Science.gov

Sample records for aerobic growth defect

  1. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  2. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  3. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  4. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean.

    PubMed

    Koblízek, Michal; Masín, Michal; Ras, Josephine; Poulton, Alex J; Prásil, Ondrej

    2007-10-01

    We analysed bacteriochlorophyll diel changes to assess growth rates of aerobic anoxygenic phototrophs in the euphotic zone across the Atlantic Ocean. The survey performed during Atlantic Meridional Transect cruise 16 has shown that bacteriochlorophyll in the North Atlantic Gyre cycles at rates of 0.91-1.08 day(-1) and in the South Atlantic at rates of 0.72-0.89 day(-1). In contrast, in the more productive equatorial region and North Atlantic it cycled at rates of up to 2.13 day(-1). These results suggest that bacteriochlorophyll-containing bacteria in the euphotic zone of the oligotrophic gyres grow at rates of about one division per day and in the more productive regions up to three divisions per day. This is in striking contrast with the relatively slow growth rates of the total bacterial community. Thus, aerobic anoxygenic phototrophs appear to be a very dynamic part of the marine microbial community and due to their rapid growth, they are likely to be larger sinks for dissolved organic matter than their abundance alone would predict.

  5. Butyrate production under aerobic growth conditions by engineered Escherichia coli.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Yakushi, Toshiharu; Matsushita, Kazunobu

    2017-01-11

    Butyrate is an important industrial platform chemical. Although several groups have reported butyrate production under oxygen-limited conditions by a native producer, Clostridium tyrobutylicum, and by a metabolically engineered Escherichia coli, efforts to produce butyrate under aerobic growth conditions have met limited success. Here, we constructed a novel butyrate synthetic pathway that functions under aerobic growth conditions in E. coli, by modifying the 1-butanol synthetic pathway reported previously. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, and endogenous thioesterase(s) of E. coli. To evaluate the potential of this pathway for butyrate production, culture conditions, including pH, oxygen supply, and concentration of inorganic nitrogen sources, were optimized in a mini-jar fermentor. Under the optimal conditions, butyrate was produced at a concentration of up to 140 mM (12.3 g/L in terms of butyric acid) after 54 h of fed-batch culture.

  6. Growth Defects in Biomacromolecular Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's ground based program confirmed close similarity between protein and small molecules crystal growth, but also revealed essential differences. No understanding exists as to why and when crystals grown in space are, in approx. 20 percent of cases, of higher quality. More rationale is needed in flight experiments. Ferritin crystals grown in space are 2.5 times cleaner than their terrestrial counterparts. This may occur because of the existence of a zone depleted with respect to impurities around a crystal growing in stagnant solution. This zone should appear since the distribution coefficient for homologous impurities exceeds unity. This impurity depletion zone hypothesis requires verification and development. Thorough purification from homologous impurities brought about resolution improvement from 2.6 to 1.8 angstroms for ferritin and from 2.6 to 2.0 angstroms for canavalin.

  7. Graphene Growth and Defects on Ni(111)

    NASA Astrophysics Data System (ADS)

    Batzill, Matthias; Lahiri, Jayeeta

    2011-03-01

    Using scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES) we have investigated the growth of graphene on Ni(111) surfaces by carbon segregation from the bulk. We reveal two distinct growth modes for graphene growth. Between 480 and 650 C graphene forms on clean Ni(111) and below 480 C graphene grows by an in-plane conversion of a surface carbide phase. This is the first time that graphene formation is observed by transformation of a surface carbide. STM indicates that a lattice-matched, one-dimensional in-plane domain boundary between graphene and the carbide forms and graphene grows by replacing Ni-atoms with carbon at this interface. In addition to the growth of graphene we will also briefly discuss atomic-scale defects that can be synthesized in Ni-supported graphene. In particular we emphasize the formation of an extended line-defect with metallic properties.

  8. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Simon, Cedric J; Smith, Gregory G; Carter, Chris G; Battaglene, Stephen C

    2017-05-01

    We examined the effects of temperature on the growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi, in order to determine if temperature acclimated aerobic scope correlates with optimum for growth and to establish the thermal tolerance window for this emerging aquaculture species. Juvenile lobsters (initial weight=10.95±0.47g) were reared (n=7) at temperatures from 11.0 to 28.5°C for 145days. All lobsters survived from 14.5 to 25.0°C while survival was reduced at 11.0°C (86%) and all lobsters died at 28.5°C. Lobster specific growth rate and specific feed consumption displayed a unimodal response with temperature, peaking at 21.5°C. Lobster standard, routine and maximum metabolic rates, and aerobic scope all increased exponentially up to maximum non-lethal temperature. Optimum temperature for growth did not correspond to that for maximum aerobic scope suggesting that aerobic scope is not an effective predictor of the thermal optimum of spiny lobsters. Plateauing of specific feed consumption beyond 21.5°C suggests that temperature dependent growth of lobsters is limited by capacity to ingest or digest sufficient food to meet increasing maintenance metabolic demands at high temperatures. The nutritional condition of lobsters was not influenced by temperature and feed conversion ratio was improved at lower temperatures. These findings add to a growing body of evidence questioning the generality of aerobic scope to describe the physiological thermal boundaries of aquatic ectotherms and suggest that feed intake plays a crucial role in regulating performance at thermal extremes.

  9. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.

    PubMed

    Koch, Hanna; Galushko, Alexander; Albertsen, Mads; Schintlmeister, Arno; Gruber-Dorninger, Christiane; Lücker, Sebastian; Pelletier, Eric; Le Paslier, Denis; Spieck, Eva; Richter, Andreas; Nielsen, Per H; Wagner, Michael; Daims, Holger

    2014-08-29

    The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.

  10. Aerobic growth of campylobacter in media supplemented with C3-monocarboxylates and C4-dicarboxylates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to examine aerobic growth of Campylobacter spp. in media supplemented with C4-dicarboxylates (fumarate, succinate, or malate) and C3-monocarboxylates (pyruvate or lactate). Basal broth media composed of tryptose, yeast extract, and a mineral-vitamin solution was supplement...

  11. Enhancing Aerobic Growth of Campylobacter in Media Supplemented with Organic Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in was determined. A fumarate-pyruvate medium was supplemented with 0.0 to 0.2% agar and inoculated with Campylobacter coli, Campylobacter fetus, or Campylobacter jejuni. Portions of the inoculated me...

  12. Effect of bicarbonate concentration on aerobic growth of campylobacter in a fumarate-pyruvate medium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of the present study was to examine the effect of sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium. Fumarate-pyruvate broth medium was supplemented with 0.00 to 0.10% NaHCO3 and inoculated with Campylobacter coli 33559, Campyloba...

  13. Anaerobic growth of a "strict aerobe" (Bacillus subtilis).

    PubMed

    Nakano, M M; Zuber, P

    1998-01-01

    There was a long-held belief that the gram-positive soil bacterium Bacillus subtilis is a strict aerobe. But recent studies have shown that B. subtilis will grow anaerobically, either by using nitrate or nitrite as a terminal electron acceptor, or by fermentation. How B. subtilis alters its metabolic activity according to the availability of oxygen and alternative electron acceptors is but one focus of study. A two-component signal transduction system composed of a sensor kinase, ResE, and a response regulator, ResD, occupies an early stage in the regulatory pathway governing anaerobic respiration. One of the essential roles of ResD and ResE in anaerobic gene regulation is induction of fnr transcription upon oxygen limitation. FNR is a transcriptional activator for anaerobically induced genes, including those for respiratory nitrate reductase, narGHJI.B. subtilis has two distinct nitrate reductases, one for the assimilation of nitrate nitrogen and the other for nitrate respiration. In contrast, one nitrite reductase functions both in nitrite nitrogen assimilation and nitrite respiration. Unlike many anaerobes, which use pyruvate formate lyase, B. subtilis can carry out fermentation in the absence of external electron acceptors wherein pyruvate dehydrogenase is utilized to metabolize pyruvate.

  14. Transcription of genes coding for metabolic key functions in Nitrosomonas europaea during aerobic and anaerobic growth.

    PubMed

    Beyer, Sonja; Gilch, Stefan; Meyer, Ortwin; Schmidt, Ingo

    2009-01-01

    Nitrosomonas europaea can grow under conditions of chemolithoautotrophic aerobic (oxygen as oxidant) as well as anaerobic [nitrogen dioxide (NO(2)) as oxidant] nitrification or chemoorganotrophic anaerobic pyruvate-dependent denitrification. In this study, the adaptation of the transcription (mRNA synthesis/concentration) of N. europaea to aerobic and anaerobic growth conditions was evaluated and the transcription of genes coding for metabolic key functions was analyzed: nitrogen and energy metabolism (amoA, hao, rh1, nirK, norB, nsc, aceE, ldhA, ppc, gltA, odhA, coxA), carbon dioxide fixation (cbbL), gluconeogenesis (ppsA), cell growth (ftsZ), and oxidative stress (sodB). During aerobic ammonia oxidation the specific activities of ammonia oxidation, nitrite reduction, and the growth rates correlated with the transcription level of the corresponding genes amoA/hao, nirK/norB/nsc, and cbbL/ftsZ. In anaerobically ammonia-oxidizing cells of N. europaea, the cellular mRNA concentrations of amoA, hao, rh1,coxA, cbbL, ftsZ, and sodB were reduced compared with aerobically nitrifying cells, but the mRNA levels of nirK, norB, and nsc were significantly increased. During anaerobic pyruvate-dependent denitrification, the mRNA abundance of nirK, norB, nsc, aceE, gltA, and odhA was increased, while the concentrations of amoA,hao, rh1, coxAcbbL, ftsZ, and sodB were significantly reduced. Temperature, pH value, and NH(4)(+), O(2), NO, and NO(2) concentrations had comparatively small effects on the transcription of the studied genes.

  15. Temperature-dependent requirement for catalase in aerobic growth of Listeria monocytogenes F2365.

    PubMed

    Azizoglu, Reha Onur; Kathariou, Sophia

    2010-11-01

    Listeria monocytogenes is a Gram-positive, psychrotrophic, facultative intracellular food-borne pathogen responsible for severe illness (listeriosis). The bacteria can grow in a wide range of temperatures (1 to 45°C), and low-temperature growth contributes to the food safety hazards associated with contamination of ready-to-eat foods with this pathogen. To assess the impact of oxidative stress responses on the ability of L. monocytogenes to grow at low temperatures and to tolerate repeated freeze-thaw stress (cryotolerance), we generated and characterized a catalase-deficient mutant of L. monocytogenes F2365 harboring a mariner-based transposon insertion in the catalase gene (kat). When grown aerobically on blood-free solid medium, the kat mutant exhibited impaired growth, with the extent of impairment increasing with decreasing temperature, and no growth was detected at 4°C. Aerobic growth in liquid was impaired at 4°C, especially under aeration, but not at higher temperatures (10, 25, or 37°C). Genetic complementation of the mutant with the intact kat restored normal growth, confirming that inactivation of this gene was responsible for the growth impairment. In spite of the expected impact of oxidative stress responses on cryotolerance, cryotolerance of the kat mutant was not affected.

