Science.gov

Sample records for aerobic granules cultivated

  1. Dynamics of microbial community structure of and enhanced biological phosphorus removal by aerobic granules cultivated on propionate or acetate.

    PubMed

    Gonzalez-Gil, Graciela; Holliger, Christof

    2011-11-01

    Aerobic granules are dense microbial aggregates with the potential to replace floccular sludge for the treatment of wastewaters. In bubble-column sequencing batch reactors, distinct microbial populations dominated propionate- and acetate-cultivated aerobic granules after 50 days of reactor operation when only carbon removal was detected. Propionate granules were dominated by Zoogloea (40%), Acidovorax, and Thiothrix, whereas acetate granules were mainly dominated by Thiothrix (60%). Thereafter, an exponential increase in enhanced biological phosphorus removal (EBPR) activity was observed in the propionate granules, but a linear and erratic increase was detected in the acetate ones. Besides Accumulibacter and Competibacter, other bacterial populations found in both granules were associated with Chloroflexus and Acidovorax. The EBPR activity in the propionate granules was high and stable, whereas EBPR in the acetate granules was erratic throughout the study and suffered from a deterioration period that could be readily reversed by inducing hydrolysis of polyphosphate in presumably saturated Accumulibacter cells. Using a new ppk1 gene-based dual terminal-restriction fragment length polymorphism (T-RFLP) approach revealed that Accumulibacter diversity was highest in the floccular sludge inoculum but that when granules were formed, propionate readily favored the dominance of Accumulibacter type IIA. In contrast, acetate granules exhibited transient shifts between type I and type II before the granules were dominated by Accumulibacter type IIA. However, ppk1 gene sequences from acetate granules clustered separately from those of propionate granules. Our data indicate that the mere presence of Accumulibacter is not enough to have consistently high EBPR but that the type of Accumulibacter determines the robustness of the phosphate removal process.

  2. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  3. Magnesium carbonate precipitate strengthened aerobic granules.

    PubMed

    Lee, Duu-Jong; Chen, Yu-You

    2015-05-01

    Aerobic granules were precipitated internally with magnesium carbonate to enhance their structural stability under shear. The strengthened granules were tested in continuous-flow reactors for 220 days at organic loadings of 6-39 kg/m(3)/day, hydraulic retention times of 0.44-19 h, and temperatures of 10 or 28°C. The carbonate salt had markedly improved the granule strength without significant changes in granule morphology or microbial communities (with persistent strains Streptomyces sp., Rhizobium sp., Brevundimonas sp., and Nitratireductor sp.), or sacrifice in biological activity for organic degradation. MgCO3 precipitated granules could be used in continuous-flow reactor for wastewater treatment at low cost and with easy processing efforts.

  4. Aerobic granulation with brewery wastewater in a sequencing batch reactor.

    PubMed

    Wang, Shu-Guang; Liu, Xian-Wei; Gong, Wen-Xin; Gao, Bao-Yu; Zhang, Dong-Hua; Yu, Han-Qing

    2007-08-01

    Aerobic granular sludge was cultivated in a sequencing batch reactor fed with brewery wastewater. After nine-week operation, stable granules with sizes of 2-7 mm were obtained. With the granulation, the SVI value decreased from 87.5 to 32 mL/g. The granular sludge had an excellent settling ability with the settling velocity over 91 m/h. Aerobic granular sludge exhibited good performance in the organics and nitrogen removal from brewery wastewater. After granulation, high and stable removal efficiencies of 88.7% COD(t), 88.9% NH(4)(+)-N were achieved at the volumetric exchange ratio of 50% and cycle duration of 6h. The average COD(t) and COD(s) of the effluent were 212 and 134 mg/L, respectively, and the average effluent ammonium concentration was less than 14.4 mg/L. Nitrogen was removed due to nitrification and simultaneous denitrification in the inner core of granules.

  5. Stable aerobic granules for continuous-flow reactors: Precipitating calcium and iron salts in granular interiors.

    PubMed

    Juang, Yu-Chuan; Sunil S, Adav; Lee, Duu-Jong; Tay, Joo-Hwa

    2010-11-01

    Aerobic sludge granules are compact, strong microbial aggregates that have excellent settling ability and capability to efficiently treat high-strength and toxic wastewaters. The aerobic granules cultivated with low ammonium and phosphates lost structural stability within 3 days in continuous-flow reactors. Conversely, stable aerobic granules were cultivated in substrate with high levels of ammonium salts that could stably exist for 216 days in continuous-flow reactors with or without submerged membrane. The scanning electron microscopy, energy dispersive spectroscopy microanalysis and the confocal laser scanning microscopy imaging detected large amounts of calcium and iron precipitates in granule interiors. The Visual MINTEQ version 2.61 calculation showed that the phosphates and hydroxides were the main species in the precipitate.

  6. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation.

  7. Formation of aerobic granules and their PHB production at various substrate and ammonium concentrations.

    PubMed

    Fang, Fang; Liu, Xian-Wei; Xu, Juan; Yu, Han-Qing; Li, Yong-Mei

    2009-01-01

    Aerobic granular sludge rich in polyhydroxybutyrate (PHB) was cultivated in a sequencing batch reactor (SBR) by seeding anaerobic granular sludge. The PHB content in aerobic granules was investigated and the experimental results reveal that both influent chemical oxygen demand (COD) and ammonium concentrations had a significant effect on the morphological characteristics and the PHB production of the aerobic granular sludge. At a COD and ammonium concentration of 750 mg/L and 8.5mg/L, respectively, the PHB content of the granules reached 44%, but their poor settling ability, as evidenced by a high sludge volume index, was observed. This was attributed to the outgrowth of filamentous bacteria on the granule surface. However, an increase in the ammonium concentration resulted in an elevated sludge concentration and a decrease in the PHB content in the granules. In this case, the aerobic granular sludge with a regular and compact structure was formed. The results suggest that, through controlling the COD and ammonium concentrations in the influent, the PHB-rich aerobic granular sludge with good settling ability could be cultivated.

  8. Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata.

    PubMed

    Benzhai, Hai; Lei, Liu; Ge, Qin; Yuwan, Peng; Ping, Li; Qingxiang, Yang; Hailei, Wang

    2014-10-01

    In the present paper, aerobic granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater, and 81 % of granular rate was obtained after 15-day cultivation. Aerobic granules have a 96 % BOD removal to the wastewater, and the reactor harbors a mount of biomass including bacteria, fungi and protozoa. In view of the complexity of kinetic behaviors of sludge and biological mechanisms of the granular SBR, a cellular automata model was established to simulate the process of wastewater treatment. The results indicate that the model not only visualized the complex adsorption and degradation process of aerobic granules, but also well described the BOD removal of wastewater and microbial growth in the reactor. Thus, CA model is suitable for simulation of synthetic wastewater treatment. This is the first report about dynamical and visual simulation of treatment process of synthetic wastewater in a granular SBR.

  9. Aerobic granules: microbial landscape and architecture, stages, and practical implications.

    PubMed

    Gonzalez-Gil, Graciela; Holliger, Christof

    2014-06-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In "old" granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters "rooting" from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation.

  10. Aerobic Granules: Microbial Landscape and Architecture, Stages, and Practical Implications

    PubMed Central

    Holliger, Christof

    2014-01-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In “old” granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters “rooting” from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation. PMID:24657859

  11. Influence of operational conditions on the stability of aerobic granules from the perspective of quorum sensing.

    PubMed

    Zhang, Chen; Sun, Supu; Liu, Xiang; Wan, Chunli; Lee, Duu-Jong

    2017-01-25

    Integrated aerobic granules were first cultivated in two sequencing batch reactors (SBRs) (A1 and A2). Then, A1's influent organic loading rate (OLR) was changed from alternating to constant (cycling time was still 6 h), while A2's cycling time varied from 6 to 4 h (influent OLR strategy remained alternating). After 30-day operation since the manipulative alternations, granule breakage happened in two reactors at different operational stages, along with the decrease of granule intensity. Granule diameter in A1 declined from the original 0.84 to 0.32 cm during the whole operation, while granules in A2 dwindled to 0.31 cm on day 22 with similar size to A1. Both the amount of total extracellular polymeric substances (EPSs) and the protein were declining throughout the operation, and the large molecular weight of protein was considered closely related to the stability of aerobic granules. The relative AI-2 level decreased at the same time, and influent OLR strategy might had more evident impact on quorum sensing (QS) ability of sludge compared with starvation period. Combined with microbial results, the decline of total EPS amount in two reactors could be concluded as follows: During the reactor operation, some functional bacteria gradually lost their dominance and were eliminated from the reactors, which finally caused granule disintegration. In summary, the results further confirmed that alternating OLR and proper starvation period were two major factors in effective cultivation and stability of aerobic granules from the perspective of QS.

  12. Rate limiting factors in trichloroethylene co-metabolic degradation by phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, Joo Hwa

    2014-04-01

    The potential of aerobic granular sludge in co-metabolic removal of recalcitrant substances was evaluated using trichloroethylene (TCE) as the model compound. Aerobic granules cultivated in a sequencing batch reactor with phenol as the growth substrate exhibited TCE and phenol degradation activities lower than previously reported values. Depletion of reducing energy and diffusion limitation within the granules were investigated as the possible rate limiting factors. Sodium formate and citrate were supplied to the granules in batch studies as external electron sources. No significant enhancing effect was observed on the instant TCE transformation rates, but 10 mM formate could improve the ultimate transformation capacity by 26 %. Possible diffusion barrier was studied by sieving the biomass into five size fractions, and determining their specific TCE and phenol degradation rates and capacities. Biomass in the larger size fractions generally showed lower activities. Large granules of >700 μm diameter exhibited only 22 % of the flocs' TCE transformation capacity and 35 % of its phenol dependent SOUR, indicating the possible occurrence of diffusion limitation in larger biomass. However, the highest specific TCE transformation rate was observed with the fraction that mostly consisted of small granules (150-300 μm), suggesting an optimal size range while applying aerobic granules in TCE co-metabolic removal.

  13. Aerobic granulation of aggregating consortium X9 isolated from aerobic granules and role of cyclic di-GMP.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Wang, Xin-Yue; Yang, Qiaoli; Pan, Xiangliang

    2014-01-01

    This study monitored the granulation process of an aggregating functional consortium X9 that was consisted of Pseudomonas putida X-1, Acinetobacter sp. X-2, Alcaligenes sp. X-3 and Comamonas testosteroni X-4 in shaken reactors. The growth curve of X9 was fit using logistic model as follows y=1.49/(1+21.3*exp(-0.33x)), the maximum specific cell growth rate for X9 was 0.33 h(-1). Initially X9 consumed polysaccharides (PS) and secreted proteins (PN) to trigger granulation. Then X9 grew in biomass and formed numerous micro-granules, driven by increasing hydrophobicity of cell membranes and of accumulated extracellular polymeric substances (EPS). In later stage the intracellular cyclic diguanylate (c-di-GMP) was at high levels for inhibiting bacteria swarming motility, thereby promotion formation of large aerobic granules. The findings reported herein advise the way to accelerate granule formation and to stabilize operation in aerobic granular reactors.

  14. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  15. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  16. Rheological and fractal hydrodynamics of aerobic granules.

    PubMed

    Tijani, H I; Abdullah, N; Yuzir, A; Ujang, Zaini

    2015-06-01

    The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area.

  17. [Stability control of aerobic granules using an innovative reactor].

    PubMed

    Li, Zhi-Hua; Yang, Fan; Li, Sheng; Xie, Lei; Wang, Xiao-Chang

    2012-06-01

    Uncontrolled variation of diameter and density of aerobic granules frequently resulted in instability and thus brought about operation failure. An innovative reactor was therefore developed for the control of diameter and density of aerobic granules. There were two ways to select the sludge, one was the short settling time select the big and dense granules in the reactor, and the other was the hydro cyclone that washed out the big and compact granules preventing big and compact fourthly growth in the reactor. By these means, the diameter of granules could maintained in the range of 300-1 000 microm for a long time, consequently, the long term stability could be obtained. According to the kinetic analysis, it was found that the energy maintenance coefficient was 0.08-0.10, which was much higher than the conventional granular system (0.06), and the ratio of the COD used for maintenance to the influent was higher than the conventional one. Additionally, the removal efficiencies of COD and ammonia were 92% and 60%, respectively.

  18. Aerobic granulation of protein-rich granules from nitrogen-lean wastewaters.

    PubMed

    Chen, Yu-You; Ju, Sheau-Pyng; Lee, Duu-Jong

    2016-10-01

    Proteins (PN)-rich granules are stable in structure in long-term reactor operations. This study proposed to cultivate PN-rich granules with PN/polysaccharides (PS) >20 from nitrogen lean wastewater, with ammonia-nitrogen as sole nitrogen source at chemical oxygen demand (COD)/N of 153.8. The yielded granules can sustain their structural stability in sequencing batch reactor mode for sufficient treatment of wastewaters up to 7000mg/L COD and with COD/N<500 and in continuous-flow reactor for successful 216-d treatment of wastewaters up to organic loading rate (OLR) of 39kg/m(3)-d. The produced granules were enriched with Firmicutes and β-proteobacteria as dominating strains. More than 58% of the nitrogen fed in the nitrogen-lean wastewater is converted to the PN in the granules. The replacement of ammonia by nitrate as sole nitrogen source led to granules enriched with γ-proteobacteria which are easily deteriorated at low OLR.

  19. Structure Analysis of Aerobic Granule from a Sequencing Batch Reactor for Organic Matter and Ammonia Nitrogen Removal

    PubMed Central

    Li, Jun; Cai, Ang; Wang, Danjun; Chen, Chao; Ni, Yongjiong

    2014-01-01

    Aerobic granules were cultivated in a sequencing batch reactor (SBR). COD and ammonia nitrogen removal rate were 94% and 99%, respectively. The diameter, settling velocity and SVI10 of granules ranged from 2 to 5 mm, 80 to 110 m/h and about 40 mL/g, respectively. Freezing microtome images, DO concentration profiles by microelectrode, distribution of bacteria and EPS by confocal laser scanning microscopy (CLSM) show that the aerobic granules have a three-layer structure. Each layer has different thickness, character, bacteria, and DO transfer rate. A hypothesis for granule structure is proposed: the first layer, the surface of the granule, is composed mostly of heterotrophic organisms for organic matter removal, with a thickness range from 150 to 350 μm; the second layer, mostly composed of autotrophic organisms for ammonia nitrogen removal, with a thickness range from 250 to 450 μm; the third layer, located in the core of the granule, has mostly an inorganic composition and contains pores and channels. PMID:24577284

  20. Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment.

    PubMed

    Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan

    2014-01-01

    In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.

  1. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor.

    PubMed

    Kong, Qiang; Ngo, Huu Hao; Shu, Li; Fu, Rong-Shu; Jiang, Chun-Hui; Miao, Ming-sheng

    2014-08-30

    This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe(2+) dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation.

  2. Effect of sludge discharge positions on steady-state aerobic granules in sequencing batch reactor (SBR).

    PubMed

    Liu, Lin; Gao, Da-Wen; Liang, Hong

    2012-01-01

    We have investigated the effect of sludge discharge location on the steady-state aerobic granules in sequencing batch reactors (SBRs). Two SBRs were operated concurrently with the same sludge retention time using sludge discharge ports at: (a) the reactor bottom in R1; and (b) the reactor middle-lower level in R2. Results indicate that both reactors could maintain sludge granulation and stable operation, but the two different sludge discharge methods resulted in significantly different aerobic granule characteristics. Over 30 days, the chemical oxygen demand (COD) removal of the two reactors was maintained at similar levels (above 96%), and typical bioflocs were not observed. The average aerobic granule size in R2 was twice that in R1, as settling velocity increased in proportion to size increment. Meanwhile, the production yields of polysaccharide and protein content in R2 were always higher than those in R1. However, due to mass transfer limitations and the presence of anaerobes in the aerobic granule cores, larger granules had a tendency to disintegrate in R2. Thus, we conclude that a sludge discharge port situated at the reactor bottom is beneficial for aerobic granule stability, and enhances the potential for long-term aerobic granule SBR operation.

  3. Importance of extracellular proteins in maintaining structural integrity of aerobic granules.

    PubMed

    Xiong, Yanghui; Liu, Yu

    2013-12-01

    Aerobic granules developed through self-immobilization of microorganisms are compact and structured microbial consortia embedded in a matrix of extracellular polymeric substances (EPS). This study investigated the contribution of extracellular proteins (PN) to maintaining the structural integrity of aerobic granule. It was found that hydrolysis of PN induced by Proteinase K led to significant disintegration of aerobic granules, whereas a substantial reduction of extracellular polysaccharides (PS) was also observed. It was proposed that hydrolysis of extracellular proteins present in the EPS matrix of aerobic granules led to collapse of the EPS matrix, and subsequent disintegration of aerobic granule. These suggested that extracellular proteins would be essential for maintaining structural stability of EPS matrix of aerobic granules. In addition, it was revealed that production of signaling molecules, such as autoinducer-2 (AI-2) and N-acyl homoserine lactones (AHLs) was also inhibited probably due to hydrolysis of quorum sensing receptor proteins by Proteinase K. This in turn provided an additional explanation for the observed Proteinase K-triggered dispersal of aerobic granules.

  4. Comparison of four enhancement strategies for aerobic granulation in sequencing batch reactors.

    PubMed

    Gao, Dawen; Liu, Lin; Liang, Hong; Wu, Wei-Min

    2011-02-15

    Aerobic granules were developed in four identical sequencing batch reactors (SBRs) with synthetic wastewater to compare different strategies for the enhancement of granulation. The SBRs were operated by (a) increasing organic loading rate in R1; (b) reducing settling time in R2; (c) extending starvation period in R3; and (d) increasing shear force in R4. The results showed that four operational strategies were able to enhance aerobic granulation successfully in SBR, but that also showed different effect on the granulation process and characteristics of mature aerobic granules. The rapidest granulation was observed by using short settling time (R2) and the granules had higher extracellular polymeric substance (EPS) than other reactors. Extended starvation period (R3) and high shear force (R4) resulted in longer granulation period and the granules with higher integrity and smaller size. Higher organic loading rate (R1) resulted in the granules with larger size and higher K value. The maximum specific COD removal rates (q(max)) of the granules in all SBRs were at a similar level (0.13-0.16 g COD/h-g VSS) but the granules in R1 and R2 had higher apparent half rate constant (K) of 18 and 16 mg/L, than those in R3 and R4 (2.8 and 3.3 mg/L).

  5. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP.

    PubMed

    Liu, Jun; Li, Jun; Wang, Xiaodong; Zhang, Qi; Littleton, Helen

    2017-01-01

    Aerobic sludge granulation was rapidly obtained in the erlenmeyer bottle and sequencing batch reactor (SBR) using piggery wastewater. Aerobic granulation occurred on day 3 and granules with mean diameter of 0.2mm and SVI30 of 20.3mL/g formed in SBR on day 18. High concentrations of Ca and Fe in the raw piggery wastewater and operating mode accelerated aerobic granulation, even though the seed sludge was from a municipal wastewater treatment plant (WWTP). Alpha diversity analysis revealed Operational Taxonomic Units, Shannon, ACE and Chao 1 indexes in aerobic granules were 2013, 5.51, 4665.5 and 3734.5, which were obviously lower compared to seed sludge. The percentages of major microbial communities, such as Proteobacteria, Bacteroidetes and Firmicutes were obviously higher in aerobic granules than seed sludge. Chloroflexi, Planctomycetes, Actinobacteria, TM7 and Acidobacteria showed much higher abundances in the inoculum. The main reasons might be the characteristics of raw piggery wastewater and granule structure.

  6. Influence of aeration intensity on mature aerobic granules in sequencing batch reactor.

    PubMed

    Gao, Da-Wen; Liu, Lin; Liang, Hong

    2013-05-01

    Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.

  7. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication.

    PubMed

    Jiang, Bo; Liu, Yu

    2013-06-01

    Aerobic granules are dense and compact microbial aggregates with various bacterial species. Recently, aerobic granulation technology has been extensively explored for treatment of municipal and industrial wastewaters. However, little information is currently available with regard to their structure stability and integrity at levels of energy metabolism and cell communication. In the present study, a typical chemical uncoupler, 3,3',4',5-tetrachlorosalicylanilide with the power to dissipate proton motive force and subsequently inhibit adenosine triphosphate (ATP) generation, was used to investigate possible roles of ATP and cell communication in maintaining the structure stability and integrity of aerobic granules. It was found that inhibited ATP synthesis resulted in the reduced production of autoinducer-2 and N-acylhomoserine lactones essential for cell communication, while lowered extracellular polymeric substance (EPS) production was also observed. As a consequence, aerobic granules appeared to break up. This study showed that ATP-dependent quorum sensing and EPS were essential for sustaining the structure stability and integrity of aerobic granules.

  8. Biodegradation of o-nitrophenol by aerobic granules with glucose as co-substrate.

    PubMed

    Basheer, Farrukh; Isa, M H; Farooqi, I H

    2012-01-01

    Aerobic granules to treat wastewater containing o-nitrophenol were successfully developed in a sequencing batch reactor (SBR) using activated sludge as inoculum. Stable aerobic granules were obtained with a clearly defined shape and diameters ranging from 2 to 6 mm after 122 days of operation. The integrity coefficient (IC) and granules density was found to be 98% and 1,054 kg m(-3) respectively. After development of aerobic granules, o-nitrophenols were successfully degraded to an efficiency of 78% at a concentration of 70 mg L(-1). GC-MS study revealed that the biodegradation of o-nitrophenol occurred via catechol via nitrobenzene pathway. Specific o-nitrophenol biodegradation rates followed the Haldane model and the associated kinetic parameters were found as follows: V(max) = 3.96 g o-nitrophenol g(-1)VSS(-1)d(-1), K(s) = 198.12 mg L(-1), and K(i) = 31.16 mg L(-1). The aerobic granules proved to be a feasible and effective way to degrade o-nitrophenol containing wastewater.

  9. Formation mechanism of nitrifying granules observed in an aerobic upflow fluidized bed (AUFB) reactor.

    PubMed

    Tsuneda, S; Ejiri, Y; Nagano, T; Hirata, A

    2004-01-01

    The influences of trace metals in the wastewater and shear stress by aeration were particularly examined to clarify the formation mechanism of nitrifying granules in an aerobic upflow fluidized bed (AUFB) reactor. It was found that Fe added as a trace element to the inorganic wastewater accumulated at the central part of the nitrifying granules. Another result obtained was that suitable shear stress by moderate aeration (0.07-0.20 L/min/L-bed) promoted granulation. Furthermore, it was successfully demonstrated that pre-aggregation of seed sludge using hematite promoted core formation, leading to rapid production of nitrifying granules. From these results, a nitrifying granulation mechanism is proposed: 1) as a first step, nitrifying bacteria aggregate along with Fe precipitation, and then the cores of granules are formed; 2) as a second step, the aggregates grow to be spherical or elliptical in form due to multiplication of the nitrifying bacteria and moderate shear stress in the reactor, and then mature nitrifying granules are produced. Fluorescence in situ hybridization (FISH) analysis successfully visualized the change in the spatial distribution of nitrifying bacteria in the granules, which supports the proposed granulation mechanism.

  10. Aerobic sludge granulation in a full-scale sequencing batch reactor.

    PubMed

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m(3) d(-1) for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g(-1), diameter of 0.5 mm, and settling velocity of 42 m h(-1) were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation.

  11. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    PubMed Central

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  12. Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms.

    PubMed

    Meyer, Rikke Louise; Saunders, Aaron Marc; Zeng, Raymond Jianxiong; Keller, Jürg; Blackall, Linda Louise

    2003-08-01

    The spatial arrangement and metabolic activity of 'Candidatus Competibacter phosphatis' was investigated in granular sludge from an anaerobic-aerobic sequencing batch reactor enriched for glycogen-accumulating organisms. In this process, the electron donor (acetate) and the electron acceptor (oxygen) were supplied sequentially in each phase. The organism, identified by fluorescence in situ hybridisation, was present throughout the granules; however, metabolic activity was limited to a 100-mum-thick layer immediately below the surface of the granules. To investigate the cause of this, oxygen microsensors and a novel microscale biosensor for volatile fatty acids were used in conjunction with chemical staining for intracellular storage polymers. It was found that the limited distribution of activity was caused by mass transport limitation of oxygen into the granules during the aerobic phase.

  13. Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reactor.

    PubMed

    Chen, Yao; Jiang, Wenju; Liang, David Tee; Tay, Joo Hwa

    2008-05-01

    Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m(-3) day(-1) in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (muoverall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (kd), observed yield (Yobs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Yobs) is associated with an increased solid retention time, while kd and Y changed insignificantly and can be regarded as constants under different organic loading rates.

  14. The biological effect of metal ions on the granulation of aerobic granular activated sludge.

    PubMed

    Hao, Wen; Li, Yaochen; Lv, Junping; Chen, Lisha; Zhu, Jianrong

    2016-06-01

    As a special biofilm structure, microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge (AGAS). This experiment was to investigate the biological effect of Ca(2+), Mg(2+), Cu(2+), Fe(2+), Zn(2+), and K(+) which are the most common ions present in biological wastewater treatment systems, on the microbial attachment of AGAS and flocculent activated sludge (FAS), from which AGAS is always derived, in order to provide a new strategy for the rapid cultivation and stability control of AGAS. The result showed that attachment biomass of AGAS was about 300% higher than that of FAS without the addition of metal ions. Different metal ions had different effects on the process of microbial attachment. FAS and AGAS reacted differently to the metal ions as well, and in fact, AGAS was more sensitive to the metal ions. Specifically, Ca(2+), Mg(2+), and K(+) could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations, Cu(2+), Fe(2+), and Zn(2+) were also beneficial to the microbial attachment of FAS at low concentrations, but Cu(2+), Fe(2+), and Zn(2+) greatly inhibited the attachment process of AGAS even at extremely low concentrations. In addition, the acylated homoserine lactone (AHL)-based quorum sensing system, the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions. As all these parameters had close relationships with the microbial attachment process, the microbial attachment may be affected by changes of these parameters.

  15. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules.

    PubMed

    Xu, Guangjing; Xu, Xiaochen; Yang, Fenglin; Liu, Sitong

    2011-01-15

    Partial nitrification was successfully achieved with addition of 5mM KClO(3) in the aerobic granules system. Batch tests demonstrated that KClO(3) selectively inhibited nitrite-oxidizing bacteria (NOB) but not ammonia-oxidizing bacteria (AOB). During stable partial nitrification, the influent pH was kept at 7.8-8.2, while the DO and temperature were not controlled in the SBR. When the NH(4)-N and COD levels were kept at 100mg/l and 400mg/l in the influent, the NH(4)-N and COD removal efficiencies reached 98.93% and 78.65%, respectively. The NO(2)-N accounted for 92.95% of the NO(χ)-N (NO(2)-N+NO(3)-N) in the effluent. Furthermore, about 90% of the chlorate was reduced to nontoxic chloride, thus it would not cause environmental problem. SEM showed that the main composition of the aerobic granules was bacilli and coccus bacteria. FISH analysis revealed that AOB became the dominant nitrifying bacteria, whereas NOB were detected only in low abundance. Chlorate could be used to control the development and maintenance of aerobic granules sludge for partial nitrification.

  16. Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors.

    PubMed

    Wagner, Jamile; Weissbrodt, David Gregory; Manguin, Vincent; da Costa, Rejane Helena Ribeiro; Morgenroth, Eberhard; Derlon, Nicolas

    2015-11-15

    The formation and application of aerobic granules for the treatment of real wastewaters still remains challenging. The high fraction of particulate organic matter (XS) present in real wastewaters can affect the granulation process. The present study aims at understanding to what extent the presence of XS affects the granule formation and the quality of the treated effluent. A second objective was to evaluate how the operating conditions of an aerobic granular sludge (AGS) reactor must be adapted to overcome the effects of the presence of XS. Two reactors fed with synthetic wastewaters were operated in absence (R1) or presence (R2) of starch as proxy for XS. Different operating conditions were evaluated. Our results indicated that the presence of XS in the wastewater reduces the kinetic of granule formation. After 52 d of operation, the fraction of granules reached only 21% in R2, while in R1 this fraction was of 54%. The granules grown in presence of XS had irregular and filamentous outgrowths in the surface, which affected the settleability of the biomass and therefore the quality of the effluent. An extension of the anaerobic phase in R2 led to the formation of more compact granules with a better settling ability. A high fraction of granules was obtained in both reactors after an increase of the selection pressure for fast-settling biomass, but the quality of the effluent remained low. Operating the reactors in a simultaneous fill-and-draw mode at a low selection pressure for fast-settling biomass showed to be beneficial for substrate removal efficiency and for suppressing filamentous overgrowth. Average removal efficiencies for total COD, soluble COD, ammonium, and phosphate were 87 ± 4%, 95 ± 1%, 92 ± 10%, and 87 ± 12% for R1, and 72 ± 12%, 86 ± 5%, 71 ± 12%, and 77 ± 11% for R2, respectively. Overall our study demonstrates that the operating conditions of AGS reactors must be adapted according to the wastewater composition. When treating effluents that

  17. Mechanism of enhanced Sb(V) removal from aqueous solution using chemically modified aerobic granules.

    PubMed

    Wang, Li; Wan, Chun-li; Zhang, Yi; Lee, Duu-Jong; Liu, Xiang; Chen, Xiao-feng; Tay, Joo-Hwa

    2015-03-02

    Sb(V) removal using Fe-modified aerobic granules was investigated. Increasing the biomass dosage improved the Sb(V) removal rate, but lowered the adsorption quantity; the optimal biomass concentration was 20 g/L (wet basis). Adsorption equilibrium was obtained at 2h at 175 rpm; the adsorption quantity was 36.6 mg/g. NaCl and other salts inhibited Sb(V) adsorption on Fe-modified granules, and the mechanism possibly lied more with the anions. The adsorption isotherms were evaluated using the Langmuir, Freundlich, and Temkin models. The Langmuir model best described the adsorption process, and gave a maximum monolayer adsorption quantity of 125 mg/g. The ΔH value for adsorption was 16.1 kJ/mol, indicating endothermicity, and the negative ΔG values at various temperatures suggested spontaneous adsorption. Outer-sphere and inner-sphere complexations were involved in Sb(V) adsorption.

  18. [Population development characteristics of rice crop cultivated on aerobic soil with mulching].

    PubMed

    Sheng, Haijun; Shen, Qirong; Feng, Ke

    2004-01-01

    Field experiments were carried out to study the population development characteristics of rice crop cultivated both on aerobic and waterlogged soil conditions. The results showed that the whole growth duration of rice growing on aerobic soil was one week longer than that on waterlogged soil. Shorter and narrower leaves and smaller LAI of rice population were found on aerobic soil than on waterlogged soil, which resulted in a decreased photosynthesis, smaller amount and lighter weight of rice grains on aerobic soil, compared with those on waterlogged soil. Among the aerobic treatments, more tillers, lower percentage of filled grains and shorter duration of grain forming were found on soils covered with plastic film than on soils covered with semi-decomposed straw or without mulching. The rice grain yield was decreased in the order of waterlogged soil > aerobic soil covered with plastic film > aerobic soil covered with semi-decomposed straw > aerobic soil without mulching.

  19. Use of aerobic granules for treating synthetic high-strength ammonium wastewaters.

    PubMed

    Yu, Xiaonan; Wan, Chunli; Lei, Zhongfang; Liu, Xiang; Zhang, Yi; Tay, Joo Hwa; Lee, Duu-Jong

    2014-08-01

    In this work, two identical sequencing batch reactors (SBRs) with mature aerobic granules were utilized to treat synthetic high-strength ammonium wastewaters with chemical oxygen demand (COD)/total nitrogen (TN) ratios of 3.9-6.9. The contributions of various mechanisms to the removal of ammonium were determined. Ammonium levels of 600-2000 mg-N l-1 had little adverse effect on the COD removal rate (91.6%-95.3%) with an influent COD of 4490-9860 mg l-1. The TN removal rate was slightly reduced from 71.3% to 59.6% as the influent ammonium concentration was increased from 600 to 2000 mg-N l-1. Experimental results indicated that aerobic granules removed 94.5% of COD and 59.6% of TN in the treatment of synthetic high-strength wastewater (9860 mg-COD l-1 and 2000 mg NH+4-Nl-1) during a 12 h cycle. Granular adsorption, air stripping and conversion by nitrification/denitrification were responsible for removing 9%, 15% and 76%, respectively, of the total removed NHf -N. Dissolved oxygen (DO) was a useful process indicator of the biological reactions in the treatment of high-level ammonium wastewaters.

  20. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    PubMed Central

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-01-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3−-N could be removed or reduced, some amount of NO2−-N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy. PMID:26257096

  1. Formation of aerobic granules by Mg2+ and Al3+ augmentation in sequencing batch airlift reactor at low temperature.

    PubMed

    Wang, Shuo; Shi, Wenxin; Yu, Shuili; Yi, Xuesong; Yang, Xu

    2012-09-01

    Aerobic granules technology (AGS) was difficult to cultivate at low temperature, and the treatment efficiency of domestic sewage was remarkably low because of low temperature, which greatly limits its development and application. AGS formation time significantly decreased for 43 days by adding 19.0 mg/L Mg(2+) and 21.0 mg/L Al(3+), moreover, AGS possessed better simultaneously chemical oxygen demand, NH(4) (+)-N, TP removal efficiencies at low temperature, which the respective removal efficiencies were 85.6, 88.8, and 91.9%. The content of total polysaccharides was 8.23 mg/gMLSS as well as the content of total protein was 8.52 mg/gMLSS, consequently, the total proteins/total polysaccharides ratio was 1.04, which the relatively high protein content induced by Mg(2+) and Al(3+) presented an essential feature for AGS formation. In addition, the affinity among Mg(2+), Al(3+) and -OH may drive the stretching vibration of -OH band which led to the infrared motion of functional groups in AGS and accelerate AGS formation as well.

  2. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    PubMed

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor.

  3. Cultivation and characteristics of partial nitrification granular sludge in a sequencing batch reactor inoculated with heterotrophic granules.

    PubMed

    Wang, Jianfang; Qian, Feiyue; Liu, Xiaopeng; Liu, Wenru; Wang, Shuyong; Shen, Yaoliang

    2016-11-01

    The aim of this study was to develop a simple operation strategy for the cultivation of partial nitrification granules (PNGs) treating an autotrophic medium. For this strategy, aerobic granular sludge adapted to high concentration organics removal was seeded in a sequencing batch reactor (SBR) with a height/diameter ratio of 3.8, and the ratio of organics to the ammonia nitrogen-loading rate (C/N ratio) in the influent was employed as the main control parameter to start up the partial nitrification process. After 86 days of operation, the nitrite accumulation rate reached 1.44 kg/(m(3) day) in the SBR, and the removal efficiency of ammonia nitrogen (NH4(+)-N) was over 95 %. The PNGs showed a dense and compact structure, with an excellent settling ability, a typical extracellular polymeric substance (EPS) composition, and a high ammonia oxidation activity. The high-throughput pyrosequencing results indicated that the microbial community structure in the granules was significantly influenced by the C/N ratio, and ammonia-oxidizing bacteria (AOB), including the r-strategist Nitrosomonas and k-strategist Nitrosospira genre, which accounted for approximately 40 % of the total biomass at the end of operation. The effective suppression of nitrite-oxidizing bacteria (NOB) growth was attributed to oxygen competition on the granular surface among functional bacteria, as well as the high free ammonia or free nitrous acid concentrations during the aeration period.

  4. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading.

    PubMed

    Jiang, H-L; Tay, J-H; Tay, S T-L

    2004-02-01

    Four column-type sequential aerobic sludge blanket reactors were fed with phenol as the sole carbon and energy source and operated at loading rates of 1.0, 1.5, 2.0 and 2.5 kg phenol m(-3) day(-1). The results indicated that phenol loading exerted a profound influence on the structure, activity and metabolism of the aerobic granules. Compact granules with good settling ability were maintained at loadings up to 2.0 kg phenol m(-3) day(-1), and structurally weakened granules with enhanced production of extracellular polymers and proteins and significantly lower hydrophobicities were observed at the highest loading of 2.5 kg phenol m(-3) day(-1). Specific oxygen uptake rate, catechol 2,3-dioxygenase (C23O) and catechol 1,2-dioxygenase (C12O) activities peaked at a loading of 2.0 kg phenol m(-3) day(-1), and declined thereafter. Granules degraded phenol completely in all four reactors, mainly through the meta cleavage pathway as C23O activities were significantly higher than C12O activities. At the highest loading applied, the anabolism and catabolism of microorganisms were regulated such that phenol degradation proceeded exclusively via the meta pathway, apparently to produce more energy for overstimulation of protein production against phenol toxicity. This work contributes to a better understanding of the ability of aerobic granules to handle high-strength industrial wastewaters containing chemicals that are normally inhibitory to microbial growth.

  5. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors.

    PubMed

    Huang, Wenli; Li, Bing; Zhang, Chao; Zhang, Zhenya; Lei, Zhongfang; Lu, Baowang; Zhou, Beibei

    2015-03-01

    The effect of algae growth on aerobic granulation and nutrients removal was studied in two identical sequencing batch reactors (SBRs). Sunlight exposure promoted the growth of algae in the SBR (Rs), forming an algal-bacterial symbiosis in aerobic granules. Compared to the control SBR (Rc), Rs had a slower granulation process with granules of loose structure and smaller particle size. Moreover, the specific oxygen uptake rate was significantly decreased for the granules from Rs with secretion of 25.7% and 22.5% less proteins and polysaccharides respectively in the extracellular polymeric substances. Although little impact was observed on chemical oxygen demand (COD) removal, algal-bacterial symbiosis deteriorated N and P removals, about 40.7-45.4% of total N and 44% of total P in Rs in contrast to 52.9-58.3% of TN and 90% of TP in Rc, respectively. In addition, the growth of algae altered the microbial community in Rs, especially unfavorable for Nitrospiraceae and Nitrosomonadaceae.

  6. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics.

    PubMed

    Weissbrodt, David G; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  7. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    PubMed Central

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s−1) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s−1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  8. Selectively inducing the synthesis of a key structural exopolysaccharide in aerobic granules by enriching for Candidatus "Competibacter phosphatis".

    PubMed

    Seviour, Thomas William; Lambert, Lynette K; Pijuan, Maite; Yuan, Zhiguo

    2011-12-01

    A gel-forming exopolysaccharide was previously shown to play an important structural role in aerobic granules treating nutrient-rich industrial wastewater. To identify whether this exopolysaccharide performs a similar role in other granular biomass and if conditions favouring its production can be more precisely elucidated, extracellular polymeric substances (EPS) were extracted from granules grown under four different operating conditions. (1)H nuclear magnetic resonance (NMR) spectroscopy of their EPS indicated that the gel-forming exopolysaccharide was expressed in two granular sludges both enriched in Candidatus "Competibacter phosphatis". In contrast, it was not expressed in granules performing denitrification with methanol as a carbon source and nitrate as the electron acceptor or granules enriched in Candidatus "Accumulibacter phosphatis" performing enhanced biological phosphorus removal from synthetic wastewater. In one of the first two sludges, the exopolysaccharide contained in the seeding granular sludge continued to be a major component of the granule EPS while Competibacter was being enriched. In the second sludge, a floccular sludge not containing the gel-forming exopolysaccharide initially was also enriched for Competibacter. In this sludge, an increase in particle size was detected coinciding with a yield increase of EPS. NMR spectroscopy confirmed its yield increase to be attributable to the production of this structural gel-forming exopolysaccharide. The results show that (1) the particular gel-forming exopolysaccharide previously identified is not necessarily a key structural exopolysaccharide for all granule types, and (2) synthesis of this exopolysaccharide is induced under conditions favouring the selective enrichment of Competibacter. This indicates that Competibacter may be involved in its production.

  9. Cycle length and COD/N ratio determine properties of aerobic granules treating high-nitrogen wastewater.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Bernat, Katarzyna; Zielińska, Magdalena; Wojnowska-Baryła, Irena

    2014-07-01

    Aerobic granule characteristic in sequencing batch reactors treating high-nitrogen digester supernatant was investigated at cycle lengths (t) of 6, 8 and 12 h with the COD/N ratios in the influent of 4.5 and 2.3. The biomass production (Y obs) correlated with the extracellular polymeric substances (EPS) in grams per COD removed. Denitrification efficiency significantly decreased as the amount of EPS in biomass increased, suggesting that organic assimilation in EPS hampers nitrogen removal. Granule hydrophobicity was highest at t of 8 h; the t has to be long enough to remove pollutants, but not so long that excessive biomass starvation causes extracellular protein consumption that decreases hydrophobicity. At a given t, reducing the COD/N ratio improved hydrophobicity that stimulates cell aggregation. At t of 6 h and the COD/N ratio of 2.3, the dominance of 0.5-1.0 mm granules favored simultaneous nitrification and denitrification and resulted in the highest nitrogen removal.

  10. Optimizing granules size distribution for aerobic granular sludge stability: Effect of a novel funnel-shaped internals on hydraulic shear stress.

    PubMed

    Zhou, Jia-Heng; Zhang, Zhi-Ming; Zhao, Hang; Yu, Hai-Tian; Alvarez, Pedro J J; Xu, Xiang-Yang; Zhu, Liang

    2016-09-01

    A novel funnel-shaped internals was proposed to enhance the stability and pollutant removal performance of an aerobic granular process by optimizing granule size distribution. Results showed up to 68.3±1.4% of granules in novel reactor (R1) were situated in optimal size range (700-1900μm) compared to less than 29.7±1.1% in conventional reactor (R2), and overgrowth of large granules was effectively suppressed without requiring additional energy. Consequently, higher total nitrogen (TN) removal (81.6±2.1%) achieved in R1 than in R2 (48.1±2.7%). Hydraulic analysis revealed the existence of selectively assigning hydraulic pressure in R1. The total shear rate (τtotal) on large granules was 3.07±0.14 times higher than that of R2, while τtotal of small granules in R1 was 70.7±4.6% in R2. Furthermore, large granules in R1 with intact extracellular polymeric substances (EPS) outer layer structure entrapped hydroxyapatite at center, which formed a core structure and further enhanced the stability of aerobic granules.

  11. Phosphorus removal and greenhouse gas N2O emission in a lime-induced aerobic sludge granule process.

    PubMed

    Wu, X L; Guan, Y T; Zhang, X; Huang, X; Qian, Y

    2002-06-01

    Aerobic sludge granulation was achieved in an activated sludge process continuously fed with lime (Ca2+ 100 mg l(-1) influent) every other day. Eighteen days after lime addition, activated sludge granules with the size of 0.5-2.2 mm were formed, which occupied 10-25% of total sludge volume. Sludge volume index (SVI) was reduced to an average of 50 ml g(-1), which increased average sludge concentration to 3.6-5.0 g VSS l(-1), 1.6-2.1 times of that of control. Greenhouse gas N2O emission was also significantly reduced: N2O concentration from the lime-addition reactor was 5-15 ppmv, 47-61% of that of control, Effluent PO4-P concentration was generally lower than 1 mg l(-1) when average influent PO4-P concentration was 6.07-6.37 mg l(-1). Total phosphorus (TP) and total nitrogen (TN) removal efficiencies were around 89.6% and 14.5-16.1%, over 3.5 and 1 times higher than those of control, respectively. COD removal rate in the lime-addition reactor was 2.05-2.48 kg COD m(-3) d(-1), higher than 1.34-1.61 kg COD m(-3) d(-1) in the control.

  12. Investigation of the use of aerobic granules for the treatment of sugar beet processing wastewater.

    PubMed

    Kocaturk, Irem; Erguder, Tuba Hande

    2015-01-01

    The treatment of sugar beet processing wastewater in aerobic granular sequencing batch reactor (SBR) was examined in terms of chemical oxygen demand (COD) and nitrogen removal efficiency. The effect of sugar beet processing wastewater of high solid content, namely 2255 ± 250 mg/L total suspended solids (TSS), on granular sludge was also investigated. Aerobic granular SBR initially operated with the effluent of anaerobic digester treating sugar beet processing wastewater (Part I) achieved average removal efficiencies of 71 ± 30% total COD (tCOD), 90 ± 3% total ammonifiable nitrogen (TAN), 76 ± 24% soluble COD (sCOD) and 29 ± 4% of TSS. SBR was further operated with sugar beet processing wastewater (Part II), where the tCOD, TAN, sCOD and TSS removal efficiencies were 65 ± 5%, 61 ± 4%, 87 ± 1% and 58 ± 10%, respectively. This study indicated the applicability of aerobic granular SBRs for the treatment of both sugar beet processing wastewater and anaerobically digested processing wastewater. For higher solids removal, further treatment such as a sedimentation tank is required following the aerobic granular systems treating solid-rich wastewaters such as sugar beet processing wastewater. It was also revealed that the application of raw sugar beet processing wastewater slightly changed the aerobic granular sludge properties such as size, structure, colour, settleability and extracellular polymeric substance content, without any drastic and negative effect on treatment performance.

  13. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage.

    PubMed

    Aqeel, H; Basuvaraj, M; Hall, M; Neufeld, J D; Liss, S N

    2016-01-01

    Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage

  14. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka

    2015-04-01

    This study investigated how the microbial composition of biomass and kinetics of nitrogen conversions in aerobic granular reactors treating high-ammonium supernatant depended on nitrogen load and the number of anoxic phases in the cycle. Excellent ammonium removal and predomination of full nitrification was observed in the reactors operated at 1.1 kg TKN m(-3) d(-1) and with anoxic phases in the cycle. In all reactors, Proteobacteria and Actinobacteria predominated, comprising between 90.14% and 98.59% of OTUs. Extracellular polymeric substances-producing bacteria, such as Rhodocyclales, Xanthomonadaceae, Sphingomonadales and Rhizobiales, were identified in biomass from all reactors, though in different proportions. Under constant aeration, bacteria capable of autotrophic nitrification were found in granules, whereas under variable aeration heterotrophic nitrifiers such as Pseudomonas sp. and Paracoccus sp. were identified. Constant aeration promoted more even bacteria distribution among taxa; with 1 anoxic phase, Paracoccus aminophilus predominated (62.73% of OTUs); with 2 phases, Corynebacterium sp. predominated (65.10% of OTUs).

  15. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker

    PubMed Central

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing “unknown methanotrophic bacteria.” This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968

  16. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker.

    PubMed

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities.

  17. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.

    PubMed

    Nissen, T L; Hamann, C W; Kielland-Brandt, M C; Nielsen, J; Villadsen, J

    2000-03-30

    yields in the aerobic batch cultivations of strains TN4 (gpd1-Delta1) and TN5 (gpd2-Delta1) without serious effects on the maximum specific growth rates or the biomass yields. Deletion of both GPD1 and GPD2 in strain TN6 (gpd1-Delta1 gpd2-Delta1) resulted in a dramatic reduction in the maximum specific growth rate and in biomass formation. Expression of the cytoplasmic transhydrogenase in the double mutant, resulting in TN23, gave a further decrease in micromax from 0.17/h in strain TN6 to 0.09/h in strain TN23, since the transhydrogenase reaction was in the direction from NADPH and NADP(+) to NADH and NADP(+). Thus, it was not possible to introduce an alternative pathway for reoxidation of NADH in the cytoplasm by expression of the transhydrogenase from A. vinelandii in a S. cerevisiae strain with a double deletion in GPD1 and GPD2.

  18. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.

    PubMed

    Zhang, Yi; Tay, Joo Hwa

    2016-03-15

    Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions.

  19. Aerobic rice genotypes displayed greater adaptation to water-limited cultivation and tolerance to polyethyleneglycol-6000 induced stress.

    PubMed

    Sandhu, Nitika; Jain, Sunita; Battan, K R; Jain, R K

    2012-01-01

    Water scarcity and drought have seriously threatened traditional rice cultivation practices in several parts of the world including India. In the present investigation, experiments were conducted to see if the water-efficient aerobic rice genotypes developed at UAS, Bangalore (MAS25, MAS26 and MAS109) and IRRI, Philippines (MASARB25 and MASARB868), are endowed with drought tolerance or not. A set of these aerobic and five lowland high-yielding (HKR47 and PAU201, Taraori Basmati, Pusa1121 and Pusa1460) indica rice genotypes were evaluated for: (i) yield and yield components under submerged and aerobic conditions in field, (ii) root morphology and biomass under aerobic conditions in pots in the nethouse, (iii) PEG-6000 (0, -1, -2 and -3 bar) induced drought stress at vegetative stage using a hydroponic culture system and (iv) polymorphism for three SSR markers associated with drought resistance traits. Under submerged conditions, the yield of aerobic rice genotypes declined by 13.4-20.1 % whereas under aerobic conditions the yield of lowland indica/Basmati rice varieties declined by 23-27 %. Under water-limited conditions in pots, aerobic rice genotypes had 54-73.8 % greater root length and 18-60 % higher fresh root biomass compared to lowland indica rice varieties. Notably, root length of MASARB25 was 35 % shorter than MAS25 whereas fresh and dry root biomass of MASARB25 was 10 % and 64 % greater than MAS25. The lowland indica were more sensitive to PEG-stress with a score of 5.9-7.6 for Basmati and 6.1-6.7 for non-aromatic indica rice varieties, than the aerobic rice genotypes (score 2.7-3.3). A set of three microsatellite DNA markers (RM212, RM302 and RM3825) located on chromosome 1 which has been shown to be associated with drought resistance was investigated in the present study. Two of these markers (RM212 and RM302) amplified a specific allele in all the aerobic rice genotypes which were absent in lowland indica rice genotypes.

