostridium spp (21). The predominant aerobic bacteria included Staph aureus (51), E coli (13), Ps aeruginosa (12), Str pyogenes (11) and Klebsiella pneumoniae (9). Principal infections were: abscesses (52), bacteraemia (3), pulmonary infections (30, including aspiration pneumonia, tracheostomy associated pneumonia, empyema, and ventilator associated pneumonia), wounds (36, including cellulitis, post-traumatic wounds, decubitus ulcers, myositis, gastrostomy and tracheostomy site wounds, and fasciitis), bites (42, including 23 animal and 19 human), peritonitis (4), osteomyelitis (5), and sinusitis (3). Staph aureus and Str pyogenes were isolated at all sites. However, organisms of the oropharyngeal flora predominated in infections that originated from head and neck wounds and

  19. Heart rate during aerobics classes in women with different previous experience of aerobics.

    PubMed

    Laukkanen, R M; Kalaja, M K; Kalaja, S P; Holmala, E B; Paavolainen, L M; Tummavuori, M; Virtanen, P; Rusko, H K

    2001-01-01

    This study measured heart rate during floor and step aerobic classes at three intensity levels. A group of 20 female occasional exercisers [mean age 33 (SD 8) years, mean body mass index 21 (SD 2) kg.m-2 volunteered to participate in six aerobic classes (three floor classes, three step classes) and in a laboratory test as members of one of two groups according to their prestudy regular participation in aerobics classes. Subjects in group A had participated four or more times a week and those of group B less than twice a week. The characteristics of the groups were as follows: group A, n = 10, mean maximal oxygen uptake (VO2max) 38.7 (SD 3.6) ml.kg-1.min-1, mean maximal heart rate (HRmax) 183 (SD 8) beats.min-1; group B, n = 10, VO2max 36.1 (SD 3.6) ml.kg-1.min-1, HRmax 178 (SD 7) beats.min-1. Each class consisted of a warm-up, a 20 min period of structured aerobic exercise (cardiophase) and a cool-down. The cardiophase was planned and guided as light, (rate of perceived exertion, RPE 11-12), moderate (RPE 13-14) or heavy (RPE 15-17) by an experienced instructor. The mean heart rates during the light classes were 72 (step) and 74 (floor) %HRmax in group A and 75 (step) and 79 (floor) %HRmax in group B; during the moderate classes, 84 (step) and 80 (floor) %HRmax in group A and 82 (step) and 83 (floor) %HRmax in group B, and during the heavy classes 89 (step and floor) %HRmax in group A and 88 (step) and 92 (floor) %HRmax in group B. Differences in heart rate and %HRmax were not statistically significant between the groups. However, differences in heart rate and %HRmax between the intensities (light vs moderate, moderate vs heavy and light vs heavy) were significant within both groups (all, P < 0.01). Based on the results, we conclude that intensity management during the aerobics classes was generally successful regardless of the participants' prior participation in aerobics. However, some individuals who were older and/or had less prior participation tended to

  20. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration.

    PubMed

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang; Li, Ji

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  1. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    PubMed Central

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  2. Impact of brisk walking and aerobics in overweight women

    PubMed Central

    Melam, Ganeswara Rao; Alhusaini, Adel A; Buragadda, Syamala; Kaur, Taranpreet; Khan, Imran Ali

    2016-01-01

    [Purpose] Lack of physical activity and an uncontrolled diet cause excessive weight gain, which leads to obesity and other metabolic disorders. Studies have indicated that brisk walking and aerobics are the best methods for controlling and reducing weight and body mass composition. [Subjects and Methods] In this study, 45 overweight women were enrolled and divided into 3 groups. Women not involved in brisk walking or aerobics were included in group A (n = 15) as control subjects; women involved in brisk walking were in group B (n = 15); and those involved in aerobics were in group C (n = 15). [Results] This program was carried out 5 days/week for 10 weeks. Pre- and post-measurements of body mass index, waist and hip circumference, and skinfold thickness of the abdomen, subscapular area, biceps, and triceps were recorded for the women in all 3 groups. All values decreased in women who participated in brisk walking and aerobics for 10 weeks. [Conclusion] These results indicate that aerobics with diet therapy is a more effective intervention program for controlling and reducing body mass index and skinfold thickness than brisk walking with diet therapy in North Indian women. PMID:26957777

  3. Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory.

    PubMed

    Erickson, Kirk I; Weinstein, Andrea M; Sutton, Bradley P; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock, Laura; Szabo, Amanda N; Mailey, Emily L; White, Siobhan M; Wojcicki, Thomas R; McAuley, Edward; Kramer, Arthur F

    2012-01-01

    Aerobic exercise is a promising form of prevention for cognitive decline; however, little is known about the molecular mechanisms by which exercise and fitness impacts the human brain. Several studies have postulated that increased regional brain volume and function are associated with aerobic fitness because of increased vascularization rather than increased neural tissue per se. We tested this position by examining the relationship between cardiorespiratory fitness and N-acetylaspartate (NAA) levels in the right frontal cortex using magnetic resonance spectroscopy. NAA is a nervous system specific metabolite found predominantly in cell bodies of neurons. We reasoned that if aerobic fitness was predominantly influencing the vasculature of the brain, then NAA levels should not vary as a function of aerobic fitness. However, if aerobic fitness influences the number or viability of neurons, then higher aerobic fitness levels might be associated with greater concentrations of NAA. We examined NAA levels, aerobic fitness, and cognitive performance in 137 older adults without cognitive impairment. Consistent with the latter hypothesis, we found that higher aerobic fitness levels offset an age-related decline in NAA. Furthermore, NAA mediated an association between fitness and backward digit span performance, suggesting that neuronal viability as measured by NAA is important in understanding fitness-related cognitive enhancement. Since NAA is found exclusively in neural tissue, our results indicate that the effect of fitness on the human brain extends beyond vascularization; aerobic fitness is associated with neuronal viability in the frontal cortex of older adults. PMID:22574272

  4. What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli?

    PubMed

    Qin, Mengnan; Lin, Zhifen; Wang, Dali; Long, Xi; Zheng, Min; Qiu, Yanling

    2016-01-01

    Bacteria in the environment face the threat of antibiotics. However, most studies investigating the toxicity and toxicity mechanisms of antibiotics have been conducted on microorganisms in aerobic conditions, while studies examining the anaerobic toxicity and toxicity mechanisms of antibiotics are still limited. In this study, we determined the aerobic and anaerobic toxicities of sulfonamides (SAs) on Escherichia coli. Next, a comparison of the aerobic and anaerobic toxicities indicated that the SAs could be divided into three groups: Group I: log(1/EC50-anaerobic)>log(1/EC50-aerobic) (EC50-anaerobic/EC50-aerobic, the median effective concentration under anaerobic/aerobic conditions), Group II: log(1/EC50-anaerobic)≈log(1/EC50-aerobic), and Group III: log(1/EC50-anaerobic)aerobic). Furthermore, this division was not based on the reactive oxygen species (ROS) level or the interaction energy (Ebinding) value, which represents the affinity between SAs and dihydropteroate synthase (dhps) but rather on the total binding energy. Furthermore, SAs with greatly similar structures were categorized into different groups. This deep insight into the difference between aerobic and anaerobic toxicities will benefit environmental science, and the results of this study will serve as a reference for the risk assessment of chemicals in the environment. PMID:26748048

  5. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  6. Comparison of Aerobic and Anaerobic Biodegradation of Sugarcane Vinasse.

    PubMed

    Mota, V T; Araújo, T A; Amaral, M C S

    2015-07-01

    Vinasse is the main liquid waste from ethanol production, and it has a considerable pollution potential. Biological treatment is a promising alternative to reduce its organic load. The aim of this study was to analyze the biodegradation of sugarcane juice vinasse in aerobic and anaerobic conditions. The content of carbohydrates, proteins and volatile fatty acids was evaluated. Vinasse samples showed a high biodegradability (>96.5 %) and low percentage of inert chemical oxygen demand (COD) (<3.2 %) in both aerobic and anaerobic conditions. The rates of substrate utilization were slightly higher in aerobic reactors, but COD stabilization occurred simultaneously in the anaerobic reactors, confirming its suitability for anaerobic digestion. Inert COD in anaerobic conditions was lower than in aerobic conditions. On the other hand, COD from metabolic products in the anaerobic reactors was higher than in the aerobic ones, indicating an increased release of soluble microbial products (SMPs) by anaerobic microorganisms. The results indicated that carbohydrates were satisfactorily degraded and protein-like substances were the major components remaining after biological degradation of vinasse. PMID:25957273

  7. Mood alterations in mindful versus aerobic exercise modes.

    PubMed

    Netz, Yael; Lidor, Ronnie

    2003-09-01

    The results of most recent studies have generally indicated an improvement in mood after participation in aerobic exercise. However, only a few researchers have compared mindful modes of exercise with aerobic exercise to examine the effect of 1 single session of exercise on mood. In the present study, the authors assessed state anxiety, depressive mood, and subjective well-being prior to and following 1 class of 1 of 4 exercise modes: yoga, Feldenkrais (awareness through movement), aerobic dance, and swimming; a computer class served as a control. Participants were 147 female general curriculum and physical education teachers (mean age = 40.15, SD = 0.2) voluntarily enrolled in a 1-year enrichment program at a physical education college. Analyses of variance for repeated measures revealed mood improvement following Feldenkrais, swimming, and yoga but not following aerobic dance and computer lessons. Mindful low-exertion activities as well as aerobic activities enhanced mood in 1 single session of exercise. The authors suggest that more studies assessing the mood-enhancing benefits of mindful activities such as Feldenkrais and yoga are needed. PMID:14629072

  8. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

    PubMed Central

    Takaya, Naoki; Catalan-Sakairi, Maria Antonina B.; Sakaguchi, Yasushi; Kato, Isao; Zhou, Zhemin; Shoun, Hirofumi

    2003-01-01

    Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3−) to N2 at rates of 0.9 and 0.03 μmol min−1 unit of optical density at 540 nm−1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 μmol liter−1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3− with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the β subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem. PMID:12788710

  9. AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases.

    PubMed

    Wu, Shi-Bei; Wei, Yau-Huei

    2012-02-01

    We report that the energy metabolism shifts to anaerobic glycolysis as an adaptive response to oxidative stress in the primary cultures of skin fibroblasts from patients with MERRF syndrome. In order to unravel the molecular mechanism involved in the alteration of energy metabolism under oxidative stress, we treated normal human skin fibroblasts (CCD-966SK cells) with sub-lethal doses of H(2)O(2). The results showed that several glycolytic enzymes including hexokinase type II (HK II), lactate dehydrogenase (LDH) and glucose transporter 1 (GLUT1) were up-regulated in H(2)O(2)-treated normal skin fibroblasts. In addition, the glycolytic flux of skin fibroblasts was increased by H(2)O(2) in a dose-dependent manner through the activation of AMP-activated protein kinase (AMPK) and phosphorylation of its downstream target, phosphofructokinase 2 (PFK2). Moreover, we found that the AMPK-mediated increase of glycolytic flux by H(2)O(2) was accompanied by an increase of intracellular NADPH content. By treatment of the cells with glycolysis inhibitors, an AMPK inhibitor or genetic knockdown of AMPK, respectively, the H(2)O(2)-induced increase of NADPH was abrogated leading to the overproduction of intracellular ROS and cell death. Significantly, we showed that phosphorylation levels of AMPK and glycolysis were up-regulated to confer an advantage of survival for MERRF skin fibroblasts. Taken together, our findings suggest that the increased production of NADPH by AMPK-mediated increase of the glycolytic flux contributes to the adaptation of MERRF skin fibroblasts and H(2)O(2)-treated normal skin fibroblasts to oxidative stress. PMID:22001850

  10. Supplementary low-intensity aerobic training improves aerobic capacity and does not affect psychomotor performance in professional female ballet dancers.

    PubMed

    Smol, Ewelina; Fredyk, Artur

    2012-03-01

    We investigated whether 6-week low-intensity aerobic training program used as a supplement to regular dance practice might improve both the aerobic capacity and psychomotor performance in female ballet dancers. To assess their maximal oxygen uptake (VO2max) and anaerobic threshold (AT), the dancers performed a standard graded bicycle ergometer exercise test until volitional exhaustion prior to and after the supplementary training. At both these occasions, the psychomotor performance (assessed as multiple choice reaction time) and number of correct responses to audio-visual stimuli was assessed at rest and immediately after cessation of maximal intensity exercise. The supplementary low-intensity exercise training increased VO2max and markedly shifted AT toward higher absolute workload. Immediately after completion of the graded exercise to volitional exhaustion, the ballerinas' psychomotor performance remained at the pre-exercise (resting) level. Neither the resting nor the maximal multiple choice reaction time and accuracy of responses were affected by the supplementary aerobic training. The results of this study indicate that addition of low-intensity aerobic training to regular dance practice increases aerobic capacity of ballerinas with no loss of speed and accuracy of their psychomotor reaction. PMID:23485962

  11. Supplementary Low-Intensity Aerobic Training Improves Aerobic Capacity and Does Not Affect Psychomotor Performance in Professional Female Ballet Dancers

    PubMed Central

    Smol, Ewelina; Fredyk, Artur

    2012-01-01

    We investigated whether 6-week low-intensity aerobic training program used as a supplement to regular dance practice might improve both the aerobic capacity and psychomotor performance in female ballet dancers. To assess their maximal oxygen uptake (VO2max) and anaerobic threshold (AT), the dancers performed a standard graded bicycle ergometer exercise test until volitional exhaustion prior to and after the supplementary training. At both these occasions, the psychomotor performance (assessed as multiple choice reaction time) and number of correct responses to audio-visual stimuli was assessed at rest and immediately after cessation of maximal intensity exercise. The supplementary low-intensity exercise training increased VO2max and markedly shifted AT toward higher absolute workload. Immediately after completion of the graded exercise to volitional exhaustion, the ballerinas’ psychomotor performance remained at the pre-exercise (resting) level. Neither the resting nor the maximal multiple choice reaction time and accuracy of responses were affected by the supplementary aerobic training. The results of this study indicate that addition of low-intensity aerobic training to regular dance practice increases aerobic capacity of ballerinas with no loss of speed and accuracy of their psychomotor reaction. PMID:23485962

  12. Steps Counts among Middle School Students Vary with Aerobic Fitness Level

    ERIC Educational Resources Information Center

    Le Masurier, Guy C.; Corbin, Charles B.

    2006-01-01

    The purpose of this study was to examine if steps/day taken by middle school students varied based on aerobic fitness classification. Middle school students (N = 223; 112 girls, 111 boys) were assigned to three aerobic fitness categories (HIGH, MOD, LOW) based on results of the FITNESSGRAM PACER test. Four weekdays of pedometer monitoring…

  13. Effects of 12 weeks of aerobic training on autonomic modulation, mucociliary clearance, and aerobic parameters in patients with COPD

    PubMed Central

    Leite, Marceli Rocha; Ramos, Ercy Mara Cipulo; Kalva-Filho, Carlos Augusto; Freire, Ana Paula Coelho Figueira; de Alencar Silva, Bruna Spolador; Nicolino, Juliana; de Toledo-Arruda, Alessandra Choqueta; Papoti, Marcelo; Vanderlei, Luiz Carlos Marques; Ramos, Dionei

    2015-01-01

    Introduction Patients with chronic obstructive pulmonary disease (COPD) exhibit aerobic function, autonomic nervous system, and mucociliary clearance alterations. These parameters can be attenuated by aerobic training, which can be applied with continuous or interval efforts. However, the possible effects of aerobic training, using progressively both continuous and interval sessions (ie, linear periodization), require further investigation. Aim To analyze the effects of 12-week aerobic training using continuous and interval sessions on autonomic modulation, mucociliary clearance, and aerobic function in patients with COPD. Methods Sixteen patients with COPD were divided into an aerobic (continuous and interval) training group (AT) (n=10) and a control group (CG) (n=6). An incremental test (initial speed of 2.0 km·h−1, constant slope of 3%, and increments of 0.5 km·h−1 every 2 minutes) was performed. The training group underwent training for 4 weeks at 60% of the peak velocity reached in the incremental test (vVO2peak) (50 minutes of continuous effort), followed by 4 weeks of sessions at 75% of vVO2peak (30 minutes of continuous effort), and 4 weeks of interval training (5×3-minute effort at vVO2peak, separated by 1 minute of passive recovery). Intensities were adjusted through an incremental test performed at the end of each period. Results The AT presented an increase in the high frequency index (ms2) (P=0.04), peak oxygen uptake (VO2peak) (P=0.01), vVO2peak (P=0.04), and anaerobic threshold (P=0.02). No significant changes were observed in the CG (P>0.21) group. Neither of the groups presented changes in mucociliary clearance after 12 weeks (AT: P=0.94 and CG: P=0.69). Conclusion Twelve weeks of aerobic training (continuous and interval sessions) positively influenced the autonomic modulation and aerobic parameters in patients with COPD. However, mucociliary clearance was not affected by aerobic training. PMID:26648712

  14. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation.

    PubMed

    Marín-Hernández, Alvaro; Gallardo-Pérez, Juan Carlos; López-Ramírez, Sayra Y; García-García, Jorge Donato; Rodríguez-Zavala, José Salud; Ruiz-Ramírez, Lena; Gracia-Mora, Isabel; Zentella-Dehesa, Alejandro; Sosa-Garrocho, Marcela; Macías-Silva, Marina; Moreno-Sánchez, Rafael; Rodríguez-Enríquez, Sara

    2012-05-01

    The copper-based drug Casiopeina II-gly (CasII-gly) shows potent antineoplastic effect and diminishes mitochondrial metabolism on several human and rodent malignant tumors. To elucidate whether CasII-gly also affects glycolysis, (a) the flux through the complete pathway and the initial segment and (b) the activities of several glycolytic enzymes of AS-30D hepatocarcinoma cells were determined. CasII-gly (IC₅₀ = 0.74-6.7 μM) was more effective to inhibit 24-72 h growth of several human carcinomas than 3-bromopyruvate (3BrPyr) (IC₅₀ = 45-100 μM) with no apparent effect on normal human-proliferating lymphocytes and HUVECs. In short-term 60-min experiments, CasII-gly increased tumor cell lactate production and glycogen breakdown. CasII-gly was 1.3-21 times more potent than 3BrPyr and cisplatin to inhibit tumor HK. As CasII-gly inhibited the soluble and mitochondrial HK activities and the flux through the HK-TPI glycolytic segment, whereas PFK-1, GAPDH, PGK, PYK activities and HPI-TPI segment flux were not affected, the data suggested glycogenolysis activation induced by HK inhibition. Accordingly, glycogen-depleted as well as oligomycin-treated cancer cells became more sensitive to CasII-gly. The inhibition time-course of HK by CasII-gly was slower than that of OxPhos in AS-30D cells, indicating that glycolytic toxicity was secondary to mitochondria, the primary CasII-gly target. In long-term 24-h experiments with HeLa cells, 5 μM CasII-gly inhibited OxPhos (80%), glycolysis (40%), and HK (42%). The present data indicated that CasII-gly is an effective multisite anticancer drug simultaneously targeting mitochondria and glycolysis. PMID:22349057

  15. The nutritional status of Methanosarcina acetivorans regulates glycogen metabolism and gluconeogenesis and glycolysis fluxes.

    PubMed

    Santiago-Martínez, Michel Geovanni; Encalada, Rusely; Lira-Silva, Elizabeth; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Reyes-García, Marco Antonio; Saavedra, Emma; Moreno-Sánchez, Rafael; Marín-Hernández, Alvaro; Jasso-Chávez, Ricardo

    2016-05-01

    Gluconeogenesis is an essential pathway in methanogens because they are unable to use exogenous hexoses as carbon source for cell growth. With the aim of understanding the regulatory mechanisms of central carbon metabolism in Methanosarcina acetivorans, the present study investigated gene expression, the activities and metabolic regulation of key enzymes, metabolite contents and fluxes of gluconeogenesis, as well as glycolysis and glycogen synthesis/degradation pathways. Cells were grown with methanol as a carbon source. Key enzymes were kinetically characterized at physiological pH/temperature. Active consumption of methanol during exponential cell growth correlated with significant methanogenesis, gluconeogenic flux and steady glycogen synthesis. After methanol exhaustion, cells reached the stationary growth phase, which correlated with the rise in glycogen consumption and glycolytic flux, decreased methanogenesis, negligible acetate production and an absence of gluconeogenesis. Elevated activities of carbon monoxide dehydrogenase/acetyl-CoA synthetase complex and pyruvate: ferredoxin oxidoreductase suggested the generation of acetyl-CoA and pyruvate for glycogen synthesis. In the early stationary growth phase, the transcript contents and activities of pyruvate phosphate dikinase, fructose 1,6-bisphosphatase and glycogen synthase decreased, whereas those of glycogen phosphorylase, ADP-phosphofructokinase and pyruvate kinase increased. Therefore, glycogen and gluconeogenic metabolites were synthesized when an external carbon source was provided. Once such a carbon source became depleted, glycolysis and methanogenesis fed by glycogen degradation provided the ATP supply. Weak inhibition of key enzymes by metabolites suggested that the pathways evaluated were mainly transcriptionally regulated. Because glycogen metabolism and glycolysis/gluconeogenesis are not present in all methanogens, the overall data suggest that glycogen storage might represent an environmental

  16. Bezielle Selectively Targets Mitochondria of Cancer Cells to Inhibit Glycolysis and OXPHOS

    PubMed Central

    Chen, Vivian; Staub, Richard E.; Fong, Sylvia; Tagliaferri, Mary; Cohen, Isaac; Shtivelman, Emma

    2012-01-01

    Bezielle (BZL101) is a candidate oral drug that has shown promising efficacy and excellent safety in the early phase clinical trials for advanced breast cancer. Bezielle is an aqueous extract from the herb Scutellaria barbata. We have reported previously that Bezielle was selectively cytotoxic to cancer cells while sparing non-transformed cells. In tumor, but not in non-transformed cells, Bezielle induced generation of ROS and severe DNA damage followed by hyperactivation of PARP, depletion of the cellular ATP and NAD, and inhibition of glycolysis. We show here that tumor cells' mitochondria are the primary source of reactive oxygen species induced by Bezielle. Treatment with Bezielle induces progressively higher levels of mitochondrial superoxide as well as peroxide-type ROS. Inhibition of mitochondrial respiration prevents generation of both types of ROS and protects cells from Bezielle-induced death. In addition to glycolysis, Bezielle inhibits oxidative phosphorylation in tumor cells and depletes mitochondrial reserve capacity depriving cells of the ability to produce ATP. Tumor cells lacking functional mitochondria maintain glycolytic activity in presence of Bezielle thus supporting the hypothesis that mitochondria are the primary target of Bezielle. The metabolic effects of Bezielle towards normal cells are not significant, in agreement with the low levels of oxidative damage that Bezielle inflicts on them. Bezielle is therefore a drug that selectively targets cancer cell mitochondria, and is distinguished from other such drugs by its ability to induce not only inhibition of OXPHOS but also of glycolysis. This study provides a better understanding of the mechanism of Bezielle's cytotoxicity, and the basis of its selectivity towards cancer cells. PMID:22319564

  17. Primary clear cell renal carcinoma cells display minimal mitochondrial respiratory capacity resulting in pronounced sensitivity to glycolytic inhibition by 3-Bromopyruvate.

    PubMed

    Nilsson, H; Lindgren, D; Mandahl Forsberg, A; Mulder, H; Axelson, H; Johansson, M E

    2015-01-01

    Changes of cellular metabolism are an integral property of the malignant potential of most cancer cells. Already in the 1930s, Otto Warburg observed that tumor cells preferably utilize glycolysis and lactate fermentation for energy production, rather than the mitochondrial oxidative phosphorylation dominating in normal cells, a phenomenon today known as the Warburg effect. Even though many tumor types display a high degree of aerobic glycolysis, they still retain the activity of other energy-producing metabolic pathways. One exception seems to be the clear cell variant of renal cell carcinoma, ccRCC, where the activity of most other pathways than that of glycolysis has been shown to be reduced. This makes ccRCC a promising candidate for the use of glycolytic inhibitors in treatment of the disease. However, few studies have so far addressed this issue. In this report, we show a strikingly reduced mitochondrial respiratory capacity of primary human ccRCC cells, resulting in enhanced sensitivity to glycolytic inhibition by 3-Bromopyruvate (3BrPA). This effect was largely absent in established ccRCC cell lines, a finding that highlights the importance of using biologically relevant models in the search for new candidate cancer therapies. 3BrPA markedly reduced ATP production in primary ccRCC cells, followed by cell death. Our data suggest that glycolytic inhibitors such as 3BrPA, that has been shown to be well tolerated in vivo, should be further analyzed for the possible development of selective treatment strategies for patients with ccRCC. PMID:25569102

  18. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  19. Acute effects of aerobic exercise promote learning

    PubMed Central

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity–induced plasticity with specific cognitive training–induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity. PMID:27146330

  20. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  1. Effects of Dietary Energy Sources on Post Mortem Glycolysis, Meat Quality and Muscle Fibre Type Transformation of Finishing Pigs

    PubMed Central

    Li, Yanjiao; Li, Jiaolong; Zhang, Lin; Yu, Changning; Lin, Meng; Gao, Feng; Zhou, Guanghong; Zhang, Yu; Fan, Yuanfang; Nuldnali, Lina

    2015-01-01

    Dietary energy source can influence muscle glycogen storage at slaughter. However, few studies have demonstrated whether the diet-induced change of muscle glycogen is achieved by the transformation of muscle fibre type. This study investigated the effects of dietary energy sources on meat quality, post mortem glycolysis and muscle fibre type transformation of finishing pigs. Seventy-two barrows with an average body weight of 65.0 ± 2.0 kg were selected and were allotted to three iso-energetic and iso-nitrogenous diets A, B or C, and each treatment consisted of three replicates (pens) of eight pigs each. Diet A contained 44.1% starch, 5.9% crude fat and 12.6% neutral detergent fiber (NDF); diet B contained 37.6% starch, 9.5% crude fat and 15.4% NDF; and diet C contained 30.9% starch, 14.3% crude fat and 17.8% NDF. The duration of the experiment was 28 days. After feed withdrawal 12 h, 24 pigs (eight per treatment) were slaughtered, samples from M. longissimus lumborum (LL) were collected for subsequent analysis. The results showed that pigs fed diet C had lesser average daily gain, average daily feed intake and back fat depth than those fed diet A (P<0.05). Diet C increased pH45min (P<0.05) and decreased drip loss (P<0.05) in LL muscles compared with diet A. Meat from pigs fed diet A showed increased contents of lactate and greater glycolytic potential (GP) compared with those fed diet C (P<0.05). Greater mRNA expression of myosin heavy-chain (MyHC)-I and IIa and lesser expression of MyHC-IIx and IIb (P<0.05) in LL muscles were found in pigs fed diet C, than in pigs fed diet A. In addition, pigs fed diet C resulted in downregulation of miR23a and upregulation of miR409 and miR208b (P<0.05), associated with conserved changes of their corresponding targets. These findings indicated that diets containing low starch and high fibre were beneficial in reducing muscle glycolysis, improving meat quality of finishing pigs. This reduction of GP may be partially associated

  2. Is Low-Impact Aerobic Dance an Effective Cardiovascular Workout?

    ERIC Educational Resources Information Center

    Williford, Henry N.; And Others

    1989-01-01

    Presents results of an investigation comparing energy cost and cardiovascular responses of aerobic dance routines performed at different intensity levels in varying amounts of energy expenditure. For low-impact dance to meet minimum guidelines suggested by the American College of Sports Medicine, it should be performed at high intensity. (SM)

  3. AEROBIC BIODEGRADABILITY AND TOXICITY OF NON-PETROLEUM OILS.

    EPA Science Inventory

    Vegetable oil spills are a widely known phenomenon, but are the least understood. These spills can be as devastating to the environment as petroleum oil spills. Previous laboratory research results have indicated that as vegetable oils degrade aerobically, the aqueous solutions b...

  4. An Extract from Wax Apple (Syzygium samarangense (Blume) Merrill and Perry) Effects Glycogenesis and Glycolysis Pathways in Tumor Necrosis Factor-α-Treated FL83B Mouse Hepatocytes

    PubMed Central

    Shen, Szu-Chuan; Chang, Wen-Chang; Chang, Chiao-Li

    2013-01-01

    FL83B mouse hepatocytes were treated with tumor necrosis factor-α (TNF-α) to induce insulin resistance to investigate the effect of a wax apple aqueous extract (WAE) in insulin-resistant mouse hepatocytes. The uptake of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2 NBDG), a fluorescent D-glucose derivative, was performed, and the metabolism of carbohydrates was evaluated by examining the expression of glycogenesis or glycolysis-related proteins in insulin-resistant hepatocytes. The results show that WAE significantly improves the uptake of glucose and enhances glycogen content in insulin-resistant FL83B mouse hepatocytes. The results from Western blot analysis also reveal that WAE increases the expression of glycogen synthase (GS), hexokinase (HXK), glucose-6-phosphate dehydrogenase (G6PD), phosphofructokinase (PFK) and aldolase in TNF-α treated cells, indicating that WAE may ameliorate glucose metabolism by promoting glycogen synthesis and the glycolysis pathways in insulin-resistant FL83B mouse hepatocytes. PMID:23389304

  5. Effects of water-misting sprays with forced ventilation on post mortem glycolysis, AMP-activated protein kinase and meat quality of broilers after transport during summer.