  16. Shewanella oneidensis MR-1 sensory box protein involved in aerobic and anoxic growth.

    PubMed

    Sundararajan, A; Kurowski, J; Yan, T; Klingeman, D M; Joachimiak, M P; Zhou, J; Naranjo, B; Gralnick, J A; Fields, M W

    2011-07-01

    Although little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) in Shewanella oneidensis MR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame deletion mutant was constructed (ΔSO3389) with approximately 95% of the ORF deleted. Under aerated conditions, wild-type and mutant cultures had similar growth rates, but the mutant culture had a lower growth rate under static, aerobic conditions. Oxygen consumption rates were lower for mutant cultures (1.5-fold), and wild-type cultures also maintained lower dissolved oxygen concentrations under aerated growth conditions. When transferred to anoxic conditions, the mutant did not grow with fumarate, iron(III), or dimethyl sulfoxide (DMSO) as electron acceptors. Biochemical assays demonstrated the expression of different c-type cytochromes as well as decreased fumarate reductase activity in the mutant transferred to anoxic growth conditions. Transcriptomic studies showed the inability of the mutant to up-express and down-express genes, including c-type cytochromes (e.g., SO4047/SO4048, SO3285/SO3286), reductases (e.g., SO0768, SO1427), and potential regulators (e.g., SO1329). The complemented strain was able to grow when transferred from aerobic to anoxic growth conditions with the tested electron acceptors. The modeled structure for the SO3389 PAS domains was highly similar to the crystal structures of FAD-binding PAS domains that are known O2/redox sensors. Based on physiological, genomic, and bioinformatic results, we suggest that the sensory box protein, SO3389, is an O2/redox sensor that is involved in optimization of aerobic growth and transitions to anoxia in S

  17. Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus.

    PubMed

    Willows, Robert D; Lake, Vanessa; Roberts, Thomas Hugh; Beale, Samuel I

    2003-06-01

    The facultative photosynthetic bacterium Rhodobacter capsulatus can adapt from an anaerobic photosynthetic mode of growth to aerobic heterotrophic metabolism. As this adaptation occurs, the cells must rapidly halt bacteriochlorophyll synthesis to prevent phototoxic tetrapyrroles from accumulating, while still allowing heme synthesis to continue. A likely control point is Mg chelatase, the enzyme that diverts protoporphyrin IX from heme biosynthesis toward the bacteriochlorophyll biosynthetic pathway by inserting Mg(2+) to form Mg-protoporphyrin IX. Mg chelatase is composed of three subunits that are encoded by the bchI, bchD, and bchH genes in R. capsulatus. We report that BchH is the rate-limiting component of Mg chelatase activity in cell extracts. BchH binds protoporphyrin IX, and BchH that has been expressed and purified from Escherichia coli is red in color due to the bound protoporphyrin IX. Recombinant BchH is rapidly inactivated by light in the presence of O(2), and the inactivation results in the formation of a covalent adduct between the protein and the bound protoporphyrin IX. When photosynthetically growing R. capsulatus cells are transferred to aerobic conditions, Mg chelatase is rapidly inactivated, and BchH is the component that is most rapidly inactivated in vivo when cells are exposed to aerobic conditions. The light- and O(2)-stimulated inactivation of BchH could account for the rapid inactivation of Mg chelatase in vivo and provide a mechanism for inhibiting the synthesis of bacteriochlorophyll during adaptation of photosynthetically grown cells to aerobic conditions while still allowing heme synthesis to occur for aerobic respiration.

  18. Mycobacterium tuberculosis growth following aerobic expression of the DosR regulon.

    PubMed

    Minch, Kyle; Rustad, Tige; Sherman, David R

    2012-01-01

    The Mycobacterium tuberculosis regulator DosR is induced by multiple stimuli including hypoxia, nitric oxide and redox stress. Overlap of these stimuli with conditions thought to promote latency in infected patients fuels a model in which DosR regulon expression is correlated with bacteriostasis in vitro and a proxy for latency in vivo. Here, we find that inducing the DosR regulon to wildtype levels in aerobic, replicating M. tuberculosis does not alter bacterial growth kinetics. We conclude that DosR regulon expression alone is insufficient for bacterial latency, but rather is expressed during a range of growth states in a dynamic environment.

  19. Chidamide Inhibits Aerobic Metabolism to Induce Pancreatic Cancer Cell Growth Arrest by Promoting Mcl-1 Degradation

    PubMed Central

    Wang, Yanbing; Kuai, Qiyuan; Li, Changlan; Wang, Yu; Jiang, Xingwei; Wang, Xuanlin; Li, Weijing; He, Min; Ren, Suping; Yu, Qun

    2016-01-01

    Pancreatic cancer is a fatal malignancy worldwide and urgently requires valid therapies. Previous research showed that the HDAC inhibitor chidamide is a promising anti-cancer agent in pancreatic cancer cell lines. In this study, we elucidate a probable underlying anti-cancer mechanism of chidamide involving the degradation of Mcl-1. Mcl-1 is frequently upregulated in human cancers, which has been demonstrated to participate in oxidative phosphorylation, in addition to its anti-apoptotic actions as a Bcl-2 family member. The pancreatic cancer cell lines BxPC-3 and PANC-1 were treated with chidamide, resulting in Mcl-1 degradation accompanied by induction of Mcl-1 ubiquitination. Treatment with MG132, a proteasome inhibitor reduced Mcl-1 degradation stimulated by chidamide. Chidamide decreased O2 consumption and ATP production to inhibit aerobic metabolism in both pancreatic cancer cell lines and primary cells, similar to knockdown of Mcl-1, while overexpression of Mcl-1 in pancreatic cancer cells could restore the aerobic metabolism inhibited by chidamide. Furthermore, chidamide treatment or Mcl-1 knockdown significantly induced cell growth arrest in pancreatic cancer cell lines and primary cells, and Mcl-1 overexpression could reduce this cell growth inhibition. In conclusion, our results suggest that chidamide promotes Mcl-1 degradation through the ubiquitin-proteasome pathway, suppressing the maintenance of mitochondrial aerobic respiration by Mcl-1, and resulting in inhibition of pancreatic cancer cell proliferation. Our work supports the claim that chidamide has therapeutic potential for pancreatic cancer treatment. PMID:27875574

  20. Dynamic Modeling of Aerobic Growth of Shewanella oneidensis. Predicting Triauxic Growth, Flux Distributions and Energy Requirement for Growth

    SciTech Connect

    Song, Hyun-Seob; Ramkrishna, Doraiswami; Pinchuk, Grigoriy E.; Beliaev, Alex S.; Konopka, Allan; Fredrickson, Jim K.

    2013-01-01

    A model-based analysis is conducted to investigate metabolism of Shewanella oneidensis MR-1 strain in aerobic batch culture, which exhibits an intriguing growth pattern by sequentially consuming substrate (i.e., lactate) and by-products (i.e., pyruvate and acetate). A general protocol is presented for developing a detailed network-based dynamic model for S. oneidensis based on the Lumped Hybrid Cybernetic Model (LHCM) framework. The L-HCM, although developed from only limited data, is shown to accurately reproduce exacting dynamic metabolic shifts, and provide reasonable estimates of energy requirement for growth. Flux distributions in S. oneidensis predicted by the L-HCM compare very favorably with 13C-metabolic flux analysis results reported in the literature. Predictive accuracy is enhanced by incorporating measurements of only a few intracellular fluxes, in addition to extracellular metabolites. The L-HCM developed here for S. oneidensis is consequently a promising tool for the analysis of intracellular flux distribution and metabolic engineering.

  1. Aerobic expression of Vitreoscilla hemoglobin improves the growth performance of CHO-K1 cells.

    PubMed

    Juárez, Mariana; González-De la Rosa, Claudia H; Memún, Elisa; Sigala, Juan-Carlos; Lara, Alvaro R

    2017-03-01

    Inefficient carbon metabolism is a relevant issue during the culture of mammalian cells for the production of biopharmaceuticals. Therefore, cell engineering strategies to improve the metabolic and growth performance of cell lines are needed. The expression of Vitreoscilla stercoraria hemoglobin (VHb) has been shown to significantly reduce overflow metabolism and improve the aerobic growth of bacteria. However, the effects of VHb on mammalian cells have been rarely studied. Here, the impact of VHb on growth and lactate accumulation during CHO-K1 cell culture was investigated. For this purpose, CHO-K1 cells were transfected with plasmids carrying the vgb or gfp gene to express VHb or green fluorescence protein (GFP), respectively. VHb expression increased the specific growth rate and biomass yields on glucose and glutamine by 60 %, and reduced the amount of lactate produced per cell by 40 %, compared to the GFP-expression controls. Immunofluorescence microscopy showed that VHb is distributed in the cytoplasm and organelles, which support the hypothesis that VHb could serve as an oxygen carrier, enhancing aerobic respiration. These results are useful for the development of better producing cell lines for industrial applications.

  2. Growth defects in thick ion-plated coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1975-01-01

    Industrial ion plating conditions were selected to deposit metallic coatings such as copper, gold, and chromium 2 micrometer thick on metal and glass substrates. The surface finishes of 304 stainless steel, copper, and brass were utilized with mechanically and electrolytically polished surfaces. Nodular growth occurred in these coatings during ion plating as revealed by scanning electron microscopy. Surface irregularities such as scratches, steps, ledges, and so forth are responsible for outward growth, the typical cone type, whereas surface contaminants and loosely settled foreign particles are responsible for lateral growth; namely, the extreme localized surface outgrowths. These defect crystallographic features create porosity in the coatings when subjected to stresses and strains.

  3. Growth defect in Grg5 null mice is associated with reduced Ihh signaling in growth plates.

    PubMed

    Wang, Wen-Fang; Wang, You-Gan; Reginato, Anthony M; Plotkina, Sofiya; Gridley, Thomas; Olsen, Bjorn R

    2002-05-01

    Gene-targeted disruption of Grg5, a mouse homologue of Drosophila groucho (gro), results in postnatal growth retardation in mice. The growth defect, most striking in approximately half of the Grg5 null mice, occurs during the first 4-5 weeks of age, but most mice recover retarded growth later. We used the nonlinear mixed-effects model to fit the growth data of wild-type, heterozygous, and Grg5 null mice. On the basis of preliminary evidence suggesting an interaction between Grg5 and the transcription factor Cbfa1/Runx2, critical for skeletal development, we further investigated the skeleton in the mice. A long bone growth plate defect was identified, which included shorter zones of proliferative and hypertrophic chondrocytes and decreased trabecular bone formation. This decreased trabecular bone formation is likely caused by a reduced recruitment of osteoblasts into the growth plate region of Grg5 null mice. Like the growth defect, the growth plate and trabecular bone abnormality improved as the mice grew older. The growth plate defect was associated with reduced Indian hedgehog expression and signaling. We suggest that Grg5, a transcriptional coregulator, modulates the activities of transcription factors, such as Cbfa1/Runx2 in vivo to affect Ihh expression and the function of long bone growth plates.

  4. Aerobic growth of Anoxybacillus pushchinoensis K1(T): emended descriptions of A. pushchinoensis and the genus Anoxybacillus

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Cleland, David; Tang, Jane

    2003-01-01

    In this work, corrections are made to the descriptions of the species Anoxybacillus pushchinoensis corrig. and the genus ANOXYBACILLUS: Experiments to determine the relationship of A. pushchinoensis K1(T) to oxygen showed that it was capable of aerobic growth, but preferred to grow anaerobically. During aerobic growth, the redox indicator resazurin was reduced as a result of hydrogen gas production. The facultatively anaerobic nature of K1(T) was ascertained by cultivation in aerobic liquid medium, where growth began at the bottom of the tube. The anaerobic nature of K1(T) was also indicated by a negative catalase reaction. This work is submitted to correct the description of the species A. pushchinoensis from obligate anaerobe to aerotolerant anaerobe and to emend the description of the genus Anoxybacillus from obligate anaerobes or facultative anaerobes to aerotolerant anaerobes or facultative anaerobes.