  20. The use of dissolved oxygen-controlled, fed-batch aerobic cultivation for recombinant protein subunit vaccine manufacturing.

    PubMed

    Farrell, Patrick; Sun, Jacob; Champagne, Paul-Philippe; Lau, Heron; Gao, Meg; Sun, Hong; Zeiser, Arno; D'Amore, Tony

    2015-11-27

    A simple "off-the-shelf" fed-batch approach to aerobic bacterial cultivation for recombinant protein subunit vaccine manufacturing is presented. In this approach, changes in the dissolved oxygen levels are used to adjust the nutrient feed rate (DO-stat), so that the desired dissolved oxygen level is maintained throughout cultivation. This enables high Escherichia coli cell densities and recombinant protein titers. When coupled to a kLa-matched scale-down model, process performance is shown to be consistent at the 2L, 20L, and 200L scales for two recombinant E. coli strains expressing different protein subunit vaccine candidates. Additionally, by mining historical DO-stat nutrient feeding data, a method to transition from DO-stat to a pre-determined feeding profile suitable for larger manufacturing scales without using feedback control is demonstrated at the 2L, 20L, and 200L scales.

  1. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-07-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 %) was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  2. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-05-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 52 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94%) was affiliated with the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  3. Effect of linear alkylbenzene sulfonates on the growth of aerobic heterotrophic cultivable bacteria isolated from an agricultural soil.

    PubMed

    Sánchez-Peinado, María del Mar; González-López, Jesús; Rodelas, Belén; Galera, Vanesa; Pozo, Clementina; Martínez-Toledo, María Victoria

    2008-08-01

    An enrichment culture technique was used to isolate soil bacteria capable of growing in the presence of two different concentrations of linear alkylbenzene sulfonates (LAS) (10 and 500 microg ml(-1)). Nine bacterial strains, representatives of the major colony types of aerobic heterotrophic cultivable bacteria in the enriched samples, were isolated and subsequently identified by PCR-amplification and partial sequencing of the 16S rRNA gene. Amongst the isolates, strains LAS05 (Pseudomonas syringae), LAS06 (Staphylococcus epidermidis), LAS07 (Delftia tsuruhatensis), LAS08 (Staphylococcus epidermidis) and LAS09 (Enterobacter aerogenes), were able to grow in pure culture in dialysed soil media amended with LAS (50 microg ml(-1)). The three Gram-negative strains grew to higher cell numbers in the presence of 50 microg ml(-1) of LAS, compared to LAS-unamended dialysed soil medium, and were selected for further testing of their ability to use LAS as carbon source. However, HPLC analysis of culture supernatants showed that the three strains can tolerate but not degrade LAS when grown in pure cultures. A higher concentration of soluble phosphates was recorded in dialysed soil media amended with LAS (50 microg ml(-1)) compared to unamended control media, suggesting an effect of the surfactant that enhanced the bioavailability of P from soil. The presence of LAS at a concentration of 50 microg ml(-1) had an important impact on growth of selected aerobic heterotrophic soil bacteria, a deleterious effect which may be relevant for the normal function and evolution of agricultural soil.

  4. Electrooptical monitoring of cell polarizability and cell size in aerobic Escherichia coli batch cultivations.

    PubMed

    Junne, Stefan; Nicolas Cruz-Bournazou, M; Angersbach, Alexander; Götz, Peter

    2010-09-01

    The time-dependent development of cell polarizability and length in Escherichia coli batch fermentations were observed at-line with electrooptical measurements. While using a measurement system with fully automated sample preparation, the development of these properties can be observed with a comparable high frequency (six measurements per hour). The polarizability as well as the mean cell length both increase soon after inoculation and then decline from the growth phase on until the stationary phase is reached. Based on the dynamic behavior of polarizability, the growth phase can be divided into four distinct stages. Changes in the cultivation temperature or the pre-cultivation conditions lead to alterations in the development of the polarizability and mean cell length. Based on the frequency disperse of polarizability measured at four different frequencies from 210 to 2,100 kHz, a prediction model is established that is based on the relation of the polarizability to the metabolic activity. Applying multi-linear partial least squares methods (N-PLS), the model is able to predict the specific acetate synthesis and uptake with a root mean square error of prediction of 0.19 (6% of the mean). The method represents a tool for characterization of different stages with respect to microbial metabolic activity and the energy balance during batch cultivations.

  5. Optimal cultivation of simultaneous ammonium and phosphorus removal aerobic granular sludge in A/O/A sequencing batch reactor and the assessment of functional organisms.

    PubMed

    Zhang, Cuiya; Zhang, Hanmin; Yang, Fenglin

    2014-08-01

    In this study, sequencing batch reactor (SBR) with an anaerobic/aerobic/anoxic operating mode was used to culture granular sludge. Optimal adjustment of cycle duration was achieved by the direction ofpH, oxidation reduction potential and dissolved oxygen parameters. The results showed that the treating efficiency was significantly improved as the cycle was shortened from 450 to 360 min and further to 200 min. Nitrogen and phosphorus removal were nearly quantitative after 50 days operation and maintained stable to the end of the study period. The typical cycle tests revealed that simultaneous denitrification and phosphorus removal occurred when aerobic granules were gradually formed. The nitrite effect tests showed that less than 4.8 mg N/L of the nitrite could enhance superficial specific aerobic phosphate uptake rate (SAPUR) under aerobic condition, indicating that the traditional method to evaluate the capability of total phosphate-accumulating organisms (PAOs) was inaccurate. Additionally, a high level of nitrite was detrimental to PAOs. A novel method was developed to determine the activity of each kind of PAOs and other denitrifying organisms. The results showed that (1) nitrate, besides nitrite, could also enhance SAPUR and (2) aerobic granular sludge could perform denitrification even when phosphate was not supplied under anoxic condition, suggesting that other denitrifying organisms besides denitrifying phosphate-accumulating organisms also contributed to denitrification.

  6. Permeability of currently available microtiter plate sealing tapes fail to fulfil the requirements for aerobic microbial cultivation.

    PubMed

    Sieben, Michaela; Giese, Heiner; Grosch, Jan-Hendrik; Kauffmann, Kira; Büchs, Jochen

    2016-12-01

    Microtiter plate (MTP) sealing tapes are commonly applied in bioprocess development and high throughput screening in order to maintain sterile conditions and avoid liquid evaporation. However, only a few of the commercially available sealing tapes are adequately characterized to guarantee both minimal evaporation and sufficient oxygen supply for aerobic cultivation. Therefore, 12 commercially available sealing tapes are analyzed concerning their water vapor and oxygen permeability. The water vapor permeability is assessed by gravimetrically quantifying the liquid loss due to evaporation. Thereby, the sealing tapes are revealed significant differences. Highly permeable sealing tapes are resulted in liquid loss of up to 25% of the initial filling volume after 8 h at 37°C and 45% ambient humidity. Additionally, the tremendous impact of evaporative cooling on the liquid temperature is detected discovering deviations of up to 3.8°C from the set temperature. The oxygen permeability is assessed by measuring the oxygen transfer rate (OTR). Three out of the 12 tested sealing tapes are impermeable to oxygen while the remaining sealing tapes are ensured sufficient oxygen supply. As a result, all examined sealing tapes are inadequate with respect to either water or oxygen permeation. Based on these novel experimental results, prospective improvements of MTP sealing tapes are presented using a model approach.

  7. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica.

    PubMed

    Pinheiro, Guilherme L; Correa, Raquel F; Cunha, Raquel S; Cardoso, Alexander M; Chaia, Catia; Clementino, Maysa M; Garcia, Eloi S; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes.

  8. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica

    PubMed Central

    Pinheiro, Guilherme L.; Correa, Raquel F.; Cunha, Raquel S.; Cardoso, Alexander M.; Chaia, Catia; Clementino, Maysa M.; Garcia, Eloi S.; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes. PMID:26347735

  9. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  10. Culture-independent analysis of bacterial fuel contamination provides insight into the level of concordance with the standard industry practice of aerobic cultivation.

    PubMed

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M; Weightman, Andrew J; Mahenthiralingam, Eshwar

    2011-07-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by "JW") was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas.

  11. Culture-Independent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation ▿ †

    PubMed Central

    White, Judith; Gilbert, Jack; Hill, Graham; Hill, Edward; Huse, Susan M.; Weightman, Andrew J.; Mahenthiralingam, Eshwar

    2011-01-01

    Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by “JW”) was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. PMID:21602386

  12. Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge.

    PubMed

    Huang, Wenli; Cai, Wei; Huang, He; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-01-01

    Phosphorus (P) recovery from sewage sludge is necessary for a sustainable development of the environment and thus the society due to gradual depletion of non-renewable P resources. Aerobic granular sludge is a promising biotechnology for wastewater treatment, which could achieve P-rich granules during simultaneous nitrification and denitrification processes. This study aimed to disclose the changes in inorganic and organic P species and their correlation with P mobility and bio-availability in aerobic granules. Two identical square reactors were used to cultivate aerobic granules, which were operated for 120 days with influent ammonia nitrogen (NH₄-N) of 100 mg/L before day 60 and then increased to 200 mg/L during the subsequent 60 days (chemical oxygen demand (COD) was kept constant at 600 mg/L). The aerobic granules exhibited excellent COD removal and nitrification efficiency. Results showed that inorganic P (IP) was about 61.4-67.7% of total P (TP) and non-apatite inorganic P (NAIP) occupied 61.9-70.2% of IP in the granules. The enrichment amount of NAIP and apatite P (AP) in the granules had strongly positive relationship with the contents of metal ions, i.e. Fe and Ca, respectively accumulated in the granules. X-ray diffraction (XRD) analysis and solution index calculation demonstrated that hydroxyapatite (Ca₅(PO₄)₃(OH)) and iron phosphate (Fe₇(PO₄)₆) were the major P minerals in the granules. Organic P (OP) content maintained around 7.5 mg per gram of biomass in the aerobic granules during the 120 days' operation. Monoester phosphate (21.8% of TP in extract), diester phosphate (1.8%) and phosphonate (0.1%) were identified as OP species by Phosphorus-31 nuclear magnetic resonance (³¹P NMR). The proportion of NAIP + OP to TP was about 80% in the granules, implying high potentially mobile and bio-available P was stored in the nitrifying aerobic granules. The present results provide a new insight into the characteristics of P species in aerobic

  13. [Research on Cultivation and Stability of Nitritation Granular Sludge in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Shen, Yao-liang; Li, Yue-han; Wang, Han-fang; Xu, Yue-zhong

    2015-11-01

    Abstract: The last two compartments of the Anaerobic Baffled Readtor ( ABR) were altered into aeration tank and sedimentation tank respectively to get an integrated anaerobic-aerobic reactor, using anaerobic granular sludge in anaerobic zone and aerobic granular sludge in aerobic zone as seed sludge. The research explored the condition to cultivate nitritation granular sludge, under the condition of continuous flow. The C/N rate was decreased from 1 to 0.4 and the ammonia nitrogen volumetric loading rate was increased from 0.89 kg x ( m3 x d)(-1) to 2.23 kg x (m3 x d)(-1) while the setting time of 1 h was controlled in the aerobic zone. After the system was operated for 45 days, the mature nitritation granular sludge in aerobic zone showed a compact structure and yellow color while the nitrite accumulation rate was about 80% in the effluent. The associated inhibition of free ammonia (FA) and free nitrous acid (FNA) dominated the nitritation. Part of granules lost stability during the initial period of operation and flocs appeared in the aerobic zone. However, the flocs were transformed into newly generated small particles in the following reactor operation, demonstrating that organic carbon was benefit to granulation and the enrichment of slow-growing nitrifying played an important role in the stability of granules.

  14. Partial nitrifying granule stimulated by struvite carrier in treating pharmaceutical wastewater.

    PubMed

    Wang, Guowen; Wang, Dong; Xu, Xiaochen; Yang, Fenglin

    2013-10-01

    Aerobic granule was successfully cultivated in SBR (sequencing batch reactor) by struvite carrier (magnesium ammonium phosphate, MgNH4PO4), which can increase polysaccharides to 42.2 mg/gMLVSS (mixed liquor volatile suspended solid) versus only 28.4 mg/gMLVSS of the sludge without it. Meanwhile, it was found that struvite play a positive role in initial granulation and bacterial group distribution in treating pharmaceutical wastewater, involving effect of solid surface and special contents of struvite. The results of fluorescence in situ hybridization technique indicate that ammonia-oxidizing bacteria can dominate over nitrite-oxidizing bacteria in mature granules. COD removal efficiency of 90 % and NO2 (-)-N:(NO2 (-)-N + NO3 (-)-N) accumulation efficiency of 89 % were achieved in stable state. Emphasis is placed on that struvite addition can be applied as a new-type carrier to promote formation of partial nitrification granular sludge.

  15. Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch cultivation at specific trace element limitation.

    PubMed

    Urit, Thanet; Stukert, Anton; Bley, Thomas; Löser, Christian

    2012-12-01

    Kluyveromyces marxianus is able to transform lactose into ethyl acetate as a bulk product which offers a chance for an economical reuse of whey-borne sugar. Ethyl acetate is highly volatile and allows its process-integrated recovery by stripping from the aerated bioreactor. Extensive formation of ethyl acetate by K. marxianus DSM 5422 required restriction of yeast growth by a lack of trace elements. Several aerobic batch processes were done in a 1-L stirred reactor using whey-borne culture medium supplemented with an individual trace element solution excluding Mn, Mo, Fe, Cu, or Zn for identifying the trace element(s) crucial for the observed ester synthesis. Only a lack of Fe, Cu, or Zn restricted yeast growth while exclusion of Mn and Mo did not exhibit any effect due to a higher amount of the latter in the used whey. Limitation of growth by Fe or Cu caused significant production of ethyl acetate while limitation by Zn resulted in formation of ethanol. A lack of Fe or Cu obviously makes the respiratory chain inefficient resulting in an increased mitochondrial NADH level followed by a reduced metabolic flux of acetyl-SCoA into the citrate cycle. Synthesis of ethyl acetate from acetyl-SCoA and ethanol by alcoholysis is thus interpreted as an overflow metabolism.

  16. Cultivation and detection of endophytic aerobic methanotrophs isolated from Sphagnum species as a perspective for environmental biotechnology

    PubMed Central

    2014-01-01

    Enriched cultures of microorganisms are an essential step in the production of inoculum of these organisms for biotechnology and bioengineering. The potential application of methanotrophic microorganisms for removal of methane produced from landfills and coal mines as well as biodegradation of toxic compounds has been widely studied. Therefore, searching for new sources of methanotrophs can contribute to increasing the possibilities of biotechnology and bioengineering. Enrichment cultures of endophytic methanotrophs from Sphagnum sp. were initiated in NMS medium, a most widely used medium for cultivation of methanotrophic bacteria from various environments proposed in 1970 by Whittenbury. Incubation was carried out at 10, 20, 30, and 37°C with vigorous shaking on a shaker (180 rpm). The source of carbon and energy for endophytes were methane at the concentration range between 1-20%. It appeared that the consortium of endophytic bacteria grew only at the temperature of 20 and 30°C. During the culture of endophytes, the measurements of gas concentration showed a steady loss of methane and oxygen, as well as accumulation of carbon dioxide as a CH4 oxidation product. The use of FISH has made characterization of endophytic consortia possible. It turned out that the population of endophytes consists of type I and II methanotrophs as well as associated non-methanotrophic bacteria. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged up to 4,7 μMCH4 per ml of the population of endophytes per day. PMID:25401064

  17. Granulator Selection

    SciTech Connect

    Gould, T H; Armantrout, G

    1999-08-02

    Following our detailed review of the granulation reports and additional conversations with process and development personnel, we have reached a consensus position regarding granulator selection. At this time, we recommend going forward with implementation of the tumbling granulator approach (GEMCO) based on our assessment of the tested granulation techniques using the established criteria. The basis for this selection is summarized in the following sections, followed by our recommendations for proceeding with implementation of the tumbling granulation approach. All five granulation technologies produced granulated products that can be made into acceptable sintered pucks. A possible exception is the product from the fluidized bed granulator. This material has been more difficult to press into uniform pucks without subsequent cracking of the puck during the sintering cycle for the pucks in this series of tests. This problem may be an artifact of the conditions of the particular granulation demonstration run involved, but earlier results have also been mixed. All granulators made acceptable granulated feed from the standpoint of transfer and press feeding, though the roller compactor and fluidized bed products were dustier than the rest. There was also differentiation among the granulators in the operational areas of (1) potential for process upset, (2) plant implementation and operational complexity, and (3) maintenance concerns. These considerations will be discussed further in the next section. Note that concerns also exist regarding the extension of the granulation processes to powders containing actinides. Only the method that involves tumbling and moisture addition has been tested with uranium, and in that instance, significant differences were found in the granulation behavior of the powders.

  18. [Start-up and operation characteristics of aerobic granular short-cut nitrification process].

    PubMed

    Yang, Yang; Zuo, Jian-E; Bu, De-Hua; Gu, Xia-Sheng

    2007-11-01

    In a lab-scale aerated upflow sludge bed (AUSB) reactor inoculated with the mixture of anaerobic granular sludge and aerobic sludge, using synthetic ammonia-rich wastewater as influent, aerobic short-cut nitrification granules were cultivated. After that, the short-cut nitrification reactor could be operated stably with very high efficiency under mesophilic condition (30 approximately 35 degrees C), and the influent loading rate (NH4(+) -N) could reach 2.5 approximately 3.0 kg/(m3 x d). The ammonia removal efficiency and the short-cut nitrification ratio (NO2(-)/NOx(-)) were above 90% respectively. Some organic COD (about 100 mg/L) existed in the influent had no obvious effects on the operation of the short-cut nitrification process. The short-cut nitrification reactor could also be operated stably with very high efficiency under ambient temperature (about 20 degrees C).

  19. Acetate favors more phosphorus accumulation into aerobic granular sludge than propionate during the treatment of synthetic fermentation liquor.

    PubMed

    Cai, Wei; Huang, Wenli; Li, Huifang; Sun, Beina; Xiao, Huasheng; Zhang, Zhenya; Lei, Zhongfang

    2016-08-01

    Anaerobic digestion (AD) is an efficient biotechnology widely applied for energy and resource recovery from organic waste and wastewater treatment. The effluent from AD or fermentation liquor containing organic substances like volatile fatty acids (VFAs) and mineral nutrients (such as N and P), however, will trigger serious environmental issues if not properly dealt with. In this study two identical sequencing batch reactors (SBRs), namely Ra and Rp were used to cultivate aerobic granules for P recovery from synthetic fermentation liquor, respectively using acetate and propionate as additional carbon source. Larger and more stable granules were achieved in Ra with higher P removal capability (9.4mgP/g-VSS·d) and higher anaerobic P release (6.9mgP/g-VSS·h). In addition to much higher P content (78mgP/g-SS), bioavailable P in Ra-granules increased to 45mgP/g-SS, approximately 2-times those of seed sludge and Rp-granules. Microbial community analysis indicated that more GAOs were accumulated in Rp-granules.

  20. Twin screw granulation: steps in granule growth.

    PubMed

    Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2012-11-15

    The present work focuses on the study of the progression of granules in different compartments along the length of screws in a twin screw granulator (TSG). The effects of varying powder feed rate; liquid to solid ratio and viscosity of granulation liquid on properties of granules was studied. The bigger granules produced at the start of the process were found to change in terms of size, shape and strength along the screw length at all the conditions investigated. The granules became more spherical and their strength increased along the screw length. Tracer granules were also introduced in order to understand the role of kneading and conveying elements in the TSG. The kneading elements promoted consolidation and breakage while the conveying elements led to coalescence, breakage and some consolidation. The results presented here help to provide a qualitative and quantitative understanding of the twin screw granulation process.

  1. Isolation of chromaffin granules.

    PubMed

    Creutz, Carl E

    2010-09-01

    Adrenal medullary chromaffin granules (dense core secretory vesicles) have been a valuable model system for the study of the proteins and membrane components involved in the process of exocytosis. Because of the abundance of chromaffin granules in a readily available tissue source, bovine adrenal medullae, and their unique sedimentation properties, it is possible to obtain large quantities of highly purified granules and granule membranes in a short period of time. Two protocols are presented here for the isolation of chromaffin granules: a basic protocol based on differential centrifugation in an iso-osmotic medium that yields intact chromaffin granules, and an alternate protocol based on sedimentation through a density step gradient that provides a greater yield of more highly purified chromaffin granules. Since in the latter case the granules cannot be returned to a medium of physiological osmolarity without lysis after purification on the step gradient, the alternate protocol is more useful to obtain the granule membranes or contents for further study.

  2. Influence of an aniline supplement on the stability of aerobic granular sludge.

    PubMed

    Dai, Yajie; Jiang, Yixin; Su, Haijia

    2015-10-01

    In order to evaluate the stability of aerobic granules in a toxic environment, this study discussed the influence of an aniline supplement on the properties and microbial community of aerobic granules. In the early stages of sequencing batch reactor (SBR) operation, an aniline supplement slightly affected the properties of the aerobic granules (strength, growth rate, SVI and so on). This effect was thereafter removed because of a change in the microbial community and the structure of aerobic granules: with the present of aniline, microbes with biodegradation ability appeared and gathered in the aerobic granules and the aerobic granules densified and settled faster as their SVI decreased to 35 mL/g and settling velocity increased to 41.56 m/h. When a synthetic waste water containing acetate as carbon source was used as influent, aniline (10-500 mg/L) could be degraded in 6 h, at a rate as high as 37.5 mg aniline/(L·h), with a removal rate in excess of 90%, while the effluent COD fell below 100 mg/L from the initial about 2000 mg/L. The aerobic granules cultured by acetate were compact, stable and resistant to aniline.

  3. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  4. Granulation of fine powder

    DOEpatents

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  5. Excessive precipitation of CaCO₃ as aragonite in a continuous aerobic granular sludge reactor.

    PubMed

    Liu, Yong-Qiang; Lan, Gui-Hong; Zeng, Ping

    2015-10-01

    A hybrid airlift reactor was adopted to retain aerobic granules in the reactor successfully for continuous operation. It was found that aerobic granules maintained excellent physical structure stability in the continuous-flow reactor with reactor performance as good as batch operation. However, flocs appeared after batch operation was switched to continuous operation, and chemical oxygen demand (COD) in the wastewater was thus removed by co-existed granules and flocs in the reactor. Furthermore, excessive precipitation of CaCO3 as needled shaped aragonite in the continuous aerobic granular sludge reactor was observed, which led to the further enhancement of settling ability of granules with sludge volume index (SVI) reduction from 32 to 2 ml g(-1) but specific oxygen utilization rate (SOUR) decrease from 61 to 23 mg O2 g(-1) MLVSS h(-1). Thus, apart from the physical structure stability, bioactivity stability of granules should be also considered as an important parameter to evaluate the continuous operation of aerobic granular sludge. Furthermore, the decrease in granule polysaccharide content implied that protein was more important for aragonite precipitation. The excessive aragonite precipitation in the continuous-flow reactor could be due to the competition between flocs and granules. In addition, the degradation of polysaccharide in aerobic granules under a continuous-flow mode may also contribute to excessive aragonite precipitation.

  6. Assessment of bacterial and structural dynamics in aerobic granular biofilms

    PubMed Central

    Weissbrodt, David G.; Neu, Thomas R.; Kuhlicke, Ute; Rappaz, Yoan; Holliger, Christof

    2013-01-01

    Aerobic granular sludge (AGS) is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors (SBR) fed with synthetic wastewater, namely a bubble column (BC-SBR) operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR) and Competibacter (GAO-SBR) operated at steady-state. In the BC-SBR, granules formed within 2 weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37–79%) led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80–100%), nitrogen removal (43–83%), and high but unstable dephosphatation (75–100%) were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5%) were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56 ± 10%) that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37 ± 11%). Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant

  7. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  8. Understanding size enlargement and hardening of granules on tabletability of unlubricated granules prepared by dry granulation.

    PubMed

    Patel, Sarsvatkumar; Dahiya, Sandeepkumar; Sun, Changquan Calvin; Bansal, Arvind Kumar

    2011-02-01

    The mechanism of loss of "reworkability" or tabletability of dry granulated microcrystalline cellulose (MCC) was investigated in relation to both granule size enlargement and granule hardness. Slugs of MCC were prepared under three pressures (12.5, 37.5, and 93.8 MPa) and tabletability (tensile strength vs. pressure) of respective granules (three different sizes) was determined. Nominal single granule fracture strength and granule friability were measured. The reduction in tabletability was profound for harder granules, which were obtained from higher slugging pressure. This is consistent with their ability to resist granule fragmentation during tableting. Variation in granule size exhibits negligible effect on tabletability for the lowest slugging pressure and only a small effect for the middle and highest slugging pressure. This observation is again related to different tendency to granule fragmentation during compaction. The results suggest that granule-hardening negatively affects tensile strength more than that of granule size enlargement for MCC.

  9. Characterization of aerobic granular sludge treating high strength agro-based wastewater at different volumetric loadings.

    PubMed

    Abdullah, Norhayati; Yuzir, Ali; Curtis, Thomas P; Yahya, Adibah; Ujang, Zaini

    2013-01-01

    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.

  10. Inferred properties of stellar granulation

    SciTech Connect

    Gray, D.F.; Toner, C.G.

    1985-06-01

    Apparent characteristics of stellar granulation in F and G main-sequence stars are inferred directly from observed spectral-line asymmetries and from comparisons of numerical simulations with the observations: (1) the apparent granulation velocity increases with effective temperature, (2) the dispersion of granule velocities about their mean velocity of rise increases with the apparent granulation velocity, (3) the mean velocity of rise of granules must be less than the total line broadening, (4) the apparent velocity difference between granules and dark lanes corresponds to the granulation velocity deduced from stellar line bisectors, (5) the dark lanes show velocities of fall approximately twice as large as the granule rise velocities, (6) the light contributed to the stellar flux by the granules is four to ten times more than the light from the dark lanes. Stellar rotation is predicted to produce distortions in the line bisectors which may give information on the absolute velocity displacements of the line bisectors. 37 references.

  11. Effect of iron ions (Fe(2+), Fe(3+)) on the formation and structure of aerobic granular sludge.

    PubMed

    Yilmaz, Gulsum; Bozkurt, Umit; Magden, Karin Aleksanyan

    2017-02-01

    Aerobic granulation is a promising technology for wastewater treatment, but problems regarding its formation and stability need to be solved. Divalent metal ions, especially Ca(2+), Mg(2+) and Mn(2+), have been demonstrated to play an important role in the process of aerobic granulation. Here, we studied whether iron ions can affect aerobic granulation. Granular sludge formed without iron ion addition (<0.02 mg Fe(2+) L(-1)) was fluffy and had a finger-type structure and filamentous out-growth. The addition of iron ions to concentrations of 1 and 10 mg Fe(2+) L(-1) repressed the finger-type structure and filamentous out-growth. The results show that chemical precipitation in the granules with iron ion addition was higher than that in the granules without ferrous addition. The amount of precipitates was higher inside the granules than outside. This study demonstrates that iron ions (Fe(2+)/Fe(3+)) increase the size and stability of aerobic granular sludge but do not affect the granulation time, which is the time that the first granular sludge is observed. The study shows that aerobic granular sludge technology can be confidently applied to actual wastewater containing a high concentration of iron compounds.

  12. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules.

    PubMed

    Xu, Heng; Gong, Shufen; Sun, Yuanzi; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-01-01

    Hydrogenotrophic methanogenesis has been proved to be a feasible biological method for biogas upgrading. To improve its performance, the feasibility of typical anaerobic granules as the inoculum was investigated in both batch and continuous experiments. The results from batch experiments showed that glucose-acclimated granules seemed to perform better than granules acclimated to acidified products (AP, i.e. acetate, propionate and ethanol) in in situ biogas upgrading systems and a slightly higher H2 consumption rate (1.5 mmol H2 g VSS(-1) h(-1)) was obtained for glucose-acclimated granules. For AP-acclimated granules, the inhibition on anaerobic digestion and pH increase (up to 9.55±0.16) took place, and the upgrading performance was adversely affected. In contrast, better performance for AP-acclimated granules was observed in ex situ systems, possibly due to their higher hydrogenotrophic methanogenic activities (HMA). Moreover, when gas-liquid mass transfer limitations were alleviated, the upgrading performance was significantly improved (three-fold) for both glucose-acclimated and AP-acclimated granules. The HMA of anaerobic granules could be further enhanced to improve biogas upgrading performance via continuous cultivation with H2/CO2 as the sole substrate. During the three months' cultivation, secondary granulation and microbial population shift were observed, but anaerobic granules still remained intact and their HMA increased from 0.2 to 0.6 g COD g VSS(-1) d(-1). It indicated that the formation of hydrogenotrophic methanogenic granules, a new type of anaerobic granules specialized for high-rate hydrogenotrophic methanogenesis and biogas upgrading, might be possible. Conclusively, anaerobic granules showed great potential for biogas upgrading.

  13. Earthworm-produced calcite granules: A new terrestrial palaeothermometer?

    NASA Astrophysics Data System (ADS)

    Versteegh, Emma A. A.; Black, Stuart; Canti, Matthew G.; Hodson, Mark E.

    2013-12-01

    In this paper we show for the first time that calcite granules, produced by the earthworm Lumbricus terrestris, and commonly recorded at sites of archaeological interest, accurately reflect temperature and soil water δ18O values. Earthworms were cultivated in an orthogonal combination of two different (granule-free) soils moistened by three types of mineral water and kept at three temperatures (10, 16 and 20 °C) for an acclimatisation period of three weeks followed by transfer to identical treatments and cultivation for a further four weeks. Earthworm-secreted calcite granules were collected from the second set of soils. δ18O values were determined on individual calcite granules (δ18Oc) and the soil solution (δ18Ow). The δ18Oc values reflect soil solution δ18Ow values and temperature, but are consistently enriched by 1.51 (± 0.12)‰ in comparison to equilibrium in synthetic carbonates. The data fit the equation 1000 ln α = [20.21 ± 0.92] (103 T-1) - [38.58 ± 3.18] (R2 = 0.95; n = 96; p < 0.0005). As the granules are abundant in modern soils, buried soils and archaeological contexts, and can be dated using U-Th disequilibria, the developed palaeotemperature relationship has enormous potential for application to Holocene and Pleistocene time intervals.

  14. Apparatus for granulating coal

    SciTech Connect

    Ogino, E.; Harada, K.; Yoshii, N.

    1983-08-30

    A granulating apparatus is disclosed comprising a stirring tank or a duct for containing a slurry particulate to granular coal having a binder incorporated therein, a rotary shaft disposed in the tank or duct and at least one agitating blade made of metal netting and attached to the rotary shaft.

  15. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  16. Microbial Composition and Structure of Aerobic Granular Sewage Biofilms▿

    PubMed Central

    Weber, S. D.; Ludwig, W.; Schleifer, K.-H.; Fried, J.

    2007-01-01

    Aerobic activated sludge granules are dense, spherical biofilms which can strongly improve purification efficiency and sludge settling in wastewater treatment processes. In this study, the structure and development of different granule types were analyzed. Biofilm samples originated from lab-scale sequencing batch reactors which were operated with malthouse, brewery, and artificial wastewater. Scanning electron microscopy, light microscopy, and confocal laser scanning microscopy together with fluorescence in situ hybridization (FISH) allowed insights into the structure of these biofilms. Microscopic observation revealed that granules consist of bacteria, extracellular polymeric substances (EPS), protozoa and, in some cases, fungi. The biofilm development, starting from an activated sludge floc up to a mature granule, follows three phases. During phase 1, stalked ciliated protozoa of the subclass Peritrichia, e.g., Epistylis spp., settle on activated sludge flocs and build tree-like colonies. The stalks are subsequently colonized by bacteria. During phase 2, the ciliates become completely overgrown by bacteria and die. Thereby, the cellular remnants of ciliates act like a backbone for granule formation. During phase 3, smooth, compact granules are formed which serve as a new substratum for unstalked ciliate swarmers settling on granule surfaces. These mature granules comprise a dense core zone containing bacterial cells and EPS and a loosely structured fringe zone consisting of either ciliates and bacteria or fungi and bacteria. Since granules can grow to a size of up to several millimeters in diameter, we developed and applied a modified FISH protocol for the study of cryosectioned biofilms. This protocol allows the simultaneous detection of bacteria, ciliates, and fungi in and on granules. PMID:17704280

  17. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.

    PubMed

    Wu, Chang-Yong; Peng, Yong-Zhen; Wang, Ran-Deng; Zhou, Yue-Xi

    2012-02-01

    The granulation of activated sludge was investigated using two parallel sequencing batch reactors (SBRs) operated in biological nitrogen and phosphorus removal conditions though the reactor configuration and operating parameters did not favor the granulation. Granules were not observed when the SBR was operated in biological nitrogen removal period for 30d. However, aerobic granules were formed naturally without the increase of aeration intensity when enhanced biological phosphorus removal (EBPR) was achieved. It can be detected that plenty of positive charged particles were formed with the release of phosphorus during the anaerobic period of EBPR. The size of the particles was about 5-20 μm and their highest positive ζ potential was about 73 mV. These positive charged particles can stimulate the granulation. Based on the experimental results, a hypothesis was proposed to interpret the granulation process of activated sludge in the EBPR process in SBR. Dense and compact subgranules were formed stimulated by the positive charged particles. The subgranules grew gradually by collision, adhesion and attached growth of bacteria. Finally, the extrusion and shear of hydrodynamic shear force would help the maturation of granules. Aerobic granular SBR showed excellent biological phosphorus removal ability. The average phosphorus removal efficiency was over 95% and the phosphorus in the effluent was below 0.50 mg L(-1) during the operation.

  18. Ultrastructure and cytochemistry of lipid granules in the many-celled magnetotactic prokaryote, 'Candidatus Magnetoglobus multicellularis'.

    PubMed

    Silva, Karen Tavares; Abreu, Fernanda; Keim, Carolina N; Farina, Marcos; Lins, Ulysses

    2008-12-01

    Conspicuous cytoplasmic granules are reported in a magnetotactic multicellular prokaryote named 'Candidatus Magnetoglobus multicellularis'. Unfortunately, this microorganism, which consists of an assembly of gram-negative bacterial cells, cannot yet be cultivated, limiting the biochemical analysis of the granules and preventing in vitro studies with starvation/excess of nutrients. In this scenario, light and electron microscopy techniques were used to partially address the nature of the granules. Besides magnetosomes, three types of inclusions were observed: small (mean diameter=124 nm) polyhydroxyalkanoate-like (PHA) granules, large (diameters ranging from 0.11 to 2.5 microm) non-PHA lipid granules, and rare phosphorus-rich granules, which probably correspond to polyphosphate bodies. The PHA granules were rounded in projection, non-reactive with OsO(4), and suffered the typical plastic deformation of PHAs after freeze fracturing. The nature of the large granules, consisting of round globular structures (mean diameter=0.76 microm), was classified as non-PHA based on the following data: (a) multilayered structure in freeze-fracture electron microscopy, typical of non-PHA lipids; (b) Nile blue fluorescence imaging detected non-PHA lipids; (c) imidazole buffered osmium tetroxide and ruthenium red cytochemistry stained the globules, which appeared as electron-dense granules instead of electron lucent as PHAs do. Most likely, 'Candidatus Magnetoglobus multicellularis' stores carbon mainly as unusual lipid granules, together with smaller amounts of PHAs.

  19. Characterization of canine neutrophil granules.

    PubMed Central

    O'Donnell, R T; Andersen, B R

    1982-01-01

    The purpose of this study was to isolate distinct populations of canine neutrophil granules and to compare them with neutrophil granules from other species. Size, shape, density, and content of canine neutrophil granules were determined. Neutrophils obtained by Ficoll-Hypaque sedimentation were homogenized, and granule populations were separated by isopycnic centrifugation on a linear sucrose gradient (rho, 1.14 to 1.22 g/ml). The most dense granule population (rho, 1.197 g/ml) contained all of the myeloperoxidase, beta-glucuronidase, and elastase, more than half of the acid beta-glycerophosphatase, and most of the lysozyme. The population with intermediate density (rho, 1.179 g/ml) contained lactoferrin, vitamin B12-binding protein, and the remainder of the acid beta-glycerophosphatase and lysozyme. The least dense granule population did not contain a major peak of any of the enzymes or binding proteins tested but was distinguished by density and morphology. The size and shape of the granules were determined from scanning electron micrographs and assessment of shape was aided by transmission electron micrographs. By these methods three populations of canine neutrophil granules were characterized and named: myeloperoxidase granules, vitamin B12-binding protein granules, and low-density granules. Images PMID:6292095

  20. Granulation of increasingly hydrophobic formulations using a twin screw granulator.

    PubMed

    Yu, Shen; Reynolds, Gavin K; Huang, Zhenyu; de Matas, Marcel; Salman, Agba D

    2014-11-20

    The application of twin screw granulation in the pharmaceutical industry has generated increasing interest due to its suitability for continuous processing. However, an understanding of the impact of formulation properties such as hydrophobicity on intermediate and finished product quality has not yet been established. Hence, the current work investigated the granulation behaviour of three formulations containing increasing amounts of hydrophobic components using a Consigma™-1 twin screw granulator. Process conditions including powder feed rate, liquid to solid ratio, granulation liquid composition and screw configuration were also evaluated. The size of the wet granules was measured in order to enable exploration of granulation behaviour in isolation without confounding effects from downstream processes such as drying. The experimental observations indicated that the granulation process was not sensitive to the powder feed rate. The hydrophobicity led to heterogeneous liquid distribution and hence a relatively large proportion of un-wetted particles. Increasing numbers of kneading elements led to high shear and prolonged residence time, which acted to enhance the distribution of liquid and feeding materials. The bimodal size distributions considered to be characteristic of twin screw granulation were primarily ascribed to the breakage of relatively large granules by the kneading elements.

  1. Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil.

    PubMed

    Martino, Lucrezia; Cruz, Madalena V; Scoma, Alberto; Freitas, Filomena; Bertin, Lorenzo; Scandola, Mariastella; Reis, Maria A M

    2014-11-01

    Used cooking oil (UCO) was employed as the sole carbon source for the production of polyhydroxybutyrate (PHB) by cultivation in batch mode of Cupriavidus necator DSM 428. The produced biomass was used for extraction of the PHB granules with a solvent-free approach using sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), and the enzyme Alcalase in an aqueous medium. The recovered PHB granules showed a degree of purity higher than 90% and no crystallization (i.e., granules were recovered in their 'native' amorphous state) as demonstrated by wide angle X-ray diffraction (WAXS). Granules were characterized according to their thermal properties and stability by differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Results show that UCO can be used as a renewable resource to produce amorphous PHB granules with excellent properties in a biocompatible manner.

  2. Granulation techniques and technologies: recent progresses

    PubMed Central

    Shanmugam, Srinivasan

    2015-01-01

    Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations. PMID:25901297

  3. A comparison of granules produced by high-shear and fluidized-bed granulation methods.

    PubMed

    Morin, Garett; Briens, Lauren

    2014-08-01

    Placebo granules were manufactured by both wet high-shear and fluidized-bed techniques. The granules were compared based on size, shape, surface morphology, and a variety of different flowability measurements. This comparison showed that granule formation and growth were different, with induction growth for high-shear granulation and steady growth for fluidized-bed granulation. Final granules from high-shear granulation were more spherical and dense compared with the irregular granules from fluidized-bed granulation. The high-shear granules demonstrated better overall flow properties.

  4. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  5. Mesostructure of the Solar Granulation

    NASA Astrophysics Data System (ADS)

    Abdussamatov, H. I.

    2000-03-01

    Quasi-periodic variations in the thermodynamic and hydrodynamic fine-structure properties of the granulation field along the photospheric surface are estimated quantitatively. The darkest vast intergranular lanes, called the intergranular knots, are the most important indicator of their physical properties. The formulated new definitions of "granule" and "intergranular lane" require a revision of the previous results. The definition of mesogranulation is given, and the method of its detection in the granulation field is described. The following important quantitative results, which established the extent and nature of the physical relationship between the granulation and mesogranulation fields, have been obtained for the first time: (1) the intensity amplitude of granules in mesogranules (Delta I(gr)/I_0)_msgr = +10.3% is a factor of 1.4 larger than that of granules in intermesogranular regions [(Delta I(gr)/I_0)_imsgr = +7.3%], whereas the intensity amplitude of intergranular lanes in mesogranules [(Delta I(igr)/I_0)_msgr = -6.0%] is a factor of 1.4 smaller than that of intergranular lanes in intermesogranular regions [(Delta I(igr)/I_0)_imsgr = -8.4%]; (2) the mean intensities of photospheric granules and intergranular lanes are (Delta I(gr)/I_0)_phot = +9.2% and (Delta I(igr)/I_0)_phot = -7.5%, respectively; (3) granules cover 59% of the area of mesogranules, 45% of the area of the photosphere, and 31% of the area of intermesogranular regions, while intergranular lanes cover 41, 55, and 69% of these areas, respectively; (4) intergranular knots and bright granules virtually never formed and do not exist in mesogranules and intermesogranular regions, respectively; (5) the amplitudes of intensity fluctuations in mesogranules and intermesogranular regions, as well as the areas occupied by them (49.4 and 50.6%, respectively), essentially level off, Delta I(msgr)/I_0 = +3.6% and Delta I(imsgr)/I_0 = -3.5%, respectively.

  6. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  7. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  8. Process optimization for continuous extrusion wet granulation.

    PubMed

    Tan, Li; Carella, Anthony J; Ren, Yukun; Lo, Julian B

    2011-08-01

    Three granulating binders in high drug-load acetaminophen blends were evaluated using high shear granulation and extrusion granulation. A polymethacrylate binder enhanced tablet tensile strength with rapid disintegration in simulated gastric fluid, whereas polyvinylpyrrolidone and hydroxypropyl cellulose binders produced less desirable tablets. Using the polymethacrylate binder, the extrusion granulation process was studied regarding the effects of granulating liquid, injection rate and screw speed on granule properties. A full factorial experimental design was conducted to allow the statistical analysis of interactions between extrusion process parameters. Response variables considered in the study included extruder power consumption (screw loading), granule bulk/tapped density, particle size distribution, tablet hardness, friability, disintegration time and dissolution.

  9. Formation of secretory granules by chromogranins.

    PubMed

    Inomoto, Chie; Osamura, Robert Yoshiyuki

    2009-12-01

    This review article covers the molecular mechanisms of secretory granule formation by chromogranin transfection. Recently, a few investigators have reported that the transfection of chromogranin A and B produces the structures of secretory granules. We used the GFP-chromogranin A transfection method to nonendocrine cells, COS-7 cells, which are not equipped with secretory granules. Despite the absence of endogenous secretory granules in nontransfected COS-7 cells, COS-7 cells transfected with chromogranin A contained granule-like structures in electron micrographs. The granules were composed of an outer limiting membrane with core structures that were interpreted as secretory granules. Human chromogranin A (CgA) labeled with 5-nm gold particles was present in several dense-core granules in our previous electron microscopy study. This review depicts the role of chromogranin A in the formation of secretory granules. It emphasizes the application of recently developed new technologies and the genesis of secretory granules.

  10. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation.

    PubMed

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie; Toiviainen, Maunu; De Leersnyder, Fien; Vercruysse, Jurgen; Juuti, Mikko; Ketolainen, Jarkko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2016-07-30

    Twin-screw granulation is a promising wet granulation technique for the continuous manufacturing of pharmaceutical solid dosage forms. A twin screw granulator displays a short residence time. Thus, the solid-liquid mixing must be achieved quickly by appropriate arrangement of transport and kneading elements in the granulator screw allowing the production of granules with a size distribution appropriate for tableting. The distribution of residence time and granulation liquid is governed by the field conditions (such as location and length of mixing zones) in the twin-screw granulator, thus contain interesting information on granulation time, mixing and resulting sub-processes such as wetting, aggregation and breakage. In this study, the impact of process (feed rate, screw speed and liquid-to-solid ratio) and equipment parameters (number of kneading discs and stagger angle) on the residence time (distribution), the granulation liquid-powder mixing and the resulting granule size distributions during twin-screw granulation were investigated. Residence time and axial mixing data was extracted from tracer maps and the solid-liquid mixing was quantified from moisture maps, obtained by monitoring the granules at the granulator outlet using near infra-red chemical imaging (NIR-CI). The granule size distribution was measured using the sieving method. An increasing screw speed dominantly reduced the mean residence time. Interaction of material throughput with the screw speed and with the number of kneading discs led to most variation in the studied responses including residence time and mixing capacity. At a high screw speed, granulation yield improved due to high axial mixing. However, increasing material throughput quickly lowers the yield due to insufficient mixing of liquid and powder. Moreover, increasing liquid-to-solid ratio resulted in more oversized granules, and the fraction of oversized granules further increased at higher throughput. Although an increasing number

  11. Optimized hydraulic retention time for phosphorus and COD removal from synthetic domestic sewage with granules in a continuous-flow reactor.

    PubMed

    Li, Dong; Lv, Yufeng; Cao, Meizhong; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In continuous-flow reactor (CFR), suboptimal hydraulic retention time (HRT) can affect the substrate loading, anaerobic time and aerobic time and further affect the performance and characteristics of granules, thus different HRTs (7.5, 6.0, 4.5 and 5.2h) were tested to improve the phosphorus (P) and carbon (COD) removal of the continuous-flow system with granules in this study. When HRT was below 6.0h, the COD removal efficiency in anaerobic zone and the P removal efficiency in aerobic zone reduced obviously, and the settling ability of EBPR granules deteriorated. The residual COD in anaerobic zone resulted in the proliferation of filamentous bacteria on the granules surface. Pyrosequencing analysis revealed that Proteobacteria was the dominant phylum in this system. The dominant class transformed from Betaproteobacteria to Gammaproteobacteria when HRT was reduced from 6.0h to 4.5h.

  12. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  13. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142.

    PubMed Central

    Schneegurt, M A; Sherman, D M; Nayar, S; Sherman, L A

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms. Images PMID:8132452

  14. Physical properties and Extracellular Polymeric Substances pattern of aerobic granular sludge treating hypersaline wastewater.

    PubMed

    Corsino, Santo Fabio; Capodici, Marco; Torregrossa, Michele; Viviani, Gaspare

    2017-04-01

    The modification of the physical properties of aerobic granular sludge treating fish-canning wastewater is discussed in this paper. The structure and composition of the Extracellular Polymeric Substances (EPSs) were analyzed at different salinity levels and related to granules stability. Results outlined that the total EPSs content increased with salinity, despite the EPSs increment was not proportional to the salt concentration. Moreover, the EPSs structure was significantly modified by salinity, leading to a gradual increase of the not-bound EPSs fraction, which was close to the 50% of the total EPSs content at 75gNaClL(-1). The increasing salt concentration modified also the EPSs composition, causing the gradual reduction of protein content resulting in a decrease of granule hydrophobicity. The results pointed out that the granules stability significantly reduced above 50gNaClL(-1), suggesting the existence of a salinity threshold above which granules stability is compromised.

  15. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  16. Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater.

    PubMed

    Li, Yongmei; Zou, Jinte; Zhang, Lili; Sun, Jing

    2014-02-01

    Lab-scale experiments were conducted to investigate the aerobic granular sludge process for simultaneous phosphorus (P) accumulation by chemical precipitation and biological nitrogen removal via nitrite. The P-rich granules were successfully incubated in a sequencing batch reactor, in which simultaneous nitrification-denitrification occurred via nitrite. The average diameter of the P-rich granules was 2.47 mm and the P content in granules was much higher than that in other granular systems with enhanced biological phosphorus removal process. Filamentous bacteria (genus Thiothrix) in the granules and the long sludge retention time (30 d) of the granular system played a crucial role in accumulation of precipitated phosphate. X-ray diffraction analysis, scanning electron microscopy coupled with energy dispersive X-ray and the experimental design using response surface methodology confirmed that the main mineral patterns in P-rich granules were Ca-Mg phosphate and whitlockite.

  17. Extrusion granulation and high shear granulation of different grades of lactose and highly dosed drugs: a comparative study.

    PubMed

    Keleb, E I; Vermeire, A; Vervaet, C; Remon, Jean Paul

    2004-07-01

    Formulations containing different lactose grades, paracetamol, and cimetidine were granulated by extrusion granulation and high shear granulation. Granules were evaluated for yield, friability, and compressibility. Tablets were prepared from those granules and evaluated for tensile strength, friability, disintegration time, and dissolution. The different lactose grades had an important effect on the extrusion granulation process. Particle size and morphology affected powder feeding and power consumption, but had only a minor influence on the granule and tablet properties obtained by extrusion granulation. In contrast, the lactose grades had a major influence on the granule properties obtained by high shear granulation. Addition of polyvinylpyrrolidone (PVP) was required to process pure paracetamol and cimetidine by high shear granulation, whereas it was feasible to granulate these drugs without PVP by extrusion granulation. Granules prepared by extrusion granulation exhibited a higher yield and a lower friability than those produced by high shear granulation. Paracetamol and cimetidine tablets compressed from granules prepared by extrusion granulation showed a higher tensile strength, lower friability, and lower disintegration time than those prepared from granules produced by high shear granulation. Paracetamol tablets obtained via extrusion granulation exhibited faster dissolution than those obtained via high shear granulation. For all lactose grades studied, extrusion granulation resulted in superior granule and tablet properties in comparison with those obtained by high shear granulation. These results indicate that extrusion granulation is more efficient than high shear granulation.