    PubMed

    Jiang, Nannan; Xing, Tong; Han, Minyi; Deng, Shaolin; Xu, Xinglian

    2016-05-01

    Effects of water-misting sprays with forced ventilation on post mortem glycolysis, adenosine monophosphate-activated protein kinase (AMPK) and meat quality of broilers after transport during summer were investigated in the present paper. A total of 105 mixed-sex Arbor Acres broilers were divided into three treatment groups: (i) 45 min transport without rest (T); (ii) 45 min transport with 1 h rest (TR); and (iii) 45 min transport with 15 min water-misting sprays with forced ventilation and 45 min rest (TWFR). Each treatment consisted of five replicates with seven birds each. The results indicated that the water-misting sprays with forced ventilation could mitigate the stress caused by transport under high temperature conditions during summer, which reduced the energy depletion in post mortem Pectoralis major (PM) muscle. This resulted in a higher energy status compared to the T group, which would decrease the expression of phosphorylation of AMPK (p-AMPK). Furthermore, decreased the expression of p-AMPK then slowed down the rate of glycolysis in post mortem PM muscle during the early post mortem period, which in turn lessened the negative effects caused by transport on meat quality. In conclusion, water-misting sprays with forced ventilation may be a better method to control the incidence of the pale, soft and exudative meat in broilers. PMID:26712455

  6. FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells.

    PubMed

    Zhou, Yuxin; Lu, Na; Qiao, Chen; Ni, Ting; Li, Zhiyu; Yu, Boyang; Guo, Qinglong; Wei, Libin

    2016-09-01

    In this study, the anticancer effect of a newly synthesized flavonoid FV-429, against human breast cancer MDA-MB-231 cells, and the underlying mechanisms were investigated. FV-429 triggered the apoptosis and simultaneously inhibited the glycolysis of MDA-MB-231 cells. Both the HK II activity and its level in mitochondria were significantly down regulated by FV-429. Moreover, FV-429 weakened the interaction between HKII and VDAC, stimulated the detachment of HK II from the mitochondria, and resulted in the opening of the mitochondrial permeability transition pores. Thus FV-429 induced the mitochondrial-mediated apoptosis, showing increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (MMP) and activation of caspase-3 and -9, cytochrome c (Cyt c) release, and apoptosis inducing factor (AIF) transposition. Further research revealed that the phosphorylation of mitochondrial HKII via Akt was responsible for the dissociation of HKII and the decreased HKII activity induced by FV-429. Taken together, FV-429 inhibited the phosphorylation of HKII, down-regulated its activity, and stimulated the release of HKII from the mitochondria, resulting the inhibited glycolysis and mitochondrial-mediated apoptosis. The studies provide a molecular basis for the development of flavonoid compounds as novel anticancer agents for breast cancer. © 2015 Wiley Periodicals, Inc. PMID:26258875

  7. Sweat Rates During Continuous and Interval Aerobic Exercise: Implications for NASA Multipurpose Crew Vehicle (MPCV) Missions

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Scott, Jessica; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori L.

    2016-01-01

    Aerobic deconditioning is one of the effects spaceflight. Impaired crewmember performance due to loss of aerobic conditioning is one of the risks identified for mitigation by the NASA Human Research Program. Missions longer than 8 days will involve exercise countermeasures including those aimed at preventing the loss of aerobic capacity. The NASA Multipurpose Crew Vehicle (MPCV) will be NASA's centerpiece architecture for human space exploration beyond low Earth orbit. Aerobic exercise within the small habitable volume of the MPCV is expected to challenge the ability of the environmental control systems, especially in terms of moisture control. Exercising humans contribute moisture to the environment by increased respiratory rate (exhaling air at 100% humidity) and sweat. Current acceptable values are based on theoretical models that rely on an "average" crew member working continuously at 75% of their aerobic capacity (Human Systems Integration Requirements Document). Evidence suggests that high intensity interval exercise for much shorter durations are equally effective or better in building and maintaining aerobic capacity. This investigation will examine sweat and respiratory rates for operationally relevant continuous and interval aerobic exercise protocols using a variety of different individuals. The results will directly inform what types of aerobic exercise countermeasures will be feasible to prescribe for crewmembers aboard the MPCV.

  8. Sweat Rates During Continuous and Interval Aerobic Exercise: Implications for NASA Multipurpose Crew Vehicle (MPCV) Missions

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Scott, Jessica; Ploutz-Snyder, Lori L.

    2016-01-01

    Aerobic deconditioning is one of the effects spaceflight. Impaired crewmember performance due to loss of aerobic conditioning is one of the risks identified for mitigation by the NASA Human Research Program. Missions longer than 8 days will involve exercise countermeasures including those aimed at preventing the loss of aerobic capacity. The NASA Multipurpose Crew Vehicle (MPCV) will be NASA's centerpiece architecture for human space exploration beyond low Earth orbit. Aerobic exercise within the small habitable volume of the MPCV is expected to challenge the ability of the Air Revitalization System, especially in terms of moisture and temperature control. Exercising humans contribute moisture to the environment by increased respiratory rate (exhaling air saturated with moisture) and sweat. Current acceptable values are based on theoretical models that rely on an "average" crew member working continuously at 75% of their aerobic capacity (Human Systems Integration Requirements Document). Evidence suggests that high intensity interval exercise for much shorter durations are equally effective or better in building and maintaining aerobic capacity. This investigation will examine metabolic moisture and heat production for operationally relevant continuous and interval aerobic exercise protocols. The results will directly inform what types of aerobic exercise countermeasures will be feasible to prescribe for crewmembers aboard the MPCV.

  9. Grey water treatment in a series anaerobic--aerobic system for irrigation.

    PubMed

    Abu Ghunmi, Lina; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2010-01-01

    This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant effluent flow rate and varying liquid volume. Subsequent aerobic step is equipped with mechanical aeration and the system is insulated for sustaining winter conditions. The COD removal achieved by the anaerobic and aerobic units in summer and winter are 45%, 39% and 53%, 64%, respectively. Sludge in the anaerobic and aerobic reactor has a concentration of 168 and 8 mg VSL(-1), respectively. Stability of sludge in the anaerobic and aerobic reactors is 80% and 93%, respectively, based on COD. Aerobic effluent quality, except for pathogens, agrees with the proposed irrigation water quality guidelines for reclaimed water in Jordan. PMID:19699088

  10. Little left in the tank: metabolic scaling in marine teleosts and its implications for aerobic scope

    PubMed Central

    Killen, Shaun S; Costa, Isabel; Brown, Joseph A; Gamperl, A. Kurt

    2006-01-01

    Fish larvae are the world's smallest vertebrates, and their high rates of mortality may be partially owing to a very limited aerobic scope. Unfortunately, however, no complete empirical dataset exists on the relationship between minimal and maximal metabolism (and thus aerobic scope) for any fish species throughout ontogeny, and thus such an association is hard to delineate. We measured standard and maximal metabolism in three marine fish species over their entire life history, and show that while aerobic scope depends greatly on body size and developmental trajectory, it is extremely small during the early life stages (factorial aerobic scope≤1.5). Our findings strongly suggest that limited scope for aerobic activity early in life is likely to constrain physiological function and ultimately impact behaviour and possibly survival. Furthermore, our results have important implications for ecological models that incorporate metabolic scaling, and provide additional evidence against the existence of ‘universal’ scaling exponents. PMID:17164208

  11. Alteration of gene expression for glycolytic enzymes in aerobic and ischemic myocardium.

    PubMed

    Liedtke, A J; Lynch, M L

    1999-10-01

    The purpose of this report was to describe mRNA abundance for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase, and pyruvate dehydrogenase in ischemic and adjacent aerobic myocardium. Mechanical, metabolic, and mRNA data were acquired in a pig model of regulated coronary flow using extracorporeal perfusion. Trials of coronary hypoperfusion included sustained and intermittent exposures of acute ischemia with or without reperfusion. These were compared with a chronic 4-day model of partial coronary stenosis. In ischemic tissues, levels of mRNA, normalized by mRNA for beta-actin, were increased over control values for GAPDH (range 2.7- to 4.6-fold), pyruvate kinase (2.9-fold), and pyruvate dehydrogenase (2.1-fold). It is of interest that increases in mRNA levels over control values were also observed in adjacent aerobic heart muscle from intervention hearts, including 3.6- to 4.5-fold elevations in message for GAPDH and a 2.1-fold increase in signal for pyruvate dehydrogenase. Augmentation in mRNA abundance occurred in as short a time as 40 min of ischemia and was maintained for as long as 4 days in partial coronary stenosis. Whether the former time was of an interval sufficient to affect protein production is problematic, but the latter time was ample to influence enzyme concentration, which may in turn have regulated glycolysis in this condition. PMID:10516179

  12. Structural and Biochemical Studies of TIGAR (TP53-induced Glycolysis and Apoptosis Regulator)

    SciTech Connect

    Li, H.; Jogl, G

    2009-01-01

    Activation of the p53 tumor suppressor by cellular stress leads to variable responses ranging from growth inhibition to apoptosis. TIGAR is a novel p53-inducible gene that inhibits glycolysis by reducing cellular levels of fructose-2,6-bisphosphate, an activator of glycolysis and inhibitor of gluconeogenesis. Here we describe structural and biochemical studies of TIGAR from Danio rerio. The overall structure forms a histidine phosphatase fold with a phosphate molecule coordinated to the catalytic histidine residue and a second phosphate molecule in a position not observed in other phosphatases. The recombinant human and zebra fish enzymes hydrolyze fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate but not fructose 6-phosphate in vitro. The TIGAR active site is open and positively charged, consistent with its enzymatic function as bisphosphatase. The closest related structures are the bacterial broad specificity phosphatase PhoE and the fructose-2,6-bisphosphatase domain of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The structural comparison shows that TIGAR combines an accessible active site as observed in PhoE with a charged substrate-binding pocket as seen in the fructose-2,6-bisphosphatase domain of the bifunctional enzyme.

  13. Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis.

    PubMed

    Carta, Daniela; Cao, Giacomo; D'Angeli, Claudio

    2003-01-01

    In this paper we review an interesting method of PET recycling, i.e. chemical recycling; it is based on the concept of depolymerizing the condensation polymer through solvolytic chain cleavage into low molecular products which can be purified and reused as raw materials for the production of high-quality chemical products. In this work our attention is confined to the hydrolysis (neutral, acid and alkaline) and glycolysis processes of PET chemical recycling; operating conditions and mechanism of each method are reported and described. The neutral hydrolysis has an auto accelerating character; two kinetic models have been proposed: an half-order and a second order kinetic model. The acid hydrolysis could be explained by a modified shrinking core model under chemical reaction control and the alkaline hydrolysis by a first-order model with respect to hydroxide ion concentration. To describe glycolysis, two different kinetic models have been proposed where EG can act or not as internal catalyst. Further experimental and theoretical investigations are required to shed light on the promising processes of PET chemical recycling reviewed in this work. PMID:14699998

  14. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing.

    PubMed

    Hall, Catherine N; Klein-Flügge, Miriam C; Howarth, Clare; Attwell, David

    2012-06-27

    Neural activity has been suggested to initially trigger ATP production by glycolysis, rather than oxidative phosphorylation, for three reasons: glycolytic enzymes are associated with ion pumps; neurons may increase their energy supply by activating glycolysis in astrocytes to generate lactate; and activity increases glucose uptake more than O₂ uptake. In rat hippocampal slices, neuronal activity rapidly decreased the levels of extracellular O₂ and intracellular NADH (reduced nicotinamide adenine dinucleotide), even with lactate dehydrogenase blocked to prevent lactate generation, or with only 20% superfused O₂ to mimic physiological O₂ levels. Pharmacological analysis revealed an energy budget in which 11% of O₂ use was on presynaptic action potentials, 17% was on presynaptic Ca²⁺ entry and transmitter release, 46% was on postsynaptic glutamate receptors, and 26% was on postsynaptic action potentials, in approximate accord with theoretical brain energy budgets. Thus, the major mechanisms mediating brain information processing are all initially powered by oxidative phosphorylation, and an astrocyte-neuron lactate shuttle is not needed for this to occur. PMID:22745494

  15. Regulation of Glycolysis and Gluconeogenesis by Acetylation of PKM and PEPCK

    PubMed Central

    Xiong, Y.; Lei, Q-Y.; Zhao, S.; Guan, K-L.

    2016-01-01

    Glycolysis is a catabolic process of glucose hydrolysis needed for energy and biosynthetic intermediates, whereas gluconeogenesis is a glucose production process important for maintaining blood glucose levels during starvation. Although they share many enzymes, these two processes are not simply the reverse of each other and are instead reciprocally regulated. Two key enzymes that regulate irreversible steps in these two processes are pyruvate kinase (PK) and phosphoenolpyruvate carboxy kinase (PEPCK), which catalyze the last and first step of glycolysis and gluconeogenesis, respectively, and are both regulated by lysine acetylation. Acetylation at Lys305 of the PKM (muscle form of PK) decreases its activity and also targets it for chaperone-mediated autophagy and subsequent lysosome degradation. Acetylation of PEPCK, on the other hand, targets it for ubiquitylation by the HECT E3 ligase, UBR5/EDD1, and subsequent proteasomal degradation. These studies established a model in which acetylation regulates metabolic enzymes via different mechanisms and also revealed cross talk between acetylation and ubiquitination. Given that most metabolic enzymes are acetylated, we propose that acetylation is a major posttranslational modifier that regulates cellular metabolism. PMID:22096030

  16. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    NASA Astrophysics Data System (ADS)

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji

    2014-09-01

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  17. Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia.

    PubMed

    Sun, Kaiqi; Zhang, Yujin; D'Alessandro, Angelo; Nemkov, Travis; Song, Anren; Wu, Hongyu; Liu, Hong; Adebiyi, Morayo; Huang, Aji; Wen, Yuan E; Bogdanov, Mikhail V; Vila, Alejandro; O'Brien, John; Kellems, Rodney E; Dowhan, William; Subudhi, Andrew W; Jameson-Van Houten, Sonja; Julian, Colleen G; Lovering, Andrew T; Safo, Martin; Hansen, Kirk C; Roach, Robert C; Xia, Yang

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia. PMID:27417539

  18. Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia

    PubMed Central

    Sun, Kaiqi; Zhang, Yujin; D'Alessandro, Angelo; Nemkov, Travis; Song, Anren; Wu, Hongyu; Liu, Hong; Adebiyi, Morayo; Huang, Aji; Wen, Yuan E.; Bogdanov, Mikhail V.; Vila, Alejandro; O'Brien, John; Kellems, Rodney E.; Dowhan, William; Subudhi, Andrew W.; Jameson-Van Houten, Sonja; Julian, Colleen G.; Lovering, Andrew T.; Safo, Martin; Hansen, Kirk C.; Roach, Robert C.; Xia, Yang

    2016-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia. PMID:27417539

  19. In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis.

    PubMed Central

    Thompson, J

    1978-01-01

    Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3. Images PMID:101523

  20. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    SciTech Connect

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji

    2014-09-03

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  1. A possible role of NADPH-dependent cytochrome P450nor isozyme in glycolysis under denitrifying conditions.

    PubMed

    Watsuji, Tomo-o; Takaya, Naoki; Nakamura, Akira; Shoun, Hirofumi

    2003-05-01

    The denitrifying fungus Cylindrocarpon tonkinense contains two isozymes of cytochrome P450nor. One isozyme, P450nor1, uses NADH specifically as its electron donor whereas the other isozyme P450nor2 prefers NADPH to NADH. Here we show that P450nor1 is localized in both cytosol and mitochondria, like P450nor of Fusarium oxysporum, while P450nor2 is exclusively in cytosol. We also found that the addition of glucose as a carbon source to the culture media leads to the production of much more P450nor2 in the fungal cells than a non-fermentable substrate (glycerol or acetate) does. These results suggest that the NADP-dependent pentose phosphate cycle acts predominantly in C. tonkinense as the glycolysis pathway under the denitrifying conditions, which was confirmed by the observation that glucose induced enzyme activities involved in the cycle. These results showed that P450nor2 should act as the electron sink under anaerobic, denitrifying conditions to regenerate NADP+ for the pentose phosphate cycle. PMID:12834289

  2. Effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances from waste activated sludge.

    PubMed

    Zhang, Zhiqiang; Zhang, Jiao; Zhao, Jianfu; Xia, Siqing

    2015-02-01

    The effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances (EPSs) from waste activated sludge (WAS) was investigated. Bioflocculation of the EPS was found to be enhanced by 2∼6 h of WAS aerobic digestion under the conditions of natural sludge pH (about 7), high sludge concentration by gravity thickening, and dissolved oxygen of about 2 mg/L. With the same EPS extraction method, the total suspended solid content reduction of 0.20 and 0.36 g/L and the volatile suspended solid content reduction of 0.19 and 0.26 g/L were found for the WAS samples before and after aerobic digestion of 4 h. It indicates that more EPS is produced by short-time aerobic digestion of WAS. The scanning electron microscopy images of the WAS samples before and after aerobic digestion of 4 h showed that more EPS appeared on the surface of zoogloea by aerobic digestion, which reconfirmed that WAS aerobic digestion induced abundant formation of EPS. By WAS aerobic digestion, the flocculating rate of the EPS showed about 31 % growth, almost consistent with the growth of its yield (about 34 %). The EPSs obtained before and after the aerobic digestion presented nearly the same components, structures, and Fourier transform infrared spectra. These results revealed that short-time aerobic digestion of WAS enhanced the flocculation of the EPS by promoting its production. PMID:23771440

  3. Synergism of ursolic acid derivative US597 with 2-deoxy-D-glucose to preferentially induce tumor cell death by dual-targeting of apoptosis and glycolysis.

    PubMed

    Wang, Jichuang; Jiang, Zhou; Xiang, Liping; Li, Yuanfang; Ou, Minrui; Yang, Xiang; Shao, Jingwei; Lu, Yusheng; Lin, Lifeng; Chen, Jianzhong; Dai, Yun; Jia, Lee

    2014-01-01

    Ursolic acid (UA) is a naturally bioactive product that exhibits potential anticancer effects. The relatively safe and effective molecule intrigued us to explore a way to further improve its anti-cancer activity and tumor-targeting specificity. In the present study, a series of structural modifications of UA was achieved, which resulted in significant increase in growth inhibition on various cancer cell lines with minimal effects on normal cells. The leading molecule US597 (UA-4) caused depolarization of mitochondrial membrane potential, cell arrest in G0/G1 phase and apoptosis/necrosis in a dose-dependent manner. Structural docking suggested that the carbon chains of the modified UA derivatives compete strongly with glucose for binding to glucokinase, the key glycolysis enzyme presumably active in cancer cells. The combination of 2-deoxy-D-glucose (2-DG) and UA-4 induced cell cycle arrest in G2/M phase, promoted caspase-dependent cell death, reduced hexokinase activity, aggravated depletion of intracellular ATP, decreased lactate production and synergistically inhibited cancer cell growth in vitro (HepG2) and in vivo (H22). Collectively, our findings suggest that the structural modification enhances efficacy and selectivity of UA, and the combination of UA-4 with 2-DG produces synergistic inhibition on hepatoma cell proliferation by dual targeting of apoptosis and glycolysis. PMID:25833312

  4. Measurement of glycolysis reactants by high-throughput solid phase extraction with tandem mass spectrometry: Characterization of pyrophosphate-dependent phosphofructokinase as a case study.

    PubMed

    Rye, Peter T; LaMarr, William A

    2015-08-01

    Glycolysis is a 10-step metabolic pathway involved in producing cellular energy. Many tumors exhibit accelerated glycolytic rates, and enzymes that participate in this pathway are focal points of cancer research. Here, a novel method for the measurement of glycolysis reactants from in vitro samples is presented. Fast and direct measurement is achieved by an automated system that couples on-line solid phase extraction (SPE) with tandem mass spectrometry (MS/MS). The single analytical method enables multiple reactants to be measured concurrently, sustains a cycle time of 8s, and permits the measurement of up to 10,000 samples per day. Concentration-response curves were conducted using standards for 10 metabolic intermediates, and the results demonstrate that the detection strategy has excellent sensitivity (average limit of detection = 5.4 nM), dynamic range (nanomolar to micromolar), and linear response (average R(2) = 0.998). To test the analysis method on reactions, pyrophosphate-dependent phosphofructokinase (PPi-PFK) was used as a model system. Data that corroborate the activation and inhibition of PPi-PFK are presented, and the ways in which SPE-MS/MS simplifies experimental design and interpretation are highlighted. In summary, the method for measuring metabolic intermediates described here demonstrates unprecedented speed, performance, and versatility. PMID:25849585

  5. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  6. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  7. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  8. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  9. Anaerobic glycolysis and specific gravity of the red blood cells of rats exposed to pure oxygen at 600 torr.

    NASA Technical Reports Server (NTRS)

    Sabine, J. C.; Leon, H. A.

    1971-01-01

    Rats were exposed to 100% oxygen at 600 torr for up to 8 days. Highly significant increases in RBC anaerobic glycolysis occurred during the first 4 days of exposure and then subsided. Two significant peaks were found, one on days 1 and 2 and one on day 4. The first peak is attributed to reticulocytosis, which was maximal after 90 minutes and had disappeared by day 3. A second mechanism must account for the peak on day 4. An interpretation of the second peak is provided by existing evidence that selective removal of older RBCs occurs during the first few days of exposure to hypobaric oxygen, with maximum effect on day 4. Results in splenectomized, sham-operated and intact animals were indistinguishable from each other. A significant decrease in RBC specific gravity was found in exposed animals with spleens intact, but not in splenectomized animals. Theoretical aspects of age-related parameters as an aid to continuous detection and evaluation of changes in RBC populations are discussed.

  10. PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer.

    PubMed

    Yang, Jie; Li, Jingqiu; Le, Yanping; Zhou, Chengwei; Zhang, Shun; Gong, Zhaohui

    2016-01-01

    MicroRNAs (miRNAs) affect cancer cell glucose metabolism by targeting mRNAs of diverse enzymes that have been implicated in oxidative phosphorylation (OXPHOS) and glycolytic pathways. However, the mechanisms that underlie miRNA-mediated regulation of phosphofructokinase (PFK), a key rate-limiting enzyme in glycolysis, remain largely unknown. Here, we show that miR-128 directly targets PFK liver type (PFKL) in lung cancer cells and regulates endogenous expression of PFKL at both the mRNA and protein levels. In line with this, overexpression of miR-128 decreased glucose uptake and lactate production, as well as increased cellular ATP content. Interestingly, knockdown of miR-128 was shown to promote lung cancer cell growth and colony formation. Moreover, we observed that miR-128 expression inversely correlated with PFKL mRNA levels in clinic lung cancer samples and that increased PFKL expression predicted poor overall survival in lung cancer patients. Mechanistically, we showed that miR-128 regulates PFKL via a feedback loop that involves inhibition of the AKT signaling pathway. Together, our results suggest that miR-128 acts as a metabolic regulator in lung cancer cells that may be therapeutically exploited. PMID:27186417

  11. Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ROS, autophagy, and plant immune responses.

    PubMed

    Henry, Elizabeth; Fung, Nicholas; Liu, Jun; Drakakaki, Georgia; Coaker, Gitta

    2015-04-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knockouts (KO lines) exhibited enhanced disease resistance phenotypes upon inoculation with the bacterial plant pathogen Pseudomonas syringae pv. tomato. KO lines exhibited accelerated programmed cell death and increased electrolyte leakage in response to effector triggered immunity. Furthermore, KO lines displayed increased basal ROS accumulation as visualized using the fluorescent probe H2DCFDA. The gapa1-2 and gapc1 KOs exhibited constitutive autophagy phenotypes in the absence of nutrient starvation. Due to the high sequence conservation between vertebrate and plant cytosolic GAPDH, our experiments focused on cytosolic GAPC1 cellular dynamics using a complemented GAPC1-GFP line. Confocal imaging coupled with an endocytic membrane marker (FM4-64) and endosomal trafficking inhibitors (BFA, Wortmannin) demonstrated cytosolic GAPC1 is localized to the plasma membrane and the endomembrane system, in addition to the cytosol and nucleus. After perception of bacterial flagellin, GAPC1 dynamically responded with a significant increase in size of fluorescent puncta and enhanced nuclear accumulation. Taken together, these results indicate that plant GAPDHs can affect multiple aspects of plant immunity in diverse sub-cellular compartments. PMID:25918875

  12. PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer

    PubMed Central

    Yang, Jie; Li, Jingqiu; Le, Yanping; Zhou, Chengwei; Zhang, Shun; Gong, Zhaohui

    2016-01-01

    MicroRNAs (miRNAs) affect cancer cell glucose metabolism by targeting mRNAs of diverse enzymes that have been implicated in oxidative phosphorylation (OXPHOS) and glycolytic pathways. However, the mechanisms that underlie miRNA-mediated regulation of phosphofructokinase (PFK), a key rate-limiting enzyme in glycolysis, remain largely unknown. Here, we show that miR-128 directly targets PFK liver type (PFKL) in lung cancer cells and regulates endogenous expression of PFKL at both the mRNA and protein levels. In line with this, overexpression of miR-128 decreased glucose uptake and lactate production, as well as increased cellular ATP content. Interestingly, knockdown of miR-128 was shown to promote lung cancer cell growth and colony formation. Moreover, we observed that miR-128 expression inversely correlated with PFKL mRNA levels in clinic lung cancer samples and that increased PFKL expression predicted poor overall survival in lung cancer patients. Mechanistically, we showed that miR-128 regulates PFKL via a feedback loop that involves inhibition of the AKT signaling pathway. Together, our results suggest that miR-128 acts as a metabolic regulator in lung cancer cells that may be therapeutically exploited. PMID:27186417

  13. Beyond Glycolysis: GAPDHs Are Multi-functional Enzymes Involved in Regulation of ROS, Autophagy, and Plant Immune Responses

    PubMed Central

    Henry, Elizabeth; Fung, Nicholas; Liu, Jun; Drakakaki, Georgia; Coaker, Gitta

    2015-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme in energy metabolism with diverse cellular regulatory roles in vertebrates, but few reports have investigated the importance of plant GAPDH isoforms outside of their role in glycolysis. While animals possess one GAPDH isoform, plants possess multiple isoforms. In this study, cell biological and genetic approaches were used to investigate the role of GAPDHs during plant immune responses. Individual Arabidopsis GAPDH knockouts (KO lines) exhibited enhanced disease resistance phenotypes upon inoculation with the bacterial plant pathogen Pseudomonas syringae pv. tomato. KO lines exhibited accelerated programmed cell death and increased electrolyte leakage in response to effector triggered immunity. Furthermore, KO lines displayed increased basal ROS accumulation as visualized using the fluorescent probe H2DCFDA. The gapa1-2 and gapc1 KOs exhibited constitutive autophagy phenotypes in the absence of nutrient starvation. Due to the high sequence conservation between vertebrate and plant cytosolic GAPDH, our experiments focused on cytosolic GAPC1 cellular dynamics using a complemented GAPC1-GFP line. Confocal imaging coupled with an endocytic membrane marker (FM4-64) and endosomal trafficking inhibitors (BFA, Wortmannin) demonstrated cytosolic GAPC1 is localized to the plasma membrane and the endomembrane system, in addition to the cytosol and nucleus. After perception of bacterial flagellin, GAPC1 dynamically responded with a significant increase in size of fluorescent puncta and enhanced nuclear accumulation. Taken together, these results indicate that plant GAPDHs can affect multiple aspects of plant immunity in diverse sub-cellular compartments. PMID:25918875

  14. Effects of dominant somatotype on aerobic capacity trainability

    PubMed Central

    Chaouachi, M; Chaouachi, A; Chamari, K; Chtara, M; Feki, Y; Amri, M; Trudeau, F

    2005-01-01

    Purpose: This study examined the association between dominant somatotype and the effect on aerobic capacity variables of individualised aerobic interval training. Methods: Forty one white North African subjects (age 21.4±1.3 years; V·o2max = 52.8±5.7 ml kg–1 min–1) performed three exercise tests 1 week apart (i) an incremental test on a cycle ergometer to determine V·o2max and V·o2 at the second ventilatory threshold (VT2); (ii) a VAM-EVAL track test to determine maximal aerobic speed (vV·o2max); and (iii) an exhaustive constant velocity test to determine time limit performed at 100% vV·o2max (tlim100). Subjects were divided into four somatometric groups: endomorphs-mesomorphs (Endo-meso; n = 9), mesomorphs (Meso; n = 11), mesomorphs-ectomorphs (Meso-ecto; n = 12), and ectomorphs (Ecto; n = 9). Subjects followed a 12 week training program (two sessions/week). Each endurance training session consisted of the maximal number of successive fractions for each subject. Each fraction consisted of one period of exercise at 100% of vV·o2max and one of active recovery at 60% of vV·o2max. The duration of each period was equal to half the individual tlim100 duration (153.6±39.7 s). After the training program, all subjects were re-evaluated for comparison with pre-test results. Results: Pre- and post-training data were grouped by dominant somatotype. Two way ANOVA revealed significant somatotype-aerobic training interaction effects (p<0.001) for improvements in vV·o2max, V·o2max expressed classically and according to allometric scaling, and V·o2 at VT2. There were significant differences among groups post-training: the Meso-ecto and the Meso groups showed the greatest improvements in aerobic capacity. Conclusion: The significant somatotype-aerobic training interaction suggests different trainability with intermittent and individualised aerobic training according to somatotype. PMID:16306506

  15. Aerobic fitness predicts relational memory but not item memory performance in healthy young adults.

    PubMed

    Baym, Carol L; Khan, Naiman A; Pence, Ari; Raine, Lauren B; Hillman, Charles H; Cohen, Neal J

    2014-11-01

    Health factors such as an active lifestyle and aerobic fitness have long been linked to decreased risk of cardiovascular disease, stroke, and other adverse health outcomes. Only more recently have researchers begun to investigate the relationship between aerobic fitness and memory function. Based on recent findings in behavioral and cognitive neuroscience showing that the hippocampus might be especially sensitive to the effects of exercise and fitness, the current study assessed hippocampal-dependent relational memory and non-hippocampal-dependent item memory in young adults across a range of aerobic fitness levels. Aerobic fitness was assessed using a graded exercise test to measure oxygen consumption during maximal exercise (VO2max), and relational and item memory were assessed using behavioral and eye movement measures. Behavioral results indicated that aerobic fitness was positively correlated with relational memory performance but not item memory performance, suggesting that the beneficial effects of aerobic fitness selectively affect hippocampal function and not that of the surrounding medial temporal lobe cortex. Eye movement results further supported the specificity of this fitness effect to hippocampal function, in that aerobic fitness predicted disproportionate preferential viewing of previously studied relational associations but not of previously viewed items. Potential mechanisms underlying this pattern of results, including neurogenesis, are discussed. PMID:24893739

  16. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity

    PubMed Central

    Li, Sainan; Wu, Liwei; Feng, Jiao; Li, Jingjing; Liu, Tong; Zhang, Rong; Xu, Shizan; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Chen, Kan; Wang, Fan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Dai, Weiqi; Guo, Chuanyong

    2016-01-01

    Glycolysis, as an altered cancer cell-intrinsic metabolism, is an essential hallmark of cancer. Phosphofructokinase (PFK) is a metabolic sensor in the glycolytic pathway, and restricting the substrate availability for this enzyme has been researched extensively as a target for chemotherapy. In the present study, we investigated that the effects of epigallocatechin-3-gallate (EGCG), an active component of green tea, on inhibiting cell growth and inducing apoptosis by promoting a metabolic shift away from glycolysis in aerobic glycolytic hepatocellular carcinoma (HCC) cells. EGCG modulated the oligomeric structure of PFK, potentially leading to metabolic stress associated apoptosis and suggesting that EGCG acts by directly suppressing PFK activity. A PFK activity inhibitor enhanced the effect, while the allosteric activator reversed EGCG-induced HCC cell death. PFK siRNA knockdown-induced apoptosis was not reversed by the activator. EGCG enhanced the effect of sorafenib on cell growth inhibition in both aerobic glycolytic HCC cells and in a xenograft mouse model. The present study suggests a potential role for EGCG as an adjuvant in cancer therapy, which merits further investigation at the clinical level. PMID:27349173

  17. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity.

