Science.gov

Sample records for aerobic gram negative

  1. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  2. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions.

    PubMed

    DeMars, Zachary; Biswas, Silpak; Amachawadi, Raghavendra G; Renter, David G; Volkova, Victoriya V

    2016-01-01

    Antimicrobial treatments result in the host's enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  3. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium

    SciTech Connect

    Lobos, J.H.; Leib, T.K. ); Tahmun Su )

    1992-06-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichmet takes from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4[prime]-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO[sub 2], 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified as 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes.

  4. Meningitis - gram-negative

    MedlinePlus

    Gram-negative meningitis ... Acute bacterial meningitis can be caused by Gram-negative bacteria. Meningococcal and H. influenzae meningitis are caused by Gram-negative bacteria and are covered in detail in other articles. This article ...

  5. In vitro activity of ciprofloxacin against aerobic gram-negative bacteria.

    PubMed Central

    Rudin, J E; Norden, C W; Shinners, E M

    1984-01-01

    For 177 gram-negative isolates, the MICs for ciprofloxacin ranged from 0.02 microgram/ml (Escherichia coli) to 0.31 microgram/ml (Pseudomonas aeruginosa). In time-kill curves, ciprofloxacin at 8 X the MIC almost completely killed 10(6) CFU of P. aeruginosa by 24 h. Ciprofloxacin at 4 X the MIC allowed bacterial regrowth by 24 h, with development of partial resistance to ciprofloxacin. PMID:6517550

  6. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates

    PubMed Central

    Faron, Matthew L.; Buchan, Blake W.; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L.; Granato, Paul A.; Wilson, Deborah A.; Procop, Gary W.; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A.

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria. PMID:26529504

  7. Detection of alternative nitrogenases in aerobic gram-negative nitrogen-fixing bacteria.

    PubMed Central

    Fallik, E; Chan, Y K; Robson, R L

    1991-01-01

    Strains of aerobic, microaerobic, nonsymbiotic, and symbiotic dinitrogen-fixing bacteria were screened for the presence of alternative nitrogenase (N2ase) genes by DNA hybridization between genomic DNA and DNA encoding structural genes for components 1 of three different enzymes. A nifDK gene probe was used as a control to test for the presence of the commonly occurring Mo-Fe N2ase, a vnfDGK gene probe was used to show the presence of V-Fe N2ase, and an anfDGK probe was used to detect Fe N2ase. Hitherto, all three enzymes have been identified in Azotobacter vinelandii OP, and all but the Fe N2ase are present in Azotobacter chroococcum ATCC 4412 (MCD1). Mo-Fe N2ase and V-Fe N2ase structural genes only were confirmed in this strain and in two other strains of A. chroococcum (ATCC 480 and ATCC 9043). A similar pattern was observed with Azotobacter beijerinckii ATCC 19360 and Azotobacter nigricans ATCC 35009. Genes for all three systems are apparently present in two strains of Azotobacter paspali (ATCC 23367 and ATCC 23833) and also in Azomonas agilis ATCC 7494. There was no good evidence for the existence of any genes other than Mo-Fe N2ase structural genes in several Rhizobium meliloti strains, cowpea Rhizobium strain 32H1, or Bradyrhizobium japonicum. Nitrogenase and nitrogenase genes in Azorhizobium caulinodans behaved in an intermediate fashion, showing (i) the formation of ethane from acetylene under Mo starvation, a characteristic of alternative nitrogenases, and (ii) a surprising degree of cross-hybridization to the vnfDGK, but not the anfDGK, probe. vnfDGK- and anfDGK-like sequences were not detected in two saccharolytic Pseudomonas species or Azospirillum brasilense Sp7. The occurrence of alternative N2ases seems restricted to members of the family Azotobacteraceae among the aerobic and microaerobic diazotrophs tested, suggesting that an ability to cope with O2 when fixing N2 may be an important factor influencing the distribution of alternative nitrogenases

  8. Think (Gram) negative!

    PubMed Central

    2010-01-01

    The increasing prevalence of multiresistant Gram-negative bacteria of the Enterobacteriaceae family in Europe is a worrisome phenomenon. Extended spectrum betalactamase-producing Escherichia coli strains are widespread in the community and are frequently imported into the hospital. Of even more concern is the spread of carbapenem-resistant strains of Klebsiella spp. from regions where they are already endemic. Antibiotic use is a main driver of antibiotic resistance, which again increases broad spectrum antibiotic use, resulting in a vicious circle that is difficult to interrupt. The present commentary highlights important findings of a surveillance study of antimicrobial use and resistance in German ICUs over 8 years with a focus on Gram-negative resistance. PMID:20587087

  9. Differential sensitivity of aerobic gram-positive and gram-negative microorganisms to 2,4,6-trinitrotoluene (TNT) leads to dissimilar growth and TNT transformation: Results of soil and pure culture studies

    SciTech Connect

    Fuller, M.E.; Manning, J.F. Jr.

    1996-07-30

    The effects of 2,4,6-trinitrotoluene (TNT) on indigenous soil populations and pure bacterial cultures were examined. The number of colony-forming units (CFU) appearing when TNT-contaminated soil was spread on 0.3% molasses plates decreased by 50% when the agar was amended with 67 {mu}g TNT mL{sup -1}, whereas a 99% reduction was observed when uncontaminated soil was plated. Furthermore, TNT-contaminated soil harbored a greater number of organisms able to grow on plates amended with greater than 10 {mu}g TNT mL{sup -1}. The percentage of gram-positive isolates was markedly less in TNT-contaminated soil (7%; 2 of 30) than in uncontaminated soil (61%; 20 of 33). Pseudomonas aeruginosa, Pseudomonas corrugate, Pseudomonasfluorescens and Alcaligenes xylosoxidans made up the majority of the gram-negative isolates from TNT-contaminated soil. Gram-positive isolates from both soils demonstrated marked growth inhibition when greater than 8-16 {mu}g TNT mL{sup -1} was present in the culture media. Most pure cultures of known aerobic gram-negative organisms readily degraded TNT and evidenced net consumption of reduced metabolites. However, pure cultures of aerobic gram-positive bacteria were sensitive to relatively low concentrations of TNT as indicated by the 50% reduction in growth and TNT transformation which was observed at approximately 10 {mu}g TNT mL{sup -1}. Most non-sporeforming gram-positive organisms incubated in molasses media amended with 80 {mu}g TNT mL{sup -1} or greater became unculturable, whereas all strains tested remained culturable when incubated in mineral media amended with 98 {mu}g TNT mL{sup -1}, indicating that TNT sensitivity is likely linked to cell growth. These results indicate that gram-negative organisms are most likely responsible for any TNT transformation in contaminated soil, due to their relative insensitivity to high TNT concentrations and their ability to transform TNT.

  10. Efficacy and safety of aztreonam-clindamycin versus tobramycin-clindamycin in the treatment of lower respiratory tract infections caused by aerobic gram-negative bacilli.

    PubMed Central

    Rodríguez, J R; Ramírez-Ronda, C H; Nevárez, M

    1985-01-01

    A total of 80 patients were randomized to receive either aztreonam or tobramycin for the treatment of lower respiratory tract infections caused by gram-negative bacilli; all these patients received clindamycin concomitantly. A total of 53 patients were randomized to receive aztreonam-clindamycin; of these, 46 were clinically evaluable and 39 were bacteriologically evaluable. Of the 46 clinically evaluable patients, 41 were considered cured, 3 failed to be cured, and 2 died during the study period of unrelated causes. Of the 39 bacteriologically evaluable patients, 36 were considered cured, and 3 failed to be cured. There were 26 clinically evaluable patients in the group randomized to receive tobramycin-clindamycin. Of them, 22 patients were considered cured, 3 failed to be cured, and 1 died of unrelated causes during the study period. There were 18 bacteriologically evaluable patients in the tobramycin-clindamycin group; 17 were cured, and 1 failed to be cured. The most common pathogens isolated from the patients were Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. All of the isolated organisms were susceptible to both tested antibiotics, except for a strain of Pseudomonas cepacia resistant to both tested antimicrobial agents and a strain of Enterobacter aerogenes and one of P. aeruginosa that were resistant to aztreonam. Very few adverse reactions related to the antibiotics were seen. These effects, when present, were transient and comparable in both studied groups, except for renal-function tests, which were altered in 7.7% of the patients randomized to receive tobramycin-clindamycin and in none of the patients randomized to receive aztreonam-clindamycin. Aztreonam-clindamycin is safe and effective for the treatment of lower respiratory tract infections caused by aerobic gram-negative bacilli when the organisms are susceptible. PMID:4039118

  11. Gram-negative and Gram-positive bacterial extracellular vesicles.

    PubMed

    Kim, Ji Hyun; Lee, Jaewook; Park, Jaesung; Gho, Yong Song

    2015-04-01

    Like mammalian cells, Gram-negative and Gram-positive bacteria release nano-sized membrane vesicles into the extracellular environment either in a constitutive manner or in a regulated manner. These bacterial extracellular vesicles are spherical bilayered proteolipids enriched with bioactive proteins, lipids, nucleic acids, and virulence factors. Recent progress in this field supports the critical pathophysiological functions of these vesicles in both bacteria-bacteria and bacteria-host interactions. This review provides an overview of the current understanding on Gram-negative and Gram-positive bacterial extracellular vesicles, especially regarding the biogenesis, components, and functions in poly-species communities. We hope that this review will stimulate additional research in this emerging field of bacterial extracellular vesicles and contribute to the development of extracellular vesicle-based diagnostic tools and effective vaccines against pathogenic Gram-negative and Gram-positive bacteria.

  12. Antimicrobial Susceptibilities of Aerobic and Facultative Gram-Negative Bacilli from Intra-abdominal Infections in Patients from Seven Regions in China in 2012 and 2013.

    PubMed

    Zhang, Hui; Yang, Qiwen; Liao, Kang; Ni, Yuxing; Yu, Yunsong; Hu, Bijie; Sun, Ziyong; Huang, Wenxiang; Wang, Yong; Wu, Anhua; Feng, Xianju; Luo, Yanping; Hu, Zhidong; Chu, Yunzhuo; Chen, Shulan; Cao, Bin; Su, Jianrong; Gui, Bingdong; Duan, Qiong; Zhang, Shufang; Shao, Haifeng; Kong, Haishen; Badal, Robert E; Xu, Yingchun

    2015-10-19

    To evaluate the antimicrobial susceptibility of Gram-negative bacilli that caused hospital-acquired and community-acquired intra-abdominal infections (IAIs) in China between 2012 and 2013, we determined the susceptibilities to 12 antimicrobials and the extended-spectrum β-lactamase (ESBL) statuses of 3,540 IAI isolates from seven geographic areas in China in a central laboratory using CLSI broth microdilution and interpretive standards. Most infections were caused by Escherichia coli (46.3%) and Klebsiella pneumoniae (19.7%). Rates of ESBL-producing E. coli (P = 0.031), K. pneumoniae (P = 0.017), and Proteus mirabilis (P = 0.004) were higher in hospital-acquired IAIs than in community-acquired IAIs. Susceptibilities of enterobacteriaceae to ertapenem, amikacin, piperacillin-tazobactam, and imipenem were 71.3% to 100%, 81.3% to 100%, 64.7% to 100%, and 83.1% to 100%, respectively, but imipenem was ineffective against P. mirabilis (<20%). Although most ESBL-positive hospital-acquired isolates were resistant to third- and fourth-generation cephalosporins, the majority were susceptible to cefoxitin (47.9% to 83.9%). Susceptibilities of ESBL-positive isolates to ampicillin-sulbactam (<10%) were low, whereas susceptibilities to ciprofloxacin (0% to 54.6%) and levofloxacin (0% to 63.6%) varied substantially. The prevalences of cephalosporin-susceptible E. coli and K. pneumoniae were higher in the northeastern and southern regions than in the central and eastern regions, reflecting the ESBL-positive rates in these areas, and were lowest in the Jiangsu-Zhejiang (Jiang-Zhe) area where the rates of carbapenem resistance were also highest. Ertapenem, amikacin, piperacillin-tazobactam, and imipenem are the most efficacious antibiotics for treating IAIs in China, especially those caused by E. coli or K. pneumoniae. Resistance to cephalosporins and carbapenems is more common in the Jiang-Zhe area than in other regions in China.

  13. Surveillance of antimicrobial susceptibility of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in China: the 2002-2009 Study for Monitoring Antimicrobial Resistance Trends (SMART).

    PubMed

    Yang, Qiwen; Wang, Hui; Chen, Minjun; Ni, Yuxing; Yu, Yunsong; Hu, Bijie; Sun, Ziyong; Huang, Wenxiang; Hu, Yunjian; Ye, Huifen; Badal, Robert E; Xu, Yingchun

    2010-12-01

    The objective of this study was to investigate the distribution and susceptibility of aerobic and facultative Gram-negative bacilli (GNB) isolated from patients with intra-abdominal infections (IAIs) in China. From 2002 to 2009, minimum inhibitory concentrations of 14 antibiotics for 3420 aerobic and facultative GNB from up to eight hospitals in six cities were determined by the broth microdilution method. Enterobacteriaceae comprised 82.9% (2834/3420) of the total isolates, with Escherichia coli (49.2%) being the most commonly isolated species followed by Klebsiella pneumoniae (17.0%), Enterobacter cloacae (5.8%) and Citrobacter freundii (2.3%). Amongst the antimicrobial agents tested, the three carbapenems (ertapenem, imipenem and meropenem) were the most active agents against Enterobacteriaceae, with susceptibility rates of 96.1-99.6% (2002-2009), 98.2-100% (2002-2009) and 99.6-100% (2002-2004), respectively, followed by amikacin (86.8-95.1%) and piperacillin/tazobactam (84.5-94.3%). Susceptibility rates of all tested third- and fourth-generation cephalosporins against Enterobacteriaceae declined by nearly 30%, with susceptibility rates of 40.2%, 39.1%, 56.3% and 51.8% in 2009 for ceftriaxone, cefotaxime, ceftazidime and cefepime, respectively. The occurrence of extended-spectrum β-lactamases increased rapidly, especially for E. coli (from 20.8% in 2002 to 64.9% in 2009). Susceptibility of E. coli to ciprofloxacin decreased from 57.6% in 2002 to 24.2% in 2009. The least active agent against Enterobacteriaceae was ampicillin/sulbactam (SAM) (25.3-44.3%). In conclusion, Enterobacteriaceae were the major pathogens causing IAIs, and carbapenems retained the highest susceptibility rates over the 8-year study period. Third- and fourth-generation cephalosporins, fluoroquinolones and SAM may not be ideal choices for empirical therapy of IAIs in China.

  14. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov.

    PubMed

    Zhang, Hui; Sekiguchi, Yuji; Hanada, Satoshi; Hugenholtz, Philip; Kim, Hongik; Kamagata, Yoichi; Nakamura, Kazunori

    2003-07-01

    A phylogenetically novel aerobic bacterium was isolated from an anaerobic-aerobic sequential batch reactor operated under enhanced biological phosphorus removal conditions for wastewater treatment. The isolation strategy used targeted slowly growing polyphosphate-accumulating bacteria by combining low-speed centrifugations and prolonged incubation on a low-nutrient medium. The isolate, designated strain T-27T, was a gram-negative, rod-shaped aerobe. Cells often appeared to divide by budding replication. Strain T-27T grew at 25-35 degrees C with an optimum growth temperature of 30 degrees C, whilst no growth was observed below 20 degrees C or above 37 degrees C within 20 days incubation. The pH range for growth was 6.5-9.5, with an optimum at pH 7.0. Strain T-27T was able to utilize a limited range of substrates, such as yeast extract, polypepton, succinate, acetate, gelatin and benzoate. Neisser staining was positive and 4,6-diamidino-2-phenylindole-stained cells displayed a yellow fluorescence, indicative of polyphosphate inclusions. Menaquinone 9 was the major respiratory quinone. The cellular fatty acids of the strain were mainly composed of iso-C15:0, C16:1 and C14:0. The G + C content of the genomic DNA was 66 mol%. Comparative analyses of 16S rRNA gene sequences indicated that strain T-27T belongs to candidate division BD (also called KS-B), a phylum-level lineage in the bacterial domain, to date comprised exclusively of environmental 16S rDNA clone sequences. Here, a new genus and species are proposed, Gemmatimonas aurantiaca (type strain T-27T=JCM 11422T=DSM 14586T) gen. nov., sp. nov., the first cultivated representative of the Gemmatimonadetes phyl. nov. Environmental sequence data indicate that this phylum is widespread in nature and has a phylogenetic breadth (19% 16S rDNA sequence divergence) that is greater than well-known phyla such as the Actinobacteria (18% divergence).

  15. Revisiting the gram-negative lipoprotein paradigm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  16. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov.

    PubMed

    Nakai, Ryosuke; Nishijima, Miyuki; Tazato, Nozomi; Handa, Yutaka; Karray, Fatma; Sayadi, Sami; Isoda, Hiroko; Naganuma, Takeshi

    2014-10-01

    A phylogenetically novel proteobacterium, strain Shr3(T), was isolated from sand gravels collected from the eastern margin of the Sahara Desert. The isolation strategy targeted bacteria filterable through 0.2-µm-pore-size filters. Strain Shr3(T) was determined to be a Gram-negative, aerobic, non-motile, filamentous bacterium. Oxidase and catalase reactions were positive. Strain Shr3(T) showed growth on R2A medium, but poor or no growth on nutrient agar, trypticase soy agar and standard method agar. The major isoprenoid quinone was menaquinone-7. The dominant cellular fatty acids detected were C16:1ω5c and C16:0, and the primary hydroxy acid present was C12:0 3-OH. The DNA G+C content was 54.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Shr3(T) was affiliated with an uncultivated lineage of the phylum Proteobacteria; the nearest known type strain, with 83% sequence similarity, was Desulfomicrobium orale DSM 12838(T) in the class Deltaproteobacteria. The isolate and closely related environmental clones formed a novel class-level clade in the phylum Proteobacteria with high bootstrap support (96-99%). Based on these results, the novel class Oligoflexia classis nov. in the phylum Proteobacteria and the novel genus and species Oligoflexus tunisiensis gen. nov., sp. nov. are proposed for strain Shr3(T), the first cultivated representative of the Oligoflexia. The type strain of Oligoflexus tunisiensis is Shr3(T) ( = JCM 16864(T) = NCIMB 14846(T)). We also propose the subordinate taxa Oligoflexales ord. nov. and Oligoflexaceae fam. nov. in the class Oligoflexia.

  17. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov.

    PubMed Central

    Nakai, Ryosuke; Nishijima, Miyuki; Tazato, Nozomi; Handa, Yutaka; Karray, Fatma; Sayadi, Sami; Isoda, Hiroko

    2014-01-01

    A phylogenetically novel proteobacterium, strain Shr3T, was isolated from sand gravels collected from the eastern margin of the Sahara Desert. The isolation strategy targeted bacteria filterable through 0.2-µm-pore-size filters. Strain Shr3T was determined to be a Gram-negative, aerobic, non-motile, filamentous bacterium. Oxidase and catalase reactions were positive. Strain Shr3T showed growth on R2A medium, but poor or no growth on nutrient agar, trypticase soy agar and standard method agar. The major isoprenoid quinone was menaquinone-7. The dominant cellular fatty acids detected were C16 : 1ω5c and C16 : 0, and the primary hydroxy acid present was C12 : 0 3-OH. The DNA G+C content was 54.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Shr3T was affiliated with an uncultivated lineage of the phylum Proteobacteria; the nearest known type strain, with 83 % sequence similarity, was Desulfomicrobium orale DSM 12838T in the class Deltaproteobacteria. The isolate and closely related environmental clones formed a novel class-level clade in the phylum Proteobacteria with high bootstrap support (96–99 %). Based on these results, the novel class Oligoflexia classis nov. in the phylum Proteobacteria and the novel genus and species Oligoflexus tunisiensis gen. nov., sp. nov. are proposed for strain Shr3T, the first cultivated representative of the Oligoflexia. The type strain of Oligoflexus tunisiensis is Shr3T ( = JCM 16864T = NCIMB 14846T). We also propose the subordinate taxa Oligoflexales ord. nov. and Oligoflexaceae fam. nov. in the class Oligoflexia. PMID:25013226

  18. Rapid diagnosis of gram negative pneumonia by assay of endotoxin in bronchoalveolar lavage fluid.

    PubMed Central

    Pugin, J; Auckenthaler, R; Delaspre, O; van Gessel, E; Suter, P M

    1992-01-01

    BACKGROUND: Diagnosis of ventilator associated pneumonia can be made by quantitative cultures of bronchoalveolar lavage fluid or of protected specimen brushings, though cultures require 24-48 hours to provide results. In 80% of cases aerobic Gram negative bacteria are the cause. METHODS: A rapid diagnostic method of assessing the endotoxin content of lavage fluid by Limulus assay is described. Forty samples of lavage fluid were obtained from patients with multiple trauma requiring mechanical ventilation for a prolonged period. Pneumonia was diagnosed on the basis of clinical, radiological, and bacteriological findings, including quantitative cultures of lavage fluid. RESULTS: A relation was observed between the concentration of endotoxin in lavage fluid and the quantity of Gram negative bacteria. The median endotoxin content of lavage fluid in Gram negative bacterial pneumonia was 15 endotoxin units (EU)/ml; the range observed in individual patients was 6 to > 150 EU/ml. In patients with pneumonia due to Gram positive cocci and in non-infected patients the median endotoxin level was 0.17 (range < or = 0.06 to 2) EU/ml. An endotoxin level greater than or equal to 6 EU/ml distinguished patients with Gram negative bacterial pneumonia from colonised patients and from those with pneumonia due to Gram positive cocci. CONCLUSION: The measurement of endotoxin in lavage fluid is a rapid (less than two hours) and accurate diagnostic method. It should allow specific and early treatment of Gram negative bacterial pneumonia. PMID:1412100

  19. Antimicrobial Resistance in Hospital-Acquired Gram-Negative Bacterial Infections

    PubMed Central

    Mehrad, Borna; Clark, Nina M.; Zhanel, George G.

    2015-01-01

    Aerobic gram-negative bacilli, including the family of Enterobacteriaceae and non-lactose fermenting bacteria such as Pseudomonas and Acinetobacter species, are major causes of hospital-acquired infections. The rate of antibiotic resistance among these pathogens has accelerated dramatically in recent years and has reached pandemic scale. It is no longer uncommon to encounter gram-negative infections that are untreatable using conventional antibiotics in hospitalized patients. In this review, we provide a summary of the major classes of gram-negative bacilli and their key mechanisms of antimicrobial resistance, discuss approaches to the treatment of these difficult infections, and outline methods to slow the further spread of resistance mechanisms. PMID:25940252

  20. Electrochemical classification of gram-negative and gram-positive bacteria.

    PubMed Central

    Matsunaga, T; Nakajima, T

    1985-01-01

    Intestinal bacteria were classified as gram-positive or gram-negative by an electrode system with a basal plane pyrolytic graphite electrode and a porous nitrocellulose membrane filter to trap bacteria. When the potential of the graphite electrode was run in the range of 0 to 1.0 V versus the saturated calomel electrode (SCE), gram-positive bacteria gave peak currents at 0.65 to 0.69 V versus the SCE. The peak potentials of gram-negative bacteria were 0.70 to 0.74 V versus the SCE. Gram-negative bacteria and gram-positive bacteria were also classified based on the ratio of the second peak current to the first peak current when the potential cycle was repeated twice. The numbers of cells on the membrane filter were determined from the peak currents. It was found that the peak currents result from the electrochemical oxidation of coenzyme A in the cells of Escherichia coli and Lactobacillus acidophilus. Images PMID:3931548

  1. Insights into Newer Antimicrobial Agents Against Gram-negative Bacteria

    PubMed Central

    Taneja, Neelam; Kaur, Harsimran

    2016-01-01

    Currently, drug resistance, especially against cephalosporins and carbapenems, among gram-negative bacteria is an important challenge, which is further enhanced by the limited availability of drugs against these bugs. There are certain antibiotics (colistin, fosfomycin, temocillin, and rifampicin) that have been revived from the past to tackle the menace of superbugs, including members of Enterobacteriaceae, Acinetobacter species, and Pseudomonas species. Very few newer antibiotics have been added to the pool of existing drugs. There are still many antibiotics that are passing through various phases of clinical trials. The initiative of Infectious Disease Society of America to develop 10 novel antibiotics against gram-negative bacilli by 2020 is a step to fill the gap of limited availability of drugs. This review aims to provide insights into the current and newer drugs in pipeline for the treatment of gram-negative bacteria and also discusses the major challenging issues for their management. PMID:27013887

  2. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria.

    PubMed

    Evrin, Cécile; Straut, Monica; Slavova-Azmanova, Neli; Bucurenci, Nadia; Onu, Adrian; Assairi, Liliane; Ionescu, Mihaela; Palibroda, Nicolae; Bârzu, Octavian; Gilles, Anne-Marie

    2007-03-01

    In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.

  3. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates

    PubMed Central

    Deitzler, Grace E.; Ruiz, Maria J.; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  4. V-antigen homologs in pathogenic gram-negative bacteria.

    PubMed

    Sawa, Teiji; Katoh, Hideya; Yasumoto, Hiroaki

    2014-05-01

    Gram-negative bacteria cause many types of infections in animals from fish and shrimps to humans. Bacteria use Type III secretion systems (TTSSs) to translocate their toxins directly into eukaryotic cells. The V-antigen is a multifunctional protein required for the TTSS in Yersinia and Pseudomonas aeruginosa. V-antigen vaccines and anti-V-antigen antisera confer protection against Yersinia or P. aeruginosa infections in animal models. The V-antigen forms a pentameric cap structure at the tip of the Type III secretory needle; this structure, which has evolved from the bacterial flagellar cap structure, is indispensable for toxin translocation. Various pathogenic gram-negative bacteria such as Photorhabdus luminescens, Vibrio spp., and Aeromonas spp. encode homologs of the V-antigen. Because the V-antigens of pathogenic gram-negative bacteria play a key role in toxin translocation, they are potential therapeutic targets for combatting bacterial virulence. In the USA and Europe, these vaccines and specific antibodies against V-antigens are in clinical trials investigating the treatment of Yersinia or P. aeruginosa infections. Pathogenic gram-negative bacteria are of great interest because of their ability to infect fish and shrimp farms, their potential for exploitation in biological terrorism attacks, and their ability to cause opportunistic infections in humans. Thus, elucidation of the roles of the V-antigen in the TTSS and mechanisms by which these functions can be blocked is critical to facilitating the development of improved anti-V-antigen strategies. PMID:24641673

  5. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates.

    PubMed

    Deitzler, Grace E; Ruiz, Maria J; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka; Lewis, Warren G; Lewis, Amanda L

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  6. Will new antimicrobials overcome resistance among Gram-negatives?

    PubMed

    Bassetti, Matteo; Ginocchio, Francesca; Mikulska, Małgorzata; Taramasso, Lucia; Giacobbe, Daniele Roberto

    2011-10-01

    The spread of resistance among Gram-positive and Gram-negative bacteria represents a growing challenge for the development of new antimicrobials. The pace of antibiotic drug development has slowed during the last decade and, especially for Gram-negatives, clinicians are facing a dramatic shortage in the availability of therapeutic options to face the emergency of the resistance problem throughout the world. In this alarming scenario, although there is a shortage of compounds reaching the market in the near future, antibiotic discovery remains one of the keys to successfully stem and maybe overcome the tide of resistance. Analogs of already known compounds and new agents belonging to completely new classes of antimicrobials are in early stages of development. Novel and promising anti-Gram-negative antimicrobials belong both to old (cephalosporins, carbapenems, β-lactamase inhibitors, monobactams, aminoglycosides, polymyxin analogues and tetracycline) and completely new antibacterial classes (boron-containing antibacterial protein synthesis inhibitors, bis-indoles, outer membrane synthesis inhibitors, antibiotics targeting novel sites of the 50S ribosomal subunit and antimicrobial peptides). However, all of these compounds are still far from being introduced into clinical practice. Therefore, infection control policies and optimization in the use of already existing molecules are still the most effective approaches to reduce the spread of resistance and preserve the activity of antimicrobials.

  7. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    PubMed Central

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  8. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens

    PubMed Central

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-01-01

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25–60 °C), times (1–5 min), and concentrations (5–30 ppm for SAEW and 0.125%–0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95–5.76 log CFU/mL at 25–60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens.

  9. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen.

    PubMed Central

    Dahl, T A; Midden, W R; Hartman, P E

    1989-01-01

    Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids. PMID:2703469

  10. Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens

    PubMed Central

    Field, Des; Begley, Maire; O’Connor, Paula M.; Daly, Karen M.; Hugenholtz, Floor; Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2012-01-01

    Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria. PMID:23056510

  11. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens

    PubMed Central

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-01-01

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25–60 °C), times (1–5 min), and concentrations (5–30 ppm for SAEW and 0.125%–0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95–5.76 log CFU/mL at 25–60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens. PMID:27682077

  12. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens.

    PubMed

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-02-12

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25-60 °C), times (1-5 min), and concentrations (5-30 ppm for SAEW and 0.125%-0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95-5.76 log CFU/mL at 25-60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens.

  13. Gram-negative outer membrane vesicles: beyond the cell surface

    PubMed Central

    MASHBURN-WARREN, L.; MCLEAN, R. J. C.; WHITELEY, M.

    2011-01-01

    Considerable interest has recently mounted regarding the biological roles of Gram-negative outer membrane vesicles (MVs). The first discovery of MVs was made over four decades ago, and it is now clear that most Gram-negative bacteria produce MVs, with Pseudomonas aeruginosa and Escherichia coli as the most extensively studied. Much of our knowledge of the biological roles of MVs and mechanism of MV formation is due to T.J. Beveridge and colleagues. Beveridge pioneered the field of MV research not only by enhancing our understanding of MV function, but also through the application of a wide variety of physical, chemical, and genetic techniques to complement his elegant electron microscopy investigations. Here we review the contributions of Beveridge’s group to our understanding of MV biology. PMID:18459967

  14. Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism.

    PubMed

    Ryan, M P; Adley, C C

    2010-07-01

    Non-fermenting Gram-negative bacilli create a significant problem in clinical settings, being the most widespread cause of nosocomial infections. They are opportunistic pathogens that take advantage of underlying conditions and diseases. Sphingomonas paucimobilis, a non-fermenting Gram-negative bacillus, is regarded as of minor clinical significance; however, many instances of infections with this organism can be found in the literature. Infections include bacteraemia/septicaemia caused by contaminated solutions, e.g. distilled water, haemodialysis fluid and sterile drug solutions. Cases of pseudobacteraemia have been recorded in association with S. paucimobilis, as have many cases of unusual infections both invasive and severe, e.g. septic arthritis and osteomyelitis. No cases of death have been recorded in the literature related to S. paucimobilis. This review illustrates that S. paucimobilis is a more important pathogen than previously thought.

  15. Identification of Aerobic Gram-Positive Bacilli by Use of Vitek MS

    PubMed Central

    Navas, Maria; Pincus, David H.; Wilkey, Kathy; Sercia, Linda; LaSalvia, Margaret; Wilson, Deborah; Procop, Gary W.

    2014-01-01

    The accuracy of Vitek MS mass spectrometric identifications was assessed for 206 clinically significant isolates of aerobic Gram-positive bacilli representing 20 genera and 38 species. The Vitek MS identifications were correct for 85% of the isolates (56.3% to the species level, 28.6% limited to the genus level), with misidentifications occurring for 7.3% of the isolates. PMID:24501030

  16. Influence of bentonite particles on representative gram negative and gram positive bacterial deposition in porous media.

    PubMed

    Yang, Haiyan; Tong, Meiping; Kim, Hyunjung

    2012-11-01

    The significance of clay particles on the transport and deposition kinetics of bacteria in irregular quartz sand was examined by direct comparison of both breakthrough curves and retained profiles with clay particles in bacteria suspension versus those without clay particles. Two representative cell types, Gram-negative strain E. coli DH5α and Gram-positive strain Bacillus subtilis were utilized to systematically determine the influence of clay particles (bentonite) on cell transport behavior. Packed column experiments for both cell types were conducted in both NaCl (5 and 25 mM ionic strengths) and CaCl(2) (5 mM ionic strength) solutions at pH 6.0. The breakthrough plateaus with bentonite in solutions (30 mg L(-1) and 50 mg L(-1)) were lower than those without bentonite for both cell types under all examined conditions, indicating that bentonite in solutions decreased cell transport in porous media regardless of cell types (Gram-negative or Gram-positive) and solution chemistry (ionic strength and ion valence). The enhanced cell deposition with bentonite particles was mainly observed at segments near to column inlet, retained profiles for both cell types with bentonite particles were therefore steeper relative to those without bentonite. The increased cell deposition with bentonite observed in NaCl solutions was attributed to the codeposition of bacteria with bentonite particles whereas, in addition to codeposition of bacteria with bentonite, the bacteria-bentonite-bacteria cluster formed in suspensions also contributed to the increased deposition of bacteria with bentonite in CaCl(2) solution. PMID:22970735

  17. Gram-negative intestinal indigenous microbiota from two Siluriform fishes in a tropical reservoir.

    PubMed

    Duarte, Silvana; e Silva, Flávia Cristina de Paula; Zauli, Danielle Alves Gomes; Nicoli, Jacques Robert; Araújo, Francisco Gerson

    2014-01-01

    The Gram-negative intestinal microbiota of Hypostomus auroguttatus and Pimelodus maculatus, a detritivorous and an omnivorous fish species, respectively, were compared between fishes from the reservoir and the stretch of the river below the dam of the Funil hydroelectric plant, Rio de Janeiro, Brazil. Four selective culture media were used under aerobic and two under anaerobic conditions. The omnivorous species had microbiota with higher population levels compared to the detritivorous species. The number of morphotypes and population levels of total bacteria, vibrio and Bacteroides tended to be higher in summer and autumn in the reservoir, and not different in the river. The number of morphotypes of enterobacteria and total bacteria were higher in the lotic environment compared with the lentic one. The bacteria Aeromonas hydrophila and Plesiomonas shigelloides and the obligate anaerobic Fusobacterium mortiferum were the most frequently identified microorganisms in the intestine of both H. auroguttatus and P. maculatus. Both season and habitat influenced the Gram-negative intestinal microbiota of H. auroguttatus and P. maculatus. Environmental factors influenced the Gram-negative intestinal microbiota of both species with possible impact on the interrelationship between the fishes and their digestive ecosystem, although the gut microbiota composition of fishes may result from host-specific selective pressures within the gut.

  18. Gram-negative intestinal indigenous microbiota from two Siluriform fishes in a tropical reservoir

    PubMed Central

    Duarte, Silvana; Silva, Flávia Cristina de Paula e; Zauli, Danielle Alves Gomes; Nicoli, Jacques Robert; Araújo, Francisco Gerson

    2014-01-01

    The Gram-negative intestinal microbiota of Hypostomus auroguttatus and Pimelodus maculatus, a detritivorous and an omnivorous fish species, respectively, were compared between fishes from the reservoir and the stretch of the river below the dam of the Funil hydroelectric plant, Rio de Janeiro, Brazil. Four selective culture media were used under aerobic and two under anaerobic conditions. The omnivorous species had microbiota with higher population levels compared to the detritivorous species. The number of morphotypes and population levels of total bacteria, vibrio and Bacteroides tended to be higher in summer and autumn in the reservoir, and not different in the river. The number of morphotypes of enterobacteria and total bacteria were higher in the lotic environment compared with the lentic one. The bacteria Aeromonas hydrophila and Plesiomonas shigelloides and the obligate anaerobic Fusobacterium mortiferum were the most frequently identified microorganisms in the intestine of both H. auroguttatus and P. maculatus. Both season and habitat influenced the Gram-negative intestinal microbiota of H. auroguttatus and P. maculatus. Environmental factors influenced the Gram-negative intestinal microbiota of both species with possible impact on the interrelationship between the fishes and their digestive ecosystem, although the gut microbiota composition of fishes may result from host-specific selective pressures within the gut. PMID:25763032

  19. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    SciTech Connect

    Dumas, E.; Gao, C.; Suffern, D.; Bradforth, S. E.; Dimitrejevic, N. M.; Nadeau, J. L.; McGill Univ.; Univ. of Southern California

    2010-01-01

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.

  20. Characterization and identification of gram-negative, nonfermentative bacteria.

    PubMed Central

    Oberhofer, T R; Rowen, J W; Cunningham, G F

    1977-01-01

    The morphological and physiological characteristics of 593 strains of nonfermentative, gram-negative bacteria are described. A battery of 46 tests was used to identify and differentiate strains representing 8 genera and 31 species of named and group-designated bacteria. Seven selected amides and organic salts were closely examined to determine their usefulness, individually or as a battery, in characterizing and identifying the organisms. Of these, allantoin and acetamide showed the most promise in differentiating the more commonly occurring organisms from biochemically similar species. Susceptiblilty patterns to 12 antimicrobics also proved useful in differentiation, especially among atypical strains. PMID:845246

  1. Elasticity of the Rod-Shaped Gram-Negative Eubacteria

    NASA Astrophysics Data System (ADS)

    Boulbitch, A.; Quinn, B.; Pink, D.

    2000-12-01

    We report a theoretical calculation of the elasticity of the peptidoglycan network, the only stress-bearing part of rod-shaped Gram-negative eubacteria. The peptidoglycan network consists of elastic peptides and inextensible glycan strands, and it has been proposed that the latter form zigzag filaments along the circumference of the cylindrical bacterial shell. The zigzag geometry of the glycan strands gives rise to nonlinear elastic behavior. The four elastic moduli of the peptidoglycan network depend on its stressed state. For a bacterium under physiological conditions the elasticity is proportional to the bacterial turgor pressure. Our results are in good agreement with recent measurements.

  2. [Resistance in Gram negative bacteria: what is the current situation?].

    PubMed

    Elhani, Dalele; Elhani, Ichrak; Aouni, Mahjoub

    2012-10-01

    Emergence of antibiotic resistance put an end to the antibiotic miracle. According to recent review data, the number of cases of multiresistant bacteria, which are resistant to all antibiotics available, is increasing as well in the developed countries as in the developing countries. To face the emergence of these bacteria, it is necessary to evaluate the situation in Tunisian hospitals and act consequently. This review provide recent data on antibiotic resistance in Gram negative bacilli in Tunisian hospitals by focusing on some emergent resistances, which represent a daily challenge for the medical profession, such as extended spectrum beta-lactamases, carbapenem resistance, and fluoroquinolone resistance.

  3. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains.

    PubMed

    Smits, T H; Röthlisberger, M; Witholt, B; van Beilen, J B

    1999-08-01

    We have developed highly degenerate oligonucleotides for polymerase chain reaction (PCR) amplification of genes related to the Pseudomonas oleovorans GPo1 and Acinetobacter sp. ADP1 alkane hydroxylases, based on a number of highly conserved sequence motifs. In all Gram-negative and in two out of three Gram-positive strains able to grow on medium- (C6-C11) or long-chain n-alkanes (C12-C16), PCR products of the expected size were obtained. The PCR fragments were cloned and sequenced and found to encode peptides with 43.2-93.8% sequence identity to the corresponding fragment of the P. oleovorans GPo1 alkane hydroxylase. Strains that were unable to grow on n-alkanes did not yield PCR products with homology to alkane hydroxylase genes. The alkane hydroxylase genes of Acinetobacter calcoaceticus EB104 and Pseudomonas putida P1 were cloned using the PCR products as probes. The two genes allow an alkane hydroxylase-negative mutant of Acinetobacter sp. ADP1 and an Escherichia coli recombinant containing all P. oleovorans alk genes except alkB, respectively, to grow on n-alkanes, showing that the cloned genes do indeed encode alkane hydroxylases. PMID:11207749

  4. Effect of betamethasone in combination with antibiotics on gram positive and gram negative bacteria.

    PubMed

    Artini, M; Papa, R; Cellini, A; Tilotta, M; Barbato, G; Koverech, A; Selan, L

    2014-01-01

    Betamethasone is an anti-inflammatory steroid drug used in cases of anaphylactic and allergic reactions, of Alzheimer and Addison diseases and in soft tissue injuries. It modulates gene expression for anti-inflammatory activity suppressing the immune system response. This latter effect might decrease the effectiveness of immune system response against microbial infections. Corticosteroids, in fact, mask some symptoms of infection and during their use superimposed infections may occur. Thus, the use of glucocorticoids in patients with sepsis remains extremely controversial. In this study we analyzed the in vitro effect of a commercial formulation of betamethasone (Bentelan) on several Gram positive and Gram negative bacteria of clinical relevance. It was found to be an inhibitor of the growth of most of the strains examined. Also the effect of betamethasone in combination with some classes of antibiotics was evaluated. Antibiotic-steroid combination therapy is, in such cases, superior to antibiotic-alone treatment to impair bacterial growths. Such effect was essentially not at all observable on Staphylococcus aureus or Coagulase Negative Staphylococci (CoNS).

  5. Treatment of gram-negative infections with aztreonam.

    PubMed

    Simons, W J; Lee, T J

    1985-02-01

    Twenty-one patients with serious gram-negative infections were treated with aztreonam. Twenty of these were clinical and microbiologic cures; there was one clinical improvement with microbiologic persistence. No bacteria became resistant. Cure rates were: bone and joint (11 of 11); skin and soft tissue (six of six); pneumonia (two of two); perinephric abscess (one of one); and intra-abdominal abscess (zero of one). The bacteria responsible for these infections included Pseudomonas aeruginosa (12), Serratia marcescens (two), Enterobacter gergoviae (three), Enterobacter aerogenes (two), Escherichia coli (one), Citrobacter diversus (one), and Hemophilus influenzae (one). Aztreonam was well tolerated. Significant serum glutamic-oxaloacetic transaminase/serum glutamic-pyruvic transaminase elevations developed in three patients, but none was symptomatic and all resolved after therapy was stopped. Two patients in whom a rash developed were receiving other antibiotics (vancomycin and metronidazole), making the cause of the rash unclear. Diarrhea developed in a single patient with Pseudomonas osteomyelitis, who also was receiving cefazolin for Staphylococcus aureus superinfection of his decubitus ulcer. Aztreonam was highly effective against gram-negative bacilli, including P. aeruginosa. The only clear-cut side effect was an asymptomatic rise in serum glutamic-oxaloacetic transaminase/serum glutamic-pyruvic transaminase levels in three patients.

  6. Current Epidemiology and Growing Resistance of Gram-Negative Pathogens

    PubMed Central

    2012-01-01

    In the 1980s, Gram-negative pathogens appeared to have been beaten by oxyimino-cephalosporins, carbapenems, and fluoroquinolones. Yet these pathogens have fought back, aided by their membrane organization, which promotes the exclusion and efflux of antibiotics, and by a remarkable propensity to recruit, transfer, and modify the expression of resistance genes, including those for extended-spectrum β-lactamases (ESBLs), carbapenemases, aminoglycoside-blocking 16S rRNA methylases, and even a quinolone-modifying variant of an aminoglycoside-modifying enzyme. Gram-negative isolates -both fermenters and non-fermenters-susceptible only to colistin and, more variably, fosfomycin and tigecycline, are encountered with increasing frequency, including in Korea. Some ESBLs and carbapenemases have become associated with strains that have great epidemic potential, spreading across countries and continents; examples include Escherichia coli sequence type (ST)131 with CTX-M-15 ESBL and Klebsiella pneumoniae ST258 with KPC carbapenemases. Both of these high-risk lineages have reached Korea. In other cases, notably New Delhi Metallo carbapenemase, the relevant gene is carried by promiscuous plasmids that readily transfer among strains and species. Unless antibiotic stewardship is reinforced, microbiological diagnosis accelerated, and antibiotic development reinvigorated, there is a real prospect that the antibiotic revolution of the 20th century will crumble. PMID:22707882

  7. Three-Dimensional Distribution of Phospholipids in Gram Negative Bacteria.

    PubMed

    Furse, Samuel; Scott, David J

    2016-08-30

    Exploration of the molecular structure of the bacterial cell envelope informs our understanding of its role in bacterial growth. This is crucial for research into both inhibiting and promoting bacterial growth as well as fundamental studies of cell cycle control. The spatial arrangement of the lipids in the cell envelope of Gram negative bacteria in particular has attracted considerable research attention in recent years. In this mini-review, we explore advances in understanding the spatial distribution of lipids in the model Gram negative prokaryote Escherichia coli. This includes the distribution of lipids in three dimensions, (a) lateral distribution within a monolayer, (b) asymmetry between bilayers and monolayers, and (c) distribution as a function of progress through membrane division (temporal shifts). We conclude that lipid distribution in E. coli and probably all bacteria is dynamic despite a narrow lipid profile and that the biophysical properties of the membrane are inhomogeneous as a result. Finally, we suggest that further work in this field may indicate how lipid distribution is controlled and what this means for bacterial growth and metabolism and even cell cycle control. PMID:27509296

  8. Activity of the antiseptic polyhexanide against gram-negative bacteria.

    PubMed

    Fabry, Werner Hugo Karl; Kock, Hans-Jürgen; Vahlensieck, Winfried

    2014-04-01

    The activity of the antiseptic polyhexanide was tested against 250 gram-negative clinical isolates, that is, 50 isolates each of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Moraxella catarrhalis, and Haemophilus influenzae. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) were determined by using a serial broth microdilution technique according to DIN 58940. Time-kill studies were performed for reference stains E. coli ATCC 25922, K. pneumoniae ATCC 4352, P. aeruginosa ATCC 15442, M. catarrhalis ATCC 43617, and H. influenzae ATCC 49247. All tested isolates had MICs and MBCs within a range of 1-32 mg/L and were regarded as susceptible to polyhexanide. The highest values were found for P. aeruginosa and H. influenzae with MICs and MBCs of 32 mg/L. Addition of up to 4% albumin to the test medium did not change MICs and MBCs. Time-kill studies of the reference strains showed reduction rates from 3 log10 colony forming units (CFU)/ml to more than 5 log10 CFU/ml for 200 and 400 mg/L polyhexanide within 5-30 min. Testing of polyhexanide in combination with antibiotics showed indifference with amoxicillin, cefotaxime, imipenem, gentamicin, and ciprofloxacin; no antagonism was found. As no resistance and no antagonism with antibiotics were detected, polyhexanide is regarded as suitable agent for topical eradication of gram-negative bacteria.

  9. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria.

    PubMed

    Hemaiswarya, S; Doble, M

    2009-11-01

    Eugenol, the principal chemical component of clove oil from Eugenia aromatica has been long known for its analgesic, local anesthetic, anti-inflammatory, and antibacterial effects. The interaction of the eugenol with ten different hydrophobic and hydrophilic antibiotics was studied against five different Gram negative bacteria. The MIC of the combination was found to decrease by a factor of 5-1000 with respect to their individual MIC. This synergy is because of the membrane damaging nature of eugenol, where 1mM of its concentration is able to damage nearly 50% of the bacterial membrane. Eugenol was also able to enhance the activities of lysozyme, Triton X-100 and SDS in damaging the bacterial cell membrane. The hydrophilic antibiotics such as vancomycin and beta-lactam antibiotics which have a marginal activity on these gram negative bacteria exhibit an enhanced antibacterial activity when pretreated with eugenol. Reduced usage of antibiotics could be employed as a treatment strategy to slow down the onset of antibiotic resistance as well as decrease its toxicity. Experiments performed with human blood cells indicated that the concentration of eugenol used for the combination studies were below its cytotoxic values. Pharmacodynamic studies of the combinations need to be performed to decide on the effective dosage. PMID:19540744

  10. The complete general secretory pathway in gram-negative bacteria.

    PubMed Central

    Pugsley, A P

    1993-01-01

    The unifying feature of all proteins that are transported out of the cytoplasm of gram-negative bacteria by the general secretory pathway (GSP) is the presence of a long stretch of predominantly hydrophobic amino acids, the signal sequence. The interaction between signal sequence-bearing proteins and the cytoplasmic membrane may be a spontaneous event driven by the electrochemical energy potential across the cytoplasmic membrane, leading to membrane integration. The translocation of large, hydrophilic polypeptide segments to the periplasmic side of this membrane almost always requires at least six different proteins encoded by the sec genes and is dependent on both ATP hydrolysis and the electrochemical energy potential. Signal peptidases process precursors with a single, amino-terminal signal sequence, allowing them to be released into the periplasm, where they may remain or whence they may be inserted into the outer membrane. Selected proteins may also be transported across this membrane for assembly into cell surface appendages or for release into the extracellular medium. Many bacteria secrete a variety of structurally different proteins by a common pathway, referred to here as the main terminal branch of the GSP. This recently discovered branch pathway comprises at least 14 gene products. Other, simpler terminal branches of the GSP are also used by gram-negative bacteria to secrete a more limited range of extracellular proteins. PMID:8096622

  11. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. PMID:26918268

  12. Cytokine profile in severe Gram-positive and Gram-negative abdominal sepsis.

    PubMed

    Surbatovic, Maja; Popovic, Nada; Vojvodic, Danilo; Milosevic, Ivan; Acimovic, Gordana; Stojicic, Milan; Veljovic, Milic; Jevdjic, Jasna; Djordjevic, Dragan; Radakovic, Sonja

    2015-06-16

    Sepsis is a principal cause of death in critical care units worldwide and consumes considerable healthcare resources. The aim of our study was to determine whether the early cytokine profile can discriminate between Gram-positive and Gram-negative bacteraemia (GPB and GNB, respectively) and to assess the prognostic value regarding outcome in critically ill patients with severe abdominal sepsis. The outcome measure was hospital mortality. Blood samples were obtained from 165 adult patients with confirmed severe abdominal sepsis. Levels of the proinflammatory mediators TNF-α, IL-8, IL-12 and IFN-γ and the anti-inflammatory mediators IL-1ra, IL-4, IL-10 and TGF-β1 were determined and correlated with the nature of the bacteria isolated from the blood culture and outcome. The cytokine profile in our study indicated that the TNF-α levels were 2-fold, IL-8 were 3.3-fold, IFN-γ were 13-fold, IL-1ra were 1.05-fold, IL-4 were 1.4-fold and IL-10 were 1.83-fold higher in the GNB group compared with the GPB group. The TNF-α levels were 4.7-fold, IL-8 were 4.6-fold, IL-1ra were 1.5-fold and IL-10 were 3.3-fold higher in the non-survivors compared with the survivors.

  13. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa.

  14. Disinfection of gram-negative and gram-positive bacteria using DynaJets® hydrodynamic cavitating jets.

    PubMed

    Loraine, Gregory; Chahine, Georges; Hsiao, Chao-Tsung; Choi, Jin-Keun; Aley, Patrick

    2012-05-01

    Cavitating jet technologies (DynaJets®) were investigated as a means of disinfection of gram-negative Escherichia coli, Klebsiellapneumoniae, Pseudomonas syringae, and Pseudomonas aeruginosa, and gram-positive Bacillus subtilis. The hydrodynamic cavitating jets were found to be very effective in reducing the concentrations of all of these species. In general, the observed rates of disinfection of gram-negative species were higher than for gram-positive species. However, different gram-negative species also showed significant differences (P. syringae 6-log(10) reduction, P. aeruginosa 2-log(10) reduction) under the same conditions. Disinfection of E. coli repeatedly showed five orders of magnitude reduction in concentration within 45-60-min at low nozzle pressure (2.1 bar). Optimization of nozzle design and operating pressures increased disinfection rates per input energy by several orders of magnitude. The power efficiencies of the hydrodynamic cavitating jets were found to be 10-100 times greater than comparable ultrasonic systems.

  15. Dynamics of Gram-negative bacteria population density in a soil in the course of the succession initiated by chitin and cellulose

    NASA Astrophysics Data System (ADS)

    Konstantin, Ivanov; Lubov, Polyanskaya

    2014-05-01

    The functions of actinomycetes in polymer destruction in soil traditionally considered as the dominant, compare to another groups of bacteria. Gram-positive bacteria also have ecological functions in destruction of soil organic matter. The role of Gram-negative bacteria has been researched in the microbial succession in terms of polymers destruction, which are widely spreads in soils: chitin and cellulose. The method with nalidixic acid as an inhibitor of DNA division of Gram-negative bacteria was modified. By modified method microbial succession of Gram-negative bacteria in the different horizons of a chernozem under aerobic and anaerobic conditions was researched. Chitin and cellulose as the source of nutrients with moistening was used in experiments. The introduction of chitin had no positive effect on the population density of Gram-negative bacteria in a chernozem, but it advanced the date of their appearance in microbial succession: the maximum of Gram-negative bacteria population density was registered on the 3rd- 7th day of the experiment with adding chitin. Compare to the control, which one was without any nutrient adding this dynamics registered much earlier. Consequently, the introduction of chitin as an additional source of nutrition promoted revealing of the Gram-negative bacteria in soil already at the early stages of the succession. In the course of the succession, when the fungal mycelium begins to die off, the actinomycetic mycelium increases in length, i.e., Gram-negative bacteria are replaced at this stage with Gram-positive ones, the leading role among which belongs to actinomycetes. The growth rate of Gram-negative bacteria is higher than that of actinomycetes, so they start chitin utilization at the early stages of the succession, whereas actinomycetes dominate at the late stages. The population density of Gram-negative bacteria was lower under the anaerobic conditions as compared with that in the aerobic ones. The population density of Gram-negative

  16. Dustborne and airborne gram-positive and gram-negative bacteria in high versus low ERMI homes

    EPA Science Inventory

    The study aimed at investigating Gram-positive and Gram-negative bacteria in moldy and non-moldy homes, as defined by the home's Environmental Relative Moldiness Index (ERMI) value. The ERMI values were determined from floor dust samples in 2010 and 2011 and homes were classified...

  17. Polymyxins: a new hope in combating Gram-negative superbugs?

    PubMed

    Velkov, Tony; Roberts, Kade D; Thompson, Philip E; Li, Jian

    2016-06-01

    Polymyxins have emerged as an important last-line of defense against Gram-negative 'superbugs'. Unfortunately, the effective use of polymyxins in the clinic has been hampered by their nephrotoxic side effects. Over the last 10 years various industry and academic groups across the globe have been trying to develop new polymyxins that are safer and more efficacious than the currently approved polymyxin B and colistin. However these drug discovery programs are yet to deliver a new and improved polymyxin drug into the clinic. In this piece we provide an overview of the current state of these polymyxin drug discovery programs from a medicinal chemistry perspective as well as some thoughts on how future drug discovery efforts may ultimately find success.

  18. The genetics of glycosylation in Gram-negative bacteria.

    PubMed

    Power, P M; Jennings, M P

    2003-01-28

    In recent years there has been a dramatic increase in reports of glycosylation of proteins in various Gram-negative systems including Neisseria meningitidis, Neisseria gonorrhoeae, Campylobacter jejuni, Pseudomonas aeruginosa, Escherichia coli, Caulobacter crescentus, Aeromonas caviae and Helicobacter pylori. Although this growing list contains many important pathogens (reviewed by Benz and Schmidt [Mol. Microbiol. 45 (2002) 267-276]) and the glycosylations are found on proteins important in pathogenesis such as pili, adhesins and flagella the precise role(s) of the glycosylation of these proteins remains to be determined. Furthermore, the details of the glycosylation biosynthetic process have not been determined in any of these systems. The definition of the precise role of glycosylation and the mechanism of biosynthesis will be facilitated by a detailed understanding of the genes involved. PMID:12586395

  19. Detection of pathogenic gram negative bacteria using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  20. Antibiotic Susceptibility Testing of Gram-Negative Nonfermentative Bacilli

    PubMed Central

    Ruddell, K. A.; Anselmo, C. R.

    1975-01-01

    A study was undertaken to determine if current methods of antibiotic susceptibility testing could be successfully applied to the gram-negative nonfermentative bacilli. Using clinical isolates and reference strains, experiments were conducted on the inherent reliability of the Bauer-Kirby method, as well as the effect of certain modifications on the method such as elimination of the 2- to 5-h incubation in broth and use of different agar media. Results obtained using these modifications were compared to the results obtained by the standard method. It was shown that the two modifications investigated had a significant effect on the interpretation of zone diameters. It was further shown that the standard Bauer-Kirby method with some exceptions correlates with minimal inhibitory concentrations as determined by broth dilution methods. Results suggest that the Bauer-Kirby method may be a reliable technique for testing the antibiotic susceptibility of the nonfermentative bacilli. PMID:1147576

  1. Kinase activity profiling of gram-negative pneumonia.

    PubMed

    Hoogendijk, Arie J; Diks, Sander H; Peppelenbosch, Maikel P; Van Der Poll, Tom; Wieland, Catharina W

    2011-01-01

    Pneumonia is a severe disease with high morbidity and mortality. A major causative pathogen is the Gram-negative bacterium Klebsiella (K.) pneumoniae. Kinases play an integral role in the transduction of intracellular signaling cascades and regulate a diverse array of biological processes essential to immune cells. The current study explored signal transduction events during murine Gram-negative pneumonia using a systems biology approach. Kinase activity arrays enable the analysis of 1,024 consensus sequences of protein kinase substrates. Using a kinase activity array on whole lung lysates, cellular kinase activities were determined in a mouse model of K. pneumoniae pneumonia. Notable kinase activities also were validated with phospho-specific Western blots. On the basis of the profiling data, mitogen-activated protein kinase (MAPK) signaling via p42 mitogen-activated protein kinase (p42) and p38 mitogen-activated protein kinase (p38) and transforming growth factor β (TGFβ) activity were reduced during infection, whereas v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) activity generally was enhanced. AKT signaling was represented in both metabolic and inflammatory (mitogen-activated protein kinase kinase 2 [MKK], apoptosis signal-regulating kinase/mitogen-activated protein kinase kinase kinase 5 [ASK] and v-raf murine sarcoma viral oncogene homolog B1 [b-RAF]) context. This study reaffirms the importance of classic inflammation pathways, such as MAPK and TGFβ signaling and reveals less known involvement of glycogen synthase kinase 3β (GSK-3β), AKT and SRC signaling cassettes in pneumonia.

  2. Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms.

    PubMed

    Ahmad, Nisar; Mahmood, Fazal; Khalil, Shahid Akbar; Zamir, Roshan; Fazal, Hina; Abbasi, Bilal Haider

    2014-10-01

    Edible mushrooms (EMs) are nutritionally rich source of proteins and essential amino acids. In the present study, the antioxidant activity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial potential in EMs (Pleurotus ostreatus, Morchella esculenta, P. ostreatus (Black), P. ostreatus (Yellow) and Pleurotus sajor-caju) were investigated. The DPPH radical scavenging activity revealed that the significantly higher activity (66.47%) was observed in Morchella esculenta at a maximum concentration. Similarly, the dose-dependent concentrations (200, 400, 600, 800 and 1000 µg) were also used for other four EMs. Pleurotus ostreatus exhibited 36.13% activity, P. ostreatus (Black (B)) exhibited 30.64%, P. ostreatus (Yellow (Y)) exhibited 40.75% and Pleurotus sajor-caju exhibited 47.39% activity at higher concentrations. Furthermore, the antimicrobial potential were investigated for its toxicity against gram-negative bacterial strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Klebsiella pneumonia, Erwinia carotovora and Agrobacterium tumifaciens), gram-positive bacterial strains (Bacillus subtilis, Bacillus atrophaeus and Staphylococcus aureus) and a fungal strain (Candida albicans) in comparison with standard antibiotics. Antimicrobial screening revealed that the ethanol extract of P. ostreatus was active against all microorganism tested except E. coli. Maximum zone of inhibition (13 mm) was observed against fungus and A. tumifaciens. P. sajor-caju showed best activities (12.5 mm) against B. subtilis, B. atrophaeus and K. pneumonia. P. ostreatus (Y) showed best activities against P. aeroginosa (21.83 mm), B. atrophaeus (20 mm) and C. albicans (21 mm). P. ostreatus (B) exhibited best activities against C. albicans (16 mm) and slightly lower activities against all other microbes except S. typhi. M. esculenta possess maximum activities in terms of inhibition zone against all microorganisms tested except S. typhi.

  3. Resistance to antimicrobial peptides in Gram-negative bacteria.

    PubMed

    Gruenheid, Samantha; Le Moual, Hervé

    2012-05-01

    Antimicrobial peptides (AMPs) are present in virtually all organisms and are an ancient and critical component of innate immunity. In mammals, AMPs are present in phagocytic cells, on body surfaces such as skin and mucosa, and in secretions and body fluids such as sweat, saliva, urine, and breast milk, consistent with their role as part of the first line of defense against a wide range of pathogenic microorganisms including bacteria, viruses, and fungi. AMPs are microbicidal and have also been shown to act as immunomodulators with chemoattractant and signaling activities. During the co-evolution of hosts and bacterial pathogens, bacteria have developed the ability to sense and initiate an adaptive response to AMPs to resist their bactericidal activity. Here, we review the various mechanisms used by Gram-negative bacteria to sense and resist AMP-mediated killing. These mechanisms play an important role in bacterial resistance to host-derived AMPs that are encountered during the course of infection. Bacterial resistance to AMPs should also be taken into consideration in the development and use of AMPs as anti-infective agents, for which there is currently a great deal of academic and commercial interest.

  4. Biogenesis of outer membranes in Gram-negative bacteria.

    PubMed

    Tokuda, Hajime

    2009-03-23

    The outer membrane, an essential organelle of Gram-negative bacteria, is composed of four major components: lipopolysaccharide, phospholipids, beta-barrel proteins, and lipoproteins. The mechanisms underlying the transport of these components to outer membranes are currently under extensive examination. Among them, the sorting of lipoproteins to the outer membrane of Escherichia coli has been clarified in detail. The Lol system, composed of five proteins, catalyzes outer membrane sorting of lipoproteins. Various Lpt proteins have recently been identified as factors involved in the transport of lipopolysaccharide to the outer membrane, although the mechanism remains largely unknown. Proteins with alpha-helical membrane spanning segments are found in the inner membrane, whereas amphipathic beta-barrel proteins span the outer membrane. These beta-barrel proteins are inserted into the outer membranes through a central core protein BamA (YaeT) with the help of four outer membrane lipoproteins. In contrast, little is known about how phospholipids are transported to the outer membrane. PMID:19270402

  5. Biogenesis of outer membranes in Gram-negative bacteria.

    PubMed

    Tokuda, Hajime

    2009-03-23

    The outer membrane, an essential organelle of Gram-negative bacteria, is composed of four major components: lipopolysaccharide, phospholipids, beta-barrel proteins, and lipoproteins. The mechanisms underlying the transport of these components to outer membranes are currently under extensive examination. Among them, the sorting of lipoproteins to the outer membrane of Escherichia coli has been clarified in detail. The Lol system, composed of five proteins, catalyzes outer membrane sorting of lipoproteins. Various Lpt proteins have recently been identified as factors involved in the transport of lipopolysaccharide to the outer membrane, although the mechanism remains largely unknown. Proteins with alpha-helical membrane spanning segments are found in the inner membrane, whereas amphipathic beta-barrel proteins span the outer membrane. These beta-barrel proteins are inserted into the outer membranes through a central core protein BamA (YaeT) with the help of four outer membrane lipoproteins. In contrast, little is known about how phospholipids are transported to the outer membrane.

  6. Revisited distribution of nonfermenting Gram-negative bacilli clinical isolates.

    PubMed

    Jacquier, H; Carbonnelle, E; Corvec, S; Illiaquer, M; Le Monnier, A; Bille, E; Zahar, J R; Beretti, J L; Jauréguy, F; Fihman, V; Tankovic, J; Cattoir, V

    2011-12-01

    Nonfermenting Gram-negative bacilli (NF-GNB) are ubiquitous environmental opportunistic bacteria frequently misidentified by conventional phenotypic methods. The aim of this study was to determine the distribution of NF-GNB species by 16 S rRNA gene sequencing (used as reference method) and to compare performances of biochemical tests and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). From nine French hospitals, 188 NF-GNB isolates (except P. aeruginosa and A. baumannii) were prospectively collected from 187 clinical samples between December 2008 and May 2009. By using the genotypic approach, 173 (92%) and 188 (100%) isolates were identified to the species and genus level, respectively. They covered 35 species and 20 genera, with a predominance of Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Pseudomonas putida group bacteria. Of the 173 species-level identified strains, concordant identification to the species-level was obtained for 75.1%, 83% and 88.9% of isolates with API 20 NE strip, the VITEK-2 (ID-GN card) system and MALDI-TOF-MS, respectively. By excluding S. maltophilia isolates accurately identified by the three methods, genus-level identification was much higher for MALDI-TOF-MS (92.9%), compared with API 20 NE and VITEK-2 (76.2% and 80.8%, respectively). In conclusion, MALDI-TOF-MS represents a rapid, inexpensive, and accurate tool for routine identification of NF-GNB in human clinical samples.

  7. Screening for Gram-negative bacteria: Impact of preanalytical parameters.

    PubMed

    Warnke, Philipp; Johanna Pohl, Friederike Pola; Kundt, Guenther; Podbielski, Andreas

    2016-01-01

    Screening recommendations for multidrug-resistant Gram-negative bacteria comprise microbiological analyses from rectal swabs. However, essential specifications of the preanalytic steps of such screenings, i.e. the sampling technique, sampling devices and sampling site, are lacking. For standardized and optimum screening conditions these parameters are indispensable. Here, the optimum parameters were examined irrespective of the antibiotic resistance patterns of the target bacteria in order to establish a general basis for this type of screening. Swabs with rayon, polyurethane-cellular-foam and nylon-flocked tips were tested. Different sampling locations were evaluated, i.e. perianal, intraanal and deep intraanal. Subjects were swabbed and quantities of E. coli, K. pneumoniae, P. aeruginosa and A. baumannii were assessed. Overall prevalences of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii were 94%, 16%, 12%, and 2%, respectively. Bacterial recovery rates were independent from the sampling-timepoint during hospital stay. Polyurethane-cellular-foam or nylon-flocked swabs recovered significantly more bacteria as compared to rayon swabs. Intraanal swabbing resulted in significantly higher bacterial quantities as compared to perianal swabbing. In contrast, for the detection of A. baumannii, perianal swabbing seems more suitable than intraanal swabbing. Gender-related differences in bacterial recovery could be detected from perianal but not from intraanal swabs. PMID:27460776

  8. Screening for Gram-negative bacteria: Impact of preanalytical parameters

    PubMed Central

    Warnke, Philipp; Johanna Pohl, Friederike Pola; Kundt, Guenther; Podbielski, Andreas

    2016-01-01

    Screening recommendations for multidrug-resistant Gram-negative bacteria comprise microbiological analyses from rectal swabs. However, essential specifications of the preanalytic steps of such screenings, i.e. the sampling technique, sampling devices and sampling site, are lacking. For standardized and optimum screening conditions these parameters are indispensable. Here, the optimum parameters were examined irrespective of the antibiotic resistance patterns of the target bacteria in order to establish a general basis for this type of screening. Swabs with rayon, polyurethane-cellular-foam and nylon-flocked tips were tested. Different sampling locations were evaluated, i.e. perianal, intraanal and deep intraanal. Subjects were swabbed and quantities of E. coli, K. pneumoniae, P. aeruginosa and A. baumannii were assessed. Overall prevalences of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii were 94%, 16%, 12%, and 2%, respectively. Bacterial recovery rates were independent from the sampling-timepoint during hospital stay. Polyurethane-cellular-foam or nylon-flocked swabs recovered significantly more bacteria as compared to rayon swabs. Intraanal swabbing resulted in significantly higher bacterial quantities as compared to perianal swabbing. In contrast, for the detection of A. baumannii, perianal swabbing seems more suitable than intraanal swabbing. Gender-related differences in bacterial recovery could be detected from perianal but not from intraanal swabs. PMID:27460776

  9. MetaLocGramN: A meta-predictor of protein subcellular localization for Gram-negative bacteria.

    PubMed

    Magnus, Marcin; Pawlowski, Marcin; Bujnicki, Janusz M

    2012-12-01

    Subcellular localization is a key functional characteristic of proteins. It is determined by signals encoded in the protein sequence. The experimental determination of subcellular localization is laborious. Thus, a number of computational methods have been developed to predict the protein location from sequence. However predictions made by different methods often disagree with each other and it is not always clear which algorithm performs best for the given cellular compartment. We benchmarked primary subcellular localization predictors for proteins from Gram-negative bacteria, PSORTb3, PSLpred, CELLO, and SOSUI-GramN, on a common dataset that included 1056 proteins. We found that PSORTb3 performs best on the average, but is outperformed by other methods in predictions of extracellular proteins. This motivated us to develop a meta-predictor, which combines the primary methods by using the logistic regression models, to take advantage of their combined strengths, and to eliminate their individual weaknesses. MetaLocGramN runs the primary methods, and based on their output classifies protein sequences into one of five major localizations of the Gram-negative bacterial cell: cytoplasm, plasma membrane, periplasm, outer membrane, and extracellular space. MetaLocGramN achieves the average Matthews correlation coefficient of 0.806, i.e. 12% better than the best individual primary method. MetaLocGramN is a meta-predictor specialized in predicting subcellular localization for proteins from Gram-negative bacteria. According to our benchmark, it performs better than all other tools run independently. MetaLocGramN is a web and SOAP server available for free use by all academic users at the URL http://iimcb.genesilico.pl/MetaLocGramN. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction. PMID:22705560

  10. In vitro assessment of Ag2O nanoparticles toxicity against Gram-positive and Gram-negative bacteria.

    PubMed

    Negi, Harshita; Rathinavelu Saravanan, Palaniyandi; Agarwal, Tithi; Ghulam Haider Zaidi, Mohd; Goel, Reeta

    2013-01-01

    In view of antibiotic resistance among pathogens, the present study is to address the toxicity of Ag2O nanoparticles against the Gram-positive and Gram-negative bacteria through in vitro assays. The preliminary screening by agar diffusion assay confirms the antibacterial activity of Ag2O nanoparticles against all the test bacteria. Comparative antibacterial activity of Ag2O nanoparticles and respective antibiotics reveals their broad range of activity and lower inhibitory dose against the used bacterial strains. Further, they can inhibit E. coli with an effective dose of 0.036 mg/ml within 1 h of exposure time as determined by luciferin based ATP assay. Moreover, the Ag2O nanoparticles exhibit higher antibacterial efficacy against Gram-negative bacteria than Gram-positive bacteria, as revealed by their MIC & MBC values. Therefore, Ag2O nanoparticles pave the way for a new generation of antibacterial agents against the emerging multidrug resistant pathogens.