  5. Characterization of defect growth structures in ion plated films by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Gold and copper films (0.2-2 micron thick) are ion plated on very smooth stainless steel 304 and mica surfaces. The deposited films are examined by SEM to identify the morphological growth of defects. Three types of coating defects are distinguished: nodular growth, abnormal or runaway growth, and spits. The potential nucleation sites for defect growth are analyzed to determine the cause of defect formation. It is found that nuclear growth is due to inherent surface microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation and ejection of droplets. All these defects have adverse effects on the coatings.

  6. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth.

    PubMed

    Lübbehüsen, T L; Nielsen, J; McIntyre, M

    2004-02-01

    The dimorphic organism Mucor circinelloides is currently being investigated as a potential host for heterologous protein production. The production of ethanol on pentose and hexose sugars was studied in submerged batch cultivations to further the general knowledge of Mucor physiology, with a view to the minimisation or elimination of the by-product ethanol for future process design. Large amounts of ethanol were produced during aerobic growth on glucose under non-oxygen limiting conditions, which is indicative of M. circinelloides being a Crabtree-positive organism. Ethanol production on galactose or xylose was less significant. The response of the organism to increased ethanol concentrations, both as the sole carbon source and in the presence of a sugar, was investigated in terms of biomass formation and morphology.

  7. Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.

    PubMed

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-05-22

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×10⁷ cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  8. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    PubMed Central

    Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen

    2014-01-01

    Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922

  9. Effect of topological defects and curvature on anisotropic crystal growth

    NASA Astrophysics Data System (ADS)

    Azadi, Amir; Grason, Gregory M.

    2015-03-01

    The equilibrium shapes and symmetries of crystals are vestiges of the physical principles underlying their formation. We perform particle-based simulations guided by analytical analysis to investigate the structure of crystalline domains on curved substrates, a focus on the impact of topological defects on domain morphology. We find at low area fraction, as has been argued previously, that isotropic crystal growth with relatively compact domains generates large curvature-induced strains accommodated by relative ductile interactions, while the formation of anisotropic ribbon-like structures with lower-curvature induced stresses, introduces a larger line tension cost, and is thus favored for brittle crystals. Our results show that for ductile crystals with large surface coverage, appearance of stable topological defects precludes the formation of anisotropic, ribbon domains. However branch-like structures with large interfacial area are stable for certain values of intermediate curvature and crystalline ductility. These processes are guided by the interplay between elastic shape instability, defects, and curvature, where pattern formations are not related to kinetic instabilities.

  10. Defects in the cartilaginous growth plates of brachymorphic mice

    PubMed Central

    1977-01-01

    Homozygous brachymorphic (bm/bm) mice are characterized by disproportionately short stature. Newborn bm/bm epiphyseal cartilages are shorter than normal although the cells in the different zones of growth are relatively well organized. The extracellular matrix reacts poorly with stains specific for sulfated glycosaminoglycans. The ultrastructural appearance of the cartilage matrix indicates normal collagen fibrils; however, proteoglycan aggregate granules are smaller than normal and are present in reduced numbers, particularly in the columnar and hypertrophic zones of the growth plate. In addition, a prominent network of fine filaments, which are extractable in 4 M guanidine hydrochloride, are present in the bm/bm cartilage matrix. These findings suggest that a defect affecting the proteoglycan component of cartilage occurs in bm/bm mice. PMID:67117

  11. Growth of Aerobic Ripening Bacteria at the Cheese Surface Is Limited by the Availability of Iron

    PubMed Central

    Back, Alexandre; Irlinger, Françoise

    2012-01-01

    The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions. PMID:22367081

  12. Mathematical model for the aerobic growth of saccharomyces cerevisiae with a saturated respiratory capacity

    SciTech Connect

    Barford, J.P.; Hall, R.J.

    1981-08-01

    A mathematical model for the aerobic growth of Saccharomyces cerevisiae in both batch and continuous culture is described. It was based on the experimental observation that the respiratory capacity of this organism may become saturated and exhibit a maximum specific oxygen uptake rate after suitable adaptation. This experimental observation led to the possibility that transport into and out of the mitochondrion was of major importance in the overall metabolism of S. cerevisiae and was subject to long-term adaptation. Consistent with this observation a distributed model was proposed which, as its basis, assumed the control of respiration and fermentation to be the result of saturation of respiration without any specific repression or inhibition of the uptake rates of other substrates. No other regulation of fermentation and respiration was assumed. The model provided a suitable structure allowing precise quantification of the changes in rate and stoichiometry of energy production. The model clearly indicated that growth under the wide range of experimental conditions reported could not be predicted using constant values for the maximum specific respiratory rate or constant values of Yatp (g biomass/mol ATP) and PO ratio of (mol ATP/atom oxygen). The causes of the variation in the respiratory rate were not determined and it was concluded that a more detailed analysis (reported subsequently) was required. The variation of Y atp and PO ratio with specific growth rate implied that the efficiency of ATP generation or ATP utilization decreased with increasing specific growth rate. It was concluded that it was not possible to quantify the individual effect of Yatp and PO ratio until independent means for their reliable estimation is available. (Refs. 84).

  13. Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron.

    PubMed

    Monnet, Christophe; Back, Alexandre; Irlinger, Françoise

    2012-05-01

    The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions.

  14. System-level approach to studying oxygen stress and acclimation of Shewanella oneidensis to growth under aerobic conditions

    NASA Astrophysics Data System (ADS)

    Beliaev, A.

    2008-12-01

    Systems-level approaches have been proven extremely useful in elucidating the mechanisms involved in stress response and acclimation of microorganisms to different environments. Recent studies of Shewanella oneidensis, a dissimilatory metal reducer catalyzing biogeochemical cycling of Fe and Mn, demonstrate that this facultatively aerobic bacterium is inhibited by high concentrations of oxygen. Physiological and genomic studies demonstrated that growth under aerobic conditions triggers autoaggregation of S. oneidensis leading to significant physiological and morphological changes which are consistent with biofilm mode of growth. Global transcriptome profiling of the aggregates revealed coordinated upregulation of various attachment and adhesion factors which is governed through coordinate regulation by the RpoS, SpoIIA, and Crp transcription factors. The aerobic aggregated cells also revealed increased expression of putative anaerobic electron transfer and homologs of metal reduction genes. The experimental evidence indicates that aggregate formation in S. oneidensis may serve as an alternative or an addition to biochemical detoxification to reduce the oxidative stress associated with production of reactive oxygen species during aerobic metabolism while facilitating the development of hypoxic conditions within the aggregate interior.

  15. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87

    PubMed Central

    Ianniello, Rocco G.; Matera, Attilio; Genovese, Francesco; Parente, Eugenio; Ricciardi, Annamaria

    2016-01-01

    Aerobic and respiratory cultivations provide benefits for some lactic acid bacteria (LAB). Growth, metabolites, enzymatic activities (lactate dehydrogenase; pyruvate and NADH oxidases, NADH peroxidase; catalase), antioxidant capability and stress tolerance of Lactobacillus casei N87 were evaluated in anaerobic, aerobic and respiratory (aerobiosis with heme and menaquinone supplementation) batch cultivations with different dissolved oxygen (DO) concentrations. The expression of pox (pyruvate oxidase) and cydABCD operon (cytochrome bd oxidase complex) was quantified by quantitative Real Time polymerase chain reaction. Respiration increased biomass production compared to anaerobiosis and unsupplemented aerobiosis, and altered the central metabolism rerouting pyruvate away from lactate accumulation. All enzymatic activities, except lactate dehydrogenase, were higher in respiratory cultures, while unsupplemented aerobiosis with 60% of DO promoted H2O2 and free radical accumulation. Respiration improved the survival to oxidative and freeze-drying stresses, while significant numbers of dead, damaged and viable but not cultivable cells were found in unsupplemented aerobic cultures (60% DO). Analysis of gene expression suggested that the activation of aerobic and respiratory pathways occurred during the exponential growth phase, and that O2 and hemin induced, respectively, the transcription of pox and cydABCD genes. Respiratory cultivation might be a natural strategy to improve functional and technological properties of L. casei. PMID:27812097

  16. Atomic and electronic structure of twin growth defects in magnetite

    PubMed Central

    Gilks, Daniel; Nedelkoski, Zlatko; Lari, Leonardo; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Kepaptsoglou, Demie; Ramasse, Quentin; Evans, Richard; McKenna, Keith; Lazarov, Vlado K.

    2016-01-01

    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains. PMID:26876049

  17. Atomic and electronic structure of twin growth defects in magnetite

    NASA Astrophysics Data System (ADS)

    Gilks, Daniel; Nedelkoski, Zlatko; Lari, Leonardo; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Kepaptsoglou, Demie; Ramasse, Quentin; Evans, Richard; McKenna, Keith; Lazarov, Vlado K.

    2016-02-01

    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains.

  18. Atomic and electronic structure of twin growth defects in magnetite.

    PubMed

    Gilks, Daniel; Nedelkoski, Zlatko; Lari, Leonardo; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Kepaptsoglou, Demie; Ramasse, Quentin; Evans, Richard; McKenna, Keith; Lazarov, Vlado K

    2016-02-15

    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains.

  19. Effects of aerobic exercise on ectopic lipids in patients with growth hormone deficiency before and after growth hormone replacement therapy

    PubMed Central

    Christ, Emanuel R.; Egger, Andrea; Allemann, Sabin; Buehler, Tania; Kreis, Roland; Boesch, Chris

    2016-01-01

    Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50–60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn’t significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids. PMID:26792091

  20. Proceedings of defect engineering in semiconductor growth, processing and device technology

    SciTech Connect

    Ashok, S.; Chevallier, J.; Sumino, K.; Weber, E.

    1992-01-01

    This volume results from a symposium that was part of the 1992 Spring Meeting of the Materials Research Society, held in San Francisco from April 26 to May 1, 1992. The symposium, entitled Defect Engineering in Semiconductor Growth, Processing and Device Technology, was the first of its kind at MRS and brought together academic and industrial researchers with varying perspectives on defects in semiconductors. Its aim was to go beyond defect control, and focus instead on deliberate and controlled introduction and manipulation of defects in order to engineer some desired properties in semiconductor materials and devices. While the concept of defect engineering has at least a vague perception in techniques such as impurity/defect gettering and the use of the EL2 level in GaAs, more extensive as well as subtle uses of defects are emerging to augment the field. This symposium was intended principally to encourage creative new applications of defects in all aspects of semiconductor technology. The organization of this proceedings volume closely follows the topics around which the sessions were built. The papers on grown-in defects in bulk crystals deal with overviews of intrinsic and impurity-related defects, their influence on electrical, optical and mechanical properties, as well as the use of impurities to arrest certain types of defects during growth and defects to control growth. The issues addressed by the papers on defects in thin films include impurity and stoichiometry control, defects created by plasmas and the use of electron/ion irradiation for doping control.