    PubMed

    Li, Sainan; Wu, Liwei; Feng, Jiao; Li, Jingjing; Liu, Tong; Zhang, Rong; Xu, Shizan; Cheng, Keran; Zhou, Yuqing; Zhou, Shunfeng; Kong, Rui; Chen, Kan; Wang, Fan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Dai, Weiqi; Guo, Chuanyong

    2016-01-01

    Glycolysis, as an altered cancer cell-intrinsic metabolism, is an essential hallmark of cancer. Phosphofructokinase (PFK) is a metabolic sensor in the glycolytic pathway, and restricting the substrate availability for this enzyme has been researched extensively as a target for chemotherapy. In the present study, we investigated that the effects of epigallocatechin-3-gallate (EGCG), an active component of green tea, on inhibiting cell growth and inducing apoptosis by promoting a metabolic shift away from glycolysis in aerobic glycolytic hepatocellular carcinoma (HCC) cells. EGCG modulated the oligomeric structure of PFK, potentially leading to metabolic stress associated apoptosis and suggesting that EGCG acts by directly suppressing PFK activity. A PFK activity inhibitor enhanced the effect, while the allosteric activator reversed EGCG-induced HCC cell death. PFK siRNA knockdown-induced apoptosis was not reversed by the activator. EGCG enhanced the effect of sorafenib on cell growth inhibition in both aerobic glycolytic HCC cells and in a xenograft mouse model. The present study suggests a potential role for EGCG as an adjuvant in cancer therapy, which merits further investigation at the clinical level. PMID:27349173

  18. Acanthamoeba castellanii: proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation.

    PubMed

    Bouyer, Sabrina; Rodier, Marie-Hélène; Guillot, Alain; Héchard, Yann

    2009-09-01

    Acanthamoeba castellanii is a pathogenic free-living amoeba. Cyst forms are particularly important in their pathogenicity, as they are more resistant to treatments and might protect pathogenic intracellular bacteria. However, encystation is poorly understood at the molecular level and global changes at the protein level have not been completely described. In this study, we performed two-dimensional gel electrophoresis to compare protein expression in trophozoite and cyst forms. Four proteins, specifically expressed in trophozoites, and four proteins, specifically expressed in cysts, were identified. Two proteins, enolase and fructose bisphosphate aldolase, are involved in the glycolytic pathway. Three proteins are likely actin-binding proteins, which is consistent with the dramatic morphological modifications of the cells during encystation. One protein belongs to the serine protease family and has been already linked to encystation in A. castellanii. In conclusion, this study found that the proteins whose expression was modified during encystation were likely involved in actin dynamics, glycolysis, and proteolysis. PMID:19523468

  19. Activation of glycolysis and apoptosis in glycogen storage disease type Ia.

    PubMed

    Sun, Baodong; Li, Songtao; Yang, Liu; Damodaran, Tirupapuliyur; Desai, Dev; Diehl, Anna Mae; Alzate, Oscar; Koeberl, Dwight D

    2009-08-01

    The deficiency of glucose-6-phosphatase (G6Pase) underlies glycogen storage disease type Ia (GSD-Ia, von Gierke disease; MIM 232200), an autosomal recessive disorder of metabolism associated with life-threatening hypoglycemia, growth retardation, renal failure, hepatic adenomas, and hepatocellular carcinoma. Liver involvement includes the massive accumulation of glycogen and lipids due to accumulated glucose-6-phosphate and glycolytic intermediates. Proteomic analysis revealed elevations in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and other enzymes involved in glycolysis. GAPDH was markedly increased in murine G6Pase-deficient hepatocytes. The moonlighting role of GAPDH includes increasing apoptosis, which was demonstrated by increased TUNEL assay positivity and caspase 3 activation in the murine GSD-Ia liver. These analyses of hepatic involvement in GSD-Ia mice have implicated the induction of apoptosis in the pathobiology of GSD-Ia. PMID:19419892

  20. Silencing of CerS6 increases the invasion and glycolysis of melanoma WM35, WM451 and SK28 cell lines via increased GLUT1-induced downregulation of WNT5A.

    PubMed

    Tang, Yuanyuan; Cao, Ke; Wang, Qi; Chen, Jia; Liu, Rui; Wang, Shaohua; Zhou, Jianda; Xie, Huiqing

    2016-05-01

    Ceramide synthases (CerSs) have been shown to regulate numerous aspects of cancer development. CerS6 has been suggested to be involved in cancer etiology. However, little is known concerning the exact effect of CerS6 on the malignant behavior of melanoma, including glycolysis, proliferation and invasion. In the present study, we found that the expression of CerS6 was low in the melanoma cell lines, including WM35, WM451 and SK-28, and the expression level was related to the malignanct behavior of the melanoma cell lines. We constructed overexpression and silencing models of CerS6 in three melanoma cell lines and found that silencing of CerS6 promoted the ability of proliferation and invasion in the melanoma cell lines. Additionally, downregulation of CerS6 upregulated the activity of glycolysis-related enzyme, and enhanced the expression of glycolysis-related genes, including GLUT1 and MCT1. Furthermore, we identified the genes whose expression levels were changed after silencing of CerS6 by gene microarray. The expression of glycolysis-related gene SLC2A1 (also known as GLUT1) was found to be upregulated, while notably WNT5A was downregulated. The altered expression of GLUT1 and WNT5A was verified by qPCR and western blotting. Furthermore, silencing of GLUT1 in the melanoma cells resulted in the increased expression of WNT5A and the decreased ability of invasion and proliferation in the melanoma cells. Collectively, silencing of CerS6 induced the increased expression of GLUT1, which downregulated the expression of WNT5A and enhanced the invasion and proliferation of melanoma cells. Thus, CerS6 may provide a novel therapeutic target for melanoma treatment. PMID:26934938

  1. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew Amis; Liu, Yan-Hua

    2002-08-01

    Eighteen anaerobic/aerobic batch experiments were conducted with a variety of volatile fatty acids (VFAs) on a sequencing batch reactor (SBR) population displaying enhanced biological phosphorus removal (EBPR). A statistically significant (P < 0.01 for all variables) correlation between aerobic phosphorus uptake and polyhydroxyalkanoates (PHAs) quantity and form was observed. The results suggest that poly-3-hydroxy-butyrate (3HB) results in significantly higher aerobic phosphorus (P) uptake per unit mmoles as carbon (mmoles-C) than poly-3-hydroxy-valerate (3HV). The results showed that acetic and isovaleric acids resulted in higher P removals (relative to propionic and valeric acids) during EBPR batch experiments not because of higher PHAs quantity, but largely because the predominant type was 3HB rather than 3HV. In contrast propionic and valeric acids resulted in 3HV, and showed much lower aerobic P uptake per unit PHAs. PMID:12230192

  2. Characterization of a marine origin aerobic nitrifying-denitrifying bacterium.

    PubMed

    Zheng, Hai-Yan; Liu, Ying; Gao, Xi-Yan; Ai, Guo-Min; Miao, Li-Li; Liu, Zhi-Pei

    2012-07-01

    The bacterial strain F6 was isolated from a biological aerated filter that is used for purifying recirculating water in a marine aquaculture system and was identified as Marinobacter sp. based on the analysis of its 16S rRNA gene sequence. Strain F6 showed efficient aerobic denitrifying ability. One hundred percent of nitrates and 73.10% of nitrites were removed, and the total nitrogen (TN) removal rates reached 50.08% and 33.03% under a high nitrate and nitrite concentration in the medium, respectively. N(2)O and (15)N(2), as revealed by GC-MS and GC-IRMS, were the products of aerobic denitrification. Factors affecting the growth and aerobic denitrifying performance of strain F6 were investigated. The results showed that the optimum aerobic denitrification conditions for strain F6 were the presence of sodium succinate as a carbon source, a C/N ratio of 15, salinity ranging from 32-35 g/L of NaCl, incubation temperature of 30°C, an initial pH of 7.5, and rotation speed of 150 rpm [dissolved oxygen (DO) 6.75 mg/L]. In addition, strain F6 was confirmed to be a heterotrophic nitrifier through its NO(2)(-) generation and 25.96% TN removal when NH(4)(+) was used as the sole N source. Therefore, strain F6, the first reported member of genus Marinobacter with aerobic heterotrophic nitrifying-denitrifying ability, is an excellent candidate for facilitating simultaneous nitrification and denitrification (SND) in industry and aquaculture wastewater. PMID:22578593

  3. Aerobic exercise augments muscle transcriptome profile of resistance exercise.

    PubMed

    Lundberg, Tommy R; Fernandez-Gonzalo, Rodrigo; Tesch, Per A; Rullman, Eric; Gustafsson, Thomas

    2016-06-01

    Recent reports suggest that aerobic exercise may boost the hypertrophic response to short-term resistance training. This study explored the effects of an acute aerobic exercise bout on the transcriptional response to subsequent resistance exercise. Ten moderately trained men performed ∼45 min cycling on one leg followed by 4 × 7 maximal knee extensions for each leg, 15 min later. Thus, one limb performed aerobic and resistance exercise (AE + RE) while the opposing leg did resistance exercise only (RE). Biopsies were obtained from the vastus lateralis muscle of each leg 3 h after the resistance exercise bout. Using DNA microarray, we analyzed differences [≥1.5-fold, false discovery rate (FDR) ≤10%] in gene expression profiles for the two modes of exercise. There were 176 genes up (127)- or downregulated (49) by AE + RE compared with RE. Among the most significant differentially expressed genes were established markers for muscle growth and oxidative capacity, novel cytokines, transcription factors, and micro-RNAs (miRNAs). The most enriched functional categories were those linked to carbohydrate metabolism and transcriptional regulation. Upstream analysis revealed that vascular endothelial growth factor, cAMP-response element-binding protein, Tet methylcytosine dioxygenase, and mammalian target of rapamycin were regulators highly activated by AE + RE, whereas JnK, NF-κβ, MAPK, and several miRNAs were inhibited. Thus, aerobic exercise alters the skeletal muscle transcriptional signature of resistance exercise to initiate important gene programs promoting both myofiber growth and improved oxidative capacity. These results provide novel insight into human muscle adaptations to diverse exercise modes and offer the very first genomic basis explaining how aerobic exercise may augment, rather than compromise, muscle growth induced by resistance exercise. PMID:27101291

  4. Effect of the process conditions of aerobic bioconversion on the characteristics of biologically processed brown coals

    SciTech Connect

    I.P. Ivanov

    2007-04-15

    The effect of the laboratory and pilot process conditions of the aerobic bioconversion of brown coals on the elemental composition and technical characteristics of the organic matter of the resulting biologically processed coals is reported.

  5. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation. PMID:26592026

  6. Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group

    PubMed Central

    Zotta, Teresa; Ricciardi, Annamaria; Ianniello, Rocco G.; Parente, Eugenio; Reale, Anna; Rossi, Franca; Iacumin, Lucilla; Comi, Giuseppe; Coppola, Raffaele

    2014-01-01

    One hundred eighty four strains belonging to the species Lactobacillus casei, L. paracasei and L. rhamnosus were screened for their ability to grow under aerobic conditions, in media containing heme and menaquinone and/or compounds generating reactive oxygen species (ROS), in order to identify respiratory and oxygen-tolerant phenotypes. Most strains were able to cope with aerobic conditions and for many strains aerobic growth and heme or heme/menaquinone supplementation increased biomass production compared to anaerobic cultivation. Only four L. casei strains showed a catalase-like activity under anaerobic, aerobic and respiratory conditions and were able to survive in presence of H2O2 (1 mM). Almost all L. casei and L. paracasei strains tolerated menadione (0.2 mM) and most tolerated pyrogallol (50 mM), while L. rhamnosus was usually resistant only to the latter compound. This is the first study in which an extensive screening of oxygen and oxidative stress tolerance of members of the L. casei group has been carried out. Results allowed the selection of strains showing the typical traits of aerobic and respiratory metabolism (increased pH and biomass under aerobic or respiratory conditions) and unique oxidative stress response properties. Aerobic growth and respiration may confer technological and physiological advantages in the L. casei group and oxygen-tolerant phenotypes could be exploited in several food industry applications. PMID:24918811

  7. Promoting Motor Cortical Plasticity with Acute Aerobic Exercise: A Role for Cerebellar Circuits

    PubMed Central

    Mang, Cameron S.; Brown, Katlyn E.; Neva, Jason L.; Snow, Nicholas J.; Campbell, Kristin L.; Boyd, Lara A.

    2016-01-01

    Acute aerobic exercise facilitated long-term potentiation-like plasticity in the human primary motor cortex (M1). Here, we investigated the effect of acute aerobic exercise on cerebellar circuits, and their potential contribution to altered M1 plasticity in healthy individuals (age: 24.8 ± 4.1 years). In Experiment   1, acute aerobic exercise reduced cerebellar inhibition (CBI) (n = 10, p = 0.01), elicited by dual-coil paired-pulse transcranial magnetic stimulation. In Experiment   2, we evaluated the facilitatory effects of aerobic exercise on responses to paired associative stimulation, delivered with a 25 ms (PAS25) or 21 ms (PAS21) interstimulus interval (n = 16 per group). Increased M1 excitability evoked by PAS25, but not PAS21, relies on trans-cerebellar sensory pathways. The magnitude of the aerobic exercise effect on PAS response was not significantly different between PAS protocols (interaction effect: p = 0.30); however, planned comparisons indicated that, relative to a period of rest, acute aerobic exercise enhanced the excitatory response to PAS25 (p = 0.02), but not PAS21 (p = 0.30). Thus, the results of these planned comparisons indirectly provide modest evidence that modulation of cerebellar circuits may contribute to exercise-induced increases in M1 plasticity. The findings have implications for developing aerobic exercise strategies to “prime” M1 plasticity for enhanced motor skill learning in applied settings. PMID:27127659

  8. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. PMID:26874310

  9. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. PMID:26760266

  10. Inhibition of glycolysis by H sub 2 O sub 2 is not due to inhibition of G3PDH

    SciTech Connect

    Winkler, B.S.; Solomon, F.J. )

    1990-02-26

    The inhibition of glycolysis by H{sub 2}O{sub 2} has been attributed to oxidative inactivation of glyceraldehyde-3-phosphate dehydrogenase (G3PDH). The authors previous work using isolated, intact rat retinas suggested that the inter-action between H{sub 2}O{sub 2} and pyruvate could also contribute to the decrease in glycolysis, though G3PDH was not measured. The strategy of the present work was to compare the effects of H{sub 2}O{sub 2} with those of iodoacetate (IAA), which inactivates G3PDH but does not interact with pyruvate, on glycolysis of retinas and on the activity of G3PDH, as measured in post-incubation supernatant fractions of these retinas. When the enzyme activity was inhibited by 50% with 0.01 mM IAA, the glycolytic rate was not significantly different from the control value. However, when H{sub 2}O{sub 2} produced a 50% inhibition of the enzyme the glycolytic rate was decreased by 70% relative to the control tissue. With 0.1 mM H{sub 2}O{sub 2}, the enzyme inhibition was about 15% but the lactate produced declined by about 20%. Glycolysis was suppressed completely when the enzyme was inhibited by 99+% with either H{sub 2}O{sub 2} or IAA. Though G3PDH is clearly inhibited by H{sub 2}O{sub 2}, it appears that this inhibition alone may not account for the decline in glycolysis.

  11. Results.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)

  12. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  13. Aerobic Dance for Children: Resources and Recommendations.

    ERIC Educational Resources Information Center

    Wood, Denise A.

    1986-01-01

    Aerobic dance classes may be safe for older children, but are inappropriate for children in the fourth grade and under. Programs for these children should emphasize creativity. Resources for program development are given. (MT)

  14. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  15. The influence of aerobic fitness status on ventilatory efficiency in patients with coronary artery disease

    PubMed Central

    Prado, Danilo M L; Rocco, Enéas A; Silva, Alexandre G; Silva, Priscila F; Lazzari, Jaqueline M; Assumpção, Gabriela L; Thies, Sheyla B; Suzaki, Claudia Y; Puig, Raphael S; Furlan, Valter

    2015-01-01

    OBJECTIVE: To test the hypotheses that 1) coronary artery disease patients with lower aerobic fitness exhibit a lower ventilatory efficiency and 2) coronary artery disease patients with lower initial aerobic fitness exhibit greater improvements in ventilatory efficiency with aerobic exercise training. METHOD: A total of 123 patients (61.0±0.7 years) with coronary artery disease were divided according to aerobic fitness status into 3 groups: group 1 (n = 34, peak VO2<17.5 ml/kg/min), group 2 (n = 67, peak VO2>17.5 and <24.5 ml/kg/min) and group 3 (n = 22, peak VO2>24.5 ml/kg/min). All patients performed a cardiorespiratory exercise test on a treadmill. Ventilatory efficiency was determined by the lowest VE/VCO2 ratio observed. The exercise training program comprised moderate-intensity aerobic exercise performed 3 times per week for 3 months. Clinicaltrials.gov: NCT02106533 RESULTS: Before intervention, group 1 exhibited both lower peak VO2 and lower ventilatory efficiency compared with the other 2 groups (p<0.05). After the exercise training program, group 1 exhibited greater improvements in aerobic fitness and ventilatory efficiency compared with the 2 other groups (group 1: ▵ = -2.5±0.5 units; group 2: ▵ = -0.8±0.3 units; and group 3: ▵ = -1.4±0.6 units, respectively; p<0.05). CONCLUSIONS: Coronary artery disease patients with lower aerobic fitness status exhibited lower ventilatory efficiency during a graded exercise test. In addition, after 3 months of aerobic exercise training, only the patients with initially lower levels of aerobic fitness exhibited greater improvements in ventilatory efficiency. PMID:25672429

  16. Is aerobic dance an effective alternative to walk-jog exercise training?

    PubMed

    Garber, C E; McKinney, J S; Carleton, R A

    1992-06-01

    In order to compare the physiological effects of an 8 week aerobic dance program to those of a walk-jog exercise training program, 60 male and female University employees ages 24-48 years were randomly assigned to an aerobic dance program (N = 22), a walk-jog program (N = 24), or a sedentary control group (N = 15). Subjects who had an exercise compliance rate less than or equal to 85% were dropped from the study, as were control subjects who had scheduling conflicts or illnesses precluding post-treatment testing. Thirty-five subjects completed the 8 week period with a compliance rate greater than or equal to 85%, leaving 14 in the aerobics group, 11 in the walk-jog group and 10 in the control group. Significant increases (p less than 0.001) in maximal oxygen uptake occurred in both the aerobics (+3.9 ml/kg-1/min-1) and walk-jog group (+3.4 ml/kg-1/min-1), while no significant change was observed in the control group. Peak heart rate decreased significantly (p less than 0.05) in the aerobics (-4 b/min-1) and walk-jog groups (-3 b/min-1 but was unchanged in the control group (-1 b/min-1) following the treatment period. Body weight, peak respiratory exchange ratio and peak minute ventilation remained the same in the aerobics, walk-jog and control groups throughout the treatment period. It is concluded that aerobic dance programs can result in similar improvements in aerobic power as a walk-jog program. Thus, an aerobic dance program is an effective alternative to a traditional walk-jog training regime. PMID:1434581

  17. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.

    PubMed

    Gobi, K; Vadivelu, V M

    2014-06-01

    Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). PMID:24725384

  18. Loss of function of PTEN alters the relationship between glucose concentration and cell proliferation, increases glycolysis, and sensitizes cells to 2-deoxyglucose.

    PubMed

    Blouin, Marie-José; Zhao, Yunhua; Zakikhani, Mahvash; Algire, Carolyn; Piura, Esther; Pollak, Michael

    2010-03-28

    PTEN loss of function enhances proliferation, but effects on cellular energy metabolism are less well characterized. We used an inducible PTEN expression vector in a PTEN-null glioma cell line to examine this issue. While proliferation of PTEN-positive cells was insensitive to increases in glucose concentration beyond 2.5mM, PTEN-null cells significantly increased proliferation with increasing glucose concentration across the normal physiologic range to approximately 10mM, coinciding with a shift to glycolysis and "glucose addiction". This demonstrates that the impact of loss of function of PTEN is modified by glucose concentration, and may be relevant to epidemiologic results linking hyperglycemia to cancer risk and cancer mortality. PMID:19744772

  19. Potential electron mediators to extract electron energies of RBC glycolysis for prolonged in vivo functional lifetime of hemoglobin vesicles.

    PubMed

    Kettisen, Karin; Bülow, Leif; Sakai, Hiromi

    2015-04-15

    Developing a functional blood substitute as an alternative to donated blood for clinical use is believed to relieve present and future blood shortages, and to reduce the risks of infection and blood type mismatching. Hemoglobin vesicle (HbV) encapsulates a purified and concentrated human-derived Hb solution in a phospholipid vesicle (liposome). The in vivo safety and efficacy of HbV as a transfusion alternative have been clarified. Auto-oxidation of ferrous Hb in HbV gradually increases the level of ferric methemoglobin (metHb) and impairs the oxygen transport capabilities. The extension of the functional half-life of HbV has recently been proposed using an electron mediator, methylene blue (MB), which acts as a shuttle between red blood cells (RBC) and HbV. MB transfers electron energies of NAD(P)H, produced by RBC glycolysis, to metHb in HbV. Work presented here focuses on screening of 15 potential electron mediators, with appropriate redox potential and water solubility, for electron transfer from RBC to HbV. The results are assessed with regard to the chemical properties of the candidates. The compounds examined in this study were dimethyl methylene blue (DMB), methylene green, azure A, azure B, azure C, toluidine blue (TDB), thionin acetate, phenazine methosulfate, brilliant cresyl blue, cresyl violet, gallocyanine, toluylene blue, indigo carmine, indigotetrasulfonate, and MB. Six candidates were found to be unsuitable because of their insufficient diffusion across membranes, or overly high or nonexistent reactivity with relevant biomolecules. However, 9 displayed favorable metHb reduction. Among the suitable candidates, phenothiazines DMB and TDB exhibited effectiveness like MB did. In comparison to MB, they showed faster reduction by electron-donating NAD(P)H, coupled with showing a lower rate of reoxidation in the presence of molecular oxygen. Ascertaining the best electron mediator can provide a pathway for extending the lifetime and efficiency of

  20. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation.

    PubMed

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  1. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

    PubMed Central

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  2. [Fluorescence fingerprint transformation of municipal wastewater caused by aerobic treatment].

    PubMed

    Wu, Jing; Cui, Shuo; Xie, Chao-bo; Cao, Zhi-ping; Chen, Mao-fu; Lü, Yan-li

    2011-12-01

    The conventional parameters such as COD and BOD only could represent information about total organic content. Fluorescence spectrum can display organic composition and it is unique for each sample, so it is referred as "fluorescence fingerprint". In the present study transformation of excitation-emission matrix of municipal wastewater with sewage as major components after aerobic treatment was investigated and then the zones of biodegradable and non-biodegradable organic matters were figured out: the fluorescence at excitation wavelength/emission wavelength of about 280/340 nm and 225/240 nm derived from biodegradable organics and those of the zone of excitation wavelength above 300 nm and the zone of excitation wavelength below 300 nm and emission wavelength above 400 nm were mainly related with non-biodegradable organics. The above-mentioned results indicated that fluorescence fingerprint could be used to evaluate the performance and instruct design and operation of aerobic systems. PMID:22295782

  3. Aerobic scope explains individual variation in feeding capacity

    PubMed Central

    Auer, Sonya K.; Salin, Karine; Anderson, Graeme J.; Metcalfe, Neil B.

    2015-01-01

    Links between metabolism and components of fitness such as growth, reproduction and survival can depend on food availability. A high standard metabolic rate (SMR; baseline energy expenditure) or aerobic scope (AS; the difference between an individual's maximum and SMR) is often beneficial when food is abundant or easily accessible but can be less important or even disadvantageous when food levels decline. While the mechanisms underlying these context-dependent associations are not well understood, they suggest that individuals with a higher SMR or AS are better able to take advantage of high food abundance. Here we show that juvenile brown trout (Salmo trutta) with a higher AS were able to consume more food per day relative to individuals with a lower AS. These results help explain why a high aerobic capacity can improve performance measures such as growth rate at high but not low levels of food availability. PMID:26556902

  4. Aerobic scope explains individual variation in feeding capacity.

    PubMed

    Auer, Sonya K; Salin, Karine; Anderson, Graeme J; Metcalfe, Neil B

    2015-11-01

    Links between metabolism and components of fitness such as growth, reproduction and survival can depend on food availability. A high standard metabolic rate (SMR; baseline energy expenditure) or aerobic scope (AS; the difference between an individual's maximum and SMR) is often beneficial when food is abundant or easily accessible but can be less important or even disadvantageous when food levels decline. While the mechanisms underlying these context-dependent associations are not well understood, they suggest that individuals with a higher SMR or AS are better able to take advantage of high food abundance. Here we show that juvenile brown trout (Salmo trutta) with a higher AS were able to consume more food per day relative to individuals with a lower AS. These results help explain why a high aerobic capacity can improve performance measures such as growth rate at high but not low levels of food availability. PMID:26556902

  5. The Effect of Short-Term Aerobic Exercise on Depression and Body Image in Iranian Women

    PubMed Central

    Zarshenas, Sareh; Houshvar, Parsa; Tahmasebi, Ali

    2013-01-01

    The purpose of this study was to determine the effect of short-term aerobic exercise on depression symptoms and body image attitudes among Iranian women. In this quasiexperimental study, 82 females were assigned to experimental group (aerobic exercise group, n = 41) or control group (waiting list, n = 41) and evaluated by Beck Depression Inventory-second edition (BDI-II) and Multidimensional Body Self-Relation Questionnaire (MBSRQ), respectively. The experimental group received four-week aerobic exercise program, and control group had been asked to wait for the next four weeks. Results of this study confirmed the significant decrease in depression symptoms at the experimental group compared to control group (P < 0.5). For the body image dependent variables, significant improvement was also found in appearance evaluation, appearance orientation, health orientation, and illness orientation in aerobic exercise group (P < 0.5). PMID:24349769

  6. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills.

    PubMed

    Erses, A Suna; Onay, Turgut T; Yenigun, Orhan

    2008-09-01

    Two landfill bioreactors were operated under aerobic and anaerobic conditions in a thermo-insulated room at a constant temperature of 32 degrees C. Reactors were filled with 19.5 kg of shredded synthetic solid waste prepared according to the average municipal solid waste compositions determined in Istanbul and operated under wet-tomb management strategy by using leachate recirculation. Aerobic conditions in the reactor were developed by using an air compressor. The results of experiments indicated that aerobic reactor had higher organic, nitrogen, phosphorus and alkali metal removal efficiencies than the anaerobic one. Furthermore, stabilization time considerably decreased when using aerobic processes with leachate recirculation compared to the anaerobic system with the same recirculation scheme. PMID:18082400

  7. Effects of aerobic exercise on blood pressure and lipids in overweight hypertensive postmenopausal women

    PubMed Central

    Ammar, Tarek

    2015-01-01

    Menopause may increase risk of hypertension and abnormal lipid profile. The aim of the study was to examine the effects of morning and afternoon aerobic exercises on hypertension and lipids in overweight hypertensive postmenopausal women. Forty five women aged from 49 to 60 years were randomly assigned into three groups. Group (A) 15 patients received medicine, (B) 15 patients performed morning aerobic exercises and received medicine, and group (C) 15 patients performed afternoon aerobic exercises and received medicine. Blood pressure measurement and lipid profile tests were performed before and after the study. The results showed that there was a statistical significant difference among all groups in systolic and diastolic blood pressure, favoring group C. Also there was a statistical significant difference among all groups in lipid levels, favoring group C. Therefore, it can be concluded that morning aerobic exercises were more effective in reducing the blood pressure and lipids than afternoon exercises in overweight hypertensive postmenopausal women. PMID:26171380

  8. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks. PMID:26348286

  9. Interaction of Polybrominated Diphenyl Ethers and Aerobic Granular Sludge: Biosorption and Microbial Degradation

    PubMed Central

    Ni, Shou-Qing; Cui, Qingjie; Zheng, Zhen

    2014-01-01

    As a new category of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) have become ubiquitous global environmental contaminants. No literature is available on the aerobic biotransformation of decabromodiphenyl ether (BDE-209). Herein, we investigated the interaction of PBDEs with aerobic granular sludge. The results show that the removal of BDE-209 from wastewater is mainly via biosorption onto aerobic granular sludge. The uptake capacity increased when temperature, contact time, and sludge dosage increased or solution pH dropped. Ionic strength had a negative influence on BDE-209 adsorption. The modified pseudo first-order kinetic model was appropriate to describe the adsorption kinetics. Microbial debromination of BDE-209 did not occur during the first 30 days of operation. Further study found that aerobic microbial degradation of 4,4′-dibromodiphenyl ether happened with the production of lower BDE congeners. PMID:25009812

  10. Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors.