  11. [Estimation of activity of pharmakopeal disinfectants and antiseptics against Gram-negative and Gram-positive bacteria isolated from clinical specimens, drugs and environment].

    PubMed

    Grzybowska, Wanda; Młynarczyk, Grazyna; Młynarczyk, Andrzej; Bocian, Ewa; Luczak, Mirosław; Tyski, Stefan

    2007-01-01

    The MIC of nine different disinfectants and antiseptics were determined for the Gram-negative and Gram-positive bacteria. Strains originated from clinical specimens, drugs and environment. A sensitivity was determined against chlorhexidinum digluconate (Gram-negative: 0,625-80 mg/L, Gram-positive: 0,3-10 mg/L), benzalconium chloride (Gram-negative: 2,5-1280 mg/L, Gram-positive: 1,25-20 mg/L), salicilic acid (Gram-negative and Gram-positive: 400-1600 mg/L), benzoic acid (Gram-negative: 800-1600 mg/L, Gram-positive: 400-1 600 mg/L), boric acid (Gram-negative: 800-12 800 mg/L, Gram-positive: 1 600-6400 mg/L), chloramine B (Gram-negative: 1600-6400 mg/L, Gram-positive:800- 6400 mg/L), jodine (Gram-negative: 200-1600 mg/L, Gram-positive: 200-1600 mg/L), etacridine lactate (Gram-negative: 40 do > 20480 mg/L, Gram-positive: 40-1280 mg/L) and resorcine (Gram-negative: 1600-6400 mg/L, Gram-positive: 800-6400 mg/L). Diversified values of MIC for different strains were obtained, especially in the case of benzalconium chloride, etacridine lactate, chlorhexidinum digluconate, boric acid and iodine. Strains isolated from environment were usually more susceptible to examined compounds than clinical strains. The biggest diversification of sensitivity was observed among strains originated from drugs where besides sensitive appeared strains characterizing by very high MIC values of some substances, eg. boric acid.

  12. Multidrug-resistant Gram-negative bacteria in solid organ transplant recipients with bacteremias.

    PubMed

    Wan, Q Q; Ye, Q F; Yuan, H

    2015-03-01

    Bloodstream infections (BSIs) remain as life-threatening complications and are associated with significant morbidity and mortality among solid organ transplant (SOT) recipients. Multidrug-resistant (MDR) Gram-negative bacteria can cause serious bacteremias in these recipients. Reviews have aimed to investigate MDR Gram-negative bacteremias; however, they were lacking in SOT recipients in the past. To better understand the characteristics of bacteremias due to MDR Gram-negative bacteria, optimize preventive and therapeutic strategies, and improve the outcomes of SOT recipients, this review summarize the epidemiology, clinical and laboratory characteristics, and explores the mechanisms, prevention, and treatment of MDR Gram-negative bacteria.

  13. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  14. Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia

    PubMed Central

    Ratzinger, Franz; Dedeyan, Michel; Rammerstorfer, Matthias; Perkmann, Thomas; Burgmann, Heinz; Makristathis, Athanasios; Dorffner, Georg; Loetsch, Felix; Blacky, Alexander; Ramharter, Michael

    2015-01-01

    Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders. PMID:26522966

  15. Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia.

    PubMed

    Ratzinger, Franz; Dedeyan, Michel; Rammerstorfer, Matthias; Perkmann, Thomas; Burgmann, Heinz; Makristathis, Athanasios; Dorffner, Georg; Loetsch, Felix; Blacky, Alexander; Ramharter, Michael

    2015-11-02

    Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders.

  16. Detection of and discrimination between gram-positive and gram-negative bacteria in intraocular samples by using nested PCR.

    PubMed

    Carroll, N M; Jaeger, E E; Choudhury, S; Dunlop, A A; Matheson, M M; Adamson, P; Okhravi, N; Lightman, S

    2000-05-01

    A nested PCR protocol has been developed for the detection of and discrimination between 14 species of gram-positive and -negative bacteria in samples of ocular fluids. First-round PCR with pan-bacterial oligonucleotide primers, based on conserved sequences of the 16S ribosomal gene, was followed by a gram-negative-organism-specific PCR, which resulted in a single 985-bp amplification product, and a multiplex PCR which resulted in two PCR products: a 1,025 bp amplicon (all bacteria) and a 355 bp amplicon (gram-positive bacteria only). All products were detected by gel electrophoresis. The sensitivity of the assay was between 10 fg and 1 pg of bacterial DNA, depending on the species tested, equivalent to between 24 and 4 live bacteria spiked in water. The identification was complete in 3.5 h. The molecular techniques were subsequently applied to four samples of intraocular fluid, (three vitreous and one aqueous) from three patients with clinical signs of bacterial endophthalmitis (test samples) and two samples of vitreous from a patient with chronic intraocular inflammation (control samples). In all culture-positive samples (two of three vitreous and one of one aqueous), a complete concordance was observed between molecular methods and culture results. PCR correctly identified the gram stain classification of the organisms. The bacterial etiology was also identified in a culture-negative patient with clinical history and signs highly suggestive of bacterial endophthalmitis. Furthermore, control samples from a patient with chronic intraocular inflammation remained PCR negative. In summary, this protocol has demonstrated potential as a rapid diagnostic test in confirming the diagnosis of infection and also determining the Gram status of bacteria with high specificity and sensitivity.

  17. Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat.

    PubMed Central

    Nold, S C; Kopczynski, E D; Ward, D M

    1996-01-01

    The diversity of aerobic chemoorganotrophic bacteria inhabiting the Octopus Spring cyanobacterial mat community (Yellowstone National Park) was examined by using serial-dilution enrichment culture and a variety of enrichment conditions to cultivate the numerically significant microbial populations. The most abundant bacterial populations cultivated from dilutions to extinction were obtained from enrichment flasks which contained 9.0 x 10(2) primary producer (Synechococcus spp.) cells in the inoculum. Two isolates exhibited 16S rRNA nucleotide sequences typical of beta-proteobacteria. One of these isolates contained a 16S rRNA sequence identical to a sequence type previously observed in the mat by molecular retrieval techniques. Both are distantly related to a new sequence directly retrieved from the mat and contributed by a beta-proteobacterial community member. Phenotypically diverse gram-positive isolates genetically similar to Bacillus flavothermus were obtained from a variety of dilutions and enrichment types. These isolates exhibited identical 16S rRNA nucleotide sequences through a variable region of the molecule. Of the three unique sequences observed, only one had been previously retrieved from the mat, illustrating both the inability of the cultivation methods to describe the composition of a microbial community and the limitations of the ability of molecular retrieval techniques to describe populations which may be less abundant in microbial communities. PMID:8899976

  18. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Daniels, Dwayne; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50  μ L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  19. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Daniels, Dwayne; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50  μ L leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  20. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  1. Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria.

    PubMed

    Grau-Campistany, Ariadna; Manresa, Ángeles; Pujol, Montserrat; Rabanal, Francesc; Cajal, Yolanda

    2016-02-01

    Resistance to all known antibiotics is a growing concern worldwide, and has renewed the interest in antimicrobial peptides, a structurally diverse class of amphipathic molecules that essentially act on the bacterial membrane. Propelled by the antimicrobial potential of this compound class, we have designed three new lipopeptides derived from polymyxin B, sp-34, sp-96 and sp-100, with potent antimicrobial activity against both Gram positive and Gram negative bacteria. The three peptides bind with high affinity to lipopolysaccharide as demonstrated by monolayer penetration and dansyl-displacement. The interaction with the cytoplasmic membrane has been elucidated by biophysical experiments with model membranes of POPG or POPE/POPG (6:4), mimicking the Gram positive and Gram negative bacterial membrane. Trp-based fluorescence experiments including steady-state, quenching, anisotropy and FRET, reveal selectivity for anionic phospholipids and deep insertion into the membrane. All three lipopeptides induce membrane fusion and leakage from anionic vesicles, a process that is favored by the presence of POPE. The molecules bind to zwitterionic POPC vesicles, a model of the eukaryotic membrane, but in a different way, with lower affinity, less penetration into the bilayer and no fusion or permeabilization of the membrane. Results in model membranes are consistent with flow cytometry experiments in Escherichia coli and Staphylococcus aureus using a membrane potential sensitive dye (bis-oxonol) and a nucleic acid dye (propidium iodide), suggesting that the mechanism of action is based on membrane binding and collapse of membrane integrity by depolarization and permeabilization.

  2. Monensin-based medium for determination of total gram-negative bacteria and Escherichia coli.

    PubMed

    Petzel, J P; Hartman, P A

    1985-04-01

    Plate count-monensin-KCl (PMK) agar, for enumeration of both gram-negative bacteria and Escherichia coli, is composed of (per liter) 23.5 g of plate count agar, 35 mg of monensin, 7.5 g of KCl, and 75 mg of 4-methylumbelliferyl-beta-D-glucuronide (MUG). Monensin was added after the medium was sterilized. The diluent of choice for use with PMK agar was 0.1% peptone (pH 6.8); other diluents were unsatisfactory. Gram-negative bacteria (selected for by the ionophore monensin) can be used to judge the general quality or sanitary history of a commodity. E. coli (differentiated by its ability to hydrolyze the fluorogenic compound MUG) can be used to assess the safety of a commodity in regard to the possible presence of enteric pathogens. Pure-culture studies demonstrated that monensin completely inhibited gram-positive bacteria and had little or no effect on gram-negative bacteria. When gram-negative bacteria were injured by one of several methods, a few species (including E. coli) became sensitive to monensin; this sensitivity was completely reversed in most instances by the inclusion of KCl in the medium. When PMK agar was tested with food and environmental samples, 96% of 535 isolates were gram negative; approximately 68% of colonies from nonselective medium were gram negative. PMK agar was more selective than two other media against gram-positive bacteria and was less inhibitory for gram-negative bacteria. However, with water samples, KCl had an inhibitory effect on gram-negative bacteria, and it should therefore be deleted from monensin-containing medium for water analysis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3890742

  3. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications

    PubMed Central

    Zhang, Weiwei; Li, Chenghua

    2016-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture. PMID:26779175

  4. Resistance trends in gram-negative bacteria: surveillance results from two Mexican hospitals, 2005–2010

    PubMed Central

    2012-01-01

    Background Hospital-acquired infections caused by multiresistant gram-negative bacteria are difficult to treat and cause high rates of morbidity and mortality. The analysis of antimicrobial resistance trends of gram-negative pathogens isolated from hospital-acquired infections is important for the development of antimicrobial stewardship programs. The information obtained from antimicrobial resistant programs from two hospitals from Mexico will be helpful in the selection of empiric therapy for hospital-acquired gram-negative infections. Findings Two thousand one hundred thirty two gram-negative bacteria collected between January 2005 and December 2010 from hospital-acquired infections occurring in two teaching hospitals in Mexico were evaluated. Escherichia coli was the most frequently isolated gram-negative bacteria, with >50% of strains resistant to ciprofloxacin and levofloxacin. Klebsiella spp. showed resistance rates similar to Escherichia coli for ceftazidime (33.1% vs 33.2%), but exhibited lower rates for levofloxacin (18.2% vs 56%). Of the samples collected for the third most common gram-negative bacteria, Pseudomonas aeruginosa, >12.8% were resistant to the carbapenems, imipenem and meropenem. The highest overall resistance was found in Acinetobacter spp. Enterobacter spp. showed high susceptibility to carbapenems. Conclusions E. coli was the most common nosocomial gram-negative bacilli isolated in this study and was found to have the second-highest resistance to fluoroquinolones (>57.9%, after Acinetobacter spp. 81.2%). This finding represents a disturbing development in a common nosocomial and community pathogen. PMID:22676813

  5. Teaching 'old' polymyxins new tricks: new-generation lipopeptides targeting gram-negative 'superbugs'.

    PubMed

    Velkov, Tony; Roberts, Kade D; Nation, Roger L; Wang, Jiping; Thompson, Philip E; Li, Jian

    2014-05-16

    The antimicrobial lipopeptides polymyxin B and E (colistin) are being used as a 'last-line' therapy for infections caused by multidrug-resistant Gram-negative pathogens. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections caused by the Gram-negative 'superbugs'. This report details the structure-activity relationships (SAR) based design, in toto synthesis, and preclinical evaluation of a series of novel polymyxin lipopeptides with better antibacterial activity against polymyxin-resistant Gram-negative bacteria.

  6. Permeability barrier of Gram-negative cell envelopes and approaches to bypass it

    SciTech Connect

    Zgurskaya, Helen I.; López, Cesar A.; Gnanakaran, Sandrasegaram

    2015-09-18

    Gram-negative bacteria are intrinsically resistant to many antibiotics. Species that have acquired multidrug resistance and cause infections that are effectively untreatable present a serious threat to public health. The problem is broadly recognized and tackled at both the fundamental and applied levels. This article summarizes current advances in understanding the molecular bases of the low permeability barrier of Gram-negative pathogens, which is the major obstacle in discovery and development of antibiotics effective against such pathogens. Gaps in knowledge and specific strategies to break this barrier and to achieve potent activities against difficult Gram-negative bacteria are also discussed.

  7. A bivalent cationic dye enabling selective photo-inactivation against Gram-negative bacteria.

    PubMed

    Li, Ke; Zhang, Yang-Yang; Jiang, Guo-Yu; Hou, Yuan-Jun; Zhang, Bao-Wen; Zhou, Qian-Xiong; Wang, Xue-Song

    2015-05-01

    A piperazine-modified Crystal Violet was found to be able to selectively inactivate Gram-negative bacteria upon visible light irradiation but left Gram-positive bacteria less damaged, which can serve as a blueprint for the development of novel narrow-spectrum agents to replenish the current arsenal of photodynamic antimicrobial chemotherapy (PACT).

  8. Rapid detection of gram-negative bacterial peritonitis by the Limulus amoebocyte lysate assay.

    PubMed Central

    Smalley, D L; Baddour, L M; Kraus, A P

    1986-01-01

    The chromogenic Limulus amoebocyte lysate test effectively detected 66 (100%) culture-proven gram-negative peritonitis cases among 185 continuous ambulatory peritoneal dialysis patients with clinical evidence of infectious peritonitis. PMID:3771776

  9. Antibacterial Activity of Stenotrophomonas maltophilia Endolysin P28 against both Gram-positive and Gram-negative Bacteria.

    PubMed

    Dong, Hongling; Zhu, Chaoyang; Chen, Jingyi; Ye, Xing; Huang, Yu-Ping

    2015-01-01

    Maltocin P28 is a phage-tail like bacteriocin produced by Stenotrophomonas maltophilia P28. The ORF8 of maltocin P28 gene cluster is predicted to encode an endolysin and we name it endolysin P28. Sequence analysis revealed that it contains the lysozyme_like superfamily conserved domain. Endolysin P28 has the four consensus motifs as that of Escherichia coli phage lambda gpR. In this study, endolysin P28 was expressed in E. coli BL21 (DE3) and purified with a C-terminal oligo-histidine tag. The antibacterial activity of endolysin P28 increased as the temperature rose from 25 to 45°C. Thermostability assays showed that endolysin P28 was stable up to 50°C, while its residual activity was reduced by 55% after treatment at 70°C for 30 min. Acidity and high salinity could enhance its antibacterial activity. Endolysin P28 exhibited a broad antibacterial activity against 14 out of 16 tested Gram-positive and Gram-negative bacteria besides S. maltophilia. Moreover, it could effectively lyse intact Gram-negative bacteria in the absence of ethylenediaminetetraacetic acid as an outer membrane permeabilizer. Therefore, the characteristics of endolysin P28 make it a potential therapeutic agent against multi-drug-resistant pathogens. PMID:26635765

  10. Incidence of Carbapenem-Resistant Gram Negatives in Italian Transplant Recipients: A Nationwide Surveillance Study

    PubMed Central

    Lanini, Simone; Costa, Alessandro Nanni; Puro, Vincenzo; Procaccio, Francesco; Grossi, Paolo Antonio; Vespasiano, Francesca; Ricci, Andrea; Vesconi, Sergio; Ison, Michael G.; Carmeli, Yehuda; Ippolito, Giuseppe

    2015-01-01

    Background Bacterial infections remain a challenge to solid organ transplantation. Due to the alarming spread of carbapenem-resistant gram negative bacteria, these organisms have been frequently recognized as cause of severe infections in solid organ transplant recipients. Methods and Findings Between 15 May and 30 September 2012 we enrolled 887 solid organ transplant recipients in Italy with the aim to describe the epidemiology of gram negative bacteria spreading, to explore potential risk factors and to assess the effect of early isolation of gram negative bacteria on recipients’ mortality during the first 90 days after transplantation. During the study period 185 clinical isolates of gram negative bacteria were reported, for an incidence of 2.39 per 1000 recipient-days. Positive cultures for gram negative bacteria occurred early after transplantation (median time 26 days; incidence rate 4.33, 1.67 and 1.14 per 1,000 recipient-days in the first, second and third month after SOT, respectively). Forty-nine of these clinical isolates were due to carbapenem-resistant gram negative bacteria (26.5%; incidence 0.63 per 1000 recipient-days). Carbapenems resistance was particularly frequent among Klebsiella spp. isolates (49.1%). Recipients with longer hospital stay and those who received either heart or lung graft were at the highest risk of testing positive for any gram negative bacteria. Moreover recipients with longer hospital stay, lung recipients and those admitted to hospital for more than 48h before transplantation had the highest probability to have culture(s) positive for carbapenem-resistant gram negative bacteria. Forty-four organ recipients died (0.57 per 1000 recipient-days) during the study period. Recipients with at least one positive culture for carbapenem-resistant gram negative bacteria had a 10.23-fold higher mortality rate than those who did not. Conclusion The isolation of gram-negative bacteria is most frequent among recipient with hospital stays

  11. Lysophosphatidylcholine reduces the organ injury and dysfunction in rodent models of Gram-negative and Gram-positive shock

    PubMed Central

    Murch, Oliver; Collin, Marika; Sepodes, Bruno; Foster, Simon J; Mota-Filipe, Helder; Thiemermann, Christoph

    2006-01-01

    Lysophosphatidylcholine (LPC) modulates the inflammatory response and reduces mortality in animal models of sepsis. Here, we investigate the effects of LPC from synthetic (sLPC) and natural, soy bean derived LPC, (nLPC) sources on the organ injury/dysfunction caused by systemic administration of lipopolysaccharide (LPS) or peptidoglycan (PepG) and lipoteichoic acid (LTA). Rats were subjected to (i) endotoxaemia (LPS 6 mg kg–1 i.v.) and treated with sLPC (1–100 mg kg−1), (ii) endotoxaemia and treated with nLPC (10 mg kg−1) or (iii) Gram-positive shock (PepG 10 mg kg–1 and LTA 3 mg kg–1 i.v.) and treated with sLPC (10 mg kg−1). Endotoxaemia or Gram-positive shock for 6 h resulted in increases in serum makers of renal dysfunction and liver, pancreatic and neuromuscular injury. Administration of sLPC, at 1 or 2 h after LPS, dose dependently (1–10 mg kg−1) reduced the organ injury/dysfunction. High doses of sLPC (30 and 100 mg kg−1) were shown to be detrimental in endotoxaemia. sLPC also afforded protection against the organ injury/dysfunction caused by Gram-positive shock. nLPC was found to be protective in endotoxaemic animals. The beneficial effects of sLPC were associated with an attenuation in circulating levels of interleukin-1β (IL-1β). In conclusion, LPC dose and time dependently reduces the organ injury and circulating IL-1β levels caused by Gram-negative or Gram-positive shock in the rat. Thus, we speculate that appropriate doses of LPC may be useful in reducing the degree of organ injury and dysfunction associated with shock of various aetiologies. PMID:16751791

  12. Arginine Patch Predicts the RNA Annealing Activity of Hfq from Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Zheng, Amy; Panja, Subrata; Woodson, Sarah A

    2016-06-01

    The Sm-protein Hfq facilitates interactions between small non-coding RNA (sRNA) and target mRNAs. In enteric Gram-negative bacteria, Hfq is required for sRNA regulation, and hfq deletion results in stress intolerance and reduced virulence. By contrast, the role of Hfq in Gram-positive is less established and varies among species. The RNA binding and RNA annealing activity of Hfq from Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus subtilis, and Staphylococcus aureus were compared using minimal RNAs and fluorescence spectroscopy. The results show that RNA annealing activity increases with the number of arginines in a semi-conserved patch on the rim of the Hfq hexamer and correlates with the previously reported requirement for Hfq in sRNA regulation. Thus, the amino acid sequence of the arginine patch can predict the chaperone function of Hfq in sRNA regulation in different organisms. PMID:27049793

  13. Highly active modulators of indole signaling alter pathogenic behaviors in Gram-negative and Gram-positive bacteria.

    PubMed

    Minvielle, Marine J; Eguren, Kristen; Melander, Christian

    2013-12-16

    Indole is a universal signal that regulates various bacterial behaviors, such as biofilm formation and antibiotic resistance. To generate mechanistic probes of indole signaling and control indole-mediated pathogenic phenotypes in both Gram-positive and Gram-negative bacteria, we have investigated the use of desformylflustrabromine (dFBr) derivatives to generate highly active indole mimetics. We have developed non-microbicidal dFBr derivatives that are 27-2000 times more active than indole in modulating biofilm formation, motility, acid resistance, and antibiotic resistance. The activity of these analogues parallels indole, because they are dependent on temperature, the enzyme tryptophanase TnaA, and the transcriptional regulator SdiA. This investigation demonstrates that molecules based on the dFBr scaffold can alter pathogenic behaviors by mimicking indole-signaling pathways.

  14. Arginine Patch Predicts the RNA Annealing Activity of Hfq from Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Zheng, Amy; Panja, Subrata; Woodson, Sarah A

    2016-06-01

    The Sm-protein Hfq facilitates interactions between small non-coding RNA (sRNA) and target mRNAs. In enteric Gram-negative bacteria, Hfq is required for sRNA regulation, and hfq deletion results in stress intolerance and reduced virulence. By contrast, the role of Hfq in Gram-positive is less established and varies among species. The RNA binding and RNA annealing activity of Hfq from Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus subtilis, and Staphylococcus aureus were compared using minimal RNAs and fluorescence spectroscopy. The results show that RNA annealing activity increases with the number of arginines in a semi-conserved patch on the rim of the Hfq hexamer and correlates with the previously reported requirement for Hfq in sRNA regulation. Thus, the amino acid sequence of the arginine patch can predict the chaperone function of Hfq in sRNA regulation in different organisms.

  15. Nanoemulsion Therapy for Burn Wounds Is Effective as a Topical Antimicrobial Against Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Dolgachev, Vladislav A; Ciotti, Susan M; Eisma, Rone; Gracon, Stephen; Wilkinson, J Erby; Baker, James R; Hemmila, Mark R

    2016-01-01

    The aim of this study is to investigate the antimicrobial efficacy of two different nanoemulsion (NE) formulations against Gram-positive and Gram-negative bacteria in an in vivo rodent scald burn model. Male Sprague-Dawley rats were anesthetized and received a partial-thickness scald burn. Eight hours after burn injury, the wound was inoculated with 1 × 10(8) colony-forming units of Pseudomonas aeruginosa or Staphylococcus aureus. Treatment groups consisted of two different NE formulations (NB-201 and NB-402), NE vehicle, or saline. Topical application of the treatment was performed at 16 and 24 hours after burn injury. Animals were killed 32 hours after burn injury, and skin samples were obtained for quantitative wound culture and determination of dermal inflammation markers. In a separate set of experiments, burn wound progression was measured histologically after 72 hours of treatment. Both NE formulations (NB-201 and NB-402) significantly reduced burn wound infections with either P. aeruginosa or S. aureus and decreased median bacterial counts at least three logs when compared with animals with saline applications (p < .0001). NB-201 and NB-402 also decreased dermal neutrophil recruitment and sequestration into the wound as measured by myeloperoxidase (MPO) assay and histopathology (p < .05). In addition, there was a decrease in the proinflammatory dermal cytokines (interleukin 1-beta [IL-1β], IL-6, and tumor necrosis factor alpha [TNF-α]) and the neutrophil chemoattractants CXCL1 and CXCL2. Using histologic examination, it was found that both NB-201 and NB-402 appeared to suppress burn wound progression 72 hours after injury. Topically applied NB-201 and NB-402 are effective in decreasing Gram-positive and Gram-negative bacteria growth in burn wounds, reducing inflammation, and abrogating burn wound progression.

  16. Predominance of Gram-negative bacilli among patients with catheter-related bloodstream infections.

    PubMed

    Braun, E; Hussein, K; Geffen, Y; Rabino, G; Bar-Lavie, Y; Paul, M

    2014-10-01

    We evaluated changes in the epidemiology of catheter-related bloodstream infections (CRBSIs) between 1996 and 2012 in a tertiary care centre in Israel. The cohort included 1754 episodes of CRBSI. The incidence of CRBSIs decreased throughout the study period, whereas 30-day mortality following bacteraemia increased. There was a linear shift toward predominance of Gram-negative bacilli throughout the study period (p for trend<0.001). In 1996, 68% (68/100) of CRBSIs were caused by Gram-positive cocci, whereas in 2012 77.8% (28/26) were caused by Gram-negative bacilli. The shift towards Gram-negative CRBSIs and the associated mortality mandates that empirical treatment for CRBSIs be directed by local epidemiology.

  17. Bactericidal Activity and Mechanism of Photoirradiated Polyphenols against Gram-Positive and -Negative Bacteria.

    PubMed

    Nakamura, Keisuke; Ishiyama, Kirika; Sheng, Hong; Ikai, Hiroyo; Kanno, Taro; Niwano, Yoshimi

    2015-09-01

    The bactericidal effect of various types of photoirradiated polyphenols against Gram-positive and -negative bacteria was evaluated in relation to the mode of action. Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus, and Streptococcus mutans) and Gram-negative bacteria (Aggregatibacter actinomycetemcomitans, Escherichia coli, and Pseudomonas aeruginosa) suspended in a 1 mg/mL polyphenol aqueous solution (caffeic acid, gallic acid, chlorogenic acid, epigallocatechin, epigallocatechin gallate, and proanthocyanidin) were exposed to LED light (wavelength, 400 nm; irradiance, 260 mW/cm(2)) for 5 or 10 min. Caffeic acid and chlorogenic acid exerted the highest bactericidal activity followed by gallic acid and proanthocyanidin against both Gram-positive and -negative bacteria. It was also demonstrated that the disinfection treatment induced oxidative damage of bacterial DNA, which suggests that polyphenols are incorporated into bacterial cells. The present study suggests that blue light irradiation of polyphenols could be a novel disinfection treatment.

  18. Recurrent Gram-Negative Bloodstream Infection: A 10-Year Population-Based Cohort Study

    PubMed Central

    Al-Hasan, Majdi N.; Eckel-Passow, Jeanette E.; Baddour, Larry M.

    2010-01-01

    Background Recurrent gram-negative bloodstream infection (BSI) has not been evaluated in a population-based setting; therefore, we performed a population-based retrospective cohort study to examine the incidence, recurrence, and mortality rates of gram-negative BSI. Methods We identified 944 episodes of gram-negative BSI, including 98 recurrent episodes, among Olmsted County, Minnesota, residents from 1/1/1998 to 12/31/2007. Kaplan-Meier method was used to estimate the cumulative incidence rate of recurrence and 28-day all-cause mortality rate of gram-negative BSI. Cox proportional hazard regression was used to determine risk factors for recurrence. Results The overall age- and gender-adjusted incidence rate of gram-negative BSI per 100,000 person-years was 84.5 (95% confidence interval [CI]: 79.1–90.0), including 75.7 (95% CI: 70.6–80.8) for first episodes and 8.8 (95% CI: 7.1–10.6) for recurrent episodes. Among 846 patients with first episodes of gram-negative BSI, the cumulative incidence rates of recurrence after 1, 5, and 10 years of the initial episode were 5.6%, 9.2%, and 14.6%, respectively, with death treated as a competing risk. Patients with Klebsiella species were more likely than those with Escherichia coli BSI to develop recurrent gram-negative BSI (hazard ratio: 2.33 [95% CI: 1.34–3.92], p=0.003). The 28-day all-cause mortality rates following the initial and second episodes of gram-negative BSI were 10.0% (95% CI: 8.0–12.0) and 11.3% (95% CI: 4.4–18.2), respectively. Conclusions Even though recurrent gram-negative BSI was relatively uncommon in the general population, up to 15% of patients with gram-negative BSI developed a recurrent episode within 10 years of the initial episode. PMID:20378069

  19. Gram staining for the treatment of peritonsillar abscess.

    PubMed

    Takenaka, Yukinori; Takeda, Kazuya; Yoshii, Tadashi; Hashimoto, Michiko; Inohara, Hidenori

    2012-01-01

    Objective. To examine whether Gram staining can influence the choice of antibiotic for the treatment of peritonsillar abscess. Methods. Between 2005 and 2009, a total of 57 cases of peritonsillar abscess were analyzed with regard to cultured bacteria and Gram staining. Results. Only aerobes were cultured in 16% of cases, and only anaerobes were cultured in 51% of cases. Mixed growth of aerobes and anaerobes was observed in 21% of cases. The cultured bacteria were mainly aerobic Streptococcus, anaerobic Gram-positive cocci, and anaerobic Gram-negative rods. Phagocytosis of bacteria on Gram staining was observed in 9 cases. The bacteria cultured from these cases were aerobic Streptococcus, anaerobic Gram-positive cocci, and anaerobic Gram-negative rods. The sensitivity of Gram staining for the Gram-positive cocci and Gram-negative rods was 90% and 64%, respectively. The specificity of Gram staining for the Gram-positive cocci and Gram-negative rods was 62% and 76%, respectively. Most of the Gram-positive cocci were sensitive to penicillin, but some of anaerobic Gram-negative rods were resistant to penicillin. Conclusion. When Gram staining shows only Gram-positive cocci, penicillin is the treatment of choice. In other cases, antibiotics effective for the penicillin-resistant organisms should be used.

  20. Increase in Antibiotic-Resistant Gram-Negative Bacterial Infections in Febrile Neutropenic Children

    PubMed Central

    2016-01-01

    Background The incidence of bacteremia caused by Gram-negative bacteria has increased recently in febrile neutropenic patients with the increase of antibiotic-resistant Gram-negative bacterial infections. This study aimed to identify the distribution of causative bacteria and the proportion of antibiotic-resistant bacteria in bacteremia diagnosed in febrile neutropenic children. Materials and Methods The medical records of febrile neutropenic children diagnosed with bacteremia between 2010 and 2014 were retrospectively reviewed. The causative bacteria and proportion of antibiotic-resistant bacteria were investigated and compared yearly during the study period. The clinical impact of antibiotic-resistant bacterial infections was also determined. Results A total of 336 bacteremia episodes were identified. During the entire study period, 181 (53.9%) and 155 (46.1%) episodes were caused by Gram-negative and Gram-positive bacteria, respectively. Viridans streptococci (25.9%), Klebsiella spp. (16.7%), and Escherichia coli (16.4%) were the most frequent causative bacteria. The overall distribution of causative bacteria was not significantly different annually. Antibiotic-resistant bacteria were identified in 85 (25.3%) episodes, and the proportion of antibiotic-resistant bacteria was not significantly different annually. Extended-spectrum β-lactamase-producing E. coli and Klebsiella spp. were most common among antibiotic-resistant Gram-negative bacteria, and they accounted for 30.6% (n = 34) of the identified E. coli and K. pneumoniae. Methicillin-resistant coagulase-negative staphylococci were most common among antibiotic-resistant Gram-positive bacteria, and it accounted for 88.5% (n = 23) of the identified coagulase-negative staphylococci. Antibiotic-resistant bacterial infections, especially antibiotic-resistant Gram-negative bacterial infections, caused significantly higher mortality due to bacteremia compared with non-antibiotic-resistant bacterial infections (P <0

  1. Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov.

    PubMed

    Feng, Guang-Da; Yang, Song-Zhen; Wang, Yong-Hong; Zhang, Xiu-Xiu; Zhao, Guo-Zhen; Deng, Ming-Rong; Zhu, Hong-Hui

    2014-05-01

    A Gram-stain-negative bacterial strain, designated 9NM-8T, was isolated from an abandoned lead-zinc ore in Mei county, Meizhou, Guangdong province, PR China. The isolate was orange-pigmented, aerobic, oxidase- and catalase-positive, motile with lophotrichous flagella and rod-shaped. Strain 9NM-8T grew optimally at pH 7.0 and 30 °C and in the absence of NaCl on R2A agar. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 9NM-8T belongs to the genus Sphingomonas, with highest sequence similarities to Sphingomonas azotifigens KACC 14484T (96.1%), Sphingomonas trueperi DSM 7225T (96.0%) and Sphingomonas pituitosa DSM 13101T (95.6 %). Strain 9NM-8T contained Q-10 as the predominant ubiquinone. The major fatty acids included C18:1ω7c, C16:0, C16:1ω7c and/or C16 : 1ω6c (summed feature 3) and 11-methyl C18:1ω7c. The DNA G+C content was 69.6±1.3 mol%. The major component in the polyamine pattern was sym-homospermidine and the polar lipid profile contained sphingoglycolipid, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and two unidentified phospholipids. Based on comparative analysis of physiological, chemotaxonomic and phylogenetic characteristics, strain 9NM-8T should be considered to represent a novel species of the genus Sphingomonas, for which the name Sphingomonas guangdongensis sp. nov. is proposed. The type strain is 9NM-8T (=GIMCC 1.653T=CGMCC 1.12672T=DSM 27570T).

  2. Spontaneous gram-negative bacillary meningitis in adult patients: characteristics and outcome

    PubMed Central

    2013-01-01

    Background Spontaneous meningitis caused by gram-negative bacilli in adult patients is uncommon and poorly characterized. Our objective is to describe and compare the characteristics and the outcome of adult patients with spontaneous gram-negative bacilli meningitis (GNBM) and spontaneous meningitis due to other pathogens. Methods Prospective single hospital-based observational cohort study conducted between 1982 and 2006 in a university tertiary hospital in Barcelona (Spain). The Main Outcome Measure: In-hospital mortality. Results Gram-negative bacilli meningitis was diagnosed in 40 (7%) of 544 episodes of spontaneous acute bacterial meningitis. The most common pathogens were Escherichia coli and Pseudomonas species. On admission, characteristics associated with spontaneous gram-negative bacilli meningitis by multivariate modeling were advanced age, history of cancer, nosocomial acquisition of infection, urinary tract infection as distant focus of infection, absence of rash, hypotension, and a high cerebrospinal fluid white-cell count. Nine (23%) episodes were acquired in the hospital and they were most commonly caused by Pseudomonas. The in-hospital mortality rate was 53%. The mortality rate was higher among patients with Gram-negative bacillary meningitis than among those with other bacterial meningitis and their risk of death was twenty times higher than among patients infected with Neisseria meningitidis (odds ratio 20.47; 95% confidence interval 4.03-103.93; p<0.001). Conclusions Gram-negative bacilli cause 9% of spontaneous bacterial meningitis of known etiology in adults. Characteristics associated with GNBM include advanced age, history of cancer, nosocomial acquisition, and urinary tract infection as distant focus of infection. The mortality rate is higher among patients with gram-negative bacillary meningitis than among those with other bacterial meningitides. PMID:24079517

  3. Colistin: an antibiotic and its role in multiresistant Gram-negative infections.

    PubMed

    Loho, Tonny; Dharmayanti, Anti

    2015-04-01

    Increasing number of infection cases caused by multiresistant Gram-negative bacteria or multidrug resistant organism (MDRO) has become a major problem worldwide since there have been a lot of resistance to many classes of antibiotics. Mutant isolates such as fluoroquinolone-resistant and -lactamase-resistant bacteria have been commonly found, particularly in intensive care unit (ICU). During the last two decades, there has been no study of developing antibiotics in search of discovering new type of antibiotics; meanwhile, the resistance of Gram-negative bacteria or MDRO to antibiotics is increasing. Colistin or polymyxin E is an old antibiotic, which has been used since 1959 for treating infection caused by Gram-negative MDRO. It was revealed that colistin has side effects of nephrotoxicity and neurotoxicity; therefore, the use of this antibiotic was stopped and it was replaced by other antibiotics which were effective and were considered safer at that time. There is an increasing number of infections with multi-resistant Gram-negative (MDRO) against the available antibiotics and the availability of alternative antibiotics has not been satisfying; therefore, microbiologists are searching back to the old option, which has been proven to be effective against multi-resistant Gram-negative bacteria, the old antibiotic that has been long forgotten, i.e. colistin, as an alternative treatment against Gram-negative MDRO. It is expected that colistin may have essential and reliable role as future antibiotics for treatment of multi-resistant Gram-negative infections and as an alternative of antibiotics that have been available so far.

  4. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria.

    PubMed

    Briers, Yves; Lavigne, Rob

    2015-01-01

    The emergence and spread of antibiotic-resistant bacteria drives the search for novel classes of antibiotics to replenish our armamentarium against bacterial infections. This is particularly critical for Gram-negative pathogens, which are intrinsically resistant to many existing classes of antibiotics due to the presence of a protective outer membrane. In addition, the antibiotics development pipeline is mainly oriented to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. A promising novel class of antibacterials is endolysins. These enzymes encoded by bacterial viruses hydrolyze the peptidoglycan layer with high efficiency, resulting in abrupt osmotic lysis and cell death. Their potential as novel antibacterials to treat Gram-positive bacteria has been extensively demonstrated; however, the Gram-negative outer membrane has presented a formidable barrier for the use of endolysins against Gram-negatives until recently. This review reports on the most recent advances in the development of endolysins to kill Gram-negative species with a special focus on endolysin-engineered Artilysins(®).

  5. A case of unusual Gram-negative bacilli septic arthritis in an immunocompetent patient.

    PubMed

    Chiu, Li Qi; Wang, Wilson

    2013-08-01

    The Gram-negative bacilli Acinetobacter baumannii, Burkholderia cepacia, Ochrobactrum anthropi, Pseudomonas mendocina, Ralstonia spp., Serratia marcescens and Stenotrophomonas maltophilia are ubiquitous environmental organisms of low virulence, and do not usually cause illness in immunocompetent hosts. We report a case of multiple concurrent opportunistic Gram-negative bacilli causing septic arthritis in a healthy patient following trauma to the knee. Repeated operations, including arthroscopy, arthrotomy and debridement, were required before tissue cultures became negative. The patient also required an extended duration of intravenous and oral antibiotic treatment before he was discharged. Gram-negative bacillary septic arthritis is an uncommon but significant condition that requires repeated debridement and washouts in order to achieve bacterial eradication. This case report highlights the importance of an awareness of the external environment at the time of injury, as it impacts the type of organisms causing the infection, and consequently, the choice of empiric antibiotics required for successful treatment.

  6. Procalcitonin Is a Marker of Gram-Negative Bacteremia in Patients With Sepsis

    PubMed Central

    Guo, Shun Yuan; Zhou, Yin; Hu, Qing Feng; Yao, Jiong

    2015-01-01

    Abstract: Background: Prediction of the species of pathogen among patients with sepsis within hours would be helpful in accelerating proper treatment. As a potential method of shortening the time to identification, this study considered the usefulness of measuring procalcitonin (PCT) to predict blood culture (BC) results. Methods: The authors retrospectively analyzed the data of patients with a diagnosis of sepsis in their hospital from December 2012 to December 2013. The authors analyzed all diagnostic episodes consisting of BC and PCT concentration. The diagnostic performance of PCT to predict gram-negative bacteremia was tested using a receiver operative characteristic curve. Logistic regression was constructed using the presence of gram-negative bacteria as the dependent variable. Results: A total of 262 diagnostic episodes met the inclusion criteria. According to BC classifications, a significantly higher value of PCT was observed in bloodstream infections caused by gram-negative bacteria (26.7 ng/mL, 0.09–188.3) than that in bloodstream infections caused by gram-positive bacteria (0.84 ng/mL, 0.05–18.79) or Candida spp. (1.12 ng/mL, 0.07–49.68). A cutoff value of ≥3.39 ng/mL for PCT showed a sensitivity of 80%, a specificity of 71%, a positive predictive value of 35%, a negative predictive value of 91% and an area under the curve of 0.73 for gram-negative bacteremia identification by BC. Among the 122 diagnostic episodes with positive BC results, a cutoff value of ≥6.47 ng/mL for PCT yielded a sensitivity of 74%, a specificity of 81%, a positive predictive value of 82%, a negative predictive value of 75% and an area under the curve of 0.81 for gram-negative bacteremia identification. Conclusions: PCT may represent a useful tool for differentiating gram-positive from gram-negative bloodstream infection with a significantly higher PCT level indicating gram-negative bacteremia. PMID:25992537

  7. Growth ability of Gram negative bacteria in free-living amoebae.

    PubMed

    Zeybek, Zuhal; Binay, Ali Rıza

    2014-11-01

    When bacteria and free-living amoebae (FLAs) live both in natural waters and man-made aquatic systems, they constantly interact with each other. Some bacteria can survive and grow within FLAs. Therefore, it has recently been thought that FLAs play an important role in spreading pathogenic bacteria in aquatic systems. In this study we investigated the intracellular growing ability of 7 different Gram-negative bacteria (Pseudomonas fluorescens, Pseudomonas putida, Pasteurella pneumotropica, Aeromonas salmonicida, Legionella pneumophila serogroup 1, L. pneumophila serogroup 3, L. pneumophila serogroup 6) in four different FLA isolates (A1-A4). Among these, four bacterial isolates (P. fluorescens, P.putida, P.pneumotropica, A.salmonicida) and two free-living amoebae isolates (A3, A4) were isolated from the tap water in our city (Istanbul). It was found that 4 different Gram-negative bacteria could grow in A1, 2 different Gram-negative bacteria could grow in A2, 4 different Gram-negative bacteria could grow in A3, 1 Gram-negative bacterium could grow in A4. In conclusion, we think that this ability of growth could vary according to the characteristics of both bacteria and FLA isolates. Also, other factors such as environmental temperature, bacterial concentration, and extended incubation period may play a role in these interactions. This situation can be clarified with future studies.

  8. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria.

  9. Multidrug-resistant Gram-negative bacterial infections: the emerging threat and potential novel treatment options.

    PubMed

    Vergidis, Paschalis I; Falagas, Matthew E

    2008-02-01

    Gram-negative bacterial infections constitute an emerging threat because of the development of multidrug-resistant organisms. There is a relative shortage of new drugs in the antimicrobial development pipeline that have been tested in vitro and evaluated in clinical studies. Antibiotics that are in the pipeline for the treatment of serious Gram-negative bacterial infections include the cephalosporins, ceftobiprole, ceftarolin and FR-264205. Tigecycline is the first drug approved from a new class of antibiotics called glycylcyclines, and there has been renewed interest in this drug for the treatment of some multidrug-resistant Gram-negative organisms. Carbapenems in the pipeline include tomopenem, with the approved drugs doripenem and faropenem, an oral agent, under evaluation for activity against multidrug-resistant Gram-negative bacterial infections. Polymyxins are old antibiotics traditionally considered to be toxic, but which are being used because of their activity against resistant Gram-negative organisms. New pharmacokinetic and pharmacodynamic data are available regarding the use of these agents. Finally, antimicrobial peptides and efflux pump inhibitors are two new classes of agents under development. This review of investigational antibiotics shows that several new agents will become available in the coming years, even though the pace of antimicrobial research is far from ideal. PMID:18246520

  10. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  11. Outcome of infections due to pandrug-resistant (PDR) Gram-negative bacteria

    PubMed Central

    Falagas, Matthew E; Bliziotis, Ioannis A; Kasiakou, Sofia K; Samonis, George; Athanassopoulou, Panayiota; Michalopoulos, Argyris

    2005-01-01

    Background The increasing problem of infections due to multidrug-resistant Gram-negative bacteria has led to re-use of polymyxins in several countries. However, there are already clinical isolates of Gram-negative bacteria that are resistant to all available antibiotics, including polymyxins. Methods We present a case series of patients with infections due to pathogens resistant to all antimicrobial agents tested, including polymyxins. An isolate was defined as pandrug-resistant (PDR) if it exhibited resistance to all 7 anti-pseudomonal antimicrobial agents, i.e. antipseudomonal penicillins, cephalosporins, carbapenems, monobactams, quinolones, aminoglycosides, and polymyxins. Results Clinical cure of the infection due to pandrug-resistant (PDR) Gram-negative bacteria, namely Pseudomonas aeruginosa or Klebsiella pneumoniae was observed in 4 out of 6 patients with combination of colistin and beta lactam antibiotics. Conclusion Colistin, in combination with beta lactam antibiotics, may be a useful agent for the management of pandrug-resistant Gram-negative bacterial infections. The re-use of polymyxins, an old class of antibiotics, should be done with caution in an attempt to delay the rate of development of pandrug-resistant Gram-negative bacterial infections. PMID:15819983

  12. Expanding the bactericidal action of the food color additive phloxine B to gram-negative bacteria.

    PubMed

    Rasooly, Reuven

    2005-08-01

    Phloxine B (D&C red no. 28) is a color additive for food, drugs, and cosmetics. It has been previously shown to have anti-Staphylococcus aureus activities. In this work, the effect of Phloxine B on various gram-negative bacteria and other gram-positive bacteria including Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus subtilis, Bacillus aureus, Salmonella, Escherichia coli and Shigella was studied, along with the mechanism of anti-microbial activity. In the presence of fluorescent light, the viable count for gram-positive bacteria, (Bacillus spp. and S. aureus) decreased in a dose and time dependent manner when incubated with Phloxine B. The viability of gram-positive bacteria was reduced by 99.99% in 40 min, while there was no effect on gram-negative bacteria (Salmonella choleraesuis, E. coli and Shigella flexneri). However, the use of ethylenediaminetetraacetic acid (EDTA) expands the spectrum of activity for Phloxine B to include gram-negative bacteria. EDTA increased membrane-permeability by releasing lipopolysaccharide. Overall, in an Agar diffusion test the light-dependent bactericidal activity of 1 microg of Phloxine B had a potency of 0.64 units of chloramphenicol and 0.5 units of tetracycline when tested on B. cereus, and had a potency of 0.7 units of chloramphenicol and 0.2 units of tetracycline when tested on S. aureus. The data suggest that the dye may have some potential anti-microbial applications.

  13. Fatty acid and hydroxy acid adaptation in three gram-negative hydrocarbon-degrading bacteria in relation to carbon source.

    PubMed

    Soltani, Mohamed; Metzger, Pierre; Largeau, Claude

    2005-12-01

    The lipids of three gram-negative bacteria, Acinetobacter calcoaceticus, Marinobacter aquaeolei, and Pseudomonas oleovorans grown on mineral media supplemented with ammonium acetate or hydrocarbons, were isolated, purified, and their structures determined. Three pools of lipids were isolated according to a sequential procedure: unbound lipids extracted with organic solvents, comprising metabolic lipids and the main part of membrane lipids, OH--labile lipids (mainly ester-bound in the lipopolysaccharides, LPS) and H+-labile lipids (mainly amide-bound in the LPS). Unsaturated FA composition gave evidence for an aerobic desaturation pathway for the synthesis of these acids in A. calcoaceticus and M. aquaeolei, a nonclassic route in gram-negative bacteria. Surprisingly, both aerobic and anaerobic pathways are operating in the studied strain of P. oleovorans. The increase of the proportion of saturated FA observed for the strain of P. oleovorans grown on light hydrocarbons would increase the temperature transition of the lipids for maintaining the inner membrane fluidity. An opposite phenomenon occurs in A. calcoaceticus and M. aquaeolei grown on solid or highly viscous C19 hydrocarbons. The increases of FA < C18 when the bacteria were grown on n-nonadecane, or of iso-FA in cultures on isononadecane would decrease the transition temperature of the lipids, to maintain the fluidity of the inner membranes. Moreover, P. oleovorans grown on hydrocarbons greatly decreases the proportion of P-hydroxy acids of LPS, thus likely maintaining the physical properties of the outer membrane. By contrast, no dramatic change in hydroxy acid composition occurred in the other two bacteria. PMID:16477811

  14. In vitro sensitivity of oral, gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins.

    PubMed Central

    Miyasaki, K T; Bodeau, A L; Ganz, T; Selsted, M E; Lehrer, R I

    1990-01-01

    Neutrophils play a major role in defending the periodontium against infection by oral, gram-negative, facultative bacteria, such as Actinobacillus actinomycetemcomitans, Eikenella corrodens, and Capnocytophaga spp. We examined the sensitivity of these bacteria to a mixture of low-molecular-weight peptides and highly purified individual defensin peptides (HNP-1, HNP-2, and HNP-3) isolated from human neutrophils. Whereas the Capnocytophaga spp. strains were killed significantly by the mixed human neutrophil peptides, the A. actinomycetemcomitans and E. corrodens strains were resistant. Killing was attributable to the defensins. The bactericidal activities of purified defensins HNP-1 and HNP-2 were equal, and both of these activities were greater than HNP-3 activity against strains of Capnocytophaga sputigena and Capnocytophaga gingivalis. The strain of Capnocytophaga ochracea was more sensitive to defensin-mediated bactericidal activity than either C. sputigena or C. gingivalis was. The three human defensins were equipotent in killing C. ochracea. C. ochracea was killed under aerobic and anaerobic conditions and over a broad pH range. Killing was most effective under hypotonic conditions but also occurred at physiologic salt concentrations. We concluded that Capnocytophaga spp. are sensitive to oxygen-independent killing by human defensins. Additional studies will be required to identify other components that may equip human neutrophils to kill A. actinomycetemcomitans, E. corrodens, and other oral gram-negative bacteria. Images PMID:2254020

  15. The "other" gram-negative bacteria in mastitis: Klebsiella, serratia, and more.

    PubMed

    Schukken, Ynte; Chuff, Matt; Moroni, Paolo; Gurjar, Abhijit; Santisteban, Carlos; Welcome, Frank; Zadoks, Ruth

    2012-07-01

    Mastitis caused by gram-negative infections is of increasing importance on modern and well-managed dairy farms. Without a doubt, E coli tends to be the most important cause of these gram-negative infections when the data are tallied across farms.1 However, more precise investigation of individual farms often reveals a farm-specific infection pattern where a single gram-negative bacterial species predominates. Several farms with a predominance of “other” gram-negative IMIs may be observed. We have shown the presence of outbreaks on individual dairy farms with K pneumoniae, S marcescens, and Enterobacter cloacae. On farms with a predominance of these “other” gram-negative infections, a detailed epidemiologic investigation may reveal the source of these infections. It is quite surprising to identify the difference in host immune response pattern and the associated clinical and subclinical presentations of IMIs due to the different gram-negative organisms. Experimental and field observations would suggest that among the gram-negative bacterial causes of mastitis, Klebsiella spp are causing the most severe cases, closely followed by E coli and then much less clinical severity is observed in Serratia spp and Enterobacter spp cases. The precise mechanisms that would explain the difference in clinical severity are not known, but the most likely explanation appears to be the structure of the lipid A fraction of the LPS of the bacterial species. Important differences in the lipid A fraction of LPS between and within bacterial species are observed. The prevention of IMIs with gram-negative bacteria has components that are generic across species and components that are species specific. Generic prevention may be obtained by improving hygiene and reducing exposure of teat ends to environmental contamination. Also the use of a J5 bacterin is expected to provide some reduction in severity of gram-negative IMIs across bacterial species. Specific prevention programs will

  16. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II

    PubMed Central

    Cochrane, Stephen A.; Findlay, Brandon; Bakhtiary, Alireza; Acedo, Jeella Z.; Rodriguez-Lopez, Eva M.; Mercier, Pascal; Vederas, John C.

    2016-01-01

    Tridecaptin A1 (TriA1) is a nonribosomal lipopeptide with selective antimicrobial activity against Gram-negative bacteria. Here we show that TriA1 exerts its bactericidal effect by binding to the bacterial cell-wall precursor lipid II on the inner membrane, disrupting the proton motive force. Biochemical and biophysical assays show that binding to the Gram-negative variant of lipid II is required for membrane disruption and that only the proton gradient is dispersed. The NMR solution structure of TriA1 in dodecylphosphocholine micelles with lipid II has been determined, and molecular modeling was used to provide a structural model of the TriA1–lipid II complex. These results suggest that TriA1 kills Gram-negative bacteria by a mechanism of action using a lipid-II–binding motif. PMID:27688760

  17. Continual Gram-negative bacterial challenge accelerates stroke onset in stroke-prone spontaneously hypertensive rats.

    PubMed

    Kawato, Takayuki; Tanaka, Hideki; Tabuchi, Masaki; Ooshima, Kana; Nakai, Kumiko; Yamashita, Yoshihisa; Maeno, Masao

    2013-01-01

    This study examined the effects of continual Gram-negative bacterial challenge on stroke onset. Stroke onset occurred significantly earlier in stroke-prone spontaneously hypertensive rats (SHRSP) injected with a bacterial cell suspension of Gram-negative rods or lipopolysaccharides (LPSs) than in uninjected controls. Paralysis of the hindlimb, piloerection, hypokinesis, and hyperkinesis were observed in LPS-injected SHRSP but not in uninjected controls during stroke onset. The serum levels of NOx, thiobarbituric acid reactive substance, and 8-hydroxydeoxyguanosine increased in LPS-injected SHRSP. These results suggest that continual Gram-negative bacterial challenge induces accelerated stroke onset in SHRSP, probably caused by oxidative stress responses derived from LPSs. PMID:22630606

  18. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    PubMed

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  19. Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician.

    PubMed

    Vasoo, Shawn; Barreto, Jason N; Tosh, Pritish K

    2015-03-01

    The rapid and global spread of antimicrobial-resistant organisms in recent years has been unprecedented. Although resistant gram-positive infections have been concerning to clinicians, the increasing incidence of antibiotic-resistant gram-negative infections has become the most pressing issue in bacterial resistance. Indiscriminate antimicrobial use in humans and animals coupled with increased global connectivity facilitated the transmission of gram-negative infections harboring extended-spectrum β-lactamases in the 1990s. Carbapenemase-producing Enterobacteriaceae, such as those containing Klebsiella pneumoniae carbapenemases and New Delhi metallo-β-lactamases, have been the latest scourge since the late 1990s to 2000s. Besides β-lactam resistance, these gram-negative infections are often resistant to multiple drug classes, including fluoroquinolones, which are commonly used to treat community-onset infections. In certain geographic locales, these pathogens, which have been typically associated with health care-associated infections, are disseminating into the community, posing a significant dilemma for clinicians treating community-onset infections. In this Concise Review, we summarize emerging trends in antimicrobial resistance. We also review the current knowledge on the detection, treatment, and prevention of infection with these organisms, with a focus on the carbapenemase-producing gram-negative bacilli. Finally, we discuss emerging therapies and areas that need further research and effort to stem the spread of antimicrobial resistance.

  20. Differential effects of gram-positive and gram-negative bacterial products on morphine induced inhibition of phagocytosis

    PubMed Central

    Jana, Ninkovic; Vidhu, Anand; Raini, Dutta; Zhang, Li; Saluja, Anuj; Meng, Jingjing; Lisa, Koodie; Santanu, Banerjee; Sabita, Roy

    2016-01-01

    Opioid drug abusers have a greater susceptibility to gram positive (Gram (+)) bacterial infections. However, the mechanism underlying opioid modulation of Gram (+) versus Gram (−) bacterial clearance has not been investigated. In this study, we show that opioid treatment resulted in reduced phagocytosis of Gram (+), when compared to Gram (−) bacteria. We further established that LPS priming of chronic morphine treated macrophages leads to potentiated phagocytosis and killing of both Gram (+) and Gram (−) bacteria in a P-38 MAP kinase dependent signaling pathway. In contrast, LTA priming lead to inhibition of both phagocytosis and bacterial killing. This study demonstrates for the first time the differential effects of TLR4 and TLR2 agonists on morphine induced inhibition of phagocytosis. Our results suggest that the incidence and severity of secondary infections with Gram (+) bacteria would be higher in opioid abusers. PMID:26891899

  1. Differential effects of gram-positive and gram-negative bacterial products on morphine induced inhibition of phagocytosis.

    PubMed

    Ninkovic, Jana; Jana, Ninkovic; Anand, Vidhu; Vidhu, Anand; Dutta, Raini; Raini, Dutta; Zhang, Li; Saluja, Anuj; Meng, Jingjing; Koodie, Lisa; Lisa, Koodie; Banerjee, Santanu; Santanu, Banerjee; Roy, Sabita; Sabita, Roy

    2016-02-19

    Opioid drug abusers have a greater susceptibility to gram positive (Gram (+)) bacterial infections. However, the mechanism underlying opioid modulation of Gram (+) versus Gram (-) bacterial clearance has not been investigated. In this study, we show that opioid treatment resulted in reduced phagocytosis of Gram (+), when compared to Gram (-) bacteria. We further established that LPS priming of chronic morphine treated macrophages leads to potentiated phagocytosis and killing of both Gram (+) and Gram (-) bacteria in a P-38 MAP kinase dependent signaling pathway. In contrast, LTA priming lead to inhibition of both phagocytosis and bacterial killing. This study demonstrates for the first time the differential effects of TLR4 and TLR2 agonists on morphine induced inhibition of phagocytosis. Our results suggest that the incidence and severity of secondary infections with Gram (+) bacteria would be higher in opioid abusers.

  2. Adherence of gram-positive and gram-negative bacterial strains to human lung fibroblasts in vitro.

    PubMed

    Martin, D; Mathieu, L G; Lecomte, J; deRepentigny, J

    1986-01-01

    The adherence to eukaryotic cells of Escherichia coli, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis and the yeast Candida albicans was studied by light microscopy with an in vitro micromethod involving different cell lines. The method is inexpensive, consumes little time and material, and is reproducible. It was used to show that the gram-positive Cowan I strain of S. aureus, which naturally forms protein A on its surface, adheres in much larger numbers to human lung fibroblasts than the protein A-free Wood 46 strain, the strain of S. epidermidis, and the encapsulated Smith strain. The presence of a capsule on the latter strain apparently prevented its attachment to the fibroblasts. Among the gram-negative species studied, a piliated clinical isolate of N. gonorrhoeae, displaying the opaque colonial phenotype, adhered in larger numbers than another isolate lacking pili and displaying the transparent phenotype. E. coli K12 attached slightly to the cell line, whereas P. aeruginosa adhered to it moderately. One strain of C. albicans tested did not attach in any detectable numbers. No clear correlation between bacterial cell surface hydrophobicity, as evaluated by the hexadecane assay, and adherence to eukaryotic cells could be demonstrated for these microorganisms. With our method, bacterial attachment proceeded best at 37 degrees C and did not require more than 1 h of contact with the cell monolayer. The method described revealed differences in the adherence to eukaryotic cells, not only among species, but also between strains of the same species.

  3. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    PubMed

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns. PMID:25926733

  4. A zebrafish intelectin ortholog agglutinates both Gram-negative and Gram-positive bacteria with binding capacity to bacterial polysaccharide.

    PubMed

    Chen, Lei; Yan, Jie; Sun, Weiping; Zhang, Yan; Sui, Chao; Qi, Jing; Du, Yijun; Feng, Lijun

    2016-08-01

    Intelectins are glycan-binding lectins found in various species including cephalochordates, urochordates, fish, amphibians and mammals. But their detailed functions are not well studied in zebrafish which is a good model to study native immunity. In this study, we cloned a zebrafish intelectin ortholog, zebrafish intelectin 2 (zITLN2), which contains a conserved fibrinogen-related domain (FReD) in the N-terminus and the unique intelectin domain in the C-terminus. We examined the tissue distribution of zITLN2 in adult zebrafish and found that zITLN2 was expressed in various organs with the highest level in intestine. Like amphioxus intelectins, zITLN2 expression was upregulated in adult zebrafish infected with Staphylococcus aureus with the highest expression level at 12 h after challenge. Recombinant zITLN2 protein expressed in E. coli was able to agglutinate both Gram-negative and Gram-positive bacteria to similar degrees in a calcium-dependent manner. Furthermore, recombinant zITLN2 bound lipopolysaccharide (LPS) and peptidoglycan (PGN) comparably. Our work on zITLN2 provided further information to understand functions of this new family of lectins and the innate immunity in vertebrates. PMID:27329687

  5. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    PubMed

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.

  6. Impact of fluoroquinolone resistance in Gram-negative bloodstream infections on healthcare utilization.

    PubMed

    Brigmon, M M; Bookstaver, P Brandon; Kohn, J; Albrecht, H; Al-Hasan, M N

    2015-09-01

    There has been a concerning increase in fluoroquinolone resistance among Gram-negative bloodstream isolates. This retrospective cohort study examines the implications of fluoroquinolone resistance on use of healthcare resources in patients with Gram-negative bloodstream infections (BSI). Hospitalized adults with first episodes of community-onset Gram-negative BSI from 2010 to 2012 at Palmetto Health Hospitals in Columbia, SC, USA were identified. Multivariate linear regression was used to examine risk factors for prolonged hospital length of stay (HLOS) in survivors of Gram-negative BSI. Among 474 unique patients, 384 (81%) and 90 (19%) had BSI due to fluoroquinolone-susceptible (FQ-S) and fluoroquinolone non-susceptible (FQ-NS) Gram-negative bacilli, respectively. The FQ-NS bloodstream isolates, particularly Escherichia coli, were more likely than FQ-S isolates to be multi-drug resistant (56% versus 6%, p < 0.001). Compared with patients with BSI due to FQ-S bloodstream isolates, those with FQ-NS isolates were more likely to receive inappropriate empirical antimicrobial therapy (26% versus 3%, p < 0.001), have longer mean HLOS (11.6 versus 9.3 days, p 0.03) and treatment duration with intravenous antibiotics during hospitalization (9.1 versus 7.1 days, p 0.001), and use outpatient intravenous antibiotics at hospital discharge (15% versus 8%, p 0.05). After adjustments in the multivariate model, inappropriate empirical antimicrobial therapy was an independent risk factor for prolonged HLOS in survivors of Gram-negative BSI (parameter estimate 3.65 days, 95% CI 0.43-6.86). Multi-drug resistance among FQ-NS bloodstream isolates limits both empirical and definitive antimicrobial treatment options and poses excessive burdens on the healthcare system.

  7. Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management.

    PubMed

    Kaye, Keith S; Pogue, Jason M

    2015-10-01

    Infections caused by resistant gram-negative bacteria are becoming increasingly prevalent and now constitute a serious threat to public health worldwide because they are difficult to treat and are associated with high morbidity and mortality rates. In the United States, there has been a steady increase since 2000 in rates of extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii, particularly among hospitalized patients with intraabdominal infections, urinary tract infections, ventilator-associated pneumonia, and bacteremia. Colonization with resistant gram-negative bacteria is common among residents in long-term care facilities (particularly those residents with an indwelling device), and these facilities are considered important originating sources of such strains for hospitals. Antibiotic resistance is associated with a substantial clinical and economic burden, including increased mortality, greater hospital and antibiotic costs, and longer stays in hospitals and intensive care units. Control of resistant gram-negative infections requires a comprehensive approach, including strategies for risk factor identification, detection and identification of resistant organisms, and implementation of infection-control and prevention strategies. In treating resistant gram-negative infections, a review of surveillance data and hospital-specific antibiograms, including resistance patterns within local institutions, and consideration of patient characteristics are helpful in guiding the choice of empiric therapy. Although only a few agents are available with activity against resistant gram-negative organisms, two recently released β-lactam/β-lactamase inhibitor combinations - ceftolozane/tazobactam and ceftazidime/avibactam - have promising activity against these organisms. In this article, we review the epidemiology, risk factors, and

  8. Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between Gram-positive and Gram-negative bacteria.

    PubMed

    Arends, Karsten; Schiwon, Katarzyna; Sakinc, Türkan; Hübner, Johannes; Grohmann, Elisabeth

    2012-02-01

    On the basis of pIP501, a green fluorescent protein (GFP)-tagged monitoring tool was constructed for quantifying plasmid mobilization among Gram-positive bacteria and between Gram-positive Enterococcus faecalis and Gram-negative Escherichia coli. Furthermore, retromobilization of the GFP-tagged monitoring tool was shown from E. faecalis OG1X into the clinical isolate E. faecalis T9.

  9. Inhibitory effect of short cationic homopeptides against Gram-negative bacteria.

    PubMed

    Carvajal-Rondanelli, Patricio; Aróstica, Mónica; Marshall, Sergio Hernan; Albericio, Fernando; Álvarez, Claudio Andrés; Ojeda, Claudia; Aguilar, Luis Felipe; Guzmán, Fanny

    2016-06-01

    Previous work demonstrated that Lys homopeptides with an odd number of residues (9, 11 and 13) were capable of inhibiting the growth of Gram-positive bacteria in a broader spectrum and more efficiently than those with an even number of Lys residues or Arg homopeptides of the same size. Indeed, all Gram-positive bacteria tested were totally inhibited by 11-residue Lys homopeptides. In the present work, a wide variety of Gram-negative bacteria were used to evaluate the inhibitory activity of chemically synthesized homopeptides of L-Lys and L-Arg ranging from 7 to 14 residues. Gram-negative bacteria were comparatively more resistant than Gram-positive bacteria to Lys homopeptides with an odd number of residues, but exhibited a similar inhibition pattern than on Gram-positive bacteria. CD spectra for the odd-numbered Lys homopeptides in anionic lipid dimyristoylphosphatidylglycerol, and Escherichia coli membrane extract increased polyproline II content, as compared to those measured in phosphate buffer solution. Lys and Arg homopeptides were covalently linked to rhodamine to visualize the peptide interactions with E. coli cells using confocal laser scanning microscopy. Analysis of Z-stack images showed that Arg homopeptides indeed appear to be localized intracellularly, while the Lys homopeptide is localized exclusively on the plasma membrane. Moreover, these Lys homopeptides induced membrane disruption since the Sytox fluorophore was able to bind to the DNA in E. coli cultures.