  1. A redox-responsive transcription factor is critical for pathogenesis and aerobic growth of Listeria monocytogenes.

    PubMed

    Whiteley, Aaron T; Ruhland, Brittany R; Edrozo, Mauna B; Reniere, Michelle L

    2017-02-13

    Bacterial pathogens have evolved sophisticated mechanisms to sense and adapt to redox stress in nature and within the host. However, deciphering the redox environment encountered by intracellular pathogens in the mammalian cytosol is challenging and remains poorly understood. In this study, we assessed the contributions of the two redox-responsive, Spx-family transcriptional regulators to the virulence of Listeria monocytogenes, a Gram-positive facultative intracellular pathogen. Spx-family proteins are highly conserved in Firmicutes and L. monocytogenes encodes two paralogues, spxA1 and spxA2 Here, we demonstrated that spxA1, but not spxA2, was required for the oxidative stress response and pathogenesis. SpxA1 function appeared to be conserved with the Bacillus subtilis homologue and resistance to oxidative stress required the canonical CXXC redox-sensing motif. Remarkably, spxA1 was essential for aerobic growth, demonstrating that L. monocytogenes SpxA1 likely regulates a distinct set of genes. Although the ΔspxA1 mutant did not grow in the presence of oxygen in the laboratory, it was able to replicate in macrophages and colonize the spleens, but not the livers, of infected mice. These data suggest that the redox state of bacteria during infection differs significantly from bacteria growing in vitro Further, the host cell cytosol may resemble an anaerobic environment with tissue-specific variations in redox stress and oxygen concentration.

  2. Proteasome dysfunction induces muscle growth defects and protein aggregation

    PubMed Central

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-01-01

    ABSTRACT The ubiquitin–proteasome and autophagy–lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions. PMID:25380823

  3. Influence of organic and inorganic growth supplements on the aerobic biodegradation of chlorobenzoic acids.

    PubMed

    Fava, F; Armenante, P M; Kafkewitz, D; Marchetti, L

    1995-04-01

    The effect of yeast extract and its less complex substituents on the rate of aerobic dechlorination of 2-chlorobenzoic acid (2-ClBZOH) and 2,5-dichlorobenzoic acid (2,5-Cl2BZOH) by Pseudomonas sp. CPE2 strain, and of 3-chlorobenzoic acid (3-ClBZOH), 4-chlorobenzoic acid (4-ClBZOH) and 3,4-dichlorobenzoic acid (3,4-Cl2BZOH) by Alcaligenes sp. CPE3 strain were investigated. Yeast extract at 50 mg/l increased the average dechlorination rate of 200 mg/l of 4-ClBZOH, 2,5-Cl2BZOH, 3,4-Cl2BZOH, 3-ClBZOH and 2-ClBZOH by about 75%, 70%, 55%, 7%, and 1%, respectively. However, in the presence of yeast extract the specific dechlorination activity of CPE2 and CPE3 cells (per unit biomass) was always lower than without yeast extract, although it increased significantly during the exponential growth phase. When a mixed vitamin solution or a mixed trace element solution was used instead of yeast extract the rate of 4-ClBZOH dechlorination increased by 30%-35%, whereas the rate of 2,5-Cl2BZOH and 3,4-Cl2BZOH dechlorination increased by only 2%-10%. The presence of vitamins or trace elements also resulted in a specific dechlorination activity that was generally higher than that observed for the same cells grown solely on chlorobenzoic acid. The results of this work indicate that yeast extract, a complex mixture of readily oxidizable carbon sources, vitamins, and trace elements, enhances the growth and the dechlorination activity of CPE2 and CPE3 cells, thus resulting in an overall increase in the rate of chlorobenzoic acid utilization and dechlorination.

  4. Interface stability and defect formation during crystal growth

    SciTech Connect

    Fabietti, L.M.R.

    1991-01-08

    Unidirectional solidification experiments have been carried out in organic crystals with the aim of improving our knowledge on the effects of constraints on the interface morphology and to increase our understanding of the growth of anisotropic materials. The experimental information shows that lateral constraints such as a sharp change in the cross-sectional area in the solid liquid interface path, can produce important changes in the microstructure if the interface morphology is planar, cellular or dendritic. The study of anisotropic materials cover several topics. It is first shown that slight anisotropy does not influence the dendrite tip selection criterion. This conclusion is obtained from the analysis of the relationship between tip radius and velocity for dendrites growing under the steady state condition for two different materials, CBr{sub 4} and C{sub 2}Cl{sub 6}, which have different surface energy anisotropy values. The values of the dendrite operating parameters {sigma}* are compared with the predictions of the solvability theory and the morphological stability theory. The experiments show better agreement with the latter theory. Critical experiments have been designed and carried out to find the response functions which determine the composition and temperature of the interface as a function of velocity in faceted materials. The experiments, carried out in Napthalene-Camphor system, indicate a strong temperature dependence of the planar interface growth which can be correlated with the step growth mechanism. Experiments on the interface instability show an important dependence on the crystallographic orientation. Unidirectional solidification experiments in zone refined Napthalene confined in very thin cells (gap size {le} 50 {mu}m) have proven to be a good method to study the defect production at the solid liquid interface. 118 refs., 90 figs., 5 tabs.

  5. Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater.

    PubMed

    Laureni, Michele; Weissbrodt, David G; Szivák, Ilona; Robin, Orlane; Nielsen, Jeppe Lund; Morgenroth, Eberhard; Joss, Adriano

    2015-09-01

    Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWW(pre-treated)), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5-20 mg(N)∙L(-1), as expected for MWW. Anammox activities up to 465 mg(N)∙L(-1)∙d(-1) were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mg(N)∙L(-1)∙d(-1) (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWW(pre-treated) had a direct impact on process performance. Changing the influent from synthetic medium to MWW(pre-treated) resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria ("Candidatus Brocadia fulgida"). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side

  6. Growth, defect structure, and THz application of stoichiometric lithium niobate

    NASA Astrophysics Data System (ADS)

    Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Pálfalvi, L.; Hebling, J.; Unferdorben, M.; Dravecz, G.; Hajdara, I.; Szaller, Zs.; Polgár, K.

    2015-12-01

    Owing to the extraordinary richness of its physical properties, congruent lithium niobate has attracted multidecade-long interest both for fundamental science and applications. The combination of ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as the strong photorefractive and photovoltaic effects offers a great potential for applications in modern optics. To provide powerful optical components in high energy laser applications, tailoring of key material parameters, especially stoichiometry, is required. This paper reviews the state of the art of growing large stoichiometric LiNbO3 (sLN) crystals, in particular, the defect engineering of pure and doped sLN with emphasis on optical damage resistant (ODR) dopants (e.g., Mg, Zn, In, Sc, Hf, Zr, Sn). The discussion is focused on crystals grown by the high temperature top seeded solution growth (HTTSSG) technique using alkali oxide fluxing agents. Based on high-temperature phase equilibria studies of the Li2O-Nb2O5-X2O ternary systems (X = Na, K, Rb, Cs), the impact of alkali homologue additives on the stoichiometry of the lithium niobate phase will be analyzed, together with a summary of the ultraviolet, infrared, and far-infrared absorption spectroscopic methods developed to characterize the composition of the crystals. It will be shown that using HTTSSG from K2O containing flux, crystals closest to the stoichiometric composition can be grown characterized by a UV-edge position of at about 302 nm and a single narrow hydroxyl band in the IR with a linewidth of less than 3 cm-1 at 300 K. The threshold concentrations for ODR dopants depend on crystal stoichiometry and the valence of the dopants; Raman spectra, hydroxyl vibration spectra, and Z-scan measurements prove to be useful to distinguish crystals below and above the photorefractive threshold. Crystals just above the threshold are preferred for most nonlinear optical applications apart

  7. Characterization of defect growth structure in ion plated films by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Copper and gold films (0.2 to 2 microns) were ion plated onto polished 304-stainless-steel surfaces. These coatings were examined by scanning electron microscopy for coating growth defects. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause and origin for each type of defect was traced. Nodular growth is primarily due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation. All these defects have adverse effects on the coatings. They induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. Friction and wear characteristics are affected by coating defects, since the large nodules are pulled out and additional wear debris is generated.

  8. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis.

    PubMed

    Hemsley, Piers A; Kemp, Alison C; Grierson, Claire S

    2005-09-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.

  9. Growth, defect structure, and THz application of stoichiometric lithium niobate

    SciTech Connect

    Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Dravecz, G.; Hajdara, I.; Szaller, Zs.; Polgár, K.; Pálfalvi, L.; Unferdorben, M.; Hebling, J.

    2015-12-15

    Owing to the extraordinary richness of its physical properties, congruent lithium niobate has attracted multidecade-long interest both for fundamental science and applications. The combination of ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as the strong photorefractive and photovoltaic effects offers a great potential for applications in modern optics. To provide powerful optical components in high energy laser applications, tailoring of key material parameters, especially stoichiometry, is required. This paper reviews the state of the art of growing large stoichiometric LiNbO{sub 3} (sLN) crystals, in particular, the defect engineering of pure and doped sLN with emphasis on optical damage resistant (ODR) dopants (e.g., Mg, Zn, In, Sc, Hf, Zr, Sn). The discussion is focused on crystals grown by the high temperature top seeded solution growth (HTTSSG) technique using alkali oxide fluxing agents. Based on high-temperature phase equilibria studies of the Li{sub 2}O–Nb{sub 2}O{sub 5}–X{sub 2}O ternary systems (X = Na, K, Rb, Cs), the impact of alkali homologue additives on the stoichiometry of the lithium niobate phase will be analyzed, together with a summary of the ultraviolet, infrared, and far-infrared absorption spectroscopic methods developed to characterize the composition of the crystals. It will be shown that using HTTSSG from K{sub 2}O containing flux, crystals closest to the stoichiometric composition can be grown characterized by a UV-edge position of at about 302 nm and a single narrow hydroxyl band in the IR with a linewidth of less than 3 cm{sup −1} at 300 K. The threshold concentrations for ODR dopants depend on crystal stoichiometry and the valence of the dopants; Raman spectra, hydroxyl vibration spectra, and Z-scan measurements prove to be useful to distinguish crystals below and above the photorefractive threshold. Crystals just above the threshold are

  10. The development of an inspection system for defects in silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Cheng; Tsai, Hsin-Yi; Hung, Min-Wei; Huang, Kuo-Cheng

    2013-03-01

    This study presents an inspection system to detect the growth defects of silicon crystals that comprise a CCD camera, an LED light source, and power modulation. The defects on multicrystalline silicon can be observed clearly while the silicon wafer were irradiated by the red LED light at a small lighting angle (i.e., 20-30°). However, the growth defects on monocrystalline silicon wafer were difficult to observe because of it low image intensity. And then, the growth defects image was significantly enhanced when the wafer was illuminated by a white LED (WLED) and rotated at a specific angle (i.e., 23°). The experimental results showed that the WLED illumination system made the growth defects more easily observable than did other LED sources (i.e., red, blue, and green LEDs). In addition, the proposed inspection system can be used for on-line fast detection for quality control of monocrystalline silicon wafer.

  11. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    PubMed

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  12. Effects of Aerobic Growth on the Fatty Acid and Hydrocarbon Compositions of Geobacter bemidjiensis Bem(T).