  18. The biosynthesis of starch granules.

    PubMed

    Smith, A M

    2001-01-01

    Although composed simply of glucose polymers, the starch granule is a complex, semicrystalline structure. Much of this complexity arises from the fact that the two primary enzymes of synthesis-starch synthase and starch-branching enzyme-exist as multiple isoforms. Each form has distinct properties and plays a unique role in the synthesis of the two starch polymers, amylose and amylopectin. The debranching enzyme isoamylase also has a profound influence on the synthesis of amylopectin. Despite much speculation, no acceptable model to explain the interactions of all of these enzymes to produce amylose and amylopectin has thus far emerged. The organization of newly synthesized amylopectin to form the semicrystalline matrix of the granule appears to be a physical process, implying the existence of complex interactions between biological and physical processes at the surface of the growing granule. The synthesis of the amylose component occurs within the amylopectin matrix.

  19. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  20. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  1. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  2. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  3. Statistical analysis and comparison of a continuous high shear granulator with a twin screw granulator: Effect of process parameters on critical granule attributes and granulation mechanisms.

    PubMed

    Meng, Wei; Kotamarthy, Lalith; Panikar, Savitha; Sen, Maitraye; Pradhan, Shankali; Marc, Michaelis; Litster, James D; Muzzio, Fernando J; Ramachandran, Rohit

    2016-11-20

    This study is concerned with identifying the design space of two different continuous granulators and their respective granulation mechanisms. Performance of a continuous high shear granulator and a twin screw granulator with paracetamol formulations were examined by face-centered cubic design, which focused on investigating key performance metrics, namely, granule size, porosity, flowability and particle morphology of granules as a function of essential input process parameters (liquid content, throughput and rotation speed). Liquid and residence time distribution tests were also performed to gain insights into the liquid-powder mixing and flow behavior. The results indicated that continuous high shear granulation was more sensitive to process variation and produced spherical granules with monomodal size distribution and distinct internal structure and strength variation. Twin screw granulation with such a particular screw configuration showed narrower design space and granules were featured with multimodal size distribution, irregular shape, less detectible porosity difference and tighter range of strength. Granulation mechanisms explored on the basis of nucleation and growth regime maps revealed that for most cases liquid binder was uniformly distributed with fast droplet penetration into the powder bed and that granule consolidation and coalescence mainly took place in the nucleation, steady growth and rapid growth regimes.

  4. Rapid formation of nitrifying granules treating high-strength ammonium wastewater in a sequencing batch reactor.

    PubMed

    Chen, Fang-Yuan; Liu, Yong-Qiang; Tay, Joo-Hwa; Ning, Ping

    2015-05-01

    Short initial settling time and rapidly increased ammonium nitrogen loading were employed to cultivate nitrifying granular sludge treating inorganic wastewater with 1000 mg/L ammonium nitrogen. It was found that the nitrifying granule-dominant sludge was formed in a sequencing batch reactor (SBR) with influent ammonium concentration increased from 200 to 1000 mg N/L within 55 days. During the following 155-day operation period, nitrifying granules exhibited good performance with an ammonium removal efficiency of 99%. In the meantime, sludge volume index (SVI) decreased from 92 to 15 mL/g and the mean size of the nitrifying granules increased from 106 to 369 μm. Mixed liquor suspended solids (MLSS) decreased from the initial 6.4 to around 3 g/L during the granulation period and increased to over 10 g/L at the end of the operation. The long-term stability of nitrifying granules and the reactor performance were not negatively affected by inhibition from free ammonia (FA) and free nitrous acid (FNA) in this study. This makes the granule sludge technology promising in treating high-strength ammonium wastewater in practice.

  5. Cytoplasmic RNA Granules and Viral Infection

    PubMed Central

    Tsai, Wei-Chih; Lloyd, Richard E.

    2016-01-01

    RNA granules are dynamic cellular structures essential for proper gene expression and homeostasis. The two principle types of cytoplasmic RNA granules are stress granules (SGs), which contain stalled translation initiation complexes, and processing bodies (P-bodies, PBs), which concentrate factors involved in mRNA degradation. RNA granules are associated with gene silencing of transcripts, thus, viruses repress RNA granule functions to favor replication. This review discusses the breadth of viral interactions with cytoplasmic RNA granules, focusing on mechanisms that modulate the functions of RNA granules and that typically promote viral replication. Currently mechanisms for virus manipulation of RNA granules can be loosely grouped into three non-exclusive categories; i) cleavage of key RNA granule factors, ii) regulation of PKR activation and iii) co-opting RNA granule factors for new roles in viral replication. Viral repression of RNA granules supports productive infection by inhibiting their gene silencing functions and counteracting their role in linking stress sensing with innate immune activation. PMID:26958719

  6. Selective sorting of alpha-granule proteins.

    PubMed

    Italiano, J E; Battinelli, E M

    2009-07-01

    One of the main functions of blood platelets is to secrete a variety of substances that can modify a developing thrombus, regulate the growth of the vasculature, promote wound repair, and contribute to cell-adhesive events. A majority of this vast array of secreted proteins are stored in alpha-granules. Until recently, it was assumed that platelets contained one homogeneous population of alpha-granules that undergo complete de-granulation during platelet activation. This review focuses on the mechanisms of alpha-granule biogenesis and secretion, with a particular emphasis on recent findings that clearly demonstrate that platelets contain distinct subpopulations of alpha-granules that undergo differential release during activation. We consider the implications of this new paradigm of platelet secretion, discuss mechanisms of alpha-granule biogenesis, and review the molecular basis of transport and delivery of alpha-granules to assembling platelets.

  7. Principles and Properties of Stress Granules.

    PubMed

    Protter, David S W; Parker, Roy

    2016-09-01

    Stress granules are assemblies of untranslating messenger ribonucleoproteins (mRNPs) that form from mRNAs stalled in translation initiation. Stress granules form through interactions between mRNA-binding proteins that link together populations of mRNPs. Interactions promoting stress granule formation include conventional protein-protein interactions as well as interactions involving intrinsically disordered regions (IDRs) of proteins. Assembly and disassembly of stress granules are modulated by various post-translational modifications as well as numerous ATP-dependent RNP or protein remodeling complexes, illustrating that stress granules represent an active liquid wherein energy input maintains their dynamic state. Stress granule formation modulates the stress response, viral infection, and signaling pathways. Persistent or aberrant stress granule formation contributes to neurodegenerative disease and some cancers.

  8. Regulation of aerobic granular sludge reformulation after granular sludge broken: effect of poly aluminum chloride (PAC).

    PubMed

    Liu, Yongjun; Liu, Zhe; Wang, Fukun; Chen, Yiping; Kuschk, Peter; Wang, Xiaochang

    2014-04-01

    The present study focuses on the effect of poly aluminum chloride (PAC) on the re-formation of aerobic granular sludge after its rupture. The morphological changes, physical characteristics such as SVI, mechanical strength and surface properties of aerobic granular sludge during the re-formation process of broken granules were investigated. Moreover, components (protein (PN), polysaccharides (PS)) and distributions (soluble, loosely-bound (LB), tightly-bound (TB)) of extracellular polymeric substances (EPS) in sludge flocs were taken into consideration. It was found that the effect of charge neutralization and bridging induced by PAC treatment improved the surface properties of sludge, the re-formed granules had a larger size, more compact structure and that the removal performance of pollutants after chemical coagulation had improved. The results of correlation analysis demonstrated that PN in EPS correlated well with the surface characteristics and settling ability of sludge flocs, and PAC treatment strengthened the influence, further accelerated the reformation of granular sludge.

  9. Cell density-correlated induction of pyruvate decarboxylase under aerobic conditions in the yeast Pichia stipitis.

    PubMed

    Mergler, M; Klinner, U

    2001-01-01

    During the aerobic batch cultivation of P. stipitis CBS 5776 with glucose, pyruvate decarboxylase was activated in a cell number-correlated manner. Activation started when a cell number between 7 x 10(7) and x 10(8) cells ml(-1) was reached and the enzyme activity increased during further cultivation. This induction might have been triggered either by an unknown quorum sensing system or by a shortage of cytoplasmic acetyl-CoA.

  10. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  11. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  12. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  13. Optimization of hydraulic shear parameters and reactor configuration in the aerobic granular sludge process.

    PubMed

    Zhu, Liang; Zhou, Jiaheng; Yu, Haitian; Xu, Xiangyang

    2015-01-01

    The hydraulic shear acts as an important selection pressure in aerobic sludge granulation. The effects of the hydraulic shear rate and reactor configuration on structural characteristics of aerobic granule in view of the hydromechanics. The hydraulic shear analysis was proposed to overcome the limitation of using superficial gas velocity (SGV) to express the hydraulic shear stress. Results showed that the stronger hydraulic shear stress with SGV above 2.4 cm s(-1) promoted the microbial aggregation, and favoured the structural stability of the granular sludge. According to the hydraulic shear analysis, the total shear rate reached (0.56-2.31)×10(5) s(-1) in the granular reactor with a larger ratio of height to diameter (H/D), and was higher than that in the reactor with smaller H/D, where the sequencing airlift bioreactor with smaller H/D had a high total shear rate under the same SGV. Results demonstrated that the granular reactor could provide a stronger hydraulic shear stress which promotes the formation and structural stability of aerobic granules.

  14. Enhanced formation of aerobic granular sludge with yellow earth as nucleating agent in a sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    He, Q. L.; Zhang, S. L.; Zou, Z. C.; Wang, H. Y.

    2016-08-01

    Enhanced formation of aerobic granulation was investigated by adding yellow earth as a nucleating agent in a sequencing batch reactor with a constant setting time of 10 min. As a result, granules with an average diameter over 1 mm were obtained on the 4th day. The mature granules behaved better than the seed sludge in the water content, specific gravity, sludge volume index, settling velocity, and specific oxygen uptake rate. The yellow earth stimulated the secretion of extracellular polymeric substances, especially proteins. Both chemical oxygen demand and ammonia nitrogen had a removal rate over 90%, and more than 80% of the total inorganic nitrogen was removed even under aeration conditions due to simultaneous denitrification. The enhancement effects of the yellow earth might be based on the unique physicochemical characteristics and short settling time. A settling time of 10 min or more turned out not to be a prerequisite for a rapid granulation process.

  15. Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment.

    PubMed

    Li, Wen-Wei; Wang, Yun-Kun; Sheng, Guo-Ping; Gui, Yong-Xin; Yu, Lei; Xie, Tong-Qing; Yu, Han-Qing

    2012-10-01

    Conventional MBR has been mostly based on floc sludge and the use of costly microfiltration membranes. Here, a novel aerobic granule (AG)-mesh filter MBR (MMBR) process was developed for cost-effective wastewater treatment. During 32-day continuous operation, a predominance of granules was maintained in the system, and good filtration performance was achieved at a low trans-membrane pressure (TMP) of below 0.025 m. The granules showed a lower fouling propensity than sludge flocs, attributed to the formation of more porous biocake layer at mesh surface. A low-flux and low-TMP filtration favored a stable system operation. In addition, the reactor had high pollutant removal efficiencies, with a 91.4% chemical oxygen demand removal, 95.7% NH(4)(+) removal, and a low effluent turbidity of 4.1 NTU at the stable stage. This AG-MMBR process offers a promising technology for low-cost and efficient treatment of wastewaters.

  16. Twin screw granulation - review of current progress.

    PubMed

    Thompson, M R

    2015-01-01

    Twin screw granulation (TSG) is a new process of interest to the pharmaceutical community that can continuously wet granulate powders, doing so at lower liquid concentrations and with better product consistency than found by a high shear batch mixer. A considerable body of research has evolved over the short time since this process was introduced but generally with little comparison of results. A certain degree of confidence has been developed through these studies related to how process variables and many attributes of machinery configuration will affect granulation but some major challenges still lay ahead related to scalability, variations in the processing regimes related to degree of channel fill and the impact of wetting and granulation of complex powder formulations. This review examines the current literature for wet granulation processes studied in twin screw extrusion machinery, summarizing the influences of operational and system parameters affecting granule properties as well as strives to provide some practical observations to newly interested users of the technique.

  17. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  18. Numerical Experiments with Flows of Elongated Granules

    DTIC Science & Technology

    1992-01-01

    NASA AVSCOM Technical Memorandum 105567 Technical Report 91- C- 006 𔃼e- 0ok, Numerical Experiments With Flows of Elongated Granules AD-A251 853 DTIC...EXPERIMENTS WITH FLOWS OF ELONGATED GRANULES H.G. Elrod 14 Cromwell Court Old Saybrook, Connecticut 06475 and D.E. Brewe Propulsion Directorate U.S. Army...granular flows (1) between two infinite, counter-moving, parallel, roughened walls, and (2) for an infinitely-wide slider. Each granule is simulated by a

  19. Granulation In and Out of Magnetic Region

    DTIC Science & Technology

    1988-06-25

    Italy. 21-25 June 1988 / edited by Robert J. Rutten and Giuseppe Severino . p. cm. -- (NATO ASI series. Series C, Mathemati-cal and physical sciences...granulation--Congresses. 2. Stellar granulation- -Congresses. I. Rutten. Robert J. II. Severino . Giuseppe. III. North Atlantic Treaty Organization. IV. North...the seeing effects) to correctly 253 R. J. Rutten and G. Severino (eds.), Solar and Stellar Granulation, 253-271.1989 by Klawer Academic Publishers

  20. Balloon-borne imagery of the solar granulation. II - The lifetime of solar granulation

    NASA Technical Reports Server (NTRS)

    Mehltretter, J. P.

    1978-01-01

    Phenomenological aspects of the temporal evolution of photospheric granulation are reported as derived from time series of granulation photographs obtained during a flight of a balloon-borne telescope. The distribution of granule lifetime probabilities is determined, and it is found that the data can be represented by an exponential decrease with a 'decay constant' of 5.9 min. The general properties of granular evolution are described along with the way individual granules evolve with time. The most common type of granule is shown to be a medium-sized or small fragment, and it is suggested that all granules are produced by fragmentation of preexisting granules. The relative frequencies of granule destruction by fragmentation, fading, and merging are determined to be 51%, 21%, and 28%, respectively. An average radial velocity of 0.8 km/s is computed for conglomerates with an average diameter of 2.25 arcsec.

  1. [Properties of anaerobic granules developed by bioflocculant].

    PubMed

    Wang, Jing-Song

    2009-11-01

    Three identical UASB reactors (labeled R1, R2, R3) were applied to treat synthetic wastewater of COD concentration 5 500-6 500 mg x L(-1). Under the same process conditions, R1 was operated with addition of 7.5 g CaCl2 and 400 mL bioflocculant MBF21 weekly, R2 was operated with addition of 140 mg cationic PAM weekly, R3 was operated without any addition of flocculants served as control. The objectives of this study were to investigate the effect of bioflocculant MBF21 on development of anaerobic granules and compare it to cationic PAM. The results showed that after 67 days of operation, anaerobic granules developed in these three UASB reactors. The average diameters of granules in R1, R2 and R3 were 1.18, 1.21 and 0.76 mm, respectively, the granulation rates in R1, R2, R3 were 15.37, 15.82 and 9.10 microm x d(-1), respectively, the values of SMA (COD-CH4/VSS x t) of granules were 0.740, 0.657 and 0.558 g x (g x d)(-1), respectively, the VSS/SS of granules were 0.667, 0.629 and 0.607, respectively, the SVI of granules were 14.7, 13.1 and 20.4 mL x g(-1), respectively, the densities of granules were 1.061, 1.064 and 1.054 g x cm(-3), respectively, the integrity coefficients of granules were 92.1, 93.5 and 84.7, respectively. From the photos of SEM, granules developed in R1 and R2 were tighter than those in R3. In the formation of mature granules, all the three reactors showed similar laws, i.e. filamentous microorganisms were predominant on the surface of the seed sludge while bacillus and cocci bacteria were predominant on the surface of the mature granules. This study demonstrated that in the development of anaerobic granules, the effect of bioflocculant MBF21 on enhancement the physical properties of granules was similar to cationic PAM, but the effect of bioflocculant MBF21 on improvement of biochemical and physiological properties of granules was better than cationic PAM.

  2. Curtain-granulation process. Circular Z-129

    SciTech Connect

    Not Available

    1982-01-01

    A curtain granulation process is described for production of urea fertilizer pellets from a melt by spray coating onto seed granules. The process provides a product that is smooth, hard, and almost dust-free. A picture of the pilot plant and a flow sheet of the process are given.

  3. Twin screw wet granulation: Binder delivery.

    PubMed

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration.

  4. Continuous twin screw granulation: influence of process variables on granule and tablet quality.

    PubMed

    Vercruysse, J; Córdoba Díaz, D; Peeters, E; Fonteyne, M; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2012-09-01

    The aim of the current study was to screen theophylline (125 mg) tablets manufactured via twin screw granulation in order to improve process understanding and knowledge of process variables that determine granule and tablet quality. A premix of theophylline anhydrate, α-lactose monohydrate and PVP (ratio: 30/67.5/2.5,w/w) was granulated with demineralized water. Experiments were done using the high-shear wet granulation module (based on twin screw granulation) of the ConsiGma™-25 unit (a continuous tablet manufacturing system) for particle size enlargement. After drying, granules were compressed using a MODUL™ P tablet press (compression force: 10 kN, tablet diameter: 12 mm). Using a D-optimal experimental design, the effect of several process variables (throughput (10-25 kg/h), screw speed (600-950 rpm), screw configuration (number (2, 4, 6 and 12) and angle (30°, 60° and 90°) of kneading elements), barrel temperature (25-40°C) and method of binder addition (dry versus wet)) on the granulation process (torque and temperature increase in barrel wall), granule (particle size distribution, friability and flowability) and tablet (tensile strength, porosity, friability, disintegration time and dissolution) quality was evaluated. The results showed that the quality of granules and tablets can be optimized by adjusting specific process variables (number of kneading elements, barrel temperature and binder addition method) during a granulation process using a continuous twin screw granulator.

  5. [Correlation of dry granulation process parameters and granule quality based on multiple regression analysis].

    PubMed

    Cao, Han-Han; Du, Ruo-Fei; Yang, Jia-Ning; Feng, Yi

    2014-03-01

    In this paper, microcrystalline cellulose WJ101 was used as a model material to investigate the effect of various process parameters on granule yield and friability after dry granulation with a single factor and the effect of comprehensive inspection process parameters on the effect of granule yield and friability, then the correlation between process parameters and granule quality was established. The regress equation was established between process parameters and granule yield and friability by multiple regression analysis, the affecting the order of the size of the order of the process parameters on granule yield and friability was: rollers speed > rollers pressure > speed of horizontal feed. Granule yield was positively correlated with pressure and speed of horizontal feed and negatively correlated rollers speed, while friability was on the contrary. By comparison, fitted value and real value, fitted and real value are basically the same of no significant differences (P > 0.05) and with high precision and reliability.

  6. Electrochemical performance of granulated titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Wilhelm, O.; Pratsinis, S. E.; de Chambrier, E.; Crouzet, M.; Exnar, I.

    The electrochemical performance of Li-ion insertion into electrodes made of various sizes of anatase titania nanoparticles embedded in larger granulated entities (1-10 μm) is investigated. The granules are formed by spray drying of a suspension containing titania nanoparticles made by hydrolyzing titanium tetraisopropoxide (TTIP). Depending on the three process steps, i.e. hydrolysis-condensation, hydrothermal processing and spray drying, different properties for the electrode made from these granules can be achieved in terms of phase composition, specific surface area (SSA) and specific charge capacity. Hydrothermally processed (HP) particles are more resistant to calcination than sol-gel precipitated (SGP) ones and have a higher SSA which leads to a better performance with respect to specific charge capacity. Electrodes made from granulated nanoparticles have superior specific charge capacity than from non-granulated ones as the former have more inter-particle contacts.

  7. Correlative microscopy of detergent granules.

    PubMed

    van Dalen, G; Nootenboom, P; Heussen, P C M

    2011-03-01

    The microstructure of detergent products for textile cleaning determines to a large extent the physical properties of these products. Correlative microscopy was used to reveal the microstructure by reconciling images obtained by scanning electron microscopy with energy dispersive X-ray analysis, X-ray microtomography and Fourier transform infrared microscopy. These techniques were applied on the same location of a subsample of a spray-dried detergent base powder embedded in polyacrylate. In this way, the three-dimensional internal and external structure of detergent granules could be investigated from milli to nano scale with detailed spatial information about the components present. This will generate knowledge how to design optimal microstructures for laundry products to obtain product properties demanded by the market. This method is also very useful for other powder systems used in a large variety of industries (e.g. for pharmaceutical, food, ceramic and metal industries).

  8. NEDDylation promotes stress granule assembly

    PubMed Central

    Jayabalan, Aravinth Kumar; Sanchez, Anthony; Park, Ra Young; Yoon, Sang Pil; Kang, Gum-Yong; Baek, Je-Hyun; Anderson, Paul; Kee, Younghoon; Ohn, Takbum

    2016-01-01

    Stress granules (SGs) harbour translationally stalled messenger ribonucleoproteins and play important roles in regulating gene expression and cell fate. Here we show that neddylation promotes SG assembly in response to arsenite-induced oxidative stress. Inhibition or depletion of key components of the neddylation machinery concomitantly inhibits stress-induced polysome disassembly and SG assembly. Affinity purification and subsequent mass-spectrometric analysis of Nedd8-conjugated proteins from translationally stalled ribosomal fractions identified ribosomal proteins, translation factors and RNA-binding proteins (RBPs), including SRSF3, a previously known SG regulator. We show that SRSF3 is selectively neddylated at Lys85 in response to arsenite. A non-neddylatable SRSF3 (K85R) mutant do not prevent arsenite-induced polysome disassembly, but fails to support the SG assembly, suggesting that the neddylation pathway plays an important role in SG assembly. PMID:27381497

  9. Starch granules: structure and biosynthesis.

    PubMed

    Buléon, A; Colonna, P; Planchot, V; Ball, S

    1998-08-01

    The emphasis of this review is on starch structure and its biosynthesis. Improvements in understanding have been brought about during the last decade through the development of new physicochemical and biological techniques, leading to real scientific progress. All this literature needs to be kept inside the general literature about biopolymers, despite some confusing results or discrepancies arising from the biological variability of starch. However, a coherent picture of starch over all the different structural levels can be presented, in order to obtain some generalizations about its structure. In this review we will focus first on our present understanding of the structures of amylose and amylopectin and their organization within the granule, and we will then give insights on the biosynthetic mechanisms explaining the biogenesis of starch in plants.

  10. Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation.

    PubMed

    Vercruysse, J; Burggraeve, A; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-02-01

    Twin screw granulation (TSG) has been reported by different research groups as an attractive technology for continuous wet granulation. However, in contrast to fluidized bed granulation, granules produced via this technique typically have a wide and multimodal particle size distribution (PSD), resulting in suboptimal flow properties. The aim of the current study was to evaluate the impact of granulator screw configuration on the PSD of granules produced by TSG. Experiments were performed using a 25 mm co-rotating twin screw granulator, being part of the ConsiGma™-25 system (a fully continuous from-powder-to-tablet manufacturing line from GEA Pharma Systems). Besides the screw elements conventionally used for TSG (conveying and kneading elements), alternative designs of screw elements (tooth-mixing-elements (TME), screw mixing elements (SME) and cutters) were investigated using an α-lactose monohydrate formulation granulated with distilled water. Granulation with only conveying elements resulted in wide and multimodal PSD. Using kneading elements, the width of the PSD could be partially narrowed and the liquid distribution was more homogeneous. However, still a significant fraction of oversized agglomerates was obtained. Implementing additional kneading elements or cutters in the final section of the screw configuration was not beneficial. Furthermore, granulation with only TME or SME had limited impact on the width of the PSD. Promising results were obtained by combining kneading elements with SME, as for these configurations the PSD was narrower and shifted to the size fractions suitable for tableting.

  11. Asymmetric distribution in twin screw granulation.

    PubMed

    Chan Seem, Tim; Rowson, Neil A; Gabbott, Ian; de Matas, Marcel; Reynolds, Gavin K; Ingram, Andy

    2016-09-01

    Positron Emission Particle Tracking (PEPT) was successfully employed to validate measured transverse asymmetry in material distribution in the conveying zones of a Twin Screw Granulator (TSG). Flow asymmetry was established to be a property of the granulator geometry and dependent on fill level. The liquid distribution of granules as a function of fill level was determined. High flow asymmetry at low fill level negatively affects granule nucleation leading to high variance in final uniformity. Wetting of material during nucleation was identified as a critical parameter in determining final granule uniformity and fill level is highlighted as a crucial control factor in achieving this. Flow asymmetry of dry material in conveying zones upstream of binder fluid injection leads to poor non-uniform wetting at nucleation and results in heterogeneous final product. The granule formation mechanism of 60°F kneading blocks is suggested to be primarily breakage of agglomerates formed during nucleation. Optimisation of screw configuration would be required to provide secondary growth. This work shows how fill dependent flow regimes affect granulation mechanisms.

  12. Granulation of zeolite-containing aluminosilicate hydrogel

    SciTech Connect

    Galimov, Z.F.; Vinkel'man, A.P.

    1987-09-01

    The granulation of aluminosilicate hydrogel as an intermediate for the synthesis of cracking catalysts was investigated from the standpoint of eliminating the splitting cone from the granulator and eliminating coagulation directly on the cone surface. A method for forming the gel without a cone was developed by dispersion of jets of sol issuing directly from the mixer. Gel quality was considerably higher in dispersions of time-constant jets of the sol. The experimental mixer can be used as a design basis for a multijet granulator with a capacity equivalent to one or several splitting cones in commercial units.

  13. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions

    PubMed Central

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Hosseini Salekdeh, Ghasem; Karimi, Keikhosro

    2016-01-01

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated. PMID:26725518

  14. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  15. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    PubMed

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  16. Distribution of binder in granules produced by means of twin screw granulation.

    PubMed

    Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen; Vervaet, Chris; Remon, Jean Paul; Strachan, Clare; Rades, Thomas; De Beer, Thomas

    2014-02-28

    According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding of binder distribution within granules produced via twin screw granulation in order to investigate if an inhomogeneous spread of binder is causing this bimodal size distribution. Theophylline-lactose-polyvinylpyrrolidone K30 (PVP) (30-67.5-2.5%, w/w) was used as a model formulation. The intra-granular distribution of PVP was evaluated by means of hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy. For the evaluated formulation, no PVP rich zones were detected when applying a lateral spatial resolution of 0.5 μm, indicating that PVP is homogenously distributed within the granules.

  17. Granulation Properties in DOT Images from Solar Maximum to Minimum

    NASA Astrophysics Data System (ADS)

    Pötzi, W.

    DOT granulation filtergrams in the G-Band from solar maximum to solar minimum (1999 to 2007) were investigated for changes of granulation properties like areas, perimeter, fractal dimension, cell sizes, and life times. Granules seem to become larger during solar minimum, whereas the distances between the granule centres stay constant. Nonetheless, the uncertainties are very high.

  18. RNA Granules and Diseases — A Case Study of Stress Granules in ALS and FTLD

    PubMed Central

    Fan, Alexander C.; Leung, Anthony K. L.

    2017-01-01

    RNA granules are microscopically visible cellular structures that aggregate by protein–protein and protein-RNA interactions. Using stress granules as an example, we discuss the principles of RNA granule formation, which rely on the multivalency of RNA and multi-domain proteins as well as low-affinity interactions between proteins with prion-like/low-complexity domains (e.g. FUS and TDP-43). We then explore how dysregulation of RNA granule formation is linked to neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), and discuss possible strategies for therapeutic intervention. PMID:27256390

  19. Hippocampal granule cells opt for early retirement.

    PubMed

    Alme, C B; Buzzetti, R A; Marrone, D F; Leutgeb, J K; Chawla, M K; Schaner, M J; Bohanick, J D; Khoboko, T; Leutgeb, S; Moser, E I; Moser, M-B; McNaughton, B L; Barnes, C A

    2010-10-01

    Increased excitability and plasticity of adult-generated hippocampal granule cells during a critical period suggests that they may "orthogonalize" memories according to time. One version of this "temporal tag" hypothesis suggests that young granule cells are particularly responsive during a specific time period after their genesis, allowing them to play a significant role in sculpting CA3 representations, after which they become much less responsive to any input. An alternative possibility is that the granule cells active during their window of increased plasticity, and excitability become selectively tuned to events that occurred during that time and participate in later reinstatement of those experiences, to the exclusion of other cells. To discriminate between these possibilities, rats were exposed to different environments at different times over many weeks, and cell activation was subsequently assessed during a single session in which all environments were revisited. Dispersing the initial experiences in time did not lead to the increase in total recruitment at reinstatement time predicted by the selective tuning hypothesis. The data indicate that, during a given time frame, only a very small number of granule cells participate in many experiences, with most not participating significantly in any. Based on these and previous data, the small excitable population of granule cells probably correspond to the most recently generated cells. It appears that, rather than contributing to the recollection of long past events, most granule cells, possibly 90-95%, are effectively "retired." If granule cells indeed sculpt CA3 representations (which remains to be shown), then a possible consequence of having a new set of granule cells participate when old memories are reinstated is that new representations of these experiences might be generated in CA3. Whatever the case, the present data may be interpreted to undermine the standard "orthogonalizer" theory of the role of

  20. Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins

    PubMed Central

    Mezzina, Mariela P.

    2016-01-01

    Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. PMID:27287326

  1. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  2. Ectopic Granule Cells of the Rat Dentate Gyrus

    PubMed Central

    Scharfman, Helen; Goodman, Jeffrey; McCloskey, Daniel

    2007-01-01

    Granule cells of the mammalian dentate gyrus normally form a discrete layer, and virtually all granule cells migrate to this location. Exceptional granule cells that are positioned incorrectly, in ‘ectopic’ locations, are rare. Although the characteristics of such ectopic granule cells appear similar in many respects to granule cells located in the granule cell layer, their rare occurrence has limited a full evaluation of their structure and function. More information about ectopic granule cells has been obtained by studying those that develop after experimental manipulations that increase their number. For example, after severe seizures, the number of ectopic granule cells located in the hilus increases dramatically. These experimentally induced ectopic granule cells may not be equivalent to normal ectopic granule cells necessarily, but the vastly increased numbers have allowed much more information to be obtained. Remarkably, the granule cells that are positioned ectopically develop intrinsic properties and an axonal projection that are similar to granule cells that are located normally, i.e., in the granule cell layer. However, dendritic structure and synaptic structure/function appear to differ. These studies have provided new insight into a rare type of granule cell in the dentate gyrus, and the plastic characteristics of dentate granule cells that appear to depend on the location of the cell body. PMID:17148946

  3. Microbial fuel cells with highly active aerobic biocathodes

    NASA Astrophysics Data System (ADS)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  4. Spirulina cultivation in China

    NASA Astrophysics Data System (ADS)

    Bo-Tang, Wu; Wen-Zhou, Xiang; Cheng-Kui, Zeng

    1998-03-01

    This paper reviews and discusses the development and many problems of Spirulina cultivation in China, points out the advantages and disadvantages of open photobioreactor system, and predicts that seawater Spirulina cultivation will be a new trend to be strengthened and emphasized due to its special physiological characteristics, easier management, lower fertilizer cost, and higher resistance to contaminants and rare pollution of chemicals.

  5. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris.

    PubMed

    Brinza, Loredana; Schofield, Paul F; Hodson, Mark E; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D; Mosselmans, J Frederick W

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  6. Size characterization of barley starch granules by gravitational field-flow fractionation: a rapid, low-cost method to assess the brewing capability of different strains.

    PubMed

    Reschiglian, Pierluigi; Zattoni, Andrea; Casolari, Sonia; Krumlova, Andrea; Budinska, Marcela; Chmelík, Josef

    2002-04-01

    Cereal starch occurs as two types of micrometer-sized granules, large and small. Large starch granules are more susceptible to enzymatic hydrolysis. When cereal starch is used for fermentation processes, as in brewing of barley malt, the barley strains with the highest content of large starch granules should be preferred. Gravitational field-flow fractionation (GFFF) is a separation method able to fractionate starch samples at low cost and short analysis time. In this work, the search for the best GFFF conditions for the analytical separation of barley starch within an inter-laboratory approach is presented. For different barley strains cultivated under monitored conditions the size distributions of starch granules is here quickly monitored and characterized by GFFF. As a consequence, dimensional characterization of barley starch can allow for the selection of the most suitable strains with the lowest content of non-degradable starch.

  7. Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16.

    PubMed

    Pötter, Markus; Madkour, Mohamed H; Mayer, Frank; Steinbüchel, Alexander

    2002-08-01

    Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha, as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the sigma(70) promoter of phaP, where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the sigma(54)-dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaROmegaKm mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules

  8. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  9. Granule size control and targeting in pulsed spray fluid bed granulation.

    PubMed

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  10. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87

    PubMed Central

    Ianniello, Rocco G.; Matera, Attilio; Genovese, Francesco; Parente, Eugenio; Ricciardi, Annamaria

    2016-01-01

    Aerobic and respiratory cultivations provide benefits for some lactic acid bacteria (LAB). Growth, metabolites, enzymatic activities (lactate dehydrogenase; pyruvate and NADH oxidases, NADH peroxidase; catalase), antioxidant capability and stress tolerance of Lactobacillus casei N87 were evaluated in anaerobic, aerobic and respiratory (aerobiosis with heme and menaquinone supplementation) batch cultivations with different dissolved oxygen (DO) concentrations. The expression of pox (pyruvate oxidase) and cydABCD operon (cytochrome bd oxidase complex) was quantified by quantitative Real Time polymerase chain reaction. Respiration increased biomass production compared to anaerobiosis and unsupplemented aerobiosis, and altered the central metabolism rerouting pyruvate away from lactate accumulation. All enzymatic activities, except lactate dehydrogenase, were higher in respiratory cultures, while unsupplemented aerobiosis with 60% of DO promoted H2O2 and free radical accumulation. Respiration improved the survival to oxidative and freeze-drying stresses, while significant numbers of dead, damaged and viable but not cultivable cells were found in unsupplemented aerobic cultures (60% DO). Analysis of gene expression suggested that the activation of aerobic and respiratory pathways occurred during the exponential growth phase, and that O2 and hemin induced, respectively, the transcription of pox and cydABCD genes. Respiratory cultivation might be a natural strategy to improve functional and technological properties of L. casei. PMID:27812097

  11. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  12. Monitoring high-shear granulation using sound and vibration measurements.

    PubMed

    Briens, L; Daniher, D; Tallevi, A

    2007-02-22

    Sound and vibration measurements were investigated as monitoring methods for high-shear granulation. Five microphones and one accelerometer were placed at different locations on a 10 and a 25 l granulator and compared to find the optimum location and the effect of scale. The granulation process could be monitored using the mean frequency and root mean square sound pressure levels from acoustic emissions measured using a microphone in the filtered air exhaust of the granulators. These acoustic monitoring methods were successful for both the 10 and the 25 l granulation scales. The granulation phases, however, were more clearly defined for the larger scale granulation. The root mean square acceleration level from vibration measurements was also able to monitor the granulation, but only for the larger 25 l granulator.

  13. Granulostasis: Protein Quality Control of RNP Granules

    PubMed Central

    Alberti, Simon; Mateju, Daniel; Mediani, Laura; Carra, Serena

    2017-01-01

    Ribonucleoprotein (RNP) granules transport, store, or degrade messenger RNAs, thereby indirectly regulating protein synthesis. Normally, RNP granules are highly dynamic compartments. However, because of aging or severe environmental stress, RNP granules, in particular stress granules (SGs), convert into solid, aggregate-like inclusions. There is increasing evidence that such RNA-protein inclusions are associated with several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), fronto-temporal dementia (FTD) and Alzheimer’s disease (AD). Thus, understanding what triggers the conversion of RNP granules into aggregates and identifying the cellular players that control RNP granules will be critical to develop treatments for these diseases. In this review article, we discuss recent insight into RNP and SG formation. More specifically, we examine the evidence for liquid-liquid phase separation (LLPS) as an organizing principle of RNP granules and the role of aggregation-prone RNA-binding proteins (RBPs) in this process. We further discuss recent findings that liquid-like SGs can sequester misfolded proteins, which promote an aberrant conversion of liquid SGs into solid aggregates. Importantly, very recent studies show that a specific protein quality control (PQC) process prevents the accumulation of misfolding-prone proteins in SGs and, by doing so, maintains the dynamic state of SGs. This quality control process has been referred to as granulostasis and it relies on the specific action of the HSPB8-BAG3-HSP70 complex. Additional players such as p97/valosin containing protein (VCP) and other molecular chaperones (e.g., HSPB1) participate, directly or indirectly, in granulostasis, and ensure the timely elimination of defective ribosomal products and other misfolded proteins from SGs. Finally, we discuss recent findings that, in the stress recovery phase, SGs are preferentially disassembled with the assistance of chaperones, and we discuss

  14. Denitrification in USB reactor with granulated biomass.

    PubMed

    Pagácová, P; Galbová, K; Drtil, M; Jonatová, I

    2010-01-01

    Denitrification of low concentrations of NO(3)-N (20 mg L(-1)), with methanol as an organic carbon source (COD:NO(3)-N=6) in laboratory upflow sludge bed reactor (USB), was tested as a possibility for wastewater post-treatment. By gradual increase of volumetric loading (Bv) and hydraulic loading (gamma), anoxic biomass spontaneously granulated out even from flocculate activated sludge and from anaerobic granulated sludge as well. Anaerobic granulated biomass derived from high-rate anaerobic IC reactor was a far better inoculum for anoxic granulation and for denitrification in the USB reactor. The maximum level of Bv and gamma was remarkably higher with the use of anaerobic granulated inoculum, (19-22 kg COD m(-3)d(-1); 3.2-3.7 kg NO(3)-Nm(-3)d(-1); 2.8-3.2m(3)m(-2)h(-1); SVI=15 mL g(-1)) in comparison to inoculum from flocculate activated sludge (4.2-8.1 kg CO Dm(-3)d(-1); 0.7-1.4 kg NO(3)-Nm(-3)d(-1); 0.7-1.15m(3)m(-2)h(-1); SVI=40-95 mL g(-1)).

  15. Granulation in saturnian rings and atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2008-09-01

    The third theorem of the wave planetary tectonics [1-3 & others] states: "Celestial bodies are granular". It means that inertia-gravity waves appearing in bodies due to their movements in non-circular keplerian orbits and propagating in them in four interfering orthogonal and diagonal directions produce tectonic granules. They are of three kinds: uprising (+), subsiding (-) and neutral (0). Their sizes are inversely proportional to bodies orbital frequencies. Higher frequency - smaller granule, lower frequency - larger granule. The inertia-gravity waves warp all spheres of celestial bodies: solid, liquid, gaseous, and act in stars, planets, asteroids, comets and satellites. The Cassini data provide numerous excellent images of saturnian rings and show that wave processes are ordinary also in them - in disperse solid environment. To illustrate dependence between orbital frequencies and granule sizes we provide the following geometrical representation of the planetary row starting from the solar photosphere also having a certain orbital frequency about the center of the Solar system (Fig. 1). This row can be extended in domain of the outer planets by the same algorithm: Jupiter 3πR, Saturn 7.5πR, Uranus 21πR, Neptune 41πR, Pluto 62πR. One cannot directly observe these huge waves in the planets but they are needed for wave modulation procedures very important for satellites and rings having two orbital frequencies: around the star and planets. A recent support for the wave structurization in the Solar system came from Saturn where 22 year long ground-based temperature observations discovered a wave-like oscillation: hotcold pattern switches every Saturn half-year = 15 Earth's years [4]. Like in the radio-wave physics the lower orbiting frequency of the Saturn's system around Sun modulates the higher orbiting frequencies of the system satellites, rings and the planet's upper atmosphere about the Saturn `s system center. . The higher frequency is multiplied and

  16. Formation of volutin granules in Corynebacterium glutamicum.

    PubMed

    Pallerla, Srinivas Reddy; Knebel, Sandra; Polen, Tino; Klauth, Peter; Hollender, Juliane; Wendisch, Volker F; Schoberth, Siegfried M

    2005-02-01

    Volutin granules are intracellular storages of complexed inorganic polyphosphate (poly P). Histochemical staining procedures differentiate between pathogenic corynebacteria such as Corynebacterum diphtheriae (containing volutin) and non-pathogenic species, such as C. glutamicum. Here we report that strains ATCC13032 and MH20-22B of the non-pathogenic C. glutamicum also formed subcellular entities (18-37% of the total cell volume) that had the typical characteristics of volutin granules: (i) volutin staining, (ii) green UV fluorescence when stained with 4',6-diamidino-2-phenylindole, (iii) electron-dense and rich in phosphorus when determined with transmission electron microscopy and X-ray microanalysis, and (iv) 31P NMR poly P resonances of isolated granules dissolved in EDTA. MgCl2 addition to the growth medium stimulated granule formation but did not effect expression of genes involved in poly P metabolism. Granular volutin fractions from lysed cells contained polyphosphate glucokinase as detected by SDS-PAGE/MALDI-TOF, indicating that this poly P metabolizing enzyme is present also in intact poly P granules. The results suggest that formation of volutin is a more widespread phenomenon than generally accepted.

  17. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.

    PubMed

    Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K

    2016-09-01

    A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling.

  18. Antimicrobial-Coated Granules for Disinfecting Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  19. Molecular defects that affect platelet dense granules.

    PubMed

    Gunay-Aygun, Meral; Huizing, Marjan; Gahl, William A

    2004-10-01

    Platelet dense granules form using mechanisms shared by melanosomes in melanocytes and by subsets of lysosomes in more generalized cells. Consequently, disorders of platelet dense granules can reveal how organelles form and move within cells. Models for the study of new vesicle formation include isolated delta-storage pool deficiency, combined alphadelta-storage pool deficiency, Hermansky-Pudlak syndrome (HPS), Chediak-Higashi syndrome, Griscelli syndrome, thrombocytopenia absent radii syndrome, and Wiskott-Aldrich syndrome. The molecular bases of dense granule deficiency are known for the seven subtypes of HPS, as well as for Chediak-Higashi syndrome, Griscelli syndrome, and Wiskott-Aldrich syndrome. The gene products involved in these disorders help elucidate the generalized process of the formation of vesicles from extant membranes such as the Golgi.

  20. Measuring stellar granulation during planet transits

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.

    2017-01-01

    Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (i) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (ii) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the

  1. The granulation of binary mixtures: the effects of the properties of the component powders on granules.

    PubMed

    Opakunle, W O; Spring, M S

    1976-12-01

    Sulphanilamide and citric acid individually and in various proportions with lactose, have been granulated by massing and screening. There was an optimum blend, that produced granules of maximum mean size and strength, for each binary system examined. The proportion of the components of this optimal blend was dependent on the physical properties of the second component in a mixture with lactose. Results from three systems, lactose:boric acid, lactose:sulphanilamide and lactose:citric acid indicate that although part dissolution of powder during granulation is a factor affecting granule properties, in some systems other physical properties of the second component may become dominant. It is suggested that the combined effect of cohesiveness and wettability of the powders may make the major contribution to granule strength with the sulphanilamide systems. The ultimate mean granule size produced is determined by the wettability or solubiluty of the powders, or both, in all cases examined. The great affinity of citric acid for aqueous binder solution was the dominant factor determining the properties of granules prepared from lactose:citric acid mixtures.

  2. Toxoplasma secretory granules: one population or more?

    PubMed

    Mercier, Corinne; Cesbron-Delauw, Marie-France

    2015-02-01

    In Toxoplasma gondii, dense granules are known as the storage secretory organelles of the so-called GRA proteins (for dense granule proteins), which are destined to the parasitophorous vacuole (PV) and the PV-derived cyst wall. Recently, newly annotated GRA proteins targeted to the host cell nucleus have enlarged this view. Here we provide an update on the latest developments on the Toxoplasma secreted proteins, which to date have been mainly studied at both the tachyzoite and bradyzoite stages, and we point out that recent discoveries could open the issue of a possible, yet uncharacterized, distinct secretory pathway in Toxoplasma.

  3. Formulation of custom sized LX-15 granules

    SciTech Connect

    Stull, T.W.

    1980-04-01

    LX-15 is a booster explosive formulation consisting of 95% HNS I and 5% Kel F-800 developed by Lawrence Livermore Laboratory. The purpose of this effort was to develop formulation techniques for the production of custom size granules that are amenable for processing in automatic weighing equipment. This report details processes whereby 0.4 and 1.5 kg size batches are produced, meeting those requirements. Efforts to date have found that granule size is dependent on batch/vessel size, water-to-solvent ratio and the degree of vessel agitation.

  4. Process for producing zirconium based granules

    SciTech Connect

    Jade, S.S.

    1990-05-22

    This patent describes a process for the production f amorphous zirconium based granules. It comprises: adding about 2--15 wt % of a suitable phase stabilizer to an aqueous solutio, based upon the total weight of ZrO{sub 2} in solution, to produce an aqueous solution having a pH in the range of about 4 to 7 comprising a zirconium based complex and phase stabilizer and thereafter; drying the aqueous solution comprising the zirconium based complex and the phase stabilizer at a temperature below about 180{degrees} C. for a time sufficient to evaporate the aqueous solution thereby forming amorphous zirconium based granules containing the phase stabilizer.

  5. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.

    PubMed

    Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-01

    The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties.

  6. Granule size distributions after twin-screw granulation - Do not forget the feeding systems.

    PubMed

    Meier, R; Thommes, M; Rasenack, N; Moll, K-P; Krumme, M; Kleinebudde, P

    2016-09-01

    The aim of this study was to investigate the influence of qualitatively different powder feeder performances on resulting granule size distributions after twin-screw granulation of a highly drug loaded, hydrophobic mixture and a mannitol powder. It was shown that powder feeder related problems usually cannot be identified by trusting in the values given by the feeder. Therefore, a newly developed model for the evaluation of the performance of powder feeders was introduced and it was tried to connect this model to residence time distributions in twin-screw granulation processes. The influence of feeder performances on resulting granule size distributions varied, depending on the applied screw configuration and the used powder. Regarding the hydrophobic and highly drug loaded formulation, which was granulated at an L/S-ratio of 0.5, a pure conveying screw and a medium kneading configuration, consisting of 60° kneading blocks were negatively influenced by poor feeder settings. For optimal settings more narrow distributions could be obtained. For an extensive kneading configuration good and poor settings resulted in mono-modal granule size distributions but were differing in the overall size. Mannitol, a model substance for a liquid sensitive formulation was granulated at an L/S-ratio of 0.075. It was even more important to maintain optimal feeding as mannitol was highly affected by poor feeder performances. Even an extensive kneading configuration could not level the errors in powder feeder performance, resulting in qualitatively different granule size distributions. The results of this study demonstrate the importance of detailed knowledge about applied feeding systems to gain optimal performance in twin-screw granulation.

  7. Cultivation of parasites

    PubMed Central

    Ahmed, Nishat Hussain

    2014-01-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID

  8. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions

    PubMed Central

    Kato, Yoichiro; Okami, Midori

    2011-01-01

    Background and Aims Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture. Methods Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions. Key Results Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa. Conclusions Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep

  9. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  10. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  11. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  12. Quantal regulation and exocytosis of platelet dense-body granules.

    PubMed

    Ge, Shencheng; Woo, Emily; Haynes, Christy L

    2011-11-16

    This study reports how quantal size, or the quantity of chemical messengers within a storage granule, is regulated in platelet dense-body granules via dynamic adaption of granule size according to changing levels of granule contents. Mechanistic studies using carbon-fiber microelectrode fast-scan cyclic voltammetry and amperometry methods correlated with transmission electron microscopy analysis reveal the impact of granule structural changes on granular content secretion kinetics and highlight the dynamic interplay between soluble granule contents and membrane components in exocytosis. Despite the distinct chemical profile of platelet dense-body granules, these secretory granules act according to general biochemical/biophysical phenomena using charge-charge interactions to sequester chemical messengers and employ known conserved exocytotic machinery to deliver them; therefore, the mechanistic information obtained herein further advances the general understanding of exocytosis while revealing fundamental details about blood platelets.

  13. Vaccine adjuvants: Tailor-made mast-cell granules

    NASA Astrophysics Data System (ADS)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  14. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  15. THE NUMBER OF CATECHOLAMINE STORAGE GRANULES IN ADRENAL MEDULLA

    DTIC Science & Technology

    A method is described for counting the catecholamine-containing heavy granules of adrenal glands. There are 5.0 ! 0.8 (S. E.) x 10 to the 12th power... granules /gram wet weight of fowl adrenal gland. Individual heavy granules contain about 8 million molecules of catecholamines (1.4 x 10 to the 17th...power mole). Reference to published electron microphotographs of adrenal medulla cells allows estimation of the average volume of heavy granules and

  16. Flow rates and repose angles of wet-processed granulations.

    PubMed

    Carstensen, J T; Chan, P C

    1977-09-01

    The equation of McDougall and Evans was found not to apply to granulations. The functional relationships among volumetric powder flow rates, angles of repose, and particle size were demonstrated to exhibit maxima (rather than minima) in five common pharmaceutical granulations produced by wet processing. The angular behavior of granules (such as the experienced range of angles) is explained via supported stacking geometries, and the shallow maxima in the angle of repose versus granule diameter was derived from this model.