    PubMed

    Shaw, C B; Carliell, C M; Wheatley, A D

    2002-04-01

    Conventional biological wastewater treatment plants do not easily degrade the dyes and polyvinyl alcohols (PVOH) in textile effluents. Results are reported on the possible advantages of anaerobic/aerobic cometabolism in sequenced redox reactors. A six phase anaerobic/aerobic sequencing laboratory scale batch reactor was developed to treat a synthetic textile effluent. The wastewater included PVOH from desizing and an azo dye (Remazol Black). The reactor removed 66% of the applied total organic carbon (load F: M 0.15) compared to 76% from a control reactor without dye. Colour removal was 94% but dye metabolites caused reactor instability. Aromatic amines from the anaerobic breakdown of the azo dyes were not completely mineralised by the aerobic phase. Breakdown of PVOH by the reactor (20-30%) was not as good as previous reports with entirely aerobic cultures. The anaerobic cultures were able to tolerate the oxygen and methane continued to be produced but there was a deterioration in settlement. PMID:12092574

  11. Aerobic fitness ecological validity in elite soccer players: a metabolic power approach.

    PubMed

    Manzi, Vincenzo; Impellizzeri, Franco; Castagna, Carlo

    2014-04-01

    The aim of this study was to examine the association between match metabolic power (MP) categories and aerobic fitness in elite-level male soccer players. Seventeen male professional soccer players were tested for VO2max, maximal aerobic speed (MAS), VO2 at ventilatory threshold (VO2VT and %VO2VT), and speed at a selected blood lactate concentration (4 mmol·L(-1), V(L4)). Aerobic fitness tests were performed at the end of preseason and after 12 and 24 weeks during the championship. Aerobic fitness and MP variables were considered as mean of all seasonal testing and of 16 Championship home matches for all the calculations, respectively. Results showed that VO2max (from 0.55 to 0.68), MAS (from 0.52 to 0.72), VO2VT (from 0.72 to 0.83), %VO2maxVT (from 0.62 to 0.65), and V(L4) (from 0.56 to 0.73) were significantly (p < 0.05 to 0.001) large to very large associated with MP variables. These results provide evidence to the ecological validity of aerobic fitness in male professional soccer. Strength and conditioning professionals should consider aerobic fitness in their training program when dealing with professional male soccer players. The MP method resulted an interesting approach for tracking external load in male professional soccer players. PMID:24345968

  12. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  13. Evaluation of an aerobic treatment for olive mill wastewater detoxification.

    PubMed

    El Hajjouji, Houda; El Fels, Loubna; Pinelli, Eric; Barje, Farid; El Asli, Abdelghani; Merlina, Georges; Hafidi, Mohamed

    2014-01-01

    Olive mill wastewater (OMWW) is a by-product of the olive oil extraction industry. Its dumping creates severe environmental problems in the Mediterranean countries. The phytoxicity of OMWW is due to the phenolic substances and is evaluated through a genotoxicity method. An aerobic treatment of OMWW was conducted during 45 days. Different concentrations of raw and treated OMWW were tested using the Vicia faba micronuclei test. Results showed that raw OMWW induced significant micronuclei formation at 10% of OMWW dilution. At 20% of dilution, no mitosis was recorded. The 45 days aerobic treatment OMWW showed an important decrease in the genotoxicity and also in the toxicity that was observed at 10% and 20% OMWW dilution. This could be correlated with the biodegradation of 76% of the total phenols. Indeed, qualitative analysis by high performance liquid chromatography shows the disappearance of the majority of phenolic compounds after 45 days of treatment. This study was completed by an agricultural test with V. faba plant. Data showed significant growth yield of 36.3% and 29.9% after being irrigated with 5 and 10 t/ha, respectively. These results supported the positive role of aerobic treatment on OMWW and their capacity to ameliorate the agronomic potential of these effluents. PMID:25244133

  14. Intensity Thresholds for Aerobic Exercise–Induced Hypoalgesia

    PubMed Central

    Naugle, Kelly M.; Naugle, Keith E.; Fillingim, Roger B.; Samuels, Brian; Riley, Joseph L.

    2014-01-01

    Despite many studies investigating exercise-induced hypoalgesia, there is limited understanding of the optimal intensity of aerobic exercise in producing hypoalgesic effects across different types of pain stimuli. Given that not all individuals are willing or capable of engaging in high intensity aerobic exercise, whether moderate intensity aerobic exercise is associated with a hypoalgesic response and whether this response generalizes to multiple pain induction techniques needs to be substantiated. Purpose This study’s purpose is to test for differences in the magnitude of pressure and heat pain modulation induced by moderate (MAE) and vigorous (VAE) intensity aerobic exercise. Methods Twelve healthy young males and 15 females completed one training session and three testing sessions consisting of 25 minutes of either 1) stationary cycling at 70% heart rate reserve (HRR), 2) stationary cycling at 50% HRR, or 3) quiet rest (control). Pain testing was conducted on both forearms prior to and immediately following each condition and included the following tests: pressure pain thresholds (PPT), suprathreshold pressure pain test, static continuous heat test, and repetitive pulse heat pain test. Repeated measures ANOVAs were conducted on each pain measure. Results VAE and MAE reduced pain ratings during static continuous heat stimuli and repetitive heat pulse stimuli, with VAE producing larger effects. VAE also increased PPTs, while neither exercise influenced suprathreshold pressure pain ratings. Conclusion These results suggest that MAE is capable of producing a hypoalgesic effect using continuous and repetitive pulse heat stimuli. However, a dose-response effect was evident as VAE produced larger effects than MAE. PMID:24002342

  15. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  16. Physiological Effects of Seven Different Blocks in Glycolysis in Saccharomyces cerevisiae

    PubMed Central

    Ciriacy, Michael; Breitenbach, Ingrid

    1979-01-01

    Saccharomyces cerevisiae mutants unable to grow and ferment glucose have been isolated. Of 45 clones isolated, 25 had single enzyme defects of one of the following activities: phosphoglucose isomerase (pgi), phosphofructokinase (pfk), triosephosphate isomerase (tpi), phosphoglycerate kinase (pgk), phosphoglyceromutase (pgm), and pyruvate kinase (pyk). Phosphofructokinase activities in crude extracts of the pfk mutant were only 2% of the wild-type level. However, normal growth on glucose medium and normal fermentation of glucose suggested either that the mutant enzyme was considerably more active in vivo or, alternatively, that 2% residual activity was sufficient for normal glycolysis. All other mutants were moderately to strongly inhibited by glucose. Unusually high concentrations of glycolytic metabolites were observed before the reaction catalyzed by the enzyme which was absent in a given mutant strain when incubated on glucose. This confirmed at the cellular level the location of the defect as determined by enzyme assays. With adh (lacks all three alcohol dehydrogenase isozymes) and pgk mutants, accumulation of the typical levels of hexosephosphates was prevented when respiration was blocked with antimycin A. A typical feature of all glycolytic mutants described here was the rapid depletion of the intracellular adenosine 5′-triphosphate pool after transfer to glucose medium. No correlation of low or high levels of fructose-1,6-bisphosphate with the degree of catabolite repression and inactivation could be found. This observation does not support the concept that hexose metabolites are directly involved in these regulatory mechanisms in yeast. PMID:378952

  17. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose.

    PubMed

    Ackermann, R F; Lear, J L

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum. PMID:2584274

  18. 3-bromopyruvate inhibits glycolysis, depletes cellular glutathione, and compromises the viability of cultured primary rat astrocytes.

    PubMed

    Ehrke, Eric; Arend, Christian; Dringen, Ralf

    2015-07-01

    The pyruvate analogue 3-bromopyruvate (3-BP) is an electrophilic alkylator that is considered a promising anticancer drug because it has been shown to kill cancer cells efficiently while having little toxic effect on nontumor cells. To test for potential adverse effects of 3-BP on brain cells, we exposed cultured primary rat astrocytes to 3-BP and investigated the effects of this compound on cell viability, glucose metabolism, and glutathione (GSH) content. The presence of 3-BP severely compromised cell viability and slowed cellular glucose consumption and lactate production in a time- and concentration-dependent manner, with half-maximal effects observed at about 100 µM 3-BP after 4 hr of incubation. The cellular hexokinase activity was not affected in 3-BP-treated astrocytes, whereas within 30 min after application of 3-BP the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was inhibited, and cellular GSH content was depleted in a concentration-dependent manner, with half-maximal effects observed at about 30 µM 3-BP. The depletion of cellular GSH after exposure to 100 µM 3-BP was not prevented by the presence of 10 mM of the monocarboxylates lactate or pyruvate, suggesting that 3-BP is not taken up into astrocytes predominantly by monocarboxylate transporters. The data suggest that inhibition of glycolysis by inactivation of GAPDH and GSH depletion contributes to the toxicity that was observed for 3-BP-treated cultured astrocytes. PMID:25196479

  19. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis.

    PubMed

    Gohil, Vishal M; Sheth, Sunil A; Nilsson, Roland; Wojtovich, Andrew P; Lee, Jeong Hyun; Perocchi, Fabiana; Chen, William; Clish, Clary B; Ayata, Cenk; Brookes, Paul S; Mootha, Vamsi K

    2010-03-01

    Most cells have the inherent capacity to shift their reliance on glycolysis relative to oxidative metabolism, and studies in model systems have shown that targeting such shifts may be useful in treating or preventing a variety of diseases ranging from cancer to ischemic injury. However, we currently have a limited number of mechanistically distinct classes of drugs that alter the relative activities of these two pathways. We screen for such compounds by scoring the ability of >3,500 small molecules to selectively impair growth and viability of human fibroblasts in media containing either galactose or glucose as the sole sugar source. We identify several clinically used drugs never linked to energy metabolism, including the antiemetic meclizine, which attenuates mitochondrial respiration through a mechanism distinct from that of canonical inhibitors. We further show that meclizine pretreatment confers cardioprotection and neuroprotection against ischemia-reperfusion injury in murine models. Nutrient-sensitized screening may provide a useful framework for understanding gene function and drug action within the context of energy metabolism. PMID:20160716

  20. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings.

    PubMed

    Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F

    2014-01-01

    Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients. PMID:24090098

  1. Respirometric assessment of aerobic sludge stabilization.

    PubMed

    Tas, Didem Okutman

    2010-04-01

    Aerobic sludge stabilization was assessed respirometrically with the sludge taken from the secondary settling tank of a domestic wastewater treatment facility in Istanbul, Turkey. Zero-order removal rates of 178, 127 and 44 mg/L day were found for Suspended Solids (SS), Volatile Suspended Solids (VSS) and Total Organic Carbon (TOC) at the end of 18 days sludge stabilization, respectively. Significant nutrient release was observed by the mineralized nitrogen and phosphorus from the death and lysis of microorganisms. The model simulations for the batch respirometric assays for initial, 7th and 18th days of the stabilization agree reasonably well with the experimental data. The maximum storage rates (k(sto)) as well as maximum growth rates on stored products (micro(H2)) decrease with increasing stabilization period. Respirometric assays indicated the presence of microorganisms that started to compete with the dominant microorganisms as a result of the stabilization. As such, these findings have significance in terms of the efforts related to the sludge management and application processes. PMID:19942430

  2. Late Archean rise of aerobic microbial ecosystems

    PubMed Central

    Eigenbrode, Jennifer L.; Freeman, Katherine H.

    2006-01-01

    We report the 13C content of preserved organic carbon for a 150 million-year section of late Archean shallow and deepwater sediments of the Hamersley Province in Western Australia. We find a 13C enrichment of ≈10‰ in organic carbon of post-2.7-billion-year-old shallow-water carbonate rocks relative to deepwater sediments. The shallow-water organic-carbon 13C content has a 29‰ range in values (−57 to −28‰), and it contrasts with the less variable but strongly 13C-depleted (−40 to −45‰) organic carbon in deepwater sediments. The 13C enrichment likely represents microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that continued oxidation of shallow settings favored the expansion of aerobic ecosystems and respiring organisms, and, as a result, isotopic signatures of preserved organic carbon in shallow settings approached that of photosynthetic biomass. Facies analysis of published carbon-isotopic records indicates that the Hamersley shallow-water signal may be representative of a late Archean global signature and that it preceded a similar, but delayed, 13C enrichment of deepwater deposits. The data suggest that a global-scale expansion of oxygenated habitats accompanied the progression away from anaerobic ecosystems toward respiring microbial communities fueled by oxygenic photosynthesis before the oxygenation of the atmosphere after 2.45 billion years ago. PMID:17043234

  3. Personality, Metabolic Rate and Aerobic Capacity

    PubMed Central

    Terracciano, Antonio; Schrack, Jennifer A.; Sutin, Angelina R.; Chan, Wayne; Simonsick, Eleanor M.; Ferrucci, Luigi

    2013-01-01

    Personality traits and cardiorespiratory fitness in older adults are reliable predictors of health and longevity. We examined the association between personality traits and energy expenditure at rest (basal metabolic rate) and during normal and maximal sustained walking. Personality traits and oxygen (VO2) consumption were assessed in 642 participants from the Baltimore Longitudinal Study of Aging. Results indicate that personality traits were mostly unrelated to resting metabolic rate and energy expenditure at normal walking pace. However, those who scored lower on neuroticism (r =  −0.12) and higher on extraversion (r = 0.11), openness (r = 0.13), and conscientiousness (r = 0.09) had significantly higher energy expenditure at peak walking pace. In addition to greater aerobic capacity, individuals with a more resilient personality profile walked faster and were more efficient in that they required less energy per meter walked. The associations between personality and energy expenditure were not moderated by age or sex, but were in part explained by the proportion of fat mass. In conclusion, differences in personality may matter the most during more challenging activities that require cardiorespiratory fitness. These findings suggest potential pathways that link personality to health outcomes, such as obesity and longevity. PMID:23372763

  4. Aerobic fitness and orthostatic tolerance: Evidence against an association

    NASA Technical Reports Server (NTRS)

    Ebert, Thomas J.

    1994-01-01

    This presentation will focus on only one side of the debate as to whether high levels of aerobic fitness have a deleterious effect on tolerance to gravitational stress. This issue was raised in the early 1970's as a result of two research publications. The first work investigated the carotid sinus baroreflex of humans with an airtight chamber that surrounded the head and neck. The steady-state reflex changes in blood pressure that were recorded 3 minutes after application of the head and neck stimuli, were attenuated in an athletic group compared to a sedentary group of volunteers. A second report in the NASA literature indicated that five endurance-trained runners were less tolerant to LBNP than five nonrunners. These early research findings have stimulated a considerable amount of interest that has lead to a growing number of research efforts seeking an association between aerobic fitness and orthostatic tolerance in humans. I will briefly review some of the more pertinent published research information which suggests that there is no relationship between aerobic fitness and orthostatic tolerance in humans.

  5. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.

    PubMed

    Bamforth, C W; Quayle, J R

    1978-10-01

    1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate. 2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme. 3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions. 4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured. 5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase. PMID:718372

  6. Aerobic and anaerobic exercise training in obese adults

    PubMed Central

    Al Saif, Amer; Alsenany, Samira

    2015-01-01

    [Purpose] Obesity is a global health problem and is associated with a multitude of complications. This study was designed to determine changes in cardiopulmonary functions after aerobic and anaerobic exercise training in obese subjects. [Subjects and Methods] Forty obese subjects, whose ages ranged between 18 and 25 years, were divided into 2 equal groups: group A received aerobic exercise training in addition to dietary measures, and group B received anaerobic exercise training for 3 months in addition to dietary measures. Measurements of systolic blood pressure, diastolic blood pressure, heart rate, maximum voluntary ventilation, maximal oxygen consumption, and body mass index were obtained for both groups before and after the exercise program. [Results] The mean body mass index, systolic blood pressure, diastolic blood pressure, heart rate, and maximal oxygen consumption decreased significantly, whereas the mean maximum voluntary ventilation increased significantly after treatment in group A. The mean maximum voluntary ventilation also increased significantly after treatment in group B. There were significant differences between the mean levels of the investigated parameters in groups A and B after treatment. [Conclusion] Aerobic exercise reduces weight and improves cardiopulmonary fitness in obese subjects better than anaerobic exercise. PMID:26180300

  7. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  8. Aerobic and Anaerobic Respiration in Profiles of Polesie Lubelskie Peatlands

    NASA Astrophysics Data System (ADS)

    Szafranek-Nakonieczna, Anna; Stêpniewska, Zofia

    2014-04-01

    Soil respiration is a very important factor influencing carbon deposition in peat and reflecting the intensity of soil organic matter decomposition, root respiration, and the ease of transporting gases to the surface. Carbon dioxide release from three different peat soil profiles (0-80 cm) of the Polesie Lubelskie Region (Eastern Poland) was analyzed under laboratory conditions. Peat samples were incubated at 5, 10, and 20°C in aerobic and anaerobic environments, and their CO2-evolution was analyzed up to 14 days. The respiration activity was found to be in the range of 0.013-0.497 g CO2 kg-1 DW d-1. The respiratory quotient was estimated to be in the range of 0.51-1.51, and the difference in respiration rates over 10°C ranged between 4.15 and 8.72 in aerobic and from 1.15 to 6.53 in anaerobic conditions. A strong influence of temperature, depth, the degree of peat decomposition, pH, and nitrate content on respiration activity was found. Lack of oxygen at low temperature caused higher respiration activity than under aerobic conditions. These results should be taken into account when the management of Polish peatlands is considered in the context of climate and carbon storage, and physicochemical properties of soil in relation to soil respiration activity are considered.

  9. Adherence of older women with strength training and aerobic exercise

    PubMed Central

    Picorelli, Alexandra Miranda Assumpção; Pereira, Daniele Sirineu; Felício, Diogo Carvalho; Dos Anjos, Daniela Maria; Pereira, Danielle Aparecida Gomes; Dias, Rosângela Corrêa; Assis, Marcella Guimarães; Pereira, Leani Souza Máximo

    2014-01-01

    Background Participation of older people in a program of regular exercise is an effective strategy to minimize the physical decline associated with age. The purpose of this study was to assess adherence rates in older women enrolled in two different exercise programs (one aerobic exercise and one strength training) and identify any associated clinical or functional factors. Methods This was an exploratory observational study in a sample of 231 elderly women of mean age 70.5 years. We used a structured questionnaire with standardized tests to evaluate the relevant clinical and functional measures. A specific adherence questionnaire was developed by the researchers to determine motivators and barriers to exercise adherence. Results The adherence rate was 49.70% in the aerobic exercise group and 56.20% in the strength training group. Multiple logistic regression models for motivation were significant (P=0.003) for the muscle strengthening group (R2=0.310) and also significant (P=0.008) for the aerobic exercise group (R2=0.154). A third regression model for barriers to exercise was significant (P=0.003) only for the muscle strengthening group (R2=0.236). The present study shows no direct relationship between worsening health status and poor adherence. Conclusion Factors related to adherence with exercise in the elderly are multifactorial. PMID:24600212

  10. Electric motor assisted bicycle as an aerobic exercise machine.

    PubMed

    Nagata, T; Okada, S; Makikawa, M

    2012-01-01

    The goal of this study is to maintain a continuous level of exercise intensity around the aerobic threshold (AT) during riding on an electric motor assisted bicycle using a new control system of electrical motor assistance which uses the efficient pedaling rate of popular bicycles. Five male subjects participated in the experiment, and the oxygen uptake was measured during cycling exercise using this new pedaling rate control system of electrical motor assistance, which could maintain the pedaling rate within a specific range, similar to that in previous type of electrically assisted bicycles. Results showed that this new pedaling rate control system at 65 rpm ensured continuous aerobic exercise intensity around the AT in two subjects, and this intensity level was higher than that observed in previous type. However, certain subjects were unable to maintain the expected exercise intensity because of their particular cycling preferences such as the pedaling rate. It is necessary to adjust the specific pedaling rate range of the electrical motor assist control according to the preferred pedaling rate, so that this system becomes applicable to anyone who want continuous aerobic exercise. PMID:23366293

  11. Neuromuscular Changes After Aerobic Exercise in People with Anterior Cruciate Ligament– Reconstructed Knees

    PubMed Central

    Dalton, Elizabeth C.; Pfile, Kate R.; Weniger, Gerald R.; Ingersoll, Christopher D.; Herman, Daniel; Hart, Joseph M.

    2011-01-01

    Context: Anterior cruciate ligament (ACL) reconstructions are common, especially in young, active people. The lower extremity neuromuscular adaptations seen after aerobic exercise provide information about how previously injured patients perform and highlight deficits and, hence, areas for focused treatment. Little information is available about neuromuscular performance after aerobic exercise in people with ACL reconstructions. Objective: To compare dynamic balance, gluteus medius muscle activation, vertical jump height, and hip muscle strength after aerobic exercise in people with ACL-reconstructed knees. Design: Case-control study. Setting: Research laboratory. Patients or Other Participants: Of 34 recreationally active volunteers, 17 had a unilateral primary ACL reconstruction at least 2 years earlier and 17 were matched controls. Intervention(s): All participants performed 20 minutes of aerobic exercise on a treadmill. Main Outcome Measure(s): We recorded dynamic, single-legged balance electromyographic gluteus medius muscle activation, single-legged vertical jump height, and maximum isometric strength for hip abduction, extension, and external rotation preexercise and postexercise. Results: Participants with ACL reconstructions exhibited shorter reach distances during dynamic balance tasks, indicating poorer dynamic balance, and less gluteus medius muscle electromyographic activation. Reductions in hip abduction and extension strength after exercise were noted in all participants; however, those with ACL reconstructions displayed greater hip extensor strength loss after aerobic exercise than did the control group. Conclusions: Neuromuscular changes after aerobic exercise exist in both patients with ACL reconstructions and controls. The former group may experience greater deficits in hip extensor strength after aerobic exercise. Reduced reach distances in people with ACL reconstructions may represent a protective mechanism against excessive tibiofemoral

  12. Aerobic Fitness Does Not Modify the Effect of FTO Variation on Body Composition Traits

    PubMed Central

    Huuskonen, Antti; Lappalainen, Jani; Oksala, Niku; Santtila, Matti; Häkkinen, Keijo; Kyröläinen, Heikki; Atalay, Mustafa

    2012-01-01

    Purpose Poor physical fitness and obesity are risk factors for all cause morbidity and mortality. We aimed to clarify whether common genetic variants of key energy intake determinants in leptin (LEP), leptin receptor (LEPR), and fat mass and obesity-associated (FTO) are associated with aerobic and neuromuscular performance, and whether aerobic fitness can alter the effect of these genotypes on body composition. Methods 846 healthy Finnish males of Caucasian origin were genotyped for FTO (rs8050136), LEP (rs7799039) and LEPR (rs8179183 and rs1137101) single nucleotide polymorphisms (SNPs), and studied for associations with maximal oxygen consumption, body fat percent, serum leptin levels, waist circumference and maximal force of leg extensor muscles. Results Genotype AA of the FTO SNP rs8050136 associated with higher BMI and greater waist circumference compared to the genotype CC. In general linear model, no significant interaction for FTO genotype-relative VO2max (mL·kg−1·min−1) or FTO genotype-absolute VO2max (L·min−1) on BMI or waist circumference was found. Main effects of aerobic performance on body composition traits were significant (p<0.001). Logistic regression modelling found no significant interaction between aerobic fitness and FTO genotype. LEP SNP rs7799039, LEPR SNPs rs8179183 and rs1137101 did not associate with any of the measured variables, and no significant interactions of LEP or LEPR genotype with aerobic fitness were observed. In addition, none of the studied SNPs associated with aerobic or neuromuscular performance. Conclusions Aerobic fitness may not modify the effect of FTO variation on body composition traits. However, relative aerobic capacity associates with lower BMI and waist circumference regardless of the FTO genotype. FTO, LEP and LEPR genotypes unlikely associate with physical performance. PMID:23284729

  13. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants.

    PubMed

    De Rosa, Veronica; Galgani, Mario; Porcellini, Antonio; Colamatteo, Alessandra; Santopaolo, Marianna; Zuchegna, Candida; Romano, Antonella; De Simone, Salvatore; Procaccini, Claudio; La Rocca, Claudia; Carrieri, Pietro Biagio; Maniscalco, Giorgia Teresa; Salvetti, Marco; Buscarinu, Maria Chiara; Franzese, Adriana; Mozzillo, Enza; La Cava, Antonio; Matarese, Giuseppe

    2015-11-01

    Human regulatory T cells (T(reg) cells) that develop from conventional T cells (T(conv) cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced T(reg) cells (iT(reg) cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iT(reg) cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2-related suppressive activity of iT(reg) cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of T(reg) cells in health and in autoimmunity. PMID:26414764

  14. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation

    PubMed Central

    Patsoukis, Nikolaos; Bardhan, Kankana; Chatterjee, Pranam; Sari, Duygu; Liu, Bianling; Bell, Lauren N.; Karoly, Edward D.; Freeman, Gordon J.; Petkova, Victoria; Seth, Pankaj; Li, Lequn; Boussiotis, Vassiliki A.

    2015-01-01

    During activation, T cells undergo metabolic reprogramming, which imprints distinct functional fates. We determined that on PD-1 ligation, activated T cells are unable to engage in glycolysis or amino acid metabolism but have an increased rate of fatty acid β-oxidation (FAO). PD-1 promotes FAO of endogenous lipids by increasing expression of CPT1A, and inducing lipolysis as indicated by elevation of the lipase ATGL, the lipolysis marker glycerol and release of fatty acids. Conversely, CTLA-4 inhibits glycolysis without augmenting FAO, suggesting that CTLA-4 sustains the metabolic profile of non-activated cells. Because T cells utilize glycolysis during differentiation to effectors, our findings reveal a metabolic mechanism responsible for PD-1-mediated blockade of T-effector cell differentiation. The enhancement of FAO provides a mechanistic explanation for the longevity of T cells receiving PD-1 signals in patients with chronic infections and cancer, and for their capacity to be reinvigorated by PD-1 blockade. PMID:25809635

  15. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions. PMID:26573667

  16. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies.

    PubMed

    Headd, Brendan; Bradford, Scott A

    2016-03-01

    Waterborne illnesses are a growing concern among health and regulatory agencies worldwide. The United States Environmental Protection Agency has established several rules to combat the contamination of water supplies by cryptosporidium oocysts, however, the detection and study of cryptosporidium oocysts is hampered by methodological and financial constraints. As a result, numerous surrogates for cryptosporidium oocysts have been proposed by the scientific community and efforts are underway to evaluate many of the proposed surrogates. The purpose of this review is to evaluate the suitability of aerobic bacterial spores to serve as a surrogate for cryptosporidium oocysts in identifying contaminated drinking waters. To accomplish this we present a comparison of the biology and life cycles of aerobic spores and oocysts and compare their physical properties. An analysis of their surface properties is presented along with a review of the literature in regards to the transport, survival, and prevalence of aerobic spores and oocysts in the saturated subsurface environment. Aerobic spores and oocysts share many commonalities with regard to biology and survivability, and the environmental prevalence and ease of detection make aerobic spores a promising surrogate for cryptosporidium oocysts in surface and groundwater. However, the long-term transport and release of aerobic spores still needs to be further studied, and compared with available oocyst information. In addition, the surface properties and environmental interactions of spores are known to be highly dependent on the spore taxa and purification procedures, and additional research is needed to address these issues in the context of transport. PMID:26734779

  17. The Effects of Aerobic Exercise on Cognitive Function of Alzheimer's Disease Patients.

    PubMed

    Yang, Si-Yu; Shan, Chun-Lei; Qing, He; Wang, Wei; Zhu, Yi; Yin, Meng-Mei; Machado, Sergio; Yuan, Ti-Fei; Wu, Ting

    2015-01-01

    To evaluate the effect of moderate intensity of aerobic exercise on elderly people with mild Alzheimer's disease, we recruited fifty volunteers aged 50 years to 80 years with cognitive impairment. They were randomized into two groups: aerobic group (n=25) or control group (n=25). The aerobic group was treated with cycling training at 70% of maximal intensity for 40 min/d, 3 d/wk for 3 months. The control group was only treated with heath education. Both groups were received cognitive evaluation, laboratory examination before and after 3 months. The results showed that the Minimum Mental State Examination score, Quality of Life Alzheimer's Disease score and the plasma Apo-a1 level was significantly increased (P<0.05), the Alzheimer's Disease Assessment Scale-cognition score, Neuropsychiatric Inventory Questionnaire score was significantly decreased.(P<0.05) in aerobic group before and after 3 months in aerobic group. For the control group, there was no significant difference in scores of Alzheimer's Disease Assessment Scale-cognition, Neuropsychiatric Inventory Questionnaire, Quality of Life Alzheimer's Disease, Apo-a1 (P>0.05), while Minimum Mental State Examination scores decreased significantly after 3 months (P<0.05). In conclusion, moderate intensity of aerobic exercise can improve cognitive function in patients with mild Alzheimer's disease. PMID:26556080

  18. 1Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults

    PubMed Central

    Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin

    2013-01-01

    Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495

  19. Nitrogen removal capability through simultaneous heterotrophic nitrification and aerobic denitrification by Bacillus sp. LY.