  10. Inhibitory effect of short cationic homopeptides against Gram-negative bacteria.

    PubMed

    Carvajal-Rondanelli, Patricio; Aróstica, Mónica; Marshall, Sergio Hernan; Albericio, Fernando; Álvarez, Claudio Andrés; Ojeda, Claudia; Aguilar, Luis Felipe; Guzmán, Fanny

    2016-06-01

    Previous work demonstrated that Lys homopeptides with an odd number of residues (9, 11 and 13) were capable of inhibiting the growth of Gram-positive bacteria in a broader spectrum and more efficiently than those with an even number of Lys residues or Arg homopeptides of the same size. Indeed, all Gram-positive bacteria tested were totally inhibited by 11-residue Lys homopeptides. In the present work, a wide variety of Gram-negative bacteria were used to evaluate the inhibitory activity of chemically synthesized homopeptides of L-Lys and L-Arg ranging from 7 to 14 residues. Gram-negative bacteria were comparatively more resistant than Gram-positive bacteria to Lys homopeptides with an odd number of residues, but exhibited a similar inhibition pattern than on Gram-positive bacteria. CD spectra for the odd-numbered Lys homopeptides in anionic lipid dimyristoylphosphatidylglycerol, and Escherichia coli membrane extract increased polyproline II content, as compared to those measured in phosphate buffer solution. Lys and Arg homopeptides were covalently linked to rhodamine to visualize the peptide interactions with E. coli cells using confocal laser scanning microscopy. Analysis of Z-stack images showed that Arg homopeptides indeed appear to be localized intracellularly, while the Lys homopeptide is localized exclusively on the plasma membrane. Moreover, these Lys homopeptides induced membrane disruption since the Sytox fluorophore was able to bind to the DNA in E. coli cultures. PMID:26922474

  11. Quorum sensing signal-response systems in Gram-negative bacteria.

    PubMed

    Papenfort, Kai; Bassler, Bonnie L

    2016-08-11

    Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy. PMID:27510864

  12. How Porin Heterogeneity and Trade-Offs Affect the Antibiotic Susceptibility of Gram-Negative Bacteria

    PubMed Central

    Ferenci, Thomas; Phan, Katherine

    2015-01-01

    Variations in porin proteins are common in Gram-negative pathogens. Altered or absent porins reduce access of polar antibiotics across the outer membrane and can thus contribute to antibiotic resistance. Reduced permeability has a cost however, in lowering access to nutrients. This trade-off between permeability and nutritional competence is the source of considerable natural variation in porin gate-keeping. Mutational changes in this trade-off are frequently selected, so susceptibility to detergents and antibiotics is polymorphic in environmental isolates as well as pathogens. Understanding the mechanism, costs and heterogeneity of antibiotic exclusion by porins will be crucial in combating Gram negative infections. PMID:26506392

  13. Quorum sensing signal-response systems in Gram-negative bacteria.

    PubMed

    Papenfort, Kai; Bassler, Bonnie L

    2016-08-11

    Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy.

  14. Making a beta barrel: Assembly of Outer Membrane Proteins in Gram negative bacteria

    PubMed Central

    Rigel, Nathan W.; Silhavy, Thomas J.

    2011-01-01

    The outer membrane (OM) of Gram negative bacteria is an essential organelle that serves as a selective permeability barrier by keeping toxic compounds out of the cell while allowing vital nutrients in. How the OM and its constituent lipid and protein components are assembled remains an area of active research. In this review, we describe our current understanding of how outer membrane proteins (OMPs) are delivered to and then assembled in the OM of the model Gram-negative organism Escherichia coli. PMID:22221898

  15. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  16. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology.

    PubMed

    Prudêncio, Cláudia Vieira; Dos Santos, Miriam Teresinha; Vanetti, Maria Cristina Dantas

    2015-09-01

    Bacteriocins are ribosomally synthesized peptides that have bacteriostatic or bactericidal effects on other bacteria. The use of bacteriocins has emerged as an important strategy to increase food security and to minimize the incidence of foodborne diseases, due to its minimal impact on the nutritional and sensory properties of food products. Gram-negative bacteria are naturally resistant to the action of bacteriocins produced by Gram-positive bacteria, which are widely explored in foods. However, these microorganisms can be sensitized by mild treatments, such as the use of chelating agents, by treatment with plant essential oils or by physical treatments such as heating, freezing or high pressure processing. This sensitization is important in food microbiology, because most pathogens that cause foodborne diseases are Gram-negative bacteria. However, the effectiveness of these treatments is influenced by several factors, such as pH, temperature, the composition of the food and target microbiota. In this review, we comment on the main methods used for the sensitization of Gram-negative bacteria, especially Salmonella, to improve the action of bacteriocins produced by Gram-positive bacteria.

  17. Performance of Gram staining on blood cultures flagged negative by an automated blood culture system.

    PubMed

    Peretz, A; Isakovich, N; Pastukh, N; Koifman, A; Glyatman, T; Brodsky, D

    2015-08-01

    Blood is one of the most important specimens sent to a microbiology laboratory for culture. Most blood cultures are incubated for 5-7 days, except in cases where there is a suspicion of infection caused by microorganisms that proliferate slowly, or infections expressed by a small number of bacteria in the bloodstream. Therefore, at the end of incubation, misidentification of positive cultures and false-negative results are a real possibility. The aim of this work was to perform a confirmation by Gram staining of the lack of any microorganisms in blood cultures that were identified as negative by the BACTEC™ FX system at the end of incubation. All bottles defined as negative by the BACTEC FX system were Gram-stained using an automatic device and inoculated on solid growth media. In our work, 15 cultures that were defined as negative by the BACTEC FX system at the end of the incubation were found to contain microorganisms when Gram-stained. The main characteristic of most bacteria and fungi growing in the culture bottles that were defined as negative was slow growth. This finding raises a problematic issue concerning the need to perform Gram staining of all blood cultures, which could overload the routine laboratory work, especially laboratories serving large medical centers and receiving a large number of blood cultures.

  18. Prior statin use and 90-day mortality in Gram-negative and Gram-positive bloodstream infection: a prospective observational study.

    PubMed

    Mehl, A; Harthug, S; Lydersen, S; Paulsen, J; Åsvold, B O; Solligård, E; Damås, J K; Edna, T-H

    2015-03-01

    In several studies on patients with bloodstream infection (BSI), prior use of statins has been associated with improved survival. Gram-positive and Gram-negative bacteria alert the innate immune system in different ways. We, therefore, studied whether the relation between prior statin use and 90-day total mortality differed between Gram-positive and Gram-negative BSI. We conducted a prospective observational cohort study of 1,408 adults with BSI admitted to Levanger Hospital between January 1, 2002, and December 31, 2011. Data on the use of statins and other medications at admission, comorbidities, functional status, treatment, and outcome were obtained from the patients' hospital records. The relation of statin use with 90-day mortality differed between Gram-negative and Gram-positive BSI (p-value for interaction 0.01). Among patients with Gram-negative BSI, statin users had significantly lower 90-day total mortality [odds ratio (OR) 0.42, 95 % confidence interval (CI) 0.23-0.75, p = 0.003]. The association remained essentially unchanged after adjusting for the effect of sex, age, functional status before the infection, and underlying diseases that were considered confounders (adjusted OR 0.38, 95 % CI 0.20-0.72, p = 0.003). A similar analysis of patients with Gram-positive BSI showed no association of statin use with mortality (adjusted OR 1.22, 95 % CI 0.69-2.17, p = 0.49). The present study suggests that prior statin use is associated with a lower 90-day total mortality in Gram-negative BSI, but not in Gram-positive BSI.

  19. Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

    SciTech Connect

    Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa; Price, Loren M.; Abramite, Joseph A.; Arcari, Joel; Barham, Rose; Che, Ye; Chen, Jinshan Michael; Chung, Seung Won; Collantes, Elizabeth M.; Desbonnet, Charlene; Doroski, Matthew; Doty, Jonathan; Engtrakul, Juntyma J.; Harris, Thomas M.; Huband, Michael; Knafels, John D.; Leach, Karen L.; Liu, Shenping; Marfat, Anthony; McAllister, Laura; McElroy, Eric; Menard, Carol A.; Mitton-Fry, Mark; Mullins, Lisa; Noe, Mark C.; O’Donnell, John; Oliver, Robert; Penzien, Joseph; Plummer, Mark; Shanmugasundaram, Veerabahu; Thoma, Christy; Tomaras, Andrew P.; Uccello, Daniel P.; Vaz, Alfin; Wishka, Donn G.

    2012-11-09

    The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.

  20. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kwon, Deug-Nam; Kim, Jin-Hoi

    2014-07-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results

  1. Target affinities of faropenem to and its impact on the morphology of gram-positive and gram-negative bacteria.

    PubMed

    Dalhoff, A; Nasu, T; Okamoto, K

    2003-07-01

    Faropenem is a new oral beta-lactam antibiotic unique from carbapenems and other available beta-lactams. Determinants of the in vitro activity of beta-lactam antibiotics include affinity to penicillin-binding proteins (PBPs) and beta-lactamase stability. In this study, the binding affinity of faropenem to various PBPs and its impact on the morphology of Staphylococcus aureus and Escherichia coli were evaluated. In general, faropenem demonstrated high binding affinity to high-molecular-weight PBPs but low affinity to low-molecular-weight PBPs. In S. aureus and Streptococcus pneumoniae, faropenem exhibited high binding affinity to PBP1, followed by PBP3 and PBP2. In E. coli, faropenem showed the highest affinity for PBP2, followed by PBP1A, PBP1B, PBP3 and PBP4. In Proteus vulgaris, binding was highest to PBP4, followed by PBP1A, PBP2 and PBP3. In Serratia marcescens, faropenem bound preferentially to PBP2 and PBP4. Exposure of S. aureus to faropenem at minimum inhibitory concentrations (MICs) of 1/8 or 1/4 resulted in irregular septum formation. At 1x MIC or higher, a larger number of lysed cells were observed. Exposure of E. coli to 1/8x MIC or 1/4x MIC also induced changes in cellular shape; the normal rod-shaped form changed to a spherical form in a time-dependent manner. After exposure of E. coli to 1x MIC for 2 h, bulging-shaped E. coli cells were observed and after 4 h of exposure cell lysis was demonstrated. In the presence of 4x MIC, spheroplast-like forms and cell lysis were observed. The morphological changes triggered by faropenem are in agreement with the PBP binding affinities reported. Thus, the high binding affinities of faropenem to PBPs from gram-negative and gram-positive bacteria are mirrored by its pronounced and concentration-dependent bactericidal effect. PMID:12886052

  2. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    PubMed Central

    Fröhling, Antje; Schlüter, Oliver

    2015-01-01

    Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l−1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l−1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID

  3. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

    PubMed Central

    2014-01-01

    Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results

  4. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  5. Distinctive Binding of Avibactam to Penicillin-Binding Proteins of Gram-Negative and Gram-Positive Bacteria

    PubMed Central

    Asli, Abdelhamid; Brouillette, Eric; Krause, Kevin M.; Nichols, Wright W.

    2015-01-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that covalently acylates a variety of β-lactamases, causing inhibition. Although avibactam presents limited antibacterial activity, its acylation ability toward bacterial penicillin-binding proteins (PBPs) was investigated. Staphylococcus aureus was of particular interest due to the reported β-lactamase activity of PBP4. The binding of avibactam to PBPs was measured by adding increasing concentrations to membrane preparations of a variety of Gram-positive and Gram-negative bacteria prior to addition of the fluorescent reagent Bocillin FL. Relative binding (measured here as the 50% inhibitory concentration [IC50]) to PBPs was estimated by quantification of fluorescence after gel electrophoresis. Avibactam was found to selectively bind to some PBPs. In Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, and S. aureus, avibactam primarily bound to PBP2, with IC50s of 0.92, 1.1, 3.0, and 51 μg/ml, respectively, whereas binding to PBP3 was observed in Streptococcus pneumoniae (IC50, 8.1 μg/ml). Interestingly, avibactam was able to significantly enhance labeling of S. aureus PBP4 by Bocillin FL. In PBP competition assays with S. aureus, where avibactam was used at a fixed concentration in combination with varied amounts of ceftazidime, the apparent IC50 of ceftazidime was found to be very similar to that determined for ceftazidime when used alone. In conclusion, avibactam is able to covalently bind to some bacterial PBPs. Identification of those PBP targets may allow the development of new diazabicyclooctane derivatives with improved affinity for PBPs or new combination therapies that act on multiple PBP targets. PMID:26574008

  6. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria.

    PubMed

    Fröhling, Antje; Schlüter, Oliver

    2015-01-01

    Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l(-1) O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l(-1). However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID

  7. Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Fischer, Carol L.; Drake, David R.; Dawson, Deborah V.; Blanchette, Derek R.; Brogden, Kim A.

    2012-01-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity—the sphingoid bases d-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid—against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. d-Sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection. PMID:22155833

  8. Results after Late Polymicrobial, Gram-negative, and Methicillin-resistant Infections in Knee Arthroplasty

    PubMed Central

    Esteban, Jaime; García-Rey, Eduardo

    2010-01-01

    Background Previous studies of knee arthroplasty infections caused by high-virulence organisms suggest poor outcomes. Polymicrobial and Gram-negative infections are less studied. Questions/purposes This study compared the results of treatment of knee arthroplasty infections by single versus polymicrobial isolates, Gram-positive versus Gram-negative, and methicillin-resistant versus -sensitive Staphylococci. Methods We prospectively followed 47 patients with late knee arthroplasty infections. The mean age was 72 years (range, 20–87 years). The treatment protocol included two-stage exchange and a combination of two oral antibiotics given for 6 months. Minimum followup was 1 year (average, 4.8 ± 3 years; range, 1–12 years). Control of the infection was judged by absence of clinical, serologic, and radiologic signs of infection. The functional outcome was evaluated by Knee Society score at the last followup. Results Infection was controlled in all 15 patients with polymicrobial and in 28 of 32 (88%) with monomicrobial infections, in eight of nine patients with Gram-negative and in 35 of 38 (92%) with Gram-positive isolates. Control was also achieved in 22 of 25 patients (88%) infected by methicillin-resistant Staphylococci and in 14 of 14 by methicillin-sensitive Staphylococci. The Knee Society scores averaged 81-63 in patients with polymicrobial infections and were higher than in monomicrobial infections (75-52). The mean KSS was 85-59 in Gram-negative infections compared to 75-55 in Gram-positive infections. The mean KSS was similar in methicillin-resistant (78-54) and methicillin-sensitive Staphylococci (73-56) infections. Conclusions Polymicrobial and Gram-negative infections can be controlled in late knee arthroplasty infections. On the other hand, infections by methicillin-resistant Staphylococci are less likely to be controlled by the regimens we used. Level of Evidence Level II, prognostic study. See Guidelines for Authors for a complete

  9. Rapid testing using the Verigene Gram-negative blood culture nucleic acid test in combination with antimicrobial stewardship intervention against Gram-negative bacteremia.

    PubMed

    Bork, Jacqueline T; Leekha, Surbhi; Heil, Emily L; Zhao, LiCheng; Badamas, Rilwan; Johnson, J Kristie

    2015-03-01

    Rapid identification of microorganisms and antimicrobial resistance is paramount for targeted treatment in serious bloodstream infections (BSI). The Verigene Gram-negative blood culture nucleic acid test (BC-GN) is a multiplex, automated molecular diagnostic test for identification of eight Gram-negative (GN) organisms and resistance markers from blood culture with a turnaround time of approximately 2 h. Clinical isolates from adult patients at the University Maryland Medical Center with GN bacteremia from 1 January 2012 to 30 June 2012 were included in this study. Blood culture bottles were spiked with clinical isolates, allowed to incubate, and processed by BC-GN. A diagnostic evaluation was performed. In addition, a theoretical evaluation of time to effective and optimal antibiotic was performed, comparing actual antibiotic administration times from chart review ("control") to theoretical administration times based on BC-GN reporting and antimicrobial stewardship team (AST) review ("intervention"). For organisms detected by the assay, BC-GN correctly identified 95.6% (131/137), with a sensitivity of 97.1% (95% confidence interval [CI], 90.7 to 98.4%) and a specificity of 99.5% (95% CI, 98.8 to 99.8%). CTX-M and OXA resistance determinants were both detected. Allowing 12 h from Gram stain for antibiotic implementation, the intervention group had a significantly shorter duration to both effective (3.3 versus 7.0 h; P < 0.01) and optimal (23.5 versus 41.8 h; P < 0.01) antibiotic therapy. BC-GN with AST intervention can potentially decrease time to both effective and optimal antibiotic therapy in GN BSI.

  10. Rapid Testing Using the Verigene Gram-Negative Blood Culture Nucleic Acid Test in Combination with Antimicrobial Stewardship Intervention against Gram-Negative Bacteremia

    PubMed Central

    Leekha, Surbhi; Heil, Emily L.; Zhao, LiCheng; Badamas, Rilwan; Johnson, J. Kristie

    2014-01-01

    Rapid identification of microorganisms and antimicrobial resistance is paramount for targeted treatment in serious bloodstream infections (BSI). The Verigene Gram-negative blood culture nucleic acid test (BC-GN) is a multiplex, automated molecular diagnostic test for identification of eight Gram-negative (GN) organisms and resistance markers from blood culture with a turnaround time of approximately 2 h. Clinical isolates from adult patients at the University Maryland Medical Center with GN bacteremia from 1 January 2012 to 30 June 2012 were included in this study. Blood culture bottles were spiked with clinical isolates, allowed to incubate, and processed by BC-GN. A diagnostic evaluation was performed. In addition, a theoretical evaluation of time to effective and optimal antibiotic was performed, comparing actual antibiotic administration times from chart review (“control”) to theoretical administration times based on BC-GN reporting and antimicrobial stewardship team (AST) review (“intervention”). For organisms detected by the assay, BC-GN correctly identified 95.6% (131/137), with a sensitivity of 97.1% (95% confidence interval [CI], 90.7 to 98.4%) and a specificity of 99.5% (95% CI, 98.8 to 99.8%). CTX-M and OXA resistance determinants were both detected. Allowing 12 h from Gram stain for antibiotic implementation, the intervention group had a significantly shorter duration to both effective (3.3 versus 7.0 h; P < 0.01) and optimal (23.5 versus 41.8 h; P < 0.01) antibiotic therapy. BC-GN with AST intervention can potentially decrease time to both effective and optimal antibiotic therapy in GN BSI. PMID:25547353

  11. Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons

    SciTech Connect

    Helmann, J.D.; Walsh, C.T. ); Wang, Ying; Mahler, I. )

    1989-01-01

    The authors report the overexpression, purification, and properties of the regulatory protein, MerR, for a chromosomally encoded mercury resistance determinant from Bacillus strain RC607. This protein is similar in sequence to the metalloregulatory proteins encoded by gram-negative resistance determinants found on transposons Tn21 and Tn501 and to a predicted gene product of a Staphylococcus aureus resistance determinant. In vitro DNA-binding and transcription experiments were used to demonstrate those purified Bacillus MerR protein controls transcription from a promoter-operator site similar in sequence to that found in the transposon resistance determinants. The Bacillus MerR protein bound in vitro to its promoter-operator region in both the presence and absence of mercuric ion and functioned as a negative and positive regulator of transcription. The MerR protein bound less tightly to its operator region (ca. 50- to 100-fold) in the presence of mercuric ion; this reduced affinity was largely accounted for by an increased rate of dissociation of the MerR protein from the DNA. Despite this reduced DNA-binding affinity, genetic and biochemical evidence support a model in which the MerR protein-mercuric ion complex is a positive regulator of operon transcription. Although the Bacillus MerR protein bound only weakly to the heterologous Tn501 operator region, the Tn501 and Tn21 MerR proteins bound with high affinity to the Bacillus promoter-operator region and exhibited negative, but not positive, transcriptional control.

  12. A surveillance study of antimicrobial resistance of gram-negative bacteria isolated from intensive care units in eight hospitals in Turkey.

    PubMed

    Günseren, F; Mamikoğlu, L; Oztürk, S; Yücesoy, M; Biberoğlu, K; Yuluğ, N; Doğanay, M; Sümerkan, B; Kocagöz, S; Unal, S; Cetin, S; Calangu, S; Köksal, I; Leblebicioğlu, H; Günaydin, M

    1999-03-01

    This study was carried out with the participation of eight hospitals in Turkey to determine the frequency of gram-negative bacteria isolated in intensive care units (ICU) and to compare their resistance rates to selected antibiotics. Aerobic gram-negative bacteria isolated from ICUs during 1996 were studied. Antibiotic susceptibilities to imipenem, ceftazidime, ceftazidime-clavulanate, ceftriaxone, cefotaxime, cefepime, cefodizime, cefuroxime, piperacillin/tazobactam, amoxycillin-clavulanate, gentamicin, amikacin and ciprofloxacin were determined by Etest. A total of 748 isolates were obtained from 547 patients. The majority of organisms were isolated from the respiratory (38.8%) and urinary tracts (30.9%). Pseudomonas spp. were the most frequently isolated gram-negative species (26.8%), followed by Klebsiella spp. (26.2%). Escherichia coli, Acinetobacter spp. and Enterobacter spp. were the other commonly isolated organisms. High resistance rates were observed for all antibiotics studied. Imipenem appeared to be the most active agent against the majority of isolates. Although resistance rates exceeded 50%, ciprofloxacin, cefepime and amikacin were found to be relatively effective. Extended-spectrum beta-lactamase (ESBL) production appeared to be a major mechanism of resistance to beta-lactam antibiotics. In contrast to ceftazidime-clavulanate, piperacillin/tazobactam showed poor activity against organisms thought to produce ESBL, suggesting the presence of an enzyme resistant to tazobactam action. This study has yielded high rates of resistance in aerobic gram-negative isolates from ICUs in Turkey. High resistance rates to all the other antibacterials studied leave imipenem as the only reliable agent for the empirical treatment of ICU infections in Turkey.

  13. Bacteremic complications of intravascular catheter tip colonization with Gram-negative micro-organisms in patients without preceding bacteremia.

    PubMed

    van Eck van der Sluijs, A; Oosterheert, J J; Ekkelenkamp, M B; Hoepelman, I M; Peters, Edgar J G

    2012-06-01

    Although Gram-negative micro-organisms are frequently associated with catheter-related bloodstream infections, the prognostic value and clinical implication of a positive catheter tip culture with Gram-negative micro-organisms without preceding bacteremia remains unclear. We determined the outcomes of patients with intravascular catheters colonized with these micro-organisms, without preceding positive blood cultures, and identified risk factors for the development of subsequent Gram-negative bacteremia. All patients with positive intravascular catheter tip cultures with Gram-negative micro-organisms at the University Medical Center, Utrecht, The Netherlands, between 2005 and 2009, were retrospectively studied. Patients with Gram-negative bacteremia within 48 h before catheter removal were excluded. The main outcome measure was bacteremia with Gram-negative micro-organisms. Other endpoints were length of the hospital stay, in-hospital mortality, secondary complications of Gram-negative bacteremia, and duration of intensive care admission. A total of 280 catheters from 248 patients were colonized with Gram-negative micro-organisms. Sixty-seven cases were excluded because of preceding positive blood cultures, leaving 213 catheter tips from 181 patients for analysis. In 40 (19%) cases, subsequent Gram-negative bacteremia developed. In multivariate analysis, arterial catheters were independently associated with subsequent Gram-negative bacteremia (odds ratio [OR] = 5.00, 95% confidence interval [CI]: 1.20-20.92), as was selective decontamination of the digestive tract (SDD) (OR = 2.47, 95% CI: 1.07-5.69). Gram-negative bacteremia in patients who received SDD was predominantly caused by cefotaxime (part of the SDD)-resistant organisms. Mortality was significantly higher in the group with subsequent Gram-negative bacteremia (35% versus 20%, OR = 2.12, 95% CI: 1.00-4.49). Patients with a catheter tip colonized with Gram-negative micro-organisms had a high chance of

  14. Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in Gram-positive and Gram-negative bacteria

    PubMed Central

    Hankins, Jessica V.; Madsen, James A.; Giles, David K.; Brodbelt, Jennifer S.; Trent, M. Stephen

    2012-01-01

    Historically, the O1 El Tor and classical biotypes of Vibrio cholerae have been differentiated by their resistance to the antimicrobial peptide polymyxin B. However, the molecular mechanisms associated with this phenotypic distinction have remained a mystery for 50 y. Both Gram-negative and Gram-positive bacteria modify their cell wall components with amine-containing substituents to reduce the net negative charge of the bacterial surface, thereby promoting cationic antimicrobial peptide resistance. In the present study, we demonstrate that V. cholerae modify the lipid A anchor of LPS with glycine and diglycine residues. This previously uncharacterized lipid A modification confers polymyxin resistance in V. cholerae El Tor, requiring three V. cholerae proteins: Vc1577 (AlmG), Vc1578 (AlmF), and Vc1579 (AlmE). Interestingly, the protein machinery required for glycine addition is reminiscent of the Gram-positive system responsible for d-alanylation of teichoic acids. Such machinery was not thought to be used by Gram-negative organisms. V. cholerae O1 El Tor mutants lacking genes involved in transferring glycine to LPS showed a 100-fold increase in sensitivity to polymyxin B. This work reveals a unique lipid A modification and demonstrates a charge-based remodeling strategy shared between Gram-positive and Gram-negative organisms. PMID:22589301

  15. Identification and Characterization of the First Cholesterol-Dependent Cytolysins from Gram-Negative Bacteria

    PubMed Central

    Hotze, Eileen M.; Le, Huynh M.; Sieber, Jessica R.; Bruxvoort, Christina; McInerney, Michael J.

    2013-01-01

    The cholesterol-dependent cytolysins (CDCs) are pore-forming toxins that have been exclusively associated with a wide variety of bacterial pathogens and opportunistic pathogens from the Firmicutes and Actinobacteria, which exhibit a Gram-positive type of cell structure. We have characterized the first CDCs from Gram-negative bacterial species, which include Desulfobulbus propionicus type species Widdel 1981 (DSM 2032) (desulfolysin [DLY]) and Enterobacter lignolyticus (formerly Enterobacter cloacae) SCF1 (enterolysin [ELY]). The DLY and ELY primary structures show that they maintain the signature motifs of the CDCs but lack an obvious secretion signal. Recombinant, purified DLY (rDLY) and ELY (rELY) exhibited cholesterol-dependent binding and cytolytic activity and formed the typical large CDC membrane oligomeric pore complex. Unlike the CDCs from Gram-positive species, which are human- and animal-opportunistic pathogens, neither D. propionicus nor E. lignolyticus is known to be a pathogen or commensal of humans or animals: the habitats of both organisms appear to be restricted to anaerobic soils and/or sediments. These studies reveal for the first time that the genes for functional CDCs are present in bacterial species that exhibit a Gram-negative cell structure. These are also the first bacterial species containing a CDC gene that are not known to inhabit or cause disease in humans or animals, which suggests a role of these CDCs in the defense against eukaryote bacterial predators. PMID:23115036

  16. An O2-sensing stressosome from a Gram-negative bacterium

    PubMed Central

    Jia, Xin; Wang, Jian-bo; Rivera, Shannon; Duong, Duc; Weinert, Emily E.

    2016-01-01

    Bacteria have evolved numerous pathways to sense and respond to changing environmental conditions, including, within Gram-positive bacteria, the stressosome complex that regulates transcription of general stress response genes. However, the signalling molecules recognized by Gram-positive stressosomes have yet to be identified, hindering our understanding of the signal transduction mechanism within the complex. Furthermore, an analogous pathway has yet to be described in Gram-negative bacteria. Here we characterize a putative stressosome from the Gram-negative bacterium Vibrio brasiliensis. The sensor protein RsbR binds haem and exhibits ligand-dependent control of the stressosome complex activity. Oxygen binding to the haem decreases activity, while ferrous RsbR results in increased activity, suggesting that the V. brasiliensis stressosome may be activated when the bacterium enters anaerobic growth conditions. The findings provide a model system for investigating ligand-dependent signalling within stressosome complexes, as well as insights into potential pathways controlled by oxygen-dependent signalling within Vibrio species. PMID:27488264

  17. Positive predictive values of the International Classification of Diseases, 10th revision diagnoses of Gram-negative septicemia/sepsis and urosepsis for presence of Gram-negative bacteremia

    PubMed Central

    Søgaard, Kirstine Kobberøe; Thomsen, Reimar Wernich; Schønheyder, Henrik Carl; Søgaard, Mette

    2015-01-01

    Background Health care databases are a valuable resource for infectious disease epidemiology if diagnoses are accurately coded. We examined the ability of diagnostic coding to accurately identify Gram-negative bacteremia. Methods We randomly selected 100 patients among 1,703 patients recorded in the Danish National Patient Register with a diagnosis of either “septicemia/sepsis due to other Gram-negative organisms” (International Classification of Diseases, 10th revision [ICD-10] code A41.5) or “urosepsis” (ICD-10 code A41.9B) who had been admitted at Aalborg University Hospital, Denmark between 1994 and 2012. We estimated the positive predictive value (PPV) of these diagnoses for presence of Gram-negative bacteremia, using microbiological results from blood cultures as standard reference. Complementary clinical information was obtained from the medical records. Results Of the 100 patients registered with Gram-negative septicemia/sepsis or urosepsis, 72 had blood culture confirmed Gram-negative bacteremia, four patients had monomicrobial Gram-positive bacteremia, 21 patients had a negative blood culture, and three had no blood culture taken. The overall PPV of a blood culture confirmed Gram-negative bacteremia diagnosis was 72% (95% confidence interval [CI]: 62%–81%); for ICD-10 code A41.5 it was 86% (95% CI: 74%–94%) and for ICD-10 code A41.9B it was 55% (95% CI: 39%–70%). The highest PPV was achieved for diagnoses registered in the most recent calendar period (2009–2012) and for secondary discharge diagnoses. Conclusion Our findings indicated good agreement between ICD-10 code A41.5 “septicemia/sepsis due to other Gram-negative organisms” and Gram-negative bacteremia, whereas ICD-10 code A41.9B “urosepsis” was not suited for identification of Gram-negative bacteremia. PMID:25709502

  18. Trojan Horse Antibiotics—A Novel Way to Circumvent Gram-Negative Bacterial Resistance?

    PubMed Central

    Tillotson, Glenn S.

    2016-01-01

    Antibiotic resistance has been emerged as a major global health problem. In particular, gram-negative species pose a significant clinical challenge as bacteria develop or acquire more resistance mechanisms. Often, these bacteria possess multiple resistance mechanisms, thus nullifying most of the major classes of drugs. Novel approaches to this issue are urgently required. However, the challenges of developing new agents are immense. Introducing novel agents is fraught with hurdles, thus adapting known antibiotic classes by altering their chemical structure could be a way forward. A chemical addition to existing antibiotics known as a siderophore could be a solution to the gram-negative resistance issue. Siderophore molecules rely on the bacterial innate need for iron ions and thus can utilize a Trojan Horse approach to gain access to the bacterial cell. The current approaches to using this potential method are reviewed. PMID:27773991

  19. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria

    PubMed Central

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-01-01

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates. PMID:17405861

  20. Investigational Agents for the Treatment of Gram-Negative Bacterial Infections: A Reality Check.

    PubMed

    Bush, Karen

    2015-11-13

    Antibiotic-resistant Gram-negative bacteria are, arguably, the most difficult organisms to treat, with a limited number of new antibiotics in the development pipeline. Currently 24 new agents in phase 1, phase 2, or phase 3 clinical development were identified for the potential treatment of infections caused by Gram-negative bacteria. Of these agents, most are improved iterations of known antibiotic classes, including new aminoglycosides, β-lactams, β-lactamase inhibitors, quinolones, and tetracyclines with greater potency or a broader spectrum of activity. However, novel structures also appear, with host defense peptide mimetics, boronic acid, and bridged diazabicyclooctane β-lactamase inhibitors and unique bacterial topoisomerase inhibitors. Most of the new agents have received a Qualified Infectious Disease Product (QIDP) designation that may help to accelerate FDA drug approvals. Because resistance will inevitably arise to any antibacterial agent, it will be necessary to continue to identify additional new agents in the future. PMID:27623407

  1. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options.

    PubMed

    Jean, Shio-Shin; Lee, Wen-Sen; Lam, Carlos; Hsu, Chin-Wang; Chen, Ray-Jade; Hsueh, Po-Ren

    2015-01-01

    Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era.

  2. Rapid detection and differentiation of Gram-negative and Gram-positive pathogenic bacteria in urine using TaqMan probe.

    PubMed

    Shigemura, K; Shirakawa, T; Okada, H; Tanaka, K; Kamidono, S; Arakawa, S; Gotoh, A

    2005-03-01

    Urinary tract infection has been shown to be quite complicated and often difficult to diagnose and treat. For appropriate diagnosis, it is very important to find the correct Gram stain classification as soon as possible, especially in severe cases where there is a possibility of severe sepsis developing. In order to solve this problem, we developed a new method to detect a Gram stain of bacteria obtained from 1 ml of urine from urinary tract infection patients using a consensus real-time PCR protocol with a TaqMan probe that allows detection of spiked bacterial 16S DNA from urine. We extracted DNA of 55 urine samples obtained from patients with complicated urinary tract infection and at the same time performed urine culture testing. After DNA extraction, they were subjected to real-time PCR using a TaqMan discrimination system. Sixteen kinds of bacteria were cultured from the urine culture testing. Of these bacteria, eight were classified as Gram-positive bacteria and the other eight were classified as Gram-negative bacteria. Of the 55 samples, the TaqMan technique result showed 27 samples that were classified as Gram-negative bacteria; 11 samples that were Gram-positive, 10 that included both Gram-negative and -positive bacteria, and 7 that showed no amplification. The classifications of all samples corresponded exactly to those determined by urine culture testing. The present genotyping method of real-time PCR using a TaqMan discrimination system could be applied to the rapid detection of Gram-positive or -negative bacteria in urine of urinary tract infection patients. This assay can differentiate those species tested, but whether the presence of other (untested) bacteria could lead to misinterpretation is unknown. For further investigation, it is important to test other (untested) bacteria in the near future.

  3. Rapid detection and differentiation of Gram-negative and Gram-positive pathogenic bacteria in urine using TaqMan probe.

    PubMed

    Shigemura, K; Shirakawa, T; Okada, H; Tanaka, K; Kamidono, S; Arakawa, S; Gotoh, A

    2005-03-01

    Urinary tract infection has been shown to be quite complicated and often difficult to diagnose and treat. For appropriate diagnosis, it is very important to find the correct Gram stain classification as soon as possible, especially in severe cases where there is a possibility of severe sepsis developing. In order to solve this problem, we developed a new method to detect a Gram stain of bacteria obtained from 1 ml of urine from urinary tract infection patients using a consensus real-time PCR protocol with a TaqMan probe that allows detection of spiked bacterial 16S DNA from urine. We extracted DNA of 55 urine samples obtained from patients with complicated urinary tract infection and at the same time performed urine culture testing. After DNA extraction, they were subjected to real-time PCR using a TaqMan discrimination system. Sixteen kinds of bacteria were cultured from the urine culture testing. Of these bacteria, eight were classified as Gram-positive bacteria and the other eight were classified as Gram-negative bacteria. Of the 55 samples, the TaqMan technique result showed 27 samples that were classified as Gram-negative bacteria; 11 samples that were Gram-positive, 10 that included both Gram-negative and -positive bacteria, and 7 that showed no amplification. The classifications of all samples corresponded exactly to those determined by urine culture testing. The present genotyping method of real-time PCR using a TaqMan discrimination system could be applied to the rapid detection of Gram-positive or -negative bacteria in urine of urinary tract infection patients. This assay can differentiate those species tested, but whether the presence of other (untested) bacteria could lead to misinterpretation is unknown. For further investigation, it is important to test other (untested) bacteria in the near future. PMID:15750767

  4. Gram-negative infections in pediatric and neonatal intensive care units of Latin America.

    PubMed

    Berezin, Eitan N; Solórzano, Fortino

    2014-08-13

    In order to review the epidemiology of Gram-negative infections in the pediatric and neonatal intensive care units (PICUs and NICUs) of Latin America a systematic search of PubMed and targeted search of SciELO was performed to identify relevant articles published since 2005. Independent cohort data indicated that overall infection rates were higher in Latin American PICUs and NICUs versus developed countries (range, 5%-37% vs 6%-15%, respectively). Approximately one third of Latin American patients with an acquired PICU or NICU infection died, and crude mortality was higher among extremely low-birth-weight infants and those with an infection caused by Gram-negative bacteria. In studies reporting > 100 isolates, the frequency of Gram-negative pathogens varied from 31% (Colombia) to 63% (Mexico), with Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli the predominant pathogens in almost all countries, and Acinetobacter spp. and Serratia spp. isolated sporadically. The activity of quinolones and third-generation cephalosporins against P. aeruginosa, Acinetobacter spp., and Enterobacteria was seriously compromised, coincident with a high prevalence of circulating extended-spectrum β-lactamases. Furthermore, we identified two observational studies conducted in Chile and Brazil reporting infections by P. aeruginosa and Acinetobacter baumannii in PICUs, demonstrating resistance to carbapenems, and two outbreaks of carbapenem-resistant K. pneumoniae in Colombia and Brazil. The endemicity of multidrug-resistant Gram-negative infections in Latin American PICUs and NICUs is punctuated by intermittent clonal outbreaks. The problem may be alleviated by ensuring ICUs are less crowded, increasing staffing levels of better-trained health care personnel, and implementing antimicrobial stewardship and surveillance programs.

  5. Phenoxyethanol is effective topical therapy of gram-negative cellulitis in neutropenic patients.

    PubMed

    Mitchell, P; Powles, R; Rege, K; Treleaven, J; Catovsky, D; Mehta, J; Jameson, B

    1993-09-01

    In neutropenic patients cellulitis caused by Gram-negative organisms may prove difficult to control and cause considerable tissue damage. Phenoxyethanol has activity against a range of bacteria, including Pseudomonas aeruginosa, and is absorbed by intact skin. Three severely neutropenic patients are described in whom cellulitis failed to respond to appropriate intravenous antibiotics. However the topical application of phenoxyethanol solution gave prompt local control. This cheap and nontoxic agent may give dramatic improvement in this difficult clinical situation.

  6. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria.

    PubMed

    Klimentová, Jana; Stulík, Jiří

    2015-01-01

    Outer membrane vesicles secreted by gram-negative bacteria play an important role in bacterial physiology as well as in virulence and host-pathogen interaction. Isolated vesicles of some bacteria have also been studied for their immunomodulatory potential in the vaccine development. However, the production of vesicles in sufficient amount, purity and reproducibility remains a critical challenge for subsequent analyses in most bacteria. In the present review methods of production, isolation, purification and quantification of outer membrane vesicles are summarized and discussed.

  7. Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains.

    PubMed

    Paredes-Páliz, Karina I; Caviedes, Miguel A; Doukkali, Bouchra; Mateos-Naranjo, Enrique; Rodríguez-Llorente, Ignacio D; Pajuelo, Eloísa

    2016-10-01

    The aim of our work was the isolation and characterization of bacteria from the rhizosphere of Spartina maritima in the metal contaminated Odiel estuary (Huelva, SW Spain). From 25 strains, 84 % were identified as gram-positive, particularly Staphylococcus and Bacillus. Gram-negative bacteria were represented by Pantoea and Salmonella. Salt and heavy metal tolerance, metal bioabsorption, plant growth promoting (PGP) properties, and biofilm formation were investigated in the bacterial collection. Despite the higher abundance of gram-positive bacteria, gram-negative isolates displayed higher tolerance toward metal(loid)s (As, Cu, Zn, and Pb) and greater metal biosorption, as deduced from ICP-OES and SEM-EDX analyses. Besides, they exhibited better PGP properties, which were retained in the presence of metals and the ability to form biofilms. Gram-negative strains Pantoea agglomerans RSO6 and RSO7, together with gram-positive Bacillus aryabhattai RSO25, were selected for a bacterial consortium aimed to inoculate S. maritima plants in metal polluted estuaries for phytoremediation purposes. PMID:27417328

  8. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria.

    PubMed

    Torcato, Inês M; Huang, Yen-Hua; Franquelim, Henri G; Gaspar, Diana; Craik, David J; Castanho, Miguel A R B; Troeira Henriques, Sónia

    2013-03-01

    BP100 is a short cationic antimicrobial peptide with a mechanism of action dependent on peptide-lipid interactions and microbial surface charge neutralization. Although active against Gram-negative bacteria, BP100 is inactive against Gram-positive bacteria. In this study we report two newly designed BP100 analogues, RW-BP100 and R-BP100 that have the Tyr residue replaced with a Trp and/or the Lys residues replaced with an Arg. The new analogues in addition to being active against Gram-negative bacteria, possess activity against all tested Gram-positive bacteria. Mechanistic studies using atomic force microscopy, surface plasmon resonance and fluorescence methodologies reveal that the antibacterial efficiency follows the affinity for bacterial membrane. The studies suggest that the activity of BP100 and its analogues against Gram-negative bacteria is mainly driven by electrostatic interactions with the lipopolysaccharide layer and is followed by binding to and disruption of the inner membrane, whereas activity against Gram-positive bacteria, in addition to electrostatic attraction to the exposed lipoteichoic acids, requires an ability to more deeply insert in the membrane environment, which is favoured with Arg residues and is facilitated in the presence of a Trp residue. Knowledge on the mechanism of action of these antimicrobial peptides provides information that assists in the design of antimicrobials with higher efficacy and broader spectra of action, but also on the design of peptides with higher specificity if required. PMID:23246973

  9. Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains.

    PubMed

    Paredes-Páliz, Karina I; Caviedes, Miguel A; Doukkali, Bouchra; Mateos-Naranjo, Enrique; Rodríguez-Llorente, Ignacio D; Pajuelo, Eloísa

    2016-10-01

    The aim of our work was the isolation and characterization of bacteria from the rhizosphere of Spartina maritima in the metal contaminated Odiel estuary (Huelva, SW Spain). From 25 strains, 84 % were identified as gram-positive, particularly Staphylococcus and Bacillus. Gram-negative bacteria were represented by Pantoea and Salmonella. Salt and heavy metal tolerance, metal bioabsorption, plant growth promoting (PGP) properties, and biofilm formation were investigated in the bacterial collection. Despite the higher abundance of gram-positive bacteria, gram-negative isolates displayed higher tolerance toward metal(loid)s (As, Cu, Zn, and Pb) and greater metal biosorption, as deduced from ICP-OES and SEM-EDX analyses. Besides, they exhibited better PGP properties, which were retained in the presence of metals and the ability to form biofilms. Gram-negative strains Pantoea agglomerans RSO6 and RSO7, together with gram-positive Bacillus aryabhattai RSO25, were selected for a bacterial consortium aimed to inoculate S. maritima plants in metal polluted estuaries for phytoremediation purposes.

  10. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC.

    PubMed

    Sharma, Ronesh; Dehzangi, Abdollah; Lyons, James; Paliwal, Kuldip; Tsunoda, Tatsuhiko; Sharma, Alok

    2015-12-01

    In this study, we used structural and evolutionary based features to represent the sequences of gram-positive and gram-negative subcellular localizations. To do this, we proposed a normalization method to construct a normalize Position Specific Scoring Matrix (PSSM) using the information from original PSSM. To investigate the effectiveness of the proposed method we compute feature vectors from normalize PSSM and by applying support vector machine (SVM) and naïve Bayes classifier, respectively, we compared achieved results with the previously reported results. We also computed features from original PSSM and normalized PSSM and compared their results. The archived results show enhancement in gram-positive and gram-negative subcellular localizations. Evaluating localization for each feature, our results indicate that employing SVM and concatenating features (amino acid composition feature, Dubchak feature (physicochemical-based features), normalized PSSM based auto-covariance feature and normalized PSSM based bigram feature) have higher accuracy while employing naïve Bayes classifier with normalized PSSM based auto-covariance feature proves to have high sensitivity for both benchmarks. Our reported results in terms of overall locative accuracy is 84.8% and overall absolute accuracy is 85.16% for gram-positive dataset; and, for gram-negative dataset, overall locative accuracy is 85.4% and overall absolute accuracy is 86.3%.

  11. Differential toxicity of Al2O3 particles on Gram-positive and Gram-negative sediment bacterial isolates from freshwater.

    PubMed

    Bhuvaneshwari, M; Bairoliya, Sakcham; Parashar, Abhinav; Chandrasekaran, N; Mukherjee, Amitava

    2016-06-01

    The current study was aimed to explore the differential effects on Gram-positive and Gram-negative freshwater sediment bacterial isolates upon exposure to nano-particles and bulk particles of Al2O3 at low concentrations (0.25, 0.5, and 1 mg/L). The Gram-negative Pseudomonas aeruginosa was more susceptible to both the nano-forms and bulk forms than the Gram-positive Bacillus altitudinis. The generation of reactive oxygen species (ROS) and release of lipopolysaccharide due to membrane damage were dependent on the dose of nano-Al2O3. The Fourier transform infrared spectroscopy (FT-IR) studies confirmed the attachment of nano-Al2O3 on bacterial cells, which may lead to subsequent changes in the cell membrane composition and integrity. Internalization of nano-Al2O3 was estimated to be more for P. aeruginosa than for B. altitudinis cells. As a role of defense mechanism, the biofilm formation and production of extracellular polymeric substances (EPSs; polysaccharide and protein) were increased with respect to the concentration of toxicant. Nano-Al2O3 was estimated to cause more DNA damage than the bulk particles in both Gram-positive and Gram-negative bacterial strains.

  12. Occurrence of gram-negative bacteria in hens' eggs depending on their source and storage conditions.

    PubMed

    Stepień-Pyśniak, D

    2010-01-01

    The aim of this study was to analyse the qualitative composition of Gram-negative microbes, mainly of the family Enterobacteriaceae, including pathogenic bacteria such as Salmonella, in the albumens and yolks and on the shells of hens' eggs, depending on their source and on the temperature and duration of their storage. A total of 375 table eggs were studied, from a large-scale poultry farm, a small-scale poultry farm and a supermarket. Each group was divided into 5 subgroups according to the temperature and duration of their storage during the study. Two serotypes of bacteria of the genus Salmonella were identified: S. Enteritidis and S. Arizonae. Strains of Salmonella spp. were also isolated. Apart from Salmonella and Escherichia coli, among the most frequently isolated bacteria of the family Enterobacteriaceae were Enterobacter spp., Klebsiella spp. and Citrobacter freundii. Qualitative analysis of the bacterial microflora of the eggs also showed the presence of other Gram negative bacteria, including Acinetobacter spp., Pseudomonas spp., Tatumella ptyseos, Providencia stuartii, Serratia liquefaciens, Flavimonas oryzihabitans, Vibrio metschnikovii, Leclercia adecarboxylata, Kluyvera spp., Rahnella aquatilis, Proteus mirabilis, and Achromobacter spp. The study demonstrated that the conditions applied, i.e., the temperature and duration of storage, did not significantly influence the prevalence of particular species of Gram-negative bacteria in the eggs. However, based on the analysis of contamination of eggs with Salmonella depending on their source, it can be concluded that the system in which the hens are housed affects the risk of contamination of eggs with these pathogens.

  13. Antibiotic resistance patterns of gram-negative bacteria isolated from environmental sources.

    PubMed Central

    Kelch, W J; Lee, J S

    1978-01-01

    A total of 2,445 gram-negative bacteria belonging to fecal coliform, Pseudomonas, Moraxella, Acinetobacter, and Flavobacterium-Cytophaga groups were isolated from the rivers and bay of Tillamook, Oregon, and their resistances to chloramphenicol (25 microgram/ml), streptomycin (10 microgram/ml), ampicillin (10 microgram/ml), tetracycline (25 microgram/ml), chlortetracycline (25 microgram/ml), oxytetracycline (25 microgram/ml), neomycin (50 microgram/ml), nitrofurazone (12.5 microgram/ml), nalidixic acid (25 microgram/ml), kanamycin (25 microgram/ml), and penicillin G (10 IU/ml) were determined. Among fecal coliforms the bay isolates showed greater resistance to antibiotics than those from tributaries or surface runoff. No such well-defined difference was found among other bacterial groups. The antibiotic resistance patterns of gram-negative bacteria from different sources correlated well, perhaps indicating their common origin. The antibiotic resistance patterns of gram-negative bacteria of different general also correlated well, perhaps indicating that bacteria which share a common environment also share a common mode for developing antibiotic resistance. PMID:727777

  14. Exogenous lytic activity of SPN9CC endolysin against gram-negative bacteria.

    PubMed

    Lim, Jeong-A; Shin, Hakdong; Heu, Sunggi; Ryu, Sangryeol

    2014-06-28

    Concerns over drug-resistant bacteria have stimulated interest in developing alternative methods to control bacterial infections. Endolysin, a phage-encoded enzyme that breaks down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle, is reported to be effective for the control of bacterial pathogenic bacteria. Bioinformatic analysis of the SPN9CC bacteriophage genome revealed a gene that encodes an endolysin with a domain structure similar to those of the endolysins produced by the P1 and P22 coliphages. The SPN9CC endolysin was purified with a C-terminal oligo-histidine tag. The endolysin was relatively stable and active over a broad temperature range (from 24°C to 65°C). It showed maximal activity at 50°C, and its optimum pH range was from pH 7.5 to 8.5. The SPN9CC endolysin showed antimicrobial activity against only gram-negative bacteria and functioned by cutting the glycosidic bond of peptidoglycan. Interestingly, the SPN9CC endolysin could lyse intact gram-negative bacteria in the absence of EDTA as an outer membrane permeabilizer. The exogenous lytic activity of the SPN9CC endolysin makes it a potential therapeutic agent against gram-negative bacteria. PMID:24690638

  15. [Bioactive effectiveness of selected disinfective agents on Gram-negative bacilli isolated from hospital environment].

    PubMed

    Pancer, Katarzyna W; Laudy, Agnieszka E; Mikulak, Ewa; Gliniewicz, Aleksandra; Staniszewska, Monika; Stypułkowska-Misiurewicz, Hanna

    2004-01-01

    In our study the susceptibility (MIC) of chosen 21 strains of Gram-negative bacilli isolated in hospitals to disinfectant agents (glucoprotamine, sodium dichloroisocyanurate, potassium persulfate), the effectiveness of these disinfectants against selected bacteria and their effectiveness to biofilm forming bacteria was determined. It was found that glucoprotamine showed the highest activity to Gram-negative bacteria. Obtained MIC values for glucoprotamine (except 1 strain of S. marcescens) were 16-64 times lower that MICs for sodium dichloroisocyanurate and 4-32 times lower that MICs for potassium persulfate. The effectiveness of disinfectants containing potassium persulfate or sodium dichloroisocyanurate was 100% tested by carrier method. Glucoprotamine was ineffective against 2 out of 9 strains (18%): E. cloacae and S. marcescens. It was found that disinfectants were more effective against Gram-negative bacteria in carrier methods than for biofilm forming bacteria. 86% of bacteria growing 5 days on a catheter were resistant to working solution of disinfectant containing glucoprotamine (5200 mg/L) or potassium persulfate (4300 mg/L); 66.6% of tested bacteria were resistant to working solution of sodium dichloroisocyanurate (1795.2 mg/L). In our study the highest effectiveness to biofilm forming bacteria showed disinfectant with sodium dichloroisocyanurate, the lowest--with glucoprotamine. PMID:15810507

  16. Polymyxin B nephrotoxicity and efficacy against nosocomial infections caused by multiresistant gram-negative bacteria.

    PubMed

    Ouderkirk, John P; Nord, Jill A; Turett, Glenn S; Kislak, Jay Ward

    2003-08-01

    Reported rates of nephrotoxicity associated with the systemic use of polymyxins have varied widely. The emergence of infections due to multiresistant gram-negative bacteria has necessitated the use of systemic polymyxin B once again for the treatment of such infections. We retrospectively investigated the rate of nephrotoxicity in patients receiving polymyxin B parenterally for the treatment of infections caused by multiresistant gram-negative bacteria from October 1999 to September 2000. Demographic and clinical information was obtained for 60 patients. Outcome measures of interest were renal toxicity and clinical and microbiologic efficacy. Renal failure developed in 14% of the patients, all of whom had normal baseline renal function. Development of renal failure was independent of the daily and cumulative doses of polymyxin B and the length of treatment but was significantly associated with older age (76 versus 59 years, P = 0.02). The overall mortality was 20%, but it increased to 57% in those who developed renal failure. The organism was cleared in 88% of the patients from whom repeat specimens were obtained. The use of polymyxin B to treat multiresistant gram-negative infections was highly effective and associated with a lower rate of nephrotoxicity than previously described.

  17. The growing threat of multidrug-resistant Gram-negative infections in patients with hematologic malignancies.

    PubMed

    Baker, Thomas M; Satlin, Michael J

    2016-10-01

    Prolonged neutropenia and chemotherapy-induced mucositis render patients with hematologic malignancies highly vulnerable to Gram-negative bacteremia. Unfortunately, multidrug-resistant (MDR) Gram-negative bacteria are increasingly encountered globally, and current guidelines for empirical antibiotic coverage in these patients may not adequately treat these bacteria. This expansion of resistance, coupled with traditional culturing techniques requiring 2-4 days for bacterial identification and antimicrobial susceptibility results, have grave implications for these immunocompromised hosts. This review characterizes the epidemiology, risk factors, resistance mechanisms, recommended treatments, and outcomes of the MDR Gram-negative bacteria that commonly cause infections in patients with hematologic malignancies. We also examine the infection prevention strategies in hematology patients, such as infection control practices, antimicrobial stewardship, and targeted decolonization. Finally, we assess the strategies to improve outcomes of the infected patients, including gastrointestinal screening to guide empirical antibiotic therapy, new rapid diagnostic tools for expeditious identification of MDR pathogens, and use of two new antimicrobial agents, ceftolozane/tazobactam and ceftazidime/avibactam. PMID:27339405

  18. Microconductometric immunosensor for label-free and sensitive detection of Gram-negative bacteria.

    PubMed

    El Ichi, Sarra; Leon, Fanny; Vossier, Ludivine; Marchandin, Helene; Errachid, Abdelhamid; Coste, Joliette; Jaffrezic-Renault, Nicole; Fournier-Wirth, Chantal

    2014-04-15

    Blood safety is a global health goal. In developed countries, bacterial contamination of platelet concentrates is the highest infectious risk in transfusion despite the current preventive strategies. We aimed to develop a conductometric biosensor for the generic, rapid and sensitive detection of Gram-negative bacteria. Our strategy is based on immunosensors: addressable magnetic nanoparticles coupled with anti-LPS antibodies were used for the generic capture of Gram-negative bacteria. Bacterial capture was characterized by impedancemetric and microscopic measurements. The results obtained with conductometric measurements allowed real-time, sensitive detection of Escherichia coli or Serratia marcescens cultures from 1 to 10(3) CFU mL(-1). The ability of the immunosensor to detect Gram negative bacteria was also tested on clinically relevant strains. The conductometric immunosensor allowed the direct detection of 10-10(3) CFU mL(-1) of Pseudomonas aeruginosa and Acinetobacter baumannii strains that were undetectable using standard immunoblot methods. Results showed that the conductometric response was not inhibited in 1% serum.

  19. Nephelometric determination of turgor pressure in growing gram-negative bacteria.

    PubMed

    Koch, A L; Pinette, M F

    1987-08-01

    Gas vesicles were used as probes to measure turgor pressure in Ancylobacter aquaticus. The externally applied pressure required to collapse the vesicles in turgid cells was compared with that in cells whose turgor had been partially or totally removed by adding an impermeable solute to the external medium. Since gram-negative bacteria do not have rigid cell walls, plasmolysis is not expected to occur in the same way as it does in the cells of higher plants. Bacterial cells shrink considerably before plasmolysis occurs in hyperosmotic media. The increase in pressure required to collapse 50% of the vesicles as external osmotic pressure increases is less than predicted from the degree of osmotically inducible shrinkage seen with this organism or with another gram-negative bacterium. This feature complicates the calculation of the turgor pressure as the difference between the collapse pressure of vesicles with and without sucrose present in the medium. We propose a new model of the relationship between turgor pressure and the cell wall stress in gram-negative bacteria based on the behavior of an ideal elastic container when the pressure differential across its surface is decreased. We developed a new curve-fitting technique for evaluating bacterial turgor pressure measurements.

  20. Real-time PCR for detection and differentiation of gram-positive and gram-negative bacteria.

    PubMed

    Klaschik, Sven; Lehmann, Lutz E; Raadts, Ansgar; Book, Malte; Hoeft, Andreas; Stuber, Frank

    2002-11-01

    We developed a consensus real-time PCR protocol that enables us to detect spiked bacterial 16S DNA from specimens such as water, urine, plasma, and sputum. The technique allows an exact Gram stain classification of 17 intensive care unit-relevant bacteria by means of fluorescence hybridization probes. All tested bacteria were identified correctly, and none gave a false-positive signal with the opposite Gram probe.

  1. Lethal Gram-Negative Bacterial Superinfection in Guinea Pigs Given Bacitracin

    PubMed Central

    Farrar, W. Edmund; Kent, Thomas H.; Elliott, Van B.

    1966-01-01

    Farrar, W. Edmund, Jr. (Walter Reed Army Institute of Research, Washington, D.C.), Thomas H. Kent, and Van B. Elliott. Lethal gram-negative bacterial superinfection in guinea pigs given bacitracin. J. Bacteriol. 92:496–501. 1966.—Oral administration of a single dose of bacitracin (either 2,000 or 10,000 units) was lethal to more than 80% of guinea pigs. Within the first 12 hr, there was a 2,000-fold fall in the number of gram-positive organisms in the cecum. An increase in the number of coliform bacteria in the cecum was demonstrable within 6 hr, and, by 48 hr, these organisms had increased from the normal level of less than 100 per gram to approximately 1 billion per gram. The changes in intestinal bacterial flora were associated with development of a severe cecitis, mild ileitis, and acute regional lymphadenitis. Bacteremia, primarily due to coliform bacteria, was demonstrated in approximately 40% of the animals killed between 72 and 96 hr after administration of bacitracin. Development of this disease syndrome was suppressed by the administration of neomycin and polymyxin B, nonabsorbable antibiotics effective against coliform bacteria. The lethal disease produced by bacitracin in the guinea pig is similar to that produced by penicillin. Images PMID:16562140

  2. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    PubMed Central

    Li, Ruolin; Wang, Junli; Wang, Xinfeng; Wang, Maoshui

    2016-01-01

    OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1) patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2) patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01). The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01) at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%); a specificity of 73.7% (56.9-86.6%); positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the pleural space

  3. Comparison anti-bacterial effect of silver/polystyrene nanocomposites on gram negative and positive bacteria

    NASA Astrophysics Data System (ADS)

    Kazemi, Akhtarolmolook; Raftari, Maryam; Tollabimazraehno, Sajjad; Mahdavi, Mohammad; Irajizad, Azam

    2012-02-01

    Silver nanoparticles/polystyrene nanocomposites were prepared via casting the solution of polystyrene in a mixture of carbon tetrachloride and acetone containing silver nanoparticles. Colloidal silver nanoparticles in acetone were synthesized by pulsed laser ablation (PLA) of pure bulk silver. Casting the colloidal silver nanoparticles in a solution of polystyrene results in a yellowish transparent polymeric sheet. TEM images show rather spherical nanoparticles with mean diameter of 5 nm. Ag/PS nanocomposites were characterized by UV-VIS spectroscopy. In this study, we also investigated the antimicrobial activity of silver nanocomposites against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) as a model for Gram negative and Gram positive bacteria. Antibacterial tests were performed against E. coli and S.aureus, on LB agar plates containing different amount of nanoparticles. Our results showed at all these concentrations, the nanoparticles caused a growth delay of E. coli, increasing the concentration of nanoparticles increased this growth delay.

  4. The ability of electrochemical oxidation with a BDD anode to inactivate Gram-negative and Gram-positive bacteria in low conductivity sulfate medium.

    PubMed

    Bruguera-Casamada, Carmina; Sirés, Ignasi; Prieto, María J; Brillas, Enric; Araujo, Rosa M

    2016-11-01

    The disinfection of 100 mL of synthetic water containing 7 mM Na2SO4 with 10(6) CFU mL(-1) of either Gram-negative or Gram-positive bacteria has been studied by electrochemical oxidation. The electrolytic cell was a stirred tank reactor equipped with a boron-doped diamond (BDD) anode and a stainless steel cathode and the trials were performed at acidic and neutral pH, at 33.3 mA cm(-2) and 25 °C. Reactive oxygen species, pre-eminently hydroxyl radicals, were efficiently produced in both media from water oxidation at the BDD anode and the bacteria concentration was reduced by ≥ 5 log units after 60 min of electrolysis, thus constituting a good chlorine-free disinfection treatment. All the inactivation kinetics were described by a logistic model, with no significant statistical differences between acidic and neutral suspensions. The electrochemical disinfection with BDD was very effective for Gram-negative bacilli like Escherichia coli and Pseudomonas aeruginosa and Gram-positive ones like Bacillus atrophaeus, whereas the Gram-positive cocci Staphylococcus aureus and Enterococcus hirae were more resistant. Thus, the latter organisms are a better choice than E. coli as process indicators. Scanning electron microscopy highlighted a transition from initial cells with standard morphology supported on clean filters to inactivated cells with a highly altered morphology lying on dirty filters with plenty of cellular debris. Larger damage was observed for Gram-negative cells compared to Gram-positive ones. The inactivation effect could then be related to the chemical composition of the outer layers of the cell structure along with the modification of the transmembrane potentials upon current passage. PMID:27567151

  5. The ability of electrochemical oxidation with a BDD anode to inactivate Gram-negative and Gram-positive bacteria in low conductivity sulfate medium.

    PubMed

    Bruguera-Casamada, Carmina; Sirés, Ignasi; Prieto, María J; Brillas, Enric; Araujo, Rosa M

    2016-11-01

    The disinfection of 100 mL of synthetic water containing 7 mM Na2SO4 with 10(6) CFU mL(-1) of either Gram-negative or Gram-positive bacteria has been studied by electrochemical oxidation. The electrolytic cell was a stirred tank reactor equipped with a boron-doped diamond (BDD) anode and a stainless steel cathode and the trials were performed at acidic and neutral pH, at 33.3 mA cm(-2) and 25 °C. Reactive oxygen species, pre-eminently hydroxyl radicals, were efficiently produced in both media from water oxidation at the BDD anode and the bacteria concentration was reduced by ≥ 5 log units after 60 min of electrolysis, thus constituting a good chlorine-free disinfection treatment. All the inactivation kinetics were described by a logistic model, with no significant statistical differences between acidic and neutral suspensions. The electrochemical disinfection with BDD was very effective for Gram-negative bacilli like Escherichia coli and Pseudomonas aeruginosa and Gram-positive ones like Bacillus atrophaeus, whereas the Gram-positive cocci Staphylococcus aureus and Enterococcus hirae were more resistant. Thus, the latter organisms are a better choice than E. coli as process indicators. Scanning electron microscopy highlighted a transition from initial cells with standard morphology supported on clean filters to inactivated cells with a highly altered morphology lying on dirty filters with plenty of cellular debris. Larger damage was observed for Gram-negative cells compared to Gram-positive ones. The inactivation effect could then be related to the chemical composition of the outer layers of the cell structure along with the modification of the transmembrane potentials upon current passage.

  6. Chimaereicella alkaliphila gen. nov., sp. nov., a Gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater.

    PubMed

    Tiago, Igor; Mendes, Vítor; Pires, Carlos; Morais, Paula V; Veríssimo, António

    2006-03-01

    A Gram-negative bacterium designated AC-74(T) was isolated from a highly alkaline groundwater environment (pH 11.4). This organism formed rod-shaped cells, is strictly aerobic, catalase and oxidase positive, tolerates up to 3.0% NaCl, has an optimum growth temperature of 30 degrees C, but no growth occurs at 10 or 40 degrees C, and an optimum pH value of 8.0, but no growth occurs at pH 7.0 or 11.3. The predominant fatty acids are iso-15:0, iso-17:1 omega9c and 16:1 omega7c and or iso-15:2OH. The G+C content of DNA was 43.5mol%. The phylogenetic analyses of the sequences of the 16s RNA genes indicated that strain AC-74(T) belongs to the family "Flexibacteriaceae" and is phylogenetically equidistant ( approximately 94.5%) from the majority of the species of the genus Algoriphagus and from the genus Hongiella. Based on the phylogenetic analyses and distinct phenotypic characteristics, we are of the opinion that strain AC-74(T), represents a new species of the novel genus for which we propose the name Chimaereicella alkaliphila gen. nov., sp. nov.

  7. Identification of Gram-Negative Bacteria and Genetic Resistance Determinants from Positive Blood Culture Broths by Use of the Verigene Gram-Negative Blood Culture Multiplex Microarray-Based Molecular Assay

    PubMed Central

    Ledeboer, Nathan A.; Lopansri, Bert K.; Dhiman, Neelam; Cavagnolo, Robert; Carroll, Karen C.; Granato, Paul; Thomson, Richard; Butler-Wu, Susan M.; Berger, Heather; Samuel, Linoj; Pancholi, Preeti; Swyers, Lettie; Hansen, Glen T.; Tran, Nam K.; Polage, Christopher R.; Thomson, Kenneth S.; Hanson, Nancy D.; Winegar, Richard

    2015-01-01

    Bloodstream infection is a serious condition associated with significant morbidity and mortality. The outcome of these infections can be positively affected by the early implementation of effective antibiotic therapy based on the identification of the infecting organism and genetic markers associated with antibiotic resistance. In this study, we evaluated the microarray-based Verigene Gram-negative blood culture (BC-GN) assay in the identification of 8 genus or species targets and 6 genetic resistance determinants in positive blood culture broths. A total of 1,847 blood cultures containing Gram-negative organisms were tested using the BC-GN assay. This comprised 729 prospective fresh, 781 prospective or retrospective frozen, and 337 simulated cultures representing 7 types of aerobic culture media. The results were compared to those with standard bacterial culture and biochemical identification with nucleic acid sequence confirmation of the resistance determinants. Among monomicrobial cultures, the positive percent agreement (PPA) of the BC-GN assay with the reference method was as follows; Escherichia coli, 100%; Klebsiella pneumoniae, 92.9%; Klebsiella oxytoca, 95.5%; Enterobacter spp., 99.3%; Pseudomonas aeruginosa, 98.9%; Proteus spp., 100%; Acinetobacter spp., 98.4%; and Citrobacter spp., 100%. All organism identification targets demonstrated >99.5% negative percent agreement (NPA) with the reference method. Of note, 25/26 cultures containing K. pneumoniae that were reported as not detected by the BC-GN assay were subsequently identified as Klebsiella variicola. The PPA for identification of resistance determinants was as follows; blaCTX-M, 98.9%; blaKPC, 100%; blaNDM, 96.2%; blaOXA, 94.3%; blaVIM, 100%; and blaIMP, 100%. All resistance determinant targets demonstrated >99.9% NPA. Among polymicrobial specimens, the BC-GN assay correctly identified at least one organism in 95.4% of the broths and correctly identified all organisms present in 54.5% of the broths

  8. Identification of Gram-Negative Bacteria and Genetic Resistance Determinants from Positive Blood Culture Broths by Use of the Verigene Gram-Negative Blood Culture Multiplex Microarray-Based Molecular Assay.

    PubMed

    Ledeboer, Nathan A; Lopansri, Bert K; Dhiman, Neelam; Cavagnolo, Robert; Carroll, Karen C; Granato, Paul; Thomson, Richard; Butler-Wu, Susan M; Berger, Heather; Samuel, Linoj; Pancholi, Preeti; Swyers, Lettie; Hansen, Glen T; Tran, Nam K; Polage, Christopher R; Thomson, Kenneth S; Hanson, Nancy D; Winegar, Richard; Buchan, Blake W

    2015-08-01

    Bloodstream infection is a serious condition associated with significant morbidity and mortality. The outcome of these infections can be positively affected by the early implementation of effective antibiotic therapy based on the identification of the infecting organism and genetic markers associated with antibiotic resistance. In this study, we evaluated the microarray-based Verigene Gram-negative blood culture (BC-GN) assay in the identification of 8 genus or species targets and 6 genetic resistance determinants in positive blood culture broths. A total of 1,847 blood cultures containing Gram-negative organisms were tested using the BC-GN assay. This comprised 729 prospective fresh, 781 prospective or retrospective frozen, and 337 simulated cultures representing 7 types of aerobic culture media. The results were compared to those with standard bacterial culture and biochemical identification with nucleic acid sequence confirmation of the resistance determinants. Among monomicrobial cultures, the positive percent agreement (PPA) of the BC-GN assay with the reference method was as follows; Escherichia coli, 100%; Klebsiella pneumoniae, 92.9%; Klebsiella oxytoca, 95.5%; Enterobacter spp., 99.3%; Pseudomonas aeruginosa, 98.9%; Proteus spp., 100%; Acinetobacter spp., 98.4%; and Citrobacter spp., 100%. All organism identification targets demonstrated >99.5% negative percent agreement (NPA) with the reference method. Of note, 25/26 cultures containing K. pneumoniae that were reported as not detected by the BC-GN assay were subsequently identified as Klebsiella variicola. The PPA for identification of resistance determinants was as follows; blaCTX-M, 98.9%; blaKPC, 100%; blaNDM, 96.2%; blaOXA, 94.3%; blaVIM, 100%; and blaIMP, 100%. All resistance determinant targets demonstrated >99.9% NPA. Among polymicrobial specimens, the BC-GN assay correctly identified at least one organism in 95.4% of the broths and correctly identified all organisms present in 54.5% of the broths

  9. Identification of Gram-Negative Bacteria and Genetic Resistance Determinants from Positive Blood Culture Broths by Use of the Verigene Gram-Negative Blood Culture Multiplex Microarray-Based Molecular Assay.