  17. Nanocrystalline spherical hydroxyapatite granules for bone repair: in vitro evaluation with osteoblast-like cells and osteoclasts.

    PubMed

    Bernhardt, A; Dittrich, R; Lode, A; Despang, F; Gelinsky, M

    2013-07-01

    Conventionally sintered hydroxyapatite-based materials for bone repair show poor resorbability due to the loss of nanocrystallinity. The present study describes a method to establish nanocrystalline hydroxyapatite granules. The material was prepared by ionotropic gelation of an alginate sol containing hydroxyapatite (HA) powder. Subsequent thermal elimination of alginate at 650 °C yielded non-sintered, but unexpectedly stable hydroxyapatite granules. By adding stearic acid as an organic filler to the alginate/HA suspension, the granules exhibited macropores after thermal treatment. A third type of material was achieved by additional coating of the granules with silica particles. Microstructure and specific surface area of the different materials were characterized in comparison to the already established granular calcium phosphate material Cerasorb M(®). Cytocompatibility and potential for bone regeneration of the materials was evaluated by in vitro examinations with osteosarcoma cells and osteoclasts. Osteoblast-like SaOS-2 cells proliferated on all examined materials and showed the typical increase of alkaline phosphatase (ALP) activity during cultivation. Expression of bone-related genes coding for ALP, osteonectin, osteopontin, osteocalcin and bone sialoprotein II on the materials was proven by RT-PCR. Human monocytes were seeded onto the different granules and osteoclastogenesis was examined by activity measurement of tartrate-specific acid phosphatase (TRAP). Gene expression analysis after 23 days of cultivation revealed an increased expression of osteoclast-related genes TRAP, vitronectin receptor and cathepsin K, which was on the same level for all examined materials. These results indicate, that the nanocrystalline granular materials are of clinical interest, especially for bone regeneration.

  18. Starch Granule Variability in Wild Solanum Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because most of the dry matter of potato tubers is starch, an understanding of starch properties is important in potato improvement programs. Starch granule size is considered to influence tuber processing quality parameters such as gelatinization temperature, viscosity, and water holding capacity. ...

  19. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of...

  20. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of...

  1. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of...

  2. Secretory granule biogenesis: rafting to the SNARE.

    PubMed

    Tooze, S A; Martens, G J; Huttner, W B

    2001-03-01

    Regulated secretion of hormones occurs when a cell receives an external stimulus, triggering the secretory granules to undergo fusion with the plasma membrane and release their content into the extracellular milieu. The formation of a mature secretory granule (MSG) involves a series of discrete and unique events such as protein sorting, formation of immature secretory granules (ISGs), prohormone processing and vesicle fusion. Regulated secretory proteins (RSPs), the proteins stored and secreted from MSGs, contain signals or domains to direct them into the regulated secretory pathway. Recent data on the role of specific domains in RSPs involved in sorting and aggregation suggest that the cell-type-specific composition of RSPs in the trans-Golgi network (TGN) has an important role in determining how the RSPs get into ISGs. The realization that lipid rafts are implicated in sorting RSPs in the TGN and the identification of SNARE molecules represent further major advances in our understanding of how MSGs are formed. At the heart of these findings is the elucidation of molecular mechanisms driving protein--lipid and protein--protein interactions specific for secretory granule biogenesis.

  3. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    PubMed

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  4. Experimental investigation of granule size and shape dynamics in twin-screw granulation.

    PubMed

    Kumar, Ashish; Vercruysse, Jurgen; Bellandi, Giacomo; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas; Nopens, Ingmar

    2014-11-20

    A twin-screw granulator (TSG), a promising equipment for continuous high shear wet granulation (HSWG), achieves the desired level of mixing by a combination of the appropriate screw configuration and a suitable set of process settings (e.g. feed rate, screw speed, etc.), thus producing a certain granule size and shape distribution (GSSD). However, the primary sizing and shaping mechanism behind the resulting distribution is not well understood due to the opacity of the multiphase system in the granulator. This study experimentally characterised the GSSD dynamics along the TSG barrel length in order to understand the function of individual screw modules and process settings, as well as their interaction. Particle size analysis of granules collected at the outlet of the TSG suggested significant interaction between the process and screw configuration parameters influencing the heterogeneity in the GSSD. By characterising the samples collected along the screw length, a variable influence of the screw modules at different process conditions was observed. At low liquid-to-solid ratio (L/S), the first kneading module seemed to play a significant role in mixing, whereas the second kneading module was found to be more involved in reshaping the granules. At high L/S and high throughput, aggregation mainly took place in the second kneading module changing the GSSD. The results obtained from this study will be further used for the calibration and validation of a mechanistic model and, hence, support future development of a more detailed understanding of the HSWG process in a TSG.

  5. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance π1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and

  6. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance ~1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and

  7. Hydrolysis of native poly(hydroxybutyrate) granules (PHB), crystalline PHB, and artificial amorphous PHB granules by intracellular and extracellular depolymerases.

    PubMed

    Merrick, J M; Steger, R; Dombroski, D

    1999-01-01

    Native poly(hydroxybutyrate) (PHB) granules, purified PHB and artificial amorphous PHB granules were examined as putative substrates for hydrolysis by the intracellular depolymerase system of Rhodospirillum rubrum and the extracellular depolymerase of Pseudomonas lemoignei. The R. rubrum depolymerizing system requires pretreatment of granules with a heat stable 'activator' fraction; the activator can be replaced by mild trypsin treatment. Artificial granules were prepared with a cationic detergent, cetyltrimethylammonium bromide (CTAB) and an anionic detergent, (sodium cholate). Cholate and CTAB PHB granules were hydrolyzed by both enzyme systems; however, some differences were noted. Cholate granules were hydrolyzed in the absence of the R. rubrum activator fraction. Activator was required for the hydrolysis of CTAB granules but could be replaced by heparin in the extracellular depolymerase system but not in the intracellular depolymerase system. A Triton X-114 extract of native PHB granules inhibited the hydrolysis of trypsin-activated granules by the intracellular depolymerase. The inhibition was reversed by the activator fraction. Detergent extracts of granules activated with the R. rubrum activator were unable to inhibit the hydrolysis of trypsin-activated granules. These data suggest that the activator acts to modify an inhibitor present on native granules.

  8. Impact of influent COD/N ratio on disintegration of aerobic granular sludge.

    PubMed

    Luo, Jinghai; Hao, Tianwei; Wei, Li; Mackey, Hamish R; Lin, Ziqiao; Chen, Guang-Hao

    2014-10-01

    Disintegration of aerobic granular sludge (AGS) is a challenging issue in the long-term operation of an AGS system. Chemical oxygen demand (COD)-to-nitrogen (N) ratio (COD/N), often variable in industrial wastewaters, could be a destabilizing factor causing granule disintegration. This study investigates the impact of this ratio on AGS disintegration and identifies the key causes, through close monitoring of AGS changes in its physical and chemical characteristics, microbial community and treatment performance. For specific comparison, two lab-scale air-lift type sequencing batch reactors, one for aerobic granular and the other for flocculent sludge, were operated in parallel with three COD/N ratios (4, 2, 1) applied in the influent of each reactor. The decreased COD/N ratios of 2 and 1 strongly influenced the stability of AGS with regard to physical properties and nitrification efficiency, leading to AGS disintegration when the ratio was decreased to 1. Comparatively the flocculent sludge maintained relatively stable structure and nitrification efficiency under all tested COD/N ratios. The lowest COD/N ratio resulted in a large microbial community shift and extracellular polymeric substances (EPS) reduction in both flocculent and granular sludges. The disintegration of AGS was associated with two possible causes: 1) reduction in net tyrosine production in the EPS and 2) a major microbial community shift including reduction in filamentous bacteria leading to the collapse of granule structure.

  9. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  10. Process to manufacture effervescent tablets: air forced oven melt granulation.

    PubMed

    Yanze, F M; Duru, C; Jacob, M

    2000-12-01

    In the present study we apply melt granulation in an air forced oven, called "are forced oven melt granulation" to the single-stage manufacture of effervescent granules consisting of anhydrous citric acid (43.2%) and sodium bicarbonate (56.8%) in order to make tablets. This study established that process parameters such as concentration of PEG 6000, residence time in the air forced oven, fineness of PEG 6000, fineness of the initial effervescent mix and efficiency of two lubricants markedly influenced several granule and tablet characteristics. The granules ready to be compressed into tablets were stable for 7 days at 60% RH/18 degrees C. It is a dry, simple, rapid, effective, economical, reproducible process particularly well suited to the manufacture of effervescent granules which are easily compressed into effervescent tablets. Of all the formulations tested, only formulations B2 and E2 melt granulated for 30 minutes gave tablets which had optimum compression characteristics without processing problems during compression.

  11. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde.

    PubMed Central

    Slininger, P J; Bothast, R J

    1985-01-01

    When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32 degrees C, although the overall 3-HPA yield increased continuously within the 25 to 37 degrees C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield. PMID:3911907

  12. Shigella flexneri modulates stress granule composition and inhibits stress granule aggregation.

    PubMed

    Vonaesch, Pascale; Campbell-Valois, François-Xavier; Dufour, Alexandre; Sansonetti, Philippe J; Schnupf, Pamela

    2016-07-01

    Invasion and multiplication of the facultative, cytosolic, enteropathogen Shigella flexneri within the colonic epithelial lining leads to an acute inflammatory response, fever and diarrhea. During the inflammatory process, infected cells are subjected to numerous stresses including heat, oxidative stress and genotoxic stress. The evolutionarily conserved pathway of cellular stress management is the formation of stress granules that store translationally inactive cellular mRNAs and interfere with cellular signalling pathways by sequestering signalling components. In this study, we investigated the ability of S. flexneri-infected cells to form stress granules in response to exogenous stresses. We found that S. flexneri infection inhibits movement of the stress granule markers eIF3 and eIF4B into stress granules and prevents the aggregation of G3BP1 and eIF4G-containing stress granules. This inhibition occurred only with invasive, but not with non-invasive bacteria and occurred in response to stresses that induce translational arrest through the phosphorylation of eIF2α and by treating cells with pateamine A, a drug that induces stress granules by inhibiting the eIF4A helicase. The S. flexneri-mediated stress granule inhibition could be largely phenocopied by the microtubule-destabilizing drug nocodazole and while S. flexneri infection did not lead to microtubule depolymerization, infection greatly enhanced acetylation of alpha-tubulin. Our data suggest that qualitative differences in the microtubule network or subversion of the microtubule-transport machinery by S. flexneri may be involved in preventing the full execution of this cellular stress response.

  13. Establishing the thermal window for aerobic scope in New Zealand geoduck clams (Panopea zelandica).

    PubMed

    Le, Dung V; Alfaro, Andrea C; Ragg, Norman L C; Hilton, Zoë; King, Nick

    2017-02-01

    Geoduck clams (Panopea spp.) are the longest-lived and largest deep burrowing bivalve. Their unique morphology allows them to live buried in the sediment at depths of up to 1 m. The endemic New Zealand geoduck (Panopea zelandica Quoy and Gaimard, 1835) has recently been identified as a potential species for aquaculture. However, very little is known about the biology and physiology of this entirely subtidal geoduck species. Currently, the New Zealand geoduck fishery relies entirely upon wild harvests, but farms are expected to emerge as cultivation protocols are established. A key step in the optimization of cultivation procedures is the identification of optimal temperature and food rations. One method for establishing thermal optima is to identify the temperature window that supports the widest aerobic scope: the degree to which metabolic rate can be increased to support elevated activity demands. Thus, we investigated the aerobic scope for activity at five different temperatures representative of typical environmental conditions (8, 11, 15, 19, and 23 °C) for juvenile and young adult P. zelandica. Clearance rate was also measured at all temperatures. Comparisons of aerobic scope for activity and clearance rates between size classes revealed that juvenile geoducks had a narrower thermal optimum than young adults (15-19 versus 11-19 °C, respectively). Temperatures higher than 19 °C resulted in a reduction of aerobic scope for activity and clearance rate for both juvenile and young adults, which may lead to reduced performance and elevated mortality. These findings provide the first measures of aerobic scope in P. zelandica, a key step towards a meaningful understanding of the ecophysiology of this unusual species.

  14. The Cultivated Classroom.

    ERIC Educational Resources Information Center

    Schilder, Rosalind

    1983-01-01

    Teachers who follow this monthly schedule for starting and cultivating plants in their classrooms can look forward to blooms and greenery throughout the year. Advice on choosing plants, making cuttings, forcing bulbs, rooting sweet potatoes and pineapples, and holding a Mother's Day plant sale is included. (PP)

  15. Cultivating Moral Resilience.

    PubMed

    Rushton, Cynda Hylton

    2017-02-01

    : Decades of research have documented the frequency, sources, and consequences of moral distress. However, few studies have focused on interventions designed to diminish its negative effects. The cultivation of moral resilience-the ability to respond positively to the distress and adversity caused by an ethically complex situation-is proposed as a method to transform moral distress.

  16. Cultivating Leaders from Within

    ERIC Educational Resources Information Center

    Burdette, Maggie; Schertzer, Kristen

    2005-01-01

    A major problem faced by school districts in the US is the paucity of applicants for the posts of school principals. A solution adopted by The Capistrano Unified School District (CUSD) in Orange County California was the cultivation of good leaders from within the district through the Teaching Assistant Principal (TAP) program.

  17. Spiperone: evidence for uptake into secretory granules.

    PubMed Central

    Dannies, P S; Rudnick, M S; Fishkes, H; Rudnick, G

    1984-01-01

    Spiperone, a dopamine antagonist widely used as a specific ligand for dopamine and serotonin receptors, is actively accumulated into the F4C1 strain of rat pituitary tumor cells. The accumulation of 10 nM [3H]spiperone was linear for 3 min and reached a steady state after 10 min. Spiperone accumulation was reduced 50% by preincubation with 5 microM reserpine, an inhibitor of biogenic amine transport into secretory granules, and was also blocked by monensin and ammonium chloride, both of which increase the pH of intracellular storage organelles. Uptake was not affected by replacing sodium in the buffer with lithium at equimolar concentrations. Spiperone at 1 microM inhibited by over 50% serotonin transport into membrane vesicles isolated from platelet dense granules; this concentration inhibited the Na+-dependent plasma membrane transport system less than 10%. The data indicate spiperone specifically interacts with the secretory granule amine transport system and suggest that this transport system is found in the F4C1 pituitary cell strain as well as in platelets and neurons. The data also suggest that experiments utilizing spiperone to measure dopamine and serotonin receptors be interpreted with caution. PMID:6584920

  18. Inhibition of granulation tissue growth by histamine.

    PubMed

    Saeki, K; Yokoyama, J; Wake, K

    1975-06-01

    Granulomas were induced in rats by subcutaneous implantation of formalin-soaked filter-paper disks. Daily subcutaneous injection of histamine at doses of two times 0.05 mg/kg and above inhibited the growth of granulation tissue as measured by a marked decrease in the dry-defatted granuloma weight and of the hydroxyproline and hexosamine content. Histological observations of granulation tissue indicated that histamine inhibited the proliferation of fibroblasts and the formation of capillaries. Inhibitory effects were also observed with the histamine releaser, sinomenine, and the histaminase inhibitor, aminoguanidine. These histamine effects seem not to be mediated by glucocorticoid release, since an effective dose level of histamine produced no change in growth or thymus weight. Prednisolone was less potent than histamine in inhibiting Prednisolone was ineffective at the dose tested. Subcutaneous injection of the H2-receptor antagonist, burimamide, blocked these histamine effects and also of sinomeinine and aminoguanidine. The H1-receptor antagonist, mepyramine, did not block these histamine effects. Burimamide alone enhanced the growth of granuloma. These results indicate that granulation-tissue growth in inflammation is affected by the inhibitory effect of endogenous histamine acting through H2-receptors.

  19. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure

    PubMed Central

    LaSarge, Candi L.; Santos, Victor R; Danzer, Steve C.

    2015-01-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offset the reduction in boutons per axon length. These morphological changes predicts a net increase in granule cell >> CA3 innervation. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell >> CA3 communication. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. PMID:25600212

  20. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  1. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  2. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  3. The influence of granulation on super disintegrant performance.

    PubMed

    Zhao, Na; Augsburger, Larry L

    2006-02-01

    The purpose of this study is to identify the causes of efficiency loss of super disintegrants following granulation or reworking. Two processes, precompression and prewetting, were proposed to simulate the processes during dry and wet granulation, respectively. The disintegration efficiency of the resulting disintegrant granules was tested in model formulations composed of dicalcium phosphate and lactose with the unprocessed disintegrants as controls. No significant difference was shown in the intrinsic swelling and the water uptake abilities of all super disintegrants following dry granulation. However, a significant decrease was observed for both Primojel and Polyplasdone XL10 in the rate of water being absorbed into the tablet matrix following wet granulation, but not for Ac-Di-Sol. United States Pharmacopeia (USP) disintegration testing without disc revealed a significant increase in disintegration time for tablets formulated with dry granulated Primojel and Polyplasdone XL10 and all wet granulated disintegrants. The increase in particle size following granulation appears to be the cause of the loss in disintegration efficiency. In conclusion, Ac-Di-Sol is less affected by both precompression and prewetting. The efficiency of Primojel and Polyplasdone XL10 is highly dependent on their particle size. Descreasing the particle size tends to increase their efficiency. Due to the size increase following granulation, a higher addition level of super disintegrant is required to ensure fast and uniform disintegration of tablets prepared by granulation.

  4. Platelet α–granules: Basic biology and clinical correlates

    PubMed Central

    Blair, Price; Flaumenhaft, Robert

    2009-01-01

    Summary α–Granules are essential to normal platelet activity. These unusual secretory granules derive their cargo from both regulated secretory and endocytotic pathways in megakaryocytes. Rare, inheritable defects of α–granule formation in mice and man have enabled identification of proteins that mediate cargo trafficking and α–granule formation. In platelets, α–granules fuse with the plasma membrane upon activation, releasing their cargo and increasing platelet surface area. The mechanisms that control α–granule membrane fusion have begun to be elucidated at the molecular level. SNAREs and SNARE accessory proteins that control α–granule secretion have been identified. Proteomic studies demonstrate that hundreds of bioactive proteins are released from α–granules. This breadth of proteins implies a versatile functionality. While initially known primarily for their participation in thrombosis and hemostasis, the role of α–granules in inflammation, atherosclerosis, antimicrobial host defense, wound healing, angiogenesis, and malignancy has become increasingly appreciated as the function of platelets in the pathophysiology of these processes has been defined. This review will consider the formation, release, and physiologic roles of α–granules with special emphasis on work performed over the last decade. PMID:19450911

  5. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system

    PubMed Central

    Speth, Daan R.; in 't Zandt, Michiel H.; Guerrero-Cruz, Simon; Dutilh, Bas E.; Jetten, Mike S. M.

    2016-01-01

    Partial-nitritation anammox (PNA) is a novel wastewater treatment procedure for energy-efficient ammonium removal. Here we use genome-resolved metagenomics to build a genome-based ecological model of the microbial community in a full-scale PNA reactor. Sludge from the bioreactor examined here is used to seed reactors in wastewater treatment plants around the world; however, the role of most of its microbial community in ammonium removal remains unknown. Our analysis yielded 23 near-complete draft genomes that together represent the majority of the microbial community. We assign these genomes to distinct anaerobic and aerobic microbial communities. In the aerobic community, nitrifying organisms and heterotrophs predominate. In the anaerobic community, widespread potential for partial denitrification suggests a nitrite loop increases treatment efficiency. Of our genomes, 19 have no previously cultivated or sequenced close relatives and six belong to bacterial phyla without any cultivated members, including the most complete Omnitrophica (formerly OP3) genome to date. PMID:27029554

  6. Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading.

    PubMed

    He, Qiulai; Yuan, Zhe; Zhang, Jing; Zhang, Shilu; Zhang, Wei; Zou, Zhuocheng; Wang, Hongyu

    2017-04-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) has raised concerns about the environmental threats to the wastewater treatment systems. Shock loading of 10, 50 and 100 mg/L ZnO NPs was conducted to evaluate impacts on reactor performance, microbial activities and extracellular polymeric substances (EPS) in parent aerobic/oxic/anoxic (A/O/A) granular sequencing batch reactors (SBRs). The results showed that ZnO NPs caused inhibition to nitrogen transformations due to acute toxicity to nitrification and denitrification. However, phosphorus removal remained unaffected by the exposure to ZnO NPs. Besides, ZnO NPs significantly enhanced the oxygen respiration rate and caused acute toxicity to ammonia oxidizing rate (10.40-35.21%), phosphorus release rate (37.79-19.80%), aerobic phosphorus uptake rate (36.95-20.69%) and total phosphorus uptake rate (32.77-16.91%) of aerobic granules. ZnO NPs stimulated the secretion of EPS, especially the content of protein (PN), which could relieve the toxicity of ZnO NPs.

  7. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation.

    PubMed

    Osei-Yeboah, Frederick; Feng, Yushi; Sun, Changquan Calvin

    2014-01-01

    Granulation behavior of microcrystalline cellulose (MCC) in the presence of 2.5% polyvinylpyrrolidone (PVP) was systematically studied. Complex changes in flowability and tabletability of lubricated MCC granules are correlated to changes in intragranular porosity, morphology, surface smoothness, size distribution, and specific surface area (SSA). With 2.5% PVP, the use of 45% granulation water leads to 84% reduction in tablet tensile strength and 76% improvement in powder flow factor. The changes in powder performance are explained by granule densification and surface smoothing. The granulating water level corresponding to the onset of overgranulation, 45%, is significantly lower than the 70% water required for unlubricated MCC granules without PVP. At more than 45% water levels, MCC-PVP granules flow well but cannot be compressed into intact tablets. Such changes in powder performance correspond to the rapid growth into large and dense spheres with smooth surface. Compared with MCC alone, the onset of the phase of fast granule size enlargement occurs at a lower water level when 2.5% PVP is used. Although the use of 2.5% PVP hastens granule nucleation and growth rate, the mechanisms of overgranulation are the same, that is, size enlargement, granule densification, surface smoothing, and particle rounding in both systems.

  8. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs.

    PubMed

    Bello, Oscar Daniel; Cappa, Andrea Isabel; de Paola, Matilde; Zanetti, María Natalia; Fukuda, Mitsunori; Fissore, Rafael A; Mayorga, Luis S; Michaut, Marcela A

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs.

  9. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    PubMed

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system.

  10. Aerobic fitness testing: an update.

    PubMed

    Stevens, N; Sykes, K

    1996-12-01

    This study confirms that all three tests are reliable tools for the assessment of cardiorespiratory fitness and the prediction of aerobic capacity. While this particular study consisted of active, youthful subjects, subsequent studies at University College Chester have found similar findings with larger databases and a wider cross-section of subjects. The Astrand cycle test and Chester step test are submaximal tests with error margins of 5-15 per cent and therefore, not as precise as maximal testing. However, they still give a reasonably accurate reflection of an individual's fitness without the cost, time, effort and risk on the part of the subject. The bleep test is a low-cost maximal test designed for well-motivated, active individuals who are used to running to physical exhaustion. Used on other groups, results will not accurately reflect cardiorespiratory fitness values. While all three tests have inherent advantages and disadvantages, perhaps the most important factors are the knowledge and skills of the tester. Without a sound understanding of the physiological principles underlying these tests, and the ability to conduct an accurate assessment and evaluation of results in a knowledgeable and meaningful way, then the credibility of the tests and the results become suspect. However, used correctly, aerobic capacity tests can provide valuable baseline data about the fitness levels of individuals and data from which exercise programmes may be developed. The tests also enable fitness improvements to be monitored, help to motivate participants by establishing reasonable and achievable goals, assist in risk stratification and facilitate participants' education about the importance of physical fitness for work and for life. Since this study was completed, further tests have been repeated on 140 subjects of a wider age and ability range. This large database confirms the results found in this study.

  11. Aerobic glycolysis and lymphocyte transformation

    PubMed Central

    Hume, David A.; Radik, Judith L.; Ferber, Ernst; Weidemann, Maurice J.

    1978-01-01

    1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-14C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-14C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [3H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25μm) stimulated DNA synthesis half-maximally, but maximum [3H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [3H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis. PMID:310305

  12. Cultivation of Marine Sponges.

    PubMed

    Osinga; Tramper; Wijffels

    1999-11-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge aquacultures, based on old methods for producing commercial bath sponges, are still the easiest and least expensive way to obtain sponge biomass in bulk. However, success of cultivation with this method strongly depends on the unpredictable and often suboptimal natural environment. Hence, a better-defined production system would be desirable. Some progress has been made with culturing sponges in semicontrolled systems, but these still use unfiltered natural seawater. Cultivation of sponges under completely controlled conditions has remained a problem. When designing an in vitro cultivation method, it is important to determine both qualitatively and quantitatively the nutritional demands of the species that is to be cultured. An adequate supply of food seems to be the key to successful sponge culture. Recently, some progress has been made with sponge cell cultures. The advantage of cell cultures is that they are completely controlled and can easily be manipulated for optimal production of the target metabolites. However, this technique is still in its infancy: a continuous cell line has yet to be established. Axenic cultures of sponge aggregates (primmorphs) may provide an alternative to cell culture. Some sponge metabolites are, in fact, produced by endosymbiotic bacteria or algae that live in the sponge tissue. Only a few of these endosymbionts have been cultivated so far. The biotechnology for the production of sponge metabolites needs further development. Research efforts should be continued to enable commercial exploitation of this valuable natural resource in the near future.

  13. Cultivating strategic thinking skills.

    PubMed

    Shirey, Maria R

    2012-06-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author presents an overview of strategic leadership and offers approaches for cultivating strategic thinking skills.

  14. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate

    PubMed Central

    Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251

  15. Adsorption mechanism for xanthene dyes to cellulose granules.

    PubMed

    Tabara, Aya; Yamane, Chihiro; Seguchi, Masaharu

    2012-01-01

    The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.

  16. Precise Proper-Motion Measurement of Solar Granulation

    DTIC Science & Technology

    1988-10-01

    representation of the numerical method for the spatially localized cross correlation and displacement map. Two original granulation J(x) images obtained at times t...quadratic methods give displacements correct to a precision of - 10%. V. NOISE ANALYSIS We now dis,;uss a time series of solar granulation images taken with...estimate the extreme position of a function. To analyze these methods further, we digitized along the 45 diagonal the sample granulation photograph at 12

  17. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  18. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant.

    PubMed

    Lin, Yuemei; de Kreuk, Merle; van Loosdrecht, M C M; Adin, Avner

    2010-06-01

    To understand functional gel-forming exopolysaccharides in aerobic granular sludge, alginate-like exopolysaccharides were specifically extracted from aerobic granular sludge cultivated in a pilot plant treating municipal sewage. The exopolysaccharides were identified by the FAO/WHO alginate identification tests, characterized by biochemical assays, gelation with Ca(2+), blocks fractionation, spectroscopic analysis as UV-visible, FT-IR and MALDI-TOF MS, and electrophoresis. The yield of extractable alginate-like exopolysaccharides was reached 160+/-4mg/g (VSS ratio). They resembled seaweed alginate in UV-visible and MALDI-TOF MS spectra, and distinguished from it in the reactions with acid ferric sulfate, phenol-sulfuric acid and Coomassie brilliant blue G250. Characterized by their high percentage of poly guluronic acid blocks (69.07+/-8.95%), the isolated exopolysaccharides were capable to form rigid, non-deformable gels in CaCl(2). They were one of the dominant exopolysaccharides in aerobic granular sludge. We suggest that polymers play a significant role in providing aerobic granular sludge a highly hydrophobic, compact, strong and elastic structure.

  19. Aerobic growth of Anoxybacillus pushchinoensis K1(T): emended descriptions of A. pushchinoensis and the genus Anoxybacillus

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Cleland, David; Tang, Jane

    2003-01-01

    In this work, corrections are made to the descriptions of the species Anoxybacillus pushchinoensis corrig. and the genus ANOXYBACILLUS: Experiments to determine the relationship of A. pushchinoensis K1(T) to oxygen showed that it was capable of aerobic growth, but preferred to grow anaerobically. During aerobic growth, the redox indicator resazurin was reduced as a result of hydrogen gas production. The facultatively anaerobic nature of K1(T) was ascertained by cultivation in aerobic liquid medium, where growth began at the bottom of the tube. The anaerobic nature of K1(T) was also indicated by a negative catalase reaction. This work is submitted to correct the description of the species A. pushchinoensis from obligate anaerobe to aerotolerant anaerobe and to emend the description of the genus Anoxybacillus from obligate anaerobes or facultative anaerobes to aerotolerant anaerobes or facultative anaerobes.

  20. Studies of alpha-granule proteins in cultured human megakaryocytes.

    PubMed

    Veljkovic, Dragoslava Kika; Cramer, Elisabeth M; Alimardani, Gulie; Fichelson, Serge; Massé, Jean-Marc; Hayward, Catherine P M

    2003-11-01

    alpha-Granule protein storage is important for producing platelets with normal haemostatic function. The low to undetectable levels of several megakaryocyte-synthesized alpha-granule proteins in normal plasma suggest megakaryocytes are important to sequester these proteins in vivo. alpha-Granule protein storage in vitro has been studied using other cell types, with differences observed in how some proteins are processed compared to platelets. Human megakaryocytes, cultured from cord blood CD34(+) cells and grown in serum-free media containing thrombopoietin, were investigated to determine if they could be used as a model for studying normal alpha-granule protein processing and storage. ELISA indicated that cultured megakaryocytes contained the alpha-granule proteins multimerin, von Willebrand factor, thrombospondin-1, beta-thromboglobulin and platelet factor 4, but no detectable fibrinogen and factor V. A significant proportion of the alpha-granule protein in megakaryocyte cultures was contained within the cells (averages: 41-71 %), consistent with storage. Detailed analyses of multimerin and von Willebrand factor confirmed that alpha-granule proteins were processed to mature forms and were predominantly located in the alpha-granules of cultured megakaryocytes.Thrombopoietin-stimulated cultured megakaryocytes provide a useful model for studying alpha-granule protein processing and storage.

  1. Carbon granule probe microphone for leak detection. [recovery boilers

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P. (Inventor)

    1985-01-01

    A microphone which is not subject to corrosion is provided by employing carbon granules to sense sound waves. The granules are packed into a ceramic tube and no diaphragm is used. A pair of electrodes is located in the tube adjacent the carbon granules and are coupled to a sensing circuit. Sound waves cause pressure changes on the carbon granules which results in a change in resistance in the electrical path between the electrodes. This change in resistance is detected by the sensing circuit. The microphone is suitable for use as a leak detection probe in recovery boilers, where it provides reliable operation without corrosion problems associated with conventional microphones.

  2. Preparation of Spherical Granules of Octacalcium Phosphate for Medical Application

    NASA Astrophysics Data System (ADS)

    Ito, Natsuko; Kamitakahara, Masanobu; Ioku, Koji

    2012-06-01

    Octacalcium phosphate (OCP) is regarded as a precursor of hydroxyapatite (HA) which is an inorganic constituent of human bones and teeth. OCP is also becoming regarded as one of the important biomaterials. Despite some studies on OCP as biomedical materials, there are few methods for shape forming of OCP. The objective of this study is preparing spherical granules of OCP. The spherical granular shape has an advantage for handling. The spherical granules can achieve easy injection into the defect site by a catheter. In the present study, preparation of spherical granules of OCP from α-tricalcium phosphate (α-TCP) was attempted. The starting material of α-TCP powder was dispersed in the gelatin solution. The resultant slurry was added into vegetable oil, and then the spherical granules of α-TCP/gelatin were formed by the surface tension of the slurry and the shearing force of stirring. By calcining the obtained α-TCP/gelatin granules, the spherical granules with α-TCP single phase were obtained. These spherical granules of α-TCP were immersed in the acetic acid buffer solution whose temperature and pH were controlled. The calcium phosphate spherical granules containing OCP were obtained. The shorter treatment time was favorable for preparing spherical granules containing more OCP.

  3. Mucous granule exocytosis and CFTR expression in gallbladder epithelium.

    PubMed

    Kuver, R; Klinkspoor, J H; Osborne, W R; Lee, S P

    2000-02-01

    A mechanistic model of mucous granule exocytosis by columnar epithelial cells must take into account the unique physical-chemical properties of mucin glycoproteins and the resultant mucus gel. In particular, any model must explain the intracellular packaging and the kinetics of release of these large, heavily charged species. We studied mucous granule exocytosis in gallbladder epithelium, a model system for mucus secretion by columnar epithelial cells. Mucous granules released mucus by merocrine exocytosis in mouse gallbladder epithelium when examined by transmission electron microscopy. Spherules of secreted mucus larger than intracellular granules were noted on scanning electron microscopy. Electron probe microanalysis demonstrated increased calcium concentrations within mucous granules. Immunofluorescence microscopic studies revealed intracellular colocalization of mucins and the cystic fibrosis transmembrane conductance regulator (CFTR). Confocal laser immunofluorescence microscopy confirmed colocalization. These observations suggest that calcium in mucous secretory granules provides cationic shielding to keep mucus tightly packed. The data also suggests CFTR chloride channels are present in granule membranes. These observations support a model in which influx of chloride ions into the granule disrupts cationic shielding, leading to rapid swelling, exocytosis and hydration of mucus. Such a model explains the physical-chemical mechanisms involved in mucous granule exocytosis.

  4. Granuphilin exclusively mediates functional granule docking to the plasma membrane

    PubMed Central

    Mizuno, Kouichi; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro

    2016-01-01

    In regulated exocytosis, it is generally assumed that vesicles must stably “dock” at the plasma membrane before they are primed to become fusion-competent. However, recent biophysical analyses in living cells that visualize fluorescent secretory granules have revealed that exocytic behaviors are not necessarily uniform: some granules beneath the plasma membrane are resistant to Ca2+ -triggered release, while others are accelerated to fuse without a pause for stable docking. These findings suggest that stable docking is unnecessary, and can even be inhibitory or nonfunctional, for fusion. Consistently, pancreatic β cells deficient in the Rab27 effector, granuphilin, lack insulin granules directly attached to the plasma membrane in electron micrographs but nevertheless exhibit augmented exocytosis. Here we directly compare the exocytic behaviors between granuphilin-positive and -negative insulin granules. Although granuphilin makes granules immobile and fusion-reluctant beneath the plasma membrane, those granuphilin-positive, docked granules release a portion of granuphilin upon fusion, and fuse at a frequency and time course similar to those of granuphilin-negative undocked granules. Furthermore, granuphilin forms a 180-nm cluster at the site of each docked granule, along with granuphilin-interacting Rab27a and Munc18-1 clusters. These findings indicate that granuphilin is an exclusive component of the functional and fusion-inhibitory docking machinery of secretory granules. PMID:27032672

  5. Osseointegration of alumina bioceramic granules: A comparative experimental study

    NASA Astrophysics Data System (ADS)

    Rerikh, V. V.; Avetisyan, A. R.; Zaydman, A. M.; Anikin, K. A.; Bataev, V. A.; Nikulina, A. A.; Sadovoy, M. A.; Aronov, A. M.; Semantsova, E. S.

    2016-08-01

    To perform a comparative analysis of osseointegration of bioceramic alumina-based granules, hydroxyapatite-based granules, and deproteinized bone granules. The experiment was conducted on 52 adult male Kyoto-Wistar rats weighing 350 to 520 g. The animals were divided into five matched groups that differed only in the type of an implanted material. The granules were implanted in the lumbar vertebral bodies and in the distal right femur of each laboratory animal. Two months after surgery, the animals were euthanized, followed by tissue sampling for morphological studies. An examination of specimens from the groups with implanted alumina granules revealed the newly formed trabecular bone with remodeling signs. The bone tissue filled the intragranular space, tightly adhering to the granule surface. There was no connective tissue capsule on the border between bone tissue and alumina granules. Cylindrical bioceramic alumina-based granules with an open internal channel have a higher strength surpassing than that of analogs and the osseointegration ability close to that of hydroxyapatite and deproteinized bone granules.

  6. GRANULES ASSOCIATED WITH THE CHLOROPLAST LAMELLAE OF PORPHYRIDIUM CRUENTUM

    PubMed Central

    Gantt, E.; Conti, S. F.

    1966-01-01

    Small granules with a diameter of approximately 350 A are attached to the chloroplast lamellae of the red alga Porphyridium cruentum. To some extent, their size depends on the culture conditions and the age of the cell. It was possible to preserve the granules only with aldehyde prefixation. It can be seen that fixed or negatively stained granules are comprised of smaller subunits. The granules are arranged regularly on the lamellae in repeating rows with a center-to-center granule distance of 400 to 500 A. Attempts at characterization of these chloroplast granules revealed that they are resistant to hydrolysis by ribonuclease and appear to be structurally unaffected by methanol-acetone extraction. Because of their close association with the chloroplast lamellae, they are considered as possible sites of phycobilin concentration. This possibility is supported by two observations: when the phycobilins are removed, the granules disappear; and, when the chlorophyll and stainable membrane portions are selectively removed, the phycobilins and granules are still present. It was found that all other marine red algae examined had granules which were associated with the chloroplast lamellae. PMID:5962937

  7. Effect of Primary Particle Size on the Granule Properties

    NASA Astrophysics Data System (ADS)

    Rahmanian, Nejat; Ghadiri, Mojtaba; Ding, Yulong; Jia, Xiaodong

    2009-06-01

    Results of a study of the influence of primary particle size on the strength, density and internal structure of granules produced in a high shear mixer granulator, Cyclomix (manufactured by Hosokawa Micron B.V., The Netherlands) are reported. Different grades of calcium carbonate powder (available commercially as Durcal 15, 40 and 65) were granulated in a 50 L granulator. Durcal 15 is the finest powder, d50 = 23 μm, and Durcal 65 is the coarsest one, d50 = 60 μm. An aqueous solution of polyethylene glycol was used as the binder. Granules produced from the three powder grades were dried and tested to ascertain their internal structure using X-ray Micro Tomography (XMT). The granules were also individually subjected to quasi-static compression to characterise their crushing strength. The envelop density of granules for each powder grade was also measured. The results show that the envelope density increases with the mean size of primary particles. It is found that a more uniform strength and density distributions are obtained for the coarsest powder grade and the granulation operating conditions for the finest grade, Durcal 15, produced the weakest granules. This is attributed to the presence of large pores and cavities in their cores, as observed by XMT.

  8. Observation of polyphosphate granules in cable bacteria

    NASA Astrophysics Data System (ADS)

    Yang, T.; Nielsen, L. P.; Risgaard-Petersen, N.

    2015-12-01

    Cable bacteria are long filamentous bacteria that capable for long distance electron transport: transporting electrons derived from oxidizing sulfide in anoxic layers, to oxygen at the sediment surface, over a distance of centimeters. Cable bacteria are found in many types of freshwater and marine sediment all over the world, with density of approximately thousands of kilometers per square meter. These long filaments are composed by individual cells closely related to Desulfobulbaceae, connected with a shared outer membrane inside which the strings structure are presumed to be highly conductive. The observed doubling time of cells within the filament is about 20 min, which is among the shortest compare to other bacteria. In these cable cells, we constantly observed polyphosphate granules (poly-P), regardless of cell dimension and shape. This is very interesting since it has long been recognized that the microbial polyP content is low during rapid growth and increases under unfavorable conditions, for example, increasing sulfide concentration and anoxia resulted in a decomposition of poly-P in Beggiatoa. Here, we investigated marine cable bacteria from Netherland and Aarhus Bay, focusing on the poly-P dynamics under various redox conditions. In poly-P stained cells, typically there are two big poly-P granules locate at each polar. In dividing cells, however, the morphology of poly-P changed to six small granules precisely arranged to two row. Moreover, the cells seem be able to continuously divide more than one time without elongation step. These varied poly-P morphologies demonstrate that poly-P is closely related to the cell growth and cell division, by an unknown mechanism. Individual cable filaments were picked up and were exposed to different redox conditions; our primary data indicated the cable cells could suffer anoxic condition better than oxic condition. We also detected decomposition of poly-P under anoxia. These results call for an in-depth examination

  9. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland.

    PubMed

    Finnegan, Lucy; Garcia-Melgares, Manuel; Gmerek, Tomasz; Huddleston, W Ryan; Palmer, Alexander; Robertson, Andrew; Shapiro, Sarah; Unkles, Shiela E

    2011-10-01

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews, Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions in the laboratory. Bacteria isolated on Marine Agar 2216 were all Gram-negative and identified to genus level by sequencing the gene encoding 16S rRNA. Colwellia, Maribacter, Pseudoaltermonas and Shewanella were observed in aerobically-grown cultures while Vibrio was found to be present in both aerobic and anaerobic cultures. The obligate anaerobic bacterium Psychrilyobacter atlanticus, a recently defined genus, was identified as a close relative of isolates grown anaerobically. The results provide valuable information as to the main players that attach and form de novo biofilms on common minerals in sea water.

  10. Evaluation of granulated lactose as a carrier for DPI formulations 1: effect of granule size.

    PubMed

    Du, Ping; Du, Ju; Smyth, Hugh D C

    2014-12-01

    The objective of this study was to investigate the effect of large granulated lactose carrier particle systems on aerosol performance of dry powder inhaler formulations. Granulated lactose carriers with average sizes ranging from 200 to 1,000 μm were prepared and subsequently fractionated into separate narrow size powders. The fractionated granulated lactose (GL) samples were characterized in terms of size, specific surface area, surface roughness, morphology, density, flowability, and solid-state. The in vitro aerosolization performance was performed on the different size fractions of GL samples from a commercial inhaler device (Aerolizer®) with a model formulation (2% w/w salbutamol sulfate). The cascade impaction parameters employed were 60 or 90 L/min with standard (aperture size, 0.6 mm) or modified piercing holes (aperture size, 1.2 mm) of the inhaler loaded capsules. It was shown that the largest size fraction formulation (850-1000 μm) had a slight improvement in the fine particle fraction (FPF) compared to immediately preceding size fractions, explained by a smaller adhesive force between drug and carrier. Compared to commercial piercing holes, enlarged piercing holes generated a slight decreasing trend of FPF as the lactose powder sizes increased from 200-250 μm to 600-850 μm, perhaps due to the reduced detachment force by flow forces. The size, surface roughness, density, and flowability of lactose carrier as well as device design all contributed to the aerosol dispersion performance of granulated lactose-based adhesive mixtures. It was concluded that poorer or enhanced redispersion performance is not an inherent property to the significantly large size of granulated lactose carriers as previously contended.

  11. Involvement of the cytoskeleton in the movement of cortical granules during oocyte maturation, and cortical granule anchoring in mouse eggs.

    PubMed

    Connors, S A; Kanatsu-Shinohara, M; Schultz, R M; Kopf, G S

    1998-08-01

    Exocytosis of cortical granules in mouse eggs is required to produce the zona pellucida block to polyspermy. In this study, we examined the role of microfilaments and microtubules in the regulation of cortical granule movement toward the cortex during oocyte maturation and anchoring of cortical granules in the cortex. Fluorescently labeled cortical granules, microfilaments, and microtubules were visualized using laser-scanning confocal microscopy. It was observed that cortical granules migrate to the periphery of the oocyte during oocyte maturation. This movement is blocked by the treatment of oocytes with cytochalasin D, an inhibitor of microfilament polymerization, but not with nocodazole or colchicine, inhibitors of microtubule polymerization. Cortical granules, once anchored at the cortex, remained in the cortex following treatment of metaphase II-arrested eggs with each of these inhibitors; i.e., there was neither inward movement nor precocious exocytosis. Finally, the single cortical granule-free domain that normally becomes localized over the metaphase II spindle was not observed when the chromosomes become scattered following microtubule disruption with nocodazole or colchicine. In these instances a cortical granule-free domain was observed over each individual chromosome, suggesting that the chromosome or chromosome-associated material, and not the spindle, dictates the localization of the cortical granule-free domain.

  12. The effects of aerobic training on children's creativity, self-perception, and aerobic power.

    PubMed

    Herman-Tofler, L R; Tuckman, B W

    1998-10-01

    The article examines whether participation in an aerobic exercise program (AE), as compared with a traditional physical education class (PE), significantly increased children's perceived athletic competence, physical appearance, social acceptance, behavioral conduct, and global self-worth; increased their figural creativity; and improved aerobic power as measured by an 800-meter run around a track. Further research on the effects of different types of AE is discussed, as well as the need for aerobic conditioning in the elementary school.

  13. Drug distribution in wet granulation: foam versus spray.

    PubMed

    Tan, Melvin X L; Nguyen, Thanh H; Hapgood, Karen P

    2013-09-01

    Foam granulation technology is a new wet granulation approach for pharmaceutical formulations. This study evaluates the performance of foam and spray granulation in achieving uniform drug distribution using a model formulation. To observe wetting and nuclei formation, single drop/foam penetration experiments were performed on a static powder bed comprised of varying compositions of hydrophilic/hydrophobic glass ballotini, and hydrophilic lactose/hydrophobic salicylic acid respectively. High shear granulation experiments were performed in a 5L mixer using varying compositions of hydrophilic lactose and hydrophobic salicylic acid. Four percent hydroxylpropyl methylcellulose (HPMC) solution was delivered at 90 g/min as either a foam (92% FQ) or an atomized spray whilst recording impeller power consumption. After drying, the granule size distribution was measured and the granule composition was estimated using gravimetric filtration in methanol. Foam penetration was less dependent on the powder hydrophobicity compared to drop penetration. For glass ballotini powder mixtures, foam induced nucleation created nuclei with relatively uniform structure and size regardless of the powder hydrophobicity. For salicylic acid and lactose mixtures, increasing the proportion of salicylic acid reduced the nuclei granule size for both foam and drop binder addition. The granule drug distribution was not significantly affected by the binder addition method. Processing conditions, including liquid binder amount, impeller speed, wet massing, and the wettability properties of the formulation were the dominant factors for delivering homogeneous granules. The study reveals that foam and spray granulation involve different nucleation mechanisms - spray tends to incur early liquid penetration whereas foam granulation operates well in mechanical dispersion.

  14. The biology and dynamics of mammalian cortical granules.

    PubMed

    Liu, Min

    2011-11-17

    Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.

  15. Regulated proteolysis by cortical granule serine protease 1 at fertilization.

    PubMed

    Haley, Sheila A; Wessel, Gary M

    2004-05-01

    Cortical granules are specialized organelles whose contents interact with the extracellular matrix of the fertilized egg to form the block to polyspermy. In sea urchins, the granule contents form a fertilization envelope (FE), and this construction is critically dependent upon protease activity. An autocatalytic serine protease, cortical granule serine protease 1 (CGSP1), has been identified in the cortical granules of Strongylocentrotus purpuratus eggs, and here we examined the regulation of the protease activity and tested potential target substrates of CGSP1. We found that CGSP1 is stored in its full-length, enzymatically quiescent form in the granule, and is inactive at pH 6.5 or below. We determined the pH of the cortical granule by fluorescent indicators and micro-pH probe measurements and found the granules to be pH 5.5, a condition inhibitory to CGSP1 activity. Exposure of the protease to the pH of seawater (pH 8.0) at exocytosis immediately activates the protease. Activation of eggs at pH 6.5 or lower blocks activation of the protease and the resultant FE phenotypes are indistinguishable from a protease-null phenotype. We find that native cortical granule targets of the protease are beta-1,3 glucanase, ovoperoxidase, and the protease itself, but the structural proteins of the granule are not proteolyzed by CGSP1. Whole mount immunolocalization experiments demonstrate that inhibition of CGSP1 activity affects the localization of ovoperoxidase but does not alter targeting of structural proteins to the FE. The mistargeting of ovoperoxidase may lead to spurious peroxidative cross-linking activity and contribute to the lethality observed in protease-null cells. Thus, CGSP1 is proteolytically active only when secreted, due to the low pH of the cortical granules, and it has a small population of targets for cleavage within the cortical granules.

  16. The biology and dynamics of mammalian cortical granules

    PubMed Central

    2011-01-01

    Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals. PMID:22088197

  17. Control of bisphosphonate release using hydroxyapatite granules.

    PubMed

    Seshima, Hisashi; Yoshinari, Masao; Takemoto, Shinji; Hattori, Masayuki; Kawada, Eiji; Inoue, Takashi; Oda, Yutaka

    2006-08-01

    The efficacy of hydroxyapatite (HAp) as a carrier was investigated to establish a method of local administration of bisphosphonates (Bps), which has currently been administered systemically. HAp granules (300-500 microm in size) with different physicochemical features were prepared by altering the sintering temperature. To ascertain the physicochemical properties of the HAp granules, their crystallinity was assessed using X-ray diffraction, the surface morphology was examined under scanning electron microscopy, and the specific surface area and calcium dissolution were evaluated. Different Bps-HAp composites were subsequently prepared and the concentration of Bps released from these composites was measured. The influence of Bps-HAp composites on the rate of osteoclast survival was also evaluated. The results revealed that (1) HAp solubility depends on the sintering temperature; (2) The concentration of released Bps could be controlled by regulating the sintering temperature of HAp as a carrier; and (3) Bps released from Bps-HAp composites reduced the number of osteoclasts. These findings indicated that Bps-HAp composites could be locally administered as a drug delivery system to areas with bone resorption.