    PubMed

    Zhao, Bin; He, Yi Liang; Zhang, Xiao Fan

    2010-04-01

    The heterotrophic nitrification and aerobic denitrification capabilities of Bacillus sp. LY were investigated under the aerobic condition. The results indicate that Bacillus sp. LY is not only a heterotrophic nitrifier, but also an aerobic denitrifier. Experiments were carried out in an attempt to determine and quantify the contribution of heterotrophic nitrification and aerobic denitrification to total N removal. By taking the nitrogen balance under the culture condition of 41.1 mg/L of initial NH(4+)-N at a C/N ratio of 15 in 96 h, 8.0% of the initial NH(4)+-N still remained in the medium in the forms of hydroxylamine, nitrite, nitrate and organic N; 40.5% of NH(4+)-N was converted to biomass and 45.9% of NH(4+)-N was estimated to be finally removed in the formation of N2. This conversion of ammonium to N2 with the intermediate formation of N2O under the aerobic condition was confirmed by gas chromatography. Single step nitrogen removal by simultaneous heterotrophic nitrification and aerobic denitrification has great potential in wastewater treatment. PMID:20450115

  20. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    PubMed

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. PMID:26119011

  1. Failure of target heart rate to accurately monitor intensity during aerobic dance.

    PubMed

    Parker, S B; Hurley, B F; Hanlon, D P; Vaccaro, P

    1989-04-01

    Fourteen untrained females (age 19 +/- 1, range 18-21) were studied to examine the heart rate-VO2 relationship during a single aerobic dance training session. These findings were used to help explain the changes in VO2max resulting from an aerobic dance training program. VO2max and body composition were determined before and after an 8 wk training period. In addition, the heart rate-VO2 responses to an aerobic dance training session were monitored and compared to the heart rate responses of treadmill jogging performed at the same VO2. The aerobic dance session elicited a significantly lower oxygen pulse than did treadmill exercise (7.2 +/- 0.3 vs 8.1 +/- 0.8 ml.beat-1; P less than 0.01). There were no significant changes in percent body fat, whereas VO2max increased by 11% (34.4 +/- 0.9 vs 38.1 +/- 0.8 ml.kg-1.min-1; P less than 0.05). No significant changes in any of the parameters tested were observed in 10 untrained controls. These findings indicate that the heart rate elicited from aerobic dance represents a lower relative exercise intensity (VO2) than that of running. Therefore, the assumption that aerobic dance training produces the same cardiovascular adaptations as running training when performed at the same target rate may be unwarranted. PMID:2709986

  2. [Anaerobic-aerobic infection in acute appendicitis].

    PubMed

    Mamchich, V I; Ulitovskiĭ, I V; Savich, E I; Znamenskiĭ, V A; Beliaeva, O A

    1998-01-01

    362 patients with acute appendicitis (AA) were examined. For microbiological diagnosis of aerobic and anaerobic nonclostridial microflora we used complex accelerated methods (including evaluation of gram-negative microorganisms in comparison with tinctorial-fermentative method of differential staining according to oxygen sensitivity of catalasopositive together with aerobic and cathalasonegative anaerobic microorganisms) as well as complete bacteriologic examination with determination of sensitivity of the above microorganism to antimicrobial remedies. High rate of aerobic-anaerobic microbial associations and substantial identity of microflora from appendicis and exudate from abdominal cavity was revealed, which evidenced the leading role of endogenous microorganisms in etiology and pathogenesis of AA and peritonitis i. e. autoinfection. In patients with destructive forms of AA, complicated by peritonitis it is recommended to use the accelerated method of examination of pathologic material as well as the complete scheme of examination with the identification of the isolated microorganisms and the correction of antibiotic treatment. PMID:9511291

  3. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  4. Evaluation of the petrifilm aerobic count plate for enumeration of aerobic marine bacteria from seawater and Caulerpa lentillifera.

    PubMed

    Kudaka, Jun; Horii, Toru; Tamanaha, Koji; Itokazu, Kiyomasa; Nakamura, Masaji; Taira, Katsuya; Nidaira, Minoru; Okano, Sho; Kitahara, Akio

    2010-08-01

    The enumeration and evaluation of the activity of marine bacteria are important in the food industry. However, detection of marine bacteria in seawater or seafood has not been easy. The Petrifilm aerobic count plate (ACP) is a ready-to-use alternative to the traditional enumeration media used for bacteria associated with food. The purpose of this study was to evaluate the usefulness of a simple detection and enumeration method utilizing the Petrifilm ACP for enumeration of aerobic marine bacteria from seawater and an edible seaweed, Caulerpa lentillifera. The efficiency of enumeration of total aerobic marine bacteria on Petrifilm ACP was compared with that using the spread plate method on marine agar with 80 seawater and 64 C. lentillifera samples. With sterile seawater as the diluent, a close correlation was observed between the method utilizing Petrifilm ACP and that utilizing the conventional marine agar (r=0.98 for seawater and 0.91 for C. lentillifera). The Petrifilm ACP method was simpler and less time-consuming than the conventional method. These results indicate that Petrifilm ACP is a suitable alternative to conventional marine agar for enumeration of marine microorganisms in seawater and C. lentillifera samples. PMID:20819367

  5. The effect of intensity controlled aerobic dance exercise on aerobic capacity of middle-aged, overweight women.

    PubMed

    Gillett, P A; Eisenman, P A

    1987-12-01

    The purpose of this study was to determine the effect of intensity controlled exercise on the aerobic capacity of overweight, middle-aged women. Thirty-eight moderately overweight women, ages 35-57, participated in a 16-week dance-exercise program. Random assignment was made to an experimental group (n = 20) in which intensity of exercise was controlled and prescribed, and a control group (n = 18) in which exercise was of an intensity typical to commercial aerobic classes. Prior to the onset of training, and at the completion of 16 weeks, the following fitness tests were administered: Aerobic capacity expressed as VO2 max, body composition analysis, blood chemistry, blood pressure, resting heart rate, muscular endurance, and flexibility. T-tests, ANCOVA, and gain-score analyses were utilized to evaluate data. Both groups showed small changes in weight, percent fat, resting systolic and diastolic blood pressure, resting heart rate, high density lipoprotein-cholesterol (HDL-C), muscular endurance, and flexibility, but these changes were statistically nonsignificant. The VO2 max for the experimental group increased 41%, while the VO2 max for the control group increased 22% (p less than 0.05). The results suggest that the cardiovascular fitness changes for overweight, middle-aged women are greater when exercise intensity and progression are tailored to their age and fitness level. PMID:3423310

  6. Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation

    PubMed Central

    Li, Zhenjian; Chen, Yong; Liu, Dong; Zhao, Nan; Cheng, Hao; Ren, Hengfei; Guo, Ting; Niu, Huanqing; Zhuang, Wei; Wu, Jinglan; Ying, Hanjie

    2015-01-01

    Compared to free (free-living) cells, biofilm cells show increased resistance and stability to high-pressure fermentation conditions, although the reasons underlying these phenomena remain unclear. Here, we investigated biofilm formation with immobilized Saccharomyces cerevisiae cells grown on fiber surfaces during the process of ethanol fermentation. The development of biofilm colonies was visualized by fluorescent labeling and confocal microscopy. RNA from yeast cells at three different biofilm development periods was extracted and sequenced by high-throughput sequencing. We quantitated gene expression differences between biofilm cells and free cells and found that 2098, 1556, and 927 genes were significantly differentially expressed, respectively. We also validated the expression of previously reported genes and identified novel genes and pathways under the control of this system. Statistical analysis revealed that biofilm genes show significant gene expression changes principally in the initial period of biofilm formation compared to later periods. Carbohydrate metabolism, amino acid metabolism, signal transduction, and oxidoreductase activity were needed for biofilm formation. In contrast to previous findings, we observed some differential expression performances of FLO family genes, indicating that cell aggregation in our immobilized fermentation system was possibly independent of flocculation. Cyclic AMP-protein kinase A and mitogen-activated protein kinase pathways regulated signal transduction pathways during yeast biofilm formation. We found that carbohydrate metabolism, especially glycolysis/gluconeogenesis, played a key role in the development of S. cerevisiae biofilms. This work provides an important dataset for future studies aimed at gaining insight into the regulatory mechanisms of immobilized cells in biofilms, as well as for optimizing bioprocessing applications with S. cerevisiae. PMID:25755652

  7. GATA4 Is a Key Regulator of Steroidogenesis and Glycolysis in Mouse Leydig Cells

    PubMed Central

    Schrade, Anja; Kyrönlahti, Antti; Akinrinade, Oyediran; Pihlajoki, Marjut; Häkkinen, Merja; Fischer, Simon; Alastalo, Tero-Pekka; Velagapudi, Vidya; Toppari, Jorma; Wilson, David B.

    2015-01-01

    Transcription factor GATA4 is expressed in somatic cells of the mammalian testis. Gene targeting studies in mice have shown that GATA4 is essential for proper differentiation and function of Sertoli cells. The role of GATA4 in Leydig cell development, however, remains controversial, because targeted mutagenesis experiments in mice have not shown a consistent phenotype, possibly due to context-dependent effects or compensatory responses. We therefore undertook a reductionist approach to study the function of GATA4 in Leydig cells. Using microarray analysis and quantitative RT-PCR, we identified a set of genes that are down-regulated or up-regulated after small interfering RNA (siRNA)-mediated silencing of Gata4 in the murine Leydig tumor cell line mLTC-1. These same genes were dysregulated when primary cultures of Gata4flox/flox adult Leydig cells were subjected to adenovirus-mediated cre-lox recombination in vitro. Among the down-regulated genes were enzymes of the androgen biosynthetic pathway (Cyp11a1, Hsd3b1, Cyp17a1, and Srd5a). Silencing of Gata4 expression in mLTC-1 cells was accompanied by reduced production of sex steroid precursors, as documented by mass spectrometric analysis. Comprehensive metabolomic analysis of GATA4-deficient mLTC-1 cells showed alteration of other metabolic pathways, notably glycolysis. GATA4-depleted mLTC-1 cells had reduced expression of glycolytic genes (Hk1, Gpi1, Pfkp, and Pgam1), lower intracellular levels of ATP, and increased extracellular levels of glucose. Our findings suggest that GATA4 plays a pivotal role in Leydig cell function and provide novel insights into metabolic regulation in this cell type. PMID:25668067

  8. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation

    SciTech Connect

    Ge, Xin; Lyu, Pengwei; Gu, Yuanting; Li, Lin; Li, Jingruo; Wang, Yan; Zhang, Linfeng; Fu, Chao; Cao, Zhang

    2015-08-28

    Sonic hesgehog (Shh) signaling has been reported to play an essential role in cancer progression. The mechanism of Shh involved in breast cancer carcinogenesis remains unclear. The present study sought to explore whether Shh signaling could regulate the glycolytic metabolism in breast cancers. Overexpression of the smoothed (Smo) and Gli-1 was found in human primary breast cancers. The expressions of Shh and Gli-1 correlated significantly with tumor size and tumor stage. In vitro, human recombinant Shh (rShh) triggered Smo and Gli-1 expression, promoted glucose utilization and lactate production, and accelerated cell proliferation in MCF-7 and MDA-MB-231 cells. Notably, rShh did not alter 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) expression but augmented PFKFB3 phosphorylation on ser{sup 461}, along with elevated fructose-2,6-bisphosphate (F2,6BP) generation by MCF-7 and MDA-MB-231 cells. This effect could be dampened by Smo siRNA but not by Gli-1 siRNA. In addition, our data showed the upregulated expressions of MAPK by rShh and elevatory PFKFB3 phosphorylation by p38/MAPK activated kinase (MK2). In conclusion, our study characterized a novel role of Shh in promoting glycolysis and proliferation of breast cancer cells via PFKFB3 phosphorylation, which was mediated by Smo and p38/MK2. - Highlights: • Overexpression of Smo and Gli-1 was found in human primary breast cancers. • Shh promoted glucose utilization, lactate production, and cell proliferation. • Shh did not alter PFKFB3 expression but augmented PFKFB3 phosphorylation on ser461. • Shh acts on PFKFB3 phosphorylation via Smo and p38 MAPK/MK2.

  9. Respiratory physiology of the Oniscidea: aerobic capacity and the significance of pleopodal lungs.

    PubMed

    Wright, Jonathan C; Ting, Kevin

    2006-10-01

    The radiation of the terrestrial isopods (sub-order Oniscidea) has been accompanied by evolution of pleopodal lungs in the sections Tylida and Crinocheta. To understand the significance of such lungs for aerobic respiration, comparative studies were conducted using 6 species. Ligia occidentalis, lacking lungs, behaved as a metabolic conformer in reduced PO(2), and showed decreased V(.-)O(2) in low humidity and following dehydration. In species possessing lungs, metabolism was insensitive to dehydration. However, lung development did not show a clear relationship to metabolic regulation: Porcellio dilatatus was a metabolic conformer while Tylos punctatus and Armadillidium vulgare were efficient regulators. The metabolic conformers did not accumulate lactate during moderate hypoxia (10% O(2)), indicating that reduced V(.-)O(2) is not compensated with anaerobic glycolysis. In contrast, Alloniscus perconvexus, a littoral species with limited metabolic regulation, showed the largest lactate accumulation during hypoxia and also possessed the highest tissue LDH activity. It is hypothesized that these are adaptations to periodic hypoxia in sand burrows and the high metabolic cost of burrowing. Differences in lactate accumulation during immersion were curious, with the largest increases occurring in L. occidentalis and A. perconvexus that tolerate prolonged immersion in seawater. Possible functions of this lactate accumulation may include modulation of hemocyanin oxygen affinity. PMID:16875858

  10. INACTIVATION OF ENTERIC PATHOGENS DURING AEROBIC DIGESTION OF WASTEWATER SLUDGE

    EPA Science Inventory

    The effects of aerobic and anaerobic digestion on enteric viruses, enteric bacteria, total aerobic bacteria, and intestinal parasites were studied under laboratory and field conditions. Under laboratory conditions, the temperature of the sludge digestion was the major factor infl...

  11. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  12. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

    PubMed Central

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  13. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn.

    PubMed

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  14. The Paroxetine Effect on Exercise Performance Depends on the Aerobic Capacity of Exercising Individuals

    PubMed Central

    Teixeira-Coelho, Francisco; Uendeles-Pinto, João Paulo; Serafim, Ana Cláudia Alves; Wanner, Samuel Penna; de Matos Coelho, Márcio; Soares, Danusa Dias

    2014-01-01

    This study investigated the influence of aerobic capacity on the activation of the central serotonergic system and exercise fatigue in young men that ingested a selective serotonin reuptake inhibitor and were then subjected to moderate-intensity physical exercise. The maximal oxygen consumption of sixteen volunteers was measured during an incremental test. The volunteers were divided into two groups: subjects with higher (HAC) and lower (LAC) aerobic capacities. The volunteers were subjected to four experimental trials in which they ingested either placebo or paroxetine (10, 20 or 40 mg) and, 4.5 h later, cycled at 60% of their maximal power output until reaching fatigue. None of the three paroxetine doses influenced the total exercise time in the LAC group. However, for the HAC group, the time to fatigue in the 20 mg paroxetine condition was 15% less than that in the placebo condition (76.3 ± 5.1 min vs. 90.0 ± 7.9 min; p < 0.05). The time to fatigue was higher in the HAC group than in the LAC group for all treatments. Our results provide additional evidence that aerobic capacity modulates the activity of the serotonergic system. However, contrary to what would be expected considering previous reports, the activation of the serotonergic system in exercising subjects in the HAC group was not less than that in the LAC group. Key points The physical performance of the higher aerobic capacity group after administration of 20 mg of paroxetine decreased relative to that after administration of the placebo, whereas the same dose of paroxetine had no effect in the lower aerobic capacity group. Our results provide additional evidence that aerobic capacity modulates the activity of the serotonergic system. Contrary to what would be expected considering previous reports, the present findings suggest that the activity of the serotonergic system during exercise is not attenuated in individuals with a higher aerobic capacity relative to those that have a lower aerobic

  15. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  16. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  17. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

  18. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  19. Strengthening aerobic granule by salt precipitation.

    PubMed

    Chen, Yu-You; Pan, Xiangliang; Li, Jun; Lee, Duu-Jong

    2016-10-01

    Structural stability of aerobic granules is generally poor during long-term operation. This study precipitated seven salts inside aerobic granules using supersaturated solutions of (NH4)3PO4, CaCO3, CaSO4, MgCO3, Mg3(PO4)2, Ca3(PO4)2 or SiO2 to enhance their structural stability. All precipitated granules have higher interior strength at ultrasonic field and reveal minimal loss in organic matter degradation capability at 160-d sequential batch reactor tests. The strength enhancement followed: Mg3(PO4)2=CaSO4>SiO2>(NH4)3PO4>MgCO3>CaCO3=Ca3(PO4)2>original. Also, the intra-granular solution environment can be buffered by the precipitate MgCO3 to make the aerobic granules capable of degradation of organic matters at pH 3. Salt precipitation is confirmed a simple and cost-effective modification method to extend the applicability of aerobic granules for wastewater treatments. PMID:27377228

  20. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  1. The effects of electrical stunning methods on broiler meat quality: effect on stress, glycolysis, water distribution, and myofibrillar ultrastructures.

    PubMed

    Huang, J C; Huang, M; Yang, J; Wang, P; Xu, X L; Zhou, G H

    2014-08-01

    This study was designed to compare the effects of different stunning systems on the meat quality of broilers. This was done by investigating meat water-holding capacity, meat color, muscle glycogen, and lactate concentrations, as well as blood parameters, low-field nuclear magnetic resonance (NMR) transverse relaxation, and myofibrillar ultrastructures. A total of 160 broilers were divided into 4 treatment groups: a low-voltage stunning (LS) with a constant voltage of 15 V at 750 Hz for 10 s; a midvoltage stunning (MS) with a constant voltage of 50 V at 50 Hz for 10 s; a high-voltage stunning (HS) with a constant voltage of 100 V at 50 Hz for 5 s; and a control group with no stunning (NS). Blood samples were collected immediately after cutting the neck. Pectoralis major muscles were removed from the carcass after chilling and placed in ice. Breast muscle pH, meat color, glycogen, and lactate contents were determined at both 2 and 24 h postmortem. Drip loss, cooking loss, pressing loss, cooked breast meat shear values, low-field NMR, and ultrastructures of myofibrils were determined 24 h postmortem. The NS and MS treatments significantly increased (P < 0.05) blood plasma corticosterone, initial rate of glycolysis, and drip loss, and significantly reduced (P < 0.05) initial muscle pH and shear force values when compared with LS and HS. The results of low-field NMR reflect that NS and MS significantly decreased (P < 0.05) NMR transverse relaxation population 1 (T21) and increased (P < 0.05) NMR transverse relaxation population 2 (T22). The myofibrils of NS and MS samples showed significantly (P < 0.05) longer sarcomere length when compared with the LS and HS samples. The meat color, cooking loss, pressing loss, and final pH were not affected by the stunning methods. This study indicates that NS and MS treatments reduce meat water-holding capacity and decrease meat shear force when compared with LS and HS. PMID:24894530

  2. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  3. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

  4. A proposed aerobic granules size development scheme for aerobic granulation process.

    PubMed

    Dahalan, Farrah Aini; Abdullah, Norhayati; Yuzir, Ali; Olsson, Gustaf; Salmiati; Hamdzah, Myzairah; Din, Mohd Fadhil Mohd; Ahmad, Siti Aqlima; Khalil, Khalilah Abdul; Anuar, Aznah Nor; Noor, Zainura Zainon; Ujang, Zaini

    2015-04-01

    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme. PMID:25661308

  5. Assessing aerobic natural attenuation of trichloroethene at four DOE sites

    SciTech Connect

    Koelsch, Michael C.; Starr, Robert C.; Sorenson, Jr., Kent S.

    2005-03-01

    A 3-year Department of Energy Environmental Science Management Program (EMSP) project is currently investigating natural attenuation of trichloroethane (TCE) in aerobic groundwater. This presentation summarizes the results of a screening process to identify TCE plumes at DOE facilities that are suitable for assessing the rate of TCE cometabolism under aerobic conditions. In order to estimate aerobic degradation rates, plumes had to meet the following criteria: TCE must be present in aerobic groundwater, a conservative co-contaminant must be present and have approximately the same source as TCE, and the groundwater velocity must be known. A total of 127 TCE plumes were considered across 24 DOE sites. The four sites retained for the assessment were: (1) Brookhaven National Laboratory, OU III; (2) Paducah Gaseous Diffusion Plant, Northwest Plume; (3) Rocky Flats Environmental Technology Site, Industrialized Area--Southwest Plume and 903 Pad South Plume; and (4) Savannah River Site, A/M Area Plume. For each of these sites, a co-contaminant derived from the same source area as TCE was used as a nonbiodegrading tracer. The tracer determined the extent to which concentration decreases in the plume can be accounted for solely by abiotic processes such as dispersion and dilution. Any concentration decreases not accounted for by these processes must be explained by some other natural attenuation mechanism. Thus, ''half-lives'' presented herein are in addition to attenuation that occurs due to hydrologic mechanisms. This ''tracer-corrected method'' has previously been used at the DOE's Idaho National Engineering and Environmental Laboratory in conjunction with other techniques to document the occurrence of intrinsic aerobic cometabolism. Application of this method to other DOE sites is the first step to determining whether this might be a significant natural attenuation mechanism on a broader scale. Application of the tracer-corrected method to data from the Brookhaven

  6. ASSESSING AEROBIC NATURAL ATTENUATION OF TRICHLOROETHENE AT FOUR DOE SITES

    SciTech Connect

    Michael C. Koelsch; Robert C. Starr; Kent S. Sorenson, Jr.

    2005-03-01

    A 3-year Department of Energy Environmental Science Management Program (EMSP) project is currently investigating natural attenuation of trichloroethane (TCE) in aerobic groundwater. This presentation summarizes the results of a screening process to identify TCE plumes at DOE facilities that are suitable for assessing the rate of TCE cometabolism under aerobic conditions. In order to estimate aerobic degradation rates, plumes had to meet the following criteria: TCE must be present in aerobic groundwater, a conservative co-contaminant must be present and have approximately the same source as TCE, and the groundwater velocity must be known. A total of 127 TCE plumes were considered across 24 DOE sites. The four sites retained for the assessment were: (1) Brookhaven National Laboratory, OU III; (2) Paducah Gaseous Diffusion Plant, Northwest Plume; (3) Rocky Flats Environmental Technology Site, Industrialized Area--Southwest Plume and 903 Pad South Plume; and (4) Savannah River Site, A/M Area Plume. For each of these sites, a co-contaminant derived from the same source area as TCE was used as a nonbiodegrading tracer. The tracer determined the extent to which concentration decreases in the plume can be accounted for solely by abiotic processes such as dispersion and dilution. Any concentration decreases not accounted for by these processes must be explained by some other natural attenuation mechanism. Thus, ''half-lives'' presented herein are in addition to attenuation that occurs due to hydrologic mechanisms. This ''tracer-corrected method'' has previously been used at the DOE's Idaho National Engineering and Environmental Laboratory in conjunction with other techniques to document the occurrence of intrinsic aerobic cometabolism. Application of this method to other DOE sites is the first step to determining whether this might be a significant natural attenuation mechanism on a broader scale. Application of the tracer-corrected method to data from the Brookhaven

  7. Combined Aerobic/Strength Training and Energy Expenditure in Older Women

    PubMed Central

    Hunter, Gary R.; Bickel, C. Scott; Fisher, Gordon; Neumeier, William; McCarthy, John

    2013-01-01

    Purpose To examine the effects of three different frequencies of combined resistance and aerobic training on total energy expenditure (TEE) and activity related energy expenditure (AEE) in a group of older adults. Methods Seventy-two women, 60 – 74 years old, were randomly assigned to one of three groups: 1 day/week of aerobic and 1 day/week of resistance (1+1); 2 days/week of aerobic and 2 days/week resistance (2+2); or 3 days/week aerobic and 3 days/week resistance (3+3). Body composition (DXA), feeling of fatigue, depression, and vigor (questionnaire), strength (1RM), serum cytokines (ELISA), maximal oxygen uptake (progressive treadmill test), resting energy expenditure, and TEE were measured before and after 16 weeks of training. Aerobic training consisted of 40 minutes of aerobic exercise at 80% maximum heart rate and resistance training consisted of 2 sets of 10 repetitions for 10 different exercises at 80% of one repetition maximum. Results All groups increased fat free mass, strength and aerobic fitness and decreased fat mass. No changes were observed in cytokines or perceptions of fatigue/depression. No time by group interaction was found for any fitness/body composition variable. TEE and AEE increased with the 2+2 group but not with the other two groups. Non-exercise training AEE (NEAT) increased significantly in the 2+2 group (+200 kcal/day), group 1×1 showed a trend for an increase (+68 kcal/day) and group 3+3 decreased significantly (−150 kcal/day). Conclusion Results indicate that 3+3 training may inhibit NEAT by being too time consuming and does not induce superior training adaptations to 1+1 and 2+2 training. Key words: physical activity, older adults, total energy expenditure, maximum oxygen uptake. PMID:23774582

  8. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment. PMID:26841606

  9. Comparison of Leachate Quality from Aerobic and Anaerobic Municipal Solid Waste Bioreactors

    NASA Astrophysics Data System (ADS)

    Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.