    PubMed

    Ledeboer, Nathan A; Lopansri, Bert K; Dhiman, Neelam; Cavagnolo, Robert; Carroll, Karen C; Granato, Paul; Thomson, Richard; Butler-Wu, Susan M; Berger, Heather; Samuel, Linoj; Pancholi, Preeti; Swyers, Lettie; Hansen, Glen T; Tran, Nam K; Polage, Christopher R; Thomson, Kenneth S; Hanson, Nancy D; Winegar, Richard; Buchan, Blake W

    2015-08-01

    Bloodstream infection is a serious condition associated with significant morbidity and mortality. The outcome of these infections can be positively affected by the early implementation of effective antibiotic therapy based on the identification of the infecting organism and genetic markers associated with antibiotic resistance. In this study, we evaluated the microarray-based Verigene Gram-negative blood culture (BC-GN) assay in the identification of 8 genus or species targets and 6 genetic resistance determinants in positive blood culture broths. A total of 1,847 blood cultures containing Gram-negative organisms were tested using the BC-GN assay. This comprised 729 prospective fresh, 781 prospective or retrospective frozen, and 337 simulated cultures representing 7 types of aerobic culture media. The results were compared to those with standard bacterial culture and biochemical identification with nucleic acid sequence confirmation of the resistance determinants. Among monomicrobial cultures, the positive percent agreement (PPA) of the BC-GN assay with the reference method was as follows; Escherichia coli, 100%; Klebsiella pneumoniae, 92.9%; Klebsiella oxytoca, 95.5%; Enterobacter spp., 99.3%; Pseudomonas aeruginosa, 98.9%; Proteus spp., 100%; Acinetobacter spp., 98.4%; and Citrobacter spp., 100%. All organism identification targets demonstrated >99.5% negative percent agreement (NPA) with the reference method. Of note, 25/26 cultures containing K. pneumoniae that were reported as not detected by the BC-GN assay were subsequently identified as Klebsiella variicola. The PPA for identification of resistance determinants was as follows; blaCTX-M, 98.9%; blaKPC, 100%; blaNDM, 96.2%; blaOXA, 94.3%; blaVIM, 100%; and blaIMP, 100%. All resistance determinant targets demonstrated >99.9% NPA. Among polymicrobial specimens, the BC-GN assay correctly identified at least one organism in 95.4% of the broths and correctly identified all organisms present in 54.5% of the broths

  10. Teaching ‘Old’ Polymyxins New Tricks: New-Generation Lipopeptides Targeting Gram-Negative ‘Superbugs’

    PubMed Central

    2015-01-01

    The antimicrobial lipopeptides polymyxin B and E (colistin) are being used as a ‘last-line’ therapy for infections caused by multidrug-resistant Gram-negative pathogens. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections caused by the Gram-negative ‘superbugs’. This report details the structure–activity relationships (SAR) based design, in toto synthesis, and preclinical evaluation of a series of novel polymyxin lipopeptides with better antibacterial activity against polymyxin-resistant Gram-negative bacteria. PMID:24601489

  11. Role of Amphiphilicity in the Design of Synthetic Mimics of Antimicrobial Peptides with Gram-Negative Activity

    PubMed Central

    2013-01-01

    Two new series of aryl SMAMPs (synthetic mimics of antimicrobial peptides) with facially amphiphilic (FA) and disrupted amphiphilic (DA) topologies were designed and synthesized to directly assess the role of amphiphilicity on their antimicrobial activity against Gram-positive and Gram-negative bacteria in closely related structures. The FA SMAMPs displayed broad spectrum antimicrobial activity against both Gram-positive S. aureus and Gram-negative E. coli, whereas the DA SMAMPs, which contained a polar amide bond in between the hydrophobic moieties, only exhibited activity toward S. aureus with increasing hydrophobicity. The integy moment (IW) was used to quantify the amphiphilicity of the SMAMPs and confirmed that it is critical for the design of SMAMPs with Gram-negative activity. PMID:23814644

  12. Outer-Inner Membrane Vesicles Naturally Secreted by Gram-Negative Pathogenic Bacteria

    PubMed Central

    Pérez-Cruz, Carla; Delgado, Lidia; López-Iglesias, Carmen; Mercade, Elena

    2015-01-01

    Outer-inner membrane vesicles (O-IMVs) were recently described as a new type of membrane vesicle secreted by the Antarctic bacterium Shewanella vesiculosa M7T. Their formation is characterized by the protrusion of both outer and plasma membranes, which pulls cytoplasmic components into the vesicles. To demonstrate that this is not a singular phenomenon in a bacterium occurring in an extreme environment, the identification of O-IMVs in pathogenic bacteria was undertaken. With this aim, a structural study by Transmission Electron Microscopy (TEM) and Cryo-transmission electron microscopy (Cryo-TEM) was carried out, confirming that O-IMVs are also secreted by Gram-negative pathogenic bacteria such as Neisseria gonorrhoeae, Pseudomonas aeruginosa PAO1 and Acinetobacter baumannii AB41, in which they represent between 0.23% and 1.2% of total vesicles produced. DNA and ATP, which are components solely found in the cell cytoplasm, were identified within membrane vesicles of these strains. The presence of DNA inside the O-IMVs produced by N. gonorrhoeae was confirmed by gold DNA immunolabeling with a specific monoclonal IgM against double-stranded DNA. A proteomic analysis of N. gonorrhoeae-derived membrane vesicles identified proteins from the cytoplasm and plasma membrane. This confirmation of O-IMV extends the hitherto uniform definition of membrane vesicles in Gram-negative bacteria and explains the presence of components in membrane vesicles such as DNA, cytoplasmic and inner membrane proteins, as well as ATP, detected for the first time. The production of these O-IMVs by pathogenic Gram-negative bacteria opens up new areas of study related to their involvement in lateral gene transfer, the transfer of cytoplasmic proteins, as well as the functionality and role of ATP detected in these new vesicles. PMID:25581302

  13. Isolation and chemical characterization of lipid A from gram-negative bacteria.

    PubMed

    Henderson, Jeremy C; O'Brien, John P; Brodbelt, Jennifer S; Trent, M Stephen

    2013-09-16

    Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate

  14. Occurrence of gram-negative bacteria in hens' eggs depending on their source and storage conditions.

    PubMed

    Stepień-Pyśniak, D

    2010-01-01

    The aim of this study was to analyse the qualitative composition of Gram-negative microbes, mainly of the family Enterobacteriaceae, including pathogenic bacteria such as Salmonella, in the albumens and yolks and on the shells of hens' eggs, depending on their source and on the temperature and duration of their storage. A total of 375 table eggs were studied, from a large-scale poultry farm, a small-scale poultry farm and a supermarket. Each group was divided into 5 subgroups according to the temperature and duration of their storage during the study. Two serotypes of bacteria of the genus Salmonella were identified: S. Enteritidis and S. Arizonae. Strains of Salmonella spp. were also isolated. Apart from Salmonella and Escherichia coli, among the most frequently isolated bacteria of the family Enterobacteriaceae were Enterobacter spp., Klebsiella spp. and Citrobacter freundii. Qualitative analysis of the bacterial microflora of the eggs also showed the presence of other Gram negative bacteria, including Acinetobacter spp., Pseudomonas spp., Tatumella ptyseos, Providencia stuartii, Serratia liquefaciens, Flavimonas oryzihabitans, Vibrio metschnikovii, Leclercia adecarboxylata, Kluyvera spp., Rahnella aquatilis, Proteus mirabilis, and Achromobacter spp. The study demonstrated that the conditions applied, i.e., the temperature and duration of storage, did not significantly influence the prevalence of particular species of Gram-negative bacteria in the eggs. However, based on the analysis of contamination of eggs with Salmonella depending on their source, it can be concluded that the system in which the hens are housed affects the risk of contamination of eggs with these pathogens. PMID:21033566

  15. The Changing Role of the Clinical Microbiology Laboratory in Defining Resistance in Gram-negatives.

    PubMed

    Endimiani, Andrea; Jacobs, Michael R

    2016-06-01

    The evolution of resistance in Gram-negatives has challenged the clinical microbiology laboratory to implement new methods for their detection. Multidrug-resistant strains present major challenges to conventional and new detection methods. More rapid pathogen identification and antimicrobial susceptibility testing have been developed for use directly on specimens, including fluorescence in situ hybridization tests, automated polymerase chain reaction systems, microarrays, mass spectroscopy, next-generation sequencing, and microfluidics. Review of these methods shows the advances that have been made in rapid detection of resistance in cultures, but limited progress in direct detection from specimens. PMID:27208762

  16. PVC bacteria: variation of, but not exception to, the Gram-negative cell plan.

    PubMed

    Devos, Damien P

    2014-01-01

    Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacteria have features that differentiate them from classical Gram-negative (G-) bacteria. One such feature is their complex endomembrane system. Based on the difference of membrane organization and compartment identity, PVC bacteria were proposed to form an exception to the bacterial G- cell plan. Here I argue that all PVC membranes are derived from G- membranes, and that their organization and the compartments they form are similar to those of G- bacteria. I suggest that PVC membrane organization should be evaluated within a G- framework and as a variation of it.

  17. BacPP: a web-based tool for Gram-negative bacterial promoter prediction.

    PubMed

    de Avila E Silva, S; Notari, D L; Neis, F A; Ribeiro, H G; Echeverrigaray, S

    2016-01-01

    Bacterial Promoter Prediction (BacPP) is a tool used to predict given sequences as promoters of Gram-negative bacteria according to the σ factor that recognizes it. The first version of BacPP was implemented in Python language in a desktop version without a friendly interface. For this reason, a web version of BacPP is now available with the purpose of improving its usability and availability. The present paper describes the implementation of the web version of this tool, focusing on its software architecture and user functionalities. The software is available at www.bacpp.bioinfoucs.com/home. PMID:27173187

  18. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria

    PubMed Central

    Berne, Cécile; Ducret, Adrien; Hardy, Gail G; Brun, Yves V.

    2015-01-01

    During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending upon the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or non-specific adhesion under various environmental conditions. This chapter will review the recent advances in our understanding of the secretion, assembly and regulation of the bacterial adhesins during biofilm formation with a particular emphasis on the fimbrial, non-fimbrial and discrete polysaccharide adhesins in Gram-negative bacteria. PMID:26350310

  19. [Mechanisms of inactivation of aminosides. Relationship to phenotype in Gram negative bacilli].

    PubMed

    Witchitz, J L

    1975-09-20

    Aminosides are antibiotics essential in the treatment of gram negative bacilli infections. Phenomena of resistance related to them are amongst the best documented. For enterobacteria encountered in clinical practice, the process is usually a plasmid mediated inactivation mechanism, the dispersion of which in a hospital context may be appreciated. Precise knowledge of the modes of inactivation and the molecular sites involved has led to the production of semi-synthetic aminosides which escape the action of these enzymes. A classification of hospital bacteria according to their type of resistance is possible by virtue of the study of phenotypes and may make it possible to define the true need of these new substances.

  20. Glucose-nonfermenting Gram-negative bacilli associated with clinical veterinary specimens.

    PubMed Central

    Mathewson, J J; Simpson, R B

    1982-01-01

    Glucose-nonfermenting gram-negative bacilli (NFB) have been recognized recently as opportunistic pathogens of humans. With few exceptions, strains of NFB have not been considered important enough to be identified when isolated from animals. In this study, all NFB isolated during a 1-year period in a clinical veterinary microbiology laboratory were identified to determine their prevalence. Of the 347 strains of NFB obtained, the most common species were Pseudomonas aeruginosa, Acinetobacter calcoaceticus, Bordetella bronchiseptica, and Pseudomonas pseudoalcaligenes. Of all clinical veterinary specimens submitted for cultures, 10% contained nonfermenters. PMID:7107835

  1. Desulfurization of benzothiophene by the Gram-negative bacterium, Sinorhizobium sp. KT55.

    PubMed

    Tanaka, Y; Onaka, T; Matsui, T; Maruhashi, K; Kurane, R

    2001-09-01

    Sinorhizobium sp. KT55 was the first Gram-negative isolate to be capable of utilizing benzothiophene as the sole source of sulfur. By GC-MS analysis of metabolites of benzothiophene by this strain, benzothiophene sulfone, benzo[e][1,2]oxathiin S-oxide and o-hydroxystyrene were detected, suggesting that the benzothiophene desulfurization pathway of this strain is benzothiophene-->benzothiophene sulfoxide-->benzothiophene sulfone-->benzo[e][1,2]oxathiin S-oxide-->o-hydroxystyrene. Desulfurization activity of this strain was significantly repressed by methionine, cysteine, sulfate, dimethyl sulfoxide, and Casamino acids.

  2. Use of Enzyme Tests in Characterization and Identification of Aerobic and Facultatively Anaerobic Gram-Positive Cocci

    PubMed Central

    Bascomb, Shoshana; Manafi, Mammad

    1998-01-01

    The contribution of enzyme tests to the accurate and rapid routine identification of gram-positive cocci is introduced. The current taxonomy of the genera of aerobic and facultatively anaerobic cocci based on genotypic and phenotypic characterization is reviewed. The clinical and economic importance of members of these taxa is briefly summarized. Tables summarizing test schemes and kits available for the identification of staphylococci, enterococci, and streptococci on the basis of general requirements, number of tests, number of taxa, test classes, and completion times are discussed. Enzyme tests included in each scheme are compared on the basis of their synthetic moiety. The current understanding of the activity of enzymes important for classification and identification of the major groups, methods of testing, and relevance to the ease and speed of identification are reviewed. Publications describing the use of different identification kits are listed, and overall identification successes and problems are discussed. The relationships between the results of conventional biochemical and rapid enzyme tests are described and considered. The use of synthetic substrates for the detection of glycosidases and peptidases is reviewed, and the advantages of fluorogenic synthetic moieties are discussed. The relevance of enzyme tests to accurate and meaningful rapid routine identification is discussed. PMID:9564566

  3. Gram staining.

    PubMed

    Coico, R

    2001-05-01

    Named after Hans Christian Gram who developed the method in 1884, the Gram stain allows one to distinguish between Gram-positive and Gram-negative bacteria on the basis of differential staining with a crystal violet-iodine complex and a safranin counterstain. The cell walls of Gram-positive organisms retain this complex after treatment with alcohol and appear purple, whereas gram-negative organisms decolorize following such treatment and appear pink. The method described here is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures.

  4. Gram staining.

    PubMed

    Coico, Richard

    2005-10-01

    Named after Hans Christian Gram who developed the method in 1884, the Gram stain allows one to distinguish between Gram-positive and Gram-negative bacteria on the basis of differential staining with a crystal violet-iodine complex and a safranin counterstain. The cell walls of Gram-positive organisms retain this complex after treatment with alcohol and appear purple, whereas gram-negative organisms decolorize following such treatment and appear pink. The method described here is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures.

  5. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium.

    PubMed

    Ipe, Deepak S; Ulett, Glen C

    2016-08-01

    Bacteriuria is a hallmark of urinary tract infection (UTI) and asymptomatic bacteriuria (ABU), which are among the most frequent infections in humans. A variety of gram-negative and gram-positive bacteria are associated with these infections but Escherichia coli contributes up to 80% of cases. Multiple bacterial species including E. coli can grow in human urine as a means to maintain colonization during infections. In vitro bacteriuria studies aimed at modeling microbial growth in urine have utilized various compositions of synthetic human urine (SHU) and a Composite SHU formulation was recently proposed. In this study, we sought to validate the recently proposed Composite SHU as a medium that supports the growth of several bacterial species that are known to grow in normal human urine and/or artificial urine. Comparative growth assays of gram-negative and gram-positive bacteria E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus agalactiae, Staphylococcus saprophyticus and Enterococcus faecalis were undertaken using viable bacterial count and optical density measurements over a 48h culture period. Three different SHU formulations were tested in various culture vessels, shaking conditions and volumes and showed that Composite SHU can support the robust growth of gram-negative bacteria but requires supplementation with 0.2% yeast extract to support the growth of gram-positive bacteria. Experiments are also presented that show an unexpected but major influence of P. mirabilis towards the ability to measure bacterial growth in generally accepted multiwell assays using absorbance readings, predicted to have a basis in the release of volatile organic compound(s) from P. mirabilis during growth in Composite SHU medium. This study represents an essential methodological validation of a more chemically defined type of synthetic urine that can be applied to study mechanisms of bacteriuria and we conclude will offer a useful in vitro model to investigate the

  6. Evaluation of the in vitro growth of urinary tract infection-causing gram-negative and gram-positive bacteria in a proposed synthetic human urine (SHU) medium.

    PubMed

    Ipe, Deepak S; Ulett, Glen C

    2016-08-01

    Bacteriuria is a hallmark of urinary tract infection (UTI) and asymptomatic bacteriuria (ABU), which are among the most frequent infections in humans. A variety of gram-negative and gram-positive bacteria are associated with these infections but Escherichia coli contributes up to 80% of cases. Multiple bacterial species including E. coli can grow in human urine as a means to maintain colonization during infections. In vitro bacteriuria studies aimed at modeling microbial growth in urine have utilized various compositions of synthetic human urine (SHU) and a Composite SHU formulation was recently proposed. In this study, we sought to validate the recently proposed Composite SHU as a medium that supports the growth of several bacterial species that are known to grow in normal human urine and/or artificial urine. Comparative growth assays of gram-negative and gram-positive bacteria E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Streptococcus agalactiae, Staphylococcus saprophyticus and Enterococcus faecalis were undertaken using viable bacterial count and optical density measurements over a 48h culture period. Three different SHU formulations were tested in various culture vessels, shaking conditions and volumes and showed that Composite SHU can support the robust growth of gram-negative bacteria but requires supplementation with 0.2% yeast extract to support the growth of gram-positive bacteria. Experiments are also presented that show an unexpected but major influence of P. mirabilis towards the ability to measure bacterial growth in generally accepted multiwell assays using absorbance readings, predicted to have a basis in the release of volatile organic compound(s) from P. mirabilis during growth in Composite SHU medium. This study represents an essential methodological validation of a more chemically defined type of synthetic urine that can be applied to study mechanisms of bacteriuria and we conclude will offer a useful in vitro model to investigate the

  7. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  8. In vitro activity of A-56268 (TE-031), a new macrolide, compared with that of erythromycin and clindamycin against selected gram-positive and gram-negative organisms.

    PubMed Central

    Benson, C A; Segreti, J; Beaudette, F E; Hines, D W; Goodman, L J; Kaplan, R L; Trenholme, G M

    1987-01-01

    The in vitro activity of A-56268 was determined and compared with that of erythromycin and clindamycin against a limited spectrum of 401 gram-positive and gram-negative organisms. A-56268 was quite active against erythromycin-susceptible Staphylococcus aureus, Neisseria gonorrhoeae, Listeria monocytogenes, Streptococcus pneumoniae, Streptococcus pyogenes, and group B streptococci and was moderately active against Campylobacter fetus subsp. fetus. A-56268 was consistently bactericidal only for S. pneumoniae. The activity of A-56268 was comparable to that of erythromycin against most organisms tested. PMID:2952063

  9. In Vitro Activity of AZD0914, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor, against Clinically Relevant Gram-Positive and Fastidious Gram-Negative Pathogens

    PubMed Central

    Huband, Michael D.; Hackel, Meredith; de Jonge, Boudewijn L. M.; Sahm, Daniel F.; Bradford, Patricia A.

    2015-01-01

    AZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed the in vitro activity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter against Staphylococcus aureus (n = 11,680), coagulase-negative staphylococci (n = 1,923), streptococci (n = 4,380), and Moraxella catarrhalis (n = 145), 0.5 mg/liter against Staphylococcus lugdunensis (n = 120) and Haemophilus influenzae (n = 352), 1 mg/liter against Enterococcus faecalis (n = 1,241), and 2 mg/liter against Haemophilus parainfluenzae (n = 70). The activity against Enterococcus faecium was more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producing Haemophilus spp., and M. catarrhalis. Based on these in vitro findings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species. PMID:26195518

  10. In Vitro Activity of AZD0914, a Novel Bacterial DNA Gyrase/Topoisomerase IV Inhibitor, against Clinically Relevant Gram-Positive and Fastidious Gram-Negative Pathogens.

    PubMed

    Biedenbach, Douglas J; Huband, Michael D; Hackel, Meredith; de Jonge, Boudewijn L M; Sahm, Daniel F; Bradford, Patricia A

    2015-10-01

    AZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed the in vitro activity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter against Staphylococcus aureus (n = 11,680), coagulase-negative staphylococci (n = 1,923), streptococci (n = 4,380), and Moraxella catarrhalis (n = 145), 0.5 mg/liter against Staphylococcus lugdunensis (n = 120) and Haemophilus influenzae (n = 352), 1 mg/liter against Enterococcus faecalis (n = 1,241), and 2 mg/liter against Haemophilus parainfluenzae (n = 70). The activity against Enterococcus faecium was more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producing Haemophilus spp., and M. catarrhalis. Based on these in vitro findings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species.

  11. Optimizing Antibiotic Dosing Strategies for the Treatment of Gram-negative Infections in the Era of Resistance.

    PubMed

    Monogue, Marguerite L; Kuti, Joseph L; Nicolau, David P

    2016-01-01

    Gram-negative organisms are an increasing source of concern within the healthcare setting due to their common presence as a cause of infection and emerging resistance to current therapies. However, current antimicrobial dosing recommendations may be insufficient for the treatment of gram-negative infections. Applying knowledge of an antibiotic's pharmacokinetic/pharmacodynamic profile when designing a dosing regimen leads to a greater likelihood of achieving optimal exposure, including against gram-negative pathogens with higher MICs. Additionally, administering antibiotics directly to the site of infection, such as via aerosolization for pneumonia, is another method to achieve optimized drug exposure at the site of infection. Incorporating these treatment strategies into clinical practice will assist antimicrobial stewardship programs in successfully treating gram-negative infections.

  12. Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria.

    PubMed

    Yarlagadda, Venkateswarlu; Manjunath, Goutham B; Sarkar, Paramita; Akkapeddi, Padma; Paramanandham, Krishnamoorthy; Shome, Bibek R; Ravikumar, Raju; Haldar, Jayanta

    2016-02-12

    The emergence of drug resistance along with a declining pipeline of clinically useful antibiotics has made it vital to develop more effective antimicrobial therapeutics, particularly against difficult-to-treat Gram-negative pathogens (GNPs). Many antibacterial agents, including glycopeptide antibiotics such as vancomycin, are inherently inactive toward GNPs because of their inability to cross the outer membrane of these pathogens. Here, we demonstrate, for the first time, lipophilic cationic (permanent positive charge) vancomycin analogues were able to permeabilize the outer membrane of GNPs and overcome the inherent resistance of GNPs toward glycopeptides. Unlike vancomycin, these analogues were shown to have a high activity against a variety of multidrug-resistant clinical isolates such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. In the murine model of carbapenem-resistant A. baumannii infection, the optimized compound showed potent activity with no observed toxicity. The notable activity of these compounds is attributed to the incorporation of new membrane disruption mechanisms (cytoplasmic membrane depolarization along with outer and inner (cytoplasmic) membrane permeabilization) into vancomycin. Therefore, our results indicate the potential of the present vancomycin analogues to be used against drug-resistant GNPs, thus strengthening the antibiotic arsenal for combating Gram-negative bacterial infections. PMID:27624964

  13. Vector for regulated expression of cloned genes in a wide range of gram-negative bacteria.

    PubMed Central

    Mermod, N; Ramos, J L; Lehrbach, P R; Timmis, K N

    1986-01-01

    A pKT231-based broad-host-range plasmid vector was constructed which enabled regulation of expression of cloned genes in a wide range of gram-negative bacteria. This vector, pNM185, contained upstream of its EcoRI, SstI, and SstII cloning sites the positively activated pm twin promoters of the TOL plasmid and xylS, the gene of the positive regulator of these promoters. Expression of cloned genes was induced with micromolar quantities of benzoate or m-toluate, the inexpensive coinducers of the pm promoters. Expression of a test gene, xylE, which specifies catechol 2,3-dioxygenase, cloned in this vector was tested in representative strains of a variety of gram-negative bacteria. Regulated expression of xylE was observed in most strains examined, and induced levels of enzyme representing up to 5% of total cellular protein and ratios of induced:noninduced levels of enzyme up to a factor of 600 were observed. The level of xylE gene expression in different bacteria tended to be correlated with their phylogenetic distance from Pseudomonas putida. Images PMID:3525513

  14. ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria.

    PubMed

    Narita, Shin-ichiro

    2011-01-01

    The outer membrane of gram-negative bacteria is an asymmetric lipid bilayer with phospholipids and lipopolysaccharides (LPSs). β-Barreled outer membrane proteins and lipoproteins are embedded in the outer membrane. All of these constituents are essential to the function of the outer membrane. The transport systems for lipoproteins have been characterized in detail. An ATP-binding cassette (ABC) transporter, LolCDE, initiates sorting by mediating the detachment of lipoproteins from the inner membrane to form a water-soluble lipoprotein-LolA complex in the periplasm. Lipoproteins are then transferred to LolB at the outer membrane and are incorporated into the lipid bilayer. A model analogous to the Lol system has been suggested for the transport of LPS, where an ABC transporter, LptBFG, mediates the detachment of LPS from the inner membrane. Recent developments in the functional characterization of ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria are discussed. PMID:21670534

  15. Top-Down Strategies for the Structural Elucidation of Intact Gram-negative Bacterial Endotoxins

    PubMed Central

    O’Brien, John P.; Needham, Brittany D.; Brown, Dusty B.; Trent, M. Stephen

    2014-01-01

    Re-modelling of lipopolysaccharides, which are the primary constituent of the outer cell membrane of Gram-negative bacteria, modulates pathogenesis and resistance to microbials. Reported herein is the characterization of intact Gram-negative bacterial lipooligosaccharides (LOS) via a new strategy utilizing online liquid chromatography (LC) coupled with ultraviolet photodissociation (UVPD) mass spectrometry. Compared to collision-based MS/MS methods, UVPD and UVPD/HCD promoted a greater array of cleavages within both the glycan and lipid moieties, including C-C, C-N, C-O cleavages in the acyl chains as well as glycosidic and cross-ring cleavages, thus providing the most far-reaching structural characterization of LOS. This LC-MS/MS strategy affords a robust analytical method to structurally characterize complex mixtures of bacterial endotoxins that maintains the integrity of the core oligosaccharide and lipid A domains of LOS, providing direct feedback about the cell envelope architectures and LOS modification strategies involved in resistance host innate immune defense. PMID:25386333

  16. Emergence of antimicrobial resistance in gram-negative bacilli causing bacteremia during therapy.

    PubMed

    Siebert, J D; Thomson, R B; Tan, J S; Gerson, L W

    1993-07-01

    Treatment of serious infections caused by gram-negative bacilli with beta-lactam antimicrobial agents can induce Class I beta-lactamase production. This phenomenon can result in resistant microorganisms, and has been postulated to be a cause of therapeutic failure. The charts of patients bacteremic with Pseudomonas aeruginosa, Serratia marcescens, Enterobacter cloacae, Citrobacter freundii, Proteus vulgaris, and Providencia species (n = 120) during a 3-year period were reviewed to determine how common the emergence of resistance was, and to determine if in vitro susceptibility testing was a reliable therapeutic guide. Emergence of resistance was believed to occur when a subsequent bacteremic isolate showed at least a fourfold increase in minimum inhibitory concentration accompanied by a change of interpretive susceptibility category. In the group of patients who survived at least 48 hours that received beta-lactam therapy (n = 76), one case of emergence of resistance was identified (1.3%). Emergence of resistance to beta-lactam antimicrobial agents did not commonly cause therapeutic failure at our institution, and susceptibility testing of gram-negative bacilli by usual methods was a reliable guide to antimicrobial therapy.

  17. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria.

    PubMed

    Volzing, Katherine; Borrero, Juan; Sadowsky, Michael J; Kaznessis, Yiannis N

    2013-11-15

    We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis . Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon-optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter PnisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host's viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations.

  18. Membrane-Active Macromolecules Resensitize NDM-1 Gram-Negative Clinical Isolates to Tetracycline Antibiotics

    PubMed Central

    Uppu, Divakara S. S. M.; Manjunath, Goutham B.; Yarlagadda, Venkateswarlu; Kaviyil, Jyothi E.; Ravikumar, Raju; Paramanandham, Krishnamoorthy; Shome, Bibek R.; Haldar, Jayanta

    2015-01-01

    Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs. PMID:25789871

  19. QseC Inhibitors as an Antivirulence Approach for Gram-Negative Pathogens

    PubMed Central

    Curtis, Meredith M.; Russell, Regan; Moreira, Cristiano G.; Adebesin, Adeniyi M.; Wang, Changguang; Williams, Noelle S.; Taussig, Ron; Stewart, Don; Zimmern, Philippe; Lu, Biao; Prasad, Ravi N.; Zhu, Chen; Rasko, David A.; Huntley, Jason F.; Falck, John R.

    2014-01-01

    ABSTRACT Invasive pathogens interface with the host and its resident microbiota through interkingdom signaling. The bacterial receptor QseC, which is a membrane-bound histidine sensor kinase, responds to the host stress hormones epinephrine and norepinephrine and the bacterial signal AI-3, integrating interkingdom signaling at the biochemical level. Importantly, the QseC signaling cascade is exploited by many bacterial pathogens to promote virulence. Here, we translated this basic science information into development of a potent small molecule inhibitor of QseC, LED209. Extensive structure activity relationship (SAR) studies revealed that LED209 is a potent prodrug that is highly selective for QseC. Its warhead allosterically modifies lysines in QseC, impairing its function and preventing the activation of the virulence program of several Gram-negative pathogens both in vitro and during murine infection. LED209 does not interfere with pathogen growth, possibly leading to a milder evolutionary pressure toward drug resistance. LED209 has desirable pharmacokinetics and does not present toxicity in vitro and in rodents. This is a unique antivirulence approach, with a proven broad-spectrum activity against multiple Gram-negative pathogens that cause mammalian infections. PMID:25389178

  20. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    PubMed Central

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2013-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data indicate an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological level, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may open the way to rationally develop an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. PMID:21707670

  1. Nitric oxide synthase-dependent immune response against gram negative bacteria in a crustacean, Litopenaeus vannamei.

    PubMed

    Rodríguez-Ramos, Tania; Carpio, Yamila; Bolívar, Jorge; Gómez, Leonardo; Estrada, Mario Pablo; Pendón, Carlos

    2016-03-01

    Nitric oxide (NO) is a short-lived radical generated by nitric oxide synthases (NOS). NO is involved in a variety of functions in invertebrates, including host defense. In previous studies, we isolated and sequenced for the first time the NOS gene from hemocytes of Panulirus argus, demonstrating the inducibility of this enzyme by lipopolysaccharide in vitro e in vivo. Hyperimmune serum was obtained from rabbits immunized with a P. argus -NOS fragment of 31 kDa produced in Escherichia coli, which specifically detected the recombinant polypeptide and the endogenous NOS from lobster hemocytes by western blotting and immunofluorescence. In the present work, we demonstrate that the hyperimmune serum obtained against P. argus NOS also recognizes Litopenaeus vannamei NOS in hemocytes by western blotting and immunofluorescence. Our data also show that while the hemolymph of L. vannamei has a strong antibacterial activity against the Gram negative bacteria Aeromonas hydrophila, the administration of the anti NOS serum reduce the natural bacterial clearance. These results strongly suggest that NOS is required for the shrimp immune defense toward Gram negative bacteria. Therefore, the monitoring of induction of NOS could be an important tool for testing immunity in shrimp farming.

  2. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria

    PubMed Central

    Roier, Sandro; Zingl, Franz G.; Cakar, Fatih; Durakovic, Sanel; Kohl, Paul; Eichmann, Thomas O.; Klug, Lisa; Gadermaier, Bernhard; Weinzerl, Katharina; Prassl, Ruth; Lass, Achim; Daum, Günther; Reidl, Joachim; Feldman, Mario F.; Schild, Stefan

    2016-01-01

    Bacterial outer membrane vesicles (OMVs) have important biological roles in pathogenesis and intercellular interactions, but a general mechanism of OMV formation is lacking. Here we show that the VacJ/Yrb ABC (ATP-binding cassette) transport system, a proposed phospholipid transporter, is involved in OMV formation. Deletion or repression of VacJ/Yrb increases OMV production in two distantly related Gram-negative bacteria, Haemophilus influenzae and Vibrio cholerae. Lipidome analyses demonstrate that OMVs from VacJ/Yrb-defective mutants in H. influenzae are enriched in phospholipids and certain fatty acids. Furthermore, we demonstrate that OMV production and regulation of the VacJ/Yrb ABC transport system respond to iron starvation. Our results suggest a new general mechanism of OMV biogenesis based on phospholipid accumulation in the outer leaflet of the outer membrane. This mechanism is highly conserved among Gram-negative bacteria, provides a means for regulation, can account for OMV formation under all growth conditions, and might have important pathophysiological roles in vivo. PMID:26806181

  3. A General System for Studying Protein-Protein Interactions in Gram-Negative Bacteria

    SciTech Connect

    Pelletier, Dale A; Auberry, Deanna L; Buchanan, Michelle V; Cannon, Bill; Daly, Don S.; Doktycz, Mitchel John; Foote, Linda J; Hervey, IV, William Judson; Hooker, Brian; Hurst, Gregory {Greg} B; Kennel, Steve J; Lankford, Patricia K; Larimer, Frank W; Lu, Tse-Yuan S; McDonald, W Hayes; McKeown, Catherine K; Morrell-Falvey, Jennifer L; Owens, Elizabeth T; Schmoyer, Denise D; Shah, Manesh B; Wiley, Steven; Wang, Yisong; Gilmore, Jason

    2008-01-01

    Abstract One of the most promising methods for large-scale studies of protein interactions is isolation of an affinity-tagged protein with its in vivo interaction partners, followed by mass spectrometric identification of the copurified proteins. Previous studies have generated affinity-tagged proteins using genetic tools or cloning systems that are specific to a particular organism. To enable protein-protein interaction studies across a wider range of Gram-negative bacteria, we have developed a methodology based on expression of affinity-tagged bait proteins from a medium copy-number plasmid. This construct is based on a broad-host-range vector backbone (pBBR1MCS5). The vector has been modified to incorporate the Gateway DEST vector recombination region, to facilitate cloning and expression of fusion proteins bearing a variety of affinity, fluorescent, or other tags. We demonstrate this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram-negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results compared favorably with those for both plasmid and chromosomally encoded affinity-tagged fusion proteins expressed in a model organism, Escherichia coli.

  4. A general system for studying protein-protein interactions in gram-negative bacteria

    SciTech Connect

    Pelletier, Dale A.; Hurst, G. B.; Foote, Linda J.; Lankford, Patricia K.; McKeown, Cathy K.; Lu, Tse-Yuan S.; Schmoyer, Denise D.; Shah, Manesh B.; Hervey IV, W. J.; McDonald, W. Hayes; Hooker, Brian S.; Cannon, William R.; Daly, Don S.; Gilmore, Jason M.; Wiley, H. S.; Auberry, Deanna L.; Wang, Yisong; Larimer, Frank; Kennel, S. J.; Doktycz, M. J.; Morrell-Falvey, Jennifer; Owens, Elizabeth T.; Buchanan, M. V.

    2008-08-01

    One of the most promising of the emerging methods for large-scale studies of interactions among proteins is co-isolation of an affinity-tagged protein and its interaction partners, followed by mass spectrometric identification of the co-purifying proteins. We describe a methodology for systematically identifying the proteins that interact with affinity-tagged “bait” proteins expressed from a medium copy plasmid, which are based on a broad host range (pBBR1MCS5) vector backbone that has been modified to incorporate the Gateway DEST plasmid multiple cloning region. This construct was designed to facilitate expression of fusion proteins bearing an affinity tag, across a range of Gram negative bacterial hosts. We demonstrate the performance of this methodology by characterizing interactions among subunits of the DNA-dependent RNA polymerase complex in two metabolically versatile Gram negative microbial species of environmental interest, Rhodopseudomonas palustris CGA010 and Shewanella oneidensis MR-1. Results from the RNA polymerase complex from these two species compared favorably with those for both plasmid- and chromosomally-encoded affinity-tagged fusion proteins expressed in a model organism, E. coli.

  5. Surface Organelles Assembled by Secretion Systems of Gram-Negative Bacteria: Diversity in Structure and Function

    PubMed Central

    Thanassi, David G.; Bliska, James B.; Christie, Peter J.

    2012-01-01

    Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the chaperone/usher pathway, the type IV pilus pathway, and the type III and type IV secretion systems. PMID:22545799

  6. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    PubMed

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  7. Emerging gram-negative pathogens in the immunocompromised host: Agrobacterium radiobacter septicemia during HIV disease.

    PubMed

    Manfredi, R; Nanetti, A; Ferri, M; Mastroianni, A; Coronado, O V; Chiodo, F

    1999-10-01

    Three out of 2,412 consecutive HIV-infected patients hospitalized since 1990, developed Agrobacterium radiobacter septicemia. All patients were severely immunocompromised, showing a prior diagnosis of AIDS, concurrent opportunistic infections, a mean CD4+ lymphocyte count below 100 cells/microL, and neutropenia. Nosocomial A. radiobacter sepsis occurred in two cases of three, and was related to a lower neutrophil and CD4+ cell count. Antibiotic and cotrimoxazole treatment were carried out during the month preceding disease onset by two and three patients, respectively. Antimicrobial susceptibility assays showed resistance to ureidopenicillins and aztreonam, and complete sensitivity to carbapenems, amikacin, and ciprofloxacin. A therapeutic regimen including amikacin plus ceftriaxone or ceftazidime obtained clinical and microbiological cure in all cases, in the absence of related mortality or relapses. Only two episodes of HIV-associated A. radiobacter complications have been described to date: one case of sepsis and one patient with pneumonia. Despite their low frequency, gram-negative non-fermenting bacilli should be considered in HIV-infected patients with a suspected bacterial complication, because of their cumbersome identification procedures, and their unpredictable antibiotic susceptibility, with elevated resistance to many compounds expected to be effective against gram-negative organisms. A. radiobacter may play a pathogenic role in patients with advanced HIV disease, even when some commonly recognized risk factors are lacking (in-dwelling catheters and instrumentation), while a very low CD4+ lymphocyte count, leukopenia-neutropenia, hospitalization, and concurrent AIDS-related infectious complications, may act as predisposing factors.

  8. Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins.

    PubMed

    Morohoshi, Tomohiro; Tokita, Kazuho; Ito, Satoshi; Saito, Yuki; Maeda, Saki; Kato, Norihiro; Ikeda, Tsukasa

    2013-08-01

    N-Acylhomoserine lactones (AHLs) are used as quorum-sensing (QS) signals by gram-negative bacteria. We have reported that the cyclic oligosaccharides known as cyclodextrins (CDs) form inclusion complexes with AHLs and disrupt QS signaling. In this study, a series of CD derivatives were designed and synthesized to improve the QS inhibitory activity over that of native CDs. The production of the red pigment prodigiosin by Serratia marcescens AS-1, which is regulated by AHL-mediated QS, was drastically decreased by adding 10 mg/ml 6-alkylacylamino-β-CD with an alkyl chain ranging from C7 to C12. An improvement in the QS inhibitory activity was also observed for 6-alkylamino-α- or γ-CDs and 2-alkylamino-CDs. Furthermore, 6,6'-dioctylamino-β-CD, which contains two octylamino groups, exhibited greater inhibitory activity than 6-monooctylamino-β-CD. The synthesized CD derivatives also had strong inhibitory effects on QS by other gram-negative bacteria, including Chromobacterium violaceum and Pseudomonas aeruginosa. The synthetic alkylamine-modified CD derivatives had higher equilibrium binding constants for binding with AHL than the native CDs did, consistent with the improved QS inhibition. ¹H NMR measurements suggested that the alkyl side chains of 6-alkylacylamino-β-CDs with alkyl chains up to 6 carbon atoms long could form self-inclusion complexes with the CD unit.

  9. Capillary electrophoresis for fast detection of heterogeneous population in colistin-resistant Gram-negative bacteria.

    PubMed

    Sautrey, Guillaume; Duval, Raphaël E; Chevalley, Alicia; Fontanay, Stéphane; Clarot, Igor

    2015-10-01

    It has been shown that diverse strains of bacteria can be separated according to their characteristic surface properties by means of CE. We employed here this analytical technique to the study of colistin-resistance in Gram-negative bacteria, which involves the selection of mutants with modified outer membrane composition resulting in changes of surface cell properties. In the same way as with molecular entities, we performed firstly the validation of an ITP-based CE method for three common pathogenic Gram-negative bacteria namely Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Secondly, we compared the electrophoretic profiles of bacterial samples from a colistin-susceptible clinical isolate of K. pneumoniae and from the corresponding colistin-resistant derivative. By a simple CE run taking a few minutes, the coexistence of several bacterial subpopulations in the colistin-resistant derivative was clearly evidenced. This work encourages further research that would allow applications of CE in clinical laboratory for a daily monitoring of bacterial population in cared patients when "last-chance" colistin treatment is initiated against multidrug-resistant bacteria.

  10. Probing the Penetration of Antimicrobial Polymyxin Lipopeptides into Gram-Negative Bacteria

    PubMed Central

    2015-01-01

    The dry antibiotic development pipeline coupled with the emergence of multidrug resistant Gram-negative ‘superbugs’ has driven the revival of the polymyxin lipopeptide antibiotics. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections. The lack of molecular imaging probes that possess native polymyxin-like antibacterial activity is a barrier to understanding the resistance mechanisms and the development of a new generation of polymyxin lipopeptides. Here we report the regioselective modification of the polymyxin B core scaffold at the N-terminus with the dansyl fluorophore to generate an active probe that mimics polymyxin B pharmacologically. Time-lapse laser scanning confocal microscopy imaging of the penetration of probe (1) into Gram-negative bacterial cells revealed that the probe initially accumulates in the outer membrane and subsequently penetrates into the inner membrane and finally the cytoplasm. The implementation of this polymyxin-mimetic probe will advance the development of platforms for the discovery of novel polymyxin lipopeptides with efficacy against polymyxin-resistant strains. PMID:24635310

  11. Gram Negative Bacterial Inflammation Ameliorated by the Plasma Protein Beta 2-Glycoprotein I

    PubMed Central

    Zhou, Saijun; Chen, Gang; Qi, Miao; El-Assaad, Fatima; Wang, Ying; Dong, Shangwen; Chen, Liming; Yu, Demin; Weaver, James C.; Beretov, Julia; Krilis, Steven A.; Giannakopoulos, Bill

    2016-01-01

    Lipopolysaccharide (LPS) is a major component of the outer wall of gram negative bacteria. In high doses LPS contributes to the inflammation in gram negative sepsis, and in low doses contributes to the low grade inflammation characteristic of the metabolic syndrome. We wanted to assess the role of beta2-glycoprotein I (β2GPI) a highly conserved plasma protein and its different biochemical forms in a mouse model of LPS systemic inflammation. Normal and β2GPI deficient mice were administered LPS through their veins and assessed for a range of inflammation markers in their blood and liver. Different biochemical forms of β2GPI were measured in normal mice given either saline or LPS. We show that β2GPI has a significant role in inhibiting LPS induced inflammation. In this study we provide some evidence that β2GPI serves a protective role in a mouse model of LPS inflammation. This resolves the controversy of previous studies which used LPS and β2GPI in test tube based models of LPS induced activation of white cells. We also highlight the potential relevance of a newly discovered biochemical form of β2GPI in LPS mediated inflammation and we speculate that this form has a protective role against LPS induced pathology. PMID:27670000

  12. Nitric oxide synthase-dependent immune response against gram negative bacteria in a crustacean, Litopenaeus vannamei.

    PubMed

    Rodríguez-Ramos, Tania; Carpio, Yamila; Bolívar, Jorge; Gómez, Leonardo; Estrada, Mario Pablo; Pendón, Carlos

    2016-03-01

    Nitric oxide (NO) is a short-lived radical generated by nitric oxide synthases (NOS). NO is involved in a variety of functions in invertebrates, including host defense. In previous studies, we isolated and sequenced for the first time the NOS gene from hemocytes of Panulirus argus, demonstrating the inducibility of this enzyme by lipopolysaccharide in vitro e in vivo. Hyperimmune serum was obtained from rabbits immunized with a P. argus -NOS fragment of 31 kDa produced in Escherichia coli, which specifically detected the recombinant polypeptide and the endogenous NOS from lobster hemocytes by western blotting and immunofluorescence. In the present work, we demonstrate that the hyperimmune serum obtained against P. argus NOS also recognizes Litopenaeus vannamei NOS in hemocytes by western blotting and immunofluorescence. Our data also show that while the hemolymph of L. vannamei has a strong antibacterial activity against the Gram negative bacteria Aeromonas hydrophila, the administration of the anti NOS serum reduce the natural bacterial clearance. These results strongly suggest that NOS is required for the shrimp immune defense toward Gram negative bacteria. Therefore, the monitoring of induction of NOS could be an important tool for testing immunity in shrimp farming. PMID:26804662

  13. Appropriateness of gram-negative agent use at a tertiary care hospital in the setting of significant antimicrobial resistance.

    PubMed

    Vora, Neil M; Kubin, Christine J; Furuya, E Yoko

    2015-01-01

    Background.  Practicing antimicrobial stewardship in the setting of widespread antimicrobial resistance among gram-negative bacilli, particularly in urban areas, is challenging. Methods.  We conducted a retrospective cross-sectional study at a tertiary care hospital with an established antimicrobial stewardship program in New York, New York to determine appropriateness of use of gram-negative antimicrobials and to identify factors associated with suboptimal antimicrobial use. Adult inpatients who received gram-negative agents on 2 dates, 1 June 2010 or 1 December 2010, were identified through pharmacy records. Clinical data were collected for each patient. Use of gram-negative agents was deemed optimal or suboptimal through chart review and according to hospital guidelines. Data were compared using χ(2) or Fischer's exact test for categorical variables and Student t test or Mann-Whitney U test for continuous variables. Results.  A total of 356 patients were included who received 422 gram-negative agents. Administration was deemed suboptimal in 26% of instances, with the most common reason being spectrum of activity too broad. In multivariable analysis, being in an intensive care unit (adjusted odds ratio [aOR], .49; 95% confidence interval [CI], .29-.84), having an infectious diseases consultation within the previous 7 days (aOR, .52; 95% CI, .28-.98), and having a history of multidrug-resistant gram-negative bacilli within the past year (aOR, .24; 95% CI, .09-.65) were associated with optimal gram-negative agent use. Beta-lactam/beta-lactamase inhibitor combination drug use (aOR, 2.6; 95% CI, 1.35-5.16) was associated with suboptimal use. Conclusions.  Gram-negative agents were used too broadly despite numerous antimicrobial stewardship program activities.

  14. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins

    PubMed Central

    2009-01-01

    Background In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms. Results Bacterial suspension (107 CFU mL-1) treated with different photosensitizers concentrations (0.5, 1.0 and 5.0 μM) were exposed to white light (40 W m-2) for a total light dose of 64.8 J cm-2. The most effective photosensitizers against both bacterial strains were the Tri-Py+-Me-PF and Tri-Py+-Me-CO2Me at 5.0 μM with a light fluence of 64.8 J cm-2, leading to > 7.0 log (> 99,999%) of photoinactivation. The tetracationic porphyrin also proved to be a good photosensitizer against both bacterial strains. Both di-cationic and the monocationic porphyrins were the least effective ones. Conclusion The number of positive charges, the charge distribution in the porphyrins' structure and the meso-substituent groups seem to have different effects on the photoinactivation of both bacteria. As the Tri-Py+-Me-PF porphyrin provides the highest log reduction using lower light doses, this photosensitizer can efficiently photoinactivate a large spectrum of environmental bacteria. The complete inactivation of both bacterial strains with low light fluence (40 W m-2) means that the photodynamic approach can be applied to wastewater treatment under natural

  15. Emergence of Carbapenem resistant Gram negative and vancomycin resistant Gram positive organisms in bacteremic isolates of febrile neutropenic patients: A descriptive study

    PubMed Central

    Irfan, Seema; Idrees, Faiza; Mehraj, Vikram; Habib, Faizah; Adil, Salman; Hasan, Rumina

    2008-01-01

    Background This study was conducted to evaluate drug resistance amongst bacteremic isolates of febrile neutropenic patients with particular emphasis on emergence of carbapenem resistant Gram negative bacteria and vancomycin resistant Enterococcus species. Methods A descriptive study was performed by reviewing the blood culture reports from febrile neutropenic patients during the two study periods i.e., 1999–00 and 2001–06. Blood cultures were performed using BACTEC 9240 automated system. Isolates were identified and antibiotic sensitivities were done using standard microbiological procedures. Results Seven twenty six febrile neutropenic patients were admitted during the study period. A total of 5840 blood cultures were received, off these 1048 (18%) were culture positive. Amongst these, 557 (53%) grew Gram positive bacteria, 442 (42%) grew Gram negative bacteria, 43 (4%) fungi and 6 (1%) anaerobes. Sixty (5.7%) out of 1048 positive blood cultures were polymicrobial. In the Gram negative bacteria, Enterobacteriaceae was the predominant group; E. coli was the most frequently isolated organism in both study periods. Amongst non- Enterobacteriaceae group, Pseudomonas aeruginosa was the commonest organism isolated during first study period followed by Acinetobacter spp. However, during the second period Acinetobacter species was the most frequent pathogen. Enterobacteriaceae group showed higher statistically significant resistance in the second study period against ceftriaxone, quinolone and piperacillin/tazobactam, whilst no resistance observed against imipenem/meropenem. The susceptibility pattern of Acinetobacter species shifted from sensitive to highly resistant one with significant p values against ceftriaxone, quinolone, piperacillin/tazobactam and imipenem/meropenem. Amongst Gram positive bacteria, MRSA isolation rate remained static, vancomycin resistant Enterococcus species emerged in second study period while no Staphylococcus species resistant to

  16. Identification of an amphioxus intelectin homolog that preferably agglutinates gram-positive over gram-negative bacteria likely due to different binding capacity to LPS and PGN.

    PubMed

    Yan, Jie; Wang, Jianfeng; Zhao, Yaqi; Zhang, Jingye; Bai, Changcun; Zhang, Changqing; Zhang, Chao; Li, Kailin; Zhang, Haiqing; Du, Xiumin; Feng, Lijun

    2012-07-01

    Intelectin is a recently described galactofuranose-binding lectin that plays a role in innate immunity in vertebrates. Little is known about intelectin in invertebrates, including amphioxus, the transitional form between vertebrates and invertebrates. We cloned an amphioxus intelectin homolog, AmphiITLN-like, coding 302 amino acids with a conserved fibrinogen-related domain (FReD) in the N-terminus and an Intelectin domain in the C-terminus. In situ hybridization in adult amphioxus showed that AmphiITLN-like transcripts were highly expressed in the digestive tract and the skin. Quantitative real-time PCR revealed that AmphiITLN-like is significantly up-regulated in response to Staphylococcus aureus challenge, but only modestly to Escherichia coli. In addition, recombinant AmphiITLN-like expressed in E. coli agglutinates Gram-negative and Gram-positive bacteria to different degrees in a calcium dependent manner. Recombinant AmphiITLN-like could bind lipopolysaccharide (LPS) and peptidoglycan (PGN), the major cell wall components of Gram-negative and Gram-positive bacteria, respectively, with a higher affinity to PGN. Our work identified and characterized for the first time an amphioxus intelectin homolog, and provided insight into the evolution and function of the intelectin family.

  17. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. [Salmonella typhimurium; Escherichia coli; Sarcina lutea; Staphylococcus aureus; Streptococcus lactis; Streptococcus faecalis

    SciTech Connect

    Dahl, T.A.; Midden, W.R. ); Hartman, P.E. )

    1989-04-01

    Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids.

  18. Design of a Nanostructured Active Surface against Gram-Positive and Gram-Negative Bacteria through Plasma Activation and in Situ Silver Reduction.

    PubMed

    Gilabert-Porres, Joan; Martí, Sara; Calatayud, Laura; Ramos, Victor; Rosell, Antoni; Borrós, Salvador

    2016-01-13

    Nowadays there is an increasing focus for avoiding bacterial colonization in a medical device after implantation. Bacterial infection associated with prosthesis implantation, or even along the lifetime of the implanted prosthesis, entails a serious problem, emphasized with immunocompromised patients. This work shows a new methodology to create highly hydrophobic micro-/nanostructured silver antibacterial surfaces against Gram-positive and Gram-negative bacteria, using low-pressure plasma. PDMS (polydimethylsiloxane) samples, typically used in tracheal prosthesis, are coated with PFM (pentafluorophenyl methacrylate) through PECVD (plasma enhance chemical vapor deposition) technique. PFM thin films offer highly reactive ester groups that allow them to react preferably with amine bearing molecules, such as amine sugar, to create controlled reductive surfaces capable of reducing silver salts to a nanostructured metallic silver. This micro-/nanostructured silver coating shows interesting antibacterial properties combined with an antifouling behavior causing a reduction of Gram-positive and Gram-negative bacteria viability. In addition, these types of silver-coated samples show no apparent cytotoxicity against COS-7 cells.

  19. A simple and efficient Triton X-100 boiling and chloroform extraction method of RNA isolation from Gram-positive and Gram-negative bacteria.

    PubMed

    Sung, Kidon; Khan, Saeed A; Nawaz, Mohamed S; Khan, Ashraf A

    2003-12-01

    A fast, reliable, and inexpensive Triton X-100 boiling procedure for RNA isolation from both the Gram-positive and Gram-negative bacteria was developed. The yield of RNA was 0.2-2 mg per 10 ml bacterial culture. The method was tested on Gram-positive and Gram-negative bacteria of eight genera and nine species and yielded reproducible results. In parallel experiments, the Qiagen and hot phenol extraction methods both yielded RNA that contained contaminating 16S and 23S rRNA. The Triton X-100 boiling method reported here yielded RNA that was free from 16S and 23S rRNA, contained full-length transcripts and did not require additional purification. The presence of specific mRNA in one of the RNA samples obtained by this procedure was demonstrated by partial amplification of a 732 bp vancomycin resistance gene, vanA, by reverse transcription-polymerase chain reaction (RT-PCR). The presence of a full-length transcript (1031 bases) of the vanA gene was verified by Northern hybridization and probing with a digoxigenin (DIG)-labeled vanA PCR partial product. The method provides a rapid, reliable, and simple tool for the isolation of good quality RNA suitable for various molecular biology experiments. PMID:14659548

  20. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGES

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutronmore » reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  1. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    SciTech Connect

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.

  2. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia.

    PubMed

    Yutin, Natalya; Galperin, Michael Y

    2013-10-01

    The class Clostridia in the phylum Firmicutes (formerly low-G+C Gram-positive bacteria) includes diverse bacteria of medical, environmental and biotechnological importance. The Selenomonas-Megasphaera-Sporomusa branch, which unifies members of the Firmicutes with Gram-negative-type cell envelopes, was recently moved from Clostridia to a separate class Negativicutes. However, draft genome sequences of the spore-forming members of the Negativicutes revealed typically clostridial sets of sporulation genes. To address this and other questions in clostridial phylogeny, we have compared a phylogenetic tree for a concatenated set of 50 widespread ribosomal proteins with the trees for beta subunits of the RNA polymerase (RpoB) and DNA gyrase (GyrB) and with the 16S rRNA-based phylogeny. The results obtained by these methods showed remarkable consistency, suggesting that they reflect the true evolutionary history of these bacteria. These data put the Selenomonas-Megasphaera-Sporomusa group back within the Clostridia. They also support placement of Clostridium difficile and its close relatives within the family Peptostreptococcaceae; we suggest resolving the long-standing naming conundrum by renaming it Peptoclostridium difficile. These data also indicate the existence of a group of cellulolytic clostridia that belong to the family Ruminococcaceae. As a tentative solution to resolve the current taxonomical problems, we propose assigning 78 validly described Clostridium species that clearly fall outside the family Clostridiaceae to six new genera: Peptoclostridium, Lachnoclostridium, Ruminiclostridium, Erysipelatoclostridium, Gottschalkia and Tyzzerella. This work reaffirms that 16S rRNA and ribosomal protein sequences are better indicators of evolutionary proximity than phenotypic traits, even such key ones as the structure of the cell envelope and Gram-staining pattern.

  3. A genomic update on clostridial phylogeny: Gram-negative spore-formers and other misplaced clostridia

    PubMed Central

    Yutin, Natalya; Galperin, Michael Y.

    2014-01-01

    Summary The class Clostridia in the phylum Firmicutes (formerly low-G+C Gram-positive bacteria) includes diverse bacteria of medical, environmental, and biotechnological importance. The Selenomonas-Megasphaera-Sporomusa branch, which unifies members of the Firmicutes with Gram-negative-type cell envelopes, was recently moved from Clostridia to a separate class Negativicutes. However, draft genome sequences of the spore-forming members of the Negativicutes revealed typically clostridial sets of sporulation genes. To address this and other questions in clostridial phylogeny, we have compared a phylogenetic tree for a concatenated set of 50 widespread ribosomal proteins with the trees for beta subunits of the RNA polymerase (RpoB) and DNA gyrase (GyrB) and with the 16S rRNA-based phylogeny. The results obtained by these methods showed remarkable consistency, suggesting that they reflect the true evolutionary history of these bacteria. These data put the Selenomonas-Megasphaera-Sporomusa group back within the Clostridia. They also support placement of Clostridium difficile and its close relatives within the family Peptostreptococcaceae; we suggest resolving the long-standing naming conundrum by renaming it Peptoclostridium difficile. These data also indicate the existence of a group of cellulolytic clostridia that belong to the family Ruminococcaceae. As a tentative solution to resolve the current taxonomical problems, we propose assigning 78 validly described Clostridium species that clearly fall outside the family Clostridiaceae to six new genera: Peptoclostridium, Lachnoclostridium, Ruminiclostridium, Erysipelatoclostridium, Gottschalkia, and Tyzzerella. This work reaffirms that 16S rRNA and ribosomal protein sequences are better indicators of evolutionary proximity than phenotypic traits, even such key ones as the structure of the cell envelope and Gram-staining pattern. PMID:23834245

  4. Cellular fatty acid composition as an adjunct to the identification of asporogenous, aerobic gram-positive rods.

    PubMed

    Bernard, K A; Bellefeuille, M; Ewan, E P

    1991-01-01

    Cellular fatty acid (CFA) compositions of 561 asporogenous, aerobic gram-positive rods were analyzed by gas-liquid chromatography as an adjunct to their identification when grown on blood agar at 35 degrees C. The organisms could be divided into two groups. In the first group (branched-chain type), which included coryneform CDC groups A-3, A-4, and A-5; some strains of B-1 and B-3; "Corynebacterium aquaticum"; Brevibacterium liquefaciens; Rothia dentocariosa; and Listeria spp., the rods had sizable quantities of antiesopentadecanoic (Ca15:0) and anteisoheptadecanoic (Ca17:0) acids. Other species with these types of CFA included B. acetylicum, which contained large amounts of isotridecanoic (Ci13:0) and anteisotridecanoic (Ca13:0) acids. CFAs useful for distinguishing among Jonesia denitrificans, Oerskovia spp., some strains of CDC groups B-1 and B-3, Kurthia spp., and Propionibacterium avidum were hexadecanoic (C 16:0) acid, isopentadecanoic (Ci15:0) acid, and Ca15:0). The second group (straight-chained type), which included Actinomyces pyogenes; Arcanobacterium haemolyticum; C. bovis; C. cystitidis; C. diphtheriae; C. flavescens, "C. gentalium"; C. jeikeium; C. kutscheri; C. matruchotii; C .minutissimum; C. mycetoides; C. pilosum; C. pseudodiphtheriticum; "C. pseudogenitalium"; C. pseudotuberculosis; C. renale; CDC groups 1, 2, ANF-1, D-2, E, F-1, F-2, G-1, G-2, and I-2; C. striatum; "C. tuberculostearicum"; C. ulcerans; C. vitarumen; C. xerosis; and Erysipelothrix rhusiopathiae, was typified by significant quantities of hexadecanoic (C16:0) and oleic acids (C18:cis9), with differences in the amounts of linoleic acid (C18:2), stearic acid (C18:0), an unnamed peak (equivalent chain length, 14.966), and small quantities of other known saturated and unsaturated fatty acids. CFA composition of these organisms was sufficiently discriminatory to assist in classification but could not be used as the sole means of identification.

  5. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    PubMed

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid. PMID:26598715

  6. Granulomatous inflammation of salt glands in ducklings (Anas platyrhynchos) associated with intralesional Gram-negative bacteria.

    PubMed

    Klopfleisch, Robert; Müller, Christian; Polster, Ulf; Hildebrandt, Jan-Peter; Teifke, Jens Peter

    2005-06-01

    The "nasal glands" occur in many bird species and are powerful sodium ion-excretory organs. In ducks, they are located in supraorbital bony recesses. Granulomatous inflammation of these glands occurs with an incidence of approximately 1% in ducklings (Anas platyrhynchos), and is not associated with specific clinical symptoms. We investigated nine glands of eight animals with granulomas by gross pathology and histopathology, and compared results of bacteriology with 20 non-lesioned nasal glands. Adenitis was characterized by multifocal to coalescent heterophilic granulomas with central necrotic heterophils, and multinucleate giant cells, lymphocytes and plasma cells. Within the centres of the granulomas, there were clusters of Gram-negative bacteria that were identified as halo-tolerant Pseudomonas aeruginosa, Proteus mirabilis and Aeromonas hydrophila. Normal glands contained exclusively various halo-tolerant Gram-positive bacteria, mostly Streptococcus sp. and Enterococcus sp. The distribution of lesions and lack of clinical symptoms were suggestive of a localized ascending infection via the secretory ductules. PMID:16191707

  7. Structural engineering of a phage lysin that targets Gram-negative pathogens

    SciTech Connect

    Lukacik, Petra; Barnard, Travis J.; Keller, Paul W.; Chaturvedi, Kaveri S.; Seddiki, Nadir; Fairman, James W.; Noinaj, Nicholas; Kirby, Tara L.; Henderson, Jeffrey P.; Steven, Alasdair C.; Hinnebusch, B. Joseph; Buchanan, Susan K.

    2012-11-13

    Bacterial pathogens are becoming increasingly resistant to antibiotics. As an alternative therapeutic strategy, phage therapy reagents containing purified viral lysins have been developed against Gram-positive organisms but not against Gram-negative organisms due to the inability of these types of drugs to cross the bacterial outer membrane. We solved the crystal structures of a Yersinia pestis outer membrane transporter called FyuA and a bacterial toxin called pesticin that targets this transporter. FyuA is a {beta}-barrel membrane protein belonging to the family of TonB dependent transporters, whereas pesticin is a soluble protein with two domains, one that binds to FyuA and another that is structurally similar to phage T4 lysozyme. The structure of pesticin allowed us to design a phage therapy reagent comprised of the FyuA binding domain of pesticin fused to the N-terminus of T4 lysozyme. This hybrid toxin kills specific Yersinia and pathogenic E. coli strains and, importantly, can evade the pesticin immunity protein (Pim) giving it a distinct advantage over pesticin. Furthermore, because FyuA is required for virulence and is more common in pathogenic bacteria, the hybrid toxin also has the advantage of targeting primarily disease-causing bacteria rather than indiscriminately eliminating natural gut flora.

  8. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    PubMed

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid.

  9. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria

    PubMed Central

    Benedetti, Ilaria; Nikel, Pablo I.; de Lorenzo, Víctor

    2016-01-01

    Engineering of robust microbial cell factories requires the use of dedicated genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We have edited and formatted the ChnR/PchnB regulatory node of Acinetobacter johnsonii to ease the targeted engineering of ectopic gene expression in Gram-negative bacteria. The proposed compositional standard was thoroughly verified with a monomeric and superfolder green fluorescent protein (msf•GFP) in Escherichia coli. The expression data presented reflect a tightly controlled transcription initiation signal in response to cyclohexanone. Data in this article are related to the research paper “Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes” [1]. PMID:26870759

  10. Data on the standardization of a cyclohexanone-responsive expression system for Gram-negative bacteria.

    PubMed

    Benedetti, Ilaria; Nikel, Pablo I; de Lorenzo, Víctor

    2016-03-01

    Engineering of robust microbial cell factories requires the use of dedicated genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We have edited and formatted the ChnR/P chnB regulatory node of Acinetobacter johnsonii to ease the targeted engineering of ectopic gene expression in Gram-negative bacteria. The proposed compositional standard was thoroughly verified with a monomeric and superfolder green fluorescent protein (msf•GFP) in Escherichia coli. The expression data presented reflect a tightly controlled transcription initiation signal in response to cyclohexanone. Data in this article are related to the research paper "Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes" [1].

  11. Structural Insights Lead to a Negamycin Analogue with Improved Antimicrobial Activity against Gram-Negative Pathogens

    PubMed Central

    2015-01-01

    Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class. PMID:26288696

  12. [Psoas abscess secondary to lumbar spondylodiscitis caused by gram negative bacilli].

    PubMed

    Ampudia-Blasco, F J; Fernandez, J; Ferrer, M D; Pallardo, Y; Tenes, S; Carmena, R

    1998-08-01

    The association between psoas abscess and lumbar spondylodiscitis by Gram negative bacilli represents a rare clinical entity. Sometimes the absence of demonstrative symptoms complicates the diagnostic schema. We report about a 72 year-old woman, without previous known diabetes mellitus, who was admitted because of fever of one week duration and a non-ketotic hyperosmolar coma. A left psoas abscess was identified by abdominal computed tomography (CT). The abscess was in communication with the L1-L2 intervertebral space. Although Escherichia coli was identified as the causing agent and appropriate antibiotic therapy was administered, the resolution of the abscess occurred only after the implantation of a percutaneous catheter guided by CT without additional surgery. Percutaneous drainage as a diagnostic-therapeutic technique has rendered the surgery as the last resort in the treatment of psoas abscess. PMID:9780427

  13. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    PubMed

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use.

  14. High dose of tigecycline for extremely resistant Gram-negative pneumonia: yes, we can

    PubMed Central

    2014-01-01

    Few antimicrobials are currently active to treat infections caused by extremely resistant Gram-negative bacilli (ERGNB), which represent a serious global public health concern. Tigecycline, which covers the majority of these ERGNB (with the exception of Pseudomonas aeruginosa), is not currently approved for hospital-acquired pneumonia, and several meta-analyses have suggested an increased risk of death in patients receiving this antibiotic. Other studies suggest that the use of high-dose tigecycline may represent an alternative in daily practice. De Pascale and colleagues report that the clinical cure rate in patients with ventilator-associated pneumonia is significantly higher with a high dose of tigecycline than with the conventional dose, although mortality was unaffected. This high dose is safe; no patients required discontinuation or dose reduction. PMID:25043402

  15. [Emerging and important antibiotic resistance in Gram negative bacteria: epidemiology, theory and practice].

    PubMed

    Nordmann, P; Poirel, L

    2014-04-23

    Emerging and clinically-relevant antibiotic resistance mechanisms among Gram-negative rods are the extended-spectrum beta-lactamases (ESBL), carbapenemases, and 16S RNA methylases conferring resistance to aminoglycosides. Those resistance determinants do confer multiresistance to antibiotics. They are found in Enterobacteriaceae (especially community-acquired isolates, Pseudomonas aeruginosa and Acinetobacter baumannii). Detection of ESBL-producing and carbapenemase-producing isolates rely on the use of rapid diagnostic techniques that have to be performed when a reduced susceptibility to 3rd/4th generation cephalosporins or to carbapenems is observed, respectively. Only an early detection of those emerging resistance traits may contribute to limit their nosocomial spread and to optimize the antibiotic stewardship.

  16. Gram-Negative Marine Bacteria: Structural Features of Lipopolysaccharides and Their Relevance for Economically Important Diseases

    PubMed Central

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2014-01-01

    Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These components not only provide cell integrity but also elicit an immune response in the host, which ranges from other marine organisms to humans. Toll-like receptor 4 and its homologs are the dedicated receptors that detect LPS and trigger the immune system to respond, often causing a wide variety of inflammatory diseases and even death. This review describes the structural organization of selected LPSes and their association with economically important diseases in marine organisms. In addition, the potential therapeutic use of LPS as an immune adjuvant in different diseases is highlighted. PMID:24796306

  17. Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria.

    PubMed

    Li, A; Lee, P Y; Ho, B; Ding, J L; Lim, C T

    2007-03-01

    The antibacterial effect of the endotoxin-binding Sushi peptides against Gram-negative bacteria (GNB) is investigated in this study. Similar characteristics observed for Atomic force microscopy (AFM) images of peptide-treated Escherichia coli and Pseudomonas aeruginosa suggest that the Sushi peptides (S3) evoke comparable mechanism of action against different strains of GNB. The results also indicate that the Sushi peptides appear to act in three stages: damage of the bacterial outer membrane, permeabilization of the inner membrane and disintegration of both membranes. The AFM approach has provided vivid and detailed close-up images of the GNB undergoing various stages of antimicrobial peptide actions at the nanometer scale. The AFM results support our hypothesis that the S3 peptide perturbs the GNB membrane via the "carpet-model" and thus, provide important insights into their antimicrobial mechanisms.