  18. Monitoring fluidized bed drying of pharmaceutical granules.

    PubMed

    Briens, Lauren; Bojarra, Megan

    2010-12-01

    Placebo granules consisting of lactose monohydrate, corn starch, and polyvinylpyrrolidone were prepared using de-ionized water in a high-shear mixer and dried in a conical fluidized bed dryer at various superficial gas velocities. Acoustic, vibration, and pressure data obtained over the course of drying was analyzed using various statistical, frequency, fractal, and chaos techniques. Traditional monitoring methods were also used for reference. Analysis of the vibration data showed that the acceleration levels decreased during drying and reached a plateau once the granules had reached a final moisture content of 1–2 wt.%; this plateau did not differ significantly between superficial gas velocities, indicating a potential criterion to support drying endpoint identification. Acoustic emissions could not reliably identify the drying endpoint. However, high kurtosis values of acoustic emissions measured in the filtered air exhaust corresponded to high entrainment rates. This could be used for process control to adjust the fluidization gas velocity to allow drying to continue rapidly while minimizing entrainment and possible product losses.

  19. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  20. The rise of oxygen and aerobic biochemistry.

    PubMed

    Saito, Mak A

    2012-01-11

    Analysis of conserved protein folding domains across extant genomes by Kim et al. in this issue of Structure provides insights into the timing of some of the earliest aerobic metabolisms to arise on Earth.

  1. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  2. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  3. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  4. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  5. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  6. ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure.

    PubMed

    Jain, Saumya; Wheeler, Joshua R; Walters, Robert W; Agrawal, Anurag; Barsic, Anthony; Parker, Roy

    2016-01-28

    Stress granules are mRNA-protein granules that form when translation initiation is limited, and they are related to pathological granules in various neurodegenerative diseases. Super-resolution microscopy reveals stable substructures, referred to as cores, within stress granules that can be purified. Proteomic analysis of stress granule cores reveals a dense network of protein-protein interactions and links between stress granules and human diseases and identifies ATP-dependent helicases and protein remodelers as conserved stress granule components. ATP is required for stress granule assembly and dynamics. Moreover, multiple ATP-driven machines affect stress granules differently, with the CCT complex inhibiting stress granule assembly, while the MCM and RVB complexes promote stress granule persistence. Our observations suggest that stress granules contain a stable core structure surrounded by a dynamic shell with assembly, disassembly, and transitions between the core and shell modulated by numerous protein and RNA remodeling complexes.

  7. Controlled pilot development unit-scale fed-batch cultivation of yeast on spruce hydrolysates.

    PubMed

    Rudolf, Andreas; Lequeux, Gaspard; Lidén, Gunnar

    2007-01-01

    Yeast production on hydrolysate is a likely process solution in large-scale ethanol production from lignocellulose. The hydrolysate will be available on site, and the yeast has furthermore been shown to acquire an increased inhibitor tolerance when cultivated on hydrolysate. However, due to over-flow metabolism and inhibition, efficient yeast production on hydrolysate can only be achieved by well-controlled substrate addition. In the present work, a method was developed for controlled addition of hydrolysate to PDU (process development unit)-scale aerobic fed-batch cultivations of Saccharomyces cerevisiae TMB 3000. A feed rate control strategy, which maintains the ethanol concentration at a low constant level, was adapted to process-like conditions. The ethanol concentration was obtained from on-line measurements of the ethanol mole fraction in the exhaust gas. A computer model of the system was developed to optimize control performance. Productivities, biomass yields, and byproduct formation were evaluated. The feed rate control worked satisfactorily and maintained the ethanol concentration close to the setpoint during the cultivations. Biomass yields of 0.45 g/g were obtained on added hexoses during cultivation on hydrolysate and of 0.49 g/g during cultivation on a synthetic medium with glucose as the carbon source. Exponential growth was achieved with a specific growth rate of 0.18 h-1 during cultivation on hydrolysate and 0.22 h-1 during cultivation on glucose.

  8. Nonreutilizaton of adrenal chromaffin granule membranes following secretion

    SciTech Connect

    Nobiletti, J.B.

    1985-01-01

    The intracellular postexocytotic fate of the adrenal chromaffin granule membrane (reutilization vs. nonreutilization) was addressed through two experimental approaches. First, (/sup 3/H) leucine pulse-chase labeling experiments were conducted in two systems - the isolated retrograde perfused cat adrenal gland and cultured bovine adrenal chromaffin cells to compare chromaffin granule soluble dopamine-B-hydroxylase (DBH) turnover (marker for granule soluble content turnover) to that of membrane-bound DBH (marker for granule membrane turnover). Experiments in cat adrenal glands showed that at all chase periods the granule distribution of radiolabeled DBH was in agreement with the DBH activity distribution (73% membrane-bound/27% soluble) - a result consistent with parallel turnover of soluble and membrane-bound DBH. Experiments in cultured bovine cells showed that labeled soluble and membrane-bound DBH had parallel turnover patterns and at all chase period, the distribution of radiolabeled DBH between the soluble contents and membranes was similar to the DBH activity distribution (50% soluble/50% membrane-bound). The above experiments showed that the soluble contents and membranes turnover in parallel and are consistent with nonreutilization of chromaffin granule membranes following exocytosis. Isolated retrograde perfused bovine adrenal glands were subjected to repetitive acetylcholine stimulation to induce exocytosis and then the dense and less-dense chromaffin granule fractions were isolated. Since both approaches gave results consistent with membrane nonreutilization, the authors conclude that once a chromaffin granule is involved in exocytosis, its membrane is not reutilized for the further synthesis, storage, and secretion of catecholamines.

  9. Autophagy meets fused in sarcoma-positive stress granules.

    PubMed

    Matus, Soledad; Bosco, Daryl A; Hetz, Claudio

    2014-12-01

    Mutations in fused in sarcoma and/or translocated in liposarcoma (FUS, TLS or FUS) are linked to familial cases of amyotrophic lateral sclerosis (ALS). Mutant FUS selectively accumulates into discrete cytosolic structures known as stress granules under various stress conditions. In addition, mutant FUS expression can alter the dynamics and morphology of stress granules. Although the link between mutant FUS and stress granules is well established, the mechanisms modulating stress granule formation and disassembly in the context of ALS are poorly understood. In this issue of Neurobiology of Aging, Ryu et al. uncover the impact of autophagy on the potential toxicity of mutant FUS-positive stress granules. The authors provide evidence indicating that enhanced autophagy activity reduces the number of stress granules, which in the case of cells containing mutant FUS-positive stress granules, is neuroprotective. Overall, this study identifies an intersection between the proteostasis network and alterations in RNA metabolism in ALS through the dynamic assembly and disassembly of stress granules.

  10. Internal structure and fragmentation kinetics of silica granules

    NASA Astrophysics Data System (ADS)

    Grosseau, P.; Dumas, T.; Bonnefoy, O.; Barriquand, L.; Guy, L.; Thomas, G.

    2013-06-01

    To improve the mechanical properties of tires, silica granules can be incorporated into the elastomer as well as carbon black. Ideally, the fragmentation of the granules in the elastomer must be obtained with low mechanical stresses and lead to very small fragments distributed homogeneously in the material. On the other hand, granules must present a sufficient cohesion, in order to avoid the generation of fine particles during handling operations. Thus it appears necessary to control the mechanical strength of granules and the mechanism of their fragmentation. In this experimental study, we investigated the fragmentation of silica granules of 250 microns produced by spray drying. For this, we characterized by granulometry the evolution of the Particle Size Distribution of silica powder in water. The granules were suspended in water and submitted to ultrasounds. This treatment is used to create the fragmentation that occurs by viscous shearing in industrial rubber processing. A core-shell structure, characteristic of granules obtained by atomization process, was observed by SEM. Furthermore, by varying the intensity of mechanical stress, the multi-scale structure of granules was evidenced as well as the existence of different regimes of fragmentation. The kinetics of fragmentation was experimentally followed on two grades of silica that showed significant differences in their behavior during the fragmentation process.

  11. Separation of rat pituitary secretory granules by continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel; Exton, Carrie; Salada, Thomas; Shellenberger, Kathy; Waddle, Jenny; Hymer, W. C.

    1990-01-01

    The separation of growth hormone-containing cytoplasmic secretory granules from the rat pituitary gland by continuous flow electrophoresis is described. The results are consistent with the hypothesis that granule subpopulations can be separated due to differences in surface charge; these, in turn, may be related to the oligomeric state of the hormone.

  12. 21 CFR 520.1330 - Meclofenamic acid granules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Meclofenamic acid granules. 520.1330 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1330 Meclofenamic acid granules. (a) Chemical name. N-(2,6-Dichlorom-tolyl) anthranilic acid. (b) Specifications. The drug is...

  13. 21 CFR 520.1330 - Meclofenamic acid granules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Meclofenamic acid granules. 520.1330 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1330 Meclofenamic acid granules. (a) Chemical name. N-(2,6-Dichlorom-tolyl) anthranilic acid. (b) Specifications. The drug is...

  14. 21 CFR 520.1330 - Meclofenamic acid granules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Meclofenamic acid granules. 520.1330 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1330 Meclofenamic acid granules. (a) Chemical name. N-(2,6-Dichlorom-tolyl) anthranilic acid. (b) Specifications. The drug is...

  15. 21 CFR 520.1330 - Meclofenamic acid granules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Meclofenamic acid granules. 520.1330 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1330 Meclofenamic acid granules. (a) Chemical name. N-(2,6-Dichlorom-tolyl) anthranilic acid. (b) Specifications. The drug is...

  16. Visualization of internal structure of banana starch granule through AFM.

    PubMed

    Peroni-Okita, Fernanda H G; Gunning, A Patrick; Kirby, Andrew; Simão, Renata A; Soares, Claudinéia A; Cordenunsi, Beatriz R

    2015-09-05

    Atomic force microscopy (AFM) is a high resolution technique for studying the external and internal structures of starch granules. For this purpose granules were isolated from bananas and embedded in a non-penetrating resin. To achieve image contrast of the ultrastructure, the face of the cut blocks were wetted in steam and force modulation mode imaging was used. Images of starch from green bananas showed large variation of height across the granule due to a locational specific absorption of water and swelling of amorphous regions; the data reveal that the center of the granules are structurally different and have different viscoelastic properties. Images of starches from ripe bananas showed an even greater different level of organization: absence of growth rings around the hilum; the central region of the granule is richer in amylose; very porous surface with round shaped dark structures; the size of blocklets are larger than the green fruits.

  17. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde

    SciTech Connect

    Slininger, P.J.; Bothast, R.J.

    1985-12-01

    Chemical oxidation of 3-hydroxypropionaldehyde (3-HPA) leads to acrylic acid, an industrially important polymerizable monomer currently derived from petroleum. As the availability of petroleum declines, 3-HPA may become attractive as a product to be obtained through fermentation of glycerol, a renewable resource. When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32/sup 0/C, although the overall 3-HPA yield increased continuously within the 25 to 37/sup 0/C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield.

  18. Probing platelet factor 4 alpha-granule targeting.

    PubMed

    Briquet-Laugier, V; Lavenu-Bombled, C; Schmitt, A; Leboeuf, M; Uzan, G; Dubart-Kupperschmitt, A; Rosa, J-P

    2004-12-01

    The storage mechanism of endogenous secretory proteins in megakaryocyte alpha-granules is poorly understood. We have elected to study the granule storage of platelet factor 4 (PF4), a well-known platelet alpha-granule protein. The reporter protein green fluorescent protein (GFP), PF4, or PF4 fused to GFP (PF4-GFP), were transfected in the well-characterized mouse pituitary AtT20 cell line, and in the megakaryocytic leukemic DAMI cell line. These proteins were also transduced using a lentiviral vector, in human CD34+ cells differentiated into megakaryocytes in vitro. Intracellular localization of expressed proteins, and colocalization studies were achieved by laser scanning confocal microscopy and immuno-electronmicroscopy. In preliminary experiments, GFP, a non-secretory protein (no signal peptide), localized in the cytoplasm, while PF4-GFP colocalized with adrenocorticotropin hormone (ACTH)-containing granules in AtT20 cells. In the megakaryocytic DAMI cell line and in human megakaryocytes differentiated in vitro, PF4-GFP localized in alpha-granules along with the alpha granular protein von Willebrand factor (VWF). The signal peptide of PF4 was not sufficient to specify alpha-granule storage of PF4, since when PF4 signal peptide was fused to GFP (SP4-GFP), GFP was not stored into granules in spite of its efficient translocation to the ER-Golgi constitutive secretory pathway. We conclude that the PF4 storage pathway in alpha-granules is not a default pathway, but rather a regular granule storage pathway probably requiring specific sorting mechanisms. In addition PF4-GFP appears as an appropriate probe with which to analyze alpha-granule biogenesis and its alterations in the congenital defect gray platelet syndrome.

  19. Multivalent Molecules as Modulators of RNA Granule Size and Composition.

    PubMed

    Falkenberg, Cibele Vieira; Carson, John H; Blinov, Michael L

    2017-02-24

    RNA granules are ensembles of specific RNA and protein molecules that mediate localized translation in eukaryotic cells. The mechanisms for formation and selectivity of RNA granules are unknown. Here we present a model for assembly of one type of RNA granule based on experimentally measured binding interactions among three core multivalent molecular components necessary for such assembly: specific RNA molecules that contain a cis-acting sequence called the A2 response element (A2RE), hnRNP A2 proteins that bind specifically (with high affinity) to A2RE sequences or nonspecifically (with lower affinity) to other RNA sequences, and heptavalent protein cytoskeleton-associated protein 5 (CKAP5, an alternative name for TOG protein) that binds both hnRNP A2 molecules and RNA. Non-A2RE RNA molecules (RNA without the A2RE sequence) that may be recruited to the granules through nonspecific interactions are also considered in the model. Modeling multivalent molecular interactions in granules is challenging because of combinatorial complexity in the number of potential molecular complexes among these core components and dynamic changes in granule composition and structure in response to changes in local intracellular environment. We use a hybrid modeling approach (deterministic-stochastic-statistical) that is appropriate when the overall compositions of multimolecular ensembles are of greater importance than the specific interactions among individual molecular components. Modeling studies titrating the concentrations of various granule components and varying effective site pair affinities and RNA valency demonstrate that interactions between multivalent components (TOG and RNA) are modulated by a bivalent adaptor molecule (hnRNP A2). Formation and disruption of granules, as well as RNA selectivity in granule composition are regulated by distinct concentration regimes of A2. Our results suggest that granule assembly is tightly controlled by multivalent molecular interactions

  20. α-granule biogenesis: from disease to discovery.

    PubMed

    Chen, Chang Hua; Lo, Richard W; Urban, Denisa; Pluthero, Fred G; Kahr, Walter H A

    2017-03-01

    Platelets are critical to hemostasis and thrombosis. Upon detecting injury, platelets show a range of responses including the release of protein cargo from α-granules. This cargo is synthesized by platelet precursor megakaryocytes or endocytosed by megakaryocytes and/or platelets. Insights into α-granule biogenesis have come from studies of hereditary conditions where these granules are immature, deficient or absent. Studies of Arthrogryposis, Renal dysfunction, and Cholestasis (ARC) syndrome identified the first proteins essential to α-granule biogenesis: VPS33B and VPS16B. VPS33B and VPS16B form a complex, and in the absence of either, platelets lack α-granules and the granule-specific membrane protein P-selectin. Gray Platelet Syndrome (GPS) platelets also lack conventionally recognizable α-granules, although P-selectin containing structures are present. GPS arises from mutations affecting NBEAL2. The GPS phenotype is more benign than ARC syndrome, but it can cause life-threatening bleeding, progressive thrombocytopenia, and myelofibrosis. We review the essential roles of VPS33B, VPS16B, and NBEAL2 in α-granule development. We also examine the existing data on their mechanisms of action, where many details remain poorly understood. VPS33B and VPS16B are ubiquitously expressed and ARC syndrome is a multisystem disorder that causes lethality early in life. Thus, VPS33B and VPS16B are clearly involved in other processes besides α-granule biogenesis. Studies of their involvement in vesicular trafficking and protein interactions are reviewed to gain insights into their roles in α-granule formation. NBEAL2 mutations primarily affect megakaryocytes and platelets, and while little is known about NBEAL2 function some insights can be gained from studies of related proteins, such as LYST.

  1. Porcine pancreatic alpha-amylase hydrolysis of native starch granules as a function of granule surface area.

    PubMed

    Kong, Byoung-Wook; Kim, Jung-In; Kim, Myo-Jeong; Kim, Jae Cherl

    2003-01-01

    Porcine pancreatic alpha-amylase activity on native starch granules is more accurately described as a function of surface area of the granules rather than of substrate concentration. The apparent K(m) of alpha-amylolysis of native starch from potato, maize, and rice expressed as a function of substrate concentration was largest for potato with a single value of V(max). However, the ratio of the slope of a Lineweaver-Burk plot to that of rice for enzymatic hydrolysis of native potato and maize starch were 7.78 and 2.58, respectively, which were very close to the ratio of surface area per mass of the two starch granules to that of rice. Therefore, the reciprocal of initial velocity was a linear function of the reciprocal of surface area for each starch granule. Surface area was calculated assuming the starch granules were spherical. The values obtained by this calculation were in good agreement with the value obtained by the photomicrographic method. By comparing enzymatic digestion of native maize granules to that of rice granules, it was concluded that the presence of pores in maize granules appeared to significantly affect overall rate of digestion after sufficient reaction time, but not at the very initial stage of hydrolysis.

  2. A highly sustainable and versatile granulation method of nanodrugs via their electrostatic adsorption onto chitosan microparticles as the granulation substrates.

    PubMed

    Yang, Yue; Hadinoto, Kunn

    2013-08-16

    Nanodrugs play important roles in enhancing the sustainability of pharmaceutical manufacturing via their ability to enhance the bioavailability of poorly soluble drugs, resulting in less drug wastage and less mass/energy consumed in their manufacturing. Despite their sustainability enhancement capability, solid dosage form manufacturing of nanodrugs remains lacking from the sustainability perspective. One example is the granulation of nanodrugs prior to tablet preparation, where existing methods (e.g. wet granulation, spray granulation, spray drying) require high energy and time expenses, or are highly intricate often leading to product inconsistencies. Herein we present an alternative nanodrug granulation method via electrostatic adsorption of the nanodrugs onto chitosan microparticles acting as granulation substrates. The method is sustainable involving only mixing of aqueous suspensions of the nanodrugs and substrates under ambient conditions, followed by washing and drying. We investigate the effects of substrate's physical characteristics and nanodrug to substrate ratio on the nanodrug loading in the granules, content uniformity, nanodrug recovery, and granule flowability. Ciprofloxacin and curcumin nanoplexes prepared by drug-polyelectrolyte complexation are used as the model nanodrugs with neutrally, positively, and negatively charged chitosan microparticles as the substrates. Granules having 25% (w/w) nanodrug loading at 50% (w/w) recovery with good flowability have been successfully prepared.

  3. Shock metamorphism of granulated lunar basalt

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Thompson, T. D.; Hoerz, F.; Bauer, J. F.

    1979-01-01

    The paper deals with an extensive series of shock-recovery experiments performed on both nonporous crystalline basalt and its granulated and sieved counterpart to study the role of porosity and grain size in shock motomorphic effects under otherwise identical conditions. Shocked samples are compared with unshocked starting material in terms of textural and mineralogical modifications attributable to shock. A comparative petrographic and chemical characterization is presented of pulverized and sieved lunar basalt 75035 shocked between 6 and 75 GPa in comparison with holocrystalline disks of the same basalts shocked in 10 earlier experiments. Specifically, a petrographic classification of shock features is given, along with an estimation of relative amounts of shock glasses and a chemical characterization of shock glasses in each shocked granular basalt.

  4. Effervescent granule based proliposomes of ibuprofen.

    PubMed

    Katare, O P; Vyas, S P; Dixit, V K

    1990-01-01

    Proliposomes of ibuprofen were successfully prepared using effervescent granules as solid carriers of dried phospholipids along with other lipids (soyabean lecithin, stearylamine and cholesterol). Liposomes of regular size with uniform size distribution resulted when proliposomal formulations were hydrated under the effervescence produced by the production of carbon dioxide gas. The inert atmosphere of carbon dioxide gas prevents the chance of oxidative degradation of phospholipids. The size distribution of liposomes was noted to be related to the degree of agitation provided by effervescence. Encapsulation efficiency of liposomes derived from proliposomes was shown to be nearly 100 per cent. Preparations were shown to be quite stable at 20 degrees C when stored under an umbrella of nitrogen. The enhanced anti-inflammatory activity of ibuprofen entrapped in liposomes was exhibited when compared with plain ibuprofen following intravenous administration using the carrageenan induced paw oedema test.

  5. Tensile Strength of the Chromaffin Granule Membrane

    PubMed Central

    Hiram, Yael; Nir, Avinoam; Zinder, Oren

    1982-01-01

    Catecholamine release from chromaffin granules, suspended in sucrose solutions of various osmotic strengths, was determined at different temperatures between 2° and 44°C. Dynamic measurements showed that steady state is achieved within 15 min of incubation at all temperatures. The effect of temperature on the release was established in terms of the median granular fragility (MGF) defined as the concentration of sucrose solution causing 50% lysis. The MGF was determined as the inflection point of the Gaussian distribution of granular fragility. The MGF was found to decrease with fall in temperature implying a corresponding increase of the tensile strength of the vesicle membrane. Critical resultant forces at lysis were calculated and found to vary from 8.2 dyn/cm at 2°C to 4.2 dyn/cm at 44°C. These compare well with tensions at lysis found earlier for erythrocytes. PMID:7104452

  6. Numerical experiments with flows of elongated granules

    NASA Technical Reports Server (NTRS)

    Elrod, Harold G.; Brewe, David E.

    1992-01-01

    Theory and numerical results are given for a program simulating two dimensional granular flow (1) between two infinite, counter-moving, parallel, roughened walls, and (2) for an infinitely wide slider. Each granule is simulated by a central repulsive force field ratcheted with force restitution factor to introduce dissipation. Transmission of angular momentum between particles occurs via Coulomb friction. The effect of granular hardness is explored. Gaps from 7 to 28 particle diameters are investigated, with solid fractions ranging from 0.2 to 0.9. Among features observed are: slip flow at boundaries, coagulation at high densities, and gross fluctuation in surface stress. A videotape has been prepared to demonstrate the foregoing effects.

  7. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  8. [SGP polymorphism in cultivated naked barley from Qinghai-Tibet plateau in China and the relationship between SGPs and starch content].

    PubMed

    Pan, Zhi-Fen; Zhou, Yi-Xing; Zhao, Tao; Deng, Guang-Bing; Zhai, Xu-Guang; Wu, Fang; Yu, Mao-Qun

    2007-05-01

    Starch granule proteins (SGPs) are minor components bound with starch granule, which mutation may be related to starch properties. This study investigated the variation of SGPs in cultivated naked barley from Qinghai-Tibet Plateau in China for the first time, and the relationship between SGPs and starch content was preliminarily done. Ten major SGPs and 16 types of patterns were present in 66 cultivated naked varieties, indicating SGPs in cultivated naked barley from Qinghai-Tibet Plateau in China are polymorphic. SGPs in Tibet and Sichuan naked barley were greatly different and SGPs were specific to origin of site. Significance test analysis demonstrates SGPs described in this study except for SGP1 may be related with the variation of starch content in different naked barley.

  9. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.

    PubMed

    Cheng, Kai; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Chen, Qin; Pan, Keliang; Pu, Wenhong; Yang, Jiakuan; Wu, Xu; Yang, Changzhu

    2017-04-01

    Microbial consortiums aggregated on the anode surface of microbial fuel cells (MFCs) are critical factors for electricity generation as well as biodegradation efficiencies of organic compounds. Here in this study, aerobic granular sludge (AGS) was assembled on the surface of the MFC anode to form an AGS-MFC system with superior performance on epoxy reactive diluent (ERD) wastewater treatment. AGS-MFCs successfully shortened the startup time from 13d to 7d compared to the ones inoculated with domestic wastewater. Enhanced toxicity tolerance as well as higher COD removal (77.8% vs. 63.6%) were achieved. The higher ERD wastewater treatment efficiency of AGS-MFC is possibly attributed to the diverse microbial population on MFC biofilm, as well as the synergic degradation of contaminants by both the MFC anode biofilm and AGS granules.

  10. Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge.

    PubMed

    Mañas, A; Spérandio, M; Decker, F; Biscans, B

    2012-01-01

    This work focuses on combined scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) applied to granular sludge used for biological treatment of high-strength wastewater effluents. Mineral precipitation is shown to occur in the core of microbial granules under different operating conditions. Three dairy wastewater effluents, from three different upflow anaerobic sludge blanket (UASB) reactors and two aerobic granular sequenced batch reactors (GSBR) were evaluated. The relationship between the solid phase precipitation and the chemical composition of the wastewater was investigated with PHREEQC software (calculation of saturation indexes). Results showed that pH, Ca:P ratios and biological reactions played a major role in controlling the biomineralization phenomena. Thermodynamics calculations can be used to foresee the nature of bio-precipitates, but the location of the mineral concretions will need further investigation as it is certainly due to local microbial activity.

  11. Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions.

    PubMed

    Barros, Lillian; Dueñas, Montserrat; Dias, Maria Inês; Sousa, Maria João; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2013-01-01

    Melissa officinalis L. (lemon balm) is normally consumed as an infusion and presents therapeutic properties, such as sedative, carminative and antispasmodic, also being included in some pharmaceutical preparations. The phenolic profiles of different samples of lemon balm, prepared as infusions, were evaluated by HPLC-DAD-ESI/MS. The profiles were compared in order to understand the differences between cultivated, in vitro cultured and commercial (bags and granulated) samples. All the samples showed a similar phenolic profile, presenting differences only in the quantities found of each compound. Rosmarinic acid was the most abundant compound, being higher in commercial samples, especially in tea bag sample (55.68mg/g of infusion) and lower in in vitro cultured sample (15.46mg/g). Moreover, dimers, trimers and tetramers of caffeic acid were identified and quantified for the first time in lemon balm. Only one flavonoid, luteolin-3'-O-glucuronide was found in all the samples, ranging from 8.43mg/g in commercial granulate sample to 1.22mg/g in in vitro cultured sample. Overall, cultivated and in vitro cultured samples presented the lowest amounts of phenolic compounds (59.59 and 30.21mg/g, respectively); otherwise, commercial samples showed the highest contents (109.24mg/g for tea bag and 101.03mg/g for granulate sample). The present study shows that infusion of lemon balm can be a source of phenolic compounds, known for their bioactive effects.

  12. How to cultivate Ectocarpus.

    PubMed

    Coelho, Susana M; Scornet, Delphine; Rousvoal, Sylvie; Peters, Nick T; Dartevelle, Laurence; Peters, Akira F; Cock, J Mark

    2012-02-01

    This article describes the standard procedure for growing Ectocarpus in the laboratory. The culture is started with partheno-sporophyte (or sporophyte) filaments because this is the stage that is usually maintained in strain collections. The standard medium is Provasoli-enriched natural seawater (PES), but Ectocarpus can also be grown in artificial seawater, which allows more precise control over the culture conditions. The algae can be cultivated either in plastic Petri dishes or in 10-L bottles with bubbling, if large amounts of biomass are required. Standard growth conditions are 13°C with a 12h/12h d/night cycle and 20 µmol photons m(-2) s(-1) irradiance using daylight-type fluorescent tubes. All manipulations of Ectocarpus cultures should be performed in a clean environment (if possible, under a laminar flow hood). Forceps should be dipped in ethanol and allowed to dry under the hood.

  13. Starting from grape cultivation.

    PubMed

    Yoshida, A

    1992-06-01

    Rapid population growth can only be stopped by lowering the fertility rate. The UNFPA recommends improving the employment opportunities for women as the single best way of achieving this reduction. An example of this phenomenon is the grape cultivation in the Nordeste (Northeastern) region of Brazil. This area is the poorest part of Brazil and has the highest proportion of indigent people. These people have been deforesting the Amazon in search of a better life. What they have done is sterilize the land and turned a tropical rain forest into a desert. In an effort to reverse this trend, grape cultivation has been introduced in an area called Petrolina. The area is very dry with less than 500 mm of precipitation annually. They do have access to a 5000 square kilometer artificial lake (the largest in the world) and the 3rd largest river in Brazil (the Sao Francisco). In an effort to avoid using agricultural medicines, the vines are fertilized with organic matter created on the farm and little or no pesticides are used since pests do not live in such an arid region. It has taken 20 years of trial and error, but the quality of the grapes is now very high and is competitive on the world market. Because of climate and location, harvesting is done year round which increases the productivity of the land. The farm managers have found that married women make the best workers and have the highest level of productivity. Age at 1st marriage averages 24-25, compared with 15-16 for unemployed women in the same area. The fertility rate averages 50% of that for unemployed women in the same area. Agricultural development offers the best opportunity for the women of developing countries. It can pay a high wage, reduce fertility, and replant desert areas.

  14. CULTIVATION OF LEPTOSPIRAE I.

    PubMed Central

    Stalheim, O. H. V.; Wilson, J. B.

    1964-01-01

    Stalheim, O. H. V. (University of Wisconsin, Madison), and J. B. Wilson. Cultivation of leptospirae. I. Nutrition of Leptospira canicola. J. Bacteriol. 88:48–54. 1964.—The nutrition of Leptospira canicola was investigated by use of synthetic media of suitable ionic strength. At an incubation temperature of 30 C, the minimal components were calcium, iron, magnesium, and ammonium ions, thiamine, and a fatty acid source; barium and strontium replaced calcium. Aspartic acid, glutamic acid, or methionine stimulated the rate and amount of growth; the best growth occurred in medium containing additional amino acids. Additions of cyanocobalamin or biotin permitted growth at 37 C. The stimulatory effects of added cyanocobalamin, biotin, pyridoxine, pantothenate, lipoic acid, or nicotinic acid were additive at 37 C, but not at 30 C. Fatty acids containing 14, 16, 17, or 18 carbon atoms supported growth; linoleic and linolenic acids were toxic. Glyceryl monooleate or trioleate, or Tween 40, 60, or 80 supported moderate to good growth; a mixture of monoolein and Tween 60, or Tweens 60 and 80 supported the best growth. Ten strains of L. canicola cultivated in a synthetic medium containing Tweens 60 and 80 attained cellular densities per ml of 107 to 4.0 × 107 organisms. L. canicola cells, resuspended in medium containing oleic-1-C14 acid, incorporated label primarily into cellular lipids; a lesser amount was located in the protein fraction, and only trace amounts were found in the nucleic acid fraction. The rate of incorporation was not affected by added sodium acetate. L. canicola was found to have fatty acid decarboxylase activity. PMID:14197904

  15. Hybrid origins of cultivated potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild and cultivated potatoes, Solanum section Petota, is taxonomically difficult, partly because of interspecific hybridization at both the diploid and polyploid levels. The taxonomy of cultivated potatoes is particularly controversial. With DNA sequence data of the GBSSI (waxy) gene we here infer r...

  16. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin.

    PubMed

    Amorim, Catarina L; Maia, Alexandra S; Mesquita, Raquel B R; Rangel, António O S S; van Loosdrecht, Mark C M; Tiritan, Maria Elizabeth; Castro, Paula M L

    2014-03-01

    A granular sludge sequencing batch reactor (SBR) was operated for 340 days for treating a synthetic wastewater containing fluoroquinolones (FQs), namely ofloxacin, norfloxacin and ciprofloxacin. The SBR was intermittently fed with FQs, at concentrations of 9 and 32 μM. No evidence of FQ biodegradation was observed but the pharmaceutical compounds adsorbed to the aerobic granular sludge, being gradually released into the medium in successive cycles after stopping the FQ feeding. Overall COD removal was not affected during the shock loadings. Activity of ammonia oxidizing bacteria and nitrite oxidizing bacteria did not seem to be inhibited by the presence of FQs (maximum of 0.03 and 0.01 mM for ammonium and nitrite in the effluent, respectively). However, during the FQs feeding, nitrate accumulation up to 1.7 mM was observed at the effluent suggesting that denitrification was inhibited. The activity of phosphate accumulating organisms was affected, as indicated by the decrease of P removal capacity during the aerobic phase. Exposure to the FQs also promoted disintegration of the granules leading to an increase of the effluent solid content, nevertheless the solid content at the bioreactor effluent returned to normal levels within ca. 1 month after removing the FQs in the feed allowing recovery of the bedvolume. Denaturing gradient gel electrophoresis revealed a dynamic bacterial community with gradual changes due to FQs exposure. Bacterial isolates retrieved from the granules predominantly belonged to α- and γ-branch of the Proteobacteria phylum. The capacity of the system to return to its initial conditions after withdrawal of the FQ compounds in the inlet stream, reinforced its robustness to deal with wastewaters containing organic pollutants.

  17. Comparative study of normal and sensitive skin aerobic bacterial populations.

    PubMed

    Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

    2013-12-01

    The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API(®) strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder.

  18. Comparative study of normal and sensitive skin aerobic bacterial populations

    PubMed Central

    Hillion, Mélanie; Mijouin, Lily; Jaouen, Thomas; Barreau, Magalie; Meunier, Pauline; Lefeuvre, Luc; Lati, Elian; Chevalier, Sylvie; Feuilloley, Marc G J

    2013-01-01

    The purpose of this study was to investigate if the sensitive skin syndrome, a frequent skin disorder characterized by abnormal painful reactions to environmental factors in the absence of visible inflammatory response, could be linked to a modification in the skin bacterial population. A total of 1706 bacterial isolates was collected at the levels of the forehead, cheekbone, inner elbow, and lower area of the scapula on the skin of normal and sensitive skin syndrome-suffering volunteers of both sexes and of different ages. Among these isolates, 21 strains were randomly selected to validate in a first step the Matrix-Assisted Laser Desorption/Ionization (MALDI)-Biotyper process as an efficient identification tool at the group and genus levels, by comparison to API® strips and 16S ribosomal RNA gene sequencing identification techniques. In a second step, identification of the skin microbiota isolates by the MALDI-Biotyper tool allowed to pinpoint some differences in terms of bacterial diversity with regard to the collection area, and the volunteer's age and gender. Finally, comparison of the skin microbiota from normal and sensitive skin syndrome-suffering volunteers pointed out gender-related variations but no detectable correlation between a phylum, a genus or a dominant bacterial species and the sensitive skin phenotype. This study reveals that there is no dysbiosis of aerobic cultivable bacteria associated with the sensitive skin syndrome and further demonstrates that the MALDI-Biotyper is a powerful technique that can be efficiently employed to the study of cultivable human skin bacteria. To our knowledge, this is the first study focusing on bacteria in the sensitive skin syndrome. These results are of potential importance for pharmaceutical and cosmetic industries, which are looking for new strategies to treat this multiparametric disorder. PMID:24151137

  19. Single Granule Cells Excite Golgi Cells and Evoke Feedback Inhibition in the Cochlear Nucleus

    PubMed Central

    Yaeger, Daniel B.

    2015-01-01

    In cerebellum-like circuits, synapses from thousands of granule cells converge onto principal cells. This fact, combined with theoretical considerations, has led to the concept that granule cells encode afferent input as a population and that spiking in individual granule cells is relatively unimportant. However, granule cells also provide excitatory input to Golgi cells, each of which provide inhibition to hundreds of granule cells. We investigated whether spiking in individual granule cells could recruit Golgi cells and thereby trigger widespread inhibition in slices of mouse cochlear nucleus. Using paired whole-cell patch-clamp recordings, trains of action potentials at 100 Hz in single granule cells was sufficient to evoke spikes in Golgi cells in ∼40% of paired granule-to-Golgi cell recordings. High-frequency spiking in single granule cells evoked IPSCs in ∼5% of neighboring granule cells, indicating that bursts of activity in single granule cells can recruit feedback inhibition from Golgi cells. Moreover, IPSPs mediated by single Golgi cell action potentials paused granule cell firing, suggesting that inhibitory events recruited by activity in single granule cells were able to control granule cell firing. These results suggest a previously unappreciated relationship between population coding and bursting in single granule cells by which spiking in a small number of granule cells may have an impact on the activity of a much larger number of granule cells. PMID:25788690

  20. Heparinized nanohydroxyapatite/collagen granules for controlled release of vancomycin.

    PubMed

    Coelho, Catarina C; Sousa, Susana R; Monteiro, Fernando J

    2015-10-01

    The purpose of this study was to develop a bone substitute material capable of preventing or treating osteomyelitis through a sustainable release of vancomycin and simultaneously inducing bone regeneration. Porous heparinized nanohydroxyapatite (nanoHA)/collagen granules were characterized using scanning electron microscopy, micro-computed tomography and attenuated total reflectance Fourier transform infrared spectroscopy. After vancomycin adsorption onto the granules, its releasing profile was studied by UV molecular absorption spectroscopy. The heparinized granules presented a more sustainable release over time, in comparison with nonheparinized nanoHA and nanoHA/collagen granules. Vancomycin was released for 360 h and proved to be bioactive until 216 h. Staphylococcus aureus adhesion was higher on granules containing collagen, guiding the bacteria to the material with antibiotic, improving their eradication. Moreover, cytotoxicity of the released vancomycin was assessed using osteoblast cultures, and after 14 days of culture in the presence of vancomycin, cells were able to remain viable, increasing their metabolic activity and colonizing the granules, as observed by scanning electron microscopy and confocal laser scanning microscopy. These findings suggest that heparinized nanoHA/collagen granules are a promising material to improve the treatment of osteomyelitis, as they are capable of releasing vancomycin, eliminating the bacteria, and presented morphological and chemical characteristics to induce bone regeneration.

  1. Uncertainty Handling in Disaster Management Using Hierarchical Rough Set Granulation

    NASA Astrophysics Data System (ADS)

    Sheikhian, H.; Delavar, M. R.; Stein, A.

    2015-08-01

    Uncertainty is one of the main concerns in geospatial data analysis. It affects different parts of decision making based on such data. In this paper, a new methodology to handle uncertainty for multi-criteria decision making problems is proposed. It integrates hierarchical rough granulation and rule extraction to build an accurate classifier. Rough granulation provides information granules with a detailed quality assessment. The granules are the basis for the rule extraction in granular computing, which applies quality measures on the rules to obtain the best set of classification rules. The proposed methodology is applied to assess seismic physical vulnerability in Tehran. Six effective criteria reflecting building age, height and material, topographic slope and earthquake intensity of the North Tehran fault have been tested. The criteria were discretized and the data set was granulated using a hierarchical rough method, where the best describing granules are determined according to the quality measures. The granules are fed into the granular computing algorithm resulting in classification rules that provide the highest prediction quality. This detailed uncertainty management resulted in 84% accuracy in prediction in a training data set. It was applied next to the whole study area to obtain the seismic vulnerability map of Tehran. A sensitivity analysis proved that earthquake intensity is the most effective criterion in the seismic vulnerability assessment of Tehran.

  2. Continuous twin screw extrusion for the wet granulation of lactose.

    PubMed

    Keleb, E I; Vermeire, A; Vervaet, C; Remon, J P

    2002-06-04

    The suitability of continuous twin screw extrusion for the wet granulation of alpha-lactose monohydrate was studied and compared with conventional high shear granulation. The influence of process parameters (screw speed and total input rate) and formulation variables (water and polyvinylpyrrolidone (PVP) concentration) on the properties of granules (yield, particle size distribution, friability and compressibility) and tablets (tablet tensile strength, friability and disintegration time) was investigated. Variation of the formulation and process parameters had a major effect on the process feasibility. Optimization of these parameters is required to allow continuous processing and to ensure a high yield. Total input rate, screw speed and water concentration had a minor influence on the granule and the tablet properties. The addition of PVP had no major influence on the granule properties, but significantly affected the tablet characteristics. For granules formulated with and without PVP a yield above 50%, a friability below 30% and a compressibility below 15% was obtained. Tablets without PVP showed a tensile strength below 0.6 MPa, a friability above 1% and a disintegration time below 3 min, whereas tablets with PVP showed a tensile strength above 0.6 MPa, a friability below 1% and a disintegration time ranging from 8 to 15 min. High shear granulation was only possible when PVP was added and it required a higher amount of water. It was concluded that wet granulation of alpha-lactose monohydrate using continuous twin screw extrusion is a robust process and might offer a suitable alternative for high shear granulation in the pharmaceutical industry.

  3. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    SciTech Connect

    Gianotti, A.J.; Clark, D.T.; Dash, J. )

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  4. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived.

  5. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  6. Therapeutic aspects of aerobic dance participation.

    PubMed

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  7. Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio.

    PubMed

    Tuovinen, Olli H; Deshmukh, Vaidehi; Özkaya, Bestamin; Radosevich, Mark

    2015-01-01

    The purpose of this study was to assess atrazine mineralization in surface and subsurface samples retrieved from vertical cores of agricultural soils from two farm sites in Ohio. The Defiance site (NW-Ohio) was on soybean-corn rotation and Piketon (S-Ohio) was on continuous corn cultivation. Both sites had a history of atrazine application for at least a couple of decades. The clay fraction increased at the Defiance site and the organic matter and total N content decreased with depth at both sites. Mineralization of atrazine was assessed by measurement of (14)CO2 during incubation of soil samples with [U-ring-(14)C]-atrazine. Abiotic mineralization was negligible in all soil samples. Aerobic mineralization rate constants declined and the corresponding half-lives increased with depth at the Defiance site. Anaerobic mineralization (supplemented with nitrate) was mostly below the detection at the Defiance site. In Piketon samples, the kinetic parameters of aerobic and anaerobic biomineralization of atrazine displayed considerable scatter among replicate cores and duplicate biometers. In general, this study concludes that data especially for anaerobic biomineralization of atrazine can be more variable as compared to aerobic conditions and cannot be extrapolated from one agricultural site to another.

  8. Detection of Vortex Tubes in Solar Granulation from Observations SUNRISE

    NASA Astrophysics Data System (ADS)

    Steiner, O.; Franz, M.; González, N. B.; Nutto, C.; Rezaei, R.; Pillet, V. M.; Bonet, J. A.; Iniesta, J. C. d. T.; Domingo, V.; Solanki, S. K.; Knölker, M.; Schmidt, W.; Barthol, P.; Gandorfer, A.

    2012-05-01

    We investigated a time series of continuum intensity maps and Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. We conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. This paper is a summary and update of the results previously presented in Steiner et al. (2010).

  9. LIPOPROTEIN GRANULES IN THE CORTICAL COLLECTING TUBULES OF MOUSE KIDNEY

    PubMed Central

    Miller, Fritz

    1961-01-01

    The light and, to a lesser extent, the dark cells of the cortical collecting tubules in mouse kidney contain a great number of granules which according to histochemical tests are composed of phospholipids and proteins. These granules are bounded by a triple-layered membrane measuring approximately 75 A across, and contain one or several crystals with a hexagonal or square lattice. These crystals are built up of rod-shaped units, which appear dense after osmium fixation, measure about 48 A in diameter, and are separated by a light interspace of similar dimensions. The mean center-to-center distance of the rods is about 96 A. The structure is explained as a lipoprotein crystallized within a membrane-bounded vacuole. No relationship between these granules and mitochondria was found. The physiological significance of the granules remains unknown. PMID:13770761

  10. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  11. Effect of different excipients on the physical characteristics of granules and tablets with carbamazepine prepared with polyethylene glycol 6000 by fluidized hot-melt granulation (FHMG).

    PubMed

    Kraciuk, Radosław; Sznitowska, Malgorzata

    2011-12-01

    The objective of this study was to investigate the properties of granules and tablets with carbamazepine which were prepared employing a fluidized hot-melt granulation (FHMG) technique. The FHMG process was carried out at 65°C. Macrogol 6000 (PEG 6000) was used as a binder at the content 10% (w/w) of the granulated mass. Granules containing up to 70% (w/w) of the drug and 20-90% (w/w) of a filler (lactose, mannitol, calcium hydrogen phosphate (Di-Cafos), pregelatinized starch, and microcrystalline cellulose (MCC)) were produced. When the drug content was 30% (w/w), the yield of the process was satisfying (>95%) and flowability of the granules was better than placebo granules or drug-loaded granules prepared by wet granulation. Type of a filler had strong impact on physical properties of granules, and size distribution of the particles was the most homogenous when lactose or Di-Cafos were used. The FHMG technique enabled preparation of granules with better compressability compared with the wet-granulated product or with non-granulated powders. Tablets with shorter disintegration time than 10 min were obtained with 2.0% crospovidone added as a disintegrant. In comparison to tablets prepared from the wet-granulated mass, employment of the FHMG method resulted in tablets with faster dissolution of carbamazepine (more than 80% of the drug released within 15 min). This was achieved with mannitol or lactose/MCC, as fillers.

  12. Kit systems for granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2010-07-06

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field. The formulation can be pre-mixed and pre-packaged as a multi-part kit system, where one or more of the parts are packaged in a powdered, granulated form for ease of handling and mixing in the field.

  13. Fluidization of wet granulates under shear.

    PubMed

    Rahbari, S H Ebrahimnazhad; Vollmer, J; Herminghaus, S; Brinkmann, M

    2010-12-01

    Small amounts of a wetting liquid render sand a stiff and moldable material. The cohesive forces between the sand grains are caused by capillary bridges at the points of contact. Due to the finite strength of these bridges wet sand undergoes a transition from an arrested (i.e., solidified) to a fluidized state under an externally applied shear force. The transition between these two dynamic states is studied in a MD-type simulation of a two-dimensional assembly of bidisperse frictionless disks under the action of a cosine force profile. In addition to soft core repulsion the disks interact through a hysteretic and short ranged attractive force modeling the effect of the capillary bridges. In this model the transition between the fluidized and the arrested state is discontinuous and hysteretic. The parameter dependence of the critical force for solidification is modeled by combining theoretical arguments with a detailed numerical exploration of the transition. We address a range of densities from slightly below close packing until slightly above densities where the system approaches a shear-banded state. Differences and similarities of the transition in wet granulates to the jamming transition are also addressed.

  14. Brain Herniation into Giant Arachnoid Granulation: An Unusual Case

    PubMed Central

    Santos, Gonçalo Roque

    2017-01-01

    Arachnoid granulations are structures filled with cerebrospinal fluid (CSF) that extend into the venous sinuses through openings in the dura mater and allow the drainage of CSF from subarachnoid space into venous system. Usually they are asymptomatic but can be symptomatic when large enough to cause sinus occlusion. We report a rare case of a brain herniation into a giant arachnoid granulation in an asymptomatic elderly male patient, which was discovered incidentally. PMID:28392955

  15. Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure.

    PubMed

    Zeeman, Samuel C; Tiessen, Axel; Pilling, Emma; Kato, K Lisa; Donald, Athene M; Smith, Alison M

    2002-06-01

    The aim of this work was to characterize starch synthesis, composition, and granule structure in Arabidopsis leaves. First, the potential role of starch-degrading enzymes during starch accumulation was investigated. To discover whether simultaneous synthesis and degradation of starch occurred during net accumulation, starch was labeled by supplying (14)CO(2) to intact, photosynthesizing plants. Release of this label from starch was monitored during a chase period in air, using different light intensities to vary the net rate of starch synthesis. No release of label was detected unless there was net degradation of starch during the chase. Similar experiments were performed on a mutant line (dbe1) that accumulates the soluble polysaccharide, phytoglycogen. Label was not released from phytoglycogen during the chase indicating that, even when in a soluble form, glucan is not appreciably degraded during accumulation. Second, the effect on starch composition of growth conditions and mutations causing starch accumulation was studied. An increase in starch content correlated with an increased amylose content of the starch and with an increase in the ratio of granule-bound starch synthase to soluble starch synthase activity. Third, the structural organization and morphology of Arabidopsis starch granules was studied. The starch granules were birefringent, indicating a radial organization of the polymers, and x-ray scatter analyses revealed that granules contained alternating crystalline and amorphous lamellae with a periodicity of 9 nm. Granules from the wild type and the high-starch mutant sex1 were flattened and discoid, whereas those of the high-starch mutant sex4 were larger and more rounded. These larger granules contained "growth rings" with a periodicity of 200 to 300 nm. We conclude that leaf starch is synthesized without appreciable turnover and comprises similar polymers and contains similar levels of molecular organization to storage starches, making Arabidopsis

  16. Starch biosynthesis: experiments on how starch granules grow in vivo.

    PubMed

    Mukerjea, Romila; Mukerjea, Rupendra; Robyt, John F

    2009-01-05

    Four varieties of starch granules from potato, wheat, maize, and rice were fractionated into homogeneous 10-microm-sized ranges. The size with the largest amount of granules was reacted with ADP-[(14)C]Glc, washed, and peeled into 7-9 layers, using a controlled peeling process, involving 90:10 volume proportions of Me(2)SO-H(2)O at 10 degrees C. All of the starches showed biosynthesis of starch throughout the granules. Starch synthase activities were determined for each of the layers. Three of the starches had a relatively large amount of synthase activity in the second layer, with only a small amount in the first layer. Potato starch had the largest amount of activity in the first layer. Starch synthase activity was found to alternate between higher and lower activities throughout all of the varieties of granules, showing that the synthesis was not uniform and also was not exclusively occurring at the surface of the starch granules, which had previously been hypothesized. From these results and our previous studies on the mechanism of starch chain elongation by the addition of d-glucose to the reducing end of a growing chain that is covalently attached to the active site of starch synthase, a hypothesis is proposed for how starch granules grow in vivo.