    2002-12-01

    Municipal solid waste landfills are becoming a drain on the resources of local municipalities as the requirements for stabilization and containment become increasingly stringent. Current regulations limit the moisture in the landfill to minimize leachate production and lower the potential for release of leachate to the environment. Recent research has shown that addition and recycling of moisture in the waste optimizes the biodegradation of stabilization and also provides a means for leachate treatment. This study compares the characteristics of leachate produced from aerobic and anaerobic laboratory bioreactors, and leachate collected from a full-scale anaerobic bioreactor. The laboratory reactors consisted of 200-liter tanks filled with fresh waste materials with the following conditions: (a) aerobic (air injection with leachate recirculation), (b) anaerobic (leachate recirculation). The leachate from the reactors was monitored for metals, nutrients, organic carbon, and microbiological activity for up to 500 days. Leachate from the aerobic tank had significantly lower concentrations of all potential contaminants, both organic and metal, after only a few weeks of operation. Metals leaching was low throughout the test period for the aerobic tanks, and decreased over time for the anaerobic tanks. Organic carbon as measured by BOD, COD, TOC, and COD were an order of magnitude higher in the leachate from the anaerobic system. Microbiological assessment by lipid analysis, enzyme activity assays, and cell counts showed high biomass and diversity in both the aerobic and anaerobic bioreactors, with higher activity in the anaerobic leachate. Results from the full-scale anaerobic bioreactor were not significantly different from those of the laboratory anaerobic bioreactor. The reduction in noxious odors was a significant advantage of the aerobic system. These results suggest that aerobic management of landfills could reduce or eliminate the need for leachate treatment

  10. Effect of Aerobic Exercise Training on Blood Pressure in Indians: Systematic Review

    PubMed Central

    Punia, Vandana

    2016-01-01

    Introduction. High blood pressure (BP) is one of the most important modifiable risk factors for cardiovascular diseases, which accounts for one in every eight deaths worldwide. It has been predicted that, by 2020, there would be 111% increase in cardiovascular deaths in India. Aerobic exercise in the form of brisk walking, jogging, running, and cycling would result in reduction in BP. Many meta-analytical studies from western world confirm this. However, there is no such review from Indian subcontinent. Objective. Our objective is to systematically review and report the articles from India in aerobic exercise on blood pressure. Methodology. Study was done in March 2016 in Google Scholar using search terms “Aerobic exercise” AND “Training” AND “Blood pressure” AND “India.” This search produced 3210 titles. Results. 24 articles were identified for this review based on inclusion and exclusion criteria. Total of 1107 subjects participated with median of 25 subjects. Studies vary in duration from +3 weeks to 12 months with each session lasting 15–60 minutes and frequency varies from 3 to 8 times/week. The results suggest that there was mean reduction of −05.00 mmHg in SBP and −03.09 mmHg in DBP after aerobic training. Conclusion. Aerobic training reduces the blood pressure in Indians. PMID:27493989

  11. Effect of Aerobic Exercise Training on Blood Pressure in Indians: Systematic Review.

    PubMed

    Punia, Sonu; Kulandaivelan, Sivachidambaram; Singh, Varun; Punia, Vandana

    2016-01-01

    Introduction. High blood pressure (BP) is one of the most important modifiable risk factors for cardiovascular diseases, which accounts for one in every eight deaths worldwide. It has been predicted that, by 2020, there would be 111% increase in cardiovascular deaths in India. Aerobic exercise in the form of brisk walking, jogging, running, and cycling would result in reduction in BP. Many meta-analytical studies from western world confirm this. However, there is no such review from Indian subcontinent. Objective. Our objective is to systematically review and report the articles from India in aerobic exercise on blood pressure. Methodology. Study was done in March 2016 in Google Scholar using search terms "Aerobic exercise" AND "Training" AND "Blood pressure" AND "India." This search produced 3210 titles. Results. 24 articles were identified for this review based on inclusion and exclusion criteria. Total of 1107 subjects participated with median of 25 subjects. Studies vary in duration from +3 weeks to 12 months with each session lasting 15-60 minutes and frequency varies from 3 to 8 times/week. The results suggest that there was mean reduction of -05.00 mmHg in SBP and -03.09 mmHg in DBP after aerobic training. Conclusion. Aerobic training reduces the blood pressure in Indians. PMID:27493989

  12. Change in energy expenditure and physical activity in response to aerobic and resistance exercise programs.

    PubMed

    Drenowatz, Clemens; Grieve, George L; DeMello, Madison M

    2015-01-01

    Exercise is considered an important component of a healthy lifestyle but there remains controversy on effects of exercise on non-exercise physical activity (PA). The present study examined the prospective association of aerobic and resistance exercise with total daily energy expenditure and PA in previously sedentary, young men. Nine men (27.0 ± 3.3 years) completed two 16-week exercise programs (3 exercise sessions per week) of aerobic and resistance exercise separated by a minimum of 6 weeks in random order. Energy expenditure and PA were measured with the SenseWear Mini Armband prior to each intervention as well as during week 1, week 8 and week 16 of the aerobic and resistance exercise program. Body composition was measured via dual x-ray absorptiometry. Body composition did not change in response to either exercise intervention. Total daily energy expenditure on exercise days increased by 443 ± 126 kcal/d and 239 ± 152 kcal/d for aerobic and resistance exercise, respectively (p < 0.01). Non-exercise moderate-to-vigorous PA, however, decreased on aerobic exercise days (-148 ± 161 kcal/d; p = 0.03). There was no change in total daily energy expenditure and PA on non-exercise days with aerobic exercise while resistance exercise was associated with an increase in moderate-to-vigorous PA during non-exercise days (216 ± 178 kcal/d, p = 0.01). Results of the present study suggest a compensatory reduction in PA in response to aerobic exercise. Resistance exercise, on the other hand, appears to facilitate non-exercise PA, particularly on non-exercise days, which may lead to more sustainable adaptations in response to an exercise program. PMID:26702387

  13. MicroRNA-18b inhibits the growth of malignant melanoma via inhibition of HIF-1α-mediated glycolysis.

    PubMed

    Chen, Yao; Zhang, Ziqing; Luo, Chengqun; Chen, Zizi; Zhou, Jianda

    2016-07-01

    MicroRNAs (miRs) have been demonstrated to play critical roles in the development and progression of malignant melanoma (MM). However, the exact role and underlying mechanism of miR-18b in MM growth remains unclear. In the present study, real-time PCR data indicated that miR-18b was significantly downregulated in MM tissues compared to their matched adjacent non-tumor tissues. Low miR-18b expression was significantly associated with the tumor thickness and stage, although no significant association was observed between the miR-18b expression and the age, gender, or lymph node metastasis. Besides, miR-18b was also significantly downregulated in MM B16 and A375 cells compared to normal skin HACAT cells. Ectopic expression of miR-18b decreased the proliferation of A375 and B16 cells, while induced a remarkable cell cycle arrest at G1 stage. Besides, miR-18b overexpression also inhibited the glycolysis in A375 and B16 cells. HIF-1α, a key regulator in glycolysis, was then identified as a target gene of miR-18b, and its expression was negatively mediated by miR-18b in A375 and B16 cells. Overexpression of HIF-1α rescued the suppressive effect of miR-18b on MM cell proliferation and glycolysis. In vivo study further showed that overexpression of miR-18b inhibited the MM growth as well as the tumor-related death, accompanied with HIF-1α downregulation. Taken together, the present study suggests that miR-18b inhibits the growth of MM cells in vitro and in vivo through directly targeting HIF-1α. PMID:27220837

  14. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.

    PubMed

    Mutuku, J Musembi; Nose, Akihiro

    2012-06-01

    Rhizoctonia solani Kuhn causes sheath blight disease in rice, and genetic resistance against it is the most desirable characteristic. Current improvement efforts are based on analysis of polygenic quantitative trait loci (QTLs), but interpretation is limited by the lack of information on the changes in metabolic pathways. Our previous studies linked activation of the glycolytic pathway to enhanced generation of lignin in the phenylpropanoid pathway. The current studies investigated the regulation of glycolysis by examining the time course of changes in enzymatic activities and metabolite contents. The results showed that the activities of all glycolytic enzymes as well as fructose-6-phosphate (F-6-P), fructose-1,6-bisphosphate (F-1,6-P(2)), dihydroxyacetone phosphate (DHAP), glyceraldehyde-3-phosphate (GAP), 3-phosphoglycerate (3-PG), phosphoenolpyruvate (PEP) and pyruvate contents increased. These results combined with our previous findings that the expression of phosphoglucomutase (PGM), triosephosphate isomerase (TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase and pyruvate kinase (PK) increased after infection suggested that the additional establishment of glycolysis in the cytosol compartment occurred after infection. Further evidence for this was our recent findings that the increase in expression of the 6-phosphofructokinase (PFK) plastid isozyme Os06g05860 was accompanied by an increase in expression of three cytosolic PFK isozymes, i.e. Os01g09570, Os01g53680 and Os04g39420, as well as pyrophosphate-dependent phosphofrucokinase (PFP) isozymes Os08g25720 (α-subunit) and Os06g13810 (β-subunit) in infected rice plants of the resistant line. The results also showed that the reactions catalysed by PFK/PFP, aldolase, GAPDH + phosphoglycerate kinase (PGK) and PK in leaf sheaths of R. solani-infected rice plants were non-equilibrium reactions in vivo. This study showed that PGM, phosphoglucose isomerase (PGI), TPI and phosphoglycerate mutase (PGmu

  15. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats

    PubMed Central

    Opie, L. H.; Mansford, K. R. L.; Owen, Patricia

    1971-01-01

    1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (`working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [14C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and 14CO2). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue

  16. [Research advances in denitrogenation characteristics of aerobic denitrifiers].

    PubMed

    Liang, Shu-Cheng; Zhao, Min; Lu, Lei; Zhao, Li-Yan

    2010-06-01

    The discovery of aerobic denitrifiers is the enrichment and breakthrough of traditional denitrification theory. Owing to their unique superiority in denitrogenation, aerobic denitrifiers have become a hotspot in the study of bio-denitrogenation of waste water. Under aerobic conditions, the aerobic denitrifiers can utilize organic carbon sources for their growth, and produce N2 from nitrate and nitrite. Most of the denitrifiers can also proceed with heterotrophic nitrification simultaneously, transforming NH4(+)-N to gaseous nitrogen. In this paper, the denitrogenation characteristics and action mechanisms of some isolated aerobic denitrifiers were discussed from the aspects of electron theory and denitrifying enzyme system. The effects of the environmental factors DO, carbon sources, and C/N on the denitrogenation process of aerobic denitrifiers were analyzed, and the screening methods as well as the present and potential applications of aerobic denitrifiers in wastewater treatment were described and discussed. PMID:20873638

  17. Metabolic and hormonal responses to low-impact aerobic dance during pregnancy.

    PubMed

    McMurray, R G; Hackney, A C; Guion, W K; Katz, V L

    1996-01-01

    This study examined the plasma glucose, free fatty acids (NEFA), lactate, triglyceride, cortisol, and insulin responses of pregnant women (22-28 wk) to a 40-min aerobic dance program and 40-min treadmill walking at similar heart rate intensities. The heart rates during exercise averaged 135 +/- 5 bt.min-1 for both trials. Immediate post-exercise plasma glucose levels were lower than resting levels for both exercise trials (P < 0.05), and remained below resting levels 20 min after exercise. Plasma triglycerides and NEFA were increased immediately post-exercise (P < 0.05), and returned toward rest 20 min after exercise. The NEFA responses at the end of the walking trials were significantly greater than at the end of the aerobic dance trials (P < 0.05). For both trials, immediate post-exercise plasma insulin levels were below resting levels (P < 0.05) and remained attenuated 20 min post-exercise. Plasma cortisol concentrations were unchanged throughout the aerobic dance trial. However, a mean increase of 105 nmol.l-1 immediately post-exercise was evident during the walking trials (P < 0.05). The results suggest that 40 min of walking or aerobic dance reduces blood glucose but does not cause hypoglycemia. Further, the results suggest that 40 min of walking or aerobic dance does not expose the mother to serious metabolic consequences that might adversely affect the fetus. PMID:8775353

  18. Effects of Aerobic Exercise on Anxiety Disorders: A Systematic Review.

    PubMed

    de Souza Moura, Antonio Marcos; Lamego, Murilo Khede; Paes, Flávia; Ferreira Rocha, Nuno Barbosa; Simoes-Silva, Vitor; Rocha, Susana Almeida; de Sá Filho, Alberto Souza; Rimes, Ridson; Manochio, João; Budde, Henning; Wegner, Mirko; Mura, Gioia; Arias-Carrión, Oscar; Yuan, Ti-Fei; Nardi, Antonio Egidio; Machado, Sergio

    2015-01-01

    Anxiety disorders are the most common psychiatric disorders observed currently. It is a normal adaptive response to stress that allows coping with adverse situations. Nevertheless, when anxiety becomes excessive or disproportional in relation to the situation that evokes it or when there is not any special object directed at it, such as an irrational dread of routine stimuli, it becomes a disabling disorder and is considered to be pathological. The traditional treatment used is medication and cognitive behavioral psychotherapy, however, last years the practice of physical exercise, specifically aerobic exercise, has been investigated as a new non-pharmacological therapy for anxiety disorders. Thus, the aim of this article was to provide information on research results and key chains related to the therapeutic effects of aerobic exercise compared with other types of interventions to treat anxiety, which may become a useful clinical application in a near future. Researches have shown the effectiveness of alternative treatments, such as physical exercise, minimizing high financial costs and minimizing side effects. The sample analyzed, 66.8% was composed of women and 80% with severity of symptoms anxiety as moderate to severe. The data analyzed in this review allows us to claim that alternative therapies like exercise are effective in controlling and reducing symptoms, as 91% of anxiety disorders surveys have shown effective results in treating. However, there is still disagreement regarding the effect of exercise compared to the use of antidepressant symptoms and cognitive function in anxiety, this suggests that there is no consensus on the correct intensity of aerobic exercise as to achieve the best dose-response, with intensities high to moderate or moderate to mild. PMID:26556089

  19. Endurance training and aerobic fitness in young people.

    PubMed

    Baquet, Georges; van Praagh, Emmanuel; Berthoin, Serge

    2003-01-01

    Training-induced adaptations in aerobic fitness have been extensively studied in adults, and some exercise scientists have recommended similar training programmes for young people. However, the subject of the response to aerobic training of children and adolescents is controversial. The effects of exercise training on prepubertal children are particularly debatable. The latter may be partly explained by different training designs, which make comparisons between studies very problematic. We have analysed the procedures applied to protocol design and training methods to highlight the real impact of aerobic training on the peak oxygen uptake (V-dotO2) of healthy children and adolescents. In accordance with previously published reviews on trainability in youngsters, research papers were rejected from the final analysis according to criteria such as the lack of a control group, an unclear training protocol, inappropriate statistical procedures, small sample size, studies with trained or special populations, or with no peak V-dotO2 data. Factors such as maturity, group constitution, consistency between training and testing procedures, drop out rates, or attendance were considered, and possible associations with changes in peak V-dotO2 with training are discussed. From 51 studies reviewed, 22 were finally retained. In most of the studies, there was a considerable lack of research regarding circumpubertal individuals in general, and particularly in girls. The results suggest that methodologically listed parameters will exert a potential influence on the magnitude of peak V-dotO2 improvement. Even if little difference is reported for each parameter, it is suggested that the sum of errors will result in a significant bias in the assessment of training effects. The characteristics of each training protocol were also analysed to establish their respective potential influence on peak V-dotO2 changes. In general, aerobic training leads to a mean improvement of 5-6% in the peak V

  20. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation

    PubMed Central

    Kosman, Daniel J.

    2012-01-01

    Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron’s aqueous chemistry, occurs as ‘rust’, insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H2O)6]3+. Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting FeII which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the ‘rusting out’ of FeIII and the ROS-generating autoxidation of FeII so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology. PMID:23264695

  1. Aerobic Microbial Respiration in Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Schunck, Harald; Loescher, Carolin; Desai, Dhwani K.; LaRoche, Julie; Schmitz-Streit, Ruth; Kuypers, Marcel M. M.

    2014-05-01

    In the oxygen minimum zones (OMZs) of the tropical oceans, sluggish ventilation combined with strong microbial respiration of sinking organic matter results in the depletion of oxygen (O2). When O2 concentrations drop below ~5 µmol/L, organic matter is generally assumed to be respired with nitrate, ultimately leading to the loss of fixed inorganic nitrogen via anammox and denitrification. However, direct measurements of microbial O2 consumption at low O2 levels are - apart from a single experiment conducted in the OMZ off Peru - so far lacking. At the same time, consistently observed active aerobic ammonium and nitrite oxidation at non-detectable O2 concentrations (<1 µmol/L) in all major OMZs, suggests aerobic microorganisms, likely including heterotrophs, to be well adapted to near-anoxic conditions. Consequently, microaerobic (≤5 µmol/L) remineralization of organic matter, and thus release of ammonium, in low- O2 environments might be significantly underestimated at present. Here we present extensive measurements of microbial O2 consumption in OMZ waters, combined with highly sensitive O2 (STOX) measurements and meta-omic functional gene analyses. Short-term incubation experiments with labelled O2 (18-18O2) carried out in the Namibian and Peruvian OMZ, revealed persistent aerobic microbial activity at depths with non-detectable concentrations of O2 (≤50 nmol/L). In accordance, examination of metagenomes and metatranscriptomes from Chilean and Peruvian OMZ waters identified genes encoding for terminal respiratory oxidases with high O2 affinities as well as their expression by diverse microbial communities. Oxygen consumption was particularly enhanced near the upper OMZ boundaries and could mostly (~80%) be assigned to heterotrophic microbial activity. Compared to previously identified anaerobic microbial processes, microaerobic organic matter respiration was the dominant remineralization pathway and source of ammonium (~90%) in the upper Namibian and

  2. Aerobic workout and bone mass in females.

    PubMed

    Alfredson, H; Nordström, P; Lorentzon, R

    1997-12-01

    This cross-sectional study aimed to investigate bone mass in females participating in aerobic workout. Twenty-three females (age 24.1 +/- 2.7 years), participating in aerobic workout for about 3 hours/week, were compared with 23 age-, weight- and height-matched non-active females. Areal bone mineral density (BMD) was measured in total body, head, whole dominant humerus, lumbar spine, right femoral neck, Ward's triangle, trochanter femoris, in specific sites in right femur diaphysis, distal femur, proximal tibia and tibial diaphysis, and bone mineral content (BMC) was measured in the whole dominant arm and right leg, using dual energy X-ray absorptiometry. The aerobic workout group had significantly (P < 0.05-0.01) higher BMD in total body (3.7%), lumbar spine (7.8%), femoral neck (11.6%), Ward's triangle (11.7%), trochanter femoris (9.6%), proximal tibia (6.8%) and tibia diaphysis (5.9%) compared to the non-active controls. There were no differences between the groups concerning BMD of the whole dominant humerus, femoral diaphysis, distal femur and BMC and lean mass of the whole dominant arm and right leg. Leaness of the whole dominant arm and leg was correlated to BMC of the whole dominant arm and right leg in both groups. In young females, aerobic workout containing alternating high and low impact movements for the lower body is associated with a higher bone mass in clinically important sites like the lumbar spine and hip, but muscle strengthening exercises like push-ups and soft-glove boxing are not associated with a higher bone mass in the dominant humerus. It appears that there is a skeletal adaptation to the loads of the activity. PMID:9458499

  3. Aerobic fitness in women and responses to lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett; Mathes, Karen L.; Hoffler, G. Wyckliffe

    1987-01-01

    The role of tolerance to orthostatic stress in the maintenance of high aerobic fitness in women was investigated by examining the responses of heart rate, stroke volume, cardiac output, Heather index of contractility, arterial pressure, peripheral resistance, change in calf circumference, and thoracic impedance of healthy female subjects to lower body negative pressure (LBNP) applied for 5 min at -50 mm Hg or until a subject became presyncopal. The testing protocol involved a stepwise reduction in pressure and consisted of two parts: an LBNP test in supine position followed by a treadmill test to peak aerobic capacity. Women were found to exhibit the same response pattern to LBNP as was previously reported by Convertino et al. (1984) for men. The results do not support the hypothesis that orthostatic tolerance in women is inversely related to aerobic fitness, as demonstrated by a finding that the peak aerobic capacity of subjects who became presyncopal did not differ from the peak of the tolerant subjects, and that hemodynamic responses to LBNPL were not a function of aerobic capacity.

  4. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    PubMed Central

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  5. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  6. Aerobic Oxidation of an Osmium(III) N-Hydroxyguanidine Complex To Give Nitric Oxide.

    PubMed

    Xiang, Jing; Wang, Qian; Yiu, Shek-Man; Man, Wai-Lun; Kwong, Hoi-Ki; Lau, Tai-Chu

    2016-05-16

    The aerobic oxidation of the N-hydroxyguanidinum moiety of N-hydroxyarginine to NO is a key step in the biosynthesis of NO by the enzyme nitric oxide synthase (NOS). So far, there is no chemical system that can efficiently carry out similar aerobic oxidation to give NO. We report here the synthesis and X-ray crystal structure of an osmium(III) N-hydroxyguanidine complex, mer-[Os(III){NH═C(NH2)(NHOH)}(L)(CN)3](-) (OsGOH, HL = 2-(2-hydroxyphenyl)benzoxazole), which to the best of our knowledge is the first example of a transition metal N-hydroxyguanidine complex. More significantly, this complex readily undergoes aerobic oxidation at ambient conditions to generate NO. The oxidation is pH-dependent; at pH 6.8, fac-[Os(NO)(L)(CN)3](-) is formed in which the NO produced is bound to the osmium center. On the other hand, at pH 12, aerobic oxidation of OsGOH results in the formation of the ureato complex [Os(III)(NHCONH2)(L)(CN)3](2-) and free NO. Mechanisms for this aerobic oxidation at different pH values are proposed. PMID:27135258

  7. Aerobic and Anaerobic Bacteriology of Hidradenitis Suppurativa: A Study of 22 Cases

    PubMed Central

    Katoulis, Alexandros C.; Koumaki, Dimitra; Liakou, Aikaterini I.; Vrioni, Georgia; Koumaki, Vasiliki; Kontogiorgi, Dimitra; Tzima, Korina; Tsakris, Athanasios; Rigopoulos, Dimitris

    2015-01-01

    Introduction Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease of unclear etiology. The role of bacteria in the pathogenesis of disease remains controversial. Materials and Methods Specimens were obtained from 22 HS patients by direct percutaneous needle aspiration. The collected material was cultured in aerobic and anaerobic conditions, and sensitivity tests were performed. Results Of the 22 patients, 32% were culture negative and 68% were culture positive. A total of 16 isolates was obtained, 14 aerobic and 2 anaerobic. Aerobic bacteria were present in 86% of the specimens, whereas only anaerobic bacteria were isolated in 7%. The predominant aerobic species were Proteus mirabilis, Staphylococcus haemolyticus and Staphylococcus lugdunensis. The isolated anaerobic bacteria were Dermacoccus nishinomiyaensis and Propionibacterium granulosum. Conclusion A variety of aerobic and anaerobic bacteria was isolated from the HS lesions of our patients. In contrast to previous studies, fewer patients were found to be culture positive, and Staphylococcus aureus was isolated in only 1 of them. More studies are necessary to elucidate the controversial role of bacteria in the pathogenesis of HS. PMID:27170935

  8. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication.

    PubMed

    Jiang, Bo; Liu, Yu

    2013-06-01

    Aerobic granules are dense and compact microbial aggregates with various bacterial species. Recently, aerobic granulation technology has been extensively explored for treatment of municipal and industrial wastewaters. However, little information is currently available with regard to their structure stability and integrity at levels of energy metabolism and cell communication. In the present study, a typical chemical uncoupler, 3,3',4',5-tetrachlorosalicylanilide with the power to dissipate proton motive force and subsequently inhibit adenosine triphosphate (ATP) generation, was used to investigate possible roles of ATP and cell communication in maintaining the structure stability and integrity of aerobic granules. It was found that inhibited ATP synthesis resulted in the reduced production of autoinducer-2 and N-acylhomoserine lactones essential for cell communication, while lowered extracellular polymeric substance (EPS) production was also observed. As a consequence, aerobic granules appeared to break up. This study showed that ATP-dependent quorum sensing and EPS were essential for sustaining the structure stability and integrity of aerobic granules. PMID:23011346

  9. Aerobic training for older men with Alzheimer's disease: individual examples of progression.

    PubMed

    Yu, Fang; Leon, Arthur S; Bliss, Donna; Dysken, Maurice; Savik, Kay; Wyman, Jean F

    2011-10-01

    Little is known about cardiorespiratory fitness and aerobic exercise training in older adults with Alzheimer's disease (AD). The purposes of this article are to describe the change in cardiorespiratory fitness after 2 months of aerobic training and the feasibility of aerobic training in 4 men with moderate-to-severe AD. A one-group, pretest-posttest test design was used to measure cardiorespiratory fitness using symptom limited, graded cycle ergometer testing. In exit interviews, participants and spouses identified exercise facilitators and barriers. The results show that cardiorespiratory fitness increased in 2 participants with moderate AD but decreased in 2 with severe AD. Participants showed great variability in exercise progression and doses actually delivered. In conclusion, older men with moderate-to-severe AD can engage in aerobic training. Two months might be better used as the adaptive period for longer duration aerobic training, such as a 6-month program. Suggestions and implications for future exercise research in AD are detailed. PMID:21417188

  10. Response of the jejunal mucosa of dogs with aerobic and anaerobic bacterial overgrowth to antibiotic therapy.

    PubMed Central

    Batt, R M; McLean, L; Riley, J E

    1988-01-01

    Dogs with naturally occurring aerobic or anaerobic bacterial overgrowth have been examined before and after antibiotic therapy in order to assess reversibility of damage to the jejunal mucosa. Histological changes in peroral jejunal biopsies were relatively minor before and after treatment, but sucrose density gradient centrifugation revealed specific biochemical abnormalities that responded to antibiotic therapy. Aerobic overgrowth was initially associated with a marked loss of the main brush border component of alkaline phosphatase activity; this recovered following treatment, suggesting that aerobic bacteria may cause reversible damage to the hydrophobic region of the brush border membrane. In contrast, anaerobic overgrowth was initially associated with a marked reduction in brush border density, indicative of a considerable fall in the glycoprotein-to-lipid ratio of the membrane. Density increased from 1.17 to 1.21 g/ml after antibiotic therapy, consistent with recovery from this relatively severe damage to the brush border caused by anaerobic bacteria. Reductions in soluble and peroxisomal catalase activities which could compromise mucosal protection against free radicals in dogs with aerobic overgrowth, and a loss of particulate malate dehydrogenase activity indicative of mitochondrial disruption in dogs with anaerobic overgrowth, were also reversed after treatment. These findings indicate that aerobic and anaerobic bacterial overgrowth can result in contrasting but potentially reversible damage to the jejunal mucosa which would not be detected by conventional investigative procedures. PMID:3371716

  11. Ammonium adsorption in aerobic granular sludge, activated sludge and anammox granules.

    PubMed

    Bassin, J P; Pronk, M; Kraan, R; Kleerebezem, R; van Loosdrecht, M C M

    2011-10-15

    The ammonium adsorption properties of aerobic granular sludge, activated sludge and anammox granules have been investigated. During operation of a pilot-scale aerobic granular sludge reactor, a positive relation between the influent ammonium concentration and the ammonium adsorbed was observed. Aerobic granular sludge exhibited much higher adsorption capacity compared to activated sludge and anammox granules. At an equilibrium ammonium concentration of 30 mg N/L, adsorption obtained with activated sludge and anammox granules was around 0.2 mg NH4-N/g VSS, while aerobic granular sludge from lab- and pilot-scale exhibited an adsorption of 1.7 and 0.9 mg NH4-N/g VSS, respectively. No difference in the ammonium adsorption was observed in lab-scale reactors operated at different temperatures (20 and 30 °C). In a lab-scale reactor fed with saline wastewater, we observed that the amount of ammonium adsorbed considerably decreased when the salt concentration increased. The results indicate that adsorption or better ion exchange of ammonium should be incorporated into models for nitrification/denitrification, certainly when aerobic granular sludge is used. PMID:21840028

  12. Aerobic capacity as a mediator of the influence of birth weight and school performance.

    PubMed

    García-Hermoso, A

    2016-08-01

    Low birth weight is associated with cognitive impairments persisting into adolescence and early adulthood. The purposes of this study was two-fold: to analyse the association between birth weight (BW) and school performance, and to determine the influence of adolescent aerobic capacity and muscular strength on the association between BW and school performance in children at 12-13 years. The study included 395 children (50.4% boys, aged 12-13 years). Self-reported BW was evaluated. We measured school performance (mean of the grades obtained in language and mathematics) and two physical fitness tests (aerobic capacity and muscular strength). Analysis of variance was used to analyse the differences in school performance according to BW categories (⩽2500, 2500-3500 and ⩾3500 g). Linear regression models fitted for mediation analyses examined whether the association between BW and school performance was mediated by aerobic capacity and/or muscular strength. Higher BW was associated with better school performance independent of current body mass index. These differences disappeared after controlling for aerobic capacity, which also mediated the association between BW and school performance (13.4%). The relationship between BW and school performance seems to be dependent on aerobic capacity fitness. Our results are of importance because the consequences of BW tend to continue into childhood, and current physical fitness of the children may potentially be modified to improve school performance. PMID:27020122

  13. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge.

    PubMed

    Pronk, M; Abbas, B; Al-Zuhairy, S H K; Kraan, R; Kleerebezem, R; van Loosdrecht, M C M

    2015-06-01

    When aerobic granular sludge is applied for industrial wastewater treatment, different soluble substrates can be present. For stable granular sludge formation on volatile fatty acids (e.g. acetate), production of storage polymers under anaerobic feeding conditions has been shown to be important. This prevents direct aerobic growth on readily available chemical oxygen demand (COD), which is thought to result in unstable granule formation. Here, we investigate the impact of acetate, methanol, butanol, propanol, propionaldehyde, and valeraldehyde on granular sludge formation at 35 °C. Methanogenic archaea, growing on methanol, were present in the aerobic granular sludge system. Methanol was completely converted to methane and carbon dioxide by the methanogenic archaeum Methanomethylovorans uponensis during the 1-h anaerobic feeding period, despite the relative high dissolved oxygen concentration (3.5 mg O2 L(-1)) during the subsequent 2-h aeration period. Propionaldehyde and valeraldehyde were fully disproportionated anaerobically into their corresponding carboxylic acids and alcohols. The organic acids produced were converted to storage polymers, while the alcohols (produced and from influent) were absorbed onto the granular sludge matrix and converted aerobically. Our observations show that easy biodegradable substrates not converted anaerobically into storage polymers could lead to unstable granular sludge formation. However, when the easy biodegradable COD is absorbed in the granules and/or when the substrate is converted by relatively slow growing bacteria in the aerobic period, stable granulation can occur. PMID:25616527

  14. Biosorption of Malachite Green from aqueous solutions onto aerobic granules: kinetic and equilibrium studies.

    PubMed

    Sun, Xue-Fei; Wang, Shu-Guang; Liu, Xian-Wei; Gong, Wen-Xin; Bao, Nan; Gao, Bao-Yu; Zhang, Hua-Yong

    2008-06-01

    Batch experiments were conducted to study the biosorption characteristics of a cationic dye, Malachite Green (MG), onto aerobic granules. Effects of pH, aerobic granule dosage, contact time and solution temperature on MG biosorption by aerobic granules were evaluated. Simultaneity the thermodynamic analysis was also performed. The results showed that alkaline pH was favorable for the biosorption of MG and chemisorption seemed to play a major role in the biosorption process. Kinetic studies indicate that MG biosorption on aerobic granules in the system follows the pseudo-second order kinetics. The equilibrium time was 60 min for both 50 and 60 mg/L and 120 min for both 70 and 80 mg/L MG concentrations, respectively. Moreover, the experimental equilibrium data have been analyzed using the linearized forms of Langmuir, Freundlich, and Redlich-Peterson isotherms and the Langmuir isotherm was found to provide the best theoretical correlation of the experimental data for the biosorption of MG. The monolayer biosorption (saturation) capacities were determined to be 56.8 mg of MG per gram of aerobic granules at 30 degrees C. Thermodynamic analysis show that biosorption follows an endothermic path of the positive value of Delta H( composite function) and spontaneous with negative value of Delta G( composite function). PMID:17855080

  15. Specificity of aerobic and anaerobic work capacities and powers.

    PubMed

    Boulay, M R; Lortie, G; Simoneau, J A; Hamel, P; Leblanc, C; Bouchard, C

    1985-12-01

    Thirty-three untrained subjects of both sexes, 18-31 years of age, performed several tests on cycle ergometers. Maximal aerobic power (MAP) was obtained in a progressive work test. Maximal aerobic capacity (MAC) was measured in a 90-min maximal test and was computed as the total work output during that period. Two all-out cycle ergometer work tests lasting 10 s and 90 s were used to estimate the anaerobic alactic capacity (AAC) and lactic capacity (ALC). Anaerobic alactic power (AAP) was computed as the highest output in 1 s in the AAC test and anaerobic lactic power (ALP) was obtained as the mean output during the last 5 s in an all-out test of 30 s. Correlation coefficients were computed between all measurements of capacity and power expressed per kg of body weight as well as with scores adjusted for sex differences. Common variances (r2 X 100) between measurements of power were either low (MAP-AAP, 40%) or moderate (MAP-ALP, 61%; AAP-ALP, 62%) while common variances between measurements of capacity were sometimes low (MAC-AAC, 49%) or higher (MAC-ALC, 76%; AAC-ALC, 77%). The common variances between tests of power and capacity reached high values when calculated with metabolic criteria of the same class (MAP-MAC, 81%; AAP-AAC, 92%). These results provide quantitative evidence to support the notion of specificity between the aerobic and the anaerobic work performances and support the distinction between capacity and power of the three energy systems. PMID:4077360

  16. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product. PMID:26512862

  17. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%. PMID:17251012

  18. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.