  18. Antiseptic and antibiotic resistance in Gram-negative bacteria causing urinary tract infection.

    PubMed Central

    Stickler, D J; Thomas, B

    1980-01-01

    A collection of 802 isolates of Gram-negative bacteria causing urinary tract infections was made from general practice, antenatal clinics, and local hospitals. The organisms were tested for their sensitivity to chlorhexidine, cetrimide, glutaraldehyde, phenyl mercuric nitrate, a phenolic formulation, and a proprietary antiseptic containing a mixture of picloxydine, octyl phenoxy polyethoxyethanol, and benzalkonium chloride. Escherichia coli, the major species isolated, proved to be uniformly sensitive to these agents. Approximately 10% of the total number of isolates, however, exhibited a degree of resistance to the cationic agents. These resistant organisms were members of the genera Proteus, Providencia, and Pseudomonas; they were also generally resistant to five, six, or seven antibiotics. It is proposed therefore that an antiseptic policy which involves the intensive use of cationic antiseptics might lead to the selection of a flora of notoriously drug-resistant species. PMID:6769972

  19. Antibiotics and the mechanics of cellular bulging in gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Daly, K.; Wingreen, Ned S.; Mukhopahyay, Ranjan

    2010-03-01

    For most bacteria, the cell wall, consisting of a cross-linked polymer network, is the primary stress-bearing structure. Due to the high osmotic pressure difference across the cell membrane, the presence of the cell wall is essential for cell stability. Recent experiments have addressed the effect of cell-wall defects induced by antibiotics such as vancomycin, and find that in Gram-negative bacteria, antibiotics can lead to pronounced bulging of the cell membrane and eventually to lysis. Here we address the mechanics of bulging and its relationship to cell-wall defects. We estimate the critical defect size for bulging and discuss the biological implications of our results. We also discuss the relevance of our physical model to blebbing and vesiculation in eukaryotic cells.

  20. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Li, Jian; Nation, Roger L; Turnidge, John D; Milne, Robert W; Coulthard, Kingsley; Rayner, Craig R; Paterson, David L

    2006-09-01

    Increasing multidrug resistance in Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, presents a critical problem. Limited therapeutic options have forced infectious disease clinicians and microbiologists to reappraise the clinical application of colistin, a polymyxin antibiotic discovered more than 50 years ago. We summarise recent progress in understanding the complex chemistry, pharmacokinetics, and pharmacodynamics of colistin, the interplay between these three aspects, and their effect on the clinical use of this important antibiotic. Recent clinical findings are reviewed, focusing on evaluation of efficacy, emerging resistance, potential toxicities, and combination therapy. In the battle against rapidly emerging bacterial resistance we can no longer rely entirely on the discovery of new antibiotics; we must also pursue rational approaches to the use of older antibiotics such as colistin.

  1. Oxidative DNA damage and total antioxidant status in rats during experimental gram-negative sepsis.

    PubMed

    Kaymak, C; Kadioglu, E; Ozcagli, E; Osmanoglu, G; Izdes, S; Agalar, C; Basar, H; Sardas, S

    2008-06-01

    Sepsis and septic shock remains as leading cause of death in adult intensive care units. It is widely accepted that gram-negative bacteria and their endotoxins cause sepsis and septic shock, predominantly. Enhanced generation of reactive oxygen species may be responsible for tissue injury in septic shock and endotoxemia. The aim of this study was to assess oxidative DNA damage and the total antioxidant status (TAS) in peripheral lymphocytes of rats during different intraperitoneal gram-negative sepsis stages. Adult male Sprague-Dawley rats were divided randomly into four groups. Control group was intraperitoneally inoculated with 2 mL of pyrogene-free saline (Group I, n = 6), and the other rats received an intraperitoneal inoculum with 2 mL of saline containing 2 x 10(8) CFU of Escherichia coli. The animals were killed at time zero (Group I, n = 6), at 6th (Group II, n = 7), 12th (Group III, n = 7), and 24th (Group IV, n = 7) hour after the E. coli inoculation. Oxidative DNA damage in peripheral lymphocytes of rats was evaluated by modified comet assay (single-cell gel electrophoresis). Formamidopyrimidine DNA glycosylase (Fpg) and Endonuclease III (Endo III) were used to detect oxidized purines and pyrimidines, respectively. Total antioxidant quantification was carried out using ABTS+ (2,2'-Azino-di-[3 ethylbenzthiazoline sulphonate]) radical formation kinetics (Randox kit) in serum samples. Significant elevations of basal levels of strand breaks (SB) in Group IV were observed as compared with Group I, II, and III. There was a significant increase in Fpg sites in Group III as compared with Group I and II. However, there was no significant difference in terms of Endo III sites in any of the groups. Although the TAS was decreased with the stages of sepsis, this moderate decrease was significant in only Group IV as compared with Group I. There was no statistically significant correlation between DNA damage and TAS for any of the groups. PMID:18784201

  2. In vitro evaluation of a new cefixime-clavulanic acid combination for gram-negative bacteria.

    PubMed

    Rawat, Deepti; Hasan, Azra S; Capoor, Malini R; Sarma, Smita; Nair, Deepthi; Deb, Monorama; Pillai, Parukutty; Aggarwal, Pushpa

    2009-01-01

    The study was conducted to evaluate a new cefixime-clavulanic acid combination for in vitro susceptibility towards gram-negative bacteria. A total of 220 isolates of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeroginosa, Acinetobacter spp, Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium were included in the study. The isolates were tested for susceptibility towards the new combination antimicrobial molecule cefixime with clavulanic acid by disk diffusion and Epsilometer strip (E-strip) Minimum Inhibitary Concentration (MIC) method. Of the 101 E. coli and K. pneumoniae isolates, 62.4% were found to be extended spectrum beta-lactamase (ESBL) producers. Almost half of these were from the community and 55.6% were hospital isolates. Of the ESBL isolates, 19% were AmpC (cephalosporinases that are poorly inhibited by beta lactamase inhibitor) producers while the remaining 81% were non AmpC ESBL producers. The AmpC producers were resistant to both cefixime and the combination, while the non-AmpC producers were sensitive to the combination. The addition of clavulanate to cefixime did not improve the sensitivities of P. aeruginosa and Acinetobacter isolates. There were no ESBL isolates among the S. Typhi isolates, all of which were sensitive to cefixime. Of the S. Typhimurium, 88.9% were ESBL producers and all of these were resistant to cefixime but sensitive to the combination. The combination of cefixime with clavulanic acid offers the advantage of oral administration and appears to be a viable option for the treatment of uncomplicated community acquired infections caused by non-AmpC ESBL producing gram-negative bacteria.

  3. Understanding Gram-negative Central Line-Associated Blood Stream Infection in a Surgical Trauma ICU.

    PubMed

    Duane, Therese M; Kikhia, Rashid M; Wolfe, Luke G; Ober, Janis; Tessier, Jeffrey M

    2015-08-01

    The purpose of this study was to review central line-associated blood stream infection (CLABSI) data from a surgical trauma intensive care unit to better understand patient risk factors, pathogens, and treatment interventions. We performed a retrospective review of all surgical ICU patients who met the Centers for Disease Control definition for Gram-negative CLABSI from 2006 through 2013. Demographics, pathogens, interventions, and outcomes were evaluated. A total of 40 patients were included with an average age of 49.9 ± 19 years and 72.5 per cent male. The average length of central venous line (CVL) was 11 ± 5.9 days with average time from line placement to positive culture 9.4 ± 6.8 days. Most common organisms were Enterobacter species (37.5%) with 17.8 per cent of all cultured organisms considered multidrug resistant. Piperacillin-tazobactam (67.5%) was the most commonly used antibiotic. Overall mortality rate was 22.5 per cent. A total of 11 patients who developed a recurrence did so at 10.7 ± 8 days and were similar to those without recurrence. Predominant pathogens associated with surgical trauma intensive care unit CLABSI in this study are different from those Gram-negative bacteria associated with published studies in the general hospital population. Further investigation into risk factors for infection and relapse is important to minimize such consequences. Understanding appropriate line placement and use as well as clarifying optimal duration of therapy is integral in improving outcomes. PMID:26215246

  4. Detection of RTX toxin genes in gram-negative bacteria with a set of specific probes.

    PubMed Central

    Kuhnert, P; Heyberger-Meyer, B; Burnens, A P; Nicolet, J; Frey, J

    1997-01-01

    The family of RTX (RTX representing repeats in the structural toxin) toxins is composed of several protein toxins with a characteristic nonapeptide glycine-rich repeat motif. Most of its members were shown to have cytolytic activity. By comparing the genetic relationships of the RTX toxin genes we established a set of 10 gene probes to be used for screening as-yet-unknown RTX toxin genes in bacterial species. The probes include parts of apxIA, apxIIA, and apxIIIA from Actinobacillus pleuropneumoniae, cyaA from Bordetella pertusis, frpA from Neisseria meningitidis, prtC from Erwinia chrysanthemi, hlyA and elyA from Escherichia coli, aaltA from Actinobacillus actinomycetemcomitans and lktA from Pasteurella haemolytica. A panel of pathogenic and nonpathogenic gram-negative bacteria were investigated for the presence of RTX toxin genes. The probes detected all known genes for RTX toxins. Moreover, we found potential RTX toxin genes in several pathogenic bacterial species for which no such toxins are known yet. This indicates that RTX or RTX-like toxins are widely distributed among pathogenic gram-negative bacteria. The probes generated by PCR and the hybridization method were optimized to allow broad-range screening for RTX toxin genes in one step. This included the binding of unlabelled probes to a nylon filter and subsequent hybridization of the filter with labelled genomic DNA of the strain to be tested. The method constitutes a powerful tool for the assessment of the potential pathogenicity of poorly characterized strains intended to be used in biotechnological applications. Moreover, it is useful for the detection of already-known or new RTX toxin genes in bacteria of medical importance. PMID:9172345

  5. Structural Modifications of Bacterial Lipopolysaccharide that Facilitate Gram-Negative Bacteria Evasion of Host Innate Immunity

    PubMed Central

    Matsuura, Motohiro

    2013-01-01

    Bacterial lipopolysaccharide (LPS), a cell wall component characteristic of Gram-negative bacteria, is a representative pathogen-associated molecular pattern that allows mammalian cells to recognize bacterial invasion and trigger innate immune responses. The polysaccharide moiety of LPS primary plays protective roles for bacteria such as prevention from complement attacks or camouflage with common host carbohydrate residues. The lipid moiety, termed lipid A, is recognized by the Toll-like receptor 4 (TLR4)/MD-2 complex, which transduces signals for activation of host innate immunity. The basic structure of lipid A is a glucosamine disaccharide substituted by phosphate groups and acyl groups. Lipid A with six acyl groups (hexa-acylated form) has been indicated to be a strong stimulator of the TLR4/MD-2 complex. This type of lipid A is conserved among a wide variety of Gram-negative bacteria, and those bacteria are easily recognized by host cells for activation of defensive innate immune responses. Modifications of the lipid A structure to less-acylated forms have been observed in some bacterial species, and those forms are poor stimulators of the TLR4/MD-2 complex. Such modifications are thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. This hypothesis is supported by studies of Yersinia pestis LPS, which contains hexa-acylated lipid A when the bacterium grows at 27°C (the temperature of the vector flea), and shifts to contain less-acylated forms when grown at the human body temperature of 37°C. This alteration of lipid A forms following transmission of Y. pestis from fleas to humans contributes predominantly to the virulence of this bacterium over other virulence factors. A similar role for less-acylated lipid A forms has been indicated in some other bacterial species, such as Francisella tularensis, Helicobacter pylori, and Porphyromonas gingivalis, and further studies to explore this concept are expected. PMID

  6. High Prevalence of Antimicrobial-resistant Gram-negative Colonization in Hospitalized Cambodian Infants

    PubMed Central

    Pol, Sreymom; Soeng, Sona; Sar, Poda; Neou, Leakhena; Chea, Phal; Day, Nicholas PJ; Cooper, Ben S.; Turner, Claudia

    2016-01-01

    Background: Antimicrobial-resistant Gram-negative infections are a significant cause of mortality in young infants. We aimed to determine characteristics of, and risk factors for, colonization and invasive infection caused by 3rd generation cephalosporin (3GC) or carbapenem-resistant organisms in outborn infants admitted to a neonatal unit (NU) in Cambodia. Methods: During the first year of operation, patients admitted to the Angkor Hospital for Children NU, Siem Reap, Cambodia, underwent rectal swabbing on admission and twice weekly until discharge. Swabs were taken also from 7 environmental sites. Swabs were cultured to identify 3GC or carbapenem-resistant Acinetobacter sp., Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Results: The study included 333 infants with a median age at NU admission of 10 days (range, 0–43). Colonization by ≥1 3GC-resistant organism was detected in 85.9% (286/333). Admission swabs were collected in 289 infants: 61.9% were colonized by a 3GC-resistant organism at the time of admission, and a further 23.2% were colonized during hospitalization, at a median of 4 days [95% confidence interval: 3–5]. Probiotic treatment (hazard ratio: 0.58; 95% confidence interval: 0.35–0.98) was associated with delayed colonization. Colonization by a carbapenem-resistant organism occurred in 25 (7.5%) infants. Six infants had NU-associated K. pneumoniae bacteremia; phenotypically identical colonizing strains were found in 3 infants. Environmental colonization occurred early. Conclusions: Colonization by antimicrobial-resistant Gram-negative organisms occurred early in hospitalized Cambodian infants and was associated with subsequent invasive infection. Trials of potential interventions such as probiotics are needed. PMID:27124686

  7. Combined activity of sulfamethoxazole, trimethoprim, and polymyxin B against gram-negative bacilli.

    PubMed

    Rosenblatt, J E; Stewart, P R

    1974-07-01

    The activity of the three two-drug combinations of sulfamethoxazole (SMX), trimethoprim (TMP), and polymyxin B (PB) against 52 clinical isolates of gram-negative bacilli was studied by a "checkerboard" agar dilution method. The organisms studied included strains of Enterobacter spp., Klebsiella pneumoniae, Serratia marcescens, Providence, Proteus, and Pseudomonas aeruginosa. The majority of these isolates were resistant to at least two of the three agents used in the combined studies and to the most commonly used antimicrobials. The TMP-PB combination demonstrated enhanced activity more frequently than the other two-drug combinations, showing synergism or addition in 85% of the combined studies; indifference or antagonism was also observed least frequently with TMP-PB. The great majority (83%) of Enterobacter-Klebsiella-Serratia isolates were susceptible to enhanced activity of all combinations. Proteus-Providence isolates were frequently susceptible (63%), but combined activity was indifferent or antagonistic against 60% of P. aeruginosa. Twelve isolates were selected for "killing-curve" assays in which an inoculum was incubated with SMX, TMP, and PB individually and in various two- and three-drug combinations. Surviving bacteria were counted at timed intervals over 24 h of incubation. The triple combination (SMX-TMP-PB) was synergistic against 9 of 12 isolates, whereas TMP-PB and SMX-PB showed synergism against 5 and 3 isolates, respectively. These data suggest that, although TMP-PB will often show enhanced activity against the gram-negative bacilli studied here, optimal antibacterial activity will be demonstrated when the three-drug combination is used.

  8. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories

    PubMed Central

    Martínez-García, Esteban; Aparicio, Tomás; de Lorenzo, Víctor; Nikel, Pablo I.

    2014-01-01

    Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes

  9. Intrathecal or intraventricular therapy for post-neurosurgical Gram-negative meningitis: matched cohort study.

    PubMed

    Shofty, B; Neuberger, A; Naffaa, M E; Binawi, T; Babitch, T; Rappaport, Z H; Zaaroor, M; Sviri, G; Paul, M

    2016-01-01

    Gram-negative post-operative meningitis due to carbapenem-resistant bacteria (CR-GNPOM) is a dire complication of neurosurgical procedures. We performed a nested propensity-matched historical cohort study aimed at examining the possible benefit of intrathecal or intraventricular (IT/IV) antibiotic treatment for CR-GNPOM. We included consecutive adults with GNPOM in two centres between 2005 and 2014. Patients receiving combined systemic and IT/IV treatment were matched to patients receiving systemic treatment only. Matching was done based on the propensity of the patients to receive IT/IV treatment. We compared patient groups with 30-day mortality defined as the primary outcome. The cohort included 95 patients with GNPOM. Of them, 37 received IT/IV therapy in addition to systemic treatment (22 with colistin and 15 with amikacin), mostly as initial therapy, through indwelling cerebrospinal fluid drains. Variables associated with IT/IV therapy in the propensity score included no previous neurosurgery, time from admission to meningitis, presence of a urinary catheter and GNPOM caused by carbapenem-resistant Gram-negative bacteria. Following propensity matching, 23 patients given IT/IV therapy and 27 controls were analysed. Mortality was significantly lower with IT/IV therapy: 2/23 (8.7%) versus 9/27 (33.3%), propensity-adjusted OR 0.19, 95% CI 0.04-0.99. Death or neurological deterioration at 30 days, 14-day and in-hospital mortality were lower with IT/IV therapy (OR <0.4 for all) without statistically significant differences. Among patients discharged alive, those receiving IT/IV therapy did not experience more neurological deterioration. Serious adverse events with IT/IV therapy were not documented. Our results support the early use of IT antibiotic treatment for CR-GNPOM when a delivery method is available.

  10. Faecal carriage of carbapenemase-producing Gram-negative bacilli in hospital settings in southern France.

    PubMed

    Pantel, A; Marchandin, H; Prère, M-F; Boutet-Dubois, A; Brieu-Roche, N; Gaschet, A; Davin-Regli, A; Sotto, A; Lavigne, J-P

    2015-05-01

    The emergence of carbapenemase-producing Gram-negative bacilli is a worldwide problem. To date, no study has evaluated the prevalence of faecal carriage of carbapenemase-producing and carbapenem-resistant Gram-negative bacilli (CR GNB) in France. From 1 February to 30 April 2012, we conducted a prospective, multicentre study in three University Hospitals and four General Hospitals in the south of France. The carriage of carbapenemase-producing Enterobacteriaceae (CPE) and other CR GNB was screened by both cultivation on chromID® CARBA and chromID® OXA-48 media (bioMérieux) and molecular tools [multiplex polymerase chain reaction (PCR) and NucliSENS EasyQ® KPC (bioMérieux)]. The genetic relationship between isolates was assessed by rep-PCR (DiversiLab, bioMérieux) or multilocus sequence typing (MLST). The prevalences of CR GNB and carbapenemase-producing bacteria were 2.4 % (27/1,135) and 0.4 % (n = 5), respectively. Two strains corresponded to OXA-23-producing Acinetobacter baumannii and belonged to the widespread sequence type (ST) 2/international clone II, whereas one strain was an ST15 OXA-48-producing Klebsiella pneumoniae. Two OXA-48-producers were detected exclusively by PCR. This first French study revealed the very low dissemination of carbapenemase-producing bacteria in patients attending hospitals in southern France during a non-outbreak situation. However, the increasing description of epidemic cases in this area must reinforce the use of hygiene procedures to prevent diffusion of these multidrug-resistant microorganisms.

  11. Evaluation of the Rapidec Carba NP Test Kit for Detection of Carbapenemase-Producing Gram-Negative Bacteria.

    PubMed

    Garg, Atul; Garg, Jaya; Upadhyay, G C; Agarwal, Anurag; Bhattacharjee, Amitabha

    2015-12-01

    Recently, bioMérieux, France, introduced the Rapidec Carba NP test kit for rapid detection of carbapenemase-producing Gram-negative bacteria. This kit was evaluated in this study, and we report sensitivity, specificity, and positive and negative predictive values of 92.6%, 96.2%, 95.83%, and 92.6%, respectively. The test was easy to perform and interpret and relatively inexpensive ($5/Rs 300 per test) and provides a practical solution for early detection of carbapenemase-producing, multidrug-resistant Gram-negative bacteria.

  12. Aerobic fitness in women and responses to lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett; Mathes, Karen L.; Hoffler, G. Wyckliffe

    1987-01-01

    The role of tolerance to orthostatic stress in the maintenance of high aerobic fitness in women was investigated by examining the responses of heart rate, stroke volume, cardiac output, Heather index of contractility, arterial pressure, peripheral resistance, change in calf circumference, and thoracic impedance of healthy female subjects to lower body negative pressure (LBNP) applied for 5 min at -50 mm Hg or until a subject became presyncopal. The testing protocol involved a stepwise reduction in pressure and consisted of two parts: an LBNP test in supine position followed by a treadmill test to peak aerobic capacity. Women were found to exhibit the same response pattern to LBNP as was previously reported by Convertino et al. (1984) for men. The results do not support the hypothesis that orthostatic tolerance in women is inversely related to aerobic fitness, as demonstrated by a finding that the peak aerobic capacity of subjects who became presyncopal did not differ from the peak of the tolerant subjects, and that hemodynamic responses to LBNPL were not a function of aerobic capacity.

  13. Gram-negative bacteria facilitate tumor outgrowth and metastasis by promoting lipid synthesis in lung cancer patients

    PubMed Central

    Ye, Maosong; Gu, Xia; Han, Yang

    2016-01-01

    Background Lung cancer is the leading cause of cancer-related death worldwide. Patients with lung cancer are very frequently present with pulmonary infections, in particular with Gram-negative bacteria. Herein, we investigated the effect of the co-presence of Gram-negative bacteria on outgrowth and metastasis of lung cancer cells in clinical patients. Methods Lung cancer cells were isolated from clinical surgical tissues. Heat-inactivated E. coli was used as Gram-negative bacteria. Tumor outgrowth and invasion in vitro was analyzed with MTT assay and Biocoat Matrigel Invasion Chamber. Tumor growth and metastasis in vivo was evaluated in BALB/c nude mice. Lipid synthesis was evidenced by expressions of FASN and ACC1, as well as BODIPY Fluorophores staining. Block lipid synthesis was performed with C75 as a FAS inhibitor and transfection with ACC1 siRNA. Knockdown of TLR4 and TLR9 signaling was achieved by transfection with specific shRNAs and administration of specific antagonists. Results Gram-negative bacteria significantly promoted lung cancer development including growth and metastasis in dose dependent manner. Mechanistically, Gram-negative bacteria activate TLR4 and TLR9 signaling and enhance lipid synthesis in human lung cancer cells. Knockdown of TLR4 and/or TLR9 was able to block Gram-negative bacteria mediated lipid synthesis and lung cancer development. Interference with lipid synthesis efficiently abrogated Gram-negative-bacteria-induced lung cancer development. In lung cancer patients, higher expressions of innate immune receptors, TLR4 and TLR9, were observed in those with Gram-negative infections and associated with the aberrant lipid synthesis that was observed in vitro. Conclusions Pulmonary infections with Gram-negative bacteria lead to aberrant lipid synthesis through TLR4 and TLR9 signaling in lung cancer patients and result in rapid proliferation and metastasis of lung cancer cells. These findings reveal a new mechanism for pulmonary infection

  14. Immunological investigation of the distribution of cytochromes related to the two terminal oxidases of Escherichia coli in other gram-negative bacteria

    SciTech Connect

    Kranz, R.G.; Gennis, R.B.

    1985-02-01

    Monospecific antibodies were raised against the two terminal oxidase complexes of the aerobic respiratory chain of Escherichia coli. These are the cytochrome d and cytochrome o complexes. The antibodies were used to check for the occurrence of cross-reactive antigens in membrane preparations from a variety of gram-negative bacteria by rocket immunoelectrophoresis and immunoblotting techniques. With these criteria, proteins closely related to the cytochrome d complex of E. coli appeared to be widely distributed. Among the strains containing cytochrome d-related material were Serratia marcescens, Photobacterium phosphoreum, Salmonella typhimurium, Klebsiella pneumoniae, and Azotobacter vinelandii. The data suggest that the d-type terminal oxidase in many of these strains is associated in a complex with b-type and a/sub 1/-type cytochromes, as has been found to be the case in E. coli. K. pneumoniae and S. typhimurium were also shown to have material cross-reactive to the E. coli cytochrome o complex.

  15. Comparison of the activity of cefoperazone, cefuroxime and cefoxitin against Gram-negative bacilli and synergy studies with cefoperazone and ticarcillin.

    PubMed

    Miles, H M; Carson, M; Pavillard, E R

    1981-01-01

    83% of at least 11 different species of Gram-negative aerobic bacilli, comprising 270 clinical isolates, were inhibited by 3.1 microgram cefoperazone per ml. 55% and 48% were inhibited by 3.1 micrograms/ml of cefuroxime and cefoxitin, respectively. In addition, cefoperazone inhibited 83 of 96 Pseudomonas aeruginosa isolates at a concentration of 6.2 microgram/ml. Cefoperazone/ticarcillin combinations were shown to be synergistic for 47/96 (49%) of Pseudomonas aeruginosa isolates studied, when lowering of the minimum bactericidal concentrations of the 2 drugs was the criterion for enhancement of activity. Cefoperazone/ticarcillin combinations were also shown to be synergistic against 15/30 Serratia marcescens isolates. We discuss the possible advantages of synergistic combinations of drugs of relatively low toxicity, for the management of complicated infections.

  16. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    PubMed

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  17. False-negative rate of gram-stain microscopy for diagnosis of septic arthritis: suggestions for improvement.

    PubMed

    Stirling, Paul; Faroug, Radwane; Amanat, Suheil; Ahmed, Abdulkhaled; Armstrong, Malcolm; Sharma, Pankaj; Qamruddin, Ahmed

    2014-01-01

    We quantify the false-negative diagnostic rate of septic arthritis using Gram-stain microscopy of synovial fluid and compare this to values reported in the peer-reviewed literature. We propose a method of improving the diagnostic value of Gram-stain microscopy using Lithium Heparin containers that prevent synovial fluid coagulation. Retrospective study of the Manchester Royal Infirmary microbiology database of patients undergoing synovial fluid Gram-stain and culture between December 2003 and March 2012 was undertaken. The initial cohort of 1896 synovial fluid analyses for suspected septic arthritis was reduced to 143 after exclusion criteria were applied. Analysis of our Gram-stain microscopy yielded 111 false-negative results from a cohort size of 143 positive synovial fluid cultures, giving a false-negative rate of 78%. We report a false-negative rate of Gram-stain microscopy for septic arthritis of 78%. Clinicians should therefore avoid the investigation until a statistically significant data set confirms its efficacy. The investigation's value could be improved by using Lithium Heparin containers to collect homogenous synovial fluid samples. Ongoing research aims to establish how much this could reduce the false-negative rate.

  18. False-Negative Rate of Gram-Stain Microscopy for Diagnosis of Septic Arthritis: Suggestions for Improvement

    PubMed Central

    Amanat, Suheil; Ahmed, Abdulkhaled; Armstrong, Malcolm; Sharma, Pankaj; Qamruddin, Ahmed

    2014-01-01

    We quantify the false-negative diagnostic rate of septic arthritis using Gram-stain microscopy of synovial fluid and compare this to values reported in the peer-reviewed literature. We propose a method of improving the diagnostic value of Gram-stain microscopy using Lithium Heparin containers that prevent synovial fluid coagulation. Retrospective study of the Manchester Royal Infirmary microbiology database of patients undergoing synovial fluid Gram-stain and culture between December 2003 and March 2012 was undertaken. The initial cohort of 1896 synovial fluid analyses for suspected septic arthritis was reduced to 143 after exclusion criteria were applied. Analysis of our Gram-stain microscopy yielded 111 false-negative results from a cohort size of 143 positive synovial fluid cultures, giving a false-negative rate of 78%. We report a false-negative rate of Gram-stain microscopy for septic arthritis of 78%. Clinicians should therefore avoid the investigation until a statistically significant data set confirms its efficacy. The investigation's value could be improved by using Lithium Heparin containers to collect homogenous synovial fluid samples. Ongoing research aims to establish how much this could reduce the false-negative rate. PMID:24678320

  19. Evaluation of pyrrolidonyl arylamidase for the identification of nonfermenting Gram-negative rods.

    PubMed

    Bombicino, Karina A; Almuzara, Marisa N; Famiglietti, Angela M R; Vay, Carlos

    2007-01-01

    To evaluate the activity of pyrrolidonyl arylamidase (PYR) for the differentiation and identification of nonfermenting gram negative rods (NFGNR), 293 isolates were tested. A 24 h culture of each test organism was prepared. From this a 108-109 cfu/mL suspension was added to 0.25 mL of sterile physiologic solution. A PYR disk was then added and the test was incubated for 30 minutes at 35-37 degrees C, at environmental atmosphere. Reading was done by adding 1 drop of cinnamaldehyde reagent. Strains of Acinetobacter baumannii, Acinetobacter haemolyticus, Alcaligenes faecalis, Bergeyella zoohelcum, Bordetella bronchiseptica, Bordetella hinzii, Brevundimonas diminuta, Brevundimonas vesicularis, Brucella ovis, Brucella spp., Brucella suis, Burkholderia cepacia complex, Moraxella catarrhalis, Moraxella lacunata, Moraxella nonliquefaciens, Moraxella osloensis, Oligella ureolytica, Pseudomonas alcaligenes, Pseudomonas mendocina, Pseudomonas pseudoalcaligenes, Pseudomonas putida, Pseudomonas stutzeri, Pseudomonas Vb3, Psychrobacter phenylpyruvicus, and Stenotrophomonas maltophilia were PYR negative. On the other hand Achromobacter piechaudii, Achromobacter denitrificans, Achromobacter xylosoxidans, Burkholderia gladioli, Chryseobacterium gleum-indologenes, Comamonas testosroni, Cupriavidus pauculus, Delftia acidovorans, Elizabethkingia meningoseptica, Myroides spp., Ochrobactrum anthropi, Pseudomonas oryzihabitans, Ralstonia pickettii, Rhizobium radiobacter, Shewanella spp., Sphingobacterium multivorum, Sphingobacterium spiritivorum, and Weeksella virosa were PYR positive. Finally, Acinetobacter lwoffii, Pseudomonas aeruginosa, Pseudomonas fluorescens, Roseomonas spp., and Sphingomonas paucimobilis-parapaucimobilis were PYR variable. PYR testing should be considered as a useful tool to facilitate the identification of NFGNR.

  20. Evaluation of pyrrolidonyl arylamidase for the identification of nonfermenting Gram-negative rods.

    PubMed

    Bombicino, Karina A; Almuzara, Marisa N; Famiglietti, Angela M R; Vay, Carlos

    2007-01-01

    To evaluate the activity of pyrrolidonyl arylamidase (PYR) for the differentiation and identification of nonfermenting gram negative rods (NFGNR), 293 isolates were tested. A 24 h culture of each test organism was prepared. From this a 108-109 cfu/mL suspension was added to 0.25 mL of sterile physiologic solution. A PYR disk was then added and the test was incubated for 30 minutes at 35-37 degrees C, at environmental atmosphere. Reading was done by adding 1 drop of cinnamaldehyde reagent. Strains of Acinetobacter baumannii, Acinetobacter haemolyticus, Alcaligenes faecalis, Bergeyella zoohelcum, Bordetella bronchiseptica, Bordetella hinzii, Brevundimonas diminuta, Brevundimonas vesicularis, Brucella ovis, Brucella spp., Brucella suis, Burkholderia cepacia complex, Moraxella catarrhalis, Moraxella lacunata, Moraxella nonliquefaciens, Moraxella osloensis, Oligella ureolytica, Pseudomonas alcaligenes, Pseudomonas mendocina, Pseudomonas pseudoalcaligenes, Pseudomonas putida, Pseudomonas stutzeri, Pseudomonas Vb3, Psychrobacter phenylpyruvicus, and Stenotrophomonas maltophilia were PYR negative. On the other hand Achromobacter piechaudii, Achromobacter denitrificans, Achromobacter xylosoxidans, Burkholderia gladioli, Chryseobacterium gleum-indologenes, Comamonas testosroni, Cupriavidus pauculus, Delftia acidovorans, Elizabethkingia meningoseptica, Myroides spp., Ochrobactrum anthropi, Pseudomonas oryzihabitans, Ralstonia pickettii, Rhizobium radiobacter, Shewanella spp., Sphingobacterium multivorum, Sphingobacterium spiritivorum, and Weeksella virosa were PYR positive. Finally, Acinetobacter lwoffii, Pseudomonas aeruginosa, Pseudomonas fluorescens, Roseomonas spp., and Sphingomonas paucimobilis-parapaucimobilis were PYR variable. PYR testing should be considered as a useful tool to facilitate the identification of NFGNR. PMID:16822636

  1. Occurrence of ferredoxin:NAD+ oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria

    PubMed Central

    Hess, Verena; Gallegos, Rene; Jones, J Andrew; Barquera, Blanca; Malamy, Michael H

    2016-01-01

    A ferredoxin:NAD+ oxidoreductase was recently discovered as a redox-driven ion pump in the anaerobic, acetogenic bacterium Acetobacterium woodii. The enzyme is assumed to be encoded by the rnf genes. Since these genes are present in the genomes of many bacteria, we tested for ferredoxin:NAD+ oxidoreductase activity in cytoplasmic membranes from several different Gram-positive and Gram-negative bacteria that have annotated rnf genes. We found this activity in Clostridium tetanomorphum, Clostridium ljungdahlii, Bacteroides fragilis, and Vibrio cholerae but not in Escherichia coli and Rhodobacter capsulatus. As in A. woodii, the activity was Na+-dependent in C. tetanomorphum and B. fragilis but Na+-independent in C. ljungdahlii and V. cholerae. We deleted the rnf genes from B. fragilis and demonstrated that the mutant has greatly reduced ferredoxin:NAD+ oxidoreductase activity. This is the first genetic proof that the rnf genes indeed encode the reduced ferredoxin:NAD+ oxidoreductase activity. PMID:26793417

  2. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns

    PubMed Central

    Spencer, J.; Schwarzacher, W.

    2016-01-01

    ABSTRACT In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved

  3. Epidemiology of meningitis with a negative CSF Gram stain: under-utilization of available diagnostic tests.

    PubMed

    Nesher, L; Hadi, C M; Salazar, L; Wootton, S H; Garey, K W; Lasco, T; Luce, A M; Hasbun, R

    2016-01-01

    Meningitis with a negative cerebrospinal fluid Gram stain (CSF-GS) poses a diagnostic challenge as more than 50% of patients remain without an aetiology. The introduction of polymerase chain reaction (PCR) and arboviral serologies have increased diagnostic capabilities, yet large scale epidemiological studies evaluating their use in clinical practice are lacking. We conducted a prospective observational study in New Orleans between November 1999 and September 2008 (early era) when PCR was not widely available, and in Houston between November 2008 and June 2013 (modern era), when PCR was commonly used. Patients presenting with meningitis and negative CSF-GS were followed for 4 weeks. All investigations, PCR used, and results were recorded as they became available. In 323 patients enrolled, PCR provided the highest diagnostic yield (24·2%) but was ordered for 128 (39·6%) patients; followed by serology for arboviruses (15%) that was ordered for 100 (31%) of all patients. The yield of blood cultures was (10·3%) and that of CSF cultures was 4%; the yield for all other tests was <10%. Overall, 65% of the patients remained without a diagnosis at 4 weeks: 72·1% in early era vs. 53·4% (P < 0·01) in modern era; this change was attributed to diagnosing more viral pathogens, 8·3% and 26·3% (P < 0·01), respectively. The introduction of PCR and arboviral serologies has improved the yield of diagnosing patients with meningitis and a negative CSF-GS, but both tests are being under-utilized.

  4. Distinct Mechanisms Underlie Boosted Polysaccharide-Specific IgG Responses Following Secondary Challenge with Intact Gram-Negative versus Gram-Positive Extracellular Bacteria.

    PubMed

    Kar, Swagata; Arjunaraja, Swadhinya; Akkoyunlu, Mustafa; Pier, Gerald B; Snapper, Clifford M

    2016-06-01

    Priming of mice with intact, heat-killed cells of Gram-negative Neisseria meningitidis, capsular serogroup C (MenC) or Gram-positive group B Streptococcus, capsular type III (GBS-III) bacteria resulted in augmented serum polysaccharide (PS)-specific IgG titers following booster immunization. Induction of memory required CD4(+) T cells during primary immunization. We determined whether PS-specific memory for IgG production was contained within the B cell and/or T cell populations, and whether augmented IgG responses following booster immunization were also dependent on CD4(+) T cells. Adoptive transfer of purified B cells from MenC- or GBS-III-primed, but not naive mice resulted in augmented PS-specific IgG responses following booster immunization. Similar responses were observed when cotransferred CD4(+) T cells were from primed or naive mice. Similarly, primary immunization with unencapsulated MenC or GBS-III, to potentially prime CD4(+) T cells, failed to enhance PS-specific IgG responses following booster immunization with their encapsulated isogenic partners. Furthermore, in contrast to GBS-III, depletion of CD4(+) T cells during secondary immunization with MenC or another Gram-negative bacteria, Acinetobacter baumannii, did not inhibit augmented PS-specific IgG booster responses of mice primed with heat-killed cells. Also, in contrast with GBS-III, booster immunization of MenC-primed mice with isolated MenC-PS, a TI Ag, or a conjugate of MenC-PS and tetanus toxoid elicited an augmented PS-specific IgG response similar to booster immunization with intact MenC. These data demonstrate that memory for augmented PS-specific IgG booster responses to Gram-negative and Gram-positive bacteria is contained solely within the B cell compartment, with a differential requirement for CD4(+) T cells for augmented IgG responses following booster immunization. PMID:27183619

  5. Distinct Mechanisms Underlie Boosted Polysaccharide-Specific IgG Responses Following Secondary Challenge with Intact Gram-Negative versus Gram-Positive Extracellular Bacteria.

    PubMed

    Kar, Swagata; Arjunaraja, Swadhinya; Akkoyunlu, Mustafa; Pier, Gerald B; Snapper, Clifford M

    2016-06-01

    Priming of mice with intact, heat-killed cells of Gram-negative Neisseria meningitidis, capsular serogroup C (MenC) or Gram-positive group B Streptococcus, capsular type III (GBS-III) bacteria resulted in augmented serum polysaccharide (PS)-specific IgG titers following booster immunization. Induction of memory required CD4(+) T cells during primary immunization. We determined whether PS-specific memory for IgG production was contained within the B cell and/or T cell populations, and whether augmented IgG responses following booster immunization were also dependent on CD4(+) T cells. Adoptive transfer of purified B cells from MenC- or GBS-III-primed, but not naive mice resulted in augmented PS-specific IgG responses following booster immunization. Similar responses were observed when cotransferred CD4(+) T cells were from primed or naive mice. Similarly, primary immunization with unencapsulated MenC or GBS-III, to potentially prime CD4(+) T cells, failed to enhance PS-specific IgG responses following booster immunization with their encapsulated isogenic partners. Furthermore, in contrast to GBS-III, depletion of CD4(+) T cells during secondary immunization with MenC or another Gram-negative bacteria, Acinetobacter baumannii, did not inhibit augmented PS-specific IgG booster responses of mice primed with heat-killed cells. Also, in contrast with GBS-III, booster immunization of MenC-primed mice with isolated MenC-PS, a TI Ag, or a conjugate of MenC-PS and tetanus toxoid elicited an augmented PS-specific IgG response similar to booster immunization with intact MenC. These data demonstrate that memory for augmented PS-specific IgG booster responses to Gram-negative and Gram-positive bacteria is contained solely within the B cell compartment, with a differential requirement for CD4(+) T cells for augmented IgG responses following booster immunization.

  6. Purification and visualization of lipopolysaccharide from Gram-negative bacteria by hot aqueous-phenol extraction.

    PubMed

    Davis, Michael R; Goldberg, Joanna B

    2012-05-28

    Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial outer membranes. It is a tripartite molecule consisting of lipid A, which is embedded in the outer membrane, a core oligosaccharide and repeating O-antigen units that extend outward from the surface of the cell(1, 2). LPS is an immunodominant molecule that is important for the virulence and pathogenesis of many bacterial species, including Pseudomonas aeruginosa, Salmonella species, and Escherichia coli(3-5), and differences in LPS O-antigen composition form the basis for serotyping of strains. LPS is involved in attachment to host cells at the initiation of infection and provides protection from complement-mediated killing; strains that lack LPS can be attenuated for virulence(6-8). For these reasons, it is important to visualize LPS, particularly from clinical isolates. Visualizing LPS banding patterns and recognition by specific antibodies can be useful tools to identify strain lineages and to characterize various mutants. In this report, we describe a hot aqueous-phenol method for the isolation and purification of LPS from Gram-negative bacterial cells. This protocol allows for the extraction of LPS away from nucleic acids and proteins that can interfere with visualization of LPS that occurs with shorter, less intensive extraction methods(9). LPS prepared this way can be separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and directly stained using carbohydrate/glycoprotein stains or standard silver staining methods. Many anti-sera to LPS contain antibodies that cross-react with outer membrane proteins or other antigenic targets that can hinder reactivity observed following Western immunoblot of SDS-PAGE-separated crude cell lysates. Protease treatment of crude cell lysates alone is not always an effective way of removing this background using this or other visualization methods. Further, extensive protease treatment in an attempt to remove this background

  7. Purification and visualization of lipopolysaccharide from Gram-negative bacteria by hot aqueous-phenol extraction.

    PubMed

    Davis, Michael R; Goldberg, Joanna B

    2012-01-01

    Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial outer membranes. It is a tripartite molecule consisting of lipid A, which is embedded in the outer membrane, a core oligosaccharide and repeating O-antigen units that extend outward from the surface of the cell(1, 2). LPS is an immunodominant molecule that is important for the virulence and pathogenesis of many bacterial species, including Pseudomonas aeruginosa, Salmonella species, and Escherichia coli(3-5), and differences in LPS O-antigen composition form the basis for serotyping of strains. LPS is involved in attachment to host cells at the initiation of infection and provides protection from complement-mediated killing; strains that lack LPS can be attenuated for virulence(6-8). For these reasons, it is important to visualize LPS, particularly from clinical isolates. Visualizing LPS banding patterns and recognition by specific antibodies can be useful tools to identify strain lineages and to characterize various mutants. In this report, we describe a hot aqueous-phenol method for the isolation and purification of LPS from Gram-negative bacterial cells. This protocol allows for the extraction of LPS away from nucleic acids and proteins that can interfere with visualization of LPS that occurs with shorter, less intensive extraction methods(9). LPS prepared this way can be separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and directly stained using carbohydrate/glycoprotein stains or standard silver staining methods. Many anti-sera to LPS contain antibodies that cross-react with outer membrane proteins or other antigenic targets that can hinder reactivity observed following Western immunoblot of SDS-PAGE-separated crude cell lysates. Protease treatment of crude cell lysates alone is not always an effective way of removing this background using this or other visualization methods. Further, extensive protease treatment in an attempt to remove this background

  8. Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria†

    PubMed Central

    Geske, Grant D.; O’Neill, Jennifer C.; Blackwell, Helen E.

    2008-01-01

    Bacteria are capable of “communicating” their local population densities via a process termed quorum sensing (QS). Gram-negative bacteria use N-acylated l-homoserine lactones (AHLs), in conjunction with their cognate LuxR-type receptors, as their primary signalling circuit for QS. In this critical review, we examine AHL signalling in Gram-negative bacteria with a primary focus on the design of non-natural AHLs, their structure-activity relationships, and their application in chemical biological approaches to study QS. PMID:18568169

  9. Prevention of biofilm colonization by Gram-negative bacteria on minocycline-rifampin-impregnated catheters sequentially coated with chlorhexidine.

    PubMed

    Jamal, Mohamed A; Rosenblatt, Joel S; Hachem, Ray Y; Ying, Jiang; Pravinkumar, Egbert; Nates, Joseph L; Chaftari, Anne-Marie P; Raad, Issam I

    2014-01-01

    Resistant Gram-negative bacteria are increasing central-line-associated bloodstream infection threats. To better combat this, chlorhexidine (CHX) was added to minocycline-rifampin (M/R) catheters. The in vitro antimicrobial activity of CHX-M/R catheters against multidrug resistant, Gram-negative Acinetobacter baumannii, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia was tested. M/R and CHX-silver sulfadiazine (CHX/SS) catheters were used as comparators. The novel CHX-M/R catheters were significantly more effective (P < 0.0001) than CHX/SS or M/R catheters in preventing biofilm colonization and showed better antimicrobial durability.

  10. [Advances in the research of LuxR family protein in quorum-sensing system of gram-negative bacteria].

    PubMed

    Chen, Z; Xiang, J

    2016-09-20

    Quorum sensing (QS) is a cell-density-dependent method for information transmission among bacteria, as well as a mechanism for the bacteria to adapt to environment. LuxR family protein plays a key role in gram-negative bacterial QS system as a kind of transcription regulators and participates in a variety of biological behaviors with LuxI protein and signal molecules, such as bioluminescence, biofilm formation, virulence factors production, and so on. The advances in the research of LuxR family protein in QS system of gram-negative bacteria were summarized in this review. PMID:27647069

  11. Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis.

    PubMed

    Chatzigeorgiou, Kalliopi-Stavroula; Sergentanis, Theodoros N; Tsiodras, Sotirios; Hamodrakas, Stavros J; Bagos, Pantelis G

    2011-09-01

    Phoenix 100 and Vitek 2 (operating with the current colorimetric cards) are commonly used in hospital laboratories for rapid identification of microorganisms. The present meta-analysis aims to evaluate and compare their performance on Gram-positive and Gram-negative bacteria. The MEDLINE database was searched up to October 2010 for the retrieval of relevant articles. Pooled correct identification rates were derived from random-effects models, using the arcsine transformation. Separate analyses were conducted at the genus and species levels; subanalyses and meta-regression were undertaken to reveal meaningful system- and study-related modifiers. A total of 29 (6,635 isolates) and 19 (4,363 isolates) articles were eligible for Phoenix and colorimetric Vitek 2, respectively. No significant differences were observed between Phoenix and Vitek 2 either at the genus (97.70% versus 97.59%, P = 0.919) or the species (92.51% versus 88.77%, P = 0.149) level. Studies conducted with conventional comparator methods tended to report significantly better results compared to those using molecular reference techniques. Speciation of Staphylococcus aureus was significantly more accurate in comparison to coagulase-negative staphylococci by both Phoenix (99.78% versus 88.42%, P < 0.00001) and Vitek 2 (98.22% versus 91.89%, P = 0.043). Vitek 2 also reached higher correct identification rates for Gram-negative fermenters versus nonfermenters at the genus (99.60% versus 95.90%, P = 0.004) and the species (97.42% versus 84.85%, P = 0.003) level. In conclusion, the accuracy of both systems seems modified by underlying sample- and comparator method-related parameters. Future simultaneous assessment of the instruments against molecular comparator procedures may facilitate interpretation of the current observations.

  12. Effect of aerobic capacity on Lower Body Negative Pressure (LBNP) tolerance in females

    NASA Technical Reports Server (NTRS)

    Moore, Alan D., Jr.; Fortney, Suzanne M.; Siconolfi, Steven F.

    1993-01-01

    This investigation determined whether a relationship exists in females between: (1) aerobic capacity and Lower Body Negative Pressure (LBNP); and (2) aerobic capacity and change in LBNP tolerance induced by bed rest. Nine females, age 27-47 (34.6 plus or minus 6.0 (Mean plus or minus SD)), completed a treadmill-graded exercise test to establish aerobic capacity. A presyncopal-limited LBNP test was performed prior to and after 13 days of bed rest at a 6 deg head-down tilt. LBNP tolerance was quantified as: (1) the absolute level of negative pressure (NP) tolerated for greater than or equal to 60 sec; and (2) Luft's Cumulative Stress Index (CSI). Aerobic capacity was 33.3 plus or minus 5.0 mL/kg/min and ranged from 25.7 to 38.7. Bed rest was associated with a decrease in NP tolerance (-9.04 1.6 kPa(-67.8 plus or minus 12.0 mmHg) versus -7.7 1.1 kPa(-57.8 plus or minus 8.33 mmHg); p = 0.028) and in CSI (99.4 27.4 kPa min(745.7 plus or minus 205.4 mmHg min) versus 77.0 16.9 kPa min (577.3 plus or minus mmHg min); p = 0.008). The correlation between aerobic capacity and absolute NP or CSI pre-bed rest did not differ significantly from zero (r = -0.56, p = 0.11 for NP; and r = -0.52, p = 0.16 for CSI). Also, no significant correlation was observed between aerobic and pre- to post-rest change for absolute NP tolerance (r = -0.35, p = 0.35) or CSI (r = -0.32, p = 0.40). Therefore, a significant relationship does not exist between aerobic capacity and orthostatic function or change in orthostatic function induced by bed rest.

  13. [News of antibiotic resistance among Gram-negative bacilli in Algeria].

    PubMed

    Baba Ahmed-Kazi Tani, Z; Arlet, G

    2014-06-01

    Antibiotic resistance has become a major public health problem in Algeria. Indeed the past decade, we have seen a significant increase in resistance to antibiotics especially in Gram-negative bacilli. Resistance to β-lactams in enterobacteria is dominated by the production of ESBL CTX-M-3 and CTX-M-15. The strains producing these enzymes are often the cause of potentially serious infections in both hospital and community settings. Identified plasmid cephalosporinases are CMY-2, CMY-12 and DHA-1. The isolation of strains of Enterobacteriaceae and Pseudomonas aeruginosa producing carbapenemases is rare in Algeria. Some Enterobacteriaceae producing OXA-48 or VIM-19 have been reported; so far, only VIM-2 has been identified in P. aeruginosa. However, the situation regarding the strains of Acinetobacter baumannii resistant to carbapenemases seems to be more disturbing. The carbapenemase OXA-23 is the most common and seems to be endemic in the north. The carbapenemase NDM-1 has also been identified. Resistance to aminoglycosides is marked by the identification armA gene associated with blaCTX-M genes in strains of Salmonella sp. Several other resistance genes have been identified sporadically in strains of Enterobacteriaceae, P. aeruginosa and A. baumannii. Resistance genes to fluoroquinolones are more recent identification in Algeria. The most common are the Qnr determinants followed by the bifunctional enzyme AAC[6']-Ib-cr. Resistance to sulfonamides and trimethoprim was also reported in Enterobacteriaceae strains in the west of the country.

  14. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria

    PubMed Central

    Rahnamaeian, Mohammad; Cytryńska, Małgorzata; Zdybicka-Barabas, Agnieszka; Dobslaff, Kristin; Wiesner, Jochen; Twyman, Richard M.; Zuchner, Thole; Sadd, Ben M.; Regoes, Roland R.; Schmid-Hempel, Paul; Vilcinskas, Andreas

    2015-01-01

    Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 μM. In combination, as little as 1.25 μM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics. PMID:25833860

  15. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria.

    PubMed

    Rahnamaeian, Mohammad; Cytryńska, Małgorzata; Zdybicka-Barabas, Agnieszka; Dobslaff, Kristin; Wiesner, Jochen; Twyman, Richard M; Zuchner, Thole; Sadd, Ben M; Regoes, Roland R; Schmid-Hempel, Paul; Vilcinskas, Andreas

    2015-05-01

    Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 μM. In combination, as little as 1.25 μM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics.

  16. β-Lactamase Production in Key Gram-Negative Pathogen Isolates from the Arabian Peninsula

    PubMed Central

    Balkhy, Hanan H.; Walsh, Timothy R.; Paterson, David L.

    2013-01-01

    SUMMARY Infections due to Gram-negative bacilli (GNB) are a leading cause of morbidity and mortality worldwide. The extent of antibiotic resistance in GNB in countries of the Gulf Cooperation Council (GCC), namely, Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Oman, and Bahrain, has not been previously reviewed. These countries share a high prevalence of extended-spectrum-β-lactamase (ESBL)- and carbapenemase-producing GNB, most of which are associated with nosocomial infections. Well-known and widespread β-lactamases genes (such as those for CTX-M-15, OXA-48, and NDM-1) have found their way into isolates from the GCC states. However, less common and unique enzymes have also been identified. These include PER-7, GES-11, and PME-1. Several potential risk factors unique to the GCC states may have contributed to the emergence and spread of β-lactamases, including the unnecessary use of antibiotics and the large population of migrant workers, particularly from the Indian subcontinent. It is clear that active surveillance of antimicrobial resistance in the GCC states is urgently needed to address regional interventions that can contain the antimicrobial resistance issue. PMID:23824364

  17. Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening.

    PubMed

    McLeod, Sarah M; Fleming, Paul R; MacCormack, Kathleen; McLaughlin, Robert E; Whiteaker, James D; Narita, Shin-Ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A

    2015-03-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  18. Molecular structure of endotoxins from Gram-negative marine bacteria: an update.

    PubMed

    Leone, Serena; Silipo, Alba; L Nazarenko, Evgeny; Lanzetta, Rosa; Parrilli, Michelangelo; Molinaro, Antonio

    2007-01-01

    Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs), or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the gamma-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups), to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments. PMID:18463721

  19. Biofilms Formed by Gram-Negative Bacteria Undergo Increased Lipid A Palmitoylation, Enhancing In Vivo Survival

    PubMed Central

    Chalabaev, Sabina; Chauhan, Ashwini; Novikov, Alexey; Iyer, Pavithra; Szczesny, Magdalena; Beloin, Christophe; Caroff, Martine

    2014-01-01

    ABSTRACT Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. PMID:25139899

  20. Use of DNA probes to study tetracycline resistance determinants in gram-negative bacteria from swine

    SciTech Connect

    Lee, C.Y.

    1989-01-01

    Specific {sup 32}P-labeled DNA probes were prepared and used to evaluate the distribution of tetracycline resistance determinants carried by gram-negative enteric bacteria isolated from pigs in 3 swine herds with different histories of antibiotic exposure. Plasmid DNA, ranging in size from 2.1 to 186 Kb, was observed in over 84% of 114 isolates studied. Two of 78 tetracycline resistant strains did not harbor plasmids. The DNA probes were isolated from plasmids pSL18, pRT29/Tn10, pBR322 and pSL106, respectively, and they represented class A, B, C and D tetracycline resistance determinants. Hybridization conditions using 0.5X SSPE at 65{degrees}C minimize cross-hybridization between the different class of tetracycline resistance genes. Cross-hybridization between class A and class C determinants could be distinguished by simultaneous comparison of the intensity of their hybridization signals. Plasmids from over 44% of the tetracycline resistant isolates did not hybridize to DNA probes for the determinants tested. Class B determinant occurred more frequently than class A or C. None of the isolates hybridized with the class D probe.

  1. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria.

    PubMed

    Li, Xian-Zhi; Plésiat, Patrick; Nikaido, Hiroshi

    2015-04-01

    The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.

  2. Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates.

    PubMed Central

    Wireman, J; Liebert, C A; Smith, T; Summers, A O

    1997-01-01

    Gram-negative fecal bacterial from three longitudinal Hg exposure experiments and from two independent survey collections were examined for their carriage of the mercury resistance (mer) locus. The occurrence of antibiotic resistance was also assessed in both mercury-resistant (Hgr) and mercury-susceptible (Hgs) isolates from the same collections. The longitudinal studies involved exposure of the intestinal flora to Hg released from amalgam "silver" dental restorations in six monkeys. Hgr strains were recovered before the installation of amalgams, and frequently these became the dominant strains while amalgams were installed. Such persistent Hgr strains always carried the same mer locus throughout the experiments. In both the longitudinal and survey collections, certain mer loci were preferentially associated with one genus, whereas other mer loci were recovered from many genera. In general, strains with any mer locus were more likely to be multiresistant than were strains without mer loci; this clustering tendency was also seen for antibiotic resistance genes. However, the association of antibiotic multiresistance with mer loci was not random; regardless of source, certain mer loci occurred in highly multiresistant strains (with as many as seven antibiotic resistances), whereas other mer loci were found in strains without any antibiotic resistance. The majority of highly multiresistant Hgr strains also carried genes characteristic of an integron, a novel genetic element which enables the formation of tandem arrays of antibiotic resistance genes. Hgr strains lacking antibiotic resistance showed no evidence of integron components. PMID:9361435

  3. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane.

    PubMed

    Jordan, Lorne D; Zhou, Yongyao; Smallwood, Chuck R; Lill, Yoriko; Ritchie, Ken; Yip, Wai Tak; Newton, Salete M; Klebba, Phillip E

    2013-07-01

    Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB-ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism.

  4. The identification of gram-negative anaerobic bacilli isolated from clinical infections.

    PubMed Central

    Duerden, B. I.

    1980-01-01

    Gram-negative anaerobic bacilli isolated from specimens submitted to the routine diagnostic bacteriology laboratory and regarded as significant pathogens were identified by conventional bacteriological tests; 399 strains isolated from 356 specimens submitted from 332 patients were studied and most were readily identified by the results of a combined set of morphological, biochemical, tolerance and antibiotic disk resistance tests; B. fragilis has particular pathogenic potential and was the commonest species isolated, accounting for greater than 50% of strains. The next commonest was B. asaccharolyticus with 55 strains, and 16 other species or groups were represented by smaller numbers. Many (68%) were from infections related to the gastro-intestinal tract, but there were significant numbers from infections of the male and female genito-urinary tracts, the head, neck and central nervous system and from a variety of soft tissue infections. Most infections were mixed, and a pure culture of a Bacteroides sp. was obtained from only 26% of infections; two or more strains of Bacteroides were recovered from 55 infections. The specific identification of Bacteroides may help the bacteriologist to judge the significance of laboratory findings, influence the patient's management and prognosis and help determine the source of infection. PMID:6987300

  5. Endotoxin neutralization with rabbit antisera to Escherichia coli J5 and other gram-negative bacteria.

    PubMed Central

    Warren, H S; Novitsky, T J; Bucklin, A; Kania, S A; Siber, G R

    1987-01-01

    To study the mechanisms of protection against endotoxin challenge offered by antisera to smooth and rough gram-negative organisms, we have developed an assay to quantitate endotoxin neutralization based on inhibition of the Limulus amoebocyte lysate test. Dilutions of different bacterial lipopolysaccharides (LPSs) were incubated with hyperimmune rabbit sera against Escherichia coli O113, E. coli O18, and rough mutants E. coli J5 and Salmonella minnesota Re595 and were then combined with limulus lysate. The gelation reaction induced by LPS in the lysate was monitored spectrophotometrically, and the concentration of LPS resulting in a 50% lysate response was determined and correlated with antibody titers measured by enzyme-linked immunosorbent assay. Antisera to smooth organisms neutralized homologous LPS markedly and heterologous LPSs only minimally relative to neutralization by preimmune serum. Neutralization of homologous LPS occurred immediately without preincubation of serum and LPS. Antisera to rough mutants neutralized more heterologous LPS than did antisera to smooth organisms. However, this heterologous neutralization required preincubation of serum and LPS and did not appear to be correlated with antibody concentrations. We conclude that antisera to LPS rapidly neutralize the biological activity of the homologous LPS, as detected by limulus lysate, and that neutralization is at least in part antibody mediated. Antisera to rough-mutant organisms slowly neutralized the activity of heterologous LPSs, but this effect appeared not to be correlated with concentrations of antibody to the LPS of the rough mutant, as measured by enzyme-linked immunosorbent assay. PMID:3298063

  6. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis.

    PubMed

    Arunmanee, Wanatchaporn; Pathania, Monisha; Solovyova, Alexandra S; Le Brun, Anton P; Ridley, Helen; Baslé, Arnaud; van den Berg, Bert; Lakey, Jeremy H

    2016-08-23

    The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin-LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin-LPS interactions and a bridging calcium ion.

  7. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis.

    PubMed

    Arunmanee, Wanatchaporn; Pathania, Monisha; Solovyova, Alexandra S; Le Brun, Anton P; Ridley, Helen; Baslé, Arnaud; van den Berg, Bert; Lakey, Jeremy H

    2016-08-23

    The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin-LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin-LPS interactions and a bridging calcium ion. PMID:27493217

  8. Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens.

    PubMed

    Jamil, Bushra; Habib, Huma; Abbasi, Shahid; Nasir, Habib; Rahman, Abdur; Rehman, Asma; Bokhari, Habib; Imran, Muhammad

    2016-01-20

    Antibiotic resistance against Gram-negative microbes is considered as an alarming phenomenon that needs to be addressed urgently to develop better therapeutic solutions. The aim of the present research work was to investigate and develop cefazolin loaded chitosan nanoparticles (CSNPs) as a potential tool against multidrug resistant pathogens. Empty and drug loaded CSNPs were prepared by ionic gelation method. It was observed by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) based studies that CSNPs were less than 100 nm in size and displayed homogeneity both in shape and size. Encapsulation of cefazolin has not increased the size of nano systems. Zeta sizer results revealed that both systems have positive zeta potential of more or less +50 mV, thus contributing towards a stable formulation. Encapsulation efficiency was directly proportional to the increase in the concentration of antibiotic (28-62%). Furthermore, growth kinetics study had demonstrated excellent antimicrobial potential of cefazolin loaded CSNPs against multi drug resistant Klebsiella pneumoniae, Pseudomonas aeroginosa and Extended Spectrum Beta Lactamase (ESBL) positive Escherichia coli.

  9. TRIF-dependent innate immune activation is critical for survival to neonatal gram-negative sepsis.

    PubMed

    Cuenca, Alex G; Joiner, Dallas N; Gentile, Lori F; Cuenca, Angela L; Wynn, James L; Kelly-Scumpia, Kindra M; Scumpia, Philip O; Behrns, Kevin E; Efron, Philip A; Nacionales, Dina; Lui, Chao; Wallet, Shannon M; Reeves, Westley H; Mathews, Clayton E; Moldawer, Lyle L

    2015-02-01

    Current evidence suggests that neonatal immunity is functionally distinct from adults. Although TLR signaling through the adaptor protein, MyD88, has been shown to be critical for survival to sepsis in adults, little is known about the role of MyD88 or TRIF in neonatal sepsis. We demonstrate that TRIF(-/-) but not MyD88(-/-) neonates are highly susceptible to Escherichia coli peritonitis and bacteremia. This was associated with decreased innate immune recruitment and function. Importantly, we found that the reverse was true in adults that MyD88(-/-) but not TRIF(-/-) or wild-type adults are susceptible to E. coli peritonitis and bacteremia. In addition, we demonstrate that TRIF but not MyD88 signaling is critical for the TLR4 protective adjuvant effect we have previously demonstrated. These data suggest a differential requirement for the survival of neonates versus adults to Gram-negative infection, and that modulation of TRIF in neonates can be used to augment survival to neonatal sepsis.

  10. Altered glucose kinetics in diabetic rats during Gram-negative infection

    SciTech Connect

    Lang, C.H.; Dobrescu, C.; Bagby, G.J.; Spitzer, J.J. )

    1987-08-01

    The present study examined the purported exacerbating effect of sepsis on glucose metabolism in diabetes. Diabetes was induced in rats by an intravenous injection of 70 or 45 mg/kg streptozotocin. The higher dose produced severe diabetes, whereas the lower dose of streptozotocin produced a miler, latent diabetes. After a chronic diabetic state had developed for 4 wk, rats had catheters implanted and sepsis induced by intraperitoneal injections of live Escherichia coli. After 24 h of sepsis the blood glucose concentration was unchanged in nondiabetics and latent diabetics, but glucose decreased from 15 to 8 mM in the septic severe diabetic group. This decrease in blood glucose was not accompanied by alterations in the plasma insulin concentration. Glucose turnover, assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, was elevated in the severe diabetic group, compared with either latent diabetics or nondiabetics. Sepsis increased the rate of glucose disappearance in nondiabetic rats but had no effect in either group of diabetic animals. Sepsis also failed to alter the insulinogenic index, used to estimate the insulin secretory capacity, in diabetic rats. Thus the present study suggests that the imposition of nonlethal Gram-negative sepsis on severe diabetic animals does not further impair glucose homeostasis and that the milder latent diabetes was not converted to a more severe diabetic state by the septic challenge.

  11. Role and regulation of heme iron acquisition in gram-negative pathogens

    PubMed Central

    Runyen-Janecky, Laura J.

    2013-01-01

    Bacteria that reside in animal tissues and/or cells must acquire iron from their host. However, almost all of the host iron is sequestered in iron-containing compounds and proteins, the majority of which is found within heme molecules. Thus, likely iron sources for bacterial pathogens (and non-pathogenic symbionts) are free heme and heme-containing proteins. Furthermore, the cellular location of the bacterial within the host (intra or extracellular) influences the amount and nature of the iron containing compounds available for transport. The low level of free iron in the host, coupled with the presence of numerous different heme sources, has resulted in a wide range of high-affinity iron acquisition strategies within bacteria. However, since excess iron and heme are toxic to bacteria, expression of these acquisition systems is highly regulated. Precise expression in the correct host environment at the appropriate times enables heme iron acquisitions systems to contribute to the growth of bacterial pathogens within the host. This mini-review will highlight some of the recent findings in these areas for gram-negative pathogens. PMID:24116354

  12. Australian Group on Antimicrobial Resistance Community-onset Gram-negative Surveillance Program annual report, 2010.

    PubMed

    Turnidge, John D; Gottlieb, Thomas; Mitchell, David H; Coombs, Geoffrey W; Pearson, Julie C; Bell, Jan M

    2013-09-30

    The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric Gram-negative pathogens. The 2010 survey focussed on community-onset infections, examining isolates from urinary tract infections from patients presenting to outpatient clinics, emergency departments or to community practitioners. Two thousand and ninety-two Escherichia coli, 578 Klebsiella species and 268 Enterobacter species were tested using a commercial automated method (Vitek 2, BioMérieux) and results were analysed using Clinical and Laboratory Standards Institute breakpoints from January 2012. Of the key resistances, non-susceptibility to the third-generation cephalosporin, ceftriaxone, was found in 3.2% of E. coli and 3.2%-4.0% of Klebsiella spp. Non-susceptibility rates to ciprofloxacin were 5.4% for E. coli, 1.0%-2.3% for Klebsiella spp., and 2.5%-6.6% in Enterobacter spp, and resistance rates to piperacillin-tazobactam were 2.8%, 3.2%-6.9%, and 16.8%-18.0% for the same 3 groups respectively. Only 3 strains, 2 Klebsiella spp. and 1 Enterobacter spp, were shown to harbour a carbapenemase (IMP-4).

  13. Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update

    PubMed Central

    Leone, Serena; Silipo, Alba; L.Nazarenko, Evgeny; Lanzetta, Rosa; Parrilli, Michelangelo; Molinaro, Antonio

    2007-01-01

    Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs), or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the γ-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups), to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments. PMID:18463721

  14. Pectinatus brassicae sp. nov., a Gram-negative, anaerobic bacterium isolated from salty wastewater.

    PubMed

    Zhang, Wen-wu; Fang, Ming-xu; Tan, Hai-qin; Zhang, Xin-qi; Wu, Min; Zhu, Xu-fen

    2012-09-01

    A novel Gram-negative, non-spore-forming, strictly anaerobic, heterotrophic bacterium, strain TY(T), was isolated from salty pickle wastewater. Cells were rod-shaped with comb-like flagella, slightly curved and very variable in length. Optimal growth occurred at 28 °C and pH 6.5. Cells were resistant to up to 50 g NaCl l(-1). Strain TY(T) produced acid from glycerol, sucrose, glucose, fructose and mannitol. The main fermentation products from glucose were acetic and propionic acids. Tests for acid phosphatase and naphthol-AS-BI-phosphohydrolase activities were positive. The major fatty acids were C(14 : 0) DMA (18.7 %), C(15 : 0) (15.4 %), anteiso-C(18 : 1) (15.2 %), C(11 : 0) (13.3 %) and summed feature 5 (C(17 : 1)ω7c and/or C(17 : 2)) (11.0 %). The DNA G+C content was 35.9 mol%. 16S rRNA gene sequence-based phylogenetic analysis indicated that strain TY(T) represented a novel species of the genus Pectinatus (sequence similarity to other members of the genus ranged from 93.2 to 94.8 %). Based on its phenotypic, genotypic and phylogenetic characteristics, strain TY(T) is proposed to represent a novel species, named Pectinatus brassicae sp. nov. (type strain TY(T) = JCM 17499(T) = DSM 24661(T)).

  15. Antimicrobial resistance in some gram-negative bacteria isolated from the bovine ejaculate.

    PubMed

    Kilburn, C; Rooks, D J; McCarthy, A J; Murray, R D

    2013-06-01

    The bacterial load and degree of antibiotic resistance present in untreated and antibiotic-treated semen samples were investigated in five bulls standing at a cattle-breeding centre. Bacterial load was determined by colony counts from semen samples cultured on brain heart infusion and nutrient agar plates. Antibiotic resistance in these bacteria was assessed by measuring the diameter of bacterial growth inhibition zones around discs containing different concentrations of antibiotics. Representative antibiotic-resistant bacterial isolates were selected for identification. Untreated semen contained few culturable bacteria, and all were completely sensitive to gentamycin, spectinomycin and lincomycin: six of the isolates showed some resistance to tylosin. In semen to which antibiotics had been added as part of the routine production process, two isolates were sensitive to all of the antibiotics tested, and the remainder were resistant to all. Resistant Gram-negative isolates that were identified included Pseudomonas and Stenotrophomonas spp. both in the class Gammaproteobacteria and a Sphingomonas sp. which is in the class Alphaproteobacteria. PMID:23331295

  16. [News of antibiotic resistance among Gram-negative bacilli in Algeria].