    PubMed

    Ueno, Akio; Shimizu, Satoru; Hashimoto, Mikako; Adachi, Takumi; Matsushita, Takako; Okuyama, Hidetoshi; Yoshida, Kiyohito

    2017-01-01

    Geobacter spp., regarded as strict anaerobes, have been reported to grow under aerobic conditions. To elucidate the role of fatty acids in aerobiosis of Geobacter spp., we studied the effect of aerobiosis on fatty acid composition and turnover in G. bemidjiensis Bem(T). G. bemidjiensis Bem(T) was grown under the following different culture conditions: anaerobic culture for 4 days (type 1) and type 1 culture followed by 2-day anaerobic (type 2) or aerobic culture (anaerobic-to-aerobic shift; type 3). The mean cell weight of the type 3 culture was approximately 2.5-fold greater than that of type 1 and 2 cultures. The fatty acid methyl ester and hydrocarbon fraction contained hexadecanoic (16:0), 9-cis-hexadecenoic [16:1(9c)], tetradecanoic (14:0), tetradecenoic [14:1(7c)] acids, hentriacontanonaene, and hopanoids, but not long-chain polyunsaturated fatty acids. The type 3 culture contained higher levels of 14:0 and 14:1(7c) and lower levels of 16:0 and 16:1(9c) compared with type 1 and 2 cultures. The weight ratio of extracted lipid per dry cell was lower in the type 3 culture than in the type 1 and 2 cultures. We concluded that anaerobically-grown G. bemidjiensis Bem(T) followed by aerobiosis were enhanced in growth, fatty acid turnover, and de novo fatty acid synthesis.

  13. Growth dynamics of specific spoilage organisms and associated spoilage biomarkers in chicken breast stored aerobically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was performed to identify and quantify selected volatile spoilage biomarkers in a headspace over chicken breast using solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry-flame ionization detectors (GC-MS/FID). The chicken breast samples were aerobically s...

  14. Influence of dendrite network defects on channel segregate growth

    NASA Technical Reports Server (NTRS)

    Simpson, M.; Yerebakan, M.; Flemings, M. C.

    1985-01-01

    The solidifying ingot interdendritic flow analysis in which channel segregates are assumed to be produced by interdendritic fluid flow dissolving channels in the primary dendrite network is presently refined by examining the flow through a dendrite network possessing a small defect. Attention is given to the section of the mushy zone in a solidifying casting. Since defects such as that presently treated are unavoidable in a real casting, a more reliable indication may be furnished of the occurrence of channel segregates.

  15. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors.

    PubMed

    Huang, Wenli; Li, Bing; Zhang, Chao; Zhang, Zhenya; Lei, Zhongfang; Lu, Baowang; Zhou, Beibei

    2015-03-01

    The effect of algae growth on aerobic granulation and nutrients removal was studied in two identical sequencing batch reactors (SBRs). Sunlight exposure promoted the growth of algae in the SBR (Rs), forming an algal-bacterial symbiosis in aerobic granules. Compared to the control SBR (Rc), Rs had a slower granulation process with granules of loose structure and smaller particle size. Moreover, the specific oxygen uptake rate was significantly decreased for the granules from Rs with secretion of 25.7% and 22.5% less proteins and polysaccharides respectively in the extracellular polymeric substances. Although little impact was observed on chemical oxygen demand (COD) removal, algal-bacterial symbiosis deteriorated N and P removals, about 40.7-45.4% of total N and 44% of total P in Rs in contrast to 52.9-58.3% of TN and 90% of TP in Rc, respectively. In addition, the growth of algae altered the microbial community in Rs, especially unfavorable for Nitrospiraceae and Nitrosomonadaceae.

  16. Growth parameters of escherichia coli O157:H7, salmonella and listeria monocytogenes and aerobic mesophilic bacteria of apple cider amended with nisin-EDTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of nisin (0 or 300 IU), Ethylenediamine Tetraacetic Acid (EDTA, 20 mM) and (nisin 300 IU+ EDTA 20 mM) on growth parameters; including lag period (LP) and growth rate (GR) of Escherichia coli O157:H7, L. monocytogenes and Salmonella spp. in the presence or absence of aerobic mesophilic bac...

  17. Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Meng, Qiu; Fu, Huihui; Gao, Haichun

    2016-01-01

    Inhibition of bacterial growth under aerobic conditions by elevated levels of cyclic adenosine 3′,5′-monophosphate (cAMP), first revealed more than 50 years ago, was attributed to accumulation of toxic methylglyoxal (MG). Here, we report a Crp-dependent mechanism rather than MG accumulation that accounts for the phenotype in Shewanella oneidensis, an emerging research model for the bacterial physiology. We show that a similar phenotype can be obtained by removing CpdA, a cAMP phosphodiesterase that appears more effective than its Escherichia coli counterpart. Although production of heme c and cytochromes c is correlated well with cAMP levels, neither is sufficient for the retarded growth. Quantities of overall cytochromes c increased substantially in the presence of elevated cAMP, a phenomenon resembling cells respiring on non-oxygen electron acceptors. In contrast, transcription of Crp-dependent genes encoding both cytochromes bd and cbb3 oxidases is substantially repressed under the same condition. Overall, our results suggest that cAMP of elevated levels drives cells into a low-energetic status, under which aerobic respiration is inhibited. PMID:27076065

  18. Warburg Meets Autophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis via Oxidative Stress, Mitophagy, and Aerobic Glycolysis

    PubMed Central

    Pavlides, Stephanos; Vera, Iset; Gandara, Ricardo; Sneddon, Sharon; Pestell, Richard G.; Mercier, Isabelle; Martinez-Outschoorn, Ubaldo E.; Whitaker-Menezes, Diana; Howell, Anthony

    2012-01-01

    Abstract Significance: Here, we review certain recent advances in oxidative stress and tumor metabolism, which are related to understanding the contributions of the microenvironment in promoting tumor growth and metastasis. In the early 1920s, Otto Warburg, a Nobel Laureate, formulated a hypothesis to explain the “fundamental basis” of cancer, based on his observations that tumors displayed a metabolic shift toward glycolysis. In 1963, Christian de Duve, another Nobel Laureate, first coined the phrase auto-phagy, derived from the Greek words “auto” and “phagy,” meaning “self” and “eating.” Recent Advances: Now, we see that these two ideas (autophagy and aerobic glycolysis) physically converge in the tumor stroma. First, cancer cells secrete hydrogen peroxide. Then, as a consequence, oxidative stress in cancer-associated fibroblasts drives autophagy, mitophagy, and aerobic glycolysis. Critical Issues: This “parasitic” metabolic coupling converts the stroma into a “factory” for the local production of recycled and high-energy nutrients (such as L-lactate)—to fuel oxidative mitochondrial metabolism in cancer cells. We believe that Warburg and de Duve would be pleased with this new two-compartment model for understanding tumor metabolism. It adds a novel stromal twist to two very well-established cancer paradigms: aerobic glycolysis and autophagy. Future Directions: Undoubtedly, these new metabolic models will foster the development of novel biomarkers, and corresponding therapies, to achieve the goal of personalized cancer medicine. Given the central role that oxidative stress plays in this process, new powerful antioxidants should be developed in the fight against cancer. Antioxid. Redox Signal. 16, 1264–1284. PMID:21883043

  19. Effect of linear alkylbenzene sulfonates on the growth of aerobic heterotrophic cultivable bacteria isolated from an agricultural soil.

    PubMed

    Sánchez-Peinado, María del Mar; González-López, Jesús; Rodelas, Belén; Galera, Vanesa; Pozo, Clementina; Martínez-Toledo, María Victoria

    2008-08-01

    An enrichment culture technique was used to isolate soil bacteria capable of growing in the presence of two different concentrations of linear alkylbenzene sulfonates (LAS) (10 and 500 microg ml(-1)). Nine bacterial strains, representatives of the major colony types of aerobic heterotrophic cultivable bacteria in the enriched samples, were isolated and subsequently identified by PCR-amplification and partial sequencing of the 16S rRNA gene. Amongst the isolates, strains LAS05 (Pseudomonas syringae), LAS06 (Staphylococcus epidermidis), LAS07 (Delftia tsuruhatensis), LAS08 (Staphylococcus epidermidis) and LAS09 (Enterobacter aerogenes), were able to grow in pure culture in dialysed soil media amended with LAS (50 microg ml(-1)). The three Gram-negative strains grew to higher cell numbers in the presence of 50 microg ml(-1) of LAS, compared to LAS-unamended dialysed soil medium, and were selected for further testing of their ability to use LAS as carbon source. However, HPLC analysis of culture supernatants showed that the three strains can tolerate but not degrade LAS when grown in pure cultures. A higher concentration of soluble phosphates was recorded in dialysed soil media amended with LAS (50 microg ml(-1)) compared to unamended control media, suggesting an effect of the surfactant that enhanced the bioavailability of P from soil. The presence of LAS at a concentration of 50 microg ml(-1) had an important impact on growth of selected aerobic heterotrophic soil bacteria, a deleterious effect which may be relevant for the normal function and evolution of agricultural soil.

  20. The preferential growth of branched GDGT source microorganisms under aerobic conditions in peat revealed by stable isotope probing experiments

    NASA Astrophysics Data System (ADS)

    Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Derenne, Sylvie; Hinrichs, Kai-Uwe

    2016-04-01

    Branched glycerol dialkyl glycerol tetraether (brGDGTs) membrane lipids are widely distributed in aquatic and terrestrial environments and are being increasingly used as temperature proxies. Nevertheless, little is known regarding the microorganisms that produce these lipids, which are found in especially high abundance in the anaerobic horizons of peat bogs. We initiated stable isotope probing incubations of peat samples from a Sphagnum-dominated peatland (Jura Mountains, France) to measure the incorporation of (D)-D2O and 13C-labeled dissolved inorganic carbon (DIC) into brGDGTs, and thus gauge the activity, growth, and turnover times of their source organisms. Peat samples were collected from two adjacent sites with contrasting humidity levels (hereafter called "fen" and "bog" sites). For each site, samples from the surficial aerobic layer (acrotelm) and deeper anaerobic layer (catotelm) were collected and were incubated under both anaerobic and aerobic conditions for the acrotelm samples and only anaerobic conditions for the catotelm. The incubations were performed at 12 ° C, consistent with the mean summer air temperature at the sampling site. After two months of incubation, there was no incorporation of 13C label in brGDGTs for samples incubated under either aerobic or anaerobic conditions, showing that brGDGT-producing bacteria are heterotrophic microorganisms, as previously observed in organo-mineral soils (Weijers et al., 2011). Similarly, little to no deuterium incorporation was observed for brGDGTs isolated from anaerobically-incubated deep samples. In contrast, in the aerobic incubations of acrotelm samples from bog and fen, the weighted average δD of brGDGT core lipids (CLs) increased by up to 3332‰ and 933‰ after two months, respectively, indicating that fresh brGDGT CLs were biosynthesized at the peat surface. D incorporation into brGDGT CLs converted to production rates ranging from 30-106 ng cm-3y-1 in the aerobic acrotelm from bog and fen

  1. Method for the growth of large low-defect single crystals

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Neudeck, Philip G. (Inventor); Trunek, Andrew J. (Inventor); Spry, David J. (Inventor)

    2008-01-01

    A method and the benefits resulting from the product thereof are disclosed for the growth of large, low-defect single-crystals of tetrahedrally-bonded crystal materials. The process utilizes a uniquely designed crystal shape whereby the direction of rapid growth is parallel to a preferred crystal direction. By establishing several regions of growth, a large single crystal that is largely defect-free can be grown at high growth rates. This process is particularly suitable for producing products for wide-bandgap semiconductors, such as SiC, GaN, AlN, and diamond. Large low-defect single crystals of these semiconductors enable greatly enhanced performance and reliability for applications involving high power, high voltage, and/or high temperature operating conditions.