    PubMed

    Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice

    2016-05-01

    Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism. PMID:26833659

  19. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

    PubMed Central

    Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074

  20. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions

    PubMed Central

    Reighard, Katelyn P.

    2015-01-01

    Chitosan oligosaccharides were modified with N-diazeniumdiolates to yield biocompatible nitric oxide (NO) donor scaffolds. The minimum bactericidal concentrations and MICs of the NO donors against Pseudomonas aeruginosa were compared under aerobic and anaerobic conditions. Differential antibacterial activities were primarily the result of NO scavenging by oxygen under aerobic environments and not changes in bacterial physiology. Bacterial killing was also tested against nonmucoid and mucoid biofilms and compared to that of tobramycin. Smaller NO payloads were required to eradicate P. aeruginosa biofilms under anaerobic versus aerobic conditions. Under oxygen-free environments, the NO treatment was 10-fold more effective at killing biofilms than tobramycin. These results demonstrate the potential utility of NO-releasing chitosan oligosaccharides under both aerobic and anaerobic environments. PMID:26239983

  1. Criterion Related Validity of Karate Specific Aerobic Test (KSAT)

    PubMed Central

    Chaabene, Helmi; Hachana, Younes; Franchini, Emerson; Tabben, Montassar; Mkaouer, Bessem; Negra, Yassine; Hammami, Mehrez; Chamari, Karim

    2015-01-01

    Background: Karate is one the most popular combat sports in the world. Physical fitness assessment on a regular manner is important for monitoring the effectiveness of the training program and the readiness of karatekas to compete. Objectives: The aim of this research was to examine the criterion related to validity of the karate specific aerobic test (KSAT) as an indicator of aerobic level of karate practitioners. Patients and Methods: Cardiorespiratory responses, aerobic performance level through both treadmill laboratory test and YoYo intermittent recovery test level 1 (YoYoIRTL1) as well as time to exhaustion in the KSAT test (TE’KSAT) were determined in a total of fifteen healthy international karatekas (i.e. karate practitioners) (means ± SD: age: 22.2 ± 4.3 years; height: 176.4 ± 7.5 cm; body mass: 70.3 ± 9.7 kg and body fat: 13.2 ± 6%). Results: Peak heart rate obtained from KSAT represented ~99% of maximal heart rate registered during the treadmill test showing that KSAT imposes high physiological demands. There was no significant correlation between KSAT’s TE and relative (mL/min kg) treadmill maximal oxygen uptake (r = 0.14; P = 0.69; [small]). On the other hand, there was a significant relationship between KSAT’s TE and the velocity associated with VO2max (vVO2max) (r = 0.67; P = 0.03; [large]) as well as the velocity at VO2 corresponding to the second ventilatory threshold (vVO2 VAT) (r = 0.64; P = 0.04; [large]). Moreover, significant relationship was found between TE’s KSAT and both the total distance covered and parameters of intermittent endurance measured through YoYoIRTL1. Conclusions: The KSAT has not proved to have indirect criterion related validity as no significant correlations have been found between TE’s KSAT and treadmill VO2max. Nevertheless, as correlated to other aerobic fitness variables, KSAT can be considered as an indicator of karate specific endurance. The establishment of the criterion related validity of the KSAT

  2. Controlled Clinical Comparison of BacT/ALERT Standard Aerobic Medium with BACTEC Standard Aerobic Medium for Culturing Blood

    PubMed Central

    Mirrett, Stanley; Reller, L. Barth; Petti, Cathy A.; Woods, Christopher W.; Vazirani, Bindu; Sivadas, Rekha; Weinstein, Melvin P.

    2003-01-01

    Standard aerobic media are widely used for culturing blood with the BacT/ALERT (BioMérieux, Inc., Durham, N.C.) (BM) and BACTEC 9240 (BD Diagnostic Systems, Sparks, Md.) (BD) automated continuously monitoring instrument systems. Although similarly composed of soybean-casein digest broths, the formulations of the standard aerobic media available for these instruments differ from each other in supplements and in sodium polyanetholesulfonate concentration. Therefore, we compared the standard aerobic media available for these systems at two university hospitals. Blood samples from adult patients with suspected bloodstream infection were inoculated at the bedside into nonvented BM and BD standard aerobic blood culture bottles and incubated in their respective instruments. The laboratories received 6,743 pairs of bottles that were each filled with 8 to 12 ml of blood. A total of 523 isolates representing true infections were recovered from 257 patients; of these isolates, 348 were recovered from both the BD and the BM bottles, 108 were recovered from the BM bottles only, and 67 were recovered from the BD bottles only (P < 0.005). More staphylococci (P < 0.05), especially coagulase-negative staphylococci (P < 0.05), and yeasts (P < 0.01) were recovered from BM bottles than from BD bottles. Of 291 unimicrobial episodes of bloodstream infection, 220 were detected with both bottles, 41 were detected with the BM bottles only, and 30 were detected with the BD bottles only (difference not significant). Among 335 cultures that were positive in both bottles within the first 72 h of incubation, the median times to detection were 14 h for BM bottles and 13 h for BD bottles. Rates for false-positive results were 0.5% for BM bottles and 0.1% for BD bottles. One BM bottle and seven BD bottles yielded false-negative results. We conclude that the BM medium provides improved recovery of microorganisms, especially staphylococci and yeasts, compared with that provided by the BD medium

  3. Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Antoniadi, Georgia; Spanoulis, Aginor; Liakopoulos, Vassilios; Stefanidis, Ioannis

    2014-12-01

    Indoleamine 2,3-dioxygenase (IDO) suppresses adaptive immunity by inhibiting T-cell proliferation and altering glucose metabolism. The tumor suppressor p53 also alters these cellular processes with similar results. The effect of IDO on p53 and on glucose metabolism was evaluated in alloreactive T cells. Mixed-lymphocyte reactions (MLRs) were performed in the presence or not of the IDO inhibitor, 1-dl-methyl-tryptophan (1-MT) and/or the p53 inhibitor, pifithrin-α (PFT). Cell proliferation, glucose consumption and lactate production were assessed. 1-MT increased cell proliferation, glucose influx and lactate production, whereas PFT enhanced cell proliferation and glucose influx, leaving lactate production unaffected. In MLR-derived T cells, protein analysis revealed that IDO activated general control non-derepressible 2 kinase and induced p53, p-p53 (p53 phosphorylated at serine 15) and p21. In addition, both IDO and p53 decreased glucose transporter 1 and TP53-induced glycolysis and apoptosis regulator and increased synthesis of cytochrome c oxidase 2. IDO also reduced lactate dehydrogenase-A and glutaminase 2 levels, whereas p53 left them unaffected. Neither 1-MT nor PFT affected glucose-6-phosphate dehydrogenase. In conclusion, in alloreactive T cells, IDO increases p53 levels, and both IDO and p53 inhibit cell proliferation, glucose consumption and glycolysis. Lactate production and glutaminolysis are also suppressed by IDO, but not by p53. PMID:25064493

  4. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.

    PubMed

    Quan, Xiang-chun; Quan, Yan-ping; Tao, Kun; Jiang, Xiao-man

    2013-01-01

    This study compared the difference in microbial community and power generation capacity of air-cathode MFCs enriched under anode aerobic and anaerobic conditions. Results showed that MFCs successfully started with continuous air inputting to anode chamber. The aerobic enriched MFC produced comparable and even more electricity with the fuels of acetate, glucose and ethanol compared to the anaerobic MFC when returning to anaerobic condition. The two MFCs showed a slightly different microbial community for anode biofilms (a similarity of 77%), but a highly similar microbial community (a similarity of 97%) for anolyte microbes. The anode biofilm of aerobic enriched MFC showed the presence of some specific bacteria closely related to Clostridium sticklandii, Leucobacter komagatae and Microbacterium laevaniformans. The anaerobic enriched MFC found the presence of a large number of yeast Trichosporon sp. This research demonstrates that it is possible to enrich oxygen-tolerant anode respiring bacteria through purposely aeration in anode chamber. PMID:23196248

  5. Vertebrate blood cell volume increases with temperature: implications for aerobic activity

    PubMed Central

    Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures. PMID:24765580

  6. The association between aerobic fitness and language processing in children: implications for academic achievement.

    PubMed

    Scudder, Mark R; Federmeier, Kara D; Raine, Lauren B; Direito, Artur; Boyd, Jeremy K; Hillman, Charles H

    2014-06-01

    Event-related brain potentials (ERPs) have been instrumental for discerning the relationship between children's aerobic fitness and aspects of cognition, yet language processing remains unexplored. ERPs linked to the processing of semantic information (the N400) and the analysis of language structure (the P600) were recorded from higher and lower aerobically fit children as they read normal sentences and those containing semantic or syntactic violations. Results revealed that higher fit children exhibited greater N400 amplitude and shorter latency across all sentence types, and a larger P600 effect for syntactic violations. Such findings suggest that higher fitness may be associated with a richer network of words and their meanings, and a greater ability to detect and/or repair syntactic errors. The current findings extend previous ERP research explicating the cognitive benefits associated with greater aerobic fitness in children and may have important implications for learning and academic performance. PMID:24747513

  7. Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions.

    PubMed

    Ye, Xuan; Johnson, Martin D; Diao, Tianning; Yates, Matthew H; Stahl, Shannon S

    2010-01-01

    The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O(2) in N(2)) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis. PMID:20694169

  8. Effect of aerobic exercise and raloxifene combination therapy on senile osteoporosis

    PubMed Central

    Zhao, Chengjin; Hou, Haibing; Chen, Yutao; Lv, Kai

    2016-01-01

    [Purpose] This study assessed the effects of combined application of raloxifene and aerobic exercise on senile osteoporosis. [Subjects and Methods] A total of 70 elderly patients with osteoporosis, who treated at our hospital between April 2013 and August 2014, were divided into equal-sized observation and control groups. The control group was administered raloxifene, whereas the observation group received raloxifene treatment plus aerobic exercise. [Results] Outpatient outcomes were considered dependent variables. After treatment, the two groups differed significantly in terms of lumbar spine (L2–L4) and proximal femoral bone mineral density. The urine pyridine/creatinine ratio decreased significantly and serum calcitonin level increased significantly in the observation group. These differences were statistically significant. [Conclusion] Raloxifene combined with aerobic exercise therapy significantly improves bone density and promotes bone formation in patients with senile osteoporosis. PMID:27390417

  9. Extensive Functional Evaluations to Monitor Aerobic Training in Becker Muscular Dystrophy: A Case Report

    PubMed Central

    Tramonti, Caterina; Rossi, Bruno; Chisari, Carmelo

    2016-01-01

    Low-intensity aerobic training seems to have positive effects on muscle strength, endurance and fatigue in Becker Muscular Dystrophy (BMD) patients. We describe the case of a 33-year old BMD man, who performed a four-week aerobic training. Extensive functional evaluations were executed to monitor the efficacy of the rehabilitative treatment. Results evidenced an increased force exertion and an improvement in muscle contraction during sustained exercise. An improvement of walk velocity, together with agility, endurance capacity and oxygen consumption during exercise was observed. Moreover, an enhanced metabolic efficiency was evidenced, as shown by reduced lactate blood levels after training. Interestingly, CK showed higher levels after the training protocol, revealing possible muscle damage. In conclusion, aerobic training may represent an effective method improving exercise performance, functional status and metabolic efficiency. Anyway, a careful functional assessment should be taken into account as a useful approach in the management of the disease’s rehabilitative treatment. PMID:27478558

  10. Effect of aerobic exercise and raloxifene combination therapy on senile osteoporosis.

    PubMed

    Zhao, Chengjin; Hou, Haibing; Chen, Yutao; Lv, Kai

    2016-06-01

    [Purpose] This study assessed the effects of combined application of raloxifene and aerobic exercise on senile osteoporosis. [Subjects and Methods] A total of 70 elderly patients with osteoporosis, who treated at our hospital between April 2013 and August 2014, were divided into equal-sized observation and control groups. The control group was administered raloxifene, whereas the observation group received raloxifene treatment plus aerobic exercise. [Results] Outpatient outcomes were considered dependent variables. After treatment, the two groups differed significantly in terms of lumbar spine (L2-L4) and proximal femoral bone mineral density. The urine pyridine/creatinine ratio decreased significantly and serum calcitonin level increased significantly in the observation group. These differences were statistically significant. [Conclusion] Raloxifene combined with aerobic exercise therapy significantly improves bone density and promotes bone formation in patients with senile osteoporosis. PMID:27390417

  11. The Association between Aerobic Fitness and Language Processing in Children: Implications for Academic Achievement

    PubMed Central

    Scudder, Mark R.; Federmeier, Kara D.; Raine, Lauren B.; Direito, Artur; Boyd, Jeremy K.; Hillman, Charles H.

    2014-01-01

    Event-related brain potentials (ERPs) have been instrumental for discerning the relationship between children’s aerobic fitness and aspects of cognition, yet language processing remains unexplored. ERPs linked to the processing of semantic information (the N400) and the analysis of language structure (the P600) were recorded from higher and lower aerobically fit children as they read normal sentences and those containing semantic or syntactic violations. Results revealed that higher fit children exhibited greater N400 amplitude and shorter latency across all sentence types, and a larger P600 effect for syntactic violations. Such findings suggest that higher fitness may be associated with a richer network of words and their meanings, and a greater ability to detect and/or repair syntactic errors. The current findings extend previous ERP research explicating the cognitive benefits associated with greater aerobic fitness in children and may have important implications for learning and academic performance. PMID:24747513

  12. Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions.

    PubMed

    Bordeleau, Geneviève; Martel, Richard; Bamba, Abraham N'Valoua; Blais, Jean-François; Ampleman, Guy; Thiboutot, Sonia

    2014-10-01

    The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils. The role of SOM in NG degradation has already been documented under anoxic conditions, and was attributed to SOM-mediated electron transfer involving different reducing agents. However, unsaturated soils are usually well-oxygenated, and it was not clear whether SOM could participate in NG degradation under these conditions. Our results from batch- and column-type experiments clearly demonstrate that in presence of dissolved organic matter (DOM) leached from a natural soil, partial NG degradation can be achieved. In presence of particulate organic matter (POM) from the same soil, complete NG degradation was achieved. Furthermore, POM caused rapid sorption of NG, which should result in NG retention in the organic matter-rich shallow horizons of the soil profile, thus promoting degradation. Based on degradation products, the reaction pathway appears to be reductive, in spite of the aerobic conditions. The relatively rapid reaction rates suggest that this process could significantly participate in the natural attenuation of NG, both on military training ranges and in contaminated soil at production facilities. PMID:25086776

  13. The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste

    NASA Astrophysics Data System (ADS)

    Smet, Erik; Van Langenhove, Herman; De Bo, Inge

    Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of

  14. Aerobic Exercise for Parkinson's Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Shu, Hai-Feng; Yang, Tao; Yu, Si-Xun; Huang, Hai-Dong; Jiang, Ling-Li; Gu, Jian-Wen; Kuang, Yong-Qin

    2014-01-01

    Background Although some trials assessed the effectiveness of aerobic exercise for Parkinson's disease (PD), the role of aerobic exercise in the management of PD remained controversial. Objective The purpose of this systematic review is to evaluate the evidence about whether aerobic exercise is effective for PD. Methods Seven electronic databases, up to December 2013, were searched to identify relevant studies. Two reviewers independently extracted data and assessed methodological quality based on PEDro scale. Standardised mean difference (SMD) and 95% confidence intervals (CI) of random-effects model were calculated. And heterogeneity was assessed based on the I2 statistic. Results 18 randomized controlled trials (RCTs) with 901 patients were eligible. The aggregated results suggested that aerobic exercise should show superior effects in improving motor actions (SMD, −0.57; 95% CI −0.94 to −0.19; p = 0.003), balance (SMD, 2.02; 95% CI 0.45 to 3.59; p = 0.01), and gait (SMD, 0.33; 95% CI 0.17 to 0.49; p<0.0001) in patients with PD, but not in quality of life (SMD, 0.11; 95% CI −0.23 to 0.46; p = 0.52). And there was no valid evidence on follow-up effects of aerobic exercise for PD. Conclusion Aerobic exercise showed immediate beneficial effects in improving motor action, balance, and gait in patients with PD. However, given no evidence on follow-up effects, large-scale RCTs with long follow-up are warrant to confirm the current findings. PMID:24983753

  15. Direct measurements of oscillatory glycolysis in pancreatic islet β-cells using novel fluorescence resonance energy transfer (FRET) biosensors for pyruvate kinase M2 activity.

    PubMed

    Merrins, Matthew J; Van Dyke, Aaron R; Mapp, Anna K; Rizzo, Mark A; Satin, Leslie S

    2013-11-15

    Pulses of insulin released from pancreatic β-cells maintain blood glucose in a narrow range, although the source of these pulses is unclear. We and others have proposed that positive feedback mediated by the glycolytic enzyme phosphofructokinase-1 (PFK1) enables β-cells to generate metabolic oscillations via autocatalytic activation by its product fructose 1,6-bisphosphate (FBP). Although much indirect evidence has accumulated in favor of this hypothesis, a direct measurement of oscillating glycolytic intermediates has been lacking. To probe glycolysis directly, we engineered a family of inter- and intramolecular FRET biosensors based on the glycolytic enzyme pyruvate kinase M2 (PKAR; pyruvate kinase activity reporter), which multimerizes and is activated upon binding FBP. When introduced into Min6 β-cells, PKAR FRET efficiency increased rapidly in response to glucose. Importantly, however, metabolites entering downstream of PFK1 (glyceraldehyde, pyruvate, and ketoisocaproate) failed to activate PKAR, consistent with sensor activation by FBP; the dependence of PKAR on FBP was further confirmed using purified sensor in vitro. Using a novel imaging modality for monitoring mitochondrial flavin fluorescence in mouse islets, we show that slow oscillations in mitochondrial redox potential stimulated by 10 mm glucose are in phase with glycolytic efflux through PKM2, measured simultaneously from neighboring islet β-cells expressing PKAR. These results indicate that PKM2 activity in β-cells is oscillatory and are consistent with pulsatile PFK1 being the mediator of slow glycolytic oscillations. PMID:24100037

  16. Studies of renal injury. II. Activation of the glucose transporter 1 (GLUT1) gene and glycolysis in LLC-PK1 cells under Ca2+ stress.

    PubMed

    Dominguez, J H; Song, B; Liu-Chen, S; Qulali, M; Howard, R; Lee, C H; McAteer, J

    1996-07-15

    Injury to the renal proximal tubule is common and may be followed by either recovery or cell death. The survival of injured cells is supported by a transient change in cellular metabolism that maintains life even when oxygen tension is reduced. This adaptive process involves the activation of the gene encoding the glucose transporter GLUT1, which is essential to maintain the high rates of glucose influx demanded by glycolysis. We hypothesized that after cell injury increases of cell Ca2+ (Ca2+i) initiate the flow of information that culminates with the upregulation of the stress response gene GLUT1. We found that elevations of Ca2+i caused by the calcium ionophore A23187 activated the expression of the GLUT1 gene in LLC-PK1 cells. The stimulatory effect of Ca2+i on GLUT1 gene expression was, at least in part, transcriptional and resulted in higher levels of GLUT1 mRNA, cognate protein, cellular hexose transport activity, glucose consumption, and lactate production. This response was vital to the renal cells, as its interruption severely increased Ca2+-induced cytotoxicity and cell mortality. We propose that increases of Ca2+i initiate stress responses, represented in part by activation of the GLUT1 gene, and that disruption to the flow of information originating from Ca2+-induced stress, or to the coordinated expression of the stress response, prevents cell recovery after injury and may be an important cause of permanent renal cell injury and cell death. PMID:8755650

  17. [Cardiovascular consequences of aerobic maneuvers].

    PubMed

    Trivelloni, Pierandrea; Berrettini, Umberto

    2010-10-01

    Gravitational (G) stress during aerobatics flights, both military and civilian, can suddenly incapacitate pilots in agile and supermaneuverable aircrafts. High +Gz stress, up to +9Gz, has two different physiological consequences: the first is the drop in head-level blood pressure that is proportional to the G load; the other, slightly delayed, is the blood pooling in the lower part of the body and the abdomen. This blood shift results in a decreased return of venous blood to the heart, decreased cardiac output, and decreased blood pressure, leading to a likely loss of consciousness. The natural countermeasure against the effects of high G stress is the baroreceptor reflex. The human physiological tolerance to the gravito-inertial forces developed in flight operations can be increased by physiological and technological means. PMID:21416842

  18. The aerobic and anaerobic bacteriology of perirectal abscesses.

    PubMed Central

    Brook, I; Frazier, E H

    1997-01-01

    The microbiology of perirectal abscesses in 144 patients was studied. Aerobic or facultative bacteria only were isolated in 13 (9%) instances, anaerobic bacteria only were isolated in 27 (19%) instances, and mixed aerobic and anaerobic flora were isolated in 104 (72%) instances. A total of 325 anaerobic and 131 aerobic or facultative isolates were recovered (2.2 anaerobic isolates and 0.9 aerobic isolates per specimen). The predominant anaerobes were as follows: Bacteroides fragilis group (85 isolates), Peptostreptococcus spp. (72 isolates), Prevotella spp. (71 isolates), Fusobacterium spp. (21 isolates), Porphyromonas spp. (20 isolates), and Clostridium spp. (15 isolates). The predominant aerobic and facultative bacteria were as follows: Staphylococcus aureus (34 isolates), Streptococcus spp. (28 isolates), and Escherichia coli (19 isolates). These data illustrate the polymicrobial aerobic and anaerobic microbiology of perirectal abscesses. PMID:9350771

  19. Effect of leachate recirculation and aeration on volatile fatty acid concentrations in aerobic and anaerobic landfill leachate.

    PubMed

    Bilgili, M Sinan; Demir, Ahmet; Varank, Gamze

    2012-02-01

    The main aim of this study was to investigate the effect of leachate recirculation and aeration on volatile fatty acid (VFA) concentrations in aerobic and anaerobic landfill leachate samples. In this study, two aerobic (A1, A2) and two anaerobic (AN1, AN2) reactors with (A1, AN1) and without (A2, AN2) leachate recirculation were used in order to determine the change of volatile fatty acids components in landfill leachate. VFA degradation rate was almost 100% in each reactor but the degradation rate show notable differences. In aerobic landfill reactors, total VFA concentrations decreased below 1000 mg L(-1) after 120 days of operation and only caproic and acetic acids were determined at this time. The stabilization of the VFA concentrations takes about 350 and 450 days for AN1 and AN2 reactors, respectively. VFA concentrations were higher than that of aerobic reactors because of the acidogenic phase occurred in anaerobic environment. According to the results of VFA components, the stabilization of the waste was achieved after 120 days of operation in aerobic landfills. At this time, anaerobic reactors were in the acidogenic phase which results with the high concentrations of VFA. The results also indicated that leachate recirculation does not affect the degradation rate in aerobic landfills as much as it does in anaerobic landfills. PMID:21930522

  20. Aeration control of thermophilic aerobic digestion using fluorescence monitoring.

    PubMed

    Kim, Young-Kee; Oh, Byung-Keun

    2009-01-01

    The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate. PMID:19190414

  1. Cultivation of aerobic granular sludge for rubber wastewater treatment.

    PubMed

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini

    2013-02-01

    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. PMID:23317554

  2. Aerobic and anaerobic PCB biodegradation in the environment

    SciTech Connect

    Abramowicz, D.A.

    1995-06-01

    Studies have identified two distinct biological processes capable of biotransforming polychlorinated biphenyls (PCBs): aerobic oxidative processes and anaerobic reductive processes. It is now known that these two complementary activities are occurring naturally in the environment. Anaerobic PCB dechlorination, responsible for the conversion of highly chlorinated PCBs to lightly chlorinated ortho-enriched congeners, has been documented extensively in the Hudson River and has been observed at many other sites throughout the world. The products from this anaerobic process are readily degradable by a wide range of aerobic bacteria, and it has now been shown that this process is occurring in surficial sediments in the Hudson River. The widespread anaerobic dechlorination of PCBs that has been observed in many river and marine sediments results in reduction of both the potential risk from and potential exposure to PCBs. The reductions in potential risk include reduced dioxin like toxicity and reduced carcinogenicity. The reduced PCB exposure realized upon dechlorination is manifested by reduced bioaccumulation in the food chain and by the increased anaerobic degradability of these products. 27 refs., 1 fig., 1 tab.

  3. Cardiovascular response to dynamic aerobic exercise: a mathematical model.

    PubMed

    Magosso, E; Ursino, M

    2002-11-01

    An original mathematical model of the cardiovascular response to dynamic exercise is presented. It includes the pulsating heart, the pulmonary and systemic circulation, a separate description of the vascular bed in active tissues, the local metabolic vasodilation in these tissues and the mechanical effects of muscular contractions on venous return. Moreover, the model provides a description of the ventilatory response to exercise and various neural regulatory mechanisms working on cardiovascular parameters. These mechanisms embrace the so-called central command, the arterial baroreflex and the lung inflation reflex. All parameters in the model have been given in accordance with physiological data from the literature. In this work, the model has been used to simulate the steady-state value of the main cardiorespiratory quantities at different levels of aerobic exercise and the temporal pattern in the transient phase from rest to moderate exercise. Results suggest that, with suitable parameter values the model is able accurately to simulate the cardiorespiratory response in the overall range of aerobic exercise. This response is characterised by a moderate hypertension (10-30%) and by a conspicuous increase in systemic conductance (80-130%), heart rate (64-150%) and cardiac output (100-200%). The transient pattern exhibits three distinct phases (lasting approximately 5s, 15s and 2 min), that reflect the temporal heterogeneity of the mechanisms involved. The model may be useful to improve understanding of exercise physiology and as an educational tool to analyse the complexity of cardiovascular and respiratory regulation. PMID:12507317

  4. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu

    2012-02-01

    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency. PMID:22509578

  5. Progressive hypoxia decouples activity and aerobic performance of skate embryos

    PubMed Central

    Di Santo, Valentina; Tran, Anna H.; Svendsen, Jon C.