  17. Secretory Granule Membrane Protein Recycles Through Multivesicular Bodies

    PubMed Central

    Bäck, Nils; Rajagopal, Chitra; Mains, Richard E.; Eipper, Betty A.

    2010-01-01

    The recycling of secretory granule membrane proteins that reach the plasma membrane following exocytosis is poorly understood. As a model, peptidylglycine α-amidating monooxygenase (PAM), a granule membrane protein that catalyzes a final step in peptide processing was examined. Ultrastructural analysis of antibody internalized by PAM and surface biotinylation demonstrated efficient return of plasma membrane PAM to secretory granules. Electron microscopy revealed the rapid movement of PAM from early endosomes to the limiting membranes of multivesicular bodies and then into intralumenal vesicles. Wheat germ agglutinin and PAM antibody internalized simultaneously were largely segregated when they reached multivesicular bodies. Mutation of basally phosphorylated residues (Thr946, Ser949) in the cytoplasmic domain of PAM to Asp (TS/DD) substantially slowed its entry into intralumenal vesicles. Mutation of the same sites to Ala (TS/AA) facilitated the entry of internalized PAM into intralumenal vesicles and its subsequent return to secretory granules. Entry of PAM into intralumenal vesicles is also associated with a juxtamembrane endoproteolytic cleavage that releases a 100 kDa soluble PAM fragment that can be returned to secretory granules. Controlled entry into the intralumenal vesicles of multivesicular bodies plays a key role in the recycling of secretory granule membrane proteins. PMID:20374556

  18. Distinct stages in stress granule assembly and disassembly

    PubMed Central

    Wheeler, Joshua R; Matheny, Tyler; Jain, Saumya; Abrisch, Robert; Parker, Roy

    2016-01-01

    Stress granules are non-membrane bound RNA-protein (RNP) assemblies that form when translation initiation is limited and contain a biphasic structure with stable core structures surrounded by a less concentrated shell. The order of assembly and disassembly of these two structures remains unknown. Time course analysis of granule assembly suggests that core formation is an early event in granule assembly. Stress granule disassembly is also a stepwise process with shell dissipation followed by core clearance. Perturbations that alter liquid-liquid phase separations (LLPS) driven by intrinsically disordered protein regions (IDR) of RNA binding proteins in vitro have the opposite effect on stress granule assembly in vivo. Taken together, these observations argue that stress granules assemble through a multistep process initiated by stable assembly of untranslated mRNPs into core structures, which could provide sufficient high local concentrations to allow for a localized LLPS driven by IDRs on RNA binding proteins. DOI: http://dx.doi.org/10.7554/eLife.18413.001 PMID:27602576

  19. Incorporation of a circulating protein into megakaryocyte and platelet granules

    NASA Technical Reports Server (NTRS)

    Handagama, P. J.; George, J. N.; Shuman, M. A.; McEver, R. P.; Bainton, D. F.

    1987-01-01

    To determine whether or not proteins circulating in plasma can be incorporated into megakaryocytes and platelets, horseradish peroxidase (HRP) was injected intravenously into guinea pigs and these cells were examined for its uptake by electron microscopy and cytochemistry. Enriched samples of megakaryocytes enabled ultrastructural analysis of large numbers of these rare cells. In megakaryocytes, 50% of alpha granules contained HRP between 75 min and 7 hr after injection. At 24 hr, 25% of the megakaryocyte granules were peroxidase-positive, less were positive by 48 hr, and there were none at 4 days. Thus, the findings demonstrate that a circulating protein can be endocytosed by megakaryocytes and rapidly packaged into alpha granules. Platelet granules also contain HRP by 7 hr after injection, and they can secrete it in response to thrombin. Unfortunately, our present studies do not allow us to distinguish between direct endocytosis by the platelet and/or shedding of new platelets from recently labeled megakaryocytes. It is concluded that while some alpha granule proteins are synthesized by megakaryocytes, others may be acquired from plasma by endocytosis. In addition to providing evidence that some of the proteins of alpha granules may be of exogenous origin, this study has allowed the definition of a pathway whereby plasma proteins may be temporarily sequestered in megakaryocytes before reentering the circulation in platelets.

  20. Functional extracellular eosinophil granules: a bomb caught in a trap.

    PubMed

    Muniz, Valdirene S; Baptista-Dos-Reis, Renata; Neves, Josiane S

    2013-01-01

    Eosinophils store a wide range of preformed proteins, including cationic proteins and cytokines, within their morphologically unique granules. Recently, we have demonstrated that cell-free eosinophil granules are functional, independent, secretory organelles and that clusters of cell-free granules are commonly found at tissue sites associated with various pathologic conditions. Cytolytic release of intact eosinophil granules produces extracellular organelles that are fully capable of ligand-elicited, active, secretory responses and are hence able to act as 'cluster bombs' that amplify the differential secretory properties of eosinophils. Herein, we review recent progress in elucidating the molecular mechanisms involved in the cytolytical release of intact cell-free functional eosinophil granules in a process associated with the liberation of eosinophil DNA traps (nets), a known aspect of the innate response recognized in various immune cells and pathological conditions. We also discuss the importance of clusters of cell-free eosinophil granules trapped in eosinophil DNA nets in disease and speculate on their potential role(s) in immunity as well as compare available data on DNA-releasing neutrophils.

  1. Physical Properties of Large and Small Granules in Solar Quiet Regions

    NASA Astrophysics Data System (ADS)

    Yu, Daren; Xie, Zongxia; Hu, Qinghua; Yang, Shuhong; Zhang, Jun; Wang, Jingxiu

    2011-12-01

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in the five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1farcs44, and large granules with diameters larger than 1farcs44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I 0.

  2. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    SciTech Connect

    Yu Daren; Xie Zongxia; Hu Qinghua; Yang Shuhong; Zhang Jun; Wang Jingxiu E-mail: zjun@ourstar.bao.ac.cn

    2011-12-10

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in the five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.

  3. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  4. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  5. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  6. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  7. Aerobic exercise in fibromyalgia: a practical review.

    PubMed

    Thomas, Eric N; Blotman, Francis

    2010-07-01

    The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references found from the initial search. Study selection included randomized clinical trials that compared an aerobic-only exercise intervention (land or pool based) with an untreated control, a non-exercise intervention or other exercise programs in patients responding to the 1990 American College of Rheumatology criteria for FM. The following outcome data were obtained: pain, tender points, perceived improvement in FM symptoms such as the Fibromyalgia Impact Questionnaire total score (FIQ), physical function, depression (e.g., Beck Depression Inventory, FIQ subscale for depression), fatigue and sleep were extracted from 19 clinical trials that considered the effects of aerobic-only exercise in FM patients. Data synthesis shows that there is moderate evidence of important benefit of aerobic-only exercise in FM on physical function and possibly on tender points and pain. It appears to be sufficient evidence to support the practice of AE as a part of the multidisciplinary management of FM. However, future studies must be more adequately sized, homogeneously assessed, and monitored for adherence, to draw definitive conclusions.

  8. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  9. Granulation of urea in a fluidized-bed granulator: an application of three-phase fluidized beds

    SciTech Connect

    Kono, H.O.

    1980-01-01

    A fundamental process study was made on the granulation and simultaneous drying of urea from its concentrated solution by a fluidized-bed granulator. Relatively coarse urea pellets (1.5 to 3.0 mm in diameter), which have been required recently in the fertilizer market, were prepared. Through a series of experiments using a laboratory-scale plant (200-mm ID) and a pilot plant (500-mm ID), the best operational parameters have been obtained. In particular, the allowable maximum granulating rate per unit volume has been investigated and correlated with the granulating mechanism. These data were evaluated from the characteristics of the three-phase fluidized bed (a solids-gas fluidized-bed system with a small amount of liquid). Based on the above results, a semicommercial plant design was proposed.

  10. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  11. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  12. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part II: compartmentalization of bacterial populations.

    PubMed

    Uyanik, S; Sallis, P J; Anderson, G K

    2002-02-01

    The microbial ecology of wastewater treatment plants remains one of the least understood aspects in both aerobic and anaerobic systems, despite the fact that both processes are ultimately dependent on an active biomass for operational efficiency. Ultimately, future developments in anaerobic treatment processes will require a much greater understanding of the fundamental relationships between bacterial populations within the biomass if optimum process efficiency is to be fully realised. This study assesses the influence of polymer addition on granule formation within an ABR and compares the ecology of the biomass in each compartment of two ABRs treating ice-cream wastewater. To our knowledge, this is the first reported characterisation of the microbiology of acidogenic and methanogenic bacteria in the individual compartments of an ABR. The polymer-amended reactor contained sludge that had a greater density of anaerobic bacteria and larger and denser granules than the control reactor, indicating that polymer addition possibly contributed to the retention of active biomass within the ABR. The average fraction of autofluorescent methanogens was lower, with 1.5% being in the initial compartments of the ABRs, compared to the last compartment which had 15%, showing that each compartment of an ABR had a unique microbial composition. Partial spatial separation of anaerobic bacteria appeared to have taken place with acidogenic bacteria predominating in the initial compartments and methanogenic bacteria predominating in the final compartments. Scanning electron micrographs have revealed that the dominant bacteria in the initial compartments of the ABR (Compartments 1 and 2) were those which could consume H2/CO2 and formate as substrate, i.e. Methanobrevibacter, Methanococcus, with populations shifting to acetate utilisers, i.e. Methanosaeta, Methanosarcina, in the final compartments (Compartments 3 and 4). In addition, there appeared to be a stratified structure to the

  13. Twin screw wet granulation: the study of a continuous twin screw granulator using Positron Emission Particle Tracking (PEPT) technique.

    PubMed

    Lee, Kai T; Ingram, Andy; Rowson, Neil A

    2012-08-01

    In this paper, Positron Emission Particle Tracking (PEPT) techniques are utilised to track the trajectory of single particles through the mixing and conveying zones of a Twin Screw Granulator (TSG). A TSG consisting of conveying zones and mixing zones is used in this study. The mixing zones are arranged with kneading discs at an angle of 30°, 60° or 90°. Experiments were carried out using different mixing configurations with various screw speed and total mass flow rate. The PEPT data obtained were then utilised to obtain the residence time distribution (RTD) and the Peclet number in an attempt to gain some insight into the mixing of the process. The fill level of the granulator was also estimated to study the mechanism of granulation. As might be expected, it was shown that the residence time of the granulation process increases with decreasing screw speed. It also increases with increasing angle of the arrangement of kneading blocks in the mixing zones, but will decreases when powder feed rate is increased. The fill level of the mixing zone in particular increases when the screw speed decreases or when powder feed rate increases. Furthermore, the fill level of the granulator will increase when the mixing zone configuration changes from 30° to 90°. It is shown that the granulator is never fully filled, even using 90° mixer elements implying limited compaction which may explain why the granules produced are porous compared with those from a high shear mixer. Interestingly, the RTD analysis reveals that the extent of axial mixing in the mixing zone of the granulator does not change significantly for different configurations and process conditions. There is evidence of a tail in the RTD which implies some material hold up and channelling.

  14. Impact of screw elements on continuous granulation with a twin-screw extruder.

    PubMed

    Djuric, Dejan; Kleinebudde, Peter

    2008-11-01

    The influence of different screw element types on wet granulation process with a twin-screw extruder was investigated. Lactose granules were prepared with different screw configurations such as conveying, combing mixer and kneading elements. The use of kneading blocks led to an almost complete agglomeration of lactose, whereas kneading and combing mixer elements resulted in smaller granules in comparison. Granule porosity varied between 17.4% and 50.6%. Granule friability values ranged from 1.2% to 38.5%. Conveying elements led to the most porous and friable granules, whereas kneading blocks produced the densest and least friable granules. Combing mixer elements produced granules with median properties. A linear correlation between granule porosity and the natural logarithm of granule friability was detected. Flowability of granules was also influenced by the element type. Compressed granules with higher granule porosities resulted in tablets with higher tensile strength values and vice versa. Twin-screw extruders proved to be a versatile tool for wet granulation. By the choice of a suitable screw element granule and tablet characteristics were influenced.

  15. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients.

    PubMed

    Ali, Zizi M Ibrahim; El-Refay, Basant H; Ali, Rania Reffat

    2015-03-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20-40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20-40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60 min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance.

  16. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    SciTech Connect

    Baconnais, S.; Delavoie, F. |; Zahm, J.M.; Milliot, M.; Castillon, N.; Terryn, C.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E. , E-Mail: edith.puchelle@univ-reims.fr; Balossier, G.

    2005-10-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.

  17. Restriction of Aerobic Metabolism by Acquired or Innate Arylsulfatase B Deficiency: A New Approach to the Warburg Effect

    PubMed Central

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K.

    2016-01-01

    Aerobic respiration is required for optimal efficiency of metabolism in mammalian cells. Under circumstances when oxygen utilization is impaired, cells survive by anerobic metabolism. The malignant cell has cultivated the use of anerobic metabolism in an aerobic environment, the Warburg effect, but the explanation for this preference is not clear. This paper presents evidence that deficiency of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine 4-sulfatase), either innate or acquired, helps to explain the Warburg phenomenon. ARSB is the enzyme that removes 4-sulfate groups from the non-reducing end of chondroitin 4-sulfate and dermatan sulfate. Previous reports indicated reduced ARSB activity in malignancy and replication of the effects of hypoxia by decline in ARSB. Hypoxia reduced ARSB activity, since molecular oxygen is needed for post-translational modification of ARSB. In this report, studies were performed in human HepG2 cells and in hepatocytes from ARSB-deficient and normal C57BL/6J control mice. Decline of ARSB, in the presence of oxygen, profoundly reduced the oxygen consumption rate and increased the extracellular acidification rate, indicating preference for aerobic glycolysis. Specific study findings indicate that decline in ARSB activity enhanced aerobic glycolysis and impaired normal redox processes, consistent with a critical role of ARSB and sulfate reduction in mammalian metabolism. PMID:27605497

  18. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater.

    PubMed

    Franca, Rita D G; Vieira, Anabela; Mata, Ana M T; Carvalho, Gilda S; Pinheiro, Helena M; Lourenço, Nídia D

    2015-11-15

    This study analyzed the effect of an azo dye (Acid Red 14) on the performance of an aerobic granular sludge (AGS) sequencing batch reactor (SBR) system operated with 6-h anaerobic-aerobic cycles for the treatment of a synthetic textile wastewater. In this sense, two SBRs inoculated with AGS from a domestic wastewater treatment plant were run in parallel, being one supplied with the dye and the other used as a dye-free control. The AGS successfully adapted to the new hydrodynamic conditions forming smaller, denser granules in both reactors, with optimal sludge volume index values of 19 and 17 mL g(-1) after 5-min and 30-min settling, respectively. As a result, high biomass concentration levels and sludge age values were registered, up to 13 gTSS L(-1) and 40 days, respectively, when deliberate biomass wastage was limited to the sampling needs. Stable dye removal yields above 90% were attained during the anaerobic reaction phase, confirmed by the formation of one of the aromatic amines arising from azo bond reduction. The control of the sludge retention time (SRT) to 15 days triggered a 30% reduction in the biodecolorization yield. However, the increase of the SRT values back to levels above 25 days reverted this effect and also promoted the complete bioconversion of the identified aromatic amine during the aerobic reaction phase. The dye and its breakdown products did not negatively affect the treatment performance, as organic load removal yields higher than 80% were attained in both reactors, up to 77% occurring in the anaerobic phase. These high anaerobic organic removal levels were correlated to an increase of Defluviicoccus-related glycogen accumulating organisms in the biomass. Also, the capacity of the system to deal with shocks of high dye concentration and organic load was successfully demonstrated. Granule breakup after long-term operation only occurred in the dye-free control SBR, suggesting that the azo dye plays an important role in improving granule

  19. Remediation of pharmaceuticals and personal care products using an aerobic granular sludge sequencing bioreactor and microbial community profiling using Solexa sequencing technology analysis.

    PubMed

    Zhao, Xia; Chen, Zhonglin; Wang, Xiaochun; Li, Jinchunzi; Shen, Jimin; Xu, Hao

    2015-03-01

    Recently, a new type of organic pollution derived from pharmaceuticals and personal care products (PPCPs) is gradually on the rise. Wastewater treatment to remove PPCPs was investigated using an aerobic granular sludge sequencing bioreactor (GSBR). After optimization of influent organic load, hydraulic shear stress, sludge settling time, etc., aerobic granular sludge was analyzed for its physiological and biochemical characteristics and tested for its efficacy to remove PPCPs wastewater. The granular sludge effectively removed some but not all of the PPCPs tested; removal correlated with the microbial profiles in the granules, as assessed using Solexa sequencing technology. Sequencing revealed the presence of five phylogenetic groups: Proteobacteria, Bacteroidetes, Betaproteobacteria, an unclassified genus, and Zoogloea. The results demonstrated changes in the microbial profiles with time in response to the presence of PPCPs. The effects of PPCPs on microbial communities in granular sludge process are discussed.

  20. Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water.

    PubMed

    Guo, Liyun; Chen, Qiankun; Fang, Fei; Hu, Zhixin; Wu, Jun; Miao, Aijun; Xiao, Lin; Chen, Xiaofeng; Yang, Liuyan

    2013-08-01

    The aim of this work was to evaluate the utilization potential of a newly isolated indigenous aerobic denitrifier, Pseudomonas stutzeri strain T1, for nitrogen removal from the eutrophic Lake Taihu in China. The strain was capable of conducting heterotrophic nitrification-aerobic denitrification and had both excellent nitrate and ammonium removal without nitrite build-up. The characteristics of P. stutzeri strain T1 were studied under different cultural conditions. Furthermore, under the optimized cultivation conditions, strain T1 was added into the water samples from Lake Taihu, the ammonium and nitrate removal rates of the strain reached to 60% and 75%, respectively. Via adding this strain, the water qualities of the sample ameliorated from Grade V to Grade II. Thus, the strain T1 should be an useful biological tool to remediate eutrophic lakes and do not meet acclimation problems.

  1. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  2. Ultrastructural observation on genesis and morphology of cortical granules in Macrobrachium nipponense (Crustacea, Caridea).

    PubMed

    Zhang, Tian-Ting; Jiang, Ye-Qin; Zhou, Hong; Yang, Wan-Xi

    2010-01-01

    Cortical granules are secretory vesicles in oocytes that develop from the Golgi complex. In the freshwater shrimp, Macrobrachium nipponense, mitochondria participates in the formation of cortical granules. We investigated the structural changes of mitochondria and the distribution cortical granules in different stages of oocyte development. Transmission electron microscopy provided evidence for the involvement of mitochondria and a particular spiral lamellar organization and an electron-lucent area in internal cortical granules. The ooplasm provided material for the cortical granules in early oocyte development. We demonstrated that mitochondria play a role in coalescence and maturation of cortical granules in this species. Additionally, a concept of cortical granules regarded as a functional integration is put forward. The genesis of shrimp cortical granules exhibited a particular pathway of maturation. The outer shape and inner organization considering different taxa suggested general as well as specific features of the development of cortical granules.

  3. Dispersal of 10-14-mesh corncob granules in stacked tires.

    PubMed

    Siegel, J P; Cieslik, R; Thennisch, J; Clarke, L; Novak, R J

    1996-06-01

    Dispersal of 10-14-mesh corncob granules was evaluated in 2 random-stacked tire piles, one shingle-stacked tire pile, and one column-stacked tire pile located in a used-tire storage facility in Chicago, IL. Ninety percent and 98%, respectively, of the tires in the 2 random-stacked piles contained granules. In the shingle-stacked tire pile 87% of the tires sampled contained granules, and the number of granules per tire was dependent on depth. The 2 bottom rows of tires were 73.9% less likely to contain granules than the 5 rows above them. In the column-stacked tire pile 91.2% of the tires contained granules and the relationship between granule recovery and tire depth was logarithmic. Overall, the dispersal of 10-14-mesh corncob granules was comparable to that of 8-mesh corncob granules evaluated in a previous study at this site.

  4. Identification of a major QTL controlling the content of B-type starch granules in Aegilops

    PubMed Central

    Howard, Thomas; Rejab, Nur Ardiyana; Griffiths, Simon; Leigh, Fiona; Leverington-Waite, Michelle; Simmonds, James; Uauy, Cristobal; Trafford, Kay

    2011-01-01

    Starch within the endosperm of most species of the Triticeae has a unique bimodal granule morphology comprising large lenticular A-type granules and smaller near-spherical B-type granules. However, a few wild wheat species (Aegilops) are known to lack B-granules. Ae. peregrina and a synthetic tetraploid Aegilops with the same genome composition (SU) were found to differ in B-granule number. The synthetic tetraploid had normal A- and B-type starch granules whilst Ae. peregrina had only A-granules because the B-granules failed to initiate. A population segregating for B-granule number was generated by crossing these two accessions and was used to study the genetic basis of B-granule initiation. A combination of Bulked Segregant Analysis and QTL mapping identified a major QTL located on the short arm of chromosome 4S that accounted for 44.4% of the phenotypic variation. The lack of B-granules in polyploid Aegilops with diverse genomes suggests that the B-granule locus has been lost several times independently during the evolution of the Triticeae. It is proposed that the B-granule locus is susceptible to silencing during polyploidization and a model is presented to explain the observed data based on the assumption that the initiation of B-granules is controlled by a single major locus per haploid genome. PMID:21227932

  5. Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms▿

    PubMed Central

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-01-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus. PMID:19363082

  6. Bioreactor aeration conditions modulate growth and antigen expression during Erysipelothrix rhusiopathiae cultivation.

    PubMed

    da Silva, Adilson José; de Baptista-Neto, Alvaro; do Carmo Cilento, Maria; de Campos Giordano, Roberto; Zangirolami, Teresa Cristina

    2008-05-01

    Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, was cultivated in a 5-L stirred and aerated bioreactor under different dissolved oxygen tensions (0%, 5%, and 30% of saturation) for evaluation of the influence of oxygen on cell growth as well as on the production of the main antigenic component of the vaccine against erysipelas, a 64-69 kDa protein (SpaA). The microorganism presented different growth profiles for different aeration conditions. However, at the end of the batch cultivations, similar cell concentrations were obtained under the studied conditions. In order to maximize biomass titers and antigen production, the microorganism was cultivated in fed-batch operation mode under aerobic conditions. Under this condition, there was a fivefold increase in biomass production in comparison to the results attained in batch cultivations. To follow up antigen expression, samples collected during batch cultivations were concentrated and treated with choline for antigen extraction. Antigen expression was then assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by murine immunization tests. It was observed a direct influence of oxygen availability upon antigen expression, which is favored in the presence of oxygen. Analysis of the samples collected throughout the fed-batch process also revealed that antigen production is growth associated.

  7. Improvement of the agitation granulation method to prepare granules containing a high content of a very hygroscopic drug.

    PubMed

    Hirai, Nobuaki; Ishikawa, Kazuyuki; Takahashi, Koichi

    2006-11-01

    This study describes a new approach to the preparation of a granulate with a high content of a very hygroscopic powder or drug, using the agitation granulation method, and the development of a tablet formulation using these granulates. A Chinese medicine extract, Hatimi-zio-gan, was used as the model of a very hygroscopic drug. Among the several excipients tested, only porous calcium silicate could be used to prepare granules, with a mixing ratio (extract to porous calcium silicate) from 2:1 to 20:1. With other excipients, very large lumps were formed during the granulation process. The best mixing ratio of extract to porous calcium silicate was 6:1. For preparation of the granules, water could be added to the mixed powder within a range of 1- to 4-times the amount of porous calcium silicate. From these results, it was concluded that the ability of porous calcium silicate to hold large amounts of water in its numerous pores may allow for the preparation of granulates with a high content of very hygroscopic drugs. Starch with partial alpha-links, carboxymethyl starch sodium salt and crospovidone were used for selection of the disintegration agent. When crospovidone was used as a disintegration agent, tablets containing about 70% of the Chinese medicine extract disintegrated in less than 7 min, with good dissolution rates. The same process was applied to extracts of Hotyu-ekki-to, Syo-seiryu-to, Boi-ogi-to and Bohu-tusyo-san. The absorption of paeoniflorin, a characteristic monoterpene glucoside contained in Hatimi-zio-gan extract, was evaluated in beagle dogs after oral administration of the Hatimi-zio-gan tablets prepared in this study. The values of C(max) and AUC obtained after administration of the tablets prepared in this study were significantly greater than those obtained for commercial tablets.

  8. Impact of fill-level in twin-screw granulation on critical quality attributes of granules and tablets.

    PubMed

    Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2017-02-15

    In a previous study a change of the fill-level in the barrel exerted a huge influence on the twin-screw granulation (TSG) process of a high drug loaded, simplified formulation. The present work investigated this influence systematically. The specific feed load (SFL) indicating the mass per revolution as surrogate parameter for the fill-level was applied and the correlation to the real volumetric fill level of an extruder could be demonstrated by a newly developed method. A design of experiments was conducted to examine the combined influence of SFL and screw speed on the process and on critical quality attributes of granules and tablets. The same formulation was granulated at constant liquid level with the same screw configuration and led to distinctively different results by only changing the fill-level and the screw speed. The power consumption of the extruder increased at higher SFLs with hardly any influence of screw speed. At low SFL the median residence time was mainly fill-level dependent and at higher SFL mainly screw speed dependent. Optimal values for the product characteristics were found at medium values for the SFL. Granule size distributions shifted from mono-modal and narrow shape to broader and even bimodal distributions of larger median granule sizes, when exceeding or falling below a certain fill-level. Deviating from the optimum fill-level, tensile strength of tablets decreased by about 25 % and disintegration times of tablets increased for more than one third. At low fill-levels, material accumulation in front of the kneading zone was detected by pressure measurements and was assumed to be responsible for the unfavored product performance. At high fill-levels, granule consolidation due to higher propensity of contact with the result of higher material temperature was accounted for inferior product performance. The fill-level was found to be an important factor in assessment and development of twin-screw granulation processes as it impacted

  9. P-body and Stress Granule Quantification in Caenorhabditis elegans

    PubMed Central

    Rieckher, Matthias; Tavernarakis, Nektarios

    2017-01-01

    Eukaryotic cells contain various types of cytoplasmic, non-membrane bound ribonucleoprotein (RNP) granules that consist of non-translating mRNAs and a versatile set of associated proteins. One prominent type of RNP granules are Processing bodies (P bodies), which majorly harbors translationally inactive mRNAs and an array of proteins mediating mRNA degradation, translational repression and cellular mRNA transport (Sheth and Parker, 2003). Another type of RNP granules, the stress granules (SGs), majorly contain mRNAs associated with translation initiation factors and are formed upon stress-induced translational stalling (Kedersha et al., 2000 and 1999). Multiple evidence obtained from studies in unicellular organisms supports a model in which P bodies and SGs physically interact during cellular stress to direct mRNAs for transport, decay, temporal storage or reentry into translation (Anderson and Kedersha, 2008; Decker and Parker, 2012). The quantification, distribution and colocalization of P bodies and/or SGs are essential tools to study the composition of RNP granules and their contribution to fundamental cellular processes, such as stress response and translational regulation. In this protocol we describe a method to quantify P bodies and SGs in somatic tissues of the nematode Caenorhabditis elegans. PMID:28239624

  10. Relationship of GW/P-Bodies with Stress Granules

    PubMed Central

    Kedersha, Nancy

    2015-01-01

    Whereas P-bodies are intimately linked to the cytoplasmic RNA decay machinery, stress granules harbor stalled translation initiation complexes that accumulate upon stress-induced translation arrest. In this Chapter, we reflect on the relationship between P-bodies and stress granules. In mammalian cells, the two structures can be clearly distinguished from each other using specific protein or RNA markers, but they also share many proteins and mRNAs. While the formation of P-bodies and stress granules is coordinately triggered by stress, their assembly appears to be regulated independently by different pathways. Under certain types of stress, P-bodies frequently dock with stress granules, and overexpressing certain proteins that localize to both structures can cause P-body/stress granule fusion. Currently available data suggest that these self-assembling compartments are controlled by flux of mRNAs within the cytoplasm, and that their assembly mirrors the translation and degradation rates of their component mRNAs. PMID:23224972

  11. Integration of quanta in cerebellar granule cells during sensory processing.

    PubMed

    Chadderton, Paul; Margrie, Troy W; Häusser, Michael

    2004-04-22

    To understand the computations performed by the input layers of cortical structures, it is essential to determine the relationship between sensory-evoked synaptic input and the resulting pattern of output spikes. In the cerebellum, granule cells constitute the input layer, translating mossy fibre signals into parallel fibre input to Purkinje cells. Until now, their small size and dense packing have precluded recordings from individual granule cells in vivo. Here we use whole-cell patch-clamp recordings to show the relationship between mossy fibre synaptic currents evoked by somatosensory stimulation and the resulting granule cell output patterns. Granule cells exhibited a low ongoing firing rate, due in part to dampening of excitability by a tonic inhibitory conductance mediated by GABA(A) (gamma-aminobutyric acid type A) receptors. Sensory stimulation produced bursts of mossy fibre excitatory postsynaptic currents (EPSCs) that summate to trigger bursts of spikes. Notably, these spike bursts were evoked by only a few quantal EPSCs, and yet spontaneous mossy fibre inputs triggered spikes only when inhibition was reduced. Our results reveal that the input layer of the cerebellum balances exquisite sensitivity with a high signal-to-noise ratio. Granule cell bursts are optimally suited to trigger glutamate receptor activation and plasticity at parallel fibre synapses, providing a link between input representation and memory storage in the cerebellum.

  12. Event-driven simulation of cerebellar granule cells.

    PubMed

    Carrillo, Richard R; Ros, Eduardo; Tolu, Silvia; Nieus, Thierry; D'Angelo, Egidio

    2008-01-01

    Around half of the neurons of a human brain are granule cells (approximately 10(11)granule neurons) [Kandel, E.R., Schwartz, J.H., Jessell, T.M., 2000. Principles of Neural Science. McGraw-Hill Professional Publishing, New York]. In order to study in detail the functional role of the intrinsic features of this cell we have developed a pre-compiled behavioural model based on the simplified granule-cell model of Bezzi et al. [Bezzi, M., Nieus, T., Arleo, A., D'Angelo, E., Coenen, O.J.-M.D., 2004. Information transfer at the mossy fiber-granule cell synapse of the cerebellum. 34th Annual Meeting. Society for Neuroscience, San Diego, CA, USA]. We can use an efficient event-driven simulation scheme based on lookup tables (EDLUT) [Ros, E., Carrillo, R.R., Ortigosa, E.M., Barbour, B., Ags, R., 2006. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Computation 18 (12), 2959-2993]. For this purpose it is necessary to compile into tables the data obtained through a massive numerical calculation of the simplified cell model. This allows network simulations requiring minimal numerical calculation. There are three major features that are considered functionally relevant in the simplified granule cell model: bursting, subthreshold oscillations and resonance. In this work we describe how the cell model is compiled into tables keeping these key properties of the neuron model.

  13. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.

    PubMed

    Christel, Theresa; Geffers, Martha; Klammert, Uwe; Nies, Berthold; Höß, Andreas; Groll, Jürgen; Kübler, Alexander C; Gbureck, Uwe

    2014-09-01

    Magnesium phosphate compounds, as for example struvite (MgNH4PO4·6H2O), have comparable characteristics to calcium phosphate bone substitutes, but degrade faster under physiological conditions. In the present work, we used a struvite forming calcium doped magnesium phosphate cement with the formulation Ca0.75Mg2.25(PO4)2 and an ammonium phosphate containing aqueous solution to produce round-shaped granules. For the fabrication of spherical granules, the cement paste was dispersed in a lipophilic liquid and stabilized by surfactants. The granules were characterized with respect to morphology, size distribution, phase composition, compressive strength, biocompatibility and solubility. In general, it was seen that small granules can hardly be produced by means of emulsification, when the raw material is a hydraulic paste, because long setting times promote coalescence of initially small unhardened cement droplets. Here, this problem was solved by using an aqueous solution containing both the secondary (NH4)2HPO4 and primary ammonium phosphates NH4H2PO4 to accelerate the setting reaction. This resulted in granules with 97 wt.% having a size in the range between 200 and 1,000 μm. The novel solution composition doubled the compressive strength of the cement to 37 ± 5 MPa without affecting either the conversion to struvite or the cytocompatibility using human fetal osteoblasts.

  14. Characteristics of rapidly formed hydrogen-producing granules and biofilms.

    PubMed

    Zhang, Zhen-Peng; Adav, Sunil S; Show, Kuan-Yeow; Tay, Joo-Hwa; Liang, David Tee; Lee, Duu-Jong; Su, Ay

    2008-12-01

    The physicochemical and microbiological characteristics of rapidly formed hydrogen-producing granules and biofilms were evaluated in the present study. Microbial species composition was examined using the 16S rDNA-based separation and sequencing techniques, and spatial distribution and internal structure of microbial components were evaluated by examining the confocal laser scanning microscope (CLSM) images. Phylogenetic analysis indicated that a pure culture of Clostridium pasteurianum-like bacterium (98% similarity) was found in microbial community of granules and biofilms. It is postulated that containing such a species favored the rapid immobilization of hydrogen-producing culture. Manure granules and biofilms secreted 24-35 mg extracellulous proteins and 142-175 mg extracellulous polysaccharides in each gram of culture (in VSS). Such a high productivity of extracellulous polymers (ECP), a bio-glue to facilitate cell-to-cell and/or cell-to-substratum interaction, may work as the driving forces for the immobilization of C. pasteurianum. As abundant proteins were noted in the granule cores, it can be derived that rapid formation of the hydrogen-producing granules could be due to the establishment of precursor protein-rich microbial nuclei.

  15. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development.

    PubMed

    Dengler, Christopher G; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A

    2017-02-20

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses.

  16. Platelet Granule Exocytosis: A Comparison with Chromaffin Cells

    PubMed Central

    Fitch-Tewfik, Jennifer L.; Flaumenhaft, Robert

    2013-01-01

    The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli. PMID:23805129

  17. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development

    PubMed Central

    Dengler, Christopher G.; Yue, Cuiyong; Takano, Hajime; Coulter, Douglas A.

    2017-01-01

    In a mouse model of temporal lobe epilepsy, multicellular calcium imaging revealed that disease emergence was accompanied by massive amplification in the normally sparse, afferent stimulation-induced activation of hippocampal dentate granule cells. Patch recordings demonstrated reductions in local inhibitory function within the dentate gyrus at time points where sparse activation was compromised. Mimicking changes in inhibitory synaptic function and transmembrane chloride regulation was sufficient to elicit the dentate gyrus circuit collapse evident during epilepsy development. Pharmacological blockade of outward chloride transport had no effect during epilepsy development, and significantly increased granule cell activation in both control and chronically epileptic animals. This apparent occlusion effect implicates reduction in chloride extrusion as a mechanism contributing to granule cell hyperactivation specifically during early epilepsy development. Glutamine plays a significant role in local synthesis of GABA in synapses. In epileptic mice, sparse granule cell activation could be restored by glutamine application, implicating compromised GABA synthesis. Glutamine had no effect on granule cell activation earlier, during epilepsy development. We conclude that compromised feedforward inhibition within the local circuit generates the massive dentate gyrus circuit hyperactivation evident in animals during and following epilepsy development. However, the mechanisms underlying this disinhibition diverge significantly as epilepsy progresses. PMID:28218241

  18. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  19. THE CULTIVATION AND BIOLOGICAL CHARACTERISTICS OF SPIROCHAETA OBERMEIERI (RECURRENTIS).

    PubMed

    Kligler, I J; Robertson, O H

    1922-02-28

    A study of the growth requirements of Spirochoeta obermeieri resulted in the perfection of a method which enabled us (1) to cultivate the organisms consistently from the blood of infected mice and rats, (2) to maintain the viability of cultures for periods of at least 3 to 7 weeks, and (3) to carry them on in successive subcultures by transplanting at intervals of 2 to 4 weeks. This method is essentially the same as the Noguchi technique for the cultivation of the Leptospira group, but emphasizes control of the physicochemical factors that act to limit and prevent growth and prescribes the conditions necessary to counteract the injurious influences. The main facts may be briefly summarized as follows: (a) Ascitic fluid, horse or rabbit serum may be used as culture fluids. (b) These fluids become progressively more alkaline on exposure to air. (c) Uniformly successful results depend chiefly on the proper adjustment and stabilization of the reaction. (d) A balanced reaction can be secured by adding 1.0 per cent peptone broth or egg albumin as buffer, and covering the culture with a layer of oil. (e) The reaction limits for growth and survival are between pH 6.8 and 8.2, with the optimum at pH 7.2 to 7.4. (f) Spirochoeta obermeieri is a strict aerobe, consequently in order to permit adequate aeration, the oil layer should not exceed 1.5 cm. in height.

  20. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    PubMed

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage.

  1. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  2. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  3. Cortical granule complements in human oocytes undergoing partial zona dissection.

    PubMed

    Lanzendorf, S E; Kazer, R R; Patton, P E; Wolf, D P

    1992-02-01

    This study was performed to evaluate the effects of mechanical stimulation and sucrose treatment on the oocyte activation process. Fresh and aged human oocytes were exposed to sucrose and zonae were dissected with microneedles before fixation and quantitative analysis of cortical granules by transmission electron microscopy. Examination of the mean number of cortical granules/analyzed segment revealed no significant differences between control oocytes or oocytes treated with sucrose or sucrose treatment followed by zona dissection. A significant decline in the number of cortical granules/segment was observed for oocytes undergoing prolonged culture after dissection (P less than 0.05). Thus, zona dissection and sucrose exposure of freshly aspirated mature human oocytes do not result in classical oocyte activation.

  4. Recreating the synthesis of starch granules in yeast.

    PubMed

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-11-22

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops.

  5. Blue maize: morphology and starch synthase characterization of starch granule.

    PubMed

    Utrilla-Coello, Rubi G; Agama-Acevedo, Edith; de la Rosa, Ana Paulina Barba; Martinez-Salgado, Jose L; Rodriguez-Ambriz, Sandra L; Bello-Perez, Luis A

    2009-03-01

    The use of pigmented maize varieties has increased due to their high anthocyanins content, but very few studies are reported about the starch properties of these grains. The aim of this work was to isolate the starch granules from pigmented blue maize and carry out the morphological, physicochemical, and biochemical characterization studies. The proximate composition of starch granules showed high protein contents, after purification, the blue maize starch presented lower protein amount than starch from white maize (control). Although the purity of starch granules was increased, the damaged starch (determined for the Maltase cross absence) was also increased. Scanning electron microscopy showed the presence of some pores and channels in the blue maize starch. The electrophoretic protein profiles showed differences in the bands that correspond to the enzymes involved in the starch biosynthesis; these differences could explain the variation in morphological characteristics of blue maize starches against starch from white maize.

  6. Paronychia and granulation tissue formation during treatment with isotretinoin*

    PubMed Central

    Figueiras, Daniela de Almeida; Ramos, Ticiana Batista; Marinho, Ayana Karla de Oliveira Ferreira; Bezerra, Milena Soneley Mendonça; Cauas, Renata Cavalcanti

    2016-01-01

    This paper describes the association of two unusual side effects of treatment with isotretinoin for severe acne: paronychia and excess granulation tissue in the nails furrows. We report a case of male patient aged 19 years, who in the course of the 36th week of treatment with isotretinoin for acne grade III showed erythema, edema, excess granulation tissue and onychocryptosis in various nail beds of hands and feet, with no history of trauma associated. A literature review revealed few reports of these adverse events, and two clinical patterns of exuberant granulation tissue has been described: one in periungual location and other in lesions of previous acne. The rarity and lack of knowledge on the best treatment for granuloma-like reactions make this theme a considerable challenge. PMID:27192525

  7. Summary of Granulation Matrix Testing for the Plutonium Immobilization Program

    SciTech Connect

    Herman, C.C.

    2001-10-19

    In FY00, a matrix for process development testing was created to identify those items related to the ceramic process that had not been fully developed or tested and to help identify variables that needed to be tested. This matrix, NMTP/IP-99-003, was jointly created between LLNL and SRTC and was issued to all affected individuals. The matrix was also used to gauge the progress of the development activities. As part of this matrix, several series of tests were identified for the granulation process. This summary provides the data and results from the granulation testing. The results of the granulation matrix testing were used to identify the baseline process for testing in the PuCTF with cold surrogates in B241 at LLNL.

  8. Enterovirus Control of Translation and RNA Granule Stress Responses.

    PubMed

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  9. Amino acid metabolism of experimental granulation tissue in vitro.

    PubMed

    Aalto, M; Lampiaho, K; Pikkarainen, J; Kulonen, E

    1973-04-01

    1. The intracellular volume in granulation tissue was about 15% of the total urea space. 2. The experimental granuloma has a greater ability to retain amino acids during the proliferation phase than later during the synthesis of collagen. 3. The synthesis of collagen and other proteins by granulation tissue is related to the concentrations of proline and glutamic acid in the medium. 4. The rate of synthesis of proline from glutamic acid in granulation-tissue slices is greatest during collagen synthesis. It is enhanced by lactate. 5. Extracellular cations influence the synthesis of collagen and ouabain is inhibitory. Synthesis of other proteins is less sensitive in this respect. 6. It is suggested that the synthesis of collagen is related to the supply of certain amino acids, especially proline, and hence to the redox balance, and also to the function of the cell wall.

  10. Cystatin F Ensures Eosinophil Survival by Regulating Granule Biogenesis

    PubMed Central

    Matthews, Stephen P.; McMillan, Sarah J.; Colbert, Jeff D.; Lawrence, Rachel A.; Watts, Colin

    2016-01-01

    Summary Eosinophils are now recognized as multifunctional leukocytes that provide critical homeostatic signals to maintain other immune cells and aid tissue repair. Paradoxically, eosinophils also express an armory of granule-localized toxins and hydrolases believed to contribute to pathology in inflammatory disease. How eosinophils deliver their supporting functions while avoiding self-inflicted injury is poorly understood. We have demonstrated that cystatin F (CF) is a critical survival factor for eosinophils. Eosinophils from CF null mice had reduced lifespan, reduced granularity, and disturbed granule morphology. In vitro, cysteine protease inhibitors restored granularity, demonstrating that control of cysteine protease activity by CF is critical for normal eosinophil development. CF null mice showed reduced pulmonary pathology in a model of allergic lung inflammation but also reduced ability to combat infection by the nematode Brugia malayi. These data identify CF as a “cytoprotectant” that promotes eosinophil survival and function by ensuring granule integrity. Video Abstract PMID:27067058

  11. Enterovirus Control of Translation and RNA Granule Stress Responses

    PubMed Central

    Lloyd, Richard E.

    2016-01-01

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation. PMID:27043612

  12. Formation of mos RNA granules in the zebrafish oocyte that differ from cyclin B1 RNA granules in distribution, density and regulation.

    PubMed

    Horie, Mayu; Kotani, Tomoya

    2016-12-01

    Many translationally repressed mRNAs are deposited in the oocyte cytoplasm for progression of the meiotic cell cycle and early development. mos and cyclin B1 mRNAs encode proteins promoting oocyte meiosis, and translational control of these mRNAs is important for normal progression of meiotic cell division. We previously demonstrated that cyclin B1 mRNA forms RNA granules in the zebrafish and mouse oocyte cytoplasm and that the formation of RNA granules is crucial for regulating the timing of translational activation of the mRNA. However, whether the granule formation is specific to cyclin B1 mRNA remains unknown. In this study, we found that zebrafish mos mRNA forms granules distinct from those of cyclin B1 mRNA. Fluorescent in situ hybridization analysis showed that cyclin B1 RNA granules were assembled in dense clusters, while mos RNA granules were distributed diffusely in the animal polar cytoplasm. Sucrose density gradient ultracentrifugation analysis showed that the density of mos RNA granules was partly lower than that of cyclin B1 mRNA. Similar to cyclin B1 RNA granules, mos RNA granules were disassembled after initiation of oocyte maturation at the timing at which the poly(A) tail was elongated. However, while almost all of the granules of cyclin B1 were disassembled simultaneously, a fraction of mos RNA granules firstly disappeared and then a large part of them was disassembled. In addition, while cyclin B1 RNA granules were disassembled in a manner dependent on actin filament depolymerization, certain fractions of mos RNA granules were disassembled independently of actin filaments. These results suggest that cytoplasmic regulation of translationally repressed mRNAs by formation of different RNA granules is a key mechanism for translational control of distinct mRNAs in the oocyte.

  13. Influence of filler selection on twin screw foam granulation.

    PubMed

    Rocca, K E; Weatherley, S; Sheskey, P J; Thompson, M R

    2015-01-01

    The influence of filler selection in wet granulation was studied for the novel case where the binder is delivered as an unstable, semi-rigid aqueous foam to an extrusion process. The work primarily examined the impact of differing concentrations of microcrystalline cellulose (Avicel PH® 101) in a formulation with spray-dried α-lactose monohydrate (Flowlac® 100) in regards to wetting and granule nucleation for this relatively new technique known as continuous foam granulation. Foam stability was varied within the work to change its drainage and coarsening behavior atop these powder excipients, by use of different foamable binding agents (METHOCEL™ F4 PLV and METHOCEL™ Premium VLV) as well as by adjusting the foam quality. A static bed penetration test was first used to study the foam behavior in wetting these powders without the processing constraints of an extruder which limit possible liquid-to-solids ratios as well as introduce shear which may complicate interpretation of the mechanism. The test found that the penetration time to saturate these powders decreased as their water absorption capacity increased which in turn decreased the size of the formed nuclei. Differences in the stability of the foamed binder had minimal influence on these attributes of wetting despite its high spread-to-soak behavior. The size of granules produced by extrusion similarly demonstrated sensitivity to the increasing water absorption capacity of the filler and little dependency on foam properties. The different liquid-to-solids ratios required to granulate these different formulations inside the extruder highlighted an evolving concept of powder lubricity for continuous foam granulation.

  14. How to make a hippocampal dentate gyrus granule neuron.

    PubMed

    Yu, Diana X; Marchetto, Maria C; Gage, Fred H

    2014-06-01

    Granule neurons in the hippocampal dentate gyrus (DG) receive their primary inputs from the cortex and are known to be continuously generated throughout adult life. Ongoing integration of newborn neurons into the existing hippocampal neural circuitry provides enhanced neuroplasticity, which plays a crucial role in learning and memory; deficits in this process have been associated with cognitive decline under neuropathological conditions. In this Primer, we summarize the developmental principles that regulate the process of DG neurogenesis and discuss recent advances in harnessing these developmental cues to generate DG granule neurons from human pluripotent stem cells.

  15. Interactive Cultural Cultivating in FLT

    ERIC Educational Resources Information Center

    Yang, Youwen

    2010-01-01

    Culture cultivating in foreign language teaching (FLT) is usually conducted through factual introductions in the form of articles, books, seminars, lectures or workshops. This approach regards L2 learners as passive receivers of cultural knowledge without their interaction involved. This paper aims at raising an interactive approach to develop L2…

  16. Integrating cultivation history into EBIPM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecologically based invasive plant management (EBIPM) is a systematic thinking and planning process to assist with applying the appropriate combination of tools and strategies to addrress the underlying cause of invasion rather than simply controlling invasive annual grass abundance. Cultivation his...

  17. Cultivate the Love of Reading.

    ERIC Educational Resources Information Center

    Andrews-Beck, Carolyn

    1997-01-01

    Suggests that the school year is like a growing season, but with planting in the fall and harvest in the spring. Discusses ways teachers can "prepare the soil" for cultivating students' love of reading. Presents a baker's dozen ideas to build the desire to read. (RS)

  18. Cultivation and uses of cucurbits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated cucurbits have spread through trade and exploration from their respective Old and New World centers of origin to the six arable continents and are important in local, regional and world trade. Cucumber (Cucumis sativus L.), melon (Cucumis melo L.), pumpkin, squash and gourd (Cucurbita spp...