  2. Nitrogen effects on silicon growth, defects, and carrier lifetime

    SciTech Connect

    Ciszek, T.F.; Wang, T.H.; Burrows, R.W.

    1995-08-01

    Silicon crystal or multicrystal growth in N{sub 2} or partial-N{sub 2} atmospheres can provide mechanical strengthening, lower purge-gas costs (nitrogen from liquid sources is about a factor of 4 less expensive than argon from liquid sources), and reduce swirl-type microdefect formation in dislocation-free (DF) crystals. There is not much literature on electrical effects of N in Si, including lifetime effects. We studied the effects of Si growth in atmospheres containing N{sub 2} on minority charge carrier lifetime E using the float-zone (FZ) crystal growth method. Ingots were grown with purge gases that ranged from pure argon (99.9995%) to pure N{sub 2} (99-999%). We found that multicrystalline silicon ingot growth in a partial or total nitrogen ambient has a negligible effect on {tau}. Values of 40 {mu}s < {tau} < 100 {mu}s were typical regardless of ambient. For DF growth, the degradation of {tau} is minimal and {tau} values above 1000 {mu}s are obtained if the amount of N{sub 2} in the purge gas is below the level at which nitride compounds form in the melt and disrupt DF growth.

  3. Expression of the succinate dehydrogenase genes (sdhCAB) from the facultatively anaerobic paenibacillus macerans during aerobic growth

    PubMed

    Schirawski; Hankeln; Unden

    1998-10-01

    Paenibacillus (formerly Bacillus) macerans is capable of succinate oxidation under oxic conditions and fumarate reduction under anoxic conditions. The reactions are catalyzed by different enzymes, succinate dehydrogenase (Sdh) and fumarate reductase (Frd). The genes encoding Sdh (sdhCAB) were analyzed. The gene products of sdhA and sdhB were similar to the subunits of known Sdh and Frd enzymes. The hydrophobic subunit SdhC showed close sequence similarity to the class of Sdh/Frd enzymes containing diheme cytochrome b. From the sdhCAB gene cluster two transcripts were produced, one comprising sdhCAB, the other sdhAB. The transcripts were found only during aerobic growth, and the amount was directly proportional to Sdh activity, but inversely proportional to Frd activity.

  4. Growth of and defect reduction in nanoscale materials

    DOEpatents

    Jensen, Kenneth J.; Mickelson, William E.; Zettl, Alex K.

    2011-01-04

    Methods by which the growth of a nanostructure may be precisely controlled by an electrical current are described here. In one embodiment, an interior nanostructure is grown to a predetermined geometry inside another nanostructure, which serves as a reaction chamber. The growth is effected by a catalytic agent loaded with feedstock for the interior nanostructure. Another embodiment allows a preexisting marginal quality nanostructure to be zone refined into a higher-quality nanostructure by driving a catalytic agent down a controlled length of the nanostructure with an electric current. In both embodiments, the speed of nanostructure formation is adjustable, and the growth may be stopped and restarted at will. The catalytic agent may be doped or undoped to produce semiconductor effects, and the bead may be removed via acid etching.

  5. Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal Mediterranean waters.

    PubMed

    Ferrera, Isabel; Gasol, Josep M; Sebastián, Marta; Hojerová, Eva; Koblízek, Michal

    2011-11-01

    Growth is one of the basic attributes of any living organism. Surprisingly, the growth rates of marine bacterioplankton are only poorly known. Current data suggest that marine bacteria grow relatively slowly, having generation times of several days. However, some bacterial groups, such as the aerobic anoxygenic phototrophic (AAP) bacteria, have been shown to grow much faster. Two manipulation experiments, in which grazing, viruses, and resource competition were reduced, were conducted in the coastal Mediterranean Sea (Blanes Bay Microbial Observatory). The growth rates of AAP bacteria and of several important phylogenetic groups (the Bacteroidetes, the alphaproteobacterial groups Roseobacter and SAR11, and the Gammaproteobacteria group and its subgroups the Alteromonadaceae and the NOR5/OM60 clade) were calculated from changes in cell numbers in the manipulation treatments. In addition, we examined the role that top-down (mortality due to grazers and viruses) and bottom-up (resource availability) factors play in determining the growth rates of these groups. Manipulations resulted in an increase of the growth rates of all groups studied, but its extent differed largely among the individual treatments and among the different groups. Interestingly, higher growth rates were found for the AAP bacteria (up to 3.71 day⁻¹) and for the Alteromonadaceae (up to 5.44 day⁻¹), in spite of the fact that these bacterial groups represented only a very low percentage of the total prokaryotic community. In contrast, the SAR11 clade, which was the most abundant group, was the slower grower in all treatments. Our results show that, in general, the least abundant groups exhibited the highest rates, whereas the most abundant groups were those growing more slowly, indicating that some minor groups, such the AAP bacteria, very likely contribute much more to the recycling of organic matter in the ocean than what their abundances alone would predict.

  6. Growth and Printability of Multilayer Phase Defects on EUV MaskBlanks

    SciTech Connect

    Liang, Ted; Ultanir, Erdem; Zhnag, Guojing; Park, Seh-Jin; Anderson, Erik; Gullikson, Eric; Naulleau, Patrick; Salmassi, Farhad; Mirkarimi, Paul; Spiller, Eberhard; Baker, Sherry

    2007-06-10

    The ability to fabricate defect-free mask blanks is a well-recognized challenge in enabling extreme ultraviolet lithography (EUVL) for semiconductor manufacturing. Both the specification and reduction of defects necessitate the understanding of their printability and how they are generated and grow during Mo-Si multilayer (ML) deposition. A ML phase defect can be depicted by its topographical profile on the surface as either a bump or pit, which is then characterized by height or depth and width. The complexity of such seemingly simple phase defects lies in the many ways they can be generated and the difficulties of measuring their physical shape/size and optical effects on printability. An effective way to study phase defects is to use a programmed defect mask (PDM) as 'model' test sample where the defects are produced with controlled growth on a ML blank and accurate placement in varying proximity to absorber patterns on the mask. This paper describes our recent study of ML phase defect printability with resist data from exposures of a ML PDM on the EUV micro-exposure tool (MET, 5X reduction with 0.3NA).

  7. Treatment of growth arrest by transfer of cultured chondrocytes into physeal defects.

    PubMed

    Lee, E H; Chen, F; Chan, J; Bose, K

    1998-01-01

    Chondrocytes were cultured from cartilage harvested from the iliac apophysis and knee joints of New Zealand White (NZW) rabbits. An experimental model for growth arrest was created by excising the medial half of the proximal growth plate of the tibia of 6-week-old NZW rabbits. The cultured chondrocytes were embedded in agarose and transferred into the growth-plate defect after excision of the physis. Transfer also was performed after excision of the bony bridge in established growth arrest. In both cases, growth arrest with angular deformation of the tibia was prevented. Histologic studies confirmed the viability of the chondrocytes in the new host physis.

  8. Defects in silicon effect on device performance and relationship to crystal growth conditions

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  9. Macrovoid Defect Growth during Evaporative Casting of Polymeric Membranes

    NASA Technical Reports Server (NTRS)

    Greenberg, A. R.; Khare, V. P.; Zartman, J.; Krantz, W. B.; Todd, P.

    2003-01-01

    Macrovoid (MV) formation is a significant problem in evaporatively cast polymeric membranes. MVs are large, elongated or teardrop-shaped pores (10-50 micron) that can impair membrane structural integrity. Although MVs have been extensively studied, there is no general agreement on the mechanisms governing MV growth. Recently, our research group has formulated the solutocapillary convection (SC) hypothesis, which contends that MV growth involves three principal forces: a Marangoni force generated by surface tension gradients within the MV interface, a viscous drag force, and a gravitationally induced body force. Two sets of complementary experiments were conducted to test the SC hypothesis. Ground-based videomicroscopy flow-visualization (VMFV) was utilized to measure the flow velocities at the MV-casting solution interface and deep within the casting solution. The measurements were performed with casting solutions containing 10 wt% cellulose acetate (CA), 30 wt% H2O, 60 wt% acetone, and 200- ppm TiO2 particles for flow visualization, and the surface tension was controlled by surfactant addition. Qualitatively, the experiments indicated that MV growth occurs in three distinct phases: (1) a very rapid initial growth period, (2) a much slower growth phase, and (3) absorption of selected MVs into the expanding demixed region. The presence of tracer particles inside the MVs suggests the presence of a convective flow, which transfers the particles from the bulk solution to the MV interior. Although the VMFV experiments did not establish any surfactant effect on the interfacial velocities, a statistically significant effect on the MV number density was observed. In the second set of experiments, membranes were cast aboard a KC-135 aircraft under 0-g and 2-g conditions. Despite careful attention to the design and fabrication of the membrane casting apparatus (MCA), several problems were encountered, the most significant of which was the contamination of the casting

  10. Development and validation of a mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored under aerobic conditions.

    PubMed

    Dominguez, Silvia A; Schaffner, Donald W

    2007-12-15

    Poultry meat spoils quickly unless it is processed, stored, and distributed under refrigerated conditions. Research has shown that the microbial spoilage rate is predominantly controlled by temperature and the spoilage flora of refrigerated, aerobically-stored poultry meat is generally dominated by Pseudomonas spp. The objective of our study was to develop and validate a mathematical model that predicts the growth of Pseudomonas in raw poultry stored under aerobic conditions over a variety of temperatures. Thirty-seven Pseudomonas growth rates were extracted from 6 previously published studies. Objectives, methods and data presentation formats varied widely among the studies, but all the studies used either naturally contaminated meat or poultry or Pseudomonas isolated from meat or poultry grown in laboratory media. These extracted growth rates were used to develop a model relating growth rate of Pseudomonas to storage or incubation temperature. A square-root equation [Ratkowsky, D.A., Olley, J., McMeekin, T.A., and Ball, A., 1982. Relationship between temperature and growth rate of bacterial cultures. J. Appl. Bacteriol. 149, 1-5.] was used to model the data. Model predictions were then compared to 20 Pseudomonas and 20 total aerobes growth rate measurements collected in our laboratory. The growth rates were derived from more than 600 bacterial concentration measurements on raw poultry at 10 temperatures ranging from 0 to 25 degrees C. Visual inspection of the data and the indices of bias and accuracy factors proposed by Baranyi et al. [Baranyi, J., Pin, C., and Ross, T., 1999. Validating and comparing predictive models. Int. J. Food Micro. 48, 159-166.] were used to analyze the performance of the model. The experimental data for Pseudomonas showed a 4.8% discrepancy with the predictions and a bias of +3.6%. Percent discrepancies show close agreement between model predictions and observations, and the positive bias factor demonstrates that the proposed model over

  11. Ability of Cecal Cultures to Inhibit Growth of Salmonella Typhimurium during Aerobic Incubation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Poultry can serve as reservoirs for Salmonella; however, chicks provided cultures of cecal bacteria develop resistance to colonization by Salmonella. Research has indicated that cecal bacteria metabolize organic acids to produce substances that inhibit Salmonella growth. Purpose: The...