    2016-01-01

    Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, Scrit). Below Scrit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation. PMID:27293746

  6. Balinese dance exercises improve the maximum aerobic capacity.

    PubMed

    Adiputra, N; Alex, P; Sutjana, D P; Tirtayasa, K; Manuaba, A

    1996-06-01

    The maximum aerobic capacity can be used to predict the maximum working capacity. The maximum working capacity plays an important role in achieving the best performance. Therefore, physical fitness program for maintaining maximum working capacity is a must. A study on the application of Balinese dance exercise was carried out. Sixty young male Balinese, aged from 17 to 19 years were used as subjects. They were divided into two groups: Experimental group (EG) and control group (CG) based on their VO2max. The EG participated in a program of Balinese dance exercise 3 x 50 min per week for 8 weeks. Pretest-posttest control group design was applied. The maximum aerobic capacity was measured, based on the Modified Harvard Step-up Test and nomogram of Astrand. The results are as follows: there is a very significant improvement of VO2max from 2.7 +/- 0.5 l/min or 51.1 +/- 9.1 ml/kg/min into 3.1 +/- 0.5 l/min or 58.9 +/- 9.8 ml/kg/min. Other parameters such as resting heart rate, blood pressure and percent body fat were decreased significantly. The study concludes that Balinese dance exercise could be used as a program for physical fitness maintenance. PMID:9551128

  7. Effect of aerobic and anaerobic exercises on glycemic control in type 1 diabetic youths

    PubMed Central

    Lukács, Andrea; Barkai, László

    2015-01-01

    AIM: To evaluate the long-term effect of aerobic and/or anaerobic exercise on glycemic control in youths with type 1 diabetes. METHODS: Literature review was performed in spring and summer 2014 using PubMed/MEDLINE, Google Scholar, Scopus, and ScienceDirect with the following terms: aerobic, anaerobic, high-intensity, resistance, exercise/training, combined with glycemic/metabolic control, glycated haemoglobin A1c (HbA1c) and type 1 diabetes. Only peer-reviewed articles in English were included published in the last 15 years. It was selected from 1999 to 2014. Glycemic control was measured with HbA1c. Studies with an intervention lasting at least 12 wk were included if the HbA1c was measured before and after the intervention. RESULTS: A total of nine articles were found, and they were published between the years of 2002-2011. The sample size was 401 diabetic youths (166 males and 235 females) with an age range of 10-19 years except one study, in which the age range was 13-30 years. Study participants were from Australia, Tunisia, Lithuania, Taiwan, Turkey, Brazilia, Belgium, Egypt and France. Four studies were aerobic-based, four were combined aerobic and anaerobic programs, and one compared aerobic exercise to anaerobic one. Available studies had insufficient evidence that any type of exercise or combined training would clearly improve the glycemic control in type 1 diabetic youth. Only three (two aerobic-based and one combined) studies could provide a significant positive change in glycemic control. CONCLUSION: The regular physical exercise has several other valuable physiological and health benefits that justify the inclusion of exercise in pediatric diabetes treatment and care. PMID:25897363

  8. Aerobic Fitness, Micronutrient Status, and Academic Achievement in Indian School-Aged Children

    PubMed Central

    Desai, Ishaan K.; Kurpad, Anura V.; Chomitz, Virginia R.; Thomas, Tinku

    2015-01-01

    Aerobic fitness has been shown to have several beneficial effects on child health. However, research on its relationship with academic performance has been limited, particularly in developing countries and among undernourished populations. This study examined the association between aerobic fitness and academic achievement in clinically healthy but nutritionally compromised Indian school-aged children and assessed whether micronutrient status affects this association. 273 participants, aged 7 to 10.5 years, were enrolled from three primary schools in Bangalore, India. Data on participants’ aerobic fitness (20-m shuttle test), demographics, anthropometry, diet, physical activity, and micronutrient status were abstracted. School-wide exam scores in mathematics and Kannada language served as indicators of academic performance and were standardized by grade level. The strength of the fitness/achievement association was analyzed using Spearman’s rank correlation, multiple variable logistic regression, and multi-level models. Significant positive correlations between aerobic capacity (VO2 peak) and academic scores in math and Kannada were observed (P < 0.05). After standardizing scores across grade levels and adjusting for school, gender, socioeconomic status, and weight status (BMI Z-score), children with greater aerobic capacities (mL * kg-1 * min-1) had greater odds of scoring above average on math and Kannada exams (OR=1.08, 95% CI: 1.02 to 1.15 and OR=1.11, 95% CI: 1.04 to 1.18, respectively). This association remained significant after adjusting for micronutrient deficiencies. These findings provide preliminary evidence of a fitness/achievement association in Indian children. While the mechanisms by which aerobic fitness may be linked to academic achievement require further investigation, the results suggest that educators and policymakers should consider the adequacy of opportunities for physical activity and fitness in schools for both their physical and

  9. Aerobic fitness, micronutrient status, and academic achievement in Indian school-aged children.

    PubMed

    Desai, Ishaan K; Kurpad, Anura V; Chomitz, Virginia R; Thomas, Tinku

    2015-01-01

    Aerobic fitness has been shown to have several beneficial effects on child health. However, research on its relationship with academic performance has been limited, particularly in developing countries and among undernourished populations. This study examined the association between aerobic fitness and academic achievement in clinically healthy but nutritionally compromised Indian school-aged children and assessed whether micronutrient status affects this association. 273 participants, aged 7 to 10.5 years, were enrolled from three primary schools in Bangalore, India. Data on participants' aerobic fitness (20-m shuttle test), demographics, anthropometry, diet, physical activity, and micronutrient status were abstracted. School-wide exam scores in mathematics and Kannada language served as indicators of academic performance and were standardized by grade level. The strength of the fitness/achievement association was analyzed using Spearman's rank correlation, multiple variable logistic regression, and multi-level models. Significant positive correlations between aerobic capacity (VO2 peak) and academic scores in math and Kannada were observed (P < 0.05). After standardizing scores across grade levels and adjusting for school, gender, socioeconomic status, and weight status (BMI Z-score), children with greater aerobic capacities (mL * kg(-1) * min(-1)) had greater odds of scoring above average on math and Kannada exams (OR=1.08, 95% CI: 1.02 to 1.15 and OR=1.11, 95% CI: 1.04 to 1.18, respectively). This association remained significant after adjusting for micronutrient deficiencies. These findings provide preliminary evidence of a fitness/achievement association in Indian children. While the mechanisms by which aerobic fitness may be linked to academic achievement require further investigation, the results suggest that educators and policymakers should consider the adequacy of opportunities for physical activity and fitness in schools for both their physical and

  10. Aerobic Exercise for Reducing Migraine Burden: Mechanisms, Markers, and Models of Change Processes

    PubMed Central

    Irby, Megan B.; Bond, Dale S.; Lipton, Richard B.; Nicklas, Barbara; Houle, Timothy T.; Penzien, Donald B.

    2016-01-01

    Background Engagement in regular exercise routinely is recommended as an intervention for managing and preventing migraine, and yet empirical support is far from definitive. We possess at best a weak understanding of how aerobic exercise and resulting change in aerobic capacity influence migraine, let alone the optimal parameters for exercise regimens as migraine therapy (eg, who will benefit, when to prescribe, optimal types, and doses/intensities of exercise, level of anticipated benefit). These fundamental knowledge gaps critically limit our capacity to deploy exercise as an intervention for migraine. Overview Clear articulation of the markers and mechanisms through which aerobic exercise confers benefits for migraine would prove invaluable and could yield insights on migraine pathophysiology. Neurovascular and neuroinflammatory pathways, including an effect on obesity or adiposity, are obvious candidates for study given their role both in migraine as well as the changes known to accrue with regular exercise. In addition to these biological pathways, improvements in aerobic fitness and migraine alike also are mediated by changes in psychological and sociocognitive factors. Indeed a number of specific mechanisms and pathways likely are operational in the relationship between exercise and migraine improvement, and it remains to be established whether these pathways operate in parallel or synergistically. As heuristics that might conceptually benefit our research programs here forward, we: (1) provide an extensive listing of potential mechanisms and markers that could account for the effects of aerobic exercise on migraine and are worthy of empirical exploration and (2) present two exemplar conceptual models depicting pathways through which exercise may serve to reduce the burden of migraine. Conclusion Should the promise of aerobic exercise as a feasible and effective migraine therapy be realized, this line of endeavor stands to benefit migraineurs (including the

  11. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    PubMed

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity. PMID:24164734

  12. Aerobic and anaerobic contributions to exhaustive high-intensity exercise after sleep deprivation.

    PubMed

    Hill, D W; Borden, D O; Darnaby, K M; Hendricks, D N

    1994-10-01

    The purpose of this study was to determine the effect of one night's sleep loss on the performance of high-intensity exercise and on the contribution of anaerobic and aerobic energy systems to the exercise. Seven males and seven females performed an all-out cycling exercise test during baseline testing and then on three consecutive days after a sleepless night. The work rates were 5.0 W kg-1 for the females and 6.0 W kg-1 for the males. The aerobic contribution was determined based on measured VO2 and the anaerobic contribution was determined by subtraction of the aerobic contribution from the total amount of work performed. The results of baseline tests and of tests performed following sleep loss were compared for evidence of an effect of sleep deprivation. The 25-30 h of sleep deprivation did not affect total work, the anaerobic contribution or the aerobic contribution (all P > 0.1), although there was a tendency (P = 0.13) for mean VO2 to decrease after the sleepless night. There were no interaction effects involving sex on total work, the anaerobic contribution or the aerobic contribution (all P > 0.1). The mean (+/- S.E.M.) values for total work (kJ) performed were: baseline, 21.9 +/- 2.7; after sleep loss, 21.1 +/- 2.5 (day 1), 21.7 +/- 2.5 (day 2), and 21.9 +/- 2.7 (day 3). It is concluded that, in both males and females, there are no changes in the contributions of the aerobic and anaerobic energy systems to high-intensity exercise performed following the loss of one night's sleep. PMID:7799474

  13. The stability of aerobic granular sludge under 4-chloroaniline shock in a sequential air-lift bioreactor (SABR).

    PubMed

    Zhu, Liang; Lv, Mei-le; Dai, Xin; Zhou, Jia-heng; Xu, Xiang-yang

    2013-07-01

    The aerobic granular sludge technology has a great potential in treatment of municipal wastewater and industrial wastewater containing toxic non-degradable pollutants. However, the formation and structural stability of aerobic granular sludge is susceptible to toxic shock. In the study, the effect of 4-chloroaniline (4-ClA) as a common toxic pollutant on the granular structure and performance was investigated, and the mechanism was revealed to provide more information on 4-ClA degradation with aerobic granular sludge process. The results showed that a 4-ClA shock at influent 200 mg L(-1) could cause the disintegration of aerobic granular sludge and decrease of the pollutant removal performance. The analysis of extracellular polymeric substances (EPS) within the mature and disintegrated granular sludge showed that the decrease of protein content in EPS, especially the components like Amide I 3-turn helix and β-sheet structures and aspartate, was not good for the stability of aerobic granular sludge. The microbial community results demonstrated that the disappearance of dominant bacteria like Kineosphaera limosa or appearance like Acinetobacter, might contribute to the reduction of EPS and disintegration of aerobic granular sludge. PMID:23685649

  14. Sequence-Based Identification of Aerobic Actinomycetes

    PubMed Central

    Patel, Jean Baldus; Wallace, Richard J.; Brown-Elliott, Barbara A.; Taylor, Tony; Imperatrice, Carol; Leonard, Deborah G. B.; Wilson, Rebecca W.; Mann, Linda; Jost, Kenneth C.; Nachamkin, Irving

    2004-01-01

    We investigated the utility of 500-bp 16S rRNA gene sequencing for identifying clinically significant species of aerobic actinomycetes. A total of 28 reference strains and 71 clinical isolates that included members of the genera Streptomyces, Gordonia, and Tsukamurella and 10 taxa of Nocardia were studied. Methods of nonsequencing analyses included growth and biochemical analysis, PCR-restriction enzyme analysis of the 439-bp Telenti fragment of the 65 hsp gene, susceptibility testing, and, for selected isolates, high-performance liquid chromatography. Many of the isolates were included in prior taxonomic studies. Sequencing of Nocardia species revealed that members of the group were generally most closely related to the American Type Culture Collection (ATCC) type strains. However, the sequences of Nocardia transvalensis, N. otitidiscaviarum, and N. nova isolates were highly variable; and it is likely that each of these species contains multiple species. We propose that these three species be designated complexes until they are more taxonomically defined. The sequences of several taxa did not match any recognized species. Among other aerobic actinomycetes, each group most closely resembled the associated reference strain, but with some divergence. The study demonstrates the ability of partial 16S rRNA gene sequencing to identify members of the aerobic actinomycetes, but the study also shows that a high degree of sequence divergence exists within many species and that many taxa within the Nocardia spp. are unnamed at present. A major unresolved issue is the type strain of N. asteroides, as the present one (ATCC 19247), chosen before the availability of molecular analysis, does not represent any of the common taxa associated with clinical nocardiosis. PMID:15184431

  15. Aerobic degradation of olive mill wastewaters.

    PubMed

    Benitez, J; Beltran-Heredia, J; Torregrosa, J; Acero, J L; Cercas, V

    1997-02-01

    The degradation of olive mill wastewater by aerobic microorganisms has been investigated in a batch reactor, by conducting experiments where the initial concentration of organic matter, quantified by the chemical oxygen demand, and the initial biomass were varied. The evolution of the chemical oxygen demand, biomass and the total contents of phenolic and aromatic compounds were followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constants are evaluated. This final predicted equation agrees well with all the experimental data. PMID:9077005

  16. Affective Responses to an Aerobic Dance Class: The Impact of Perceived Performance.

    ERIC Educational Resources Information Center

    Bartholomew, John B.; Miller, Bridget M.

    2002-01-01

    Tested the mastery hypothesis as an explanation for the affective benefits of acute exercise. Undergraduate women from a self-selected aerobic dance class rated their exercise performance following class. Affect questionnaires were completed before and at 5 and 20 minutes after the class. Results showed an overall improvement in affect following…

  17. Micropollutants removal in an anaerobic membrane bioreactor and in an aerobic conventional treatment plant.

    PubMed

    Abargues, M R; Robles, A; Bouzas, A; Seco, A

    2012-01-01

    The paper expresses an attempt to tackle the problem due to the presence of micropollutants in wastewater which may be able to disrupt the endocrine system of some organisms. These kinds of compounds are ubiquitously present in municipal wastewater treatment plant (WWTP) effluents. The aim of this paper is to compare the fate of the alkylphenols-APs (4-(tert-octyl)) phenol, t-nonylphenol and 4-p-nonylphenol and the hormones (estrone, 17β-estradiol and 17α-ethinylestradiol) in a submerged anaerobic membrane bioreactor (SAMBR) pilot plant and in a conventional activated sludge wastewater treatment plant (CTP). The obtained results are also compared with the results obtained in a previous study carried out in an aerobic MBR pilot plant. The results showed that the APs soluble concentrations in the SAMBR effluent were always significantly higher than the CTP ones. Moreover, the analyses of the suspended fraction revealed that the AP concentrations in the SAMBR reactor were usually higher than in the CTP reactor, indicating that under anaerobic conditions the APs were accumulated in the digested sludge. The aerobic conditions maintained both in the CTP system and in the aerobic MBR favoured the APs and hormones degradation, and gave rise to lower concentrations in the effluent and in the reactor of these systems. Furthermore, the results also indicated that the degradation of APs under aerobic conditions was enhanced working at high solid retention time (SRT) and hydraulic retention time (HRT) values. PMID:22643422

  18. The Ability of Instructors to Organize Aerobic Dance Exercise Into Effective Cardiovascular Training.

    ERIC Educational Resources Information Center

    Claremont, Alan D.; And Others

    1986-01-01

    The ability of five aerobics instructors to combine music and exercise movements into effective low, medium, and high levels of cardiovascular intensity was evaluated by measuring respiratory gas exchange and heart rate for twelve subjects. Results underscore the need for instructor training guidelines. (Author/MT)

  19. Illness, Injury, and Correlates of Aerobic Exercise and Walking: A Community Study.

    ERIC Educational Resources Information Center

    Hofstetter, C. Richard; And Others

    1991-01-01

    A sample of Californians was surveyed to explore differences in aerobic exercise and walking behavior among healthy subjects and subjects with illness/injury serious enough to limit physical activity. Results indicate different patterns of determinants of exercise within various illness/injury groups. This implies interventions to increase…

  20. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effect of inhibitors of H+ ATPase

    SciTech Connect

    Steinmetz, P.R.; Husted, R.F.; Mueller, A.; Beauwens, R.

    1981-03-15

    The coupling between H+ transport (JH) and anaerobic glycolysis was examined in vitro in an anaerobic preparation of turtle urinary bladder. JH was measured as the short-circuit current after Na+ transport was abolished with ouabain and by pH stat titration. The media were gassed with N2 and 1% CO2 (PO2 less than 0.5 mm Hg) and contained 10 mM glucose. Under these conditions, JH was not inhibited by 3 mM serosal (S) cyanide or by 0.1 mM mucosal (M) dinitrophenol. Control anaerobic lactate production (Jlac) of 47 bladders was plotted as a function of simultaneously measured JH. The slope of Jlac on JH was 0.58

  1. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes.

    PubMed

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L(-1) concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn't show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  2. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes

    PubMed Central

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  3. Aerobic Fitness Linked to Cortical Brain Development in Adolescent Males: Preliminary Findings Suggest a Possible Role of BDNF Genotype

    PubMed Central

    Herting, Megan M.; Keenan, Madison F.; Nagel, Bonnie J.

    2016-01-01

    Aerobic exercise has been shown to impact brain structure and cognition in children and adults. Exercise-induced activation of a growth protein known as brain derived neurotrophic factor (BDNF) is thought to contribute to such relationships. To date, however, no study has examined how aerobic fitness relates to cortical brain structure during development and if BDNF genotype moderates these relationships. Using structural magnetic resonance imaging (MRI) and FreeSurfer, the current study examined how aerobic fitness relates to volume, thickness, and surface area in 34 male adolescents, 15 to 18 years old. Moreover, we examined if the val66met BDNF genotype moderated these relationships. We hypothesized that aerobic fitness would relate to greater thickness and volumes in frontal, parietal, and motor regions, and that these relationships would be less robust in individuals carrying a Met allele, since this genotype leads to lower BDNF expression. We found that aerobic fitness positively related to right rostral middle frontal cortical volume in all adolescents. However, results also showed BDNF genotype moderated the relationship between aerobic fitness and bilateral medial precuneus surface area, with a positive relationship seen in individuals with the Val/Val allele, but no relationship detected in those adolescents carrying a Met allele. Lastly, using self-reported levels of aerobic activity, we found that higher-fit adolescents showed larger right medial pericalcarine, right cuneus and left precuneus surface areas as compared to their low-fit peers. Our findings suggest that aerobic fitness is linked to cortical brain development in male adolescents, and that more research is warranted to determine how an individual’s genes may influence these relationships. PMID:27445764

  4. [Effective nitrogen removal in low C/N wastewater with combined aerobic-low DO biofilm treatment process].

    PubMed

    Chen, Xiu-Rong; Ai, Qi-Feng; Xu, Wen-Lu; Wu, Min-Lin

    2011-10-01

    The municipal wastewater in China is characterized by low ratio of carbon to nitrogen, which is the key restrictive factor for effective biological removal of nitrogen. In this study, the aerobic-low DO biofilm process was used for the nitrogen removal of municipal wastewater. By means of adjusting inflow ratios of aerobic section to low-DO section, hydraulic retention time (HRT) and inflow ratio of carbon to nitrogen (C/N), the performances of nitrification in aerobic biofilm section and denitrification in low-DO section could be improved, the good performance of nitrogen removal was achieved. In order to insure the good effluent quality, especially for ammonia nitrogen and total nitrogen indexes, the nitrification and denitrification could be made up in aerobic and low-DO biofilm section respectively due to the coexistence of aerobic and anoxic zone in biofilm. There were 3 stages for the research process. In the first stage, the original C/N, inflow ratios of aerobic section to low-DO section were chosen as 3:1 and 1:1 respectively, then the effects of various HRT (aerobic section + low DO section) values such as (10 + 5) h, (8 + 4) h, (6 + 3) h, (4 + 2) h to nitrogen removal were analyzed. According to the conclusion in the first stage, the original C/N was kept at 3:1, HRT (aerobic section + low DO section) was (10 + 5) h. Then, the effects of various inflow ratios to nitrogen removal were studied in the second stage. In the third stage, when HRT(aerobic section + low DO section) was (10 + 5) h and inflow ratio was 1:1, the original C/N were adjusted from 2:1, 3:1, 5:1 to 10:1. To conclude, the optimal parameters for nitrogen removal in the biofilm system were as follows: original C/N = 5:1, inflow ratio of aerobic to low-DO section = 1:1, HRT of aerobic and low-DO sections were 10 h and 5 h respectively. As a result, COD, ammonia nitrogen and total nitrogen could be removed from 254 mg/L to 48 mg/L, 37.2 mg/L to 9.3 mg/L and 48.2 mg/L to 14.8 mg

  5. Aerobic Production and Utilization of Lactate Satisfy Increased Energy Demands Upon Neuronal Activation in Hippocampal Slices and Provide Neuroprotection Against Oxidative Stress

    PubMed Central

    Schurr, Avital; Gozal, Evelyne

    2012-01-01

    Ever since it was shown for the first time that lactate can support neuronal function in vitro as a sole oxidative energy substrate, investigators in the field of neuroenergetics have been debating the role, if any, of this glycolytic product in cerebral energy metabolism. Our experiments employed the rat hippocampal slice preparation with electrophysiological and biochemical methodologies. The data generated by these experiments (a) support the hypothesis that lactate, not pyruvate, is the end-product of cerebral aerobic glycolysis; (b) indicate that lactate plays a major and crucial role in affording neural tissue to respond adequately to glutamate excitation and to recover unscathed post-excitation; (c) suggest that neural tissue activation is accompanied by aerobic lactate and NADH production, the latter being produced when the former is converted to pyruvate by mitochondrial lactate dehydrogenase (mLDH); (d) imply that NADH can be utilized as an endogenous scavenger of reactive oxygen species (ROS) to provide neuroprotection against ROS-induced neuronal damage. PMID:22275901

  6. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

    PubMed

    Gao, Chongyang; Wang, Aijie; Wu, Wei-Min; Yin, Yalin; Zhao, Yang-Guo

    2014-09-01

    Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities. PMID:24973773

  7. Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions.

    PubMed

    Marshall, R S; Paterson, M C; Rauth, A M

    1989-03-01

    Two non-transformed human skin fibroblast strains, GM38 and 3437T, were found to be more sensitive to the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) under hypoxic compared to aerobic conditions. One of these strains, 3437T, was 6-7 times more resistant to these agents under aerobic exposure conditions, but was identical in sensitivity to the normal strain, GM38, under hypoxic conditions. Aerobic 3437T cells demonstrated no increased resistance to cisplatin compared to the normal strain, arguing against enhanced ability to repair DNA interstrand cross-links as the underlying explanation for the mitomycin resistance. The aerobic resistance of 3437T was not altered by dicumarol, an inhibitor of the enzyme DT-diaphorase which is believed to be involved in aerobic activation of MMC and PM. Dicumarol did increase the resistance of GM38, but not to the same level of resistance demonstrated by 3437T. These results suggest that the aerobic MMC and PM resistance of 3437T may arise, in part, from a deficiency in DT-diaphorase activity. The identical sensitivities under hypoxic conditions indicate that drug activation pathways operative in the absence of oxygen are similar in both the normal and 3437T cells. PMID:2467684

  8. Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions.

    PubMed Central

    Marshall, R. S.; Paterson, M. C.; Rauth, A. M.

    1989-01-01

    Two non-transformed human skin fibroblast strains, GM38 and 3437T, were found to be more sensitive to the bioreductive alkylating agents mitomycin C (MMC) and porfiromycin (PM) under hypoxic compared to aerobic conditions. One of these strains, 3437T, was 6-7 times more resistant to these agents under aerobic exposure conditions, but was identical in sensitivity to the normal strain, GM38, under hypoxic conditions. Aerobic 3437T cells demonstrated no increased resistance to cisplatin compared to the normal strain, arguing against enhanced ability to repair DNA interstrand cross-links as the underlying explanation for the mitomycin resistance. The aerobic resistance of 3437T was not altered by dicumarol, an inhibitor of the enzyme DT-diaphorase which is believed to be involved in aerobic activation of MMC and PM. Dicumarol did increase the resistance of GM38, but not to the same level of resistance demonstrated by 3437T. These results suggest that the aerobic MMC and PM resistance of 3437T may arise, in part, from a deficiency in DT-diaphorase activity. The identical sensitivities under hypoxic conditions indicate that drug activation pathways operative in the absence of oxygen are similar in both the normal and 3437T cells. PMID:2467684

  9. Laboratory Study of Chemical Speciation of Mercury in Lake Sediment and Water under Aerobic and Anaerobic Conditions

    PubMed Central

    Regnell, Olof; Tunlid, Anders

    1991-01-01

    Chemical speciation and partitioning of radiolabeled HgCl2 were studied in model aquatic systems consisting of undisturbed eutrophic lake sediment and water in plastic cylinders. The cylinders were either gradually made anaerobic by a gentle flow of N2-CO2 or kept aerobic by air flow. The proportion of methylated 203Hg was significantly higher, in both water and sediment, in the anaerobic systems than in the aerobic systems. The composition and total concentration of fatty acids originating from bacterial phospholipids, as well as the concentration of vitamin B12, including related cobalamins, were similar in sediments from the anaerobic and aerobic systems. Bacterial cell numbers were, on average, 3.6 times higher in the anaerobic water columns than in the aerobic ones. Volatilization of 203Hg occurred in all systems except in an autoclaved control and was of similar magnitudes in the anaerobic and aerobic systems. Incorporation of 203Hg into the sediment was significantly faster in the aerobic systems than in the anaerobic systems. These results suggest that episodes of anoxia in bottom waters and sediment cause an increase in net mercury methylation and, hence, an increase in bioavailable mercury. PMID:16348444

  10. [Effect of aerobic training on cardiac autonomic regulation revealed by heart rate variability analysis].

    PubMed

    Zhang, L; Wang, S; Zhang, Z; Zheng, J; Wang, X

    1997-11-01

    The aim of the present work is to elucidate the effect of aerobiac training on cardic autonomic function and to clarify whether there is any association between the changes in cardiac regulation and the heart rate dynamics and orthostatic tolerance during LBNP testing. To achieve this, the heart rate variability (HRV) signals obtained from a group of eight students before and after a 6-mon aerobic training, as well as from six athletes (medium- and long distance runners) were analyzed by conventional spectral, dynamic spectral and non-linear analysis. Our results showed that the conventional AR spectral analysis could not provide data with significance, owing to its greater variance and inherent limitation in being able to reflect only the average statistical characters over a certain period. While from the data obtained by use of the time-varying AR spectral analysis we could follow the time course of cardiac vagal withdrawl and sympathetic excitation during LBNP exposure. Regarding the non linear methods used, beta estimates didn't provide any significant result, but the ApEn analysis of the HRV signal could detect subtle changes in heart rate dynamics associated with aerobic training. Moreover, after aerobic training, the increments delta ApEn and delta DNP during LB NP testing were closely correlated. Our results would have important implications for further work in elucidating the effect of aerobic training on heart rate dynamics and improving the work on HRV signal analysis. PMID:10322949

  11. Aerobic Capacity and Cognitive Control in Elementary School-Age Children

    PubMed Central

    Scudder, Mark R.; Lambourne, Kate; Drollette, Eric S.; Herrmann, Stephen; Washburn, Richard; Donnelly, Joseph E.; Hillman, Charles H.

    2014-01-01

    Purpose The current study examined the relationship between children’s performance on the Progressive Aerobic Cardiovascular Endurance Run (PACER) subtest of the FitnessGram® and aspects of cognitive control that are believed to support academic success. Methods Hierarchical linear regression analyses were conducted on a sample of 2nd and 3rd grade children (n = 397) who completed modified versions of a flanker task and spatial n-back task to assess inhibitory control and working memory, respectively. Results Greater aerobic fitness was significantly related to shorter reaction time and superior accuracy during the flanker task, suggesting better inhibitory control and the facilitation of attention in higher fit children. A similar result was observed for the n-back task such that higher fit children exhibited more accurate target detection and discrimination performance when working memory demands were increased. Conclusion These findings support the positive association between aerobic fitness and multiple aspects of cognitive control in a large sample of children, using a widely implemented and reliable field estimate of aerobic capacity. Importantly, the current results suggest that this relationship is consistent across methods used to assess fitness, which may have important implications for extending this research to more representative samples of children in a variety of experimental contexts. PMID:24743109

  12. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  13. Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization

    PubMed Central

    Wei, L; Zhou, Y; Qiao, C; Ni, T; Li, Z; You, Q; Guo, Q; Lu, N

    2015-01-01

    Alterations of cellular metabolism play a central role in the development and progression of cancer. Oroxylin A, an active flavonoid of a Chinese traditional medicinal plant, was previously shown to modulate glycolysis in cancer cells. However, the mechanism by which oroxylin A regulates glycolysis is still not well defined. Here, we show that oroxylin A inhibits glycolysis in breast cancer cells via the Sirtuin 3 (SIRT3)-mediated destabilization of hypoxia-inducible factor 1α (HIF1α), which controls glycolytic gene expression. Oroxylin A promotes superoxide dismutase (SOD2) gene expression through SIRT3-regulated DNA-binding activity of FOXO3a and increases the activity of SOD2 by promoting SIRT3-mediated deacetylation. In vivo, oroxylin A inhibits the growth of transplanted human breast tumors associated with glycolytic suppression. These data indicate that oroxylin A inhibits glycolysis-dependent proliferation of breast cancer cells, through the suppression of HIF1α stabilization via SIRT3 activation, providing preclinical information for the cancer therapies of SIRT3 stimulation. PMID:25855962

  14. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  15. Psychological Benefits of Aerobic Running: Implications for Mental Health Counselors.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1988-01-01

    Discusses the effect of aerobic running on psychological functioning and its adjunctive use in mental health counseling. Concludes that mental health counselors can provide more comprehensive services if they expand the psychoeducational model to include physiological parameters such as aerobic running that are associated with optimum mental…

  16. The Psychology, Physiology, and Creativity of Middle School Aerobic Exercisers.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott; And Others

    1993-01-01

    Investigated effects of aerobic running program on psychological and physical fitness and creative abilities of eight-grade school children. Students (n=85) were randomly assigned to aerobic running treatment groups or to control groups who participated in traditional, nonaerobic physical education. Found statistically significant increases for…

  17. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  18. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  19. EFFECTS OF CORN SILAGE INOCULANTS ON AEROBIC STABILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic stability of corn silage can be a major problem for farmers particularly in warm weather. Silage inoculants, while the most common type of silage additive, have not been consistently effective at improving aerobic stability. This study investigated new and proposed inoculant products over ...

  20. 40 CFR 796.3100 - Aerobic aquatic biodegradation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Aerobic aquatic biodegradation. 796.3100 Section 796.3100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Transformation Processes § 796.3100 Aerobic aquatic biodegradation. (a)...

  1. 40 CFR 796.3100 - Aerobic aquatic biodegradation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Aerobic aquatic biodegradation. 796.3100 Section 796.3100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Transformation Processes § 796.3100 Aerobic aquatic biodegradation. (a)...

  2. 40 CFR 796.3100 - Aerobic aquatic biodegradation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Aerobic aquatic biodegradation. 796.3100 Section 796.3100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Transformation Processes § 796.3100 Aerobic aquatic biodegradation. (a)...

  3. Effect of Moderate Aerobic Training on Bone Metabolism Indices among Adult Humans

    PubMed Central

    Alghadir, Ahmad H.; Aly, Farag A.; Gabr, Sami A.

    2014-01-01

    Objective: This study assessed the osteogenic effect (T-Score) and changes in bone markers in healthy subjects by 12-weeks of aerobic training. Methods: Total 65 healthy subjects (36 males, 29 females), their age ranged between 30 and 60 years with normal body mass index, were recruited to participate in this study and they were selected among healthy subjects who do not have any metabolic disorders and were not receiving any medication that could affect the bone turnover. Standardized physical examination and collection of serum samples were performed at base line and after 12 weeks of moderate aerobic training to measure bone formation markers (osteocalcin (OC) and bone specific alkaline Phosphatase (BAP) and bone resorption marker Deoxypyridinoline (DPD), and serum calcium. Each subject participated in exercise training program for 12 weeks, three times per week. Results: The results showed that the 12 week