    PubMed

    Baba Ahmed-Kazi Tani, Z; Arlet, G

    2014-06-01

    Antibiotic resistance has become a major public health problem in Algeria. Indeed the past decade, we have seen a significant increase in resistance to antibiotics especially in Gram-negative bacilli. Resistance to β-lactams in enterobacteria is dominated by the production of ESBL CTX-M-3 and CTX-M-15. The strains producing these enzymes are often the cause of potentially serious infections in both hospital and community settings. Identified plasmid cephalosporinases are CMY-2, CMY-12 and DHA-1. The isolation of strains of Enterobacteriaceae and Pseudomonas aeruginosa producing carbapenemases is rare in Algeria. Some Enterobacteriaceae producing OXA-48 or VIM-19 have been reported; so far, only VIM-2 has been identified in P. aeruginosa. However, the situation regarding the strains of Acinetobacter baumannii resistant to carbapenemases seems to be more disturbing. The carbapenemase OXA-23 is the most common and seems to be endemic in the north. The carbapenemase NDM-1 has also been identified. Resistance to aminoglycosides is marked by the identification armA gene associated with blaCTX-M genes in strains of Salmonella sp. Several other resistance genes have been identified sporadically in strains of Enterobacteriaceae, P. aeruginosa and A. baumannii. Resistance genes to fluoroquinolones are more recent identification in Algeria. The most common are the Qnr determinants followed by the bifunctional enzyme AAC[6']-Ib-cr. Resistance to sulfonamides and trimethoprim was also reported in Enterobacteriaceae strains in the west of the country. PMID:24819127

  17. Enteric Gram-negative bacilli suppress Candida biofilms on Foley urinary catheters.

    PubMed

    Samaranayake, Y H; Bandara, H M H N; Cheung, B P K; Yau, J Y Y; Yeung, S K W; Samaranayake, L P

    2014-01-01

    Mixed Candida-bacterial biofilms in urinary catheters are common in hospitalized patients. (i) The aims of this study were to evaluate, quantitatively and qualitatively, the in vitro development of mono- and dual-species biofilms (MSBs and DSBs) of Candida albicans and two enteric gram-negative bacilli (EGNB; Pseudomonas aeruginosa or Escherichia coli) on Foley catheter (FC) discs, (ii) to determine the biofilm growth in tryptic soy broth or glucose supplemented artificial urine (AU) and (iii) to assess the inhibitory effects of EGNB and their lipopolysaccharides (LPS) on Candida biofilm growth. The growth of MSBs and DSBs on FC discs was monitored by cell counts and SEM. The metabolic activity of LPS-treated Candida biofilms was determined by the XTT reduction assay. Candida albicans and EGNB demonstrated significant inter- and intra-species differences in biofilm growth on FC discs (p < 0.01). Pseudomonas aeruginosa suppressed Candida albicans significantly (p < 0.001) in DSBs. Compared with MSBs, DSB of EGNB in glucose supplemented AU demonstrated robust growth. Escherichia coli and its LPS, significantly suppressed Candida biofilm growth, compared with Pseudomonas aeruginosa and its LPS (p < 0.001). Candida albicans and EGNB colonization in FC is significantly increased in AU with glucose, and variably modified by Escherichia coli, Pseudomonas aeruginosa and their corresponding LPS.

  18. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    PubMed

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.

  19. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates.

    PubMed

    Mohamed, Yasmine Fathy; Abou-Shleib, Hamida Moustafa; Khalil, Amal Mohamed; El-Guink, Nadia Mohamed; El-Nakeeb, Moustafa Ahmed

    2016-01-01

    Pan-drug resistant Gram-negative bacteria, being resistant to most available antibiotics, represent a huge threat to the medical community. Colistin is considered the last therapeutic option for patients in hospital settings. Thus, we were concerned in this study to demonstrate the membrane permeabilizing activity of colistin focusing on investigating its efficiency toward those pan-drug resistant isolates which represent a critical situation. We determined the killing dynamics of colistin against pan-drug resistant isolates. The permeability alteration was confirmed by different techniques as: leakage, electron microscopy and construction of an artificial membrane model; liposomes. Moreover, selectivity of colistin against microbial cells was also elucidated. Colistin was proved to be rapid bactericidal against pan-drug resistant isolates. It interacts with the outer bacterial membrane leading to deformation of its outline, pore formation, leakage of internal contents, cell lysis and finally death. Furthermore, variations in membrane composition of eukaryotic and microbial cells provide a key for colistin selectivity toward bacterial cells. Colistin selectively alters membrane permeability of pan-drug resistant isolates which leads to cell lysis. Colistin was proved to be an efficient last line treatment for pan-drug resistant infections which are hard to treat.

  20. Therapy of Infections due to Carbapenem-Resistant Gram-Negative Pathogens

    PubMed Central

    Lee, Chang-Seop

    2014-01-01

    The prevalence of carbapenem-resistant gram-negative bacterial pathogens (CRGNs) has increased dramatically during the last 10 years, but the optimal treatment for CRGN infections is not well established due to the relative scarcity of robust clinical data. The polymyxins remain the most consistently active agents against CRGNs in vitro. Tigecycline, based on its in vitro antibacterial spectrum, could also be considered as a therapeutic option in the treatment of infections caused by certain CRGNs. Other agents, including aminoglycosides, rifampin, trimethoprim-sulfamethoxazole, fosfomycin and fluoroquinolones, could be considered as monotherapy or combination therapy against CRGNs in appropriate contexts, as combination therapy with two or more in vitro active drugs appears to be more effective than monotherapy based on some clinical data. Several promising new agents are in late-stage clinical development, including ceftolozane-tazobactam, ceftazidime-avibactam and plazomicin. Given the shortage of adequate treatment options, containment of CRGNs should be pursued through implementation of adequate infection prevention procedures and antimicrobial stewardship to reduce the disease burden and prevent future outbreaks of CRGNs. PMID:25298904

  1. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  2. ADANSONIAN ANALYSIS AND DEOXYRIBONUCLEIC ACID BASE COMPOSITION OF SOME GRAM-NEGATIVE BACTERIA

    PubMed Central

    Colwell, R. R.; Mandel, M.

    1964-01-01

    Colwell, R. R. (Georgetown University, Washington, D.C.), and M. Mandel. Adansonian analysis and deoxyribonucleic acid base composition of some gram-negative bacteria. J. Bacteriol. 87:1412–1422. 1964.—The deoxyribonucleic acid (DNA) base compositions and S values for a minimum of 134 coded properties were determined for representative cultures of the genera Pseudomonas, Xanthomonas, Aeromonas, Vibrio, Aerobacter, Escherichia, Alcaligenes, and Flavobacterium. Those cultures having a high degree of similarity by the criterion of numerical taxonomy were found to have similar DNA base compositions. The relative affinities of clusters of cultures suggest taxonomic relations. Eleven species of Xanthomonas might be a single species, and V. metschnikovii was shown to be more closely related to enteric bacteria than to other vibrios which, in turn, were found to be like pseudomonads. Aeromonas was found to be intermediate in similarity to enterics and pseudomonads and divisible into at least two, but possibly three, species. F. aquatile was unlike any of the other organisms studied, and its DNA also differed greatly in composition from other representatives of the genus. PMID:14188722

  3. Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria

    PubMed Central

    Landeta, Cristina; Blazyk, Jessica L.; Hatahet, Feras; Meehan, Brian M.; Eser, Markus; Myrick, Alissa; Bronstain, Ludmila; Minami, Shoko; Arnold, Holly; Ke, Na; Rubin, Eric J.; Furie, Barbara C.; Furie, Bruce; Beckwith, Jon; Dutton, Rachel; Boyd, Dana

    2015-01-01

    In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond. These proteins include numerous bacterial virulence factors. Thus, bacterial enzymes that promote disulfide bond formation represent targets for compounds inhibiting bacterial virulence. Here, we describe a novel target- and cell-based screening methodology for identifying compounds that inhibit the disulfide bond-forming enzymes E. coli DsbB (EcDsbB) or M. tuberculosis VKOR (MtbVKOR). MtbVKOR can replace EcDsbB although the two are not homologues. Initial screening of 51,487 compounds yielded six specifically inhibiting EcDsbB. These compounds share a structural motif and do not inhibit MtbVKOR. A medicinal chemistry approach led us to select related compounds some of which are much more effective DsbB inhibitors than those found in the screen. These compounds inhibit purified DsbB and prevent anaerobic E. coli growth. Furthermore, these compounds inhibit all but one of the DsbBs of nine other gram-negative pathogenic bacteria tested. PMID:25686372

  4. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry

    PubMed Central

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  5. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria

    PubMed Central

    Plésiat, Patrick

    2015-01-01

    SUMMARY The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. PMID:25788514

  6. Characterization of Gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk.

    PubMed

    Decimo, Marilù; Morandi, Stefano; Silvetti, Tiziana; Brasca, Milena

    2014-10-01

    Eighty psychrotrophic bacterial strains, isolated from different northwest Italian bulk tank milks destined for Grana Padano cheese production, were identified by 16S rRNA gene amplification and partial sequence analysis of the rpoB gene. Pseudomonas spp. were the most commonly occurring contaminants, P. fluorescens being the predominant isolated species, along with Enterobacteriaceae, primarily Serratia marcescens. RAPD-PCR was used to study genetic variability and distinguish closely related strains; a high degree of genetic heterogeneity among the strains was highlighted. All the strains were characterized for their ability to produce proteases, lipases and lecithinases at different temperatures (7, 22, and 30 °C). Forty-one of the psychrotrophic strains were positive for all the enzymatic activities. The highest number of positive strains for all the incubation temperatures was found for lipolytic activity (59), followed by proteolytic (31) and lecithinase (28) activities, and the enzymatic traits varied among the Pseudomonas and Enterobacteriaceae strains. The proteolytic psychrotrophic strains were screened for the presence of the aprX gene, coding for a heat-resistant metalloprotease in Pseudomonas spp. The aprX gene was detected in 19 of 63 Pseudomonas strains, and was widespread in the P. fluorescens strains (14/19). PRATICAL APPLICATION: The study provides new data on the enzymatic activity of Gram-negative psychrotrophic bacteria, useful in developing strategies to control the proteo-lipolytic spoilage of raw and processed milk that causes gelation, off-flavors, and loss of sensory quality and shelf life. PMID:25224662

  7. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates.

    PubMed

    Mohamed, Yasmine Fathy; Abou-Shleib, Hamida Moustafa; Khalil, Amal Mohamed; El-Guink, Nadia Mohamed; El-Nakeeb, Moustafa Ahmed

    2016-01-01

    Pan-drug resistant Gram-negative bacteria, being resistant to most available antibiotics, represent a huge threat to the medical community. Colistin is considered the last therapeutic option for patients in hospital settings. Thus, we were concerned in this study to demonstrate the membrane permeabilizing activity of colistin focusing on investigating its efficiency toward those pan-drug resistant isolates which represent a critical situation. We determined the killing dynamics of colistin against pan-drug resistant isolates. The permeability alteration was confirmed by different techniques as: leakage, electron microscopy and construction of an artificial membrane model; liposomes. Moreover, selectivity of colistin against microbial cells was also elucidated. Colistin was proved to be rapid bactericidal against pan-drug resistant isolates. It interacts with the outer bacterial membrane leading to deformation of its outline, pore formation, leakage of internal contents, cell lysis and finally death. Furthermore, variations in membrane composition of eukaryotic and microbial cells provide a key for colistin selectivity toward bacterial cells. Colistin selectively alters membrane permeability of pan-drug resistant isolates which leads to cell lysis. Colistin was proved to be an efficient last line treatment for pan-drug resistant infections which are hard to treat. PMID:26991296

  8. TRIF-dependent innate immune activation is critical for survival to neonatal gram-negative sepsis.

    PubMed

    Cuenca, Alex G; Joiner, Dallas N; Gentile, Lori F; Cuenca, Angela L; Wynn, James L; Kelly-Scumpia, Kindra M; Scumpia, Philip O; Behrns, Kevin E; Efron, Philip A; Nacionales, Dina; Lui, Chao; Wallet, Shannon M; Reeves, Westley H; Mathews, Clayton E; Moldawer, Lyle L

    2015-02-01

    Current evidence suggests that neonatal immunity is functionally distinct from adults. Although TLR signaling through the adaptor protein, MyD88, has been shown to be critical for survival to sepsis in adults, little is known about the role of MyD88 or TRIF in neonatal sepsis. We demonstrate that TRIF(-/-) but not MyD88(-/-) neonates are highly susceptible to Escherichia coli peritonitis and bacteremia. This was associated with decreased innate immune recruitment and function. Importantly, we found that the reverse was true in adults that MyD88(-/-) but not TRIF(-/-) or wild-type adults are susceptible to E. coli peritonitis and bacteremia. In addition, we demonstrate that TRIF but not MyD88 signaling is critical for the TLR4 protective adjuvant effect we have previously demonstrated. These data suggest a differential requirement for the survival of neonates versus adults to Gram-negative infection, and that modulation of TRIF in neonates can be used to augment survival to neonatal sepsis. PMID:25548220

  9. Antibiotic resistance of Gram-negative benthic bacteria isolated from the sediments of Kardzhali Dam (Bulgaria)

    PubMed Central

    Iliev, Ivan; Marhova, Mariana; Gochev, Velizar; Tsankova, Marinela; Trifonova, Sonya

    2015-01-01

    The aim of the present study was to carry out a preliminary assessment for the occurrence of bacterial strains resistant to frequently used antibiotics in the sediments beneath the sturgeon cage farm in Kardzhali Dam (Bulgaria). Samples were taken from the top 2 cm of sediments under a fish farm and from a control station in the aquatory of the reservoir in the period July–October 2011. Surveillance of bacterial susceptibility to 16 antimicrobial agents was performed for 160 Gram-negative strains (Pseudomonas mandelii – 100 strains; Hafnia alvei – 30 strains; and Raoultella ornithinolytica – 30 strains). No significant differences in the resistance to the tested antibiotics were observed between the strains isolated from the two stations (analysis of variance, P > 0.05). Widespread resistance to penicillins and certain cephalosporin antibiotics was observed in both stations. None of the studied strains showed resistance to the aminoglycoside antibiotics gentamicin and amikacin, or to ciprofloxacin. Minimal Inhibitory Concentrations (MIC) were determined for five of the tested antimicrobial agents by the microdilution antibiotic sensitivity assay. The data indicate that amikacin, tetracycline and ciprofloxacin effectively suppress the growth of the tested micro-organisms. The isolates from genus Pseudomonas showed the highest MIC and were characterized by the highest percentage of antibiotic resistance. PMID:26019641

  10. Hospital-onset Gram-negative Surveillance Program annual report, 2011.

    PubMed

    Turnidge, John D; Gottlieb, Thomas; Mitchell, David H; Coombs, Geoffrey W; Pearson, Julie C; Bell, Jan M

    2014-03-01

    The Australian Group on Antimicrobial Resistance performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric Gram-negative pathogens. The 2011 survey focussed on hospital-onset infections, examining isolates from all specimens presumed to be causing disease. In 2011, 1,827 Escherichia coli, 537 Klebsiella species and 269 Enterobacter species were tested using a commercial automated method (Vitek 2, BioMérieux) and results were analysed using Clinical and Laboratory Standards Institute breakpoints from January 2012. Of the key resistances, non-susceptibilty to the third-generation cephalosporin, ceftriaxone, was found in 9.6% of E. coli and 9.5%-12.1% of Klebsiella spp. Non-susceptibility rates to ciprofloxacin were 10.6% for E. coli, 0.0%-8.3% for Klebsiella spp. and 0.0%-5.0% in Enterobacter spp. Resistance rates to gentamicin were 8.6%, 2.9%-10.9%, and 0.0%-15.6% for the same 3 groups respectively. Eight strains, 5 Klebsiella spp. and 3 Enterobacter spp. were shown to harbour a carbapenemase (IMP-4). PMID:25409355

  11. Community-onset Gram-negative Surveillance Program annual report, 2012.

    PubMed

    Turnidge, John D; Gottlieb, Thomas; Mitchell, David H; Coombs, Geoffrey W; Daly, Denise A; Bell, Jan M

    2014-03-01

    The Australian Group on Antimicrobial Resistance performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric Gram-negative pathogens. The 2012 survey focussed on community-onset infections, examining isolates from urinary tract infections from patients presenting to outpatient clinics, emergency departments or to community practitioners. In 2012, 2,025 Escherichia coli, 538 Klebsiella species and 239 Enterobacter species were tested using a commercial automated method (Vitek 2, BioMérieux) and results were analysed using Clinical and Laboratory Standards Institute breakpoints from January 2012. Of the key resistances, non-susceptibility to the third-generation cephalosporin, ceftriaxone, was found in 4.2% of E. coli and 4.6%-6.9% of Klebsiella spp. Non-susceptibility rates to ciprofloxacin were 6.9% for E. coli, 0.0%-3.5% for Klebsiella spp. and 0.8%-1.9% in Enterobacter spp, and resistance rates to piperacillin-tazobactam were 1.7%, 0.7%-9.2%, and 8.8%-11.4% for the same 3 groups respectively. Only 1 Enterobacter cloacae was shown to harbour a carbapenemase (IMP-4). PMID:25409356

  12. Australian Group on Antimicrobial Resistance Community-onset Gram-negative Surveillance Program annual report, 2010.

    PubMed

    Turnidge, John D; Gottlieb, Thomas; Mitchell, David H; Coombs, Geoffrey W; Pearson, Julie C; Bell, Jan M

    2013-09-01

    The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric Gram-negative pathogens. The 2010 survey focussed on community-onset infections, examining isolates from urinary tract infections from patients presenting to outpatient clinics, emergency departments or to community practitioners. Two thousand and ninety-two Escherichia coli, 578 Klebsiella species and 268 Enterobacter species were tested using a commercial automated method (Vitek 2, BioMérieux) and results were analysed using Clinical and Laboratory Standards Institute breakpoints from January 2012. Of the key resistances, non-susceptibility to the third-generation cephalosporin, ceftriaxone, was found in 3.2% of E. coli and 3.2%-4.0% of Klebsiella spp. Non-susceptibility rates to ciprofloxacin were 5.4% for E. coli, 1.0%-2.3% for Klebsiella spp., and 2.5%-6.6% in Enterobacter spp, and resistance rates to piperacillin-tazobactam were 2.8%, 3.2%-6.9%, and 16.8%-18.0% for the same 3 groups respectively. Only 3 strains, 2 Klebsiella spp. and 1 Enterobacter spp, were shown to harbour a carbapenemase (IMP-4). PMID:24890957

  13. Outer Membrane Vesicle Biosynthesis in Salmonella: Is There More to Gram-Negative Bacteria?

    PubMed Central

    2016-01-01

    ABSTRACT Recent research has focused on the biological role of outer membrane vesicles (OMVs), which are derived from the outer membranes (OMs) of Gram-negative bacteria, and their potential exploitation as therapeutics. OMVs have been characterized in many ways and functions. Until recently, research focused on hypothetical and empirical models that addressed the molecular mechanisms of OMV biogenesis, such as vesicles bulging from the OM in various ways. The recently reported study by Elhenawy et al. (mBio 7:e00940-16, 2016, http://dx.doi.org/10.1128/mBio.00940-16) provided further insights into OMV biogenesis of Salmonella enterica serovar Typhimurium. That study showed that deacylation of lipopolysaccharides (LPS) influences the level of OMV production and, furthermore, determines a sorting of high versus low acylated LPS in OMs and OMVs, respectively. Interestingly, deacylation may inversely correlate with other LPS modifications, suggesting some synergy toward optimized host resistance via best OM compositions for S. Typhimurium. PMID:27531914

  14. Synthesis of a polymyxin derivative for photolabeling studies in the gram-negative bacterium Escherichia coli.

    PubMed

    van der Meijden, Benjamin; Robinson, John A

    2015-03-01

    The antimicrobial activity of polymyxins against Gram-negative bacteria has been known for several decades, but the mechanism of action leading to cell death has not been fully explored. A key step after binding of the antibiotic to lipopolysaccharide (LPS) exposed at the cell surface is 'self-promoted uptake' across the outer membrane (OM), in which the antibiotic traverses the asymmetric LPS-phospholipid bilayer before reaching the periplasm and finally targeting and disrupting the bacterial phospholipid inner membrane. The work described here was prompted by the hypothesis that polymyxins might interact with proteins in the OM, as part of their self-promoted uptake and permeabilizing effects. One way to test this is through photolabeling experiments. We describe the design and synthesis of a photoprobe based upon polymyxin B, containing photoleucine and an N-acyl group with a terminal alkyne suitable for coupling to a biotin tag using click chemistry. The resulting photoprobe retains potent antimicrobial activity, and in initial photolabeling experiments with Escherichia coli ATCC25922 is shown to photolabel several OM proteins. This photoprobe might be a valuable tool in more detailed studies on the mechanism of action of this family of antibiotics.

  15. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria

    PubMed Central

    2013-01-01

    Background In response to the propagation of bacteria resistant to many antibiotics also called multi-drug resistant (MDR) bacteria, the discovery of new and more efficient antibacterial agents is primordial. The present study was aimed at evaluating the antibacterial activities of seven Cameroonian dietary plants (Adansonia digitata, Aframomum alboviolaceum, Aframomum polyanthum, Anonidium. mannii, Hibiscus sabdarifa, Ocimum gratissimum and Tamarindus indica). Methods The phytochemical screening of the studied extracts was performed using described methods whilst the liquid broth micro dilution was used for all antimicrobial assays against 27 Gram-negative bacteria. Results The results of the phytochemical tests indicate that all tested extracts contained phenols and triterpenes, other classes of chemicals being selectively present. The studied extracts displayed various degrees of antibacterial activities. The extracts of A. digitata, H. sabdarifa, A. polyanthum, A. alboviolaceum and O. gratissimum showed the best spectra of activity, their inhibitory effects being recorded against 81.48%, 66.66%, 62.96%, 55.55%, and 55.55% of the 27 tested bacteria respectively. The extract of A. polyanthum was very active against E. aerogenes EA294 with the lowest recorded minimal inhibitory concentration (MIC) of 32 μg/ml. Conclusion The results of the present work provide useful baseline information for the potential use of the studied edible plants in the fight against both sensitive and MDR phenotypes. PMID:23837916

  16. Characterization of Gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk.

    PubMed

    Decimo, Marilù; Morandi, Stefano; Silvetti, Tiziana; Brasca, Milena

    2014-10-01

    Eighty psychrotrophic bacterial strains, isolated from different northwest Italian bulk tank milks destined for Grana Padano cheese production, were identified by 16S rRNA gene amplification and partial sequence analysis of the rpoB gene. Pseudomonas spp. were the most commonly occurring contaminants, P. fluorescens being the predominant isolated species, along with Enterobacteriaceae, primarily Serratia marcescens. RAPD-PCR was used to study genetic variability and distinguish closely related strains; a high degree of genetic heterogeneity among the strains was highlighted. All the strains were characterized for their ability to produce proteases, lipases and lecithinases at different temperatures (7, 22, and 30 °C). Forty-one of the psychrotrophic strains were positive for all the enzymatic activities. The highest number of positive strains for all the incubation temperatures was found for lipolytic activity (59), followed by proteolytic (31) and lecithinase (28) activities, and the enzymatic traits varied among the Pseudomonas and Enterobacteriaceae strains. The proteolytic psychrotrophic strains were screened for the presence of the aprX gene, coding for a heat-resistant metalloprotease in Pseudomonas spp. The aprX gene was detected in 19 of 63 Pseudomonas strains, and was widespread in the P. fluorescens strains (14/19). PRATICAL APPLICATION: The study provides new data on the enzymatic activity of Gram-negative psychrotrophic bacteria, useful in developing strategies to control the proteo-lipolytic spoilage of raw and processed milk that causes gelation, off-flavors, and loss of sensory quality and shelf life.

  17. β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula.

    PubMed

    Zowawi, Hosam M; Balkhy, Hanan H; Walsh, Timothy R; Paterson, David L

    2013-07-01

    SUMMARY Infections due to Gram-negative bacilli (GNB) are a leading cause of morbidity and mortality worldwide. The extent of antibiotic resistance in GNB in countries of the Gulf Cooperation Council (GCC), namely, Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Oman, and Bahrain, has not been previously reviewed. These countries share a high prevalence of extended-spectrum-β-lactamase (ESBL)- and carbapenemase-producing GNB, most of which are associated with nosocomial infections. Well-known and widespread β-lactamases genes (such as those for CTX-M-15, OXA-48, and NDM-1) have found their way into isolates from the GCC states. However, less common and unique enzymes have also been identified. These include PER-7, GES-11, and PME-1. Several potential risk factors unique to the GCC states may have contributed to the emergence and spread of β-lactamases, including the unnecessary use of antibiotics and the large population of migrant workers, particularly from the Indian subcontinent. It is clear that active surveillance of antimicrobial resistance in the GCC states is urgently needed to address regional interventions that can contain the antimicrobial resistance issue.

  18. Pectinatus brassicae sp. nov., a Gram-negative, anaerobic bacterium isolated from salty wastewater.

    PubMed

    Zhang, Wen-wu; Fang, Ming-xu; Tan, Hai-qin; Zhang, Xin-qi; Wu, Min; Zhu, Xu-fen

    2012-09-01

    A novel Gram-negative, non-spore-forming, strictly anaerobic, heterotrophic bacterium, strain TY(T), was isolated from salty pickle wastewater. Cells were rod-shaped with comb-like flagella, slightly curved and very variable in length. Optimal growth occurred at 28 °C and pH 6.5. Cells were resistant to up to 50 g NaCl l(-1). Strain TY(T) produced acid from glycerol, sucrose, glucose, fructose and mannitol. The main fermentation products from glucose were acetic and propionic acids. Tests for acid phosphatase and naphthol-AS-BI-phosphohydrolase activities were positive. The major fatty acids were C(14 : 0) DMA (18.7 %), C(15 : 0) (15.4 %), anteiso-C(18 : 1) (15.2 %), C(11 : 0) (13.3 %) and summed feature 5 (C(17 : 1)ω7c and/or C(17 : 2)) (11.0 %). The DNA G+C content was 35.9 mol%. 16S rRNA gene sequence-based phylogenetic analysis indicated that strain TY(T) represented a novel species of the genus Pectinatus (sequence similarity to other members of the genus ranged from 93.2 to 94.8 %). Based on its phenotypic, genotypic and phylogenetic characteristics, strain TY(T) is proposed to represent a novel species, named Pectinatus brassicae sp. nov. (type strain TY(T) = JCM 17499(T) = DSM 24661(T)). PMID:22058316

  19. Computational assessment of the stiffness of the Gram-negative bacterial cell wall

    NASA Astrophysics Data System (ADS)

    Sinha, Sandhya; Zhao, Yao; Huang, K. C.

    2010-03-01

    The bacterial cytoplasm exists in a state of constant metabolic activity, leading to a turgor pressure across the membrane that measures an atmosphere or more. For most bacteria, the peptidoglycan cell wall bears this stress and is also a primary determinant of the cell's shape. In this work, we investigate how the elastic properties of Gram-negative cell walls emerge from the molecular organization of the peptidoglycan network by studying the structure of a mechanical model of the cell wall under the computational application of several types of strain. Experimental evidence has suggested that the Young's modulus of the cell wall increases nonlinearly with the turgor pressure. We have conducted simulations to determine what intrinsic physical characteristics of the molecular components of the cell wall, including bending, tension, and anisotropy, are necessary and sufficient for recapitulating the nonlinear rise in stiffness. Furthermore, we have modeled the effect of missing springs on the elastic response of the cell-wall network to bridge the gap between molecular organization and a continuum model of cell-wall elasticity.

  20. Resistant gram-negative infections in the outpatient setting in Latin America.

    PubMed

    Salles, M J C; Zurita, J; Mejía, C; Villegas, M V

    2013-12-01

    Latin America has a high rate of community-associated infections caused by multidrug-resistant Enterobacteriaceae relative to other world regions. A review of the literature over the last 10 years indicates that urinary tract infections (UTIs) by Escherichia coli, and intra-abdominal infections (IAIs) by E. coli and Klebsiella pneumoniae, were characterized by high rates of resistance to trimethoprim/sulfamethoxazole, quinolones, and second-generation cephalosporins, and by low levels of resistance to aminoglycosides, nitrofurantoin, and fosfomycin. In addition, preliminary data indicate an increase in IAIs by Enterobacteriaceae producing extended-spectrum β-lactamases, with reduced susceptibilities to third- and fourth-generation cephalosporins. Primary-care physicians in Latin America should recognize the public health threat associated with UTIs and IAIs by resistant Gram-negative bacteria. As the number of therapeutic options become limited, we recommend that antimicrobial prescribing be guided by infection severity, established patient risk factors for multidrug-resistant infections, acquaintance with local antimicrobial susceptibility data, and culture collection.

  1. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    PubMed

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  2. Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens.

    PubMed

    Botos, Istvan; Majdalani, Nadim; Mayclin, Stephen J; McCarthy, Jennifer Gehret; Lundquist, Karl; Wojtowicz, Damian; Barnard, Travis J; Gumbart, James C; Buchanan, Susan K

    2016-06-01

    Incorporation of lipopolysaccharide (LPS) into the outer membrane of Gram-negative bacteria is essential for viability, and is accomplished by a two-protein complex called LptDE. We solved crystal structures of the core LptDE complexes from Yersinia pestis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and a full-length structure of the K. pneumoniae LptDE complex. Our structures adopt the same plug and 26-strand β-barrel architecture found recently for the Shigella flexneri and Salmonella typhimurium LptDE structures, illustrating a conserved fold across the family. A comparison of the only two full-length structures, SfLptDE and our KpLptDE, reveals a 21° rotation of the LptD N-terminal domain that may impart flexibility on the trans-envelope LptCAD scaffold. Utilizing mutagenesis coupled to an in vivo functional assay and molecular dynamics simulations, we demonstrate the critical role of Pro231 and Pro246 in the function of the LptD lateral gate that allows partitioning of LPS into the outer membrane. PMID:27161977

  3. Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Daly, Kristopher E.; Huang, Kerwyn Casey; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2011-04-01

    The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical bulge at a critical pore radius of ~20 nm. This critical pore size is large compared to the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic blebbing and vesiculation in red blood cells.

  4. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    PubMed Central

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  5. Review of established and innovative detection methods for carbapenemase-producing Gram-negative bacteria.

    PubMed

    Osei Sekyere, J; Govinden, U; Essack, S Y

    2015-11-01

    The minimal antibiotic options for carbapenemase-producing Gram-negative bacteria necessitate their rapid detection. A literature review of a variety of phenotypic and genotypic methods is presented. Advances in culture methods and screening media are still subject to long incubation hours. Biochemical methods have shorter turnaround times and higher sensitivities and specificities, but cannot differentiate between various types and variants. Spectrophotometric methods are cheap and efficient, but are uncommon in many clinical settings, while the MALDI-TOF MS is promising for species identification, typing and resistance gene determination. Although next generation sequencing (NGS) technologies provide a better platform to detect, type and characterize carbapenem-resistant bacteria, the different NGS platforms, the large computer memories and space needed to process and store genomic data and the nonuniformity in data analysis platforms are still a challenge. The sensitivities, specificities and turnaround times recorded in the various studies reviewed favours the use of the biochemical tests (Carba NP or Rapid Carb screen tests) for the detection of putative carbapenemase-producing isolates. MALDI-TOF MS and/or molecular methods like microarray, loop-mediated isothermal amplification and real-time multiplex PCR assays could be used for further characterization in a reference laboratory. NGS may be used for advanced epidemiological and molecular studies.

  6. Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli

    NASA Astrophysics Data System (ADS)

    Chatterjee, Anindita; Perevedentseva, Elena; Jani, Mona; Cheng, Chih-Yuan; Ye, Ying-Siou; Chung, Pei-Hua; Cheng, Chia-Liang

    2015-05-01

    We investigate the antibacterial effect of ultrafine nanodiamond particles with an average size of 5 nm against the gram-negative bacteria Escherichia coli (E. coli). UV-visible, Raman spectroscopy, and scanning electron microscopy (SEM) have been employed to elucidate the nature of the interaction. The influence on bacterial growth was monitored by measuring optical densities of E. coli at 600 nm as a function of time in the presence of carboxylated nanodiamond (cND) particles (100 μg/ml) in highly nutritious liquid Luria-Bertani medium. The SEM images prove that cND particles are attached to the bacterial cell wall surface and some portion of the bacterial cell wall undergoes destruction. Due to the change of the protein structure on the bacterial wall, a small Raman shift in the region of 1400 to 1700 cm-1 was observed when E. coli interacted with cNDs. Raman mapping images show strong evidence of cND attachment at the bacterial cell wall surface. Electrotransformation of E. coli with a fluorescent protein markers experiment demonstrated that the interaction mechanisms are different for E. coli treated with cND particles, E. coli by lysozyme treatment, and E. coli that suffer lysis.

  7. Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic.

    PubMed

    Neethu, C S; Mujeeb Rahiman, K M; Saramma, A V; Mohamed Hatha, A A

    2015-06-01

    Isolation and characterization of heterotrophic Gram-negative bacteria was carried out from the sediment and water samples collected from Kongsfjord, Arctic. In this study, the potential of Arctic bacteria to tolerate heavy metals that are of ecological significance to the Arctic (selenium (Se), mercury (Hg), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) was investigated. Quantitative assay of 130 isolates by means of plate diffusion and tube dilution methods was carried out by incorporation of different concentrations of metals. Growth in Se and Pb at a concentration of 3000 μg/L was significantly lower (P≤0.0001) than at 2000 μg/L. The minimum inhibitory concentration for Cd and Hg was 50 μg/L (P≤0.0001, F=264.23 and P≤0.0001, F=291.08, respectively) even though in the tube dilution test, Hg-containing tubes showed much less growth, revealing its superior toxicity to Cd. Thus, the level of toxicity of heavy metals was found to be in the order of Hg>Cd>Cu>Zn>Pb>Se. Multiple-metal-resistant isolates were investigated for their resistance against antibiotics, and a positive correlation was observed between antibiotic and metal resistance for all the isolates tested. The resistant organisms thus observed might influence the organic and inorganic cycles in the Arctic and affect the ecosystem.

  8. Multistep Resistance Development Studies of Ceftaroline in Gram-Positive and -Negative Bacteria▿

    PubMed Central

    Clark, Catherine; McGhee, Pamela; Appelbaum, Peter C.; Kosowska-Shick, Klaudia

    2011-01-01

    Ceftaroline, the active component of the prodrug ceftaroline fosamil, is a novel broad-spectrum cephalosporin with bactericidal activity against Gram-positive and -negative isolates. This study evaluated the potential for ceftaroline and comparator antibiotics to select for clones of Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis with elevated MICs. S. pneumoniae and S. pyogenes isolates in the present study were highly susceptible to ceftaroline (MIC range, 0.004 to 0.25 μg/ml). No streptococcal strains yielded ceftaroline clones with increased MICs (defined as an increase in MIC of >4-fold) after 50 daily passages. Ceftaroline MICs for H. influenzae and M. catarrhalis were 0.06 to 2 μg/ml for four strains and 8 μg/ml for a β-lactamase-positive, efflux-positive H. influenzae with a mutation in L22. One H. influenzae clone with an increased ceftaroline MIC (quinolone-resistant, β-lactamase-positive) was recovered after 20 days. The ceftaroline MIC for this isolate increased 16-fold, from 0.06 to 1 μg/ml. MICs for S. aureus ranged from 0.25 to 1 μg/ml. No S. aureus isolates tested with ceftaroline had clones with increased MIC (>4-fold) after 50 passages. Two E. faecalis isolates tested had ceftaroline MICs increased from 1 to 8 μg/ml after 38 days and from 4 to 32 μg/ml after 41 days, respectively. The parental ceftaroline MIC for the one K. pneumoniae extended-spectrum β-lactamase-negative isolate tested was 0.5 μg/ml and did not change after 50 daily passages. PMID:21343467

  9. Aerobic fitness in women and responses to lower body negative pressure.

    PubMed

    Frey, M A; Mathes, K L; Hoffler, G W

    1987-12-01

    High aerobic fitness may be associated with impaired responsiveness to orthostatic challenge. This could be detrimental to astronauts returning from spaceflight. Thus, we examined the cardiovascular responses of a group of 45 healthy women to graded lower body negative pressure (LBNP) through 5 min at -50 mm Hg or until they become presyncopal. The ages (range = 23-43 years, mean = 30.4) and peak aerobic capacities (range = 23.0-55.3 ml.kg-1.min-1, mean = 37.8) of these subjects paralleled those of the women astronauts. We monitored heart rate, stroke volume, cardiac output, Heather index of contractility, arterial pressure, peripheral resistance, change in calf circumference, and thoracic impedance (ZO)--a measure of fluid in the chest. The women in this study exhibited the same response pattern to LBNP as previously reported for male subjects. VO2peak of the six subjects who became presyncopal was not different from VO2peak of the tolerant subjects. At rest, only systolic and mean arterial pressures were significantly correlated with VO2peak. Percent changes in calf circumference (i.e. fluid accumulation in the legs) at -30 and -40 mm Hg were the only responses to LBNP significantly related to VO2peak. The greater pooling of blood in the legs during LBNP by women with higher aerobic fitness, and lower percent body fat may be related to more muscle tissue and vasculature in the legs of the more fit subjects. These data indicated that orthostatic tolerance is not related to aerobic capacity in women, and orthostatic tolerance need not be a concern to aerobically fit women astronauts. PMID:3426487

  10. [Utility of pyrrolidonyl-arylamidase detection for typing Enterobacteriaceae and non-fermenting Gram-negative bacteria].

    PubMed

    Nicola, F; Centorbi, H; Bantar, C; Smayevsky, J; Bianchini, H

    1995-01-01

    Detection of pyrrolidonyl-aryl-amidase activity (PYR) is an important tool to identify gram-positive cocci, such as staphylococci, enterococci, streptococci, and other related genera. However, only few studies evaluating its usefulness with gram-negative rods have been published. Thus, a prospective study including 542 and 215 unique clinical isolates of Enterobacteriaceae and non-fermentative gram-negative rods, respectively, was undertaken. Strains were identified by conventional methods. PYR test was performed using a commercial kit, according to the manufacturer recommendations. Positive results were uniformly obtained for the PYR test with the following species: Citrobacter spp, Klebsiella spp, Enterobacter aerogenes, Enterobacter agglomerans group, Serratia marcescens and S. odorifera. On the other hand, negative results were uniformly displayed by E. coli (including inactive E. coli), Protease group, Salmonellia spp, Shigella spp, Acinetobacter spp, Burkholderia (Pseudomonas) cepacia and Flavobacterium spp. Variable results were shown in Pseudomonas aeruginosa, Stenotrophomonas (xanthomonas) malthophilia, Kluyvera cryocrescens, and Enterobacter cloacae. PYR test proved to be a reliable and simple tool to rapidly distinguish certain species belonging to Enterobacteriaceae (ie. Citrobacter freundii from Salmonella spp, and inactive E. coli from K. ozaenae). Further studies, including a wide diversity of species, are required to assess usefulness of the PYR test for the identification of non-fermentative gram-negative rods.

  11. A comparison of media used in vitro to isolate non-sporing Gram-negative anaerobes from blood.

    PubMed

    Forgan-Smith, W R; Darrell, J H

    1974-04-01

    Five anaerobic media were compared in a model blood culture system for their ability to recover small inocula of Gram-negative non-sporing anaerobes. Dehydrated cooked meat medium was the least effective; USP thioglycollate medium was the most effective isolation medium and is recommended for routine use. Freshly prepared cooked meat medium has the advantage of allowing prolonged survival of strains.

  12. Epidemiology of Gram Negative Antimicrobial Resistance in a Multi-State Network of Long Term Care Facilities

    PubMed Central

    Lautenbach, Ebbing; Marsicano, Roseann; Tolomeo, Pam; Heard, Michael; Serrano, Steve; Stieritz, Donald D.

    2009-01-01

    We identified 1,805 gram-negative organisms in urine cultures from residents of 63 long-term care facilities (LTCFs) over 10 months. Fluoroquinolone resistance was 51% among E. coli, while 26% and 6% of Klebsiella were resistant to ceftazidime and imipenem, respectively. Resistance varied significantly by type of LTCF, LTCF size, and geographic region. PMID:19566445

  13. A comparison of the in vitro activity of metronidazole, tinidazole, and nimorazole against Gram-negative anaerobic bacilli.

    PubMed Central

    Reynolds, A V; Hamilton-Miller, J M; Brumfitt, W

    1975-01-01

    The in vitro activities of metronidazole, nimorazole, and tinidazole were compared against 69 strains of obligately anaerobic Gram-negative bacilli. Geometric mean MICs were 0-34, 1-05, and 0-28 mug/ml respectively. Thirty-six strains were also tested by the disk method. Correlation between MIC and diameter of the zones of inhibition was poor. PMID:1214009

  14. Novel touchdown-PCR method for the detection of putrescine producing gram-negative bacteria in food products.

    PubMed

    Wunderlichová, Leona; Buňková, Leona; Koutný, Marek; Valenta, Tomáš; Buňka, František

    2013-06-01

    Formation of biogenic amines may occur in food due to metabolic activities of contaminating Gram-negative bacteria. Putrescine is assumed to be the major biogenic amine associated with microbial food spoilage. Gram-negative bacteria can form putrescine by three metabolic pathways that can include eight different enzymes. The objective of this study was to design new sets of primers able to detect all important enzymes involved in the production of putrescine by Gram-negative bacteria. Seven new sets of consensual primers based on gene sequences of different bacteria were designed and used for detection of the speA, adiA, adi, speB, aguA, speC, and speF genes. A newly developed touchdown polymerase chain reaction (PCR) method using these primers was successfully applied on several putrescine-producers. Selected PCR products were sequenced and high similarity of their sequences (99-91%) with known sequences of the corresponding genes confirmed high specificity of the developed sets of primers. Furthermore, all the investigated bacteria produced both putrescine and agmatine, an intermediate of putrescine production, which was confirmed by chemical analysis. The developed new touchdown PCR method could easily be used to detect potential foodborne Gram-negative producers of putrescine. The newly developed sets of primers could also be useful in further research on putrescine metabolism in contaminating microbiota.

  15. Sphingomonas gimensis sp. nov., a novel Gram-negative bacterium isolated from abandoned lead-zinc ore mine.

    PubMed

    Feng, Guang-Da; Yang, Song-Zhen; Wang, Yong-Hong; Zhao, Guo-Zhen; Deng, Ming-Rong; Zhu, Hong-Hui

    2014-06-01

    A novel bacterial strain designated 9PNM-6(T) was isolated from an abandoned lead-zinc ore mine site in Meizhou, Guangdong Province, China. The isolate was found to be Gram-negative, rod-shaped, orange-pigmented, strictly aerobic, oxidase- and catalase-positive. Growth occurred at 0-4 % NaCl (w/v, optimum, 0 %), at pH 6.0-8.0 (optimum, pH 7.0) and at 15-32 °C (optimum, 28-30 °C). Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 9PNM-6(T) belongs to the genus Sphingomonas, with the highest sequence similarities with Sphingomonas jejuensis NBRC 107775(T) (99.7 %), Sphingomonas koreensis KCTC 2882(T) (95.1 %) and Sphingomonas dokdonesis KCTC 12541(T) (95.1 %). The chemotaxonomic characteristics of strain 9PNM-6(T) were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was identified as ubiquinone Q-10, the major polyamine as sym-homospermidine, and the major cellular fatty acids as C18:1 ω7c, C16:0, C16:1 ω7c and/or C16:1 ω6c and C14:0 2-OH. The major polar lipids are sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatideylcholine, an unidentified phospholipid and four unidentified aminolipids. The genomic DNA G+C content of strain 9PNM-6(T) was determined to be 69.2 ± 0.6 mol%. Based on comparative analyses of morphological, physiological and chemotaxonomic data, and levels of DNA-DNA relatedness values, strain 9PNM-6(T) is considered to represent a novel species of the genus Sphingomonas, for which the name Sphingomonas gimensis sp. nov. (Type strain 9PNM-6(T) = GIMCC 1.655(T) = CGMCC 1.12671(T) = DSM 27569(T)) is proposed.

  16. Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients

    PubMed Central

    Markou, Nikolaos; Apostolakos, Haralampos; Koumoudiou, Christiana; Athanasiou, Maria; Koutsoukou, Alexandra; Alamanos, Ioannis; Gregorakos, Leonidas

    2003-01-01

    Introduction The increasing prevalence of multiresistant Gram-negative strains in intensive care units (ICUs) has recently rekindled interest in colistin, a bactericidal antibiotic that was used in the 1960s for treatment of infections caused by Gram-negative bacilli. We conducted the present observational study to evaluate the efficacy of intravenous colistin in the treatment of critically ill patients with sepsis caused by Gram-negative bacilli resistant to all other antibiotics. Patients and method Critically ill patients with sepsis caused by Gram-negative bacilli resistant to all antibiotics with the exception of colistin were treated in the six-bed ICU of a trauma hospital. Diagnosis of infection was based on clinical data and isolation of bacteria, and the bacteria were tested with respect to their susceptibility to colistin. Clinical response to colistin was evaluated. Results Twenty-four patients (mean age 44.3 years, mean Acute Physiology and Chronic Health Evaluation II score 20.6) received 26 courses of colistin. Clinical response was observed for 73% of the treatments. Survival at 30 days was 57.7%. Deterioration in renal function was observed in 14.3% of 21 patients who were not already receiving renal replacement therapy, but in only one case did this deterioration have serious clinical consequences. Conclusion The lack of a control group in the present study does not allow any definite conclusions to be drawn regarding the clinical effectiveness of colistin. On the other hand, this drug has an acceptable safety profile and its use should be considered in severe infections with multiresistant Gram-negative bacilli. PMID:12974973

  17. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections

    PubMed Central

    Chavada, Ruchir; Maley, Michael

    2015-01-01

    Introduction: Community and healthcare associated infections caused by multi-drug resistant gram negative organisms (MDR GN) represent a worldwide threat. Nucleic Acid Detection tests are becoming more common for their detection; however they can be expensive requiring specialised equipment and local expertise. This study was done to evaluate the utility of a commercial multiplex tandem (MT) PCR for detection of MDR GN. Methods: The study was done on stored laboratory MDR GN isolates from sterile and non-sterile specimens (n=126, out of stored 567 organisms). Laboratory validation of the MT PCR was done to evaluate sensitivity, specificity and agreement with the current phenotypic methods used in the laboratory. Amplicon sequencing was also done on selected isolates for assessing performance characteristics. Workflow and cost implications of the MT PCR were evaluated. Results: The sensitivity and specificity of the MT PCR were calculated to be 95% and 96.7% respectively. Agreement with the phenotypic methods was 80%. Major lack of agreement was seen in detection of AmpC beta lactamase in enterobacteriaceae and carbapenemase in non-fermenters. Agreement of the MT PCR with another multiplex PCR was found to be 87%. Amplicon sequencing confirmed the genotype detected by MT PCR in 94.2 % of cases tested. Time to result was faster for the MT PCR but cost per test was higher. Conclusion: This study shows that with carefully chosen targets for detection of resistance genes in MDR GN, rapid and efficient identification is possible. MT PCR was sensitive and specific and likely more accurate than phenotypic methods. PMID:26464612

  18. Identification of a New Lipoprotein Export Signal in Gram-Negative Bacteria

    PubMed Central

    Lauber, Frédéric; Cornelis, Guy Richard

    2016-01-01

    ABSTRACT Bacteria of the phylum Bacteroidetes, including commensal organisms and opportunistic pathogens, harbor abundant surface-exposed multiprotein membrane complexes (Sus-like systems) involved in carbohydrate acquisition. These complexes have been mostly linked to commensalism, and in some instances, they have also been shown to play a role in pathogenesis. Sus-like systems are mainly composed of lipoproteins anchored to the outer membrane and facing the external milieu. This lipoprotein localization is uncommon in most studied Gram-negative bacteria, while it is widespread in Bacteroidetes. Little is known about how these complexes assemble and particularly about how lipoproteins reach the bacterial surface. Here, by bioinformatic analyses, we identify a lipoprotein export signal (LES) at the N termini of surface-exposed lipoproteins of the human pathogen Capnocytophaga canimorsus corresponding to K-(D/E)2 or Q-A-(D/E)2. We show that, when introduced in sialidase SiaC, an intracellular lipoprotein, this signal is sufficient to target the protein to the cell surface. Mutational analysis of the LES in this reporter system showed that the amino acid composition, position of the signal sequence, and global charge are critical for lipoprotein surface transport. These findings were further confirmed by the analysis of the LES of mucinase MucG, a naturally surface-exposed C. canimorsus lipoprotein. Furthermore, we identify a LES in Bacteroides fragilis and Flavobacterium johnsoniae surface lipoproteins that allow C. canimorsus surface protein exposure, thus suggesting that Bacteroidetes share a new bacterial lipoprotein export pathway that flips lipoproteins across the outer membrane. PMID:27795390

  19. Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients.

    PubMed

    Armand-Lefèvre, Laurence; Angebault, Cécile; Barbier, François; Hamelet, Emilie; Defrance, Gilles; Ruppé, Etienne; Bronchard, Régis; Lepeule, Raphaël; Lucet, Jean-Christophe; El Mniai, Assiya; Wolff, Michel; Montravers, Philippe; Plésiat, Patrick; Andremont, Antoine

    2013-03-01

    Intestinal flora contains a reservoir of Gram-negative bacilli (GNB) resistant to cephalosporins, which are potentially pathogenic for intensive care unit (ICU) patients; this has led to increasing use of carbapenems. The emergence of carbapenem resistance is a major concern for ICUs. Therefore, in this study, we aimed to assess the intestinal carriage of imipenem-resistant GNB (IR-GNB) in intensive care patients. For 6 months, 523 consecutive ICU patients were screened for rectal IR-GNB colonization upon admission and weekly thereafter. The phenotypes and genotypes of all isolates were determined, and a case control study was performed to identify risk factors for colonization. The IR-GNB colonization rate increased regularly from 5.6% after 1 week to 58.6% after 6 weeks in the ICU. In all, 56 IR-GNB strains were collected from 50 patients: 36 Pseudomonas aeruginosa strains, 12 Stenotrophomonas maltophilia strains, 6 Enterobacteriaceae strains, and 2 Acinetobacter baumannii strains. In P. aeruginosa, imipenem resistance was due to chromosomally encoded resistance (32 strains) or carbapenemase production (4 strains). In the Enterobacteriaceae strains, resistance was due to AmpC cephalosporinase and/or extended-spectrum β-lactamase production with porin loss. Genomic comparison showed that the strains were highly diverse, with 8 exceptions (4 VIM-2 carbapenemase-producing P. aeruginosa strains, 2 Klebsiella pneumoniae strains, and 2 S. maltophilia strains). The main risk factor for IR-GNB colonization was prior imipenem exposure. The odds ratio for colonization was already as high as 5.9 (95% confidence interval [95% CI], 1.5 to 25.7) after 1 to 3 days of exposure and increased to 7.8 (95% CI, 2.4 to 29.8) thereafter. In conclusion, even brief exposure to imipenem is a major risk factor for IR-GNB carriage.

  20. A periplasmic D-alanyl-D-alanine dipeptidase in the gram-negative bacterium Salmonella enterica.

    PubMed

    Hilbert, F; García-del Portillo, F; Groisman, E A

    1999-04-01

    The VanX protein is a D-alanyl-D-alanine (D-Ala-D-Ala) dipeptidase essential for resistance to the glycopeptide antibiotic vancomycin. While this enzymatic activity has been typically associated with vancomycin- and teicoplainin-resistant enterococci, we now report the identification of a D-Ala-D-Ala dipeptidase in the gram-negative species Salmonella enterica. The Salmonella enzyme is only 36% identical to VanX but exhibits a similar substrate specificity: it hydrolyzes D-Ala-D-Ala, DL-Ala-DL-Phe, and D-Ala-Gly but not the tripeptides D-Ala-D-Ala-D-Ala and DL-Ala-DL-Lys-Gly or the dipeptides L-Ala-L-Ala, N-acetyl-D-Ala-D-Ala, and L-Leu-Pro. The Salmonella dipeptidase gene, designated pcgL, appears to have been acquired by horizontal gene transfer because pcgL-hybridizing sequences were not detected in related bacterial species and the G+C content of the pcgL-containing region (41%) is much lower than the overall G+C content of the Salmonella chromosome (52%). In contrast to wild-type Salmonella, a pcgL mutant was unable to use D-Ala-D-Ala as a sole carbon source. The pcgL gene conferred D-Ala-D-Ala dipeptidase activity upon Escherichia coli K-12 but did not allow growth on D-Ala-D-Ala. The PcgL protein localizes to the periplasmic space of Salmonella, suggesting that this dipeptidase participates in peptidoglycan metabolism.

  1. Sphingomonas yunnanensis sp. nov., a novel gram-negative bacterium from a contaminated plate.

    PubMed

    Zhang, Yu-Qin; Chen, Yi-Guang; Li, Wen-Jun; Tian, Xin-Peng; Xu, Li-Hua; Jiang, Cheng-Lin

    2005-11-01

    A Gram-negative bacterium, YIM 003T, which was isolated from a contaminated plate in the laboratory, was subjected to a polyphasic taxonomic study. The organism had short-rod-shaped, motile cells, formed yellow-pigmented colonies on ISP2 medium and its optimum growth pH was 7.0-7.5. The major respiratory lipoquinone was ubiquinone Q-10. The phosphate-containing lipids detected in strain YIM 003T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid and one unidentified phospholipid. The major fatty acids were C(18 : 1)omega7c (59.8 %), C(16 : 0) (9.9 %), ai-C(17 : 0) (5.3 %), i-C(17 : 0) (4.4 %) and C(14 : 0) 2-OH (15.8 %). The G+C content of the genomic DNA was 67.5 mol%. Strain YIM 003T exhibited levels of 16S rRNA gene sequence similarity of 98.2 % to Sphingomonas phyllosphaerae FA2T and 98.0 % to Sphingomonas adhaesiva DSM 7418T but showed less than 97.0 % similarity with respect to other species with validly published names. The DNA-DNA relatedness values of the isolate with S. phyllosphaerae FA2T and S. adhaesiva DSM 7418T were 59 and 26 %, respectively. The phenotypic characteristics and genotypic data indicate that strain YIM 003T should be distinguished from S. phyllosphaerae FA2T and S. adhaesiva DSM 7418T. Therefore, on the basis of the polyphasic taxonomic data presented, a novel species of the genus Sphingomonas, Sphingomonas yunnanensis sp. nov., is proposed, with the type strain YIM 003T (=CCTCC AB 204064T=KCTC 12346T).

  2. The Forgotten One: Lemierre’s Syndrome Due to Gram-Negative Rods Prevotella Bacteremia

    PubMed Central

    Wani, Priyanka; Antony, Nishaal; Wardi, Miraie; Rodriguez-Castro, Carlos E.; Teleb, Mohamed

    2016-01-01

    Patient: Male, 22 Final Diagnosis: Lemierre’s syndrome Symptoms: Dyspnea • chest pain • swelling Medication: — Clinical Procedure: Thoracentesis Specialty: Infectious Diseases Objective: Rare co-existance of disease or pathology Background: Lemierre’s syndrome (LS) is a rare syndrome caused by an acute oropharyngeal infection with metastatic spreading. It was described in 1939 as jugular vein septic thrombophlebitis associated with retropharyngeal infection. Different organisms can cause LS, such as Fusobacterium species, Peptostreptococcus, group B and C, Streptococcus, Staphylococcus, and Enterococcus species, but the most commonly isolated pathogen is Fusobacterium necrophorum, a common oral flora. Management depends on the initial presentation, type of pathogen isolated, and proper selection of antibiotics. Case Report: We report a case of a 22-year-old man with no past medical history, who presented with left jaw pain and progressive left facial area swelling associated with dyspnea. A final diagnosis of LS was made based on criteria of computed tomography (CT) of the neck and the clinical symptoms. The patient was started on broad-spectrum antibiotics. Subsequent imaging of the chest showed pleural effusion with septic emboli. He underwent thoracentesis and chest tube placement. Final blood cultures were remarkable for gram-negative rods – Prevotella anaerobes – which supported the diagnosis of LS. His condition improved, including the dyspnea, and he was discharged on the proper antibiotics coverage with outpatient follow-up. Conclusions: LS is a rare condition associated with metastatic infection spreading. This syndrome can be associated with further complications, such as pleural effusions and/or empyemas. Early recognition is important to prevent fatal complications and provide adequate antibiotics coverage. We report only the third case in the medical literature of Prevotella-induced LS with a secondary complication of pleural effusion

  3. Enhancing effect of serum ultrafiltrate on the activity of cephalosporins against gram-negative bacilli.

    PubMed Central

    Leggett, J E; Craig, W A

    1989-01-01

    A few studies have suggested that the inhibitory effect of serum on activity of broad-spectrum cephalosporins is less than that predicted by the degree of protein binding. Microdilution MICs of ceftriaxone, cefoperazone, moxalactam, and ceftizoxime were therefore determined against ATCC and clinical strains of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus in Mueller-Hinton broth containing either human albumin (as 0, 2.5, or 5% solution) or heat-inactivated human serum (as 0, 25, 50, or 95% solution). Arithmetic linear dilutions were used to improve accuracy. For standard bacterial strains, MICs in the presence of 5% albumin were higher than in broth alone by multiples of 10.9 to 21 for ceftriaxone, 5.5 to 16.4 for cefoperazone, 1.9 to 3.7 for moxalactam, and 1.1 to 1.4 for ceftizoxime, as expected by their protein binding. MICs in the presence of 95% serum were similar to those in 5% albumin for all four drugs against S. aureus and P. aeruginosa but were 2.2- to 4.8-fold lower (P less than 0.001) against E. coli and K. pneumoniae. Similar findings were observed at lower protein concentrations and with clinical isolates, except that for some strains of P. aeruginosa MICs were lower in serum than in albumin. Individual sera from five subjects gave comparable results. The addition of serum ultrafiltrate to albumin-containing solutions reduced MICs of ceftriaxone and cefoperazone 1.6- to 7.4-fold against E. coli and K. pneumoniae (P less than 0.01) but did not alter the MICs for S. aureus. Serum may contain an ultrafiltrable component(s) that enhances the activity of third-generation cephalosporins against many gram-negative bacilli. PMID:2496656

  4. Gram-negative endotoxin lipopolysaccharide induces cardiac hypertrophy: detrimental role of Na(+)-Ca(2+) exchanger.

    PubMed

    Magi, Simona; Nasti, Annamaria Assunta; Gratteri, Santo; Castaldo, Pasqualina; Bompadre, Stefano; Amoroso, Salvatore; Lariccia, Vincenzo

    2015-01-01

    Several molecular pathways involved in the development of cardiac hypertrophy are triggered by perturbation of intracellular Ca(2+) homeostasis. Within the heart, Na(+)/Ca(2+) exchanger 1 (NCX1) is one of the main determinant in controlling Ca(2+) homeostasis. In cardiac hypertrophy and heart failure NCX1 expression and activity have been reported to be altered. It has been shown that chronic bacterial infections (sepsis, endocarditis, and myocarditis) can promote cardiac hypertrophy. Bacterial stressors, such as the Gram-negative endotoxin lipopolysaccharide (LPS), can directly or indirectly affect intracellular Ca(2+) homeostasis in the heart and induce the development of cardiac hypertrophy. The present study aimed at evaluating the potential link between the signal pathways activated in LPS-exposed myocytes and NCX1. In the whole rat heart, LPS perfusion induced an early hypertrophy response during which NCX1 expression significantly increased. Notably, all these changes were completely prevented by the NCX inhibitor SN-6. We further dissect the role of NCX1 in the LPS-induced hypertrophic response in an in vitro cardiac model based on two H9c2 cardiomyoblast clones, namely H9c2-WT (lacking endogenous NCX1 expression) and H9c2-NCX1 (stably transfected with a functional NCX1). H9c2-NCX1 were more susceptible than H9c2-WT to develop a hypertrophic phenotype, and they displayed a significant increase in NCX1 expression and function after LPS treatment. SN-6 completely counteracted both hypertrophic response and exchanger alterations induced by LPS in H9c2-NCX1 cells, but it had no effects on H9c2-WT. Collectively, our results suggest that NCX1 plays a critical role in promoting myocardial hypertrophy triggered by LPS. PMID:25445045

  5. Quorum sensing signal molecules (acylated homoserine lactones) in gram-negative fish pathogenic bacteria.

    PubMed

    Bruhn, Jesper B; Dalsgaard, Inger; Nielsen, Kristian F; Buchholtz, Christiane; Larsen, Jens L; Gram, Lone

    2005-06-14

    The aim of the present study was to investigate the production of quorum sensing signals (specifically acylated homoserine lactones, AHLs) among a selection of strains of Gram-negative fish bacterial pathogens. These signals are involved in the regulation of virulence factors in some human and plant-pathogenic bacteria. A total of 59 strains, representing 9 different fish pathogenic species, were tested against 2 AHL monitor bacteria (Agrobacterium tumefaciens NT1 [pZLR4] and Chromobacterium violaceum CV026) in a well diffusion assay and by thin-layer chromatography (TLC). Representative samples were further characterized by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HR-MS). AHLs were produced by all strains of Aeromonas salmonicida, Aeromonas hydrophila, Yersinia ruckeri, Vibrio salmonicida, and Vibrio vulnificus. Some strains of atypical Aeromonas salmonicida and Vibrio splendidus were also positive. Aeromonas species produced N-butanoyl homoserine lactone (BHL) and N-hexanoyl homoserine lactone (HHL) and 1 additional product, whereas N-3-oxo-hexanoyl homoserine lactone (OHHL) and HHL were detected in Vibrio salmonicida. N-3-oxo-octanoyl homoserine lactone (OOHL) and N-3-octanoyl homoserine lactone (OHL) were detected in Y. ruckeri. AHLs were not detected from strains of Photobacterium damselae, Flavobacterium psychrophilum or Moritella viscosa. AHLs were extracted from fish infected with Y. ruckeri but not from fish infected with A. salmonicida. In conclusion, the production of quorum sensing signals, AHLs, is common among the strains that we examined. If the AHL molecules regulate the expression of the virulence phenotype in these bacteria, as shown to occur in some bacterial pathogens, novel disease control measures may be developed by blocking AHL-mediated communication and suppressing virulence.

  6. Evaluation of clinical outcomes in patients with Gram-negative bloodstream infections according to cefepime MIC.

    PubMed

    Rhodes, Nathaniel J; Liu, Jiajun; McLaughlin, Milena M; Qi, Chao; Scheetz, Marc H

    2015-06-01

    Predicted and observed failures at higher cefepime MICs have prompted the Clinical and Laboratories Standards Institute (CLSI) to lower the susceptible breakpoint for Enterobacteriaceae to ≤2mg/L, with dose-dependent susceptibility at 4-8mg/L, while the susceptibility breakpoint for nonfermentative organisms remain unchanged at ≥8mg/L. The contribution of increasing cefepime MIC to mortality risk in the setting of aggressive cefepime dosing is not well defined. Patients who were treated with cefepime for Gram-negative blood stream infections (GNBSIs), including both Enterobacteriaceae and nonfermentative organisms, were screened for inclusion in this retrospective cohort study. Demographic and microbiologic variables were collected, including pathogen, cefepime MIC, dosage, and interval. The objective was to define a risk-adjusted mortality breakpoint for cefepime MICs. Secondarily, we looked at time to death and length of stay (LOS) postculture. Ninety-one patients were included in the analysis. Overall, 19 patients died and 72 survived. Classification and Regression Tree analysis identified an inhospital mortality breakpoint at a cefepime MIC between 2 and 4mg/L for patients with a modified Acute Physiology and Chronic Health Evaluation II score ≤16.5 (4.2% versus 25%, respectively). Multivariate logistic regression revealed increased odds of mortality at a cefepime MIC of 4mg/L (adjusted odds ratio [aOR] 6.47; 95% confidence interval [CI] 1.25-33.4) and 64mg/L (aOR 6.54, 95% CI 1.03-41.4). Those with cefepime MICs ≥4mg/L experienced a greater median intensive care unit LOS for survivors (16 versus 2days; P=0.026). Increasing cefepime MIC appears to predict inhospital mortality among patients who received aggressive doses of cefepime for GNBSIs, supporting a clinical breakpoint MIC of 2mg/L.

  7. Experimental gram-negative bacterial sepsis: prevention of mortality not preventable by antibiotics alone.

    PubMed Central

    Greisman, S E; DuBuy, J B; Woodward, C L

    1979-01-01

    Outbred Swiss mice were inoculated intraperitoneally or intravenously with one 90 to 100% lethal dose of Escherichia coli O:18, Proteus mirabilis, or Klebsiella pneumoniae. After carefully timed intervals, aminoglycoside antibiotics were begun at dosages nnd intervals predetermined to constitute optimal therapy. With progressive increases in delay of antibiotic therapy, mortality rates increased progressively from 0% to 90 to 100%. Standardized models of infection were developed by selecting delay periods before initiating antibiotic therapy such that 50 to 70% mortalities resulted. Utilizing these models, agents with reputed anti-endotoxin activity were administered concomitantly with the delayed antibiotic therapy to determine if any could prevent gram-negative septic mortality no longer preventable by the antibiotics alone. The following were observed: (i) adrenal corticosteroids prevented mortality that was no longer preventable by optimal aminoglycoside antibiotics alone. The following were preventable by optimal aminoglycoside antibiotic therapy alone; (ii) specific antisera also did so, provided anaphylaxis was circumvented; (iii) in one model (P. mirabilis), such protection by adrenal corticosteroids and specific antiserum could be additive; (iv) adrenal corticosteroids and specific antiserum acted synergistically with the aminoglycoside antibiotics--no protection was achieved by delayed administration of the steroids or antiserum alone; (v) timing was crucial--the synergistic protective activity of adrenal corticosteroids and of specific antiserum with aminoglycosides declined rapidly as infection progressed; (vi) cyclophosphamide pretreatment markedly impaired the synergistic protective activity of specific antiserum and of adrenal corticosteroids with aminoglycosides; (vii) no reputed anti-endotoxin agents other than adrenal corticosteroids and specific antiserum proved capable of preventing mortality not preventable by aminoglycoside antibiotics alone

  8. Molecular mechanisms that govern the specificity of Sushi peptides for Gram-negative bacterial membrane lipids.

    PubMed

    Li, Peng; Sun, Miao; Wohland, Thorsten; Yang, Daiwen; Ho, Bow; Ding, Jeak Ling

    2006-09-01

    Factor C-derived Sushi peptides (S1 and S3) have been shown to bind lipopolysaccharide (LPS) and inhibit the growth of Gram-negative bacteria but do not affect mammalian cells. On the premise that the composition of membrane phospholipids differs between the microbial and human cells, we studied the modes of interaction between S1 and S3 and the bacterial membrane phospholipids, POPG, in comparison to that with the mammalian cell membrane phospholipids, POPC and POPE. S1 exhibits specificity against POPG, suggesting its preference for bacterial anionic phospholipids, regardless of whether the phospholipids form vesicles in a solution or a monolayer on a solid surface. The specificity of the Sushi peptides for POPG is a consequence of the electrostatic and hydrophobic forces. The unsaturated nature of POPG confers fluidity to the lipid layer, and being in the proximity of LPS in the microenvironmental milieu, POPG probably enhances the insertion of the peptide-LPS complex into the bacterial inner membrane. Furthermore, during its interaction with POPG, the S1 peptide underwent a transition from random to alpha-helical coil, while S3 became a mixture of beta-sheet and alpha-helical structures. This differential structural change in the peptides could be responsible for their different modes of disruption of POPG vesicles. Conceivably, the selectivity for POPG spares the mammalian membranes from undesirable effects of antimicrobial peptides, which could be helpful in designing and developing a new generation of antibiotics and in offering some clues about the specific function of Factor C, a LPS biosensor.