  19. Cultivating Spontaneous Self-Discipline.

    ERIC Educational Resources Information Center

    O'Shaughnessy, Molly

    1998-01-01

    Draws on contemporary sources to provide strategies for cultivating self-discipline. Advocates self-healing for the adult to be free from destructive attitudes and personal history that can keep adults from being mindful of the child's needs, perspective, and potential. Concludes with ways to facilitate a truly Montessori approach to discipline.…

  20. Cultivating Audiences: Taming, Teaching, Transforming

    ERIC Educational Resources Information Center

    Nicolucci, Sandra

    2010-01-01

    Satisfying and successful school concerts require an active, empathic, and cooperative partnership between performers and audience members. As music educators work to prepare artful, dignified, and confident performers, "audiences" for these performers must be cultivated just as purposefully. Concertgoers can be motivated to consume school…

  1. Cultivation and characterization of canine skin-derived mast cells.

    PubMed

    Kawarai, Shinpei; Masuda, Kenichi; Ohmori, Keitaro; Matsuura, Shinobu; Yasuda, Nobutaka; Nagata, Masahiko; Sakaguchi, Masahiro; Tsujimoto, Hajime

    2010-02-01

    It is essential to develop a technique to culture purified skin-derived mast cells (SMCs) to facilitate immunological research on allergic diseases in dogs. This study was performed to develop an efficient culture system for canine SMCs and to characterize the cells in comparison to canine bone marrow-derived mast cells (BMMCs). Enzymatically digested skin biopsy samples were cultivated in serum-free AIM-V medium supplemented with recombinant canine stem cell factor. Three to five weeks after the initiation of culture, mast cells were collected by a magnetic activated cell separation system using anti-c-Kit antibody. The collected cells were composed of a uniform population showing morphological characteristics of mast cells with a round or oval nucleus and abundant toluidine blue-positive metachromatic granules in the cytoplasm. The results of flow cytometric analysis for the presence of cell membrane c-Kit and Fc epsilon receptor I (FcepsilonRI) indicated that approximately 90% of the cells were mast cells. The cytoplasmic granules were positive for both tryptase and chymase. Apparent dose-dependent degranulation was induced by antibody-mediated cross-linking of immunoglobulin E (IgE) bound to the cells. These cytological and immunological characteristics observed in SMCs were mostly similar to those observed in BMMCs; however, IgE-mediated degranulation was significantly lower in SMCs than BMMCs. The culture system for canine SMCs developed in this study would be useful in understanding the pathophysiology and developing anti-allergic therapeutics in canine allergic dermatitis.

  2. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  3. New class of cargo protein in Tetrahymena thermophila dense core secretory granules.

    PubMed

    Haddad, Alex; Bowman, Grant R; Turkewitz, Aaron P

    2002-08-01

    Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulus-dependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules.

  4. To prepare and characterize microcrystalline cellulose granules using water and isopropyl alcohol as granulating agents and determine its end-point by thermal and rheological tools.

    PubMed

    Chaudhari, Smruti P; Dave, Rutesh H

    2015-05-01

    Microcrystalline cellulose (MCC-102) is one of the most commonly used excipient in the pharmaceutical industry. For this research purpose, authors have developed a different technique to determine the end point for MCC-102 using water and isopropyl alcohol 70% (IPA) as granulating agent. Wet and dry granules obtained were characterized for their flow properties using the powder rheometer and thermal analysis. Powder rheometer was used to measure basic flowability energy (BFE), specific energy (SE), percentage compressibility, permeability and aeration. Thermal analysis includes effusivity and differential scanning calorimetry (DSC) measurements. BFE and SE results showed water granules requires high energy as compared to IPA granules. Permeability and compressibility results suggest IPA forms more porous granules and have better compressibility as compared to water granules. Hardness data reveals interesting phenomena in which as the amount of water increases, hardness decreases and vice-versa for IPA. Optimal granules were obtained in the range of 45-55% w/w. DSC data supported the formation of optimal granules. Empirical measurements like angle of repose did not reveal any significant differences between powder flow among various granules. In this paper, with the help of thermal effusivity and powder rheology we were able to differentiate between various powder flows and determine the optimal range for granule formation.

  5. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  6. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  7. [Cardiovascular protection and mechanisms of actions of aerobic exercise].

    PubMed

    Hou, Zuo-Xu; Zhang, Yuan; Gao, Feng

    2014-08-01

    It is well established that aerobic exercise exerts beneficial effect on cardiovascular system, but the underlying mechanisms are yet to be elucidated. Recent studies have shown that aerobic exercise ameliorates insulin resistance, inflammation and mitochondrial dysfunction which play important roles in the development of cardiovascular disease. In this review, we discussed the underlying mechanisms of the cardioprotective role of aerobic exercise, especially the latest progress in this field.

  8. Optimization of medium and cultivation conditions for enhanced exopolysaccharide yield by marine Cyanothece sp. 113

    NASA Astrophysics Data System (ADS)

    Su, Chuandong; Chi, Zhenming; Lu, Weidong

    2007-10-01

    Cyanothece sp. 113 is a unicellular, aerobic, diazotrophic and photosynthetic marine cyanobacterium. The optimal medium for exopolysaccharide yield by the strain was 70.0 g/L of NaCl, and 0.9 g/L of MgSO4 based on the modified F/2 medium for cultivation of marine algae. The optimal cultivation condition for exopolysaccharide yield by this cyanobacterial strain was 29°C, aeration, and continuous illumination at 86.0 μE/M2/S. Under the optimal conditions, over 18.4 g/L of exopolysaccharide was produced within 12 days. This was so far the highest exopolysaccharide yield produced with strains of Cyanothece sp. obtained.

  9. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth.

    PubMed

    Lübbehüsen, T L; Nielsen, J; McIntyre, M

    2004-02-01

    The dimorphic organism Mucor circinelloides is currently being investigated as a potential host for heterologous protein production. The production of ethanol on pentose and hexose sugars was studied in submerged batch cultivations to further the general knowledge of Mucor physiology, with a view to the minimisation or elimination of the by-product ethanol for future process design. Large amounts of ethanol were produced during aerobic growth on glucose under non-oxygen limiting conditions, which is indicative of M. circinelloides being a Crabtree-positive organism. Ethanol production on galactose or xylose was less significant. The response of the organism to increased ethanol concentrations, both as the sole carbon source and in the presence of a sugar, was investigated in terms of biomass formation and morphology.

  10. Megakaryocytes and platelets in alpha-granule disorders.

    PubMed

    Smith, M P; Cramer, E M; Savidge, G F

    1997-02-01

    This chapter summarizes research data contributing to current understanding of disorders affecting alpha-granules of megakaryocytes and platelets. Diagnostic features of the gray platelet syndrome are well defined. Combined evidence suggests a defect, specific to the megakaryocyte cell lineage, causing a cytoskeletal abnormality and defective targeting of endogenously synthesized proteins to the alpha-granule. The abnormalities linked by signal transduction pathways. von Willebrand disease and afibrinogenaemia are disorders which highlight the functional importance of platelet storage pools of von Willebrand factor and fibrinogen, essential ligands in the process of adhesion and aggregation. The abnormality in the factor V Quebec disorder leads to a degradation of most proteins contained within the alpha-granule. The familial platelet disorder Paris-Trousseau thrombocytopenia is the only alpha-granule disorder associated with a cytogenetic abnormality, and it presents a useful model for exploring the genetic influence on regulation of thrombopoiesis. Study of these syndromes has elucidated aspects of the physiology of normal megakaryocyte maturation and platelet formation, including storage organelle biosynthesis.

  11. Physical characteristics of starch granules and susceptibility to enzymatic degradation.

    PubMed

    Gallant, D J; Bouchet, B; Buléon, A; Pérez, S

    1992-10-01

    Starch, the most abundant component of the diet, is characterized by its variety as well as the versatility of its derivatives in foods. This paper is an overview of the main physical characteristics of the native starch granule. Three different levels of organization are presented: macromolecular structure, crystalline organization and ultrastructure. Starch consists of amylose and amylopectin. Amylose is an essentially linear polymer composed of alpha-1,4-linked D-anhydroglucose units (AGU); amylopectin is a branched polymer clustering a large amount of short linear chains by the linkage of alpha-1,6-bonds, constituting about 5% of the total glycosidic bonds. In the native starch granules, a large number of the macromolecular chains are organized in crystalline structures. Three forms have been found, the A, B and C patterns. So far only A and B starch crystals have been modelled. There is a variation in the susceptibility of the starch granules to enzymatic digestion. This is explained by variation in the morphology of the granules and their crystalline organization.

  12. 21 CFR 520.970a - Flunixin meglumine granules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... The effect of this drug on pregnancy has not been determined. Not for use in horses intended for food... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flunixin meglumine granules. 520.970a Section 520.970a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  13. 21 CFR 520.970a - Flunixin meglumine granules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... The effect of this drug on pregnancy has not been determined. Not for use in horses intended for food... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Flunixin meglumine granules. 520.970a Section 520.970a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  14. Eosinophil granule proteins expressed in ocular cicatricial pemphigoid

    PubMed Central

    Heiligenhaus, A.; Schaller, J.; Mauss, S.; Engelbrecht, S.; Dutt, J.; Foster, C; Steuhl, K.

    1998-01-01

    BACKGROUND—Blister formation and tissue damage in bullous pemphigoid have been attributed to the release of eosinophil granule proteins—namely, to eosinophil derived cationic protein (ECP) and major basic protein (MBP). In the present investigation these eosinophil granule proteins were studied in the conjunctiva of patients with ocular cicatricial pemphigoid (OCP).
METHODS—Conjunctival biopsy specimens obtained from patients with subacute (n=8) or chronic conjunctival disease (n=13) were analysed histologically and immunohistochemically using antibodies directed against EG1 (stored and secreted ECP), EG2 (secreted ECP), MBP, CD45 (common leucocyte antigen), CD3 (pan T cell marker), and HLA-DR (class II antigen).
RESULTS—Subepithelial mononuclear cells, mast cells, and neutrophils were detected in all specimens. The number of mononuclear cells, neutrophils, CD45+ cells, CD3+ cells, and the HLA-DR expression were significantly higher in the subacute than in the chronic disease group. Some eosinophils were found in specimens from five of eight patients with subacute OCP, but in none of the patients with chronic disease. The eosinophil granule proteins (ECP and MBP) were found in the epithelium and substantia propria in patients with subacute conjunctivitis.
CONCLUSIONS—Subepithelial cell infiltration in the conjunctiva greatly differs between subacute and chronic ocular cicatricial pemphigoid specimens. The findings suggest that eosinophil granule proteins may participate in tissue damage in acute phase of inflammation in OCP.

 Keywords: ocular cicatricial pemphigoid; conjunctivitis; eosinophil derived cationic protein; major basic protein PMID:9602632

  15. Characterization of Pu-238 Heat Source Granule Containment

    SciTech Connect

    Richardson, Paul Dean II; Sanchez, Joey Leo; Wall, Angelique Dinorah; Chavarria, Rene

    2015-02-11

    The Milliwatt Radioisotopic Themoelectric Generator (RTG) provides power for permissive-action links. Essentially these are nuclear batteries that convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of 238Pu, in the form of 238PuO2 granules. The granules are contained by 3 layers of encapsulation. A thin T-111 liner surrounds the 238PuO2 granules and protects the second layer (strength member) from exposure to the fuel granules. An outer layer of Hastalloy-C protects the T-111 from oxygen embrittlement. The T-111 strength member is considered the critical component in this 238PuO2 containment system. Any compromise in the strength member seen during destructive testing required by the RTG surveillance program is characterized. The T-111 strength member is characterized through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in the Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of microphotographs. SEM mat further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray spectroscopy (EDS).

  16. Application of polyhydroxyalkanoate granules for sizing of paper.

    PubMed

    Bourbonnais, Robert; Marchessault, Robert H

    2010-04-12

    Polyhydroxyalkanoates (PHAs) are characterized by the chemistry of the biodegradable inclusions inside the microbial membrane. They are produced by a wide variety of bacteria, where they function as energy and carbon storage materials. This intracellular Bioplastic forms a stable latex suitable for surface treatments of paper such as sizing and coating. In this work, we compare native granules and artificial granules made from market poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-hydroxyvalerate), P(3HB-co-3HV), for their ability as sizing agent. Paper sizing was assayed by measuring the resistance of sized paper to penetration by aqueous fluids. Our results indicate that the sizing effect of PHAs is dependent on several factors, such as, paper drying temperature, drying time, pressure, and polymer composition, that is, homopolymer, random copolymer, and texture of granules. The sizing efficiency of the copolymer is generally poor compared to the PHB homopolymer. In addition to water permeability, the tensile strength of sized paper was measured and physical properties of granule suspensions were recorded using SEM microscopy, X-ray diffraction, and dynamic light scattering.

  17. Immune function of Chinese formula Qingwen Baidu granule in broilers

    PubMed Central

    Fu, Shijun; Xu, Qianqian; Zhang, Zhimei; Wang, Yanping; Shen, Zhiqiang

    2015-01-01

    This study was to investigate the effects of Qingwen Baidu granules on the antibody level, immune organ index and the lymphocyte transformation of broilers. Hy-line variety white cocks of 30 days were used to evaluate the antibody titer of Newcastle Disease in each serum group, and MTT method was used to determine the T lymphocyte proliferation, and organ weighing methods to measure the immune organ index 21 days after immunization. The results showed that Qingwen Baidu granules could prolong the residue time in the body, improve the lymphocyte conversion ratio, increase the bursa, thymus and spleen index and promote immune organ development. These results suggested that Qingwen Baidu granules could improve the serum Newcastle disease antibody level, improve peripheral blood lymphocyte proliferation, enhance the cellular immune function, and elevate the immune organ index and growth, in order to raise the immune function in chicken. The above demonstrates that the Qingwen Baidu granules have significant effects on the cytoimmunity and humoral immunity, and the potentiation of the immune function in broilers. PMID:26557027

  18. Arachnoid granules: Dandy was Dandy, Cushing and Weed were not.

    PubMed

    Maurizi, Charles P

    2010-08-01

    Errors can be instructive. It seems that Harvey Cushing and Louis Weed provided the medical world with a faulty theory of cerebrospinal fluid absorption. Louis Weed, working in Harvey Cushing's laboratory, initially studied the movement of substances in the cerebrospinal fluid by using low-pressure studies. Results of the low-pressure studies were considered unsatisfactory and high pressure experiments were undertaken and these had results similar to earlier work done by others in human cadavers. High pressure results demonstrating movement of fluid through the arachnoid granules were deemed correct. Because of Cushing's position of authority, the theory became accepted as fact and in time proved to be entrenched dogma. Walter Dandy demonstrated in experiments on hydrocephalus and the surgical removal of the arachnoid granule system that the fluid was produced by the choroid plexuses and not absorbed by the arachnoid granules. His work was dismissed by Weed as unreliable. Examination of the pattern of deposition of corpora amylacea on the surface of the brain provides evidence that cerebrospinal fluid does not pass through arachnoid granules but passes through the choroid fissure and is recycled through choroid plexus portals. The choroid plexus portal theory can explain the findings in the low-pressure experiments of Weed. Bias and pride seem to be the source of the faulty theory. Entrenched dogma is resistant to challenge.

  19. Biotransformation of phytosterols under aerobic conditions.

    PubMed

    Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

    2014-07-01

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

  20. Aerobic Capacity and Postprandial Flow Mediated Dilation.

    PubMed

    Ballard, Kevin D; Miller, James J; Robinson, James H; Olive, Jennifer L

    The consumption of a high-fat meal induces transient vascular dysfunction. Aerobic exercise enhances vascular function in healthy individuals. Our purpose was to determine if different levels of aerobic capacity impact vascular function, as measured by flow mediated dilation, following a high-fat meal. Flow mediated dilation of the brachial artery was determined before, two- and four-hours postprandial a high-fat meal in young males classified as highly trained (n = 10; VO2max = 74.6 ± 5.2 ml·kg·min(-1)) or moderately active (n = 10; VO2max = 47.3 ± 7.1 ml·kg·min(-1)). Flow mediated dilation was reduced at two- (p < 0.001) and four-hours (p < 0.001) compared to baseline for both groups but was not different between groups at any time point (p = 0.108). Triglycerides and insulin increased at two- (p < 0.001) and four-hours (p < 0.05) in both groups. LDL-C was reduced at four-hours (p = 0.05) in highly trained subjects, and two- and four-hours (p ≤ 0.01) in moderately active subjects. HDL-C decreased at two- (p = 0.024) and four-hours (p = 0.014) in both groups. Glucose increased at two-hours postprandial for both groups (p = 0.003). Our results indicate that a high-fat meal results in reduced endothelium-dependent vasodilation in highly trained and moderately active individuals with no difference between groups. Thus, high aerobic capacity does not protect against transient reductions in vascular function after the ingestion of a single high-fat meal compared to individuals who are moderately active.

  1. Two Distinct Waxy Alleles Impact the Granule-Bound Starch Synthase in Sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The granule-bound starch synthase (GBSS) is the enzyme responsible for amylose synthesis in starch granules. Loss of GBSS activity results in starch granules containing mostly amylopectin and little or no amylose, a phenotype described as waxy. Previously, two phenotypic classes of waxy alleles we...

  2. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize.

    PubMed

    Cai, Canhui; Zhao, Lingxiao; Huang, Jun; Chen, Yifang; Wei, Cunxu

    2014-02-15

    High-amylose cereal endosperm is rich in heterogeneous starch granules. In this paper, we investigated the morphology, structure and gelatinization properties of high-amylose maize endosperm starch. Starch had individual, aggregate and elongated heterogeneous granules. Most of individual granules were round with small size and had one central hilum. Aggregate and elongated granules consisted of many subgranules with central hila, and had irregular and rod/filamentous shapes, respectively. Iodine stained starch granules showed five types of polarization colors: blue, purple, fuchsia, dark red, and interior dark blue and exterior brown. Most of individual and aggregate granules had the color of dark red, that of elongated granules the color of interior dark blue and exterior brown. Amylose was mainly distributed in the hilum region and the circumference of starch granules. Aggregate and elongated granules had higher amylose content than individual granules. Elongated and individual granules had the highest and the lowest gelatinization resistance among high-amylose maize heterogeneous starch granules, respectively.

  3. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Shulin

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  4. Screening and identification of aerobic denitrifiers

    NASA Astrophysics Data System (ADS)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  5. AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins.

    PubMed

    Bonnemaison, Mathilde; Bäck, Nils; Lin, Yimo; Bonifacino, Juan S; Mains, Richard; Eipper, Betty

    2014-10-01

    The adaptor protein 1A complex (AP-1A) transports cargo between the trans-Golgi network (TGN) and endosomes. In professional secretory cells, AP-1A also retrieves material from immature secretory granules (SGs). The role of AP-1A in SG biogenesis was explored using AtT-20 corticotrope tumor cells expressing reduced levels of the AP-1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non-condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue-stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α-amidating monooxygenase-1 (PAM-1), integral membrane enzymes that enter immature SGs. The non-condensing SGs contained POMC products and PAM-1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM-1 into PHM was unaltered, but PHM basal secretion was increased in sh-μ1A PAM-1 cells. Despite lacking a canonical AP-1A binding motif, yeast two-hybrid studies demonstrated an interaction between the PAM-1 cytosolic domain and AP-1A. Coimmunoprecipitation experiments with PAM-1 mutants revealed an influence of the luminal domains of PAM-1 on this interaction. Thus, AP-1A is crucial for normal SG biogenesis, function and composition.

  6. Systematic comparison of nutraceuticals and antioxidant potential of cultivated, in vitro cultured and commercial Melissa officinalis samples.

    PubMed

    Dias, Maria Inês; Barros, Lillian; Sousa, Maria João; Ferreira, Isabel C F R

    2012-06-01

    Melissa officinalis (lemon balm) infusions are used worldwide for digestive, analgesic and other pharmaceutical applications. Herein, the nutraceuticals production and antioxidant potential in garden cultivated, in vitro cultured and two commercial samples (bags and granulated) of lemon balm was compared. The profile of in vitro cultured lemon balm is closer of garden cultivated sample than of both commercial samples (bag or granulate). It presented the highest levels of proteins and ash, and the lowest energetic value. The most favorable n6/n3 ration, as also the highest PUFA (mostly α-linolenic acid), tocopherols (including α-, γ- and δ-isoforms) and ascorbic acid contents were also observed in this sample. Nevertheless, it was the commercial bag lemon balm that gave the highest antioxidant activity and the highest levels of phenolics and flavonoids. As far as we kwon, this is the first comparison of nutraceuticals and antioxidant potential of cultivated, in vitro cultured and commercial lemon balm samples. Moreover, it proved that in vitro culture might be used to stimulate vitamins production.

  7. Magnetic resonance microscopy of iron transport in methanogenic granules

    NASA Astrophysics Data System (ADS)

    Bartacek, Jan; Vergeldt, Frank J.; Gerkema, Edo; Jenicek, Pavel; Lens, Piet N. L.; Van As, Henk

    2009-10-01

    Interactions between anaerobic biofilms and heavy metals such as iron, cobalt or nickel are largely unknown. Magnetic resonance imaging (MRI) is a non-invasive method that allows in situ studies of metal transport within biofilm matrixes. The present study investigates quantitatively the penetration of iron (1.75 mM) bound to ethylenediaminetetraacetate (EDTA) into the methanogenic granules (spherical biofilm). A spatial resolution of 109 × 109 × 218 μm 3 and a temporal resolution of 11 min are achieved with 3D Turbo Spin Echo (TSE) measurements. The longitudinal relaxivity, i.e. the slope the dependence of the relaxation rate (1/ T1) on the concentration of paramagnetic metal ions, was used to measure temporal changes in iron concentration in the methanogenic granules. It took up to 300 min for the iron-EDTA complex ([FeEDTA] 2-) to penetrate into the methanogenic granules (3-4 mm in diameter). The diffusion was equally fast in all directions with irregularities such as diffusion-facilitating channels and diffusion-resistant zones. Despite these irregularities, the overall process could be modeled using Fick's equations for diffusion in a sphere, because immobilization of [FeEDTA] 2- in the granular matrix (or the presence of a reactive barrier) was not observed. The effective diffusion coefficient ( D ejf) of [FeEDTA] 2- was found to be 2.8 × 10 -11 m 2 s -1, i.e. approximately 4% of D ejf of [FeEDTA] 2- in water. The Fickian model did not correspond to the processes taking place in the core of the granule (3-5% of the total volume of the granule), where up to 25% over-saturation by iron (compare to the concentration in the bulk solution) occurred.

  8. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions

    PubMed Central

    Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile

    2016-01-01

    Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection. PMID:27790195

  9. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.

    PubMed

    Fresno, Teresa; Peñalosa, Jesús M; Santner, Jakob; Puschenreiter, Markus; Prohaska, Thomas; Moreno-Jiménez, Eduardo

    2016-09-01

    Arsenic is a non-threshold carcinogenic metalloid. Thus, human exposure should be minimised, e.g. by chemically stabilizing As in soil. Since iron is a potential As immobiliser, it was investigated whether root iron plaque, formed under aerobic conditions, affects As uptake, metabolism and distribution in Lupinus albus plants. White lupin plants were cultivated in a continuously aerated hydroponic culture containing Fe/EDDHA or FeSO4 and exposed to arsenate (5 or 20 μM). Only FeSO4 induced surficial iron plaque in roots. LA-ICP-MS analysis accomplished on root sections corroborated the association of As to this surficial Fe. Additionally, As(V) was the predominant species in FeSO4-treated roots, suggesting less efficient As uptake in the presence of iron plaque. Fe/EDDHA-exposed roots neither showed such surficial FeAs co-localisation nor As(V) accumulation; in contrast As(III) was the predominant species in root tissue. Furthermore, FeSO4-treated plants showed reduced shoot-to-root As ratios, which were >10-fold lower compared to Fe/EDDHA treatment. Our results highlight the role of an iron plaque formed in roots of white lupin under aerobic conditions on As immobilisation. These findings, to our knowledge, have not been addressed before for this plant and have potential implications on soil remediation (phytostabilisation) and food security (minimising As in crops).

  10. Isolation and identification of Sphingomonas sp. that yields tert-octylphenol monoethoxylate under aerobic conditions.

    PubMed

    Nishio, Eriko; Yoshikawa, Hiromichi; Wakayama, Manabu; Tamura, Hiroto; Morita, Shiro; Tomita, Yoshifumi

    2005-07-01

    Topsoil samples were collected from eight golf courses in Yamaguchi Prefecture, Japan, and enrichment cultures were carried out with a basal-salt medium containing 0.2% 4-tert-octylphenol polyethoxylate (OPPEO) as sole carbon source. OPPEO-degrading activity was detected in one of the samples, from which a strain of OPPEO-degrading bacterium was isolated. The isolated bacterium grew on a nutritionally enriched medium (NE medium) containing 0.2% OPPEO as sole carbon source, and accumulated 4-tert-octylphenol diethoxylate (OP2EO) (63%), 4-tert-octylphenol triethoxylate (OP3EO) (14%), and 4-tert-octylphenol monoethoxylate (OP1EO) (2%) after 7 d cultivation under aerobic conditions. The addition of clay mineral (vermiculite) to the medium accelerated the degradation of OP2EO (40%) and OP3EO (4%) to OP1EO (23%). This is the first report about bacteria that can degrade OPPEO to OP1EO under aerobic conditions. The strain was identified as Sphingomonas macrogoltabidus, based on the homology of a 16S rDNA sequence.

  11. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  12. Aerobic treatment of wine-distillery wastewaters

    SciTech Connect

    Sales, D.; Valcarcel, M.J.; Perez, L.; de la Ossa, E.M.

    1987-01-01

    Waste from food-processing and allied industries is largely made up of organic compounds which can be metabolized by aerobic or anaerobic means. However, these wastes present a series of problems to biological depuration plants, such as the need for prior treatment to establish conditions suitable for the development of the microorganisms responsible for the process; and the long retention time of the biomass if acceptable effluents are to be obtained. Again, the seasonal nature of many of these industries makes for very heterogeneous waste. This means that treatment plant must be versatile and are subject to rapid successions of close-down and start-up interspersed with long intervals of inactivity. All these difficulties oblige the industries in the sector to adapt depurative technology to their particular needs. Wine distilleries fall into this general category. Their waste (called vinasses) is acidic, has a high organic content and varies widely according to the raw matter distilled: wine, lies, etc. This paper studies the start-up of digestors for aerobic treatment of vinasses and the establishment of optimum operating conditions for an adequate depurative performance.

  13. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  14. Fine granules showing sustained drug release prepared by high-shear melt granulation using triglycerin full behenate and milled microcrystalline cellulose.

    PubMed

    Aoki, Hajime; Iwao, Yasunori; Uchimoto, Takeaki; Noguchi, Shuji; Kajihara, Ryusuke; Takahashi, Kana; Ishida, Masayuki; Terada, Yasuko; Suzuki, Yoshio; Itai, Shigeru

    2015-01-30

    This study aimed to prepare fine granules with a diameter less than 200μm and sustained drug release properties by melt granulation. Triglycerin full behenate (TR-FB) was examined as a new meltable binder (MB) by comparison of its properties with those of glycerin monostearate (GM), widely used as MB. The effect of milling microcrystalline cellulose (MCC), an excipient for melt granulation, on the granule properties was also investigated. TR-FB was more stable during heating and storage than GM, and produced smaller granules with narrower particle size distribution, larger yield in the 106-200μm range, uniform roundness and better sustained drug release profile than those prepared with GM. Granules prepared with milled MCC had almost the same physicochemical properties as those produced with intact MCC. However, milled MCC produced granules with a more rigid structure and smaller void space than intact MCC. Consequently, the granules produced with milled MCC showed better sustained drug release behavior than those prepared with intact MCC. We successfully prepared fine granules with sustained drug release properties and diameter of less than 200μm using TR-FB and milled MCC.

  15. Real-time assessment of granule densification in high shear wet granulation and application to scale-up of a placebo and a brivanib alaninate formulation.

    PubMed

    Narang, Ajit S; Sheverev, Valery A; Stepaniuk, Vadim; Badawy, Sherif; Stevens, Tim; Macias, Kevin; Wolf, Avi; Pandey, Preetanshu; Bindra, Dilbir; Varia, Sailesh

    2015-03-01

    Real-time monitoring and control of high shear wet granulation (HSWG) using process analytical technologies is crucial to process design, scale-up, and reproducible manufacture. Although significant progress has been made in real-time measurement of granule size distribution using focused beam reflectance measurement (FBRM), real-time in-line assessment of granule densification remains challenging. In this study, a drag force flow (DFF) sensor was developed and used to probe wet mass consistency in real-time. In addition, responses from FBRM and DFF sensors were compared to assess complementarity of information on granulation progress from the two probes. A placebo and a brivanib alaninate formulation were granulated with different concentrations of binder or water, respectively, while measuring granule size growth, densification, and DFF sensor response. The DFF sensor was able to quantitatively characterize with high resolution a response of wet mass consistency distinct from granule size distribution. The wet mass consistency parameter correlated well with granule densification, which was shown as a critical material attribute that correlated with tablet dissolution. In addition, application of DFF sensor to scale-up of granulation was demonstrated. These results showed the value of wet mass consistency measurement using DFF for WG monitoring and control.

  16. A process to produce effervescent tablets: fluidized bed dryer melt granulation.

    PubMed

    Yanze, F M; Duru, C; Jacob, M

    2000-11-01

    The purpose of the present study was to apply melt granulation in a fluidized bed dryer (fluidized bed dryer melt granulation) to manufacture one-step effervescent granules composed of anhydrous citric acid and sodium bicarbonate to make tablets. This study permitted us to establish that such process parameters as concentrations of polyethylene glycol (PEG) 6000, residence times in the fluidized bed dryer, fineness of PEG6000, fineness of initial mixture effervescent systems, and efficiency of two lubricants markedly affect some granule and tablet characteristics. It is a dry process that is simple, rapid, effective, economical, reproducible, and particularly adapted to produce effervescent granules that are easily compressed into effervescent tablets.

  17. Titan and Triton: two large satellites with fine tectonic granulation

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    There is a strict relationship between orbital frequencies and tectonic granulations of celestial bodies: higher frequency - finer granules, lower frequency ,larger granules. These wave induced granules are a consequence of an interference of standing waves of 4 directions occurring in rotating celestial bodies due to their movements in non- round (elliptical, parabolic) orbits with periodically changing accelerations. These changing accelerations arouse in bodies warping inertia-gravity waves having a stationary character. A direct viewing of them now is possible due to excellent "Cassini SC" images of saturnian satellites. Ubiquity of these wave induced granules allowed to formulate the 3rd theorem of the wave planetary tectonics [1]: "Celestial bodies are granular". At first, this law was illustrated by a row of terrestrial planets starting from Sun: Solar photosphere orbiting the center of the solar system has the granule size πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. This granulation in Sun is known long ago as famous solar supergranulation with the characteristic size ˜30 000 km. At Earth it was observed with help of geological and deeper geophysical data as eight superstructures about 5000 km in diameter in a great planetary circle. But now one can observe them directly due to a "lucky" image of Earth from a distance 1 170 000 km (Image PIA04159 taken by MRO). Four large granules of Mars make its figure elongated ellipsoidal what was known long enough but not explained. Two waves long πR inscribed in the great circle must produce this oblong figure. One wave long 2πR in the great circle makes all asteroids oblong and convexo-concave. "Orbits make structures"- but satellites have two orbits in our solar system. This only means that to 2 main waves and corresponding to them granules one has to add 2 side waves and corresponding to them granules. The side waves are modulated (calculated) by division and multiplication of

  18. Aerobic Physical Activity and the Leadership of Principals

    ERIC Educational Resources Information Center

    Kiser, Kari

    2016-01-01

    The purpose of this study was to explore if there was a connection between regular aerobic physical activity and the stress and energy levels of principals as they reported it. To begin the research, the current aerobic physical activity level of principals was discovered. Additionally, the energy and stress levels of the principals who do engage…

  19. The Effectiveness of Aerobic Exercise Instruction for Totally Blind Women.

    ERIC Educational Resources Information Center

    Ponchillia, S. V.; And Others

    1992-01-01

    A multifaceted method (involving verbal and hands-on training) was used to teach aerobic exercises to 3 totally blind women (ages 24-37). All three women demonstrated positive gains in their performance, physical fitness, and attitudes toward participating in future mainstream aerobic exercise classes. (DB)

  20. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  1. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  2. p53 aerobics: the major tumor suppressor fuels your workout.

    PubMed

    Kruse, Jan-Philipp; Gu, Wei

    2006-07-01

    In addition to its role as the central regulator of the cellular stress response, p53 can regulate aerobic respiration via the novel transcriptional target SCO2, a critical regulator of the cytochrome c oxidase complex (Matoba et al., 2006). Loss of p53 results in decreased oxygen consumption and aerobic respiration and promotes a switch to glycolysis, thereby reducing endurance during physical exercise.

  3. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  4. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  5. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  6. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  7. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  8. Components of RNA granules affect their localization and dynamics in neuronal dendrites.

    PubMed

    Mitsumori, Kazuhiko; Takei, Yosuke; Hirokawa, Nobutaka

    2017-04-12

    In neurons, RNA transport is important for local protein synthesis. Messenger RNAs (mRNAs) are transported along dendrites as large RNA granules. The localization and dynamics of Puralpha and Stau1, major components of RNA transport granules, were investigated in cultured hippocampal neurons. Puralpha-positive granules were localized in both the shafts and spines of dendrites. In contrast, Stau1-positive granules tended to be localized mainly in dendritic shafts. More than 90% of Puralpha-positive granules were positive for Stau1 in immature dendrites, while only half were positive in mature dendrites. Stau1-negative Puralpha granules tended to be stationary with fewer anterograde and retrograde movements than Stau1-positive Puralpha granules. After metabotropic glutamate receptor 5 (mGluR5) activation, Stau-1 positive granules remained in the dendritic shafts, while Puralpha granules translocated from the shaft to the spine. The translocation of Puralpha granules was dependent on Myosin Va, an actin-based molecular motor protein. Collectively, our findings suggest the possibility that the loss of Stau1 in Puralpha-positive RNA granules might promote their activity-dependent translocation into dendritic spines, which could underlie the regulation of protein synthesis in synapses.

  9. Chromaffin granules in the rat adrenal medulla release their secretory content in a particulate fashion.

    PubMed

    Crivellato, Enrico; Belloni, Anna; Nico, Beatrice; Nussdorfer, Gastone G; Ribatti, Domenico

    2004-03-01

    Exocytosis is considered the main route of granule discharge in chromaffin cells. We recently provided ultrastructural evidence suggesting that piecemeal degranulation (PMD) occurs in mouse adrenal chromaffin cells. In the present study, we processed rat adrenal glands for transmission electron microscopy (TEM), and examined chromaffin cells for changes characteristic of PMD. Both adrenaline (A)- and noradrenaline (NA)-storing cells express ultrastructural features suggestive of a slow and particulate mode of granule discharge. In adrenaline-containing cells, some granules present enlarged dimensions accompanied by eroded or dissolved matrices. Likewise, a number of granules in NA-releasing cells show content reduction with variably expanded granule chambers. Dilated, empty granule containers are recognizable in the cytoplasm of both cell types. Characteristically, altered granules and empty containers are seen intermingled with normal, resting granules. In addition, chromaffin granules often show irregular profiles, with budding or tail-like projections of their limiting membranes. Thirty 150-nm-diameter membrane-bound vesicles with a moderately electron-dense or -lucent internal structure are observable in the cytoplasm of both cell types. These vesicles are seen among the granules and some of them are fused with the perigranule membranes in the process of attachment to or budding from the granules. These data add further support to the concept that PMD may be an alternative secretory pathway in adrenal chromaffin cells.

  10. Lumenal protein within secretory granules affects fusion pore expansion.

    PubMed

    Weiss, Annita Ngatchou; Anantharam, Arun; Bittner, Mary A; Axelrod, Daniel; Holz, Ronald W

    2014-07-01

    It is often assumed that upon fusion of the secretory granule membrane with the plasma membrane, lumenal contents are rapidly discharged and dispersed into the extracellular medium. Although this is the case for low-molecular-weight neurotransmitters and some proteins, there are numerous examples of the dispersal of a protein being delayed for many seconds after fusion. We have investigated the role of fusion-pore expansion in determining the contrasting discharge rates of fluorescent-tagged neuropeptide-Y (NPY) (within 200 ms) and tissue plasminogen activator (tPA) (over many seconds) in adrenal chromaffin cells. The endogenous proteins are expressed in separate chromaffin cell subpopulations. Fusion pore expansion was measured by two independent methods, orientation of a fluorescent probe within the plasma membrane using polarized total internal reflection fluorescence microscopy and amperometry of released catecholamine. Together, they probe the continuum of the fusion-pore duration, from milliseconds to many seconds after fusion. Polarized total internal reflection fluorescence microscopy revealed that 71% of the fusion events of tPA-cer-containing granules maintained curvature for >10 s, with approximately half of the structures likely connected to the plasma membrane by a short narrow neck. Such events were not commonly observed upon fusion of NPY-cer-containing granules. Amperometry revealed that the expression of tPA-green fluorescent protein (GFP) prolonged the duration of the prespike foot ∼2.5-fold compared to NPY-GFP-expressing cells and nontransfected cells, indicating that expansion of the initial fusion pore in tPA granules was delayed. The t1/2 of the main catecholamine spike was also increased, consistent with a prolonged delay of fusion-pore expansion. tPA added extracellularly bound to the lumenal surface of fused granules. We propose that tPA within the granule lumen controls its own discharge. Its intrinsic biochemistry determines not only

  11. Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.

    PubMed

    Landin, Mariana

    2017-01-01

    The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R(2) > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes.

  12. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation

    NASA Technical Reports Server (NTRS)

    Krichevsky, A. M.; Kosik, K. S.

    2001-01-01

    RNA granules are a macromolecular structure observed in neurons, where they serve as motile units that translocate mRNAs. Isolated RNA granules are highly enriched in Staufen protein and ultrastructurally contain densely packed clusters of ribosomes. With depolarization, many mRNAs, including those involved in plasticity, rapidly shift from the RNA granule fraction to polysomes. Depolarization reorganizes granules and induces a less compact organization of their ribosomes. RNA granules are not translationally competent, as indicated by the failure to incorporate radioactive amino acids and the absence of eIF4E, 4G, and tRNAs. We concluded that RNA granules are a local storage compartment for mRNAs under translational arrest but are poised for release to actively translated pools. Local release of mRNAs and ribosomes from granules may serve as a macromolecular mechanism linking RNA localization to translation and synaptic plasticity.

  13. Development of controlled release captopril granules coated with ethylcellulose and methylcellulose by fluid bed dryer.

    PubMed

    Stulzer, Hellen Karine; Silva, Marcos Antonio Segatto; Fernandes, Daniel; Assreuy, Jamil

    2008-01-01

    Captopril granules of controlled release with different polymers as ethylcellulose, ethyl/methylcellulose, and immediate release with polyvinylpyrrolidone (PVP) were developed by fluid bed dryer technique. The formulations were analyzed by scanning electron microscopy, X-ray powder diffraction, and dissolution profiles. To compare the formulations an in vivo setting rat blood pressure assay was performed, using angiotensin I as a vasoconstrictor agent. The scanning electron microscopy of granules showed differences in morphology, and X-ray powder diffraction technique presented some modification in crystalline structure of captopril in granules coated with PVP and ethyl/methylcellulose. The dissolution profile of granules coated with ethylcellulose showed a median time release of 4 hr whereas for granules coated with ethyl/methylcellulose, this time was 3.5 hr. The blockage of angiotensin I-induced hypertensive effect lasted 8 hr in granules coated with PVP and of more than 12 hr in the granules coated with ethylcellulose and ethyl/methylcellulose.

  14. Muscle deoxygenation in aerobic and anaerobic exercise.

    PubMed

    Nioka, S; Moser, D; Lech, G; Evengelisti, M; Verde, T; Chance, B; Kuno, S

    1998-01-01

    It has been generally accepted that the use of oxygen is a major contributor of ATP synthesis in endurance exercise but not in short sprints. In anaerobic exercise, muscle energy is thought to be initially supported by the PCr-ATP system followed by glycolysis, not through mitochondrial oxidative phosphorylation. However, in real exercise practice, we do not know how much of this notion is true when an athlete approaches his/her maximal capacity of aerobic and anaerobic exercise, such as during a graded VO2max test. This study investigates the use of oxygen in aerobic and anaerobic exercise by monitoring oxygen concentration of the vastus lateralis muscle at maximum intensity using Near Infra-red Spectroscopy (NIRS). We tested 14 sprinters from the University of Penn track team, whose competitive events are high jump, pole vault, 100 m, 200 m, 400 m, and 800 m. The Wingate anaerobic power test was performed on a cycle ergometer with 10% body weight resistance for 30 seconds. To compare oxygenation during aerobic exercise, a steady-state VO2max test with a cycle ergometer was used with 25 watt increments every 2 min. until exhaustion. Results showed that in the Wingate test, total power reached 774 +/- 86 watt, about 3 times greater than that in the VO2max test (270 +/- 43 watt). In the Wingate test, the deoxygenation reached approximately 80% of the established maximum value, while in the VO2max test resulted in approximately 36% deoxygenation. There was no delay in onset of deoxygenation in the Wingate test, while in the VO2max test, deoxygenation did not occur under low intensity work. The results indicate that oxygen was used from the beginning of sprint test, suggesting that the mitochondrial ATP synthesis was triggered after a surprisingly brief exercise duration. One explanation is that prior warm-up (unloaded exercise) was enough to provide the mitochondrial substrates; ADP and Pi to activate oxidative phosphorylation by the type II a and type I myocytes. In

  15. Seaweed cultivation: Traditional way and its reformation

    NASA Astrophysics Data System (ADS)

    Fei, Xiu-Geng; Bao, Ying; Lu, Shan

    1999-09-01

    Seaweed cultivation or phycoculture has been developed rather fast in recent years. The total production of cultivated seaweed at present is about 6250×103 tons fresh weight. The total cultivation area is estimated as 200×103 hectare. The annual total value of cultivated seaweeds has been estimated to be more than 3 billion US dollars. Phycoculture provides many job opportunities for the coastal region people, has the potential to improve marine environments and thus even induce global change. All traditional cultivation methods and techniques are based on or start from the individual plant or the cultivated seaweed population. Modern biological science and biotechnology achievements have benefited agriculture a lot, but traditional seaweed cultivation has not changed much since its founding. This is because seaweed cultivation has been quite conservative for quite a long period and has accumulated many problems requiring solution. Four main problems might be the most universal ones holding back further development of the industry. New ways of seaweed cultivation must be developed, new techniques must be perfected, and new problems solved. This paper mainly discusses the main problems of traditional seaweed cultivation at present and its possible further development and reformation in the future.

  16. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (= 95 ...

  17. A study on the production processes of granulated iron

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhikhina, I. D.; Khodosov, I. E.

    2016-09-01

    The results of theoretical and experimental studies on the production process of high-quality granulated iron using hematite-magnetite iron ore and coal of different brands as a raw material are presented. According to the research the optimal coal consumption, temperature and time parameters of the metallization process, necessary for obtaining metallized materials with the specified composition and metallization degree, are defined. The conditions for the formation of metal granules with high content (over 98%) of primary iron are found. The process includes two stages: initially the solid-phase reduction of iron from oxides with production of metallized sponge material is carried out, further as the temperature increases the separation of slag and metal phases takes place.

  18. A constitutive model for sintering of granulated ceramic powders

    NASA Astrophysics Data System (ADS)

    Shinagawa, K.; Hirashima, Y.

    1998-05-01

    Sintering behavior of granulated powder is investigated to develop a constitutive model for deformation analysis of ceramic powder compacts during sintering. Spray-dried alumina is compacted by CIPing (cold isostatic pressing) and sintered at various temperatures. Shrinkage and the change in grain size of the compacts during sintering are revealed in relation to the inhomogeneous microstructure consisting of fractured and unfractured granules as a consequence of the compaction. A constitutive model for the ceramic powder compacts having the internal structure is presented; The difference in grain growth in dense and sparse regions of the compacts is taken into consideration to the model. The results calculated by the model show good agreement with that obtained by experiment.

  19. Relationships between Stress Granules, Oxidative Stress, and Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    Cytoplasmic stress granules (SGs) are critical for facilitating stress responses and for preventing the accumulation of misfolded proteins. SGs, however, have been linked to the pathogenesis of neurodegenerative diseases, in part because SGs share many components with neuronal granules. Oxidative stress is one of the conditions that induce SG formation. SGs regulate redox levels, and SG formation in turn is differently regulated by various types of oxidative stress. These associations and other evidences suggest that SG formation contributes to the development of neurodegenerative diseases. In this paper, we review the regulation of SG formation/assembly and discuss the interactions between oxidative stress and SG formation. We then discuss the links between SGs and neurodegenerative diseases and the current therapeutic approaches for neurodegenerative diseases that target SGs. PMID:28194255

  20. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect

    Wei Yanjie; Ji Min; Li Ruying; Qin Feifei

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  1. Evaluating the main and side effects of high salinity on aerobic granular sludge.

    PubMed

    Pronk, M; Bassin, J P; de Kreuk, M K; Kleerebezem, R; van Loosdrecht, M C M

    2014-02-01

    Salinity can adversely affect the performance of most biological processes involved in wastewater treatment. The effect of salt on the main conversion processes in an aerobic granular sludge (AGS) process accomplishing simultaneous organic matter, nitrogen, and phosphate removal was evaluated in this work. Hereto, an AGS sequencing batch reactor was subjected to different salt concentrations (0.2 to 20 g Cl(-) l(-1)). Granular structure was stable throughout the whole experimental period, although granule size decreased and a significant effluent turbidity was observed at the highest salinity tested. A weaker gel structure at higher salt concentrations was hypothesised to be the cause of such turbidity. Ammonium oxidation was not affected at any of the salt concentrations applied. However, nitrite oxidation was severely affected, especially at 20 g Cl(-) l(-1), in which a complete inhibition was observed. Consequently, high nitrite accumulation occurred. Phosphate removal was also found to be inhibited at the highest salt concentration tested. Complementary experiments have shown that a cascade inhibition effect took place: first, the deterioration of nitrite oxidation resulted in high nitrite concentrations and this in turn resulted in a detrimental effect to polyphosphate-accumulating organisms. By preventing the occurrence of the nitrification process and therefore avoiding the nitrite accumulation, the effect of salt concentrations on the bio-P removal process was shown to be negligible up to 13 g Cl(-) l(-1). Salt concentrations equal to 20 g Cl(-) l(-1) or higher in absence of nitrite also significantly reduced phosphate removal efficiency in the system.

  2. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium

    SciTech Connect

    Lobos, J.H.; Leib, T.K. ); Tahmun Su )

    1992-06-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichmet takes from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4[prime]-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO[sub 2], 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified as 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes.

  3. Ebola Virus Does Not Induce Stress Granule Formation during Infection and Sequesters Stress Granule Proteins within Viral Inclusions

    PubMed Central

    Nelson, Emily V.; Schmidt, Kristina M.; Deflubé, Laure R.; Doğanay, Sultan; Banadyga, Logan; Olejnik, Judith; Hume, Adam J.; Ryabchikova, Elena; Ebihara, Hideki; Kedersha, Nancy; Ha, Taekjip

    2016-01-01

    ABSTRACT A hallmark of Ebola virus (EBOV) infection is the formation of viral inclusions in the cytoplasm of infected cells. These viral inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV replication, little is known about their role in the host response to infection. The cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of a translation initiation factor, the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we show that selected SG proteins are sequestered within EBOV inclusions, where they form distinct granules that colocalize with viral RNA. These inclusion-bound (IB) granules are functionally and structurally different from canonical SGs. Formation of IB granules does not indicate translational arrest in the infected cells. We further show that EBOV does not induce formation of canonical SGs or eIF2α phosphorylation at any time postinfection but is unable to fully inhibit SG formation induced by different exogenous stressors, including sodium arsenite, heat, and hippuristanol. Despite the sequestration of SG marker proteins into IB granules, canonical SGs are unable to form within inclusions, which we propose might be mediated by a novel function of VP35, which disrupts SG formation. This function is independent of VP35's RNA binding activity. Further studies aim to reveal the mechanism for SG protein sequestration and precise function within inclusions. IMPORTANCE Although progress has been made developing antiviral therapeutics and vaccines against the highly pathogenic Ebola virus (EBOV), the cellular mechanisms involved in EBOV infection are still largely unknown. To better understand these intracellular events, we investigated the cellular stress response, an antiviral

  4. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  5. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  6. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  7. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  8. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  9. Effect of platelet dense granule contents upon osteoblast viability.

    PubMed

    Mehta, Siddhant K; Tucci, Michelle A; Benghuzzi, Hamed A

    2012-01-01

    The incorporation of platelet-rich plasma (PRP) into scaffolds for application in musculoskeletal injuries has been a topic of recent interest in orthopaedic surgery. Platelets have dense granules containing ADP, ATP, serotonin, and calcium; and alpha granules containing PDGF, VEGF, IGF, TGF-ß, and EGF. Particular focus of previous studies has been on mitogenic effects of alpha granules, but the role of dense granules in PRP therapy currently remains undefined. The objective of the present study was to evaluate the effect of ATP, ADP, and serotonin upon osteoblast viability in vitro. Human osteoblast-like cells (MG-63 cells) were exposed to phosphate buffered saline (control group), ATP (20µM), ADP (10µM), and serotonin (11.75nM) for 24, 48, and 72 hours. Osteoblast viability was evaluated at each timepoint using biochemical assays. When compared to controls, osteoblasts treated with ATP and ADP resulted in a significant reduction in cell number, while serotonin caused an increase at 24 hours. Similar trends were noted at later timepoints. At 48 hours, a trend towards increase in glutathione was observed with ADP and ATP, but was not sustained at 72 hours. No significant differences in membrane damage were detected between groups. At 24 and 48 hours, ADP significantly increased nitric oxide production. Results of this study demonstrate that ATP, ADP, and serotonin induced significant structural adaptive responses to osteoblastic activities. The data revealed minimal functional alteration as evident by biomarker measurements. Overall conclusion: the results provided further insight regarding PRP therapy for traumatized bone.