  12. Amorphous carbon film growth on Si: Correlation between stress and generation of defects into the substrate

    SciTech Connect

    Brusa, R.S.; Macchi, C.; Mariazzi, S.; Karwasz, G.P.; Laidani, N.; Bartali, R.; Anderle, M.

    2005-05-30

    Amorphous carbon films of several thicknesses were prepared by graphite sputtering on crystalline silicon substrate. The samples were depth profiled with positron annihilation spectroscopy for open-volume measurements and characterized for their residual internal stress. It was found that after film growth the substrate presents vacancy-like defects decorated by oxygen in a layer extending in the substrate by several tens of nanometers beyond the film/Si interface. The width of the defected layer and the decoration of vacancy-like defects are directly and inversely proportional to the measured intensity of the residual stress, respectively. These findings indicate the existence of a relaxation mechanism of the stress in the films that involves deeply the substrate. The decorated vacancy-like defects are suggested to be bounded to dislocations induced in the substrate by the stress relaxation.

  13. Role of interface structure and interfacial defects in oxide scale growth

    SciTech Connect

    Pieraggi, B.; Rapp, R.A.; Hirth, J.P.

    1995-08-01

    Recent studies of the structure and dynamics of solid-solid interfaces have provided some understanding about the role of the scale-metal interface in the growth of reaction product scales on pure metals. The action of interfacial defects (misfit dislocations, misorientation dislocations and disconnections) in the creation and annihilation of the point defects supporting the diffusional growth of scales is considered. Anion point defects (vacancies/interstitials) supporting scale growth by anion diffusion are annihilated/created by the climb of misorientation dislocations or disconnections in the scale at the interface. For scale growth by cation diffusion, cation point defects (vacancies/interstitials) can be annihilated/created by the climb of interfacial misfit or misorientation dislocations in the metal. Because of their necessarily high density, in most cases, the dominant climb of misfit dislocations would be favored. The blocking of interfacial reaction steps can be a means to retard the scaling kinetics and to alter the fundamental scaling mode. For instance, the interfacial segregation of large reactive element ions can point the interface dislocations, an action which poisons the usual interfacial reaction step. Such considerations are consistent with the well-known phenomena ascribed to the reactive element effect (REE).

  14. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.

    PubMed

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Ditto, Jeff J; Drazin, John W; Castro, Ricardo H R

    2016-06-22

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

  15. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries

    DOE PAGES

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; ...

    2016-05-27

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observedmore » to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.« less

  16. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries

    SciTech Connect

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James Anthony; Holesinger, Terry George; Uberuaga, Blas P.; Ditto, Jeff J.; Drazin, John W.; Castro, Ricardo H. R.

    2016-05-27

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

  17. Inactivation of the Kluyveromyces lactis KlPDA1 gene leads to loss of pyruvate dehydrogenase activity, impairs growth on glucose and triggers aerobic alcoholic fermentation.

    PubMed

    Zeeman, A M; Luttik, M A; Thiele, C; van Dijken, J P; Pronk, J T; Steensma, H Y

    1998-12-01

    The KlPDA1 gene, encoding the E1alpha subunit of the mitochondrial pyruvate-dehydrogenase (PDH) complex was isolated from a Kluyveromyces lactis genomic library by screening with a 1.1 kb internal fragment of the Saccharomyces cerevisiae PDA1 gene. The predicted amino acid sequence encoded by KlPDA1 showed 87% similarity and 79% identity to its S. cerevisiae counterpart. Disruption of KIPDA1 resulted in complete absence of PDH activity in cell extracts. The maximum specific growth rate on glucose of null mutants was 3.5-fold lower than that of the wild-type, whereas growth on ethanol was unaffected. Wild-type K. lactis CBS 2359 exhibits a Crabtree-negative phenotype, i.e. no ethanol was produced in aerobic batch cultures grown on glucose. In contrast, substantial amounts of ethanol and acetaldehyde were produced in aerobic cultures of an isogenic Klpda1 null mutant. A wild-type specific growth rate was restored after introduction of an intact KlPDA1 gene but not, as previously found for S. cerevisiae pda1 mutants, by cultivation in the presence of leucine. The occurrence of aerobic fermentation and slow growth of the Klpda1 null mutant indicate that, although present, the enzymes of the PDH bypass (pyruvate decarboxylase, acetaldehyde dehydrogenase and acetyl-CoA synthetase) could not efficiently replace the PDH complex during batch cultivation on glucose. Only at relatively low growth rates (D = 0.10 h(-1)) in aerobic, glucose-limited chemostat cultures, could the PDH bypass completely replace the PDH complex, thus allowing fully respiratory growth. This resulted in a lower biomass yield [g biomass (g glucose)-1] than in the wild-type due to a higher consumption of ATP in the PDH bypass compared to the formation of acetyl-CoA via the PDH complex.

  18. Mathematical Model for Predicting the Growth Probability of Staphylococcus aureus in Combinations of NaCl and NaNO2 under Aerobic or Evacuated Storage Conditions

    PubMed Central

    Lee, Jeeyeon; Gwak, Eunji; Ha, Jimyeong; Kim, Sejeong; Lee, Soomin; Lee, Heeyoung; Oh, Mi-Hwa; Park, Beom-Young; Oh, Nam Su; Choi, Kyoung-Hee; Yoon, Yohan

    2016-01-01

    The objective of this study was to describe the growth patterns of Staphylococcus aureus in combinations of NaCl and NaNO2, using a probabilistic model. A mixture of S. aureus strains (NCCP10826, ATCC13565, ATCC14458, ATCC23235, and ATCC27664) was inoculated into nutrient broth plus NaCl (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75%) and NaNO2 (0, 15, 30, 45, 60, 75, 90, 105, and 120 ppm). The samples were then incubated at 4, 7, 10, 12 and 15℃ for up to 60 d under aerobic or vacuum conditions. Growth responses [growth (1) or no growth (0)] were then determined every 24 h by turbidity, and analyzed to select significant parameters (p<0.05) by a stepwise selection method, resulting in a probabilistic model. The developed models were then validated with observed growth responses. S. aureus growth was observed only under aerobic storage at 10-15℃. At 10-15℃, NaCl and NaNO2 did not inhibit S. aureus growth at less than 1.25% NaCl. Concentration dependency was observed for NaCl at more than 1.25%, but not for NaNO2. The concordance percentage between observed and predicted growth data was approximately 93.86%. This result indicates that S. aureus growth can be inhibited in vacuum packaging and even aerobic storage below 10℃. Furthermore, NaNO2 does not effectively inhibit S. aureus growth. PMID:28115886

  19. Defect-phase-dynamics approach to statistical domain-growth problem of clock models

    NASA Technical Reports Server (NTRS)

    Kawasaki, K.

    1985-01-01

    The growth of statistical domains in quenched Ising-like p-state clock models with p = 3 or more is investigated theoretically, reformulating the analysis of Ohta et al. (1982) in terms of a phase variable and studying the dynamics of defects introduced into the phase field when the phase variable becomes multivalued. The resulting defect/phase domain-growth equation is applied to the interpretation of Monte Carlo simulations in two dimensions (Kaski and Gunton, 1983; Grest and Srolovitz, 1984), and problems encountered in the analysis of related Potts models are discussed. In the two-dimensional case, the problem is essentially that of a purely dissipative Coulomb gas, with a sq rt t growth law complicated by vertex-pinning effects at small t.

  20. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency

    PubMed Central

    Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A

    2014-01-01

    The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism PMID:24480542

  1. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency.

    PubMed

    Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A

    2014-03-01

    The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences.

  2. Aerobic and anoxic growth and nitrate removal capacity of a marine denitrifying bacterium isolated from a recirculation aquaculture system.

    PubMed

    Borges, Maria-Teresa; Sousa, André; De Marco, Paolo; Matos, Ana; Hönigová, Petra; Castro, Paula M L

    2008-01-01

    Bacterial biofilters used in marine recirculation aquaculture systems need improvements to enhance nitrogen removal efficiency. Relatively little is known about biofilter autochthonous population structure and function. The present study was aimed at isolating and characterizing an autochthonous denitrifying bacterium from a marine biofilter installed at a recirculation aquaculture system. Colonization of four different media in a marine fish farm was followed by isolation of various denitrifying strains and molecular classification of the most promising one, strain T2, as a novel member of the Pseudomonas fluorescens cluster. This strain exhibits high metabolic versatility regarding N and C source utilization and environmental conditions for growth. It removed nitrate through aerobic assimilatory metabolism at a specific rate of 116.2 mg NO(3)-N g dw(-1) h(-1). Dissimilatory NO(3)-N removal was observed under oxic conditions at a limited rate, where transient NO(2)-N formed represented 22% (0.17 mg L(-1)) of the maximum transient NO(2)-N observed under anoxic conditions. Dissimilatory NO(3)-N removal under anoxic conditions occurred at a specific rate of 53.5 mg NO(3)-N g dw(-1) h(-1). The isolated denitrifying strain was able to colonize different materials, such as granular activated carbon (GAC), Filtralite and Bioflow plastic rings, which allow the development of a prototype bioreactor for strain characterization under dynamic conditions and mimicking fish-farm operating conditions.

  3. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors

    PubMed Central

    Tee, Boon Ching; Desai, Kashappa Goud H; Kennedy, Kelly S; Sonnichsen, Brittany; Kim, Do-Gyoon; Fields, Henry W; Mallery, Susan R; Schwendeman, Steven P; Sun, Zongyang

    2016-01-01

    Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm3) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects. PMID:27398152

  4. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides.

    PubMed

    Liu, Wei; Hancock, Chad N; Fischer, Joseph W; Harman, Meredith; Phang, James M

    2015-11-24

    The metabolism of the nonessential amino acid proline contributes to tumor metabolic reprogramming. Previously we showed that MYC increases proline biosynthesis (PB) from glutamine. Here we show MYC increases the expression of the enzymes in PB at both protein and mRNA levels. Blockade of PB decreases tumor cell growth and energy production. Addition of Δ(1)-pyrroline-5-carboxylate (P5C) or proline reverses the effects of P5C synthase knockdown but not P5C reductases knockdown. Importantly, the reversal effect of proline was blocked by concomitant proline dehydrogenase/oxidase (PRODH/POX) knockdown. These findings suggest that the important regulatory contribution of PB to tumor growth derives from metabolic cycling between proline and P5C rather than product proline or intermediate P5C. We further document the critical role of PB in maintaining pyridine nucleotide levels by connecting the proline cycle to glycolysis and to the oxidative arm of the pentose phosphate pathway. These findings establish a novel function of PB in tumorigenesis, linking the reprogramming of glucose, glutamine and pyridine nucleotides, and may provide a novel target for antitumor therapy.

  5. In-growth of an electrically active defect in high-purity silicon after proton irradiation

    SciTech Connect

    Nylandsted Larsen, A.; Juul Pedersen, H.; Christian Petersen, M.; Privitera, V.; Gurimskaya, Y.; Mesli, A.