  9. T lymphocyte responses to antigens of gram-negative bacteria in pyelonephritis.

    PubMed

    Wilz, S W; Kurnick, J T; Pandolfi, F; Rubin, R H; Warren, H S; Goldstein, R; Kersten, C M; McCluskey, R T

    1993-10-01

    We showed previously that large numbers of T lymphocytes accumulate within a few days in the kidneys of rats with ascending pyelonephritis induced with Escherichia coli or Pseudomonas aeruginosa. CD4+ T cells propagated from the lesions exhibited MHC-restricted proliferative responses to formalin-fixed bacteria of the species used to induce infection. In the present study we investigated further the nature of the antigens responsible for the T cell proliferation and studied the ability of different bacterial strains and species to produce proliferative responses. We found that heat-killed bacteria were more stimulatory than formalin-fixed bacteria, and that soluble supernatants of heat-killed organism were also effective. The stimulatory effects of supernatants were destroyed by trypsin and the responses were MHC-restricted. Twelve different E. coli strains, with or without characteristics of uropathogenicity in humans, were all highly stimulatory to T cells derived from a kidney infected with a single E. coli strain. Strains of Klebsiella pneumoniae, Enterobacter aerogenes, and Serratia marcescens--species of Enterobacteriaceae closely related to E. coli--were also stimulatory, whereas more distantly related bacteria--Proteus, Morganella, and P. aeruginosa--were not. T cells propagated from kidneys infected with P. aeruginosa responded to supernatants of this organism, but not to E. coli supernatants. We conclude that a protein antigen (or antigens) shared by strains of E. coli and related Enterobacteriaceae, but not by other gram-negative bacteria, produce MHC-restricted proliferative responses of CD4+ T cells that infiltrate rat kidneys infected with E. coli.

  10. The Structural Diversity of Carbohydrate Antigens of Selected Gram-Negative Marine Bacteria

    PubMed Central

    Nazarenko, Evgeny L.; Crawford, Russell J.; Ivanova, Elena P.

    2011-01-01

    Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens) found in cell walls of Gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria. PMID:22073003

  11. Occurrence of chloramphenicol-acetylating enzymes in various gram-negative bacilli.

    PubMed

    Okamoto, S; Suzuki, Y; Mise, K; Nakaya, R

    1967-11-01

    The occurrence of a chloramphenicol-acetylating enzyme, similar to that found in Escherichia coli, carrying an R factor was investigated in various gram-negative bacilli. The acetylated products of chloramphenicol were identified by chromatography and quantitatively assayed after benzene extraction. The investigated strains were of the Salmonella-Arizona group, the Klebsiella-Aerobacter group, Serratia marcescens, the Proteus group, and Pseudomonas aeruginosa, most of which were isolated from 1947 to 1957. Both chloramphenicol-sensitive and -resistant strains were included, but none of them was able to transfer chloramphenicol resistance by conjugation. In the Proteus group, a significant level of a chloramphenicol-acetylating enzyme was found in most strains, whether they were sensitive or resistant to chloramphenicol; the resistant strains showed higher levels of the enzyme. Some chloramphenicol-sensitive strains lacked this enzyme. Only the sensitive strains containing the enzyme could easily produce chloramphenicol-resistant mutants with higher enzyme activity. Thus, the chloramphenicol resistance of this group can be reasonably explained on the basis of the chloramphenicol-acetylating enzyme. All of the Pseudomonas aeruginosa strains were resistant to chloramphenicol, and most strains showed low levels of the enzyme (which, however, did not appear sufficient to explain their resistance). All of the strains of the other groups (except one strain of Enterobacter cloacae) lacked the enzyme, although most strains of the Klebsiella-Aerobacter group and of S. marcescens were resistant to chloramphenicol. With respect to the origin of the resistance gene of the R factor, it is noteworthy that the strains of Proteus mirabilis isolated in 1947 possessed this enzyme before the discovery of chloramphenicol.

  12. Evaluation of the Bruker MALDI Biotyper for Identification of Fastidious Gram-Negative Rods

    PubMed Central

    Bloemberg, Guido V.; Zbinden, Andrea; Mouttet, Forouhar; Zbinden, Reinhard; Böttger, Erik C.; Hombach, Michael

    2015-01-01

    Matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) has entered clinical laboratories, facilitating identification of bacteria. Here, we evaluated the MALDI Biotyper (Bruker Daltonics) for the identification of fastidious Gram-negative rods (GNR). Three sample preparation methods, direct colony transfer, direct transfer plus on-target formic acid preparation, and ethanol-formic acid extraction, were analyzed for 151 clinical isolates. Direct colony transfer applied with the manufacturer's interpretation criteria resulted in overall species and genus identification rates of 43.0% and 32.5%, respectively; 23.2% of the isolates were not identified, and two misidentifications (1.3%) were observed. The species identification rates increased to 46.4% and 53.7% for direct transfer plus formic acid preparation and ethanol-formic acid extraction, respectively. In addition, we evaluated score value cutoff alterations. The identification rates hardly increased by reducing the genus cutoff, while reducing the 2.0 species cutoff to 1.9 and to 1.8 increased the identification rates to up to 66.2% without increasing the rate of misidentifications. This study shows that fastidious GNR can reliably be identified using the MALDI Biotyper. However, the identification rates do not reach those of nonfastidious GNR such as the Enterobacteriaceae. In addition, two approaches optimizing the identification of fastidious GNR by the MALDI Biotyper were demonstrated: formic acid-based on-target sample treatment and reductions in cutoff scores to increase the species identification rates. PMID:26659214

  13. Bioenergetics and the role of soluble cytochromes C for alkaline adaptation in gram-negative alkaliphilic Pseudomonas.

    PubMed

    Matsuno, T; Yumoto, I

    2015-01-01

    Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H(+) concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μ max⁡ [h(-1)] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H(+) condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H(+).

  14. Bioenergetics and the Role of Soluble Cytochromes c for Alkaline Adaptation in Gram-Negative Alkaliphilic Pseudomonas

    PubMed Central

    Matsuno, T.; Yumoto, I.

    2015-01-01

    Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H+ concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μmax⁡ [h−1] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H+ condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H+. PMID:25705691

  15. Direct identification of major Gram-negative pathogens in respiratory specimens by respiFISH® HAP Gram (-) Panel, a beacon-based FISH methodology.

    PubMed

    Koncan, R; Parisato, M; Sakarikou, C; Stringari, G; Fontana, C; Favuzzi, V; Ligozzi, M; Lo Cascio, G

    2015-10-01

    Rapid detection of microorganisms in respiratory specimens is of paramount importance to drive the proper antibiotic regimen to prevent complications and transmission of infections. In the present study, the respiFISH® HAP Gram (-) Panel (miacom diagnostics GmbH, Duesseldorf, Germany) for the etiological diagnosis of hospital-acquired pneumonia was compared with the traditional culture method for the detection of major Gram-negative pathogens in respiratory specimens. respiFISH® combined the classical fluorescence in situ hybridization (FISH) technology with fluorescence-labeled DNA molecular beacons as probes. From September 2011 to January 2012, 165 samples were analyzed: the sensitivity and specificity were 94.39 and 87.93%, respectively. Only six pathogens (3.6%) were not identified with respiFISH®, while seven specimens (3%) provided false-positive results. This beacon-based identification shortens the time to result by at least one work day, providing species-level identification within half an hour. Considering the high sensitivity and specificity and the significant time saving, the introduction of bbFISH® assays could effectively complement traditional systems in microbiology laboratories.

  16. Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength

    PubMed Central

    Schastak, Stanislaw; Ziganshyna, Svitlana; Gitter, Burkhard; Wiedemann, Peter; Claudepierre, Thomas

    2010-01-01

    The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100µM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100µM THPTS followed by illumination, yielded a 6lg (≥99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections. PMID:20652031

  17. Growth of Ag-nanoparticles in an aqueous solution and their antimicrobial activities against Gram positive, Gram negative bacterial strains and Candida fungus.

    PubMed

    Aazam, Elham Shafik; Zaheer, Zoya

    2016-04-01

    Silver nanoparticles (AgNPs) were synthesized using Ocimum sanctum (Tulsi) leaves aqueous extract as reducing as well as a capping agent in absence and presence of cetyltrimethylammonium bromide (CTAB). The resulting nanomaterials were characterized by UV-visible spectrophotometer, and transmission electron microscope. The UV-Vis spectroscopy revealed the formation of AgNPs at 400-450 nm. TEM photographs indicate that the truncated triangular silver nanoplates and/or spherical morphology of the AgNPs with an average diameter of 25 nm have been distorted markedly in presence of CTAB. The AgNPs were almost mono disperse in nature. Antimicrobial activities of AgNPs were determined by using two bacteria (Gram positive Staphylococcus aureus MTCC-3160), Gram negative Escherichia coli MTCC-450) and one species of Candida fungus (Candida albicans ATCC 90030) with Kirby-Bauer or disc diffusion method. The zone of inhibition seems extremely good showing a relatively large zone of inhibition in both Staphylococcus aureus, Escherichia coli, and Candida albicans strains. PMID:26796584

  18. The Comparison of the Combined Toxicity between Gram-negative and Gram-positive Bacteria: a Case Study of Antibiotics and Quorum-sensing Inhibitors.

    PubMed

    Wang, Dali; Lin, Zhifen; Ding, Xiruo; Hu, Jingyun; Liu, Ying

    2016-02-01

    Quorum-sensing inhibitors (QSIs) are being used increasingly in diverse fields, and are likely to end up in the environment, where they may encounter the antibiotics and consequently cause joint effects on biological systems. However, the potential joint effects of QSIs and antibiotics have received little attention. In this study, the joint effects of antibiotics, represented by sulfonamides (SAs) and penicillin, as well as three potential QSIs, were investigated using both Gram-negative (Escherichia coli, E. coli) and Gram-positive bacteria (Bacillus subtilis, B. subtilis). It was found that E. coli tend to be more sensitive to the individual drugs than B. subtilis, whereas the joint effects on the two bacteria showed no difference regarding the same combination of antibiotics and QSIs. In general, SAs presented additive effects with γ-Valerolactone and 2-Pyrrolidinone, but antagonistic effects with L-(+)-Prolinol; penicillin exhibited antagonistic effects with all three QSIs. Moreover, it was found that the rate of resistance in E. coli against the individual antibiotics was reduced through the addition of the QSIs, which suggests a promising use of the QSIs in the bacterial infection treatment. This study also offers a valuable reference for the risk assessment of the antibiotics and QSIs in the real environment. PMID:27491790

  19. Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria.

    PubMed

    Anufrieva, N V; Morozova, E A; Kulikova, V V; Bazhulina, N P; Manukhov, I V; Degtev, D I; Gnuchikh, E Yu; Rodionov, A N; Zavilgelsky, G B; Demidkina, T V

    2015-01-01

    The problem of resistance to antibiotics requires the development of new classes of broad-spectrum antimicrobial drugs. The concept of pro-drugs allows researchers to look for new approaches to obtain effective drugs with improved pharmacokinetic and pharmacodynamic properties. Thiosulfinates, formed enzymatically from amino acid sulfoxides upon crushing cells of genus Allium plants, are known as antimicrobial compounds. The instability and high reactivity of thiosulfinates complicate their use as individual antimicrobial compounds. We propose a pharmacologically complementary pair: an amino acid sulfoxide pro-drug and vitamin B6 - dependent methionine γ-lyase, which metabolizes it in the patient's body. The enzyme catalyzes the γ- and β-elimination reactions of sulfoxides, analogues of L-methionine and L-cysteine, which leads to the formation of thiosulfinates. In the present work, we cloned the enzyme gene from Clostridium sporogenes. Ionic and tautomeric forms of the internal aldimine were determined by lognormal deconvolution of the holoenzyme spectrum and the catalytic parameters of the recombinant enzyme in the γ- and β-elimination reactions of amino acids, and some sulfoxides of amino acids were obtained. For the first time, the possibility of usage of the enzyme for effective conversion of sulfoxides was established and the antimicrobial activity of thiosulfinates against Gram-negative and Gram-positive bacteria in situ was shown. PMID:26798500

  20. Mechanism-based QSAR Models for the Toxicity of Quorum Sensing Inhibitors to Gram-negative and Gram-positive Bacteria.

    PubMed

    Wang, Dali; Lin, Zhifen; Huo, Zhengyang; Wang, Ting; Yao, Zhifeng; Cong, Yongping

    2016-07-01

    Quorum sensing inhibitors (QSIs) are a promising alternative to the antibiotics and unlikely to induce drug resistance. However, toxicity studies on the QSIs remain limited; therefore in this paper we investigated the acute (15 min) and chronic (24 h) toxicity of some potential QSIs on both gram-negative (V. fischeri) and gram-positive bacteria (B. subtilis). It was found that the toxicity of the QSIs differed with the toxicity test periods. QSAR models were developed for both the acute and chronic toxicity, using the interaction energies between QSIs and the relevant proteins, and the frontier orbital energies. Based on the QSAR models, it was suggested that QSIs primarily bind with the luciferase at 15 min, but LuxR at 24 h in V. fischeri; whereas in B. subtilis, the QSIs mainly bind with LuxS. Our study provided an insight into the toxicity mechanism for QSIs during different exposure periods. PMID:27084097

  1. Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria.

    PubMed

    Suresh, Anil K; Pelletier, Dale A; Wang, Wei; Moon, Ji-Won; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David C; Phelps, Tommy J; Doktycz, Mitchel J

    2010-07-01

    Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver-based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the gamma-proteobacterium, Shewanella oneidensis MR-1, upon incubation with aqueous silver nitrate solution. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the 2-11 nm size range (average of 4 +/- 1.5 nm). The bactericidal effect of these nanoparticles (biogenic-Ag) is compared to chemically synthesized silver nanoparticles (colloidal-Ag and oleate capped silver nanoparticles, oleate-Ag) and assessed using Gram-negative (E. coli and S. oneidensis) and Gram-positive (B. subtilis) bacteria. Relative toxicity was based on the diameter of inhibition zone in disk diffusion tests, minimum inhibitory concentrations, live/dead assays, and atomic force microscopy. From a toxicity perspective, strain-dependent inhibition depended on the synthesis procedure and the surface coat. Biogenic-Ag was found to be of higher toxicity compared to colloidal-Ag for all three strains tested, whereas E. coli and S. oneidensis were found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, oleate-Ag was not toxic to any of the bacteria. These findings have implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems.

  2. Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Anufrieva, N. V.; Morozova, E. A.; Kulikova, V. V.; Bazhulina, N. P.; Manukhov, I. V.; Degtev, D. I.; Gnuchikh, E. Yu.; Rodionov, A. N.; Zavilgelsky, G. B.; Demidkina, T. V.

    2015-01-01

    The problem of resistance to antibiotics requires the development of new classes of broad-spectrum antimicrobial drugs. The concept of pro-drugs allows researchers to look for new approaches to obtain effective drugs with improved pharmacokinetic and pharmacodynamic properties. Thiosulfinates, formed enzymatically from amino acid sulfoxides upon crushing cells of genus Allium plants, are known as antimicrobial compounds. The instability and high reactivity of thiosulfinates complicate their use as individual antimicrobial compounds. We propose a pharmacologically complementary pair: an amino acid sulfoxide pro-drug and vitamin B6 – dependent methionine γ-lyase, which metabolizes it in the patient’s body. The enzyme catalyzes the γ- and β-elimination reactions of sulfoxides, analogues of L-methionine and L-cysteine, which leads to the formation of thiosulfinates. In the present work, we cloned the enzyme gene from Clostridium sporogenes. Ionic and tautomeric forms of the internal aldimine were determined by lognormal deconvolution of the holoenzyme spectrum and the catalytic parameters of the recombinant enzyme in the γ- and β-elimination reactions of amino acids, and some sulfoxides of amino acids were obtained. For the first time, the possibility of usage of the enzyme for effective conversion of sulfoxides was established and the antimicrobial activity of thiosulfinates against Gram-negative and Gram-positive bacteria in situ was shown. PMID:26798500

  3. In vitro activity of ceftazidime, ceftaroline and aztreonam alone and in combination with avibactam against European Gram-negative and Gram-positive clinical isolates.

    PubMed

    Testa, Raymond; Cantón, Rafael; Giani, Tommaso; Morosini, María-Isabel; Nichols, Wright W; Seifert, Harald; Stefanik, Danuta; Rossolini, Gian Maria; Nordmann, Patrice

    2015-06-01

    Recent clinical isolates of key Gram-negative and Gram-positive bacteria were collected in 2012 from hospitalised patients in medical centres in four European countries (France, Germany, Italy and Spain) and were tested using standard broth microdilution methodology to assess the impact of 4 mg/L avibactam on the in vitro activities of ceftazidime, ceftaroline and aztreonam. Against Enterobacteriaceae, addition of avibactam significantly enhanced the level of activity of these antimicrobials. MIC(90) values (minimum inhibitory concentration that inhibits 90% of the isolates) of ceftazidime, ceftaroline and aztreonam for Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Morganella morganii were reduced up to 128-fold or greater when combined with avibactam. A two-fold reduction in the MIC(90) of ceftazidime to 8 mg/L was noted in Pseudomonas aeruginosa isolates when combined with avibactam, whereas little effect of avibactam was noted on the MIC values of the test compounds when tested against Acinetobacter baumannii isolates. Avibactam had little effect on the excellent activity of ceftazidime, ceftaroline and aztreonam against Haemophilus influenzae. It had no impact on the in vitro activity of ceftazidime and ceftaroline against staphylococci and streptococci. This study demonstrates that addition of avibactam enhances the activities of ceftazidime, ceftaroline and aztreonam against Enterobacteriaceae and P. aeruginosa but not against A. baumannii.

  4. Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria.

    PubMed

    Liu, Xiaoli; Xia, Wenshui; Jiang, Qixing; Xu, Yanshun; Yu, Peipei

    2015-09-01

    Our work here, for the first time, reported the antibacterial activity of kojic acid-grafted-chitosan oligosaccharides (COS/KA) against three gram-positive and three gram-negative bacteria. Integrity of cell membrane, outer membrane (OM) and inner membrane (IM) permeabilization assay, alkaline phosphatase (ALP) and glucose-6-phosphate dehydrogenase (G6PDH) assay, and SDS-PAGE assay techniques were used to investigate the interactions between COS/KA and bacterial membranes. The antibacterial activity of COS/KA was higher than those of unmodified COS. The electric conductivity of bacteria suspensions increased, followed by increasing of the units of average release for ALP and G6PDH. COS/KA can also rapidly increase the 1-N-phenylanphthylamine (NPN) uptake and the release of β-galactosidase via increasing the permeability of OM and IM in Escherichia coli. SDS-PAGE indicated the content of cellular soluble proteins decreased significantly in COS/KA-treated bacteria. Hence, COS/KA has potential in food industry and biomedical sciences.

  5. A 980nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles.

    PubMed

    Maaoui, Houcem; Jijie, Roxana; Pan, Guo-Hui; Drider, Djamel; Caly, Delphine; Bouckaert, Julie; Dumitrascu, Nicoleta; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah

    2016-10-15

    A 980nm laser-driven antimicrobial photothermal therapy using poly(vinylpyrrolidone) -coated Prussian Blue nanoparticles (PVP/PB NPs) is demonstrated. This approach allows an efficient eradication of a virulent strain of Gram-negative Escherichia coli (E. coli) associated with urinary tract infection as well as for the ablation of antibiotic resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA) and extended spectrum β-lactamase (ESBL) E. coli. Interestingly the 980nm irradiation exhibits minimal effect on mammalian cells up to a PVP/PB NPs concentration of 50μgmL(-1), while at this concentration bacteria are completely eradicated. This feature is certainly very promising for the selective targeting of bacteria over mammalian cells.

  6. A 980nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles.

    PubMed

    Maaoui, Houcem; Jijie, Roxana; Pan, Guo-Hui; Drider, Djamel; Caly, Delphine; Bouckaert, Julie; Dumitrascu, Nicoleta; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah

    2016-10-15

    A 980nm laser-driven antimicrobial photothermal therapy using poly(vinylpyrrolidone) -coated Prussian Blue nanoparticles (PVP/PB NPs) is demonstrated. This approach allows an efficient eradication of a virulent strain of Gram-negative Escherichia coli (E. coli) associated with urinary tract infection as well as for the ablation of antibiotic resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA) and extended spectrum β-lactamase (ESBL) E. coli. Interestingly the 980nm irradiation exhibits minimal effect on mammalian cells up to a PVP/PB NPs concentration of 50μgmL(-1), while at this concentration bacteria are completely eradicated. This feature is certainly very promising for the selective targeting of bacteria over mammalian cells. PMID:27405072

  7. Extraction and partial characterization of a leukotoxin from a plaque-derived Gram-negative microorganism.

    PubMed Central

    Tsai, C C; McArthur, W P; Baehni, P C; Hammond, B F; Taichman, N S

    1979-01-01

    The plaque-derived gram-negative microorganism Y4 identified as a member of the genus Actinobacillus, was tested for a soluble cytotoxic factor(s). Sonication or incubation of viable Y4 microorganisms in distilled water or normal human serum resulted in liberation of a soluble material which was cytotoxic in vitro for human polymorphonuclear leukocytes (PMNs). The Y4 soluble sonic extract was also cytotoxic to human peripheral blood monocytes. However, human lymphocytes, platelets, and fibroblasts, as well as rabbit, rat, and mouse leukocytes and chicken embryo fibroblasts, were not killed by exposure to the Y4 sonic extract. No hemolytic activity was detected in the Y4 sonic extract. No hemolytic activity was detected in the Y4 sonic extract. Consequently, the factor(s) in the Y4 sonic extract was referred to as Y4 leukotoxin. The Y4 leukotoxin was inactive at 4 degrees C, heat sensitive (56 degrees C, 30 min), and inactivated by proteases. The cytotoxic effect of Y4 leukotoxin on PMNs was dose, time, and temperature dependent. The leukotoxin did not bind to viable PMNs at 4 degrees C but did bind to dead PMN membrane components at both 4 and 37 degrees C. The addition of bovine serum albumin (51 mg/ml) to PMN-Y4 leukotoxin cultures inhibited the release of lactate dehydrogenase from the PMNs, but did not prevent the death of the cells as indicated by electron microscopy. Lysosomal markers were released in parallel to the cytoplasmic enzyme lactate dehydrogenase from Y4 leukotoxin-treated PMNs. The addition of 0.02 M ethylenedinitrilotetraacetic acid to these cultures inhibited release of lysosomal markers but enhanced the release of lactate dehydrogenase. These results suggested that a soluble leukotoxin with specificity for only human PMNs and monocytes can be liberated from viable Y4. What role this leukotoxin plays in the pathogenicity of the Y4 microorganism is not yet known. However, this leukotoxin is one of the first materials from a plaque

  8. The Increasing Challenge of Multidrug-Resistant Gram-Negative Bacilli

    PubMed Central

    Giuffrè, Mario; Geraci, Daniela M.; Bonura, Celestino; Saporito, Laura; Graziano, Giorgio; Insinga, Vincenzo; Aleo, Aurora; Vecchio, Davide; Mammina, Caterina

    2016-01-01

    Abstract Colonization and infection by multidrug-resistant gram-negative bacilli (MDR GNB) in neonatal intensive care units (NICUs) are increasingly reported. We conducted a 5-year prospective cohort surveillance study in a tertiary NICU of the hospital “Paolo Giaccone,” Palermo, Italy. Our objectives were to describe incidence and trends of MDR GNB colonization and the characteristics of the most prevalent organisms and to identify the risk factors for colonization. Demographic, clinical, and microbiological data were prospectively collected. Active surveillance cultures (ASCs) were obtained weekly. Clusters of colonization by extended spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae were analyzed by conventional and molecular epidemiological tools. During the study period, 1152 infants were enrolled in the study. Prevalences of colonization by MDR GNB, ESBL-producing GNB and multiple species/genera averaged, respectively, 28.8%, 11.7%, and 3.7%. Prevalence and incidence density of colonization by MDR GNB and ESBL-producing GNB showed an upward trend through the surveillance period. Rates of ESBL-producing E coli and K pneumoniae colonization showed wide fluctuations peaking over the last 2 years. The only independent variables associated with colonization by MDR GNB and ESBL-producing organisms and multiple colonization were, respectively, the days of NICU stay (odds ratio [OR] 1.041), the days of exposure to ampicillin–sulbactam (OR 1.040), and the days of formula feeding (OR 1.031). Most clusters of E coli and K pneumoniae colonization were associated with different lineages. Ten out of 12 clusters had an outborn infant as their index case. Our study confirms that MDR GNB are an increasing challenge to NICUs. The universal once-a-week approach allowed us to understand the epidemiology of MDR GNB, to timely detect new clones and institute contact precautions, and to assess risk factors. Collection of these data can be an

  9. ROSET Model of TonB Action in Gram-Negative Bacterial Iron Acquisition

    PubMed Central

    2016-01-01

    The rotational surveillance and energy transfer (ROSET) model of TonB action suggests a mechanism by which the electrochemical proton gradient across the Gram-negative bacterial inner membrane (IM) promotes the transport of iron through ligand-gated porins (LGP) in the outer membrane (OM). TonB associates with the IM by an N-terminal hydrophobic helix that forms a complex with ExbBD. It also contains a central extended length of rigid polypeptide that spans the periplasm and a dimeric C-terminal-ββαβ-domain (CTD) with LysM motifs that binds the peptidoglycan (PG) layer beneath the OM bilayer. The TonB CTD forms a dimer with affinity for both PG- and TonB-independent OM proteins (e.g., OmpA), localizing it near the periplasmic interface of the OM bilayer. Porins and other OM proteins associate with PG, and this general affinity allows the TonB CTD dimer to survey the periplasmic surface of the OM bilayer. Energized rotational motion of the TonB N terminus in the fluid IM bilayer promotes the lateral movement of the TonB-ExbBD complex in the IM and of the TonB CTD dimer across the inner surface of the OM. When it encounters an accessible TonB box of a (ligand-bound) LGP, the monomeric form of the CTD binds and recruits it into a 4-stranded β-sheet. Because the CTD is rotating, this binding reaction transfers kinetic energy, created by the electrochemical proton gradient across the IM, through the periplasm to the OM protein. The equilibration of the TonB C terminus between the dimeric and monomeric forms that engage in different binding reactions allows the identification of iron-loaded LGP and then the internalization of iron through their trans-outer membrane β-barrels. Hence, the ROSET model postulates a mechanism for the transfer of energy from the IM to the OM, triggering iron uptake. PMID:26787763

  10. Risk factors for tracheobronchial acquisition of resistant Gram-negative bacterial pathogens in mechanically ventilated ICU patients.

    PubMed

    Papakonstantinou, Ilias; Angelopoulos, Epameinondas; Baraboutis, Ioannis; Perivolioti, Efstathia; Parisi, Maria; Psaroudaki, Zoe; Kampisiouli, Efstathia; Argyropoulou, Athina; Nanas, Serafeim; Routsi, Christina

    2015-10-01

    The aim of this study was to identify risk factors for tracheobronchial acquisition with the most common resistant Gram-negative bacteria in the intensive care unit (ICU) during the first week after intubation and mechanical ventilation. Tracheobronchial and oropharyngeal cultures were obtained at admission, after 48 hours, and after 7 days of mechanical ventilation. Patient characteristics, interventions, and antibiotic usage were recorded. Among 71 eligible patients with two negative bronchial cultures for resistant Gram-negative bacteria (at admission and within 48 hours), 41 (58%) acquired bronchial resistant Gram-negative bacteria by day 7. Acquisition strongly correlated with presence of the same pathogens in the oropharynx: Acinetobacter baumannii [odds ratio (OR) = 20·2, 95% confidence interval (CI): 5·5-73·6], Klebsiella pneumoniae (OR = 8·0, 95% CI: 1·9-33·6), and Pseudomonas aeruginosa (OR = 27, 95%: CI 2·7-273). Bronchial acquisition with resistant K. pneumoniae also was associated with chronic liver disease (OR = 3·9, 95% CI: 1·0-15·3), treatment with aminoglycosides (OR = 4·9, 95% CI: 1·4-18·2), tigecycline (OR = 4·9, 95% CI: 1·4-18·2), and linezolid (OR = 3·9, 95% CI: 1·1-15·0). In multivariate analysis, treatment with tigecycline and chronic liver disease were independently associated with bronchial resistant K. pneumoniae acquisition. Our results show a high incidence of tracheobronchial acquisition with resistant Gram-negative microorganisms in the bronchial tree of newly intubated patients. Oropharynx colonization with the same pathogens and specific antibiotics use were independent risk factors.

  11. Distinction of Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium.

    PubMed

    Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi

    2011-01-01

    Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.

  12. Isolation of Coralmycins A and B, Potent Anti-Gram Negative Compounds from the Myxobacteria Corallococcus coralloides M23.

    PubMed

    Kim, Yu Jin; Kim, Hyun-Ju; Kim, Geon-Woo; Cho, Kyungyun; Takahashi, Shunya; Koshino, Hiroyuki; Kim, Won-Gon

    2016-09-23

    Two new potent anti-Gram negative compounds, coralmycins A (1) and B (2), were isolated from cultures of the myxobacteria Corallococcus coralloides M23, together with another derivative (3) that was identified as the very recently reported cystobactamid 919-2. Their structures including the relative stereochemistry were elucidated by interpretation of spectroscopic, optical rotation, and CD data. The relative stereochemistry of 3 was revised to "S*R*" by NMR analysis. The antibacterial activity of 1 was most potent against Gram-negative pathogens, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, and Klebsiella pneumoniae, with MICs of 0.1-4 μg/mL; these MICs were 4-10 and 40-100 times stronger than the antibacterial activities of 3 and 2, respectively. Thus, these data indicated that the β-methoxyasparagine unit and the hydroxy group of the benzoic acid unit were critical for antibacterial activity. PMID:27598688

  13. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    PubMed

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. PMID:27620957

  14. Diversity of culturable Gram-negative bacteria isolated from irrigation water of two rice crop regions in Southern Brazil.

    PubMed

    Reche, Maria Helena Lima Ribeiro; Reali, Catiusca; Pittol, Michele; de Athayde Saul, Danilo; Macedo, Vera Regina Mussoi; Valiati, Victor Hugo; Machado, Vilmar; Fiuza, Lidia Mariana

    2016-06-01

    In this study, we assessed the diversity of Gram-negative bacteria found in water used for irrigation of rice crops in two growing areas of southern Brazil. Samples were collected from the main irrigation channel and field drain area. Twenty-two bacterial species were found in Cachoeirinha and 28 in Camaquã. In both areas, the most frequent bacterial families were Enterobacteriaceae and Aeromonadaceae. Differences in microbial diversity were observed in both study areas. Thirty-five Gram-negative species were identified; however, only 15 were common in both locations. In addition, there were found pathogenic and drug-resistant species, such as Acinetobacter sp., Brucella spp., and Chryseobacterium meningosepticum. This study demonstrates the existence of a number of pathogenic species in aquatic ecosystems analyzed in three consecutive crop years, especially water used for rice production. PMID:27197729

  15. A brief report of gram-negative bacterial endotoxin levels in airborne and settled dusts in animal confinement buildings

    SciTech Connect

    Thedell, T.D.; Mull, J.C.; Olenchock, S.A.

    1980-01-01

    Gram-negative bacterial endotoxins, implicated in adverse worker health responses, were found in settled and airborne dust samples obtained from poultry and swine confinement units. Results of the Limulus amebocyte lysate gel test found endotoxin levels in dust samples ranged from 4.5 to 47.7 micrograms of FDA Klebsiella endotoxin equivalents/gm. Differences in endotoxin levels between dust samples may have been due to variables in time, geographic locations, confined animals, confinement buildings and equipment, and methods of sample collection. Animal confinement workers are potentially exposed to large amounts of gram-negative bacterial endotoxins; however, the respiratory health effects of such exposures to animal confinement workers have yet to be determined.

  16. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan.

    PubMed

    Sato, Maiko; Ahmed, Ashraf M; Noda, Ayako; Watanabe, Hitoshi; Fukumoto, Yukio; Shimamoto, Tadashi

    2009-01-01

    Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9%) showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, beta-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another.

  17. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    PubMed

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway.

  18. Isolation and molecular characterization of multidrug-resistant Gram-negative bacteria from imported flamingos in Japan

    PubMed Central

    2009-01-01

    Imported animals, especially those from developing countries, may constitute a potential hazard to native animals and to public health. In this study, a new flock of lesser flamingos imported from Tanzania to Hiroshima Zoological Park were screened for multidrug-resistant Gram-negative bacteria, integrons and antimicrobial resistance genes. Thirty-seven Gram-negative bacterial isolates were obtained from the flamingos. Seven isolates (18.9%) showed multidrug resistance phenotypes, the most common being against: ampicillin, streptomycin, tetracycline, trimethoprim/sulfamethoxazole and nalidixic acid. Molecular analyses identified class 1 and class 2 integrons, β-lactamase-encoding genes, blaTEM-1 and blaCTX-M-2 and the plasmid-mediated quinolone resistance genes, qnrS and qnrB. This study highlights the role of animal importation in the dissemination of multidrug-resistant bacteria, integrons and antimicrobial resistance genes from one country to another. PMID:19930691

  19. A peptide derived from human bactericidal/permeability-increasing protein (BPI) exerts bactericidal activity against Gram-negative bacterial isolates obtained from clinical cases of bovine mastitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gram-negative bacteria are responsible for approximately one-third of the clinical cases of bovine mastitis and can elicit a life-threatening, systemic inflammatory response. Lipopolysaccharide (LPS) is a membrane component of all Gram-negative bacteria and is largely responsible for evoking the de...

  20. A comparison of media used in vitro to isolate non-sporing Gram-negative anaerobes from blood.

    PubMed

    Forgan-Smith, W R; Darrell, J H

    1974-04-01

    Five anaerobic media were compared in a model blood culture system for their ability to recover small inocula of Gram-negative non-sporing anaerobes. Dehydrated cooked meat medium was the least effective; USP thioglycollate medium was the most effective isolation medium and is recommended for routine use. Freshly prepared cooked meat medium has the advantage of allowing prolonged survival of strains. PMID:4850178

  1. Discovery of new Gram-negative antivirulence drugs: structure and properties of novel E. coli WaaC inhibitors.

    PubMed

    Moreau, F; Desroy, N; Genevard, J M; Vongsouthi, V; Gerusz, V; Le Fralliec, G; Oliveira, C; Floquet, S; Denis, A; Escaich, S; Wolf, K; Busemann, M; Aschenbrenner, A

    2008-07-15

    Heptosyltransferases such as WaaC represent promising and attractive targets for the discovery of new Gram-negative antibacterial drugs based on antivirulence mechanisms. We report herein our approach to the identification of the first micromolar inhibitors of WaaC and the preliminary SAR generated from this family of 2-aryl-5-methyl-4-(5-aryl-furan-2-yl-methylene)-2,4-dihydro-pyrazol-3-ones identified by virtual screening.

  2. Systemic Activation of TLR3-Dependent TRIF Signaling Confers Host Defense against Gram-Negative Bacteria in the Intestine.

    PubMed

    Ruiz, Jose; Kanagavelu, Saravana; Flores, Claudia; Romero, Laura; Riveron, Reldy; Shih, David Q; Fukata, Masayuki

    2015-01-01

    Recognition of Gram-negative bacteria by toll-like receptor (TLR)4 induces MyD88 and TRIF mediated responses. We have shown that TRIF-dependent responses play an important role in intestinal defense against Gram-negative enteropathogens. In the current study, we examined underlying mechanisms of how systemic TRIF activation enhances intestinal immune defense against Gram-negative bacteria. First we confirmed that the protective effect of poly I:C against enteric infection of mice with Yersinia enterocolitica was dependent on TLR3-mediated TRIF signaling by using TLR3-deficient mice. This protection was unique in TRIF-dependent TLR signaling because systemic stimulation of mice with agonists for TLR2 (Pam3CSK4) or TLR5 (flagellin) did not reduce mortality on Y. enterocolitica infection. Systemic administration of poly I:C mobilized CD11c+, F4/80+, and Gr-1(hi) cells from lamina propria and activated NK cells in the mesenteric lymph nodes (MLN) within 24 h. This innate immune cell rearrangement was type I IFN dependent and mediated through upregulation of TLR4 followed by CCR7 expression in these innate immune cells found in the intestinal mucosa. Poly I:C induced IFN-γ expression by NK cells in the MLN, which was mediated through type I IFNs and IL-12p40 from antigen presenting cells and consequent activation of STAT1 and STAT4 in NK cells. This formation of innate immunity significantly contributed to the elimination of bacteria in the MLN. Our results demonstrated an innate immune network in the intestine that can be established by systemic stimulation of TRIF, which provides a strong host defense against Gram-negative pathogens. The mechanism underlying TRIF-mediated protective immunity may be useful to develop novel therapies for enteric bacterial infection.

  3. Gram-negative bacteraemia; a multi-centre prospective evaluation of empiric antibiotic therapy and outcome in English acute hospitals.

    PubMed

    Fitzpatrick, J M; Biswas, J S; Edgeworth, J D; Islam, J; Jenkins, N; Judge, R; Lavery, A J; Melzer, M; Morris-Jones, S; Nsutebu, E F; Peters, J; Pillay, D G; Pink, F; Price, J R; Scarborough, M; Thwaites, G E; Tilley, R; Walker, A S; Llewelyn, M J

    2016-03-01

    Increasing antibiotic resistance makes choosing antibiotics for suspected Gram-negative infection challenging. This study set out to identify key determinants of mortality among patients with Gram-negative bacteraemia, focusing particularly on the importance of appropriate empiric antibiotic treatment. We conducted a prospective observational study of 679 unselected adults with Gram-negative bacteraemia at ten acute english hospitals between October 2013 and March 2014. Appropriate empiric antibiotic treatment was defined as intravenous treatment on the day of blood culture collection with an antibiotic to which the cultured organism was sensitive in vitro. Mortality analyses were adjusted for patient demographics, co-morbidities and illness severity. The majority of bacteraemias were community-onset (70%); most were caused by Escherichia coli (65%), Klebsiella spp. (15%) or Pseudomonas spp. (7%). Main foci of infection were urinary tract (51%), abdomen/biliary tract (20%) and lower respiratory tract (14%). The main antibiotics used were co-amoxiclav (32%) and piperacillin-tazobactam (30%) with 34% receiving combination therapy (predominantly aminoglycosides). Empiric treatment was inappropriate in 34%. All-cause mortality was 8% at 7 days and 15% at 30 days. Independent predictors of mortality (p <0.05) included older age, greater burden of co-morbid disease, severity of illness at presentation and inflammatory response. Inappropriate empiric antibiotic therapy was not associated with mortality at either time-point (adjusted OR 0.82; 95% CI 0.35-1.94 and adjusted OR 0.92; 95% CI 0.50-1.66, respectively). Although our study does not exclude an impact of empiric antibiotic choice on survival in Gram-negative bacteraemia, outcome is determined primarily by patient and disease factors.

  4. Sensitivity of surveillance testing for multidrug-resistant Gram-negative bacteria in the intensive care unit.

    PubMed

    Ridgway, Jessica P; Peterson, Lance R; Thomson, Richard B; Miller, Becky A; Wright, Marc-Oliver; Schora, Donna M; Robicsek, Ari

    2014-11-01

    We tested intensive care unit patients for colonization with multidrug-resistant Gram-negative bacilli (MDR GNB) and compared the results with those of concurrent clinical cultures. The sensitivity of the surveillance test for detecting MDR GNB was 58.8% (95% confidence interval, 48.6 to 68.5%). Among 133 patients with positive surveillance tests, 61% had no prior clinical culture with MDR GNB.

  5. Gram-negative bacteraemia; a multi-centre prospective evaluation of empiric antibiotic therapy and outcome in English acute hospitals.

    PubMed

    Fitzpatrick, J M; Biswas, J S; Edgeworth, J D; Islam, J; Jenkins, N; Judge, R; Lavery, A J; Melzer, M; Morris-Jones, S; Nsutebu, E F; Peters, J; Pillay, D G; Pink, F; Price, J R; Scarborough, M; Thwaites, G E; Tilley, R; Walker, A S; Llewelyn, M J

    2016-03-01

    Increasing antibiotic resistance makes choosing antibiotics for suspected Gram-negative infection challenging. This study set out to identify key determinants of mortality among patients with Gram-negative bacteraemia, focusing particularly on the importance of appropriate empiric antibiotic treatment. We conducted a prospective observational study of 679 unselected adults with Gram-negative bacteraemia at ten acute english hospitals between October 2013 and March 2014. Appropriate empiric antibiotic treatment was defined as intravenous treatment on the day of blood culture collection with an antibiotic to which the cultured organism was sensitive in vitro. Mortality analyses were adjusted for patient demographics, co-morbidities and illness severity. The majority of bacteraemias were community-onset (70%); most were caused by Escherichia coli (65%), Klebsiella spp. (15%) or Pseudomonas spp. (7%). Main foci of infection were urinary tract (51%), abdomen/biliary tract (20%) and lower respiratory tract (14%). The main antibiotics used were co-amoxiclav (32%) and piperacillin-tazobactam (30%) with 34% receiving combination therapy (predominantly aminoglycosides). Empiric treatment was inappropriate in 34%. All-cause mortality was 8% at 7 days and 15% at 30 days. Independent predictors of mortality (p <0.05) included older age, greater burden of co-morbid disease, severity of illness at presentation and inflammatory response. Inappropriate empiric antibiotic therapy was not associated with mortality at either time-point (adjusted OR 0.82; 95% CI 0.35-1.94 and adjusted OR 0.92; 95% CI 0.50-1.66, respectively). Although our study does not exclude an impact of empiric antibiotic choice on survival in Gram-negative bacteraemia, outcome is determined primarily by patient and disease factors. PMID:26577143

  6. The adhesion GPCR BAI1 mediates macrophage ROS production and microbicidal activity against Gram-negative bacteria

    PubMed Central

    Billings, Emily A.; Lee, Chang Sup; Owen, Katherine A.; D’Souza, Ryan S.; Ravichandran, Kodi S.; Casanova, James E.

    2016-01-01

    The detection of microbes and initiation of an innate immune response occur through pattern recognition receptors (PRRs), which are critical for the production of inflammatory cytokines and activation of the cellular microbicidal machinery. In particular, the production of reactive oxygen species (ROS) by the NADPH oxidase complex is a critical component of the macrophage bactericidal machinery. We previously characterized brain-specific angiogenesis inhibitor 1 (BAI1), a member of the adhesion family of G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs), as a PRR that mediates the selective phagocytic uptake of Gram-negative bacteria by macrophages. We showed that BAI1 promoted phagosomal ROS production through activation of the Rho family guanosine triphosphatase (GTPase) Rac1, thereby stimulating NADPH oxidase activity. Primary BAI1-deficient macrophages exhibited attenuated Rac GTPase activity and reduced ROS production in response to several Gram-negative bacteria, resulting in impaired microbicidal activity. Furthermore, in a peritoneal infection model, BAI1-deficient mice exhibited increased susceptibility to death by bacterial challenge because of impaired bacterial clearance. Together, these findings suggest that BAI1 mediates the clearance of Gram-negative bacteria by stimulating both phagocytosis and NADPH oxidase activation, thereby coupling bacterial detection to the cellular microbicidal machinery. PMID:26838550

  7. Monoclonal antibodies specific for Escherichia coli J5 lipopolysaccharide: cross-reaction with other gram-negative bacterial species.

    PubMed Central

    Mutharia, L M; Crockford, G; Bogard, W C; Hancock, R E

    1984-01-01

    Four monoclonal antibodies against Escherichia coli J5 were studied. Each of these monoclonal antibodies reacted with purified lipopolysaccharides from E. coli J5, the deep rough mutant Salmonella minnesota Re595, Agrobacterium tumefaciens, and Pseudomonas aeruginosa PAO1 as well as with the purified lipid A of P. aeruginosa. Enzyme-linked immunosorbent assays using the outer membranes from a variety of gram-negative bacteria demonstrated that these lipid A-specific monoclonal antibodies interacted with between 84 and 97% of the gram-negative bacterial species tested. One of the monoclonal antibodies, 5E4, was shown to interact with 34 of the 35 outer membrane or lipopolysaccharide antigens tested. Immunoenzymatic staining of Western electrophoretic blots of separated P. aeruginosa outer membrane components was used to demonstrate that antibody 5E4 interacted with a similar fast-migrating band, corresponding to rough lipopolysaccharide, from all 17 serotype strains and all 14 clinical isolates of P. aeruginosa. Similarly, iodinated goat anti-mouse immunoglobulin was used to detect the binding of monoclonal antibody 8A1 to a fast-migrating band on Western electrophoretic blots of purified lipopolysaccharides from Klebsiella pneumoniae and both smooth and rough strains of E. coli, Salmonella typhimurium, and S. minnesota. These results suggest considerable conservation of single antigenic sites in the lipid A of gram-negative bacteria. Images PMID:6381310

  8. Phagocytosis and intracellular killing of MD-2 opsonized Gram-negative bacteria depend on TLR4 signaling

    PubMed Central

    Jain, Vishal; Halle, Annett; Halmen, Kristen A.; Lien, Egil; Charrel-Dennis, Marie; Ram, Sanjay; Golenbock, Douglas T.

    2008-01-01

    Both Toll-like receptor 4 (TLR4)– and MD-2–deficient mice succumb to otherwise nonfatal Gram-negative bacteria inocula, demonstrating the pivotal role played by these proteins in antibacterial defense in mammals. MD-2 is a soluble endogenous ligand for TLR4 and a receptor for lipopolysaccharide (LPS). LPS-bound MD-2 transmits an activating signal onto TLR4. In this report, we show that both recombinant and endogenous soluble MD-2 bind tightly to the surface of live Gram-negative bacteria. As a consequence, MD-2 enhances cellular activation, bacterial internalization, and intracellular killing, all in a TLR4-dependent manner. The enhanced internalization of MD-2–coated bacteria was not observed in macrophages expressing Lpsd, a signaling-incompetent mutant form of TLR4, suggesting that the enhanced phagocytosis observed is dependent on signal transduction. The data confirm the notion that soluble MD-2 is a genuine opsonin that enhances proinflammatory opsonophagocytosis by bridging live Gram-negative bacteria to the LPS transducing complex. The presented results extend our understanding of the role of the TLR4/MD-2 signaling axis in bacterial recognition by phagocytes. PMID:18203953

  9. Evaluation of Gram Negative Bacterial Contamination in Dental Unit Water Supplies in a University Clinic in Tabriz, Iran

    PubMed Central

    Pouralibaba, Firoz; Balaei, Esrafil; Kashefimehr, Atabak

    2011-01-01

    Background and aims Bacterial contamination of dental unit water supplies (DUWS) has attracted a lot of attention in recent years due to the emergence of serious infectionsin susceptible dental patients. The aim of the present study was to evaluate the presence of gram-negative bacterial contamination in DUWS at Tabriz University of Medical Sciences Faculty of Dentistry. Materials and methods This descriptive study was carried out on 51 active dental units in different departments. Con-tamination was determined by taking samples from the unit's water supply before dental procedures and the use of specific culture media. The cultures were evaluated after 48 hours. Results Gram-negative bacterial contamination was identical in all the departments. In the departments on the ground floor, namely Departments of Periodontics and Oral and Maxillofacial Surgery, Pseudomonas contamination was observed in 71% of units; in the departments on the first floor, namely Departments of Prosthodontics, Orthodontics and Pedodon-tics, 46.8% of the units had Pseudomonas contamination; and in the departments on the second floor, namely Departments of Operative Dentistry and Endodontics, 37.7% of the units demonstrated Pseudomonas contamination. Conclusion Gram-negative bacterial contamination was evident in the evaluated DUWS. The contamination type was identical but the number of contaminated units decreased with the increase in the height of the floors. PMID:22991613

  10. Antibacterial Activity of Thymus Syriacus Boiss Essential Oil and Its Components against Some Syrian Gram-Negative Bacteria Isolates

    PubMed Central

    Al-Mariri, Ayman; Swied, Ghayath; Oda, Adnan; Al Hallab, Laila

    2013-01-01

    Background: Despite the medical discoveries of different medicines and advanced ways of treatment, statistics have shown that the number of patients is increasing. This may be due to chemical drugs used in healthcare, agriculture, and diets. This soaring demand in medicines urges us to look for natural sources such as aromatic plants and essential oils, which are rich in efficient compounds. Methods: Extraction of essential oils was performed using a Clevenger-type apparatus. Identification was achieved using the GC-FID technique. Confirmation was made using the GC-MS technique, and isolation was done using a preparative HPLC, equipped with an aliquots collector. The microdilution broth susceptibility assay was utilized to determine minimum inhibitory concentrations (MICs). Results: Our in vitro study demonstrated the antibacterial activity of the Thymus syriacus Boiss essential oil and its components against the tested isolates at levels between 0.375 and 50 µl/ml. The main components of the T. syriacus essential oil were carvacrol, γ-terpinene, and ß–caryophyllene. MIC90 values for the T. syriacus essential oil against the gram-negative organisms varied between 3.125 and 12.5 µl/ml. The most effective components against the gram-negative bacteria were thymol, carvacrol, dihydro-carvon, and linalool respectively. Conclusions: The T. syriacus essential oil and some of its components exhibited very good inhibitory effects against Syrian gram-negative isolates. PMID:24031109

  11. Rapid Differentiation of Fermentative from Nonfermentative Gram-Negative Bacilli in Positive Blood Cultures by an Impedance Method

    PubMed Central

    Chang, Tsung Chain; Huang, Ay Huey

    2000-01-01

    Rapid differentiation of fermentative gram-negative bacilli (fermenters) from nonfermentative gram-negative bacilli (nonfermenters) in positive blood cultures may help physicians to narrow the choice of appropriate antibiotics for empiric treatment. An impedance method for direct differentiation of fermenters from nonfermenters was investigated. The bacterial suspensions (or positive culture broths containing gram-negative bacteria) were inoculated into the module wells of a Bactometer (bioMérieux, Inc., Hazelwood, Mo.) containing 1 ml of Muller-Hinton broth. The inoculated modules were incubated at 35°C, and the change in impedance in each well was continuously monitored. The amount of time required to cause a series of significant deviations from baseline impedance values was defined as the detection time (DT). The percent change of impedance was defined as the change of impedance at the time interval from DT to DT plus 1 h. After testing 857 strains of pure cultures (586 strains of fermenters and 271 strains of nonfermenters), a breakpoint (2.98%) of impedance change was obtained by discriminant analysis. Strains displaying impedance changes of greater than 2.98% were classified as fermenters; the others were classified as nonfermenters. By using this breakpoint, 98.6% (340 of 345) of positive blood cultures containing fermenters and 98% (98 of 100) of positive blood cultures containing nonfermenters were correctly classified. The impedance method was simple, and the results were normally available within 2 to 4 h after direct inoculation of positive blood culture broths. PMID:11015369

  12. Leader peptides of inducible chloramphenicol resistance genes from gram-positive and gram-negative bacteria bind to yeast and Archaea large subunit rRNA.

    PubMed Central

    Harrod, R; Lovett, P S

    1997-01-01

    catA86 is the second gene in a constitutively transcribed, two-gene operon cloned from Bacillus pumilus . The region that intervenes between the upstream gene, termed the leader, and the catA86 coding sequence contains a pair of inverted repeat sequences which cause sequestration of the catA86 ribosome binding site in mRNA secondary structure. As a consequence, the catA86 coding sequence is untranslatable in the absence of inducer. Translation of the catA86 coding sequence is induced by chloramphenicol in Gram-positives and induction requires a function of the leader coding sequence. The leader-encoded peptide has been proposed to instruct its translating ribosome to pause at leader codon 6, enabling chloramphenicol to stall the ribosome at that site. Ribosome stalling causes destabilization of the RNA secondary structure, exposing the catA86 ribosome binding site, allowing activation of its translation. A comparable mechanism of induction by chloramphenicol has been proposed for the regulated cmlA gene from Gram-negative bacteria. The catA86 and cmlA leader-encoded peptides are in vitro inhibitors of peptidyl transferase, which is thought to be the basis for selection of the site of ribosome stalling. Both leader-encoded peptides have been shown to alter the secondary structure of Escherichia coli 23S rRNA in vitro. All peptide-induced changes in rRNA conformation are within domains IV and V, which contains the peptidyl transferase center. Here we demonstrate that the leader peptides alter the conformation of domains IV and V of large subunit rRNA from yeast and a representative of the Archaea. The rRNA target for binding the leader peptides is therefore conserved across kingdoms. PMID:9108153

  13. Acyl Carrier Protein Synthases from Gram-Negative, Gram-Positive, and Atypical Bacterial Species: Biochemical and Structural Properties and Physiological Implications

    PubMed Central

    McAllister, Kelly A.; Peery, Robert B.; Zhao, Genshi

    2006-01-01

    Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4′-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology. PMID:16788183

  14. Silver nanocrystallites: Facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria

    SciTech Connect

    Suresh, Anil K; Wang, Wei; Pelletier, Dale A; Moon, Ji Won; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the -proteobacterium, Shewanella oneidensis strain MR-1, upon incubation with an aqueous solution of silver nitrate. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the size range 2 11 nm (with an average of 4 1.5 nm). The bactericidal effect of these biologically synthesized silver nanoparticles (biogenic-Ag) are compared to similar chemically synthesized nanoparticles (colloidal silver [colloidal-Ag] and oleate capped silver [oleate-Ag]). The determination of the bactericidal effect of these different silver nanoparticles was assessed using both Gram-negative (E. coli) and Gram-positive (B. subtilis) bacteria and based on the diameter of the inhibition zone in disc diffusion tests, minimum inhibitory concentrations, Live/Dead staining assays, and atomic force microscopy. From a toxicity perspective, a clear synthesis procedure, and a surface coat- and strain-dependent inhibition were observed for silver nanoparticles. Biogenic-Ag was found to be of higher toxicity when compared to colloidal-Ag for both E. coli and B. subtilis. E. coli was found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, Oleate-Ag was not toxic to either of the bacteria. These findings have important implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems.

  15. Differential regulation of polysaccharide-specific antibody responses to isolated polysaccharides, conjugate vaccines, and intact Gram-positive versus Gram-negative extracellular bacteria.

    PubMed

    Snapper, Clifford M

    2016-06-24

    Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines.

  16. Differential regulation of polysaccharide-specific antibody responses to isolated polysaccharides, conjugate vaccines, and intact Gram-positive versus Gram-negative extracellular bacteria.

    PubMed

    Snapper, Clifford M

    2016-06-24

    Bacterial capsular polysaccharides are major virulence factors and are key targets in a number of licensed anti-bacterial vaccines. Their major characteristics are their large molecular weight and expression of repeating antigenic epitopes that mediate multivalent B cell receptor cross-linking. In addition, since the majority of these antigens cannot associate with MHC-II they fail to recruit CD4+ T cell help and are referred to as T cell-independent antigens. In this review I will discuss a series of studies from my laboratory that have underscored the importance of understanding polysaccharide-specific antibody responses within the context in which the PS is expressed (i.e. in isolation, as a component of conjugate vaccines, and expressed naturally by intact bacteria). We have shown that multivalent B cell receptor crosslinking, as mediated by polysaccharides, uniquely determines the qualitative response of the B cell to subsequent stimuli, but by itself is insufficient to induce antibody secretion or class switching. For these latter events to occur, second signals must act in concert with primary signals derived from the B cell receptor. The co-expression of polysaccharide and protein within intact bacteria promotes recruitment of CD4+ T cell help for the associated PS-specific IgG response, in contrast to isolated polysaccharides. Further, the particulate nature of extracellular bacteria confers properties to the polysaccharide-specific IgG response that makes it distinct immunologically from soluble conjugate vaccines. Finally, the underlying biochemical and/or structural differences that distinguish Gram-positive and Gram-negative bacteria appear to play critical roles in differentially regulating the associated polysaccharide-specific IgG responses to these groups of pathogens. These studies have a number of implications for the understanding and future design of polysaccharide-based vaccines. PMID:27133879

  17. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures.

    PubMed

    Dutra, Virna; Silva, Ana Carla; Cabrita, Paula; Peres, Cidália; Malcata, Xavier; Brito, Luisa

    2016-01-01

    Listeria monocytogenes, Salmonella enterica and verocytotoxigenic Escherichia coli (VTEC) are amongst the most important agents responsible for food outbreaks occurring worldwide. In this work, two Lactobacillus spp. strains (LABs), Lactobacillus plantarum (LB95) and Lactobacillus paraplantarum (LB13), previously isolated from spontaneously fermenting olive brines, and two reference probiotic strains, Lactobacillus casei Shirota and Lactobacillus rhamnosus GG, were investigated for their ability to attenuate the virulence of the aforementioned pathogens using animal cell culture assays. In competitive exclusion assays, the relative percentages of adhesion and invasion of S. enterica subsp. enterica serovar Enteritidis were significantly reduced when the human HT-29 cell line was previously exposed to LB95. The relative percentage of invasion by Listeria monocytogenes was significantly reduced when HT-29 cells were previously exposed to LB95. In the cytotoxicity assays, the cell-free supernatant of the co-culture (CFSC)of VTEC with LB95 accounted for the lowest value obtained amongst the co-cultures of VTEC with LABs, and was significantly lower than the value obtained with the co-culture of VTEC with the two probiotic reference strains. The cytotoxicity of CFSC of VTEC with both LB95 and LB13 exhibited values not significantly different from the cell-free supernatant of the nonpathogenic E. coli B strain. Our results suggested that LB95 may be able to attenuate the virulence of Gram-positive and Gram-negative food-borne pathogens; together with other reported features of these strains, our data reveal their possible use in probiotic foods due to their interesting potential in preventing enteric infections in humans.

  18. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures.

    PubMed

    Dutra, Virna; Silva, Ana Carla; Cabrita, Paula; Peres, Cidália; Malcata, Xavier; Brito, Luisa

    2016-01-01

    Listeria monocytogenes, Salmonella enterica and verocytotoxigenic Escherichia coli (VTEC) are amongst the most important agents responsible for food outbreaks occurring worldwide. In this work, two Lactobacillus spp. strains (LABs), Lactobacillus plantarum (LB95) and Lactobacillus paraplantarum (LB13), previously isolated from spontaneously fermenting olive brines, and two reference probiotic strains, Lactobacillus casei Shirota and Lactobacillus rhamnosus GG, were investigated for their ability to attenuate the virulence of the aforementioned pathogens using animal cell culture assays. In competitive exclusion assays, the relative percentages of adhesion and invasion of S. enterica subsp. enterica serovar Enteritidis were significantly reduced when the human HT-29 cell line was previously exposed to LB95. The relative percentage of invasion by Listeria monocytogenes was significantly reduced when HT-29 cells were previously exposed to LB95. In the cytotoxicity assays, the cell-free supernatant of the co-culture (CFSC)of VTEC with LB95 accounted for the lowest value obtained amongst the co-cultures of VTEC with LABs, and was significantly lower than the value obtained with the co-culture of VTEC with the two probiotic reference strains. The cytotoxicity of CFSC of VTEC with both LB95 and LB13 exhibited values not significantly different from the cell-free supernatant of the nonpathogenic E. coli B strain. Our results suggested that LB95 may be able to attenuate the virulence of Gram-positive and Gram-negative food-borne pathogens; together with other reported features of these strains, our data reveal their possible use in probiotic foods due to their interesting potential in preventing enteric infections in humans. PMID:26506821

  19. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    PubMed Central

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  20. [Directed isolation of gram-negative asporogenous bacteria from natural substrates].

    PubMed

    Ivanitskaia, L P; Singal, E M; Bodunkova, L E; Ostanina, L N; Baturina, M V

    1984-10-01

    A method for selective isolation of gramnegative nonsporulating bacteria from soil substrates was developed. The method consists of plating out the substrates on a glucose-yeast medium with addition of benzylpenicillin and nalidixic acid. The isolation frequency of gramnegative nonsporulating bacteria increased under such conditions from 9-16 (control) to 80-100 per cent. At the same time the isolation frequency of gram-positive bacteria decreased from 88.5 to 9.6 per cent. PMID:6391365

  1. Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor

    PubMed Central

    Card, Roderick M.; Mafura, Muriel; Hunt, Theresa; Kirchner, Miranda; Weile, Jan; Rashid, Mamun-Ur; Weintraub, Andrej; Nord, Carl Erik

    2015-01-01

    The aim of this study was to assess the impact of ciprofloxacin, clindamycin, and placebo administration on culturable Gram-negative isolates and the antibiotic resistance genes they harbor. Saliva and fecal samples were collected from healthy human volunteers before and at intervals, up to 1 year after antibiotic administration. Samples were plated on selective and nonselective media to monitor changes in different colony types or bacterial species. Following ciprofloxacin administration, there was a decrease of Escherichia coli in feces and after clindamycin administration a decrease of Bacteroides in feces and Leptotrichia in saliva, which all returned to pretreatment levels within 1 to 4 months. Ciprofloxacin administration also resulted in an increase in ciprofloxacin-resistant Veillonella in saliva, which persisted for 12 months. Additionally, 949 aerobic and anaerobic isolates purified from ciprofloxacin- and clindamycin-containing plates were screened for the presence of resistance genes. Resistance gene carriage was widespread in isolates from all three treatment groups, and no association was observed between genes and antibiotic administration. Although the anaerobic component of the microbiota was not a major reservoir of aerobe-associated antimicrobial resistance (AMR) genes, we detected the sulfonamide resistance gene sul2 in anaerobic isolates. The longitudinal nature of the study allowed identification of distinct Escherichia coli clones harboring multiple resistance genes, including one carrying an extended-spectrum β-lactamase blaCTX-M group 9 gene, which persisted in the gut for up to 4 months. This study provided insight into the effects of antibiotic administration on healthy microbiota and the diversity of resistance genes harbored therein. PMID:25987611

  2. Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage.

    PubMed

    Li, Hai-Yun; Luo, Yan; Zhang, Xiu-Sheng; Shi, Wei-Ling; Gong, Zhi-Ting; Shi, Mei; Chen, Lei-Lei; Chen, Xiu-Lan; Zhang, Yu-Zhong; Song, Xiao-Yan

    2014-05-01

    Peptaibols, mainly produced by Trichoderma, play a pivotal role in controlling plant disease caused by fungi, virus, and Gram-positive bacteria. In the current study, we evaluated the control effect of Trichokonins, antimicrobial peptaibols from Trichoderma pseudokoningii SMF2, on soft rot disease of Chinese cabbage caused by a Gram-negative bacterium Pectobacterium carotovorum subsp. carotovorum and analyzed the mechanism involved. Trichokonins treatment (0.3 mg L(-1) ) enhanced the resistance of Chinese cabbage against Pcc infection. However, Trichokonins could hardly inhibit the growth of Pcc in vitro, even at high concentration (500 mg L(-1) ). Therefore, the direct effect of Trichokonins on Pcc may not the main reason why Trichokonins could control soft rot of Chinese cabbage. Trichokonin treatment led to an obvious increase in the production of reactive oxygen species hydrogen peroxide and superoxide radical, a significant enhance of the activities of pathogenesis-related enzymes catalase, polyphenoloxidase and peroxidase, and upregulation of the expression of salicylic acid - responsive pathogenesis-related protein gene acidic PR-1a in Chinese cabbage. These results indicate that Trichokonins induce resistance in Chinese cabbage against Pcc infection through the activation of salicylic acid signaling pathway, which imply the potential of Trichoderma and peptaibols in controlling plant disease caused by Gram-negative bacteria.

  3. Soluble granzymes are released during human endotoxemia and in patients with severe infection due to gram-negative bacteria.

    PubMed

    Lauw, F N; Simpson, A J; Hack, C E; Prins, J M; Wolbink, A M; van Deventer, S J; Chaowagul, W; White, N J; van Der Poll, T

    2000-07-01

    Extracellular release of granzymes is considered to reflect the involvement of cytotoxic T lymphocytes and NK cells in various disease states. To obtain insight into granzyme release during bacterial infection, granzyme levels were measured during experimental human endotoxemia and in patients with melioidosis, a severe infection due to gram-negative bacteria. Plasma concentrations of granzyme A (GrA) and GrB increased transiently after endotoxin administration, peaking after 2-6 h. In patients with bacteremic melioidosis, GrA and GrB levels were elevated on admission and remained high during the 72-h study period. In whole blood stimulated with heat-killed Burkholderia pseudomallei, neutralization of tumor necrosis factor, interleukin-12, or interleukin-18 inhibited granzyme secretion, which was independent of interferon-gamma. Stimulation with endotoxin and other gram-negative and gram-positive bacteria also strongly induced the secretion of granzymes, suggesting that granzyme release is a general immune response during bacterial infection. The interaction between the cytokine network and granzymes may play an important immunoregulatory role during bacterial infections.

  4. Radiation induced gram negative bacteremia and endotoxemia in rabbits: modification by anti-lipopolysaccharide hyperimmune equine plasma

    SciTech Connect

    Well, M.T.; Gaffin, S.L.; Jordaan, J.P.

    1987-06-29

    Lethal whole-body irradiation damages the gut mucosa and leads to leakage of endotoxin or lipopolysaccharides (LPS) into the systemic circulation. Sixteen rabbits, irradiated with 900 rads /sup 60/Co, were randomly divided on day 4 into 2 groups, one of which received an intraperitoneal injection of normal saline (control) and the other (experimental) an equal volume of anti-LPS hyperimmune plasma. The time course of endotoxemia and bacteremia were determined for the duration of the experiment. While rabbits in both groups died within 13 days after irradiation, rabbits given saline died on average 2 days earlier, than rabbits given anti-LPS plasma. Plasma LPS concentrations rose to a small peak on day 2 prior to treatment. Thereafter plasma LPS in rabbits given saline increased forty fold by day 9. In contrast, in rabbits given anti-LPS plasma, LPS concentrations in the plasma remained within pretreatment limits. By day 12 after irradiation, plasma anti-LPS IgG had declined to 5.8% of pretreatment levels in rabbits given saline as compared to 46% in rabbits given anti-LPS plasma (p 0.005). While both groups developed gram-positive bacteremia, rabbits given saline in addition also developed gram-negative bacteremia. No rabbits treated with Anti-LPS showed gram-negative bacteremia.

  5. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor.

    PubMed

    Chae, Jun-Ho; Kurokawa, Kenji; So, Young-In; Hwang, Hyun Ok; Kim, Min-Su; Park, Ji-Won; Jo, Yong-Hun; Lee, Yong Seok; Lee, Bok Luel

    2012-03-01

    The biochemical characterization of novel antimicrobial peptides (AMPs) and the determination of ligand molecules that induce AMP production are essential for understanding the host innate immune response in insects. Here, we purified a new 14-kDa AMP, named tenecin 4, from the larval hemolymph of the beetle Tenebrio molitor. Tenecin 4 contains 14% glycine residues and has moderate similarities both to the C-terminal region of Drosophila attacin and to silk-moth gloverin proteins. Purified tenecin 4 showed bactericidal activity against Gram-negative Escherichia coli but not against Gram-positive Bacillus subtilis or the fungus Candida albicans. Tenecin 4 production was induced by Toll cascade-activating ligands, such as β-1,3-glucan, lysine-type peptidoglycan and active Spätzle, and by the probable Imd pathway-activating ligand monomeric meso-diaminopimelic acid-type peptidoglycan. Taken together, these data show that tenecin 4 is a defense protein against Gram-negative pathogens and is induced by multiple ligands in Tenebrio larvae.

  6. Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage.

    PubMed

    Li, Hai-Yun; Luo, Yan; Zhang, Xiu-Sheng; Shi, Wei-Ling; Gong, Zhi-Ting; Shi, Mei; Chen, Lei-Lei; Chen, Xiu-Lan; Zhang, Yu-Zhong; Song, Xiao-Yan

    2014-05-01

    Peptaibols, mainly produced by Trichoderma, play a pivotal role in controlling plant disease caused by fungi, virus, and Gram-positive bacteria. In the current study, we evaluated the control effect of Trichokonins, antimicrobial peptaibols from Trichoderma pseudokoningii SMF2, on soft rot disease of Chinese cabbage caused by a Gram-negative bacterium Pectobacterium carotovorum subsp. carotovorum and analyzed the mechanism involved. Trichokonins treatment (0.3 mg L(-1) ) enhanced the resistance of Chinese cabbage against Pcc infection. However, Trichokonins could hardly inhibit the growth of Pcc in vitro, even at high concentration (500 mg L(-1) ). Therefore, the direct effect of Trichokonins on Pcc may not the main reason why Trichokonins could control soft rot of Chinese cabbage. Trichokonin treatment led to an obvious increase in the production of reactive oxygen species hydrogen peroxide and superoxide radical, a significant enhance of the activities of pathogenesis-related enzymes catalase, polyphenoloxidase and peroxidase, and upregulation of the expression of salicylic acid - responsive pathogenesis-related protein gene acidic PR-1a in Chinese cabbage. These results indicate that Trichokonins induce resistance in Chinese cabbage against Pcc infection through the activation of salicylic acid signaling pathway, which imply the potential of Trichoderma and peptaibols in controlling plant disease caused by Gram-negative bacteria. PMID:24655217

  7. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor.