  10. Isolating stromal stem cells from periodontal granulation tissues.

    PubMed

    Hung, Tzu-Yuan; Lin, Hsiang-Chun; Chan, Ying-Jen; Yuan, Kuo

    2012-08-01

    Stem cell therapy is a promising area in regenerative medicine. Periodontal granulation tissues are often discarded during conventional surgery. If stromal stem cells can be isolated from these tissues, they can be used for subsequent surgery on the same patient. Fifteen human periodontal granulation tissue samples were obtained from intrabony defects during surgery. Immunohistochemistry (IHC) was carried out on five of the samples to identify STRO-1, a marker of mesenchymal stem cells. Five samples underwent flow cytometry analysis for the same marker. The remaining five samples were characterized by "colony formation unit-fibroblast" (CFU-f) assay and selected for proliferation assay, flow cytometry of stem cell markers, immunocytochemistry (ICC), multipotent differentiation assays, and repairing critical-size defects in mice. The ratio of STRO-1(+) cells detected by IHC was 5.91 ± 1.50%. The analysis of flow cytometry for STRO-1 was 6.70 ± 0.81%. Approximately two thirds of the CFU-f colonies had a strong reaction to STRO-1 in ICC staining. The cells were multipotent both in vitro and in vivo. Mice given bone grafts and stem cells showed significantly better bone healing than those without stem cells. Multipotent stromal stem cells can be isolated from human periodontal granulation tissues. These cells improve new bone formation when transplanted in mouse calvarial defects. Isolating stem cells from relatively accessible sites without extra procedures is clinically advantageous. This study demonstrated that human periodontal granulation tissues contain isolatable multipotent stem cells. The cells may be a good source for autotransplantation in subsequent treatment.

  11. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.

    PubMed

    Santodomingo, Jaime; Vay, Laura; Camacho, Marcial; Hernández-Sanmiguel, Esther; Fonteriz, Rosalba I; Lobatón, Carmen D; Montero, Mayte; Moreno, Alfredo; Alvarez, Javier

    2008-10-01

    The secretory granules constitute one of the less well-known compartments in terms of Ca2+ dynamics. They contain large amounts of total Ca2+, but the free intragranular [Ca2+] ([Ca2+]SG), the mechanisms for Ca2+ uptake and release from the granules and their physiological significance regarding exocytosis are still matters of debate. We used in the present work an aequorin chimera targeted to the granules to investigate [Ca2+]SG homeostasis in bovine adrenal chromaffin cells. We found that most of the intracellular aequorin chimera is present in a compartment with 50-100 microM Ca2+. Ca2+ accumulation into this compartment takes place mainly through an ATP-dependent mechanism, namely, a thapsigargin-sensitive Ca2+-ATPase. In addition, fast Ca2+ release was observed in permeabilized cells after addition of inositol 1,4,5-trisphosphate (InsP3) or caffeine, suggesting the presence of InsP3 and ryanodine receptors in the vesicular membrane. Stimulation of intact cells with the InsP3-producing agonist histamine or with caffeine also induced Ca2+ release from the vesicles, whereas acetylcholine or high-[K+] depolarization induced biphasic changes in vesicular[Ca2+], suggesting heterogeneous responses of different vesicle populations, some of them releasing and some taking up Ca2+during stimulation. In conclusion, our data show that chromaffin cell secretory granules have the machinery required for rapid uptake and release of Ca2+, and this strongly supports the hypothesis that granular Ca2+ may contribute to its own secretion.

  12. Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens

    PubMed Central

    Ogbomo, Henry; Mody, Christopher H.

    2017-01-01

    Natural killer (NK) cells kill or inhibit the growth of a number of fungi including Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, cause life-threatening disease in individuals with impaired cell-mediated immunity. While there are similarities to cell-mediated killing of tumor cells, there are also important differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the NKp30 receptor has been described to mediate signaling events that trigger the NK cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and Candida albicans, subsequently leading to granule exocytosis and fungal killing. More recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, and 7 and directly mediate fungal clearance. A number of unanswered questions remain. For example, is only one NK cell-activating receptor sufficient for signaling leading to fungal killing? Are the signaling pathways activated by fungi similar to those activated by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of interaction with fungi, and how does this process compare with tumor killing? Recent insights into receptor use, intracellular signaling and cytolytic granule trafficking during NK cell-mediated fungal killing will be compared to tumor killing, and the implications for therapeutic approaches will be discussed. PMID:28123389

  13. Seaweed cultivation for renewable resources

    SciTech Connect

    Bird, K.T.; Benson, P.H.

    1987-01-01

    In the 1970's and 80's, major research and development programs were launched to explore the possibility of using marine biomass as a source of energy. This volume, not only reviews the accomplishments of the aforementioned programs, but also describes how this research relates to seaweed cultivation for other products, such as food, feed, and high value chemicals. Topics covered include the features of marine biomass production, biotechnological manipulations of marine algae, and marine biomass conversion to energy, as well as economics. The chapters synthesize a large number of technical reports, journal articles, symposia and conference proceedings and technology transfer meetings.

  14. Effects of Kettlebell Training on Aerobic Capacity.

    PubMed

    Falatic, J Asher; Plato, Peggy A; Holder, Christopher; Finch, Daryl; Han, Kyungmo; Cisar, Craig J

    2015-07-01

    This study examined the effects of a kettlebell training program on aerobic capacity. Seventeen female National Collegiate Athletic Association Division I collegiate soccer players (age: 19.7 ± 1.0 years, height: 166.1 ± 6.4 cm, weight: 64.2 ± 8.2 kg) completed a graded exercise test to determine maximal oxygen consumption (V̇O2max). Participants were assigned to a kettlebell intervention group (KB) (n = 9) or a circuit weight-training (CWT) control group (n = 8). Participants in the KB group completed a kettlebell snatch test to determine individual snatch repetitions. Both groups trained 3 days a week for 4 weeks in addition to their off-season strength and conditioning program. The KB group performed the 15:15 MVO2 protocol (20 minutes of kettlebell snatching with 15 seconds of work and rest intervals). The CWT group performed multiple free-weight and dynamic body-weight exercises as part of a continuous circuit program for 20 minutes. The 15:15 MVO2 protocol significantly increased V̇O2max in the KB group. The average increase was 2.3 ml·kg⁻¹·min⁻¹, or approximately a 6% gain. There was no significant change in V̇O2max in the CWT control group. Thus, the 4-week 15:15 MVO2 kettlebell protocol, using high-intensity kettlebell snatches, significantly improved aerobic capacity in female intercollegiate soccer players and could be used as an alternative mode to maintain or improve cardiovascular conditioning.

  15. First results on quiet and magnetic granulation from SOUP

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.

    1987-01-01

    The flight of Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction limited (0.5 arc sec) granulation images with excellent pointing (0.003 arc sec) and completely free of the distortion that plagues groundbased images. The p-mode oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, it was shown that the p-modes dominate the autocorrelation lifetime in magnetic regions. When these oscillations are removed the autocorrelation lifetime is found to be 500 sec in quiet and 950 sec in magnetic regions. In quiet areas exploding granules are seen to be common. It is speculated that a significant fraction of granule lifetimes are terminated by nearby explosions. Using local correlation tracking techniques it was able to measure horizontal displacements, and thus transverse velocities, in the magnetic field. In quiet sun it is possible to detect both super and mesogranulation. Horizontal velocities are as great as 1000 m/s and the average velocity is 400 m/s. In magnetic regions horizontal velocities are much less, about 100 m/s.

  16. Intracellular transport of insulin granules is a subordinated random walk

    PubMed Central

    Tabei, S. M. Ali; Burov, Stanislav; Kim, Hee Y.; Kuznetsov, Andrey; Huynh, Toan; Jureller, Justin; Philipson, Louis H.; Dinner, Aaron R.; Scherer, Norbert F.

    2013-01-01

    We quantitatively analyzed particle tracking data on insulin granules expressing fluorescent fusion proteins in MIN6 cells to better understand the motions contributing to intracellular transport and, more generally, the means for characterizing systems far from equilibrium. Care was taken to ensure that the statistics reflected intrinsic features of the individual granules rather than details of the measurement and overall cell state. We find anomalous diffusion. Interpreting such data conventionally requires assuming that a process is either ergodic with particles working against fluctuating obstacles (fractional Brownian motion) or nonergodic with a broad distribution of dwell times for traps (continuous-time random walk). However, we find that statistical tests based on these two models give conflicting results. We resolve this issue by introducing a subordinated scheme in which particles in cages with random dwell times undergo correlated motions owing to interactions with a fluctuating environment. We relate this picture to the underlying microtubule structure by imaging in the presence of vinblastine. Our results provide a simple physical picture for how diverse pools of insulin granules and, in turn, biphasic secretion could arise. PMID:23479621

  17. Newborn granule cells in the ageing dentate gyrus

    PubMed Central

    Morgenstern, Nicolás A; Lombardi, Gabriela; Schinder, Alejandro F

    2008-01-01

    The dentate gyrus of the hippocampus generates neurons throughout life, but adult neurogenesis exhibits a marked age-dependent decline. Although the decrease in the rate of neurogenesis has been extensively documented in the ageing hippocampus, the specific characteristics of dentate granule cells born in such a continuously changing environment have received little attention. We have used retroviral labelling of neural progenitor cells of the adult mouse dentate gyrus to study morphological properties of neurons born at different ages. Dendritic spine density was measured to estimate glutamatergic afferent connectivity. Fully mature neurons born at the age of 2 months display ∼2.3 spines μm−1 and maintain their overall morphology and spine density in 1-year-old mice. Surprisingly, granule cells born in 10-month-old mice, at which time the rate of neurogenesis has decreased by ∼40-fold, reach a density of dendritic spines similar to that of neurons born in young adulthood. Therefore, in spite of the sharp decline in cell proliferation, differentiation and overall neuronal number, the ageing hippocampus presents a suitable environment for new surviving neurons to reach a high level of complexity, comparable to that of all other dentate granule cells. PMID:18565998

  18. Recreating the synthesis of starch granules in yeast

    PubMed Central

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-01-01

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361

  19. Organellar proteomics: analysis of pancreatic zymogen granule membranes.

    PubMed

    Chen, Xuequn; Walker, Angela K; Strahler, John R; Simon, Eric S; Tomanicek-Volk, Sarah L; Nelson, Bradley B; Hurley, Mary C; Ernst, Stephen A; Williams, John A; Andrews, Philip C

    2006-02-01

    The zymogen granule (ZG) is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and has been a model for studying secretory granule functions. In an initial effort to comprehensively understand the functions of this organelle, we conducted a proteomic study to identify proteins from highly purified ZG membranes. By combining two-dimensional gel electrophoresis and two-dimensional LC with tandem mass spectrometry, 101 proteins were identified from purified ZG membranes including 28 known ZG proteins and 73 previously unknown proteins, including SNAP29, Rab27B, Rab11A, Rab6, Rap1, and myosin Vc. Moreover several hypothetical proteins were identified that represent potential novel proteins. The ZG localization of nine of these proteins was further confirmed by immunocytochemistry. To distinguish intrinsic membrane proteins from soluble and peripheral membrane proteins, a quantitative proteomic strategy was used to measure the enrichment of intrinsic membrane proteins through the purification process. The iTRAQ ratios correlated well with known or Transmembrane Hidden Markov Model-predicted soluble or membrane proteins. By combining subcellular fractionation with high resolution separation and comprehensive identification of proteins, we have begun to elucidate zymogen granule functions through proteomic and subsequent functional analysis of its membrane components.

  20. Mechanistic modelling of the drying behaviour of single pharmaceutical granules.

    PubMed

    Mortier, Séverine Thérèse F C; De Beer, Thomas; Gernaey, Krist V; Vercruysse, Jurgen; Fonteyne, Margot; Remon, Jean Paul; Vervaet, Chris; Nopens, Ingmar

    2012-04-01

    The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six-segmented fluidised bed drying system, which is part of a fully continuous from-powder-to-tablet manufacturing line. The drying model is based on a model described by Mezhericher et al. and consists of two submodels. In the first drying phase (submodel 1), the surface water evaporates, while in the second drying phase (submodel 2), the water inside the granule evaporates. The second submodel contains an empirical power coefficient, β. A sensitivity analysis was performed to study the influence of parameters on the moisture content of single pharmaceutical granules, which clearly points towards the importance of β on the drying behaviour. Experimental data with the six-segmented fluidised bed dryer were collected to calibrate β. An exponential dependence on the drying air temperature was found. Independent experiments were done for the validation of the drying model.

  1. Performance of Lightweight Concrete based on Granulated Foamglass

    NASA Astrophysics Data System (ADS)

    Popov, M.; Zakrevskaya, L.; Vaganov, V.; Hempel, S.; Mechtcherine, V.

    2015-11-01

    The paper presents an investigation of lightweight concretes properties, based on granulated foamglass (GFG-LWC) aggregates. The application of granulated foamglass (GFG) in concrete might significantly reduce the volume of waste glass and enhance the recycling industry in order to improve environmental performance. The conducted experiments showed high strength and thermal properties for GFG-LWC. However, the use of GFG in concrete is associated with the risk of harmful alkali-silica reactions (ASR). Thus, one of the main aims was to study ASR manifestation in GFG-LWC. It was found that the lightweight concrete based on porous aggregates, and ordinary concrete, have different a mechanism of ASR. In GFG-LWC, microstructural changes, partial destruction of granules, and accumulation of silica hydro-gel in pores were observed. According to the existing methods of analysis of ASR manifestation in concrete, sample expansion was measured, however, this method was found to be not appropriate to indicate ASR in concrete with porous aggregates. Microstructural analysis and testing of the concrete strength are needed to evaluate the damage degree due to ASR. Low-alkali cement and various pozzolanic additives as preventive measures against ASR were chosen. The final composition of the GFG-LWC provides very good characteristics with respect to compressive strength, thermal conductivity and durability. On the whole, the potential for GFG-LWC has been identified.

  2. Experimental determination of residence time distribution in continuous dry granulation.

    PubMed

    Mangal, Haress; Kleinebudde, Peter

    2017-03-31

    With increasing importance of continuous manufacturing, the interest in integrating dry granulation into a continuous manufacturing line is growing. Residence time distribution measurements are of importance as they provide information about duration of materials within the process. These data enable traceability and are highly beneficial for developing control strategies. A digital image analysis system was used to determine the residence time distribution of two materials with different deformation behavior (brittle, plastic) in the milling unit of dry granulation systems. A colorant was added to the material (20%w/w iron oxide), which did not affect the material properties excessively, so the milling process could be mimicked well. Experimental designs were conducted to figure out which parameters effect the mean residence time strongly. Moreover, two types of dry granulation systems were contrasted. Longer mean residence times were obtained for the oscillating mill (OM) compared to the conical mill (CM). For co-processed microcrystalline cellulose residence times of 19.8-44.4s (OM) and 11.6-29.1s (CM) were measured, mainly influenced by the specific compaction force, the mill speed and roll speed. For dibasic calcium phosphate anhydrate residence times from 17.7-46.4 (OM) and 5.4-10.2s (CM) were measured, while here the specific compaction force, the mill speed and their interactions with the roll speed had an influence on the mean residence time.

  3. FIB/SEM cell sectioning for intracellular metal granules characterization

    NASA Astrophysics Data System (ADS)

    Milani, Marziale; Brundu, Claudia; Santisi, Grazia; Savoia, Claudio; Tatti, Francesco

    2009-05-01

    Focused Ion Beams (FIBs) provide a cross-sectioning tool for submicron dissection of cells and subcellular structures. In combination with Scanning Electron Microscope (SEM), FIB provides complementary morphological information, that can be further completed by EDX (Energy Dispersive X-ray Spectroscopy). This study focus onto intracellular microstructures, particularly onto metal granules (typically Zn, Cu and Fe) and on the possibility of sectioning digestive gland cells of the terrestrial isopod P. scaber making the granules available for a compositional analysis with EDX. Qualitative and quantitative analysis of metal granules size, amount and distribution are performed. Information is made available of the cellular storing pattern and, indirectly, metal metabolism. The extension to human level is of utmost interest since some pathologies of relevance are metal related. Apart from the common metal-overload-diseases (hereditary hemochromatosis, Wilson's and Menkes disease) it has been demonstrated that metal in excess can influence carcinogenesis in liver, kidney and breast. Therefore protocols will be established for the observation of mammal cells to improve our knowledge about the intracellular metal amount and distribution both in healthy cells and in those affected by primary or secondary metal overload or depletion.

  4. Neuroligin-1 Overexpression in Newborn Granule Cells In Vivo

    PubMed Central

    Schnell, Eric; Bensen, AeSoon L.; Washburn, Eric K.; Westbrook, Gary L.

    2012-01-01

    Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons. PMID:23110172

  5. Analysis of horizontal flows in the solar granulation

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Shimizu, T.; Suematsu, Y.

    2016-04-01

    Solar limb observations sometimes reveal the presence of a satellite lobe in the blue wing of the Stokes I profile from pixels belonging to granules. The presence of this satellite lobe has been associated in the past to strong line-of-sight gradients and, as the line-of-sight component is almost parallel to the solar surface, to horizontal granular flows. We aim to increase the knowledge about these horizontal flows studying a spectropolarimetric observation of the north solar pole. We will make use of two state of the art techniques, the spatial deconvolution procedure that increases the quality of the data removing the stray light contamination, and spectropolarimetric inversions that will provide the vertical stratification of the atmospheric physical parameters where the observed spectral lines form. We inverted the Stokes profiles using a two component configuration, obtaining that one component is strongly blueshifted and displays a temperature enhancement at upper photospheric layers while the second component has low redshifted velocities and it is cool at upper layers. In addition, we examined a large number of cases located at different heliocentric angles, finding smaller velocities as we move from the centre to the edge of the granule. Moreover, the height location of the enhancement on the temperature stratification of the blueshifted component also evolves with the spatial location on the granule being positioned on lower heights as we move to the periphery of the granular structure.

  6. Modelling and simulation of nutrient dispersion from coated fertilizer granules

    NASA Astrophysics Data System (ADS)

    Razali, Radzuan; Daud, Hanita; Nor, Shafiq Mohd.

    2014-10-01

    The usage of Controlled-Release Fertilizer (CRF) is essential in plants and crops to fulfill the need and requirement for the modern agriculture which now feeds 6 billion people. Therefore modeling and simulation of nutrient release from coated fertilizer has become the best method to study the behavior of some parameters toward water saturation in and nutrient release from the coated-fertilizer granule. This paper is the improvement development of modeling and computer simulation by Basu [1] which include some of the factors affecting the water saturation time and nutrient release time from a coated-fertilizer. The effect of granule radius, the diffusivity of water and nutrient, the temperature of surrounding, the contact areas and the characteristic of the coating are studied and the simulation was developed using MATLAB software. The studies and understanding of this project is very important and useful especially to determine the important parameters in the manufacturing process of the coated-fertilizer granule and also will be useful for the farmers/users in the selection of the best fertilizers for their crops.

  7. Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula.

    PubMed

    Kobayashi, Tohru; Koide, Osamu; Mori, Kozue; Shimamura, Shigeru; Matsuura, Takae; Miura, Takeshi; Takaki, Yoshihiro; Morono, Yuki; Nunoura, Takuro; Imachi, Hiroyuki; Inagaki, Fumio; Takai, Ken; Horikoshi, Koki

    2008-07-01

    "A meta-enzyme approach" is proposed as an ecological enzymatic method to explore the potential functions of microbial communities in extreme environments such as the deep marine subsurface. We evaluated a variety of extra-cellular enzyme activities of sediment slurries and isolates from a deep subseafloor sediment core. Using the new deep-sea drilling vessel "Chikyu", we obtained 365 m of core sediments that contained approximately 2% organic matter and considerable amounts of methane from offshore the Shimokita Peninsula in Japan at a water depth of 1,180 m. In the extra-sediment fraction of the slurry samples, phosphatase, esterase, and catalase activities were detected consistently throughout the core sediments down to the deepest slurry sample from 342.5 m below seafloor (mbsf). Detectable enzyme activities predicted the existence of a sizable population of viable aerobic microorganisms even in deep subseafloor habitats. The subsequent quantitative cultivation using solid media represented remarkably high numbers of aerobic, heterotrophic microbial populations (e.g., maximally 4.4x10(7) cells cm(-3) at 342.5 mbsf). Analysis of 16S rRNA gene sequences revealed that the predominant cultivated microbial components were affiliated with the genera Bacillus, Shewanella, Pseudoalteromonas, Halomonas, Pseudomonas, Paracoccus, Rhodococcus, Microbacterium, and Flexibacteracea. Many of the predominant and scarce isolates produced a variety of extra-cellular enzymes such as proteases, amylases, lipases, chitinases, phosphatases, and deoxyribonucleases. Our results indicate that microbes in the deep subseafloor environment off Shimokita are metabolically active and that the cultivable populations may have a great potential in biotechnology.

  8. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  9. Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm

    PubMed Central

    Xing, Shihai; Meng, Xiaoxi; Zhou, Lihui; Mujahid, Hana; Zhao, Chunfang; Zhang, Yadong; Wang, Cailin; Peng, Zhaohua

    2016-01-01

    Starch is the most important food energy source in cereals. Many of the known enzymes involved in starch biosynthesis are partially or entirely granule-associated in the endosperm. Studying the proteome of rice starch granules is critical for us to further understand the mechanisms underlying starch biosynthesis and packaging of starch granules in rice amyloplasts, consequently for the improvement of rice grain quality. In this article, we developed a protocol to purify starch granules from mature rice endosperm and verified the quality of purified starch granules by microscopy observations, I2 staining, and Western blot analyses. In addition, we found the phenol extraction method was superior to Tris-HCl buffer extraction method with respect to the efficiency in recovery of starch granule associated proteins. LC-MS/MS analysis showed identification of already known starch granule associated proteins with high confidence. Several proteins reported to be involved in starch synthesis in prior genetic studies in plants were also shown to be enriched with starch granules, either directly or indirectly, in our studies. In addition, our results suggested that a few additional candidate proteins may also be involved in starch synthesis. Furthermore, our results indicated that some starch synthesis pathway proteins are subject to protein acetylation modification. GO analysis and KEGG pathway enrichment analysis showed that the identified proteins were mainly located in plastids and involved in carbohydrate metabolism. This study substantially advances the understanding of the starch granule associated proteome in rice and post translational regulation of some starch granule associated proteins. PMID:27992503

  10. Automated insulin granule segmentation from electron photomicrographs of rat pancreatic β-cells

    NASA Astrophysics Data System (ADS)

    McClanahan, Timothy P.; Straub, Susanne G.; Sharp, Geoffrey W. G.; Loew, Murray

    2005-04-01

    Increased blood glucose stimulates pancreatic β-cells and induces an exocytotic release of insulin. The β-cell, which contains ~10^4 insulin-containing granules, releases only a few percent of the granules during a given stimulus such as a meal. The temporal response function to a square wave increase in the concentration of glucose is characteristically biphasic. It is not known whether the granules exhibit random or directed migration patterns as a function of phase. Directed migration would suggest the development of an intracellular gradient directing the path and velocity of insulin granule movement. Our ongoing research investigates this process using manual morphometric analysis of electron micrographs of rat pancreatic β-cells. This is a tedious and time-consuming stereological process. Consequently, we have developed an automated algorithm for accurately segmenting and deriving granule counts, areas, and measuring distance to the plasma membrane. The method is a data-driven image processing approach that implements Mahalanobis classifiers to hierarchically classify pixel candidates and subsequently pixel aggregates as insulin granules. Granule cores and halos are classified independently and fused by intersecting the convex difference of granule halos with core candidates. Once fused, total and individual granule areas and distance metrics to the β-cell plasma membrane are obtained. This algorithm provides a rapid and accurate method for the determination of granule numbers, location, and potential gradients in the pancreatic β-cell under different experimental conditions.

  11. Antimicrobial mechanisms against Acinetobacter calcoaceticus of rat polymorphonuclear leukocyte granule extract.

    PubMed Central

    Loeffelholz, M J; Modrzakowski, M C

    1988-01-01

    The antimicrobial mechanisms of rat polymorphonuclear leukocyte granule extract and isolated extract fractions against Acinetobacter calcoaceticus were examined. Crude granule extract and a fraction containing low-molecular-weight cationic peptides (peak D) reduced the viability of A. calcoaceticus and inhibited the uptake of radiolabeled macromolecule precursors by cells. The inhibitory activity observed with peak D was not as great as that of crude granule extract containing equivalent amounts of peak D protein. Crude extract also inhibited incorporation of uracil into trichloroacetic acid-precipitable material, while no isolated fraction, including peak D, had any substantial effect on incorporation. The antimicrobial activities of crude granule extract were more sensitive to boiling than those of isolated peak D. Preincubation of A. calcoaceticus with either crude granule extract or a fraction (peak B) possessing proteolytic activity but lacking any antimicrobial activity caused cells to become sensitive to a subinhibitory concentration of actinomycin D, suggesting that granule extract and peak B increase the outer membrane permeability of A. calcoaceticus. The antimicrobial granule extract fraction, peak D, did not affect outer membrane permeability. These results suggest that rat polymorphonuclear leukocyte granule extract reduces the viability of A. calcoaceticus by inhibiting the transport and incorporation of macromolecule precursors and that either whole granule extract is required for complete antimicrobial activity or an unidentified component is responsible for antimicrobial activity in addition to peak D. The granule extract activity that increases outer membrane permeability does not appear to be directly responsible for the observed decrease in viability. PMID:2449397

  12. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    PubMed Central

    Strasser, Markus J; Mackenzie, Natalia C; Dumstrei, Karin; Nakkrasae, La-Iad; Stebler, Jürg; Raz, Erez

    2008-01-01

    Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. PMID:18507824

  13. Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm.

    PubMed

    Peng, M; Gao, M; Båga, M; Hucl, P; Chibbar, R N

    2000-09-01

    Two starch granule-bound proteins (SGP), SGP-140 and SGP-145, were preferentially associated with A-type starch granules (>10 microm) in developing and mature wheat (Triticum aestivum) kernels. Immunoblotting and N-terminal sequencing suggested that the two proteins were different variants of SBEIc, a 152-kD isoform of wheat starch-branching enzyme. Both SGP-140 and SGP-145 were localized to the endosperm starch granules but were not found in the endosperm soluble fraction or pericarp starch granules younger than 15 d post anthesis (DPA). Small-size starch granules (<10 microm) initiated before 15 DPA incorporated SGP-140 and SGP-145 throughout endosperm development and grew into full-size A-type starch granules (>10 microm). In contrast, small-size starch granules harvested after 15 DPA contained only low amounts of SGP-140 and SGP-145 and developed mainly into B-type starch granules (<10 microm). Polypeptides of similar mass and immunologically related to SGP-140 and/or SGP-145 were also preferentially incorporated into A-type starch granules of barley (Hordeum vulgare), rye (Secale cereale), and triticale (x Triticosecale Wittmack) endosperm, which like wheat endosperm have a bimodal starch granule size distribution.

  14. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules

    PubMed Central

    Sesma, Juliana I.; Kreda, Silvia M.; Okada, Seiko F.; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C.; O'Neal, Wanda K.; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori

    2013-01-01

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca2+-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins. PMID:23467297

  15. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules.

    PubMed

    Sesma, Juliana I; Kreda, Silvia M; Okada, Seiko F; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C; O'Neal, Wanda K; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori; Lazarowski, Eduardo R

    2013-05-15

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca(2+)-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins.

  16. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    SciTech Connect

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; Mansfield, D. K.; Nagy, A.; Maingi, R.; Parks, P. B.; Jackson, G.; Gilson, E.; Chrobak, C. P.

    2016-05-25

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the duration of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.

  17. Performance of single carbon granules as perspective for larger scale capacitive bioanodes

    NASA Astrophysics Data System (ADS)

    Borsje, Casper; Liu, Dandan; Sleutels, Tom H. J. A.; Buisman, Cees J. N.; ter Heijne, Annemiek

    2016-09-01

    The use of high surface area electrodes, like carbon-based felt or granules, in Bioelectrochemical Systems is crucial for high volumetric current production. In case activated carbon granules are used, charge can also be stored in the form of an electric double layer in the pores, which has been shown to improve bioanode performance. So far, it is not known how much current can be generated by a single granule. In this study, we investigate the current production and charge storage behavior of a single carbon granule. Two types of activated carbon granules and one graphite granule are tested to find the untapped potential of granular bioanodes. A single activated carbon granule produces up to 0.6 mA, corresponding to 60 mA cm-3 granule volume at -300 mV vs. Ag/AgCl anode potential. Charge - discharge experiments show that capacitive granules produced 1.3-2.0 times more charge compared to a graphite granule with low surface area. When extrapolated to other granular systems, our study indicates that the current generated by granular bioanodes can be improved with several orders of magnitude, which could form the basis of an economically feasible Microbial Fuel Cell.

  18. Validation of a continuous granulation process using a twin-screw extruder.

    PubMed

    Van Melkebeke, B; Vervaet, C; Remon, J P

    2008-05-22

    Using twin-screw granulation as particle size enlargement technique, the effect of modifying the screw configuration (number of mixing zones, configuration of kneading block) on granule quality, tablet properties and mixing efficiency was investigated. The amount of oversized agglomerates and yield was significantly influenced by the presence of an extra conveying element at the screw end. Changing the staggering angle of the kneading block significantly affected yield and granule friability. The 90 degrees configuration resulted in a lower yield and granule friability. Disintegration time was the only tablet property significantly influenced by the screw configuration as disintegration was significantly faster when an extra conveying element was placed at the screw end. The influence of tracer addition method (wet vs. dry) on mixing efficiency inside the extruder barrel was investigated by means of different tracers: riboflavin (0.05%) suspended in the granulation liquid and hydrochlorothiazide (2.5%) added separately as powder. Mixing efficiency in function of time and granule size (above and below 1400 microm) was tested using riboflavine sodium phosphate (0.05%) dissolved in the granulation liquid. Since a good mixing efficiency was obtained independent of tracer addition method, tracer solubility, granulation time and granule size, continuous granulation using a twin-screw extruder was identified as a robust process.

  19. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE PAGES

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; ...

    2016-05-25

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  20. Hybrid origins of cultivated potatoes.

    PubMed

    Rodríguez, Flor; Ghislain, Marc; Clausen, Andrea M; Jansky, Shelley H; Spooner, David M

    2010-10-01

    Solanum section Petota is taxonomically difficult, partly because of interspecific hybridization at both the diploid and polyploid levels. The taxonomy of cultivated potatoes is particularly controversial. Using DNA sequence data of the waxy gene, we here infer relationships among the four species of cultivated potatoes accepted in the latest taxonomic treatment (S. ajanhuiri, S. curtilobum, S. juzepczukii and S. tuberosum, the latter divided into the Andigenum and Chilotanum Cultivar Groups). The data support prior ideas of hybrid origins of S. ajanhuiri from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. megistacrolobum; S. juzepczukii from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. acaule; and S. curtilobum from the S. tuberosum Andigenum Group (4x = S. tuberosum subsp. andigenum) × S. juzepczukii. For the tetraploid cultivar-groups of S. tuberosum, hybrid origins are suggested entirely within much more closely related species, except for two of three examined accessions of the S. tuberosum Chilotanum Group that appear to have hybridized with the wild species S. maglia. Hybrid origins of the crop/weed species S. sucrense are more difficult to support and S. vernei is not supported as a wild species progenitor of the S. tuberosum Andigenum Group.

  1. Behavior and Properties of Mature Lytic Granules at the Immunological Synapse of Human Cytotoxic T Lymphocytes

    PubMed Central

    Ming, Min; Schirra, Claudia; Becherer, Ute; Stevens, David R.; Rettig, Jens

    2015-01-01

    Killing of virally infected cells or tumor cells by cytotoxic T lymphocytes requires targeting of lytic granules to the junction between the CTL and its target. We used whole-cell patch clamp to measure the cell capacitance at fixed intracellular [Ca2+] to study fusion of lytic granules in human CTLs. Expression of a fluorescently labeled human granzyme B construct allowed identification of lytic granule fusion using total internal reflection fluorescence microscopy. In this way capacitance steps due to lytic granule fusion were identified. Our goal was to determine the size of fusing lytic granules and to describe their behavior at the plasma membrane. On average, 5.02 ± 3.09 (mean ± s.d.) lytic granules were released per CTL. The amplitude of lytic granule fusion events was ~ 3.3 fF consistent with a diameter of about 325 nm. Fusion latency was biphasic with time constants of 15.9 and 106 seconds. The dwell time of fusing lytic granules was exponentially distributed with a mean dwell time of 28.5 seconds. Fusion ended in spite of the continued presence of granules at the immune synapse. The mobility of fusing granules at the membrane was indistinguishable from that of lytic granules which failed to fuse. While dwelling at the plasma membrane lytic granules exhibit mobility consistent with docking interspersed with short periods of greater mobility. The failure of lytic granules to fuse when visible in TIRF at the membrane may indicate that a membrane-confined reaction is rate limiting. PMID:26296096

  2. β-TCP granules mixed with reticulated hyaluronic acid induce an increase in bone apposition.

    PubMed

    Aguado, Eric; Pascaretti-Grizon, Florence; Gaudin-Audrain, Christine; Goyenvalle, Eric; Chappard, Daniel

    2014-02-01

    β beta-tricalcium phosphate (β-TCP) granules are suitable for repair of bone defects. They have an osteoconductive effect shortly after implantation. However, dry granules are difficult to handle in the surgical room because of low weight and lack of cohesion. Incorporation of granules in a hydrogel could be a satisfactory solution. We have investigated the use of hyaluronic acid (HyA) as an aqueous binder of the granules. β-TCP granules were prepared by the polyurethane foam technology. Commercially available linear (LHya) and reticulated hyaluronic acid (RHyA) in aqueous solution were used to prepare a pasty mixture that can be handled more easily than granules alone. Thirteen New Zealand White rabbits (3.5-3.75 kg) were used; a 4 mm hole was drilled in each femoral condyle. After flushing, holes were filled with either LHyA, RHyA, dry β-TCP granules alone, β-TCP granules + LHyA and β-TCP granules + RHyA. Rabbits were allowed to heal for one month, sacrificed and femurs were harvested and analysed by microCT and histomorphometry. The net amount of newly formed bone was derived from measurements done after thresholding the microCT images for the material and for the material+bone. LHyA and RHyA did not result in healing of the grafted area. LHyA was rapidly eluted from the grafted zone but allowed deposition of more granules, although the amount of formed bone was not significantly higher than with β-TCP granules alone. RHyA permitted the deposition of more granules which induced significantly more bone trabeculae without inducing an inflammatory reaction. RHyA appears to be a good vehicle to implant granules of β-TCP, since HyA does not interfere with bone remodeling.

  3. Secretory-granule dynamics visualized in vivo with a phogrin-green fluorescent protein chimaera.

    PubMed Central

    Pouli, A E; Emmanouilidou, E; Zhao, C; Wasmeier, C; Hutton, J C; Rutter, G A

    1998-01-01

    To image the behaviour in real time of single secretory granules in neuroendocrine cells we have expressed cDNA encoding a fusion construct between the dense-core secretory-granule-membrane glycoprotein, phogrin (phosphatase on the granule of insulinoma cells), and enhanced green fluorescent protein (EGFP). Expressed in INS-1 beta-cells and pheochromocytoma PC12 cells, the chimaera was localized efficiently (up to 95%) to dense-core secretory granules (diameter 200-1000 nm), identified by co-immunolocalization with anti-(pro-)insulin antibodies in INS-1 cells and dopamine beta-hydroxylase in PC12 cells. Using laser-scanning confocal microscopy and digital image analysis, we have used this chimaera to monitor the effects of secretagogues on the dynamics of secretory granules in single living cells. In unstimulated INS-1 beta-cells, granule movement was confined to oscillatory movement (dithering) with period of oscillation 5-10 s and mean displacement <1 microm. Both elevated glucose concentrations (30 mM), and depolarization of the plasma membrane with K+, provoked large (5-10 microm) saltatory excursions of granules across the cell, which were never observed in cells maintained at low glucose concentration. By contrast, long excursions of granules occurred in PC12 cells without stimulation, and occurred predominantly from the cell body towards the cell periphery and neurite extensions. Purinergic-receptor activation with ATP provoked granule movement towards the membrane of PC12 cells, resulting in the transfer of fluorescence to the plasma membrane consistent with fusion of the granule and diffusion of the chimaera in the plasma membrane. These results illustrate the potential use of phogrin-EGFP chimeras in the study of secretory-granule dynamics, the regulation of granule-cytoskeletal interactions and the trafficking of a granule-specific transmembrane protein during the cycle of exocytosis and endocytosis. PMID:9639579

  4. Quantitative Assessment of Mass Flow Boundaries in Continuous Twin-screw Granulation.

    PubMed

    Schmidt, Adrian; de Waard, Hans; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2016-01-01

    In pharmaceutical manufacturing, there is an increasing interest in continuous manufacturing. As an example for fast continuous processes in general of considerable complexity, this study was focussed on improving the understanding of twin-screw wet granulation. The impact of the liquid-to-solid (L/S) mass flow ratio on product quality (granules) as well as on downstream process operations (tableting) was investigated in detail. Initially two methods were used to define L/S ratio boundaries for the granulation regime in twin-screw wet granulation. It was shown that the first method, which is based on measuring the wet granule mass flow variation, can be used to define the upper L/S ratio boundary of the granulation regime. The second method, based on measuring the granule size distribution, can be used to define the lower L/S ratio boundary of the regime. Using these methods, the granulation regime for different formulations could be established. This information was then used to show that the formulation could be optimised such that the process is more robust (i.e. wider L/S ratio boundaries for the granulation regime). Also it could be used to optimise the formulation considering further downstream processing such as drying (using as little water as possible to reduce drying efforts) or tableting (obtain granules with optimised tableting properties). Preferably, the process should be performed close to the lower L/S ratio boundary of the granulation regime. In summary, these tools enabled the quantitative establishment of granulation regime boundaries in a twin-screw wet granulation process and can be used to optimise formulation and to create a robust process. Analogies to other continuous processes in completely different applications can be conceived.

  5. Participation of a transmembrane proton gradient in 5-hydroxytryptamine transport by platelet dense granules and dense-granule ghosts.

    PubMed Central

    Wilkins, J A; Salganicoff, L

    1981-01-01

    Dense granules, the storage organelles for 5-hydroxytryptamine in blood platelets, have been isolated from porcine platelets and are shown to transport 5-hydroxytryptamine in response to a transmembrane proton gradient (delta pH). Transport in the absence of delta pH is minimal, and it is shown that a rapid increase in transport takes place as delta pH increases. Direct measurements with [14C]methylamine show a delta pH of 1.1 units (acid inside) for intact granules. Osmotically active ghosts of dense granules from which 95% of the endogenous 5-hydroxytryptamine content has been released have also been prepared. Ghosts swell in the presence of ATP and Mg2+, and this swelling is shown to be due to the entry of protons via a process linked to ATP hydrolysis. Proton entry is also apparently linked to anion penetration in ghosts. Steady-state 5-hydroxytryptamine transport in ghosts is stimulated approx. 3-fold on the addition of ATP to the incubation medium, and the stimulation of 5-hydroxytryptamine transport in ghosts correlates with the formation of a transmembrane delta pH. Ghosts generate a delta pH of 1.1-1.3 pH units (acid inside) in the presence of 5 mM-ATP/2.5 mM-MgSO4. delta pH is generated within 3 min at 37 degrees C and is dissipated by the ionophore nigericin and by NH4Cl. It is shown that an Mg2+-stimulated ATPase activity is present on the ghost membrane, and inhibition of the ATPase leads to a corresponding decrease in 5-hydroxytryptamine transport. The results presented support the idea that 5-hydroxytryptamine transport into platelet dense granules is dependent on the presence of a transmembrane delta pH and, together with previous findings by others, suggest a generalized mechanism for biogenic amine transport into subcellular storage organelles. Images Fig. 2. PMID:6459780

  6. MCC-mannitol mixtures after roll compaction/dry granulation: percolation thresholds for ribbon microhardness and granule size distribution.

    PubMed

    Pérez Gago, Ana; Kleinebudde, Peter

    2016-04-07

    In roll compaction, the specific compaction force, the gap width and the roll speed are the most important settings as they have a high impact in the products obtained. However the mechanical properties of the mixture being compacted are also critical. For this reason, a multilevel full factorial design including these parameters as factors plus three repetitions of the center point was performed for microcrystalline cellulose, mannitol and five binary mixtures (15, 30, 50, 70 and 85% MCC). These two reference excipients were chosen in order to investigate the plastic/brittle behavior of mixtures for the roll compaction process. These materials were roll compacted in a 3-W-Polygran(®) 250/50/3 (Gerteis) and the ribbons obtained were collected and milled into granules which were characterized regarding granule size distribution. After statistical evaluation, it was found that the most critical factors affecting the D10, D50, D90 and the fines fraction from the granules were the gap width and the specific compaction force, as well as the proportion of MCC together with its quadratic effect and the interaction between force and proportion of MCC. The microhardness of the ribbons from the center point as well as the D10, D50, D90 and the fines fraction from the granules produced at these same conditions were characterized. In all the cases, the proportion of MCC, i.e. the composition of the mixture, showed also an important effect on these properties measured. In this sense, the percolation theory was applied in order to study further the importance of the plastic/brittle ratio by calculating the percolation threshold or the limit over which the behavior of the system changes. This resulted in values of 34% for the HU (expression of microhardness), 27% and 28% for the D10 and fines, respectively (percolation of MCC) and 84% and 85% for the D50 and D90, respectively (percolation of mannitol).

  7. Development of Aerobic Fitness in Young Team Sport Athletes.

    PubMed

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

  8. Rab6 is required for the exocytosis of cortical granules and the recruitment of separase to the granules during the oocyte-to-embryo transition in Caenorhabditis elegans.

    PubMed

    Kimura, Kenji; Kimura, Akatsuki

    2012-12-01

    Remodeling of the embryo surface after fertilization is mediated by the exocytosis of cortical granules derived from the Golgi complex. This process is essential for oocyte-to-embryo transition in many species. However, how the fertilization signal reaches the cortical granules for their timely exocytosis is largely unknown. In Caenorhabditis elegans, the recruitment of separase, a downstream effector of the fertilization signal, to the cortical granules is essential for exocytosis because separase is required for membrane fusion. However, the molecule that recruits separase to the cortical granules remains unidentified. In this study, we found that Rab6, a Golgi-associated GTPase, is essential to recruit separase to the cortical granules in C. elegans embryos. Knockdown of the rab-6.1 gene, a Rab6 homolog in C. elegans, resulted in failure of the membrane fusion step of cortical granule exocytosis. Using a transgenic strain that expresses GFP-fused RAB-6.1, we found that RAB-6.1 temporarily co-localized with separase on the cortical granules for a few minutes and then was dispersed in the cytoplasm concomitantly with membrane fusion. We found that RAB-6.1, as well as cyclin-dependent kinase (CDK)-1 and anaphase promoting complex/cyclosome (APC/C), was required to recruit separase to the cortical granules. RAB-6.1 was not required for the chromosome segregation process, unlike CDK-1, APC/C and SEP-1. The results indicate that RAB-6.1 is required specifically for the membrane fusion step of exocytosis and for the recruitment of separase to the granules. Thus, RAB-6.1 is an important molecule for the timely exocytosis of the cortical granules during oocyte-to-embryo transition.

  9. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  10. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  11. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    PubMed

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  12. Thrombopoietin-induced Dami cells as a model for alpha-granule biogenesis.

    PubMed

    Briquet-Laugier, Véronique; El Golli, Nargès; Nurden, Paquita; Lavenu-Bombled, Cécile; Dubart-Kupperschmitt, Anne; Nurden, Alan; Rosa, Jean-Philippe

    2004-09-01

    Megakaryocytic alpha-granules contain secretory proteins relevant to megakaryocyte and platelet functions. Understanding alpha-granule biogenesis is hampered because human primary megakaryocytes are difficult to manipulate. Existing promegakaryocytic cell lines do not spontaneously exhibit mature alpha-granules. Dami cells, transfected with the megakaryocytic platelet factor 4, fused to GFP (PF4-GFP), were induced in the presence of thrombopoietin (TPO), a megakaryocyte cytokine and PMA. Using confocal microscopy, PF4-GFP colocalized with von Willebrand Factor (vWF) in newly formed storage granules. Immunoelectron microscopy demonstrated alpha-granule-like features, including a dense core or parallel tubules and colocalization of PF4-GFP and vWF. Hence, TPO-treated Dami cells are a suitable model to study alpha-granules and their biogenesis.

  13. HID-1 is required for homotypic fusion of immature secretory granules during maturation.

    PubMed

    Du, Wen; Zhou, Maoge; Zhao, Wei; Cheng, Dongwan; Wang, Lifen; Lu, Jingze; Song, Eli; Feng, Wei; Xue, Yanhong; Xu, Pingyong; Xu, Tao

    2016-10-18

    Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.

  14. Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules.

    PubMed

    Costa, Milene M E; Cabral-Albuquerque, Elaine C M; Alves, Tito L M; Pinto, José Carlos; Fialho, Rosana L

    2013-10-23

    Fertilizers contain essential nutrients for agricultural growth and development. However, most nitrogen fertilizers are substances with high solubility of ions and are very susceptible to leaching and volatilization. To minimize these losses, an alternative is the creation of a physical barrier around granules. One way is to coat granules with polymers. In the present work urea granules were coated with polyhydroxybutyrate and ethyl cellulose in various conditions in the presence of emulsifiers. The original granules and the final products were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetry, to evaluate the surface morphology, the interaction between the granules and the coating, and the rates of mass change. The rates of urea release in distilled water were measured with a commercial enzyme kit. It is shown that those polymers are effective for coating of granules, leading to reduction of rates of urea dissolution in water.

  15. Three-Dimensional Tracking of Single Granules in Living PC-12 Cells Employing TIRFM and WFFM.

    PubMed

    Xiong, Jun; Li, Dongdong; Zhu, Dan; Qu, Anlian

    2005-01-01

    A comparative study was carried out on evaluating the performance of total internal reflection fluorescence microscopy (TIRFM) and deconvolution wide-field fluorescence microscopy (WFFM) in tracking single secretory granules. Both techniques have been applied to follow the three-dimensional mobility of single secretory granules in living neuroendocrine PC-12 cells. Both techniques return the similar result that most acridine orange-labeled granules were found to travel in random and caged diffusion, and only a small fraction of granules traveled in directed diffusion. Furthermore, the size and 3-D diffusion coefficient of secretory granules, obtained by these two imaging techniques, yield the same value. Together, our results demonstrate the potential of the combination TIRFM and WFFM in tracking long-termed motion of granules throughout live whole cells.

  16. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning.

    PubMed

    Giovannucci, Andrea; Badura, Aleksandra; Deverett, Ben; Najafi, Farzaneh; Pereira, Talmo D; Gao, Zhenyu; Ozden, Ilker; Kloth, Alexander D; Pnevmatikakis, Eftychios; Paninski, Liam; De Zeeuw, Chris I; Medina, Javier F; Wang, Samuel S-H

    2017-03-20

    Cerebellar granule cells, which constitute half the brain's neurons, supply Purkinje cells with contextual information necessary for motor learning, but how they encode this information is unknown. Here we show, using two-photon microscopy to track neural activity over multiple days of cerebellum-dependent eyeblink conditioning in mice, that granule cell populations acquire a dense representation of the anticipatory eyelid movement. Initially, granule cells responded to neutral visual and somatosensory stimuli as well as periorbital airpuffs used for training. As learning progressed, two-thirds of monitored granule cells acquired a conditional response whose timing matched or preceded the learned eyelid movements. Granule cell activity covaried trial by trial to form a redundant code. Many granule cells were also active during movements of nearby body structures. Thus, a predictive signal about the upcoming movement is widely available at the input stage of the cerebellar cortex, as required by forward models of cerebellar control.

  17. An observation on sludge granulation in an enhanced biological phosphorus removal process.

    PubMed

    Ong, Ying Hui; Chua, Adeline Seak May; Lee, Boon Pin; Ngoh, Gek Cheng; Hashim, Mohd Ali

    2012-01-01

    A sequencing batch reactor (SBR) seeded with flocculated sludge and fed with synthetic wastewater was operated for an enhanced biological phosphorus removal (EBPR) process. Eight weeks after reactor startup, sludge granules were observed. The granules had a diameter of 0.5 to 3.0 mm and were brownish in color and spherical or ellipsoidal in shape. No significant change was observed in sludge granule size when operational pH was changed from 7 to 8. The 208-day continuous operation of the SBR showed that sludge granules were stably maintained with a sludge volume index (SVI) between 30 to 55 mL/g while securing a removal efficiency of 83% for carbon and 97% for phosphorus. Fluorescent in situ hybridization (FISH) confirmed the enrichment of polyphosphate accumulating organisms (PAOs) in the SBR. The observations of sludge granulation in this study encourage further studies in the development of granules-based EBPR process.

  18. Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release.

    PubMed

    Ni, Lixiao; Li, Danye; Hu, Shuzhen; Wang, Peifang; Li, Shiyin; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-12-01

    To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-