    2013-12-14

    Defect-related energy levels in the lower half of the band gap of silicon have been studied with transient-capacitance techniques in high-purity, carbon and oxygen lean, plasma-enhanced chemical-vapor deposition grown, n-and p-type silicon layers after 2-MeV proton irradiations at temperatures at or just below room temperature. The in-growth of a distinct line in deep-level transient spectroscopy spectra, corresponding to a level in the band gap at E{sub V} + 0.357 eV where E{sub V} is the energy of the valence band edge, takes place for anneal temperatures at around room temperature with an activation energy of 0.95 ± 0.08 eV. The line disappears at an anneal temperature of around 450 K. The corresponding defect is demonstrated not to contain boron, carbon, oxygen, or phosphorus. Possible defect candidates are discussed.

  6. Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces

    SciTech Connect

    Moore, Samuel L.; Vohra, Yogesh K.

    2015-01-01

    Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.

  7. Nitrogen and silicon defect incorporation during homoepitaxial CVD diamond growth on (111) surfaces

    DOE PAGES

    Moore, Samuel L.; Vohra, Yogesh K.

    2015-01-01

    Chemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectronmore » Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. As a result, altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.« less

  8. Inherent control of growth, morphology, and defect formation in germanium nanowires.

    PubMed

    Biswas, Subhajit; Singha, Achintya; Morris, Michael A; Holmes, Justin D

    2012-11-14

    The use of bimetallic alloy seeds for growing one-dimensional nanostructures has recently gained momentum among researchers. The compositional flexibility of alloys provides the opportunity to manipulate the chemical environment, reaction kinetics, and thermodynamic behavior of nanowire growth, in both the eutectic and the subeutectic regimes. This Letter describes for the first time the role of Au(x)Ag(1-x) alloy nanoparticles in defining the growth characteristics and crystal quality of solid-seeded Ge nanowires via a supercritical fluid growth process. The enhanced diffusivity of Ge in the alloy seeds, compared to pure Ag seeds, and slow interparticle diffusion of the alloy nanoparticles allows the realization of high-aspect ratio nanowires with diameters below 10 nm, via a seeded bottom-up approach. Also detailed is the influence the alloyed seeds have on the crystalline features of nanowires synthesized from them, that is, planar defects. The distinctive stacking fault energies, formation enthalpies, and diffusion chemistries of the nanocrystals result in different magnitudes of {111} stacking faults in the seed particles and the subsequent growth of <112>-oriented nanowires with radial twins through a defect transfer mechanism, with the highest number twinned Ge nanowires obtained using Ag(0.75)Au(0.25) growth seeds. Employing alloy nanocrystals for intrinsically dictating the growth behavior and crystallinity of nanowires could open up the possibility of engineering nanowires with tunable structural and physical properties.

  9. The effect of aerobic exercise training on growth performance, digestive enzyme activities and postprandial metabolic response in juvenile qingbo (Spinibarbus sinensis).

    PubMed

    Li, Xiu-Ming; Yu, Li-Juan; Wang, Chuan; Zeng, Ling-Qing; Cao, Zhen-Dong; Fu, Shi-Jian; Zhang, Yao-Guang

    2013-09-01

    Continual swimming exercise usually promotes growth in fish at a moderate water velocity. We hypothesized that the improvement in growth in exercise-trained fish may be accompanied by increases in digestive enzyme activity, respiratory capacity and, hence, postprandial metabolism. Juvenile qingbo fish (Spinibarbus sinensis) were subjected to aerobic training for 8weeks at a water velocity of control (3cms(-1)), 1, 2 and 4 body length (bl)s(-1) at a constant temperature of 25°C. The feed intake (FI), food conversion rate (FCR), specific growth rate (SGR), whole-body composition, trypsin and lipase activities, maximal oxygen consumption (M˙O2max) and postprandial M˙O2 response were measured at the end of the training period. Aerobic exercise training induced a significant increase in FI compared with the control group, while the FCR of the 4bls(-1) group was significantly lower than for the other three groups (P<0.05). The 1 and 2bls(-1) groups showed a significantly higher SGR over the control group (P<0.05). The whole-body fat and protein contents were significantly altered after aerobic exercise training (P<0.05). Furthermore, aerobic exercise training elevated the activity of both trypsin and lipase in the hepatopancreas and intestinal tract of juvenile S. sinensis. The M˙O2max of the 4bls(-1) training group was significantly higher than for the control group. The resting M˙O2 (M˙O2rest) and peak postprandial M˙O2 (M˙O2peak) in the three training groups were significantly higher than in the control group (P<0.05). Time to M˙O2peak was significantly shorter in the 1, 2 and 4bls(-1) training groups compared with the control group, while exercise training showed no effect on SDA (specific dynamic action) duration, factorial metabolic scope, energy expended on SDA and the SDA coefficient when compared to the control group. These data suggest that (1) the optimum water velocity for the growth of juvenile S. sinensis occurred at approximately 2.4bls(-1); (2

  10. Defect-mediated snaking: A new growth mechanism for localized structures

    NASA Astrophysics Data System (ADS)

    Ma, Y.-P.; Burke, J.; Knobloch, E.

    2010-10-01

    Stationary spatially localized patterns in parametrically driven systems are studied, focusing on the 2:1 and 1:1 resonance tongues as described by the forced complex Ginzburg-Landau equation. Homoclinic snaking is identified in both cases and the nature of the growth of the localized structures along the snaking branches is described. The structures grow from a central defect that inserts new rolls on either side, while pushing existing rolls outwards. This growth mechanism differs fundamentally from that found in other systems exhibiting homoclinic snaking in which new rolls are added at the fronts that connect the structure to the background homogeneous state.

  11. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with lactobacillus buchneri inhibits yeast growth and improves aerobic stability

    PubMed

    Driehuis; Elferink; Spoelstra

    1999-10-01

    Aerobic deterioration of silages is initiated by (facultative) aerobic micro-organisms, usually yeasts, that oxidize the preserving organic acids. In this study, a Lactobacillus buchneri strain isolated from maize silage was evaluated for its potential as a bacterial inoculant that enhances aerobic stability of silages. In four experiments, chopped whole crop maize (30-43% dry matter (DM)) was inoculated with Lact. buchneri and ensiled in laboratory silos. Uninoculated silages served as controls. Analysis of silages treated with Lact. buchneri at levels of 103-106 cfu g-1 after about 3 months of anaerobic storage showedthat acetic acid and 1-propanol contents increased with inoculum levels above 104 cfu g-1,whereas lactic acid decreased. Propionic acid, silage pH and DM loss increased withinoculum levels above 105 cfu g-1. Time course experiments with maize inoculated with Lact. buchneri at 4 x 104-2 x 105 cfu g-1 showed that up to 7-14 d after ensiling, Lact. buchneri had no effect on silage characteristics. Thereafter, the lactic acid content of the inoculated silages declined and, simultaneously, acetic acid and, to a lesser extent, propionic acid and 1-propanol, accumulated. Inoculation reduced survival of yeasts during the anaerobic storage phase and inhibited yeast growth when the silage was exposed to O2, resulting in a substantial improvement in aerobic stability. The results indicate that the use of Lact. buchneri as a silage inoculant can enhance aerobic stability by inhibition of yeasts. The ability of the organism to ferment lactic acid to acetic acid appears to be an important underlying principle of this effect.

  12. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    PubMed

    Brennan, Christopher M; Mazzucca, Nicholas Q; Mezoian, Taylor; Hunt, Taylor M; Keane, Meaghan L; Leonard, Jessica N; Scola, Shelby E; Beer, Emma N; Perdue, Sarah; Pellock, Brett J

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  13. Reduced Heme Levels Underlie the Exponential Growth Defect of the Shewanella oneidensis hfq Mutant

    PubMed Central

    Mezoian, Taylor; Hunt, Taylor M.; Keane, Meaghan L.; Leonard, Jessica N.; Scola, Shelby E.; Beer, Emma N.; Perdue, Sarah; Pellock, Brett J.

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step. PMID:25356668

  14. Kinetics of grain-growth in wadsleyite: implications for point defect chemistry

    NASA Astrophysics Data System (ADS)

    Nishihara, Y.; Shinmei, T.; Karato, S.

    2003-12-01

    We investigate the kinetics of grain-growth in wadsleyite for two reasons. First, grain-growth kinetics controls the grain-size of wadsleyite in the mantle transition zone which in turn controls the rheology in that region. Second, the detailed knowledge of grain-growth kinetics will provide us with important constraints on the defect-related properties of this mineral which may control other properties such as diffusion, electrical conductivity and creep. We carried out the grain-growth experiments by using KIWI 1000-ton Kawai-type multi-anvil apparatus installed at Yale University. Starting material was synthesized from powdered San Carlos olivine. The grain-growth experiments were conducted at 15 GPa and 1100-1500° C for 1-24 hours. We used Mo, Ni and Re foil capsules, in order to control the oxygen fugacity by metal-oxide buffer. For ''wet'' experiments (water-saturated), a mixture of talc and brucite was packed into a capsule together with a wadsleyite sample separated by metal foils. We used a Au-Pd outer capsule which is known to be a good barrier for hydrogen diffusion. Water content in each sample was determined after an experiment by FTIR analysis of a doubly polished thin section. Grain-size was measured on a polished section using an intercept method. One of the difficulties in these experiments is to reduce the amount of water in wadsleyite. Even in nominally ''dry'' experiments in which no water is added, a significant amount of water (upto ˜25,000 H/106 Si) was detected, which comes presumably from some components in the sample assembly such as the cement. This water-uptake by wadsleyite can be minimized by surrounding it with a Au-Pd capsule. In this truly ''dry'' sample assembly, the water content of wadsleyite (after an experiment) is reduced to less than ˜100 H/106 Si, a water content similar to typical ''dry'' experiments on olivine. Compared at similar water content, the kinetics of grain-growth in wadsleyite is significantly slower than

  15. A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects.

    PubMed

    Huri, Pinar Yilgor; Huri, Gazi; Yasar, Umit; Ucar, Yurdanur; Dikmen, Nurten; Hasirci, Nesrin; Hasirci, Vasif

    2013-08-01

    The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are early and late appearing factors during bone regeneration, respectively, was shown in vitro to enhance osteoblastic differentiation of bone marrow derived mesenchymal stem cells. In the present study, the aim was to study the effectiveness of this delivery strategy in a rabbit iliac crest model. 3D plotted poly(ε-caprolactone) scaffolds were loaded with BMP carrying nanoparticles to achieve: (a) single BMP-2 or BMP-7 delivery, and (b) their combined delivery in a simultaneous or (c) sequential (biomimetic) fashion. After eight weeks of implantation, computed tomography and biomechanical tests showed better mineralized matrix formation and bone-implant union strength at the defect site in the case of sequential delivery compared to single or simultaneous delivery modes. Bone mineral density (BMD) and push-out stress were: 33.65±2.25 g cm(-3) and 14.5±2.28 MPa, respectively, and almost 2.5 fold higher in comparison to those without growth factors (BMD: 14.14±1.21 g cm(-3); PS: 6.59±0.65 MPa). This study, therefore, supports those obtained in vitro and emphasizes the importance of mimicking the natural timing of bioavailability of osteogenic factors in improving the regeneration of critical-sized bone defects.

  16. Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology

    SciTech Connect

    Lefebvre, P.; Fernandez-Garrido, S.; Grandal, J.; Ristic, J.; Sanchez-Garcia, M.-A.; Calleja, E.

    2011-02-21

    Low-temperature photoluminescence is studied in detail in GaN nanocolumns (NCs) grown by plasma-assisted molecular beam epitaxy under various