    PubMed

    Chae, Jun-Ho; Kurokawa, Kenji; So, Young-In; Hwang, Hyun Ok; Kim, Min-Su; Park, Ji-Won; Jo, Yong-Hun; Lee, Yong Seok; Lee, Bok Luel

    2012-03-01

    The biochemical characterization of novel antimicrobial peptides (AMPs) and the determination of ligand molecules that induce AMP production are essential for understanding the host innate immune response in insects. Here, we purified a new 14-kDa AMP, named tenecin 4, from the larval hemolymph of the beetle Tenebrio molitor. Tenecin 4 contains 14% glycine residues and has moderate similarities both to the C-terminal region of Drosophila attacin and to silk-moth gloverin proteins. Purified tenecin 4 showed bactericidal activity against Gram-negative Escherichia coli but not against Gram-positive Bacillus subtilis or the fungus Candida albicans. Tenecin 4 production was induced by Toll cascade-activating ligands, such as β-1,3-glucan, lysine-type peptidoglycan and active Spätzle, and by the probable Imd pathway-activating ligand monomeric meso-diaminopimelic acid-type peptidoglycan. Taken together, these data show that tenecin 4 is a defense protein against Gram-negative pathogens and is induced by multiple ligands in Tenebrio larvae. PMID:22001126

  8. Mononuclear Polypyridylruthenium(II) Complexes with High Membrane Permeability in Gram-Negative Bacteria-in particular Pseudomonas aeruginosa.

    PubMed

    Gorle, Anil K; Feterl, Marshall; Warner, Jeffrey M; Primrose, Sebastian; Constantinoiu, Constantin C; Keene, F Richard; Collins, J Grant

    2015-07-13

    Ruthenium(II) complexes containing the tetradentate ligand bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane ("bbn "; n=10 and 12) have been synthesised and their geometric isomers separated. All [Ru(phen)(bbn )](2+) (phen=1,10-phenanthroline) complexes exhibited excellent activity against Gram-positive bacteria, but only the cis-α-[Ru(phen)(bb12 )](2+) species showed good activity against Gram-negative species. In particular, the cis-α-[Ru(phen)(bb12 )](2+) complex was two to four times more active than the cis-β-[Ru(phen)(bb12 )](2+) complex against the Gram-negative strains. The cis-α- and cis-β-[Ru(phen)(bb12 )](2+) complexes readily accumulated in the bacteria but, significantly, showed the highest level of uptake in Pseudomonas aeruginosa. Furthermore, the accumulation of the cis-α- and cis-β-[Ru(phen)(bb12 )](2+) complexes in P. aeruginosa was considerably greater than in Escherichia coli. The uptake of the cis-α-[Ru(phen)(bb12 )](2+) complex into live P. aeruginosa was confirmed by using fluorescence microscopy. The water/octanol partition coefficients (log P) were determined to gain understanding of the relative cellular uptake. The cis-α- and cis-β-[Ru(phen)(bbn )](2+) complexes exhibited relatively strong binding to DNA (Kb ≈10(6)  M(-1) ), but no significant difference between the geometric isomers was observed. PMID:26042390

  9. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria

    PubMed Central

    Mehmood, Shahid; Rehman, Malik A; Ismail, Hammad; Mirza, Bushra; Bhatti, Arshad S

    2015-01-01

    In this work, we highlighted the effect of surface modifications of one-dimensional (1D) ZnO nanostructures (NSs) grown by the vapor–solid mechanism on their antibacterial activity. Two sets of ZnO NSs were modified separately – one set was modified by annealing in an Ar environment, and the second set was modified in O2 plasma. Annealing in Ar below 800°C resulted in a compressed lattice, which was due to removal of Zn interstitials and increased O vacancies. Annealing above 1,000°C caused the formation of a new prominent phase, Zn2SiO4. Plasma oxidation of the ZnO NSs caused an expansion in the lattice due to the removal of O vacancies and incorporation of excess O. Photoluminescence (PL) spectroscopy was employed for the quantification of defects associated with Zn and O in the as-grown and processed ZnO NS. Two distinct bands were observed, one in the ultraviolet (UV) region, due to interband transitions, and other in the visible region, due to defects associated with Zn and O. PL confirmed the surface modification of ZnO NS, as substantial decrease in intensities of visible band was observed. Antibacterial activity of the modified ZnO NSs demonstrated that the surface modifications by Ar annealing limited the antibacterial characteristics of ZnO NS against Staphylococcus aureus. However, ZnO NSs annealed at 1,000°C or higher showed a remarkable antibacterial activity against Escherichia coli. O2 plasma–treated NS showed appreciable antibacterial activity against both E. coli and S. aureus. The minimum inhibition concentration was determined to be 0.5 mg/mL and 1 mg/mL for Ar-annealed and plasma-oxidized ZnO NS, respectively. It was thus proved that the O content at the surface of the ZnO NS was crucial to tune the antibacterial activity against both selected gram-negative (E. coli) and gram-positive (S. aureus) bacterial species. PMID:26213466

  10. Emergence of integron borne PER-1 mediated extended spectrum cephalosporin resistance among nosocomial isolates of Gram-negative bacilli

    PubMed Central

    Maurya, Anand Prakash; Choudhury, Debarati; Talukdar, Anupam Das; Dhar (Chanda), Debadatta; Chakravarty, Atanu; Bhattacharjee, Amitabha

    2015-01-01

    Background & objectives: Pseudomonas extended resistant (PER) enzymes are rare type of extended-spectrum beta lactamases (ESBLs) that confer third generation cephalosporin resistance. These are often integron borne and laterally transmitted. The aim of the present study was to investigate the emergence of integron borne cephalosporin resistant PER-1 gene in diverse incompatibility (Inc) group plasmids among Gram-negative bacteria. Methods: A total of 613 consecutive, non-duplicate, Gram-negative bacteria of Enterobacteriaceae family and non-fermenting Gram-negative bacteria were isolated from different clinical specimens during a period of 18 months. For amplification and detection of blaPER, multiplex PCR was done. For understanding the genetic environment of blaPER-1, integrase gene PCR and cassette PCR (59 be) was performed. Gene transferability experiment was carried out and PCR based replicon typing was performed for incompatibility group typing of plasmids using 18 pairs of primers. An inhibitor based method was used for phenotypic detection of intrinsic resistance. Results: Multiplex PCR and sequencing confirmed that 45 isolates were harbouring blaPER-1. Both class 1 and class 2 integrons were observed among them. Integrase and cassette PCR (59 be) PCR results confirmed that the resistant determinant was located within class 1 integron. Transformation and conjugation experiments revealed that PER-1 was laterally transferable and disseminated through diverse Inc plasmid type. Efflux pump mediated carbapenem resistance was observed in all isolates. All isolates belonged to heterogenous groups. Interpretation & conclusions: This study demonstrates the dissemination of cephalosporins resistant, integron borne blaPER-1 in hospital setting in this part of the country and emphasizes on the rational use of third generation cephalosporins to slow down the expansion of this rare type of ESBL gene. PMID:26205025

  11. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens.

    PubMed

    Bush, Karen

    2015-11-01

    β-Lactamase inhibitors (BLIs) have played an important role in combatting β-lactam resistance in Gram-negative bacteria, but their effectiveness has diminished with the evolution of diverse and deleterious varieties of β-lactamases. In this review, a new generation of BLIs and inhibitor combinations is presented, describing epidemiological information, pharmacodynamic studies, resistance identification and current clinical status. Novel serine BLIs of major interest include the non-β-lactams of the diazabicyclo[3.2.1]octanone (DBO) series. The DBOs avibactam, relebactam and RG6080 inhibit most class A and class C β-lactamases, with selected inhibition of class D enzymes by avibactam. The novel boronic acid inhibitor RPX7009 has a similar inhibitory profile. All of these inhibitors are being developed in combinations that are targeting primarily carbapenemase-producing Gram-negative pathogens. Two BLI combinations (ceftolozane/tazobactam and ceftazidime/avibactam) were recently approved by the US Food and Drug Administration (FDA) under the designation of a Qualified Infectious Disease Product (QIDP). Other inhibitor combinations that have at least completed phase 1 clinical trials are ceftaroline fosamil/avibactam, aztreonam/avibactam, imipenem/relebactam, meropenem/RPX7009 and cefepime/AAI101. Although effective inhibitor combinations are in development for the treatment of infections caused by Gram-negative bacteria with serine carbapenemases, better options are still necessary for pathogens that produce metallo-β-lactamases (MBLs). The aztreonam/avibactam combination demonstrates inhibitory activity against MBL-producing enteric bacteria owing to the stability of the monobactam to these enzymes, but resistance is still an issue for MBL-producing non-fermentative bacteria. Because all of the inhibitor combinations are being developed as parenteral drugs, an orally bioavailable combination would also be of interest.

  12. Antimicrobial susceptibility and beta-lactamase production of selected gram-negative bacilli from two Croatian hospitals: MYSTIC study results.

    PubMed

    Bedenic, B; Goic-Barisic, I; Budimir, A; Tonkic, M; Mihajkevic, L J; Novak, A; Sviben, M; Plecko, V; Punda-Polic, V; Kalenic, S

    2010-06-01

    The meropenem yearly Susceptibility Test Information Collection (MYSTIC) programme is a global, longitudinal resistance surveillance network that monitors the activity of meropenem and compares its activity with other broadspectrum antimicrobial agents. We now report the antimicrobial efficacy of meropenem compared to other broad-spectrum agents within the selective Gram-negative pathogen groups from two Croatian Hospitals investigated between 2002-2007. A total of 1510 Gram-negative pathogens were tested and the minimum-inhibitory concentrations (MICs) were determined by broth microdilution method according to CLSI.There was no resistance to either imipenem or meropenem observed for Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis in both medical centers. High resistance rates of K. pneumoniae to ceftazidime (18%), cefepime (17%) and gentamicin (39%) are raising concern. Acinetobacter baumannii turned out to be the most resistant Gram-negative bacteria with 81% resistant to ceftazidime, 73% to cefepime, 69% to gentamicin and 71% to ciprofloxacin. Almost 20% of Pseudomonas aeruginosa strains were resistant to imipenem, 13% to meropenem, 69% to gentamicin and 38% to ciprofloxacin.The prevalence of extended-spectrum beta-lactamases (ESBLs) in E. coli was 10% and in K. pneumoniae 49%. PCR and sequencing of the amplicons revealed the presence of SHV-5 in nine E. coli strains and additional tem-1 beta-lactamase five strains. Five K. pneumoniae strains were positive for bla(SHV-5 )gene. Eight ESBL positive Enterobacter spp. strains were found to produce tem and CtX-m beta-lactamases. Plasmid-mediated AmpC beta-lactamases were not found among K. pneumoniae, E. coli and Enterobacter spp. Three A. baumannii strains from Zagreb University Center were identified by multiplex PCR as OXA-58 like producers. Six A. baumannii strains from Split University Center were found to possess an ISAba1 insertion sequence upstream of bla(OXA-51 )gene. According to our results

  13. Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians.

    PubMed

    Viale, Pierluigi; Giannella, Maddalena; Tedeschi, Sara; Lewis, Russell

    2015-10-01

    The spread of antimicrobial resistance among Gram negative bacteria has dramatically reduced the current therapeutic opportunities and hampered the perspectives of drug discovery pipeline. Several unmet needs concerning the optimal therapeutic approaches to severe infections caused by the leading multi-drug-resistant GNB are still unresolved, mainly in relationship with the difficulty in the design of prospective comparative studies. Therefore a perspective of how the main resistance patterns and the related infections can be managed in the absence of more definitive data is mandatory.

  14. The reaction mechanism for dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Li, Ze-Sheng

    2012-01-01

    The fundamental reaction mechanism for the dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica has been studied by density functional theory calculations. The results indicate that the dehydration process undergoes a two-step cis-elimination mechanism, which is different from the previously proposed one. The catalytic roles of both the highly conserved residue His143 and the Schiff base formed between the substrate and Lys170 have also been elucidated. The structural and mechanistic insight presented here may direct the design of type I dehydroquinate dehydratase enzyme inhibitors as non-toxic antimicrobials, anti-fungals, and herbicides.

  15. Guidelines for interpretation of 16S rRNA gene sequence-based results for identification of medically important aerobic Gram-positive bacteria.

    PubMed

    Woo, Patrick C Y; Teng, Jade L L; Wu, Jeff K L; Leung, Fion P S; Tse, Herman; Fung, Ami M Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2009-08-01

    This study is believed to be the first to provide guidelines for facilitating interpretation of results based on full and 527 bp 16S rRNA gene sequencing and MicroSeq databases used for identifying medically important aerobic Gram-positive bacteria. Overall, full and 527 bp 16S rRNA gene sequencing can identify 24 and 40 % of medically important Gram-positive cocci (GPC), and 21 and 34 % of medically important Gram-positive rods (GPR) confidently to the species level, whereas the full-MicroSeq and 500-MicroSeq databases can identify 15 and 34 % of medically important GPC and 14 and 25 % of medically important GPR confidently to the species level. Among staphylococci, streptococci, enterococci, mycobacteria, corynebacteria, nocardia and members of Bacillus and related taxa (Paenibacillus, Brevibacillus, Geobacillus and Virgibacillus), the methods and databases are least useful for identification of staphylococci and nocardia. Only 0-2 and 2-13 % of staphylococci, and 0 and 0-10 % of nocardia, can be confidently and doubtfully identified, respectively. However, these methods and databases are most useful for identification of Bacillus and related taxa, with 36-56 and 11-14 % of Bacillus and related taxa confidently and doubtfully identified, respectively. A total of 15 medically important GPC and 18 medically important GPR that should be confidently identified by full 16S rRNA gene sequencing are not included in the full-MicroSeq database. A total of 9 medically important GPC and 21 medically important GPR that should be confidently identified by 527 bp 16S rRNA gene sequencing are not included in the 500-MicroSeq database. 16S rRNA gene sequence results of Gram-positive bacteria should be interpreted with basic phenotypic tests results. Additional biochemical tests or sequencing of additional gene loci are often required for definitive identification. To improve the usefulness of the MicroSeq databases, bacterial species that can be confidently identified by 16S r

  16. Characterization of a Novel Small Molecule That Potentiates β-Lactam Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Nair, Dhanalakshmi R.; Monteiro, João M.; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G.

    2015-01-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a β-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 μg/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3′-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 108 CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens. PMID:25583731

  17. Characterization of a novel small molecule that potentiates β-lactam activity against gram-positive and gram-negative pathogens.

    PubMed

    Nair, Dhanalakshmi R; Monteiro, João M; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G; Cheung, Ambrose L

    2015-04-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a β-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 μg/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3'-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 10(8) CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens.

  18. Antibiotic regimens for treatment of infections due to multidrug-resistant Gram-negative pathogens: An evidence-based literature review

    PubMed Central

    Izadpanah, Mandana; Khalili, Hossein

    2015-01-01

    Evidences regarding the efficacy of different antibiotic regimens proposed for treatment of multidrug-resistant (MDR) Gram-negative pathogens have been reviewed. Available data in Scopus, Medline, EMBASE, the Cochrane central register of controlled trials, and Cochrane database of systematic reviews have been collected. Several antibiotic regimens are proposed for treatment of MDR Gram-negative infections (defined as nonsusceptibility to at least one agent in three or more antimicrobial categories). The most challenging issue is the treatment of carbapenem-resistant (CR) Gram-negative pathogens. A carbapenem plus either colistin or tigecycline was the most effective regimen for treatment of CR Gram-negative pathogens with low-level resistance (minimal inhibitory concentration [MIC] ≤ 8 mg/L). However, in high-level resistance (MIC > 8 mg/L), combination of colistin and tigecycline showed promising effect. PMID:26312249

  19. Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for Gram-negative bacteria in sediments.

    PubMed Central

    Parker, J H; Smith, G A; Fredrickson, H L; Vestal, J R; White, D C

    1982-01-01

    Biochemical measures have provided insight into the biomass and community structure of sedimentary microbiota without the requirement of selection by growth or quantitative removal from the sediment grains. This study used the assay of the hydroxy fatty acids released from the lipid A of the lipopolysaccharide in sediments to provide an estimate of the gram-negative bacteria. The method was sensitive to picomolar amounts of hydroxy fatty acids. The recovery of lipopolysaccharide hydroxy fatty acids from organisms added to sediments was quantitative. The lipids were extracted from the sediments with single-phase chloroform-methanol extraction. The lipid-extraction residue was hydrolyzed in 1 N HCl, and the hydroxy fatty acids of the lipopolysaccharide were recovered in chloroform for analysis by gas-liquid chromatography. This method proved to be about fivefold more sensitive than the classical phenol-water or trichloroacetic acid methods when applied to marine sediments. By examination of the patterns of hydroxy fatty acids, it was also possible to help define the community structure of the sedimentary gram-negative bacteria. PMID:6817712

  20. Importance of Actinomyces and certain gram-negative anaerobic organisms in the transformation of lymphocytes from patients with periodontal disease.

    PubMed Central

    Baker, J J; Chan, S P; Socransky, S S; Oppenheim, J J; Mergenhagen, S E

    1976-01-01

    Dental plaque deposits are known to be potent stimulants of lymphocyte transformation in patients with periodontal disease but not in normal subjects. Since plaque deposits consist mainly of whole bacteria, the cell walls of the most commonly found organisms in plaque were tested for their capacity to induce lymphocyte transformation. There was a direct correlation between the severity of peridontal disease and the amount of transformation induced by the cell walls of oral bacteria and by solubilized dental plaque. Cord blood leukocytes and lymphocytes from clinically normal people did not respond, which indicates that these stimulants are antigens rather than mitogens. Of the eleven bacteria tested, four members of the family Actinomycetaceae (Actinomyces viscosus, A. israelii, A. naeslundii, and Arachnia propionica), the related Propionibacterium acnes, and an anaerobic gram-negative anaerobic rod (27N). The high prevalence of the former organisms in the mature dental plaque that forms around the gingival crevice area and the potent efficacy with which they stimulate lymphocytes indicates that Actinomyces and certain gram-negative anaerobes may be important etiological agents in chronic periodontal inflammation in man. PMID:1270144

  1. Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria.

    PubMed

    Andersen, C

    2003-01-01

    For translocation across the cell envelope of Gram-negative bacteria, substances have to overcome two permeability barriers, the inner and outer membrane. Channel-tunnels are outer membrane proteins, which are central to two distinct export systems: the type I secretion system exporting proteins such as toxins or proteases, and efflux pumps discharging antibiotics, dyes, or heavy metals and thus mediating drug resistance. Protein secretion is driven by an inner membrane ATP-binding cassette (ABC) transporter while drug efflux occurs via an inner membrane proton antiporter. Both inner membrane transporters are associated with a periplasmic accessory protein that recruits an outer membrane channel-tunnel to form a functional export complex. Prototypes of these export systems are the hemolysin secretion system and the AcrAB/TolC drug efflux pump of Escherichia coli, which both employ TolC as an outer membrane component. Its remarkable conduit-like structure, protruding 100 A into the periplasmic space, reveals how both systems are capable of transporting substrates across both membranes directly from the cytosol into the external environment. Proteins of the channel-tunnel family are widespread within Gram-negative bacteria. Their involvement in drug resistance and in secretion of pathogenic factors makes them an interesting system for further studies. Understanding the mechanism of the different export apparatus could help to develop new drugs, which block the efflux pumps or the secretion system.

  2. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant.

    PubMed

    Vimaladevi, Mohan; Divya, Kurunchi Chellapathi; Girigoswami, Agnishwar

    2016-09-01

    The antimicrobial photodynamic therapy is an alternative method for killing bacterial cells in view of the rising problem of antibiotic resistance microorganisms. The present study examined the effect of a water soluble photosensitizer, Rhodamine 6G (R6G) in stealth liposomes on multidrug resistant Pseudomonas aeruginosa in the presence of visible light. Liposomes were prepared with cholesterol and phospholipids that extracted from hen eggs in a cost effective way and characterized by light microscopy, particle size analyzer, electron microscopy, steady state spectrophotometry and spectrofluorometry. The photoefficacies of R6G in polymer encapsulated liposomes and positively charged liposomes are much higher compared to the free R6G (R6G in water) in terms of singlet oxygen quantum yield. This high potential of producing more reactive oxygen species (ROS) by liposomal nanoformulated R6G leads to efficient photodynamic inactivation of multidrug resistant gram negative bacteria in waste water. Though the singlet oxygen quantum yield of polymer coated liposomal R6G was higher than the cationic liposomal formulation, a faster decrease in bacterial survival was observed for positively charged liposomal R6G treated bacteria due to electrostatic charge interactions. Therefore, it can be concluded that the positively charged liposomal nanoformulations of laser dyes are efficient for photodynamic inactivation of multiple drug resistant gram negative microorganisms. PMID:27371913

  3. Neutrophil function in gram-negative rod bacteremia. The interaction between phagocytic cells, infecting organisms, and humoral factors.

    PubMed Central

    Weinstein, R J; Young, L S

    1976-01-01

    To assess the phagocytic and bactericidal function of neutrophils in the acute stages of gram-negative rod bacteremia, cells from 30 nonleukopenic patients were studied in a test system utilizing plasma obtained simultaneously with culture-positive blood, the autologous infecting strain, and two laboratory test strains of Staphylococcus aureus and Pseudomonas aeruginosa. Results were compared to those obtained with normal neutrophils and plasma. Patient and control plasma were simultaneously tested with each source of phagocytic cells to localize any abnormalities. Four patients had a defect against their infecting strain, 33% of the inoculum phagocytized and killed versus 80% by controls. In these cases differences were localized to the patients' plasma, as normal plasma tested with patients' cells reversed the defect. Thus, four patients had impaired opsonization when compared to normal controls, but we also observed that 11 of 30 bacteremic isolates, all Escherichia coli, showed absolute or relative resistance to phagocytosis in the patient and control assay system. No intrinsic granulocyte killing abnormalities were noted. There was poor correlation between results obtained with infecting strains compared to laboratory test organisms. We conclude that in patients without evidence of an inherited neutrophil bactericidal disorder, recurrent infection, or treatment with cytotoxic drugs, intrinsic bactericidal defects are uncommon at the onset of gram-negative bacteremia, and impaired opsonization is the most commonly encountered cause of neutrophil dysfunction. PMID:819460

  4. Prophylactic and therapeutic effects of a monoclonal antibody to tumor necrosis factor-alpha in experimental gram-negative shock.

    PubMed

    Silva, A T; Bayston, K F; Cohen, J

    1990-08-01

    A monoclonal antibody to recombinant murine tumor necrosis factor-alpha (TNF alpha), TN3-19.12, was used to explore pathogenetic mechanisms and therapeutic strategies in gram-negative shock. In mice receiving an LD90 dose of Escherichia coli O111, TN3-19.12 prevented death if given 1.5 h before or 30 min after challenge. Less protection was conferred if the antibody was given 2.5 h after challenge. In control mice receiving an irrelevant antibody, L2-3D9, TNF alpha levels rose (less than or equal to 185.1 +/- 26.1 ng/ml) by 90 min and had returned to baseline by 5 h. Mice receiving TN3-19.12 did not have this response. TN3-19.12 was of limited benefit in mice receiving Pseudomonas aeruginosa but had no protective effect in cyclophosphamide-treated mice receiving Klebsiella pneumoniae. In L2-3D9-treated mice, TNF alpha levels were elevated to 61.8 +/- 27.9 and 49.7 +/- 5.1 ng/ml by 90 min in the two models, respectively. TNF alpha levels in TN3-19.12-treated mice in these two models were very low (3.9-5.5 ng/ml). TNF alpha is a mediator in gram-negative shock; antibody to TNF alpha can be of value in prophylaxis and treatment, but its clinical use remains to be established.

  5. Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors.

    PubMed

    Nikel, Pablo I; de Lorenzo, Víctor

    2013-01-20

    Engineering of robust and safe microbial cell factories requires genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We took advantage of the properties of broad-host-range mini-Tn5 vectors and two regulated expression systems (LacI(Q)/P(trc) and XylS/Pm), together with FRT-flanked, excisable antibiotic resistance determinants, to generate a set of vectors for the delivery of gene(s) into the chromosome of Gram-negative bacteria. This arrangement of modular elements allows the cloning and subsequent markerless insertion of expression cargoes and leaves behind an antibiotic-sensitive host upon the action of the yeast Flp recombinase. We engineered a Pseudomonas putida KT2440 Pm::gfp strain that displayed strong fluorescence upon exposure to 3-methylbenzoate, a XylS effector, and allowed us to examine the performance of the Pm promoter at the single cell level. We also reconstructed a device for sugar transport and phosphorylation in Escherichia coli independent of the native phosphoenolpyruvate-dependent phosphotransferase system by the stable implantation of genes derived from the obligate anaerobe Zymomonas mobilis. In both cases, the information carried by the implanted genes was stably inherited in the absence of any selective pressure. Deliverable expression systems such as those described here will enhance the applicability of various Gram-negative bacteria in biocatalysis and environmental bioremediation.

  6. Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway

    PubMed Central

    Sutterlin, Holly A.; Shi, Handuo; May, Kerrie L.; Miguel, Amanda; Khare, Somya; Huang, Kerwyn Casey; Silhavy, Thomas J.

    2016-01-01

    Gram-negative bacteria balance synthesis of the outer membrane (OM), cell wall, and cytoplasmic contents during growth via unknown mechanisms. Here, we show that a dominant mutation (designated mlaA*, maintenance of lipid asymmetry) that alters MlaA, a lipoprotein that removes phospholipids from the outer leaflet of the OM of Escherichia coli, increases OM permeability, lipopolysaccharide levels, drug sensitivity, and cell death in stationary phase. Surprisingly, single-cell imaging revealed that death occurs after protracted loss of OM material through vesiculation and blebbing at cell-division sites and compensatory shrinkage of the inner membrane, eventually resulting in rupture and slow leakage of cytoplasmic contents. The death of mlaA* cells was linked to fatty acid depletion and was not affected by membrane depolarization, suggesting that lipids flow from the inner membrane to the OM in an energy-independent manner. Suppressor analysis suggested that the dominant mlaA* mutation activates phospholipase A, resulting in increased levels of lipopolysaccharide and OM vesiculation that ultimately undermine the integrity of the cell envelope by depleting the inner membrane of phospholipids. This novel cell-death pathway suggests that balanced synthesis across both membranes is key to the mechanical integrity of the Gram-negative cell envelope. PMID:26929379

  7. Association between infections caused by multidrug-resistant gram-negative bacteria and mortality in critically ill patients

    PubMed Central

    Paramythiotou, Elisabeth; Routsi, Christina

    2016-01-01

    The incidence of gram-negative multidrug-resistant (MDR) bacterial pathogens is increasing in hospitals and particularly in the intensive care unit (ICU) setting. The clinical consequences of infections caused by MDR pathogens remain controversial. The purpose of this review is to summarize the available data concerning the impact of these infections on mortality in ICU patients. Twenty-four studies, conducted exclusively in ICU patients, were identified through PubMed search over the years 2000-2015. Bloodstream infection was the only infection examined in eight studies, respiratory infections in four and variable infections in others. Comparative data on the appropriateness of empirical antibiotic treatment were provided by only seven studies. In ten studies the presence of antimicrobial resistance was not associated with increased mortality; on the contrary, in other studies a significant impact of antibiotic resistance on mortality was found, though, sometimes, mediated by inappropriate antimicrobial treatment. Therefore, a direct association between infections due to gram-negative MDR bacteria and mortality in ICU patients cannot be confirmed. Sample size, presence of multiple confounders and other methodological issues may influence the results. These data support the need for further studies to elucidate the real impact of infections caused by resistant bacteria in ICU patients. PMID:27152254

  8. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings.

    PubMed

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J

    2016-03-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests - ELISA and BIAcore - the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria.

  9. Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens.

    PubMed

    Li, Jie; Lin, Shixian; Wang, Jie; Jia, Shang; Yang, Maiyun; Hao, Ziyang; Zhang, Xiaoyu; Chen, Peng R

    2013-05-15

    Palladium, a key transition metal in advancing modern organic synthesis, mediates diverse chemical conversions including many carbon-carbon bond formation reactions between organic compounds. However, expanding palladium chemistry for conjugation of biomolecules such as proteins, particularly within their native cellular context, is still in its infancy. Here we report the site-specific protein labeling inside pathogenic Gram-negative bacterial cells via a ligand-free palladium-mediated cross-coupling reaction. Two rationally designed pyrrolysine analogues bearing an aliphatic alkyne or an iodophenyl handle were first encoded in different enteric bacteria, which offered two facial handles for palladium-mediated Sonogashira coupling reaction on proteins within these pathogens. A GFP-based bioorthogonal reaction screening system was then developed, allowing evaluation of both the efficiency and the biocompatibilty of various palladium reagents in promoting protein-small molecule conjugation. The identified simple compound-Pd(NO3)2 exhibited high efficiency and biocompatibility for site-specific labeling of proteins in vitro and inside living E. coli cells. This Pd-mediated protein coupling method was further utilized to label and visualize a Type-III Secretion (T3S) toxin-OspF in Shigella cells. Our strategy may be generally applicable for imaging and tracking various virulence proteins within Gram-negative bacterial pathogens.

  10. High-level and novel mechanisms of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria.

    PubMed

    Ogbolu, D O; Webber, M A

    2014-05-01

    To determine the occurrence and molecular basis of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria, 182 non-duplicate Gram-negative bacterial isolates were investigated for antimicrobial susceptibility, presence of carbapenemases (tested phenotypically and genotypically), random amplified polymorphic DNA (RAPD) typing, plasmid sizing and replicon typing. Minimum inhibitory concentrations of carbapenems showed a high degree of resistance, with 67 isolates (36.8%) being resistant to all carbapenems, of which 40 (59.7%) produced enzymes able to hydrolyse imipenem. PCR and sequencing identified only 10 isolates (5.5%) carrying known carbapenemase genes, including bla(NDM), bla(VIM) and bla(GES). The majority of phenotypically carbapenem-resistant and carbapenemase-producing isolates did not carry a known carbapenemase gene. Transconjugant or transformant plasmid sizes were estimated to be 115 kb for bla(NDM)- and 93 kb for bla(VIM)-carrying plasmids. These plasmids were untypeable for replicon/incompatibility and transferred various other genes including plasmid-mediated quinolone resistance (PMQR) genes and bla(CTX-M-15). Typing showed that the isolates in this study were not clonally related. There is a high level of carbapenem resistance in Nigeria. As well as the globally relevant carbapenemases (bla(NDM), bla(VIM) and bla(GES)), there are other unknown gene(s) or variant(s) in circulation able to hydrolyse carbapenems and confer high-level resistance.

  11. Sensitive EDTA-Based Microbiological Assays for Detection of Metallo-β-Lactamases in Nonfermentative Gram-Negative Bacteria

    PubMed Central

    Marchiaro, Patricia; Mussi, María A.; Ballerini, Viviana; Pasteran, Fernando; Viale, Alejandro M.; Vila, Alejandro J.; Limansky, Adriana S.

    2005-01-01

    The worldwide spread of metallo-β-lactamase (MBL)-producing gram-negative bacilli represents a great concern nowadays. Sensitive assays for their specific detection are increasingly demanded to aid infection control and to prevent their dissemination. We have developed a novel microbiological assay employing crude bacterial extracts, designated EDTA-imipenem microbiological assay (EIM), to identify MBLs in nonfermentative gram-negative clinical strains. We also evaluated the ability of EIM to detect MBLs in comparison to those of other currently employed screening methods, such as the EDTA disk synergy test (EDS) with imipenem as a substrate and the Etest method. The sensitivities of EIM and Etest were similar (1 versus 0.92, respectively) and much higher than that of EDS (0.67). Moreover, both EIM and Etest displayed the maximum specificity. Modifications were introduced to EDS, including the simultaneous testing of three different β-lactams (imipenem, meropenem, and ceftazidime) and two different EDTA concentrations. This resulted in a sensitivity improvement (0.92), albeit at a cost to its specificity. A simple strategy to accurately detect MBL producers is proposed; this strategy combines (i) an initial screening of the isolates by the extended EDS assay to select the potential candidates and (ii) confirmation of the true presence of MBL activity by EIM. PMID:16272499

  12. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings.

    PubMed

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J

    2016-03-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests - ELISA and BIAcore - the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria. PMID:27231592

  13. Evaluation of the Etest method for detecting colistin susceptibility of multidrug-resistant Gram-negative isolates in Vietnam.

    PubMed

    Nhung, Pham Hong; Miyoshi-Akiyama, Tohru; Phuong, Doan Mai; Shimada, Kayo; Anh, Nguyen Quoc; Binh, Nguyen Gia; Thanh, Do Van; Ohmagari, Norio; Kirikae, Teruo

    2015-08-01

    The minimum inhibitory concentrations (MICs) of colistin for 241 multidrug-resistant (MDR) Gram-negative pathogens were determined by the Etest and by the broth microdilution method (BMD). The two methods showed essential agreements of 76% (77/102) for Acinetobacter baumannii, 90% (36/40) for Pseudomonas aeruginosa and 84% (83/99) for Enterobacteriaceae isolates, with categorical agreements of 100%, 98%, and 100%, respectively. Of the 241 isolates, none showed a very major error and one (0.4%) showed a major error. MICs ranged from 0.125 to 0.5 μg/ml for all A. baumannii and most Enterobacteriaceae isolates, and from 1 to 2 μg/ml for most P. aeruginosa isolates. Of the 40 P. aeruginosa isolates, 27 (68%) showed higher colistin MICs by the Etest than by the BMD. In contrast, 77% (78/102) of the A. baumannii and 57% (56/99) of the Enterobacteriaceae isolates showed lower colistin MICs by the Etest than by the BMD. The Etest is a reliable and easy-to-use method to measure colistin MICs of MDR Gram-negative pathogens in clinical laboratories and can be used following validation by microdilution methods.

  14. Antibiotic Resistance and Regulation of the Gram-Negative Bacterial Outer Membrane Barrier by Host Innate Immune Molecules

    PubMed Central

    2016-01-01

    ABSTRACT The Gram-negative outer membrane is an important barrier that provides protection against toxic compounds, which include antibiotics and host innate immune molecules such as cationic antimicrobial peptides. Recently, significant research progress has been made in understanding the biogenesis, regulation, and functioning of the outer membrane, including a recent paper from the laboratory of Dr. Brett Finlay at the University of British Columbia (J. van der Heijden et al., mBio 7:e01238-16, 2016, http://dx.doi.org/10.1128/mBio.01541-16). These investigators demonstrate that toxic oxygen radicals, such as those found in host tissues, regulate outer membrane permeability by altering the outer membrane porin protein channels to regulate the influx of oxygen radicals as well as β-lactam antibiotics. This commentary provides context about this interesting paper and discusses the prospects of utilizing increased knowledge of outer membrane biology to develop new antibiotics for antibiotic-resistant Gram-negative bacteria. PMID:27677793

  15. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings

    PubMed Central

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J.

    2016-01-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests – ELISA and BIAcore – the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria. PMID:27231592

  16. Antibiotic resistance versus antimicrobial substances production by gram-negative foodborne pathogens isolated from minas frescal cheese: heads or tails?

    PubMed

    Damaceno, Hugo Figueiredo Botelho; de Freitas J, Claudinei Vieira; Marinho, Iuri Lourenço; Cupertino, Thomaz Rocha; Costa, Leonardo Emanuel de Oliveira; Nascimento, Janaína dos Santos

    2015-04-01

    In this study, 15 Gram-negative isolates from Minas Frescal cheese sold in commercial establishments in Rio de Janeiro, Brazil, were able to produce antimicrobial substances (AMSs). Seven, four, two, one, and one isolates identified as Yersinia, Acinetobacter, Enterobacter, Escherichia, and Hafnia genera, respectively, were considered potentially pathogenic. All 15 AMS(+) isolates were resistant to at least 1 antibiotic; however, 7 strains presented resistance to at least 3 antibiotics from different classes, exhibiting multiresistance profiles. The strains were also subjected to plasmid profile analysis. All isolates presented different plasmid forms with most ranging in size from 1 to 10 kb. Activity against various pathogens associated with food was tested and all 15 AMS(+) showed the same activity spectrum, inhibiting all Escherichia coli and Salmonella strains that were tested. Although restricted, the action spectrum of AMS-producing strains is extremely relevant to the food industry because Gram-negative bacteria such as E. coli and Salmonella spp. are most often associated with foodborne illnesses. The findings of this study reveal that even AMS produced by pathogens can have potential applications against other foodborne pathogens. PMID:25622265

  17. Oral Gram-negative anaerobic bacilli as a reservoir of β-lactam resistance genes facilitating infections with multiresistant bacteria.

    PubMed

    Dupin, Clarisse; Tamanai-Shacoori, Zohreh; Ehrmann, Elodie; Dupont, Anais; Barloy-Hubler, Frédérique; Bousarghin, Latifa; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2015-02-01

    Many β-lactamases have been described in various Gram-negative bacilli (Capnocytophaga, Prevotella, Fusobacterium, etc.) of the oral cavity, belonging to class A of the Ambler classification (CepA, CblA, CfxA, CSP-1 and TEM), class B (CfiA) or class D in Fusobacterium nucleatum (FUS-1). The minimum inhibitory concentrations of β-lactams are variable and this variation is often related to the presence of plasmids or other mobile genetic elements (MGEs) that modulate the expression of resistance genes. DNA persistence and bacterial promiscuity in oral biofilms also contribute to genetic transformation and conjugation in this particular microcosm. Overexpression of efflux pumps is facilitated because the encoding genes are located on MGEs, in some multidrug-resistant clinical isolates, similar to conjugative transposons harbouring genes encoding β-lactamases. All these facts lead us to consider the oral cavity as an important reservoir of β-lactam resistance genes and a privileged place for genetic exchange, especially in commensal strictly anaerobic Gram-negative bacilli.

  18. Assembly and Channel Opening of Outer Membrane Protein in Tripartite Drug Efflux Pumps of Gram-negative Bacteria*

    PubMed Central

    Xu, Yongbin; Moeller, Arne; Jun, So-Young; Le, Minho; Yoon, Bo-Young; Kim, Jin-Sik; Lee, Kangseok; Ha, Nam-Chul

    2012-01-01

    Gram-negative bacteria are capable of expelling diverse xenobiotic substances from within the cell by use of three-component efflux pumps in which the energy-activated inner membrane transporter is connected to the outer membrane channel protein via the membrane fusion protein. In this work, we describe the crystal structure of the membrane fusion protein MexA from the Pseudomonas aeruginosa MexAB-OprM pump in the hexameric ring arrangement. Electron microscopy study on the chimeric complex of MexA and the outer membrane protein OprM reveals that MexA makes a tip-to-tip interaction with OprM, which suggests a docking model for MexA and OprM. This docking model agrees well with genetic results and depicts detailed interactions. Opening of the OprM channel is accompanied by the simultaneous exposure of a protein structure resembling a six-bladed cogwheel, which intermeshes with the complementary cogwheel structure in the MexA hexamer. Taken together, we suggest an assembly and channel opening model for the MexAB-OprM pump. This study provides a better understanding of multidrug resistance in Gram-negative bacteria. PMID:22308040

  19. Ventriculo-peritoneal shunt independence following successful treatment of Gram negative (E. coli) ventriculitis: Case report and review of the literature.

    PubMed

    Hussain, Rahim A; Sainuddin, Sajid; Bhatti, I; Leach, P

    2016-08-01

    We report a case of tumour-related hydrocephalus in a child treated with a ventriculo-peritoneal shunt which subsequently became infected with gram negative bacteria (Escherichia coli). After successful treatment of the infection the patient became shunt independent and has remained so for over 2 years. Gram negative ventriculitis is associated with diminished cerebro-spinal fluid production and we discuss the literature to date regarding this phenomenon. PMID:26449688

  20. Evaluation of CHROMagar Orientation for differentiation and presumptive identification of gram-negative bacilli and Enterococcus species.

    PubMed Central

    Merlino, J; Siarakas, S; Robertson, G J; Funnell, G R; Gottlieb, T; Bradbury, R

    1996-01-01

    A new chromogenic plate medium, CHROMagar Orientation, was evaluated for use in the differentiation and presumptive identification of gram-negative bacilli and Enterococcus species by a multipoint inoculation (replicator) technique. In this study, 1,404 gram-negative bacilli and 74 enterococcal isolates were tested on CHROMagar Orientation. Six control American Type Culture Collection strains were also included with the testing to ensure quality control of the media. Of the Escherichia coli isolates (n = 588) tested, 99.3% produced a pink-to-red color. Only in four isolates that were O-nitrophenyl-beta-D-galactopyranoside (ONPG) negative did this result differ. Proteus mirabilis and P. vulgaris were well differentiated on this medium. P. mirabilis (n = 184) produced a clear colony with diffusible brown pigment around the periphery. By contrast, 15 of 16 P. vulgaris isolates produced bluish-green colonies with a slight brown background. All Aeromonas hydrophila isolates (n = 26) tested produced clear to pink colonies at 35 to 37 degrees C. This colony color changed to blue after 2 to 3 h of incubation at room temperature. A. hydrophila exhibited stronger color and better growth at 30 degrees C. Serratia marcescens (n = 29) demonstrated an aqua blue color that deepened to a darker blue when exposed to room temperature. All enterococcal isolates (n = 74) resulted in a blue color and gave pinpoint colonies on purity subcultures at 35 to 37 degrees C after 18 h of incubation. Similarity in color resulted in failure to discriminate accurately between Klebsiella, Enterobacter, and Citrobacter species. However, these species could be readily differentiated from other members of the family Enterobacteriaceae. Pseudomonas aeruginosa (n = 151) was easily differentiated from members of the Enterobacteriaceae but was less easily distinguishable from other gram-negative nonmembers of the Enterobacteriaceae. The medium was found to facilitate easy visual detection of mixed

  1. Evaluation of CHROMagar Orientation for differentiation and presumptive identification of gram-negative bacilli and Enterococcus species.

    PubMed

    Merlino, J; Siarakas, S; Robertson, G J; Funnell, G R; Gottlieb, T; Bradbury, R

    1996-07-01

    A new chromogenic plate medium, CHROMagar Orientation, was evaluated for use in the differentiation and presumptive identification of gram-negative bacilli and Enterococcus species by a multipoint inoculation (replicator) technique. In this study, 1,404 gram-negative bacilli and 74 enterococcal isolates were tested on CHROMagar Orientation. Six control American Type Culture Collection strains were also included with the testing to ensure quality control of the media. Of the Escherichia coli isolates (n = 588) tested, 99.3% produced a pink-to-red color. Only in four isolates that were O-nitrophenyl-beta-D-galactopyranoside (ONPG) negative did this result differ. Proteus mirabilis and P. vulgaris were well differentiated on this medium. P. mirabilis (n = 184) produced a clear colony with diffusible brown pigment around the periphery. By contrast, 15 of 16 P. vulgaris isolates produced bluish-green colonies with a slight brown background. All Aeromonas hydrophila isolates (n = 26) tested produced clear to pink colonies at 35 to 37 degrees C. This colony color changed to blue after 2 to 3 h of incubation at room temperature. A. hydrophila exhibited stronger color and better growth at 30 degrees C. Serratia marcescens (n = 29) demonstrated an aqua blue color that deepened to a darker blue when exposed to room temperature. All enterococcal isolates (n = 74) resulted in a blue color and gave pinpoint colonies on purity subcultures at 35 to 37 degrees C after 18 h of incubation. Similarity in color resulted in failure to discriminate accurately between Klebsiella, Enterobacter, and Citrobacter species. However, these species could be readily differentiated from other members of the family Enterobacteriaceae. Pseudomonas aeruginosa (n = 151) was easily differentiated from members of the Enterobacteriaceae but was less easily distinguishable from other gram-negative nonmembers of the Enterobacteriaceae. The medium was found to facilitate easy visual detection of mixed

  2. Autoinducer-2 activity of gram-negative foodborne pathogenic bacteria and its influence on biofilm formation.

    PubMed

    Yoon, Y; Sofos, J N

    2008-04-01

    This study evaluated whether autoinducer-2 (AI-2) activity would be associated with biofilm formation by Salmonella and Escherichia coli O157:H7 strains on food contact surfaces. In study I, a Salmonella Typhimurium DT104 strain and an E. coli O157:H7 strain, both AI-2 positive, were individually inoculated into 50 mL of Luria-Bertani (LB) or LB + 0.5% glucose (LBG) broth, without or with stainless steel or polypropylene (Salmonella) coupons. At 0, 14 (Salmonella), 24, 48, and 72 h of storage (25 degrees C), cells in suspension and detached cells from the coupons, obtained by vortexing, were enumerated on tryptic soy agar. In study II, a Salmonella Thompson AI-2-positive strain and an AI-2-negative strain, and an E. coli O157:H7 AI-2-positive strain and an AI-2-negative strain were inoculated into LB broth with stainless steel coupons. Cells were enumerated as in study I. In both studies, AI-2 activity was determined in cell-free supernatants. Cell numbers of S. Typhimurium DT104 on biofilms were higher (P < 0.05) in LB than those in LBG, while the E. coli O157:H7 strain showed no difference (P>or= 0.05) in biofilm cell counts between LB and LBG after storage for 72 h. Both S. Typhimurium DT104 and E. coli O157:H7 strains produced higher (P < 0.05) AI-2 activity in LBG than LB cell suspensions. Cell counts of AI-2-positive and-negative S. Thompson and E. coli O157:H7 strains were not different (P>or= 0.05) within suspensions or coupons (study II). The results indicated that, under the conditions of this study, AI-2 activity of the pathogen strains tested may not have a major influence on biofilm formation on food contact surfaces, which was similar between AI-2-positive and -negative strains.

  3. Hemodynamic and hormonal responses to lower body negative pressure in men with varying profiles of strength and aerobic power

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Mathes, K. L.; Lasley, M. L.; Tomaselli, C. M.; Frey, M. A.; Hoffler, G. W.

    1993-01-01

    Hemodynamic, cardiac, and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic challenge is associated with interactions between strength and aerobic power. Subjects underwent treadmill tests to determine peak oxygen uptake (VO2max) and isokinetic dynamometer tests to determine knee extensor strength. Based on predetermined criteria, subjects were classified into one of four fitness profiles of six subjects each, matched for age, height, and body mass: (a) low strength/average aerobic fitness, (b) low strength/high aerobic fitness, (c) high strength/average aerobic fitness, and (d) high strength/high aerobic fitness. Following 90 min of 0.11 rad (6 degrees) head-down tilt (HDT), each subject underwent graded LBNP to -6.7 kPa or presyncope, with maximal duration 15 min, while hemodynamic, cardiac, and hormonal responses were measured. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences between high and low strength characteristics. Subjects with high aerobic power exhibited greater (P < 0.05) stroke volume and lower (P < 0.05) heart rate, vascular peripheral resistance, and mean arterial pressure during rest, HDT, and LBNP. Seven subjects, distributed among the four fitness profiles, became presyncopal. These subjects showed greatest reduction in mean arterial pressure during LBNP, had greater elevations in vasopressin, and lesser increases in heart rate and peripheral resistance. Neither VO2max nor leg strength were associated with fall in arterial pressure or with syncopal episodes. We conclude that interactions between aerobic and strength fitness characteristics do not influence responses to LBNP challenge.

  4. Gram-negative Biomass in Clay Minerals Analogs: Testing Habitability Potential for the 2011 Mars Science Laboratory Mission

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; McKay, C. P.

    2009-12-01

    Landing sites of next missions to Mars i.e., the US 2011 Mars Science Laboratory (MSL11) and the ESA2016 Pasteur ExoMars, will include phyllosilicate outcrops as targets for investigating the geological and biological history of that planet. In this context, we present a study assessing the living biomass and habitability potential in mineralogical Mars analogs such as phyllosilicates and hematite-rich deposits encompassing a broad arid-hyper-arid climate range (annual rainfall <0.2 to ~700mm/y). Samples from the Atacama Desert (Chile), the Death Valley (CA), and the California Coast (USA) were analyzed for microbial lipopolysaccharide (LPS) as proxy for Gram-negatives biomass with the Limulus-Amebocite-Lysate (LAL) assay. Mineral phases were identified using X-Ray-Diffraction (XRD). These samples resulted to contain phyllosilicate phases similar to those identified, or inferred [1], on the surface of Mars by the OMEGA-Mars/Express [e.g., 2], the Mars Reconnaissance Orbiter (MRO) instruments (HiRISE and CRISM) [3]. Basic observations were: 1) there is no systematic pattern in biomass content of clays vs. non-clays (oxidized) materials from the study sites; 2) Atacama desiccation polygons (muscovite and kaolinite) and contiguous hematite-rich hyper-arid deposits contain the lowest biomass, i.e., ~104to-105 cells/g, respectively; 3) the hyper-arid clays contain three-order magnitude lower Gram-negative biomass than those (montmorillonite, illite, and chlorite) from the arid Death Valley site (~107cells/g); and 4) finally, the Gram-negative (~107cells/g) of clay minerals-rich materials from the arid site is about the same than that (~1.5 to ~3.0 x 107cells/g) of water-saturated massive deposits (kaolinite, illite, and vermiculite) from the wetter California coast. Results from this investigation will help testing for the habitability potential of phyllosilicate deposits sampled by the MSL11 Mission. REFERENCES:[1] Bibring et al., 2006, Science 312:400-404; [2] Wang et

  5. Antimicrobial activity of ceftazidime-avibactam against Gram-negative organisms collected from U.S. medical centers in 2012.

    PubMed

    Sader, Helio S; Castanheira, Mariana; Flamm, Robert K; Farrell, David J; Jones, Ronald N

    2014-01-01

    The activities of the novel β-lactam-β-lactamase inhibitor combination ceftazidime-avibactam and comparator agents were evaluated against a contemporary collection of clinically significant Gram-negative bacilli. Avibactam is a novel non-β-lactam β-lactamase inhibitor that inhibits Ambler class A, C, and some D enzymes. A total of 10,928 Gram-negative bacilli-8,640 Enterobacteriaceae, 1,967 Pseudomonas aeruginosa, and 321 Acinetobacter sp. isolates-were collected from 73 U.S. hospitals and tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories, North Liberty, IA, USA). Ceftazidime was combined with avibactam at a fixed concentration of 4 μg/ml. Overall, 99.8% of Enterobacteriaceae strains were inhibited at a ceftazidime-avibactam MIC of ≤4 μg/ml. Ceftazidime-avibactam was active against extended-spectrum β-lactamase (ESBL)-phenotype Escherichia coli and Klebsiella pneumoniae, meropenem-nonsusceptible (MIC≥2 μg/ml) K. pneumoniae, and ceftazidime-nonsusceptible Enterobacter cloacae. Among ESBL-phenotype K. pneumoniae strains, 61.1% were meropenem susceptible and 99.3% were inhibited at a ceftazidime-avibactam MIC of ≤4 μg/ml. Among P. aeruginosa strains, 96.9% were inhibited at a ceftazidime-avibactam MIC of ≤8 μg/ml, and susceptibility rates for meropenem, ceftazidime, and piperacillin-tazobactam were 82.0, 83.2, and 78.3%, respectively. Ceftazidime-avibactam was the most active compound tested against meropenem-nonsusceptible P. aeruginosa (MIC50/MIC90, 4/16 μg/ml; 87.3% inhibited at ≤8 μg/ml). Acinetobacter spp. (ceftazidime-avibactam MIC50/MIC90, 16/>32 μg/ml) showed high rates of resistance to most tested agents. In summary, ceftazidime-avibactam demonstrated potent activity against a large collection of contemporary Gram-negative bacilli isolated from patients in U.S. hospitals in 2012, including organisms that are resistant to most currently available agents, such as K

  6. A New Class of Quorum Quenching Molecules from Staphylococcus Species Affects Communication and Growth of Gram-Negative Bacteria

    PubMed Central

    Chu, Ya-Yun; Nega, Mulugeta; Wölfle, Martina; Plener, Laure; Grond, Stephanie; Jung, Kirsten; Götz, Friedrich

    2013-01-01

    The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the ‘Staphylococcus intermedius group’ of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-yl)ethyl]-urea and N-(2-phenethyl)-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL) responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community. PMID:24098134

  7. Scrutinizing the Scaffolds of Marine Biosynthetics from Different Source Organisms: Gram-Negative Cultured Bacterial Products Enter Center Stage

    PubMed Central

    Still, Patrick C.; Johnson, Tyler A.; Theodore, Christine M.; Loveridge, Steven T.; Crews, Phillip

    2014-01-01

    Compounds from macro marine organisms are presumed to owe their biosynthetic origins to associated microbial symbionts, although few definitive examples exist. An upsurge in the recent literature from 2012 to 2013 has shown that four compounds previously reported from macro marine organisms are in fact biosynthesized by non-photosynthetic Gram-negative bacteria (NPGNB). Structural parallels between compounds isolated from macro marine organisms and NPGNB producers form the basis of this review. Although less attention has been given to investigating the chemistry of NPGNB sources, there exists a significant list of structural parallels between NPGNB and macro marine organism-derived compounds. Alternatively, of the thousands of compounds isolated from Gram-positive actinomycetes, few structural parallels with macro marine organisms are known. A summary of small molecules isolated from marine NPGNB sources is presented, including compounds isolated from marine myxobacteria. From this assemblage of structural parallels and diverse chemical structures, it is hypothesized that the potential for the discovery of inspirational molecules from NPGNB sources is vast and that the recent spike in the literature of macro marine compounds owing their biosynthetic origin to NPGNB producers represents a turning point in the field. PMID:24571234

  8. Gram stain

    MedlinePlus

    ... Gram stain; Feces - Gram stain; Stool - Gram stain; Joint fluid - Gram stain; Pericardial fluid - Gram stain; Gram ... body to test. This could be from a joint, from the sac around your heart, or from ...

  9. Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity

    PubMed Central

    Otręebska-Machaj, Ewa; Chevalier, Jacqueline; Handzlik, Jadwiga; Szymańska, Ewa; Schabikowski, Jakub; Boyer, Gérard; Bolla, Jean-Michel; Kieć-Kononowicz, Katarzyna; Pagès, Jean-Marie; Alibert, Sandrine

    2016-01-01

    Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria. PMID:27199950

  10. Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity.

    PubMed

    Otręebska-Machaj, Ewa; Chevalier, Jacqueline; Handzlik, Jadwiga; Szymańska, Ewa; Schabikowski, Jakub; Boyer, Gérard; Bolla, Jean-Michel; Kieć-Kononowicz, Katarzyna; Pagès, Jean-Marie; Alibert, Sandrine

    2016-01-01

    Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria. PMID:27199950

  11. Comparison of endotoxin levels and gram-negative bacteria under different conditions in microbial laboratories and a biowaste site.

    PubMed

    Hwang, Sung Ho; Park, Dong Uk; Joo, Se Ik; Park, Hyun Hee; Yoon, Chung Sik

    2011-09-01

    In this study, we assessed airborne endotoxin levels in university laboratories, hospital diagnostic laboratories, and a biowaste site. We also investigated indoor and outdoor sampling, sampling site, type of ventilation system, presence of open biowaste boxes, weather, and detection of Gram-negative bacteria (GNB). A total of 69 air samples were collected from 11 facilities in three institutions. Average total airborne endotoxin levels ranged from <0.01 to 10.02 EU m(-3), with an overall mean of 1.03 EU m(-3). Endotoxin levels were high in window-ventilated facilities, in facilities in which GNB were detected; levels were also high when it was rainy (all ps<0.05). Endotoxin levels were significantly correlated with humidity (r=0.70, p<0.01). The presence of HVAC; humidity; and the presence of open biowaste boxes affect endotoxin levels in laboratories. PMID:21726888

  12. Tackling antibiotic resistance in febrile neutropenia: current challenges with and recommendations for managing infections with resistant Gram-negative organisms.

    PubMed

    Nouér, Simone A; Nucci, Marcio; Anaissie, Elias

    2015-10-01

    Multidrug resistant (MDR) Gram-negative bacteria (GNB) have emerged as important pathogens and a serious challenge in the management of neutropenic patients worldwide. The great majority of infections are caused by the Enterobacteriaceae (especially Escherichia coli and Klebsiella spp.) and Pseudomonas aeruginosa, and less frequently Acinetobacter spp. and Stenotrophomonas maltophilia. A broader-spectrum empiric antibiotic regimen is usually recommended in patients with a history of prior bloodstream infection caused by a MDR GNB, in those colonized by a MDR GNB, and if MDR GNBs are frequently isolated in the initial blood cultures. In any situation, de-escalation to standard empiric regimen is advised if infection with MDR GNB is not documented.

  13. Candidatus Renichlamydia lutjani, a Gram-negative bacterium in internal organs of blue-striped snapper Lutjanus kasmira from Hawaii.

    PubMed

    Corsaro, Daniele; Work, Thierry M

    2012-04-26

    The blue-striped snapper Lutjanus kasmira (Perciformes, Lutjanidae) are cosmopolitan in the Indo-Pacific but were introduced into Oahu, Hawaii, USA, in the 1950s and have since colonized most of the archipelago. Studies of microparasites in blue-striped snappers from Hawaii revealed chlamydia-like organisms (CLO) infecting the spleen and kidney, characterized by intracellular basophilic granular inclusions containing Gram-negative and Gimenez-positive bacteria similar in appearance to epitheliocysts when seen under light microscopy. We provide molecular evidence that CLO are a new member of Chlamydiae, i.e. Candidatus Renichlamydia lutjani, that represents the first reported case of chlamydial infection in organs other than the gill in fishes.

  14. Co-existence of Legionella and other Gram-negative bacteria in potable water from various rural and urban sources.

    PubMed

    Stojek, Nimfa Maria; Dutkiewicz, Jacek

    2011-01-01

    A total of 320 potable water samples were collected from various rural and urban sources located in the Lublin region of eastern Poland. They comprised: 55 samples of treated (chlorinated) tap water from rural dwellings distributed by the municipal water supply system (MWSS), 111 samples of treated tap water from urban dwellings distributed by the MWSS, 45 samples of untreated well water from household wells and 109 samples from private water supply systems (PWSS) distributing untreated well water. Water samples were examined for the presence and species composition of Legionella, Yersinia, Gram-negative bacteria belonging to family Enterobacteriaceae (GNB-E) and Gram-negative bacteria not belonging to the family Enterobacteriaceae (GNB-NE), by filtering through cellulose filters and culture on respectively GVPC, CIN, EMB and tryptic soya agar media. The occurrence of Legionella in the samples taken from the outlets of the urban MWSS was high (77.5%), and significantly greater compared to frequencies noted in rural MWSS (7.3%), and samples of well water from household wells (28.9%) and PWSS (13.8%) (p<0.001). Strains L. pneumophila serogroups 2-14, L. pneumophila serogroup 1 and Legionella spp. (species other than L. pneumophila) formed respectively 64.3%, 17.5%, and 18.2% of total isolates from urban MWSS, 100%, 0, and 0 of those from rural MWSS, 69.2%, 7.7%, and 23.1% of those from household wells, and 66.7%, 0, and 33.3% of those from PWSS. The concentration of Legionella strains in the positive samples from urban MWSS exceeded the threshold limit value of 100 cfu/100 ml in 86.1%, while in the other sources this value was not exceeded. No Yersinia strains were isolated from the examined water samples. Altogether 8 species or genera of Gram-negative bacteria belonging to Enterobacteriaceae family (GNB-E) and 10 species or genera of Gram-negative bacteria not belonging to the Enterobacteriaceae family (GNB-NE) were found in the examined samples. In the MWSS

  15. Administration to mouse of endotoxin from gram-negative bacteria leads to activation and apoptosis of T lymphocytes.

    PubMed

    Castro, A; Bemer, V; Nóbrega, A; Coutinho, A; Truffa-Bachi, P

    1998-02-01

    Lipopolysaccharide (LPS) from gramnegative bacteria is a well-known T cell-independent B lymphocyte mitogen and macrophage/monocyte activator. While the conventional view holds that LPS is ignored by T cells, we report here that administration of LPS to mice activates all B cells, but also engages most CD4 and CD8 T cells, as measured by the expression of the activation markers CD69 and CD25 and by size increase. T cells recruited in endotoxin-treated mice showed, following in vitro stimulation by concanavalin A, altered patterns of cytokine production. In vivo, massive T cell apoptosis was evidenced in the days following LPS exposure. The present observation may contribute novel insights into the mechanisms of endotoxin shock and of the immunological consequences of gram-negative infections. PMID:9521057

  16. Quantitative proteomic analysis of the cell envelopes and native membrane vesicles derived from gram-negative bacteria.

    PubMed

    Zielke, Ryszard A; Gafken, Philip R; Sikora, Aleksandra E

    2014-08-01

    Proteins localized to the cell envelope and naturally released membrane vesicles (MVs) play diverse functions in physiology and pathogenesis of Gram-negative bacteria. Study of these proteome fractions is essential for better understanding the basic physiological processes, development of vaccines, and identification of potential drug targets. This unit presents gel-free quantitative proteomic methods for comprehensive proteomic profiling of the cell envelopes and MVs. The procedure starts with the precipitation of the isolated proteome fractions to remove any potential compounds that may interfere with downstream experimental steps. Subsequently, the proteins are reduced, alkylated, and subjected to trypsin digestion. The trypsinized peptides are labeled using isobaric tagging for relative and absolute quantification (iTRAQ), and analyzed samples are pooled and subjected to rigorous prefractionations by strong cation exchange (SCX) and reversed-phase (RP) liquid chromatography (LC). Finally, the tandem mass spectrometry (MS/MS) fragmentation enables peptides identification and quantification.

  17. Lipopolysaccharide phosphorylating enzymes encoded in the genomes of Gram-negative bacteria are related to the eukaryotic protein kinases

    PubMed Central

    Krupa, A.; Srinivasan, N.

    2002-01-01

    By means of profile-matching procedures, conservation of functionally important residues, and fold-recognition techniques, we show that two distinct families of lipopolysaccharide kinases encoded in the genomes of Gram-negative bacteria are related to each other and to two distinct classes of proteins, namely eukaryotic protein kinases and right open reading frame (RIO1). Members of one of the lipopolysaccharide kinase families are identified only in pathogenic bacteria. Phosphorylation by these enzymes is relevant in the construction of outer membrane, immune response, and pathogenic virulence. The class of proteins called RIO1, also related to eukaryotic protein kinases and previously known to occur only in archaea and eukaryotes, are now identified in eubacteria as well. It has been suggested here that RIO1 proteins are intermediately related to lipopolysaccharide kinases and eukaryotic protein kinases implying an evolutionary relationship between the three classes of proteins. PMID:12021457

  18. Presence and antimicrobial profile of gram-negative facultative anaerobe rods in patients with chronic periodontitis and gingivitis.

    PubMed

    Gamboa, Fredy; García, Dabeiba-Adriana; Acosta, Adriana; Mizrahi, Deborah; Paz, Andreína; Martínez, Diana; Arévalo, Azucena; Aristizabal, Fabio; Abba, Martín

    2013-01-01

    Chronic periodontitis is a multifactorial infectious disease associated with Gram-negative anaerobes which are part of the subgingival microflora. In recent years, studies have been conducted to assess the presence of Gram-negative facultative anaerobes (Enterobacteriaceae) and their participation in the development and progression of chronic periodontitis. The aim of this study was to determine the presence of Enterobacteriaceae in patients with chronic periodontitis and gingivitis and to assess antimicrobial susceptibility of clinical isolates. A descriptive, observational study was performed including 64 patients with chronic periodontitis and 22 patients with gingivitis. Microbiological samples were taken from the gingival sulcus using paper points, which then were placed in thioglycollate broth. Samples were incubated for 4 hours at 37 degrees C and finally replated on MacConkey agar Bacteria were identified using the API-20E system (Biomerieux, France) and antimicrobial susceptibility was determined using the disk diffusion method. The evaluation of samples showed presence of 29 enterobacterial species distributed as follows: 7 in the group with gingivitis and 22 in the group with chronic periodontitis. In the chronic periodontitis group the most common species were: K. oxytoca n = 5, S. liquefaciens n = 4 and K. pneumoniae and E. coli with n = 3. The gingivitis group had the highest frequency of Erwinia sp. (n = 2). Clinical isolates showed very low sensitivity levels to beta-lactam ampicillin and amoxicillin/ clavulanic acid, 17.2% and 27.6% respectively, and higher sensitivity levels to ciprofloxacin (96.6%), amikacin (79.3%), gentamicin (68.9%) and ceftazidime, ceftriaxone, kanamycin and trimethoprimsulfa (65.5%). In conclusion, the existence of a high frequency of enterobacteria in patients with chronic periodontitis and gingivitis shows that periodontologists should pay greater attention to prevention protocols, and develop mechanical and antimicrobial

  19. Neonatal Gram Negative and Candida Sepsis Survival and Neurodevelopmental Outcome at the Corrected Age of 24 Months

    PubMed Central

    de Haan, Timo R.; Beckers, Loes; de Jonge, Rogier C. J.; Spanjaard, Lodewijk; van Toledo, Letty; Pajkrt, Dasja; van Wassenaer-Leemhuis, Aleid G.; van der Lee, Johanna H.

    2013-01-01

    Objectives To evaluate the long term neurodevelopmental outcome of premature infants exposed to either gram- negative sepsis (GNS) or neonatal Candida sepsis (NCS), and to compare their outcome with premature infants without sepsis. Methods Historical cohort study in a population of infants born at <30 weeks gestation and admitted to the Neonatal Intensive Care Unit (NICU) of the Academic Medical Center in Amsterdam during the period 1997–2007. Outcome of infants exposed to GNS or NCS and 120 randomly chosen uncomplicated controls (UC) from the same NICU were compared. Clinical data during hospitalization and neurodevelopmental outcome data (clinical neurological status; Bayley –test results and vision/hearing test results) at the corrected age of 24 months were collected. An association model with sepsis as the central determinant of either good or adverse outcome (death or severe developmental delay) was made, corrected for confounders using multiple logistic regression analysis. Results Of 1362 patients, 55 suffered from GNS and 29 suffered from NCS; cumulative incidence 4.2% and 2.2%, respectively. During the follow-up period the mortality rate was 34% for both GNS and NCS and 5% for UC. The adjusted Odds Ratio (OR) [95% CI] for adverse outcome in the GNS group compared to the NCS group was 1.4 [0.4–4.9]. The adjusted ORs [95% CI] for adverse outcome in the GNS and NCS groups compared to the UC group were 4.8 [1.5–15.9] and 3.2 [0.7–14.7], respectively. Conclusions We found no statistically significant difference in outcome at the corrected age of 24 months between neonatal GNS and NCS cases. Suffering from either gramnegative or Candida sepsis increased the odds for adverse outcome compared with an uncomplicated neonatal period. PMID:23527140

  20. ['In vitro' activity of different antimicrobial agents on Gram-negative nonfermentative bacilli, excluding Pseudomonas aeruginosa and Acinetobacter spp].

    PubMed

    Vay, C A; Almuzara, M N; Rodríguez, C H; Pugliese, M L; Lorenzo Barba, F; Mattera, J C; Famiglietti, A M R

    2005-01-01

    Gram-negative nonfermentative bacilli (NFB) are widely spread in the environment. Besides of difficulties for identification, they often have a marked multiresistance to antimicrobial agents, including those active against Pseudomonas aeruginosa. The objective of this study was to evaluate the 'in vitro' activity of different antimicrobial agents on 177 gram-negative nonfermentative bacilli isolates (excluding Pseudomonas aeruginosa and Acinetobacter spp.) isolated from clinical specimens. Minimum inhibitory concentrations (MIC) were determined according to the Mueller Hinton agar dilution method against the following antibacterial agents: ampicillin, piperacillin, piperacillin-tazobactam, sulbactam, cefoperazone, cefoperazone-sulbactam, ceftazidime, cefepime, aztreonam, imipenem, meropenem, colistin, gentamicin, amikacin, trimethoprim-sulfamethoxazole, chloramphenicol, erythromycin, rifampin, norfloxacin, ciprofloxacin and minocycline. Seven isolates: Sphingobacterium multivorum (2), Sphingobacteriumspiritivorum (1), Empedobacterbrevis (1), Weeksella virosa (1), Bergeyella zoohelcum (1) and Oligella urethralis (1), were tested for amoxicillin-clavulanic acid and ampicillin-sulbactam susceptibility, and susceptibility to cefoperazone or sulbactam was not determined. Multiresistance was generally found in Stenotrophomonas maltophilia, Burkholderia cepacia, Chryseobacterium spp., Myroides spp., Achromobacter xylosoxidans, and Ochrobactrum anthropi isolates. On the other hand, Pseudomonas stutzeri, Shewanella putrefaciens-algae, Sphingomonas paucimobilis, and Pseudomonas oryzihabitans, Bergeyella zoohelcum, Weeksella virosa and Oligella urethralis were widely susceptible to the antibacterial agents tested. As a result of the wide variation in antimicrobial susceptibility shown by different species, a test on susceptibility to different antibacterial agents is essential in order to select an adequate therapy. The marked multiresistance evidenced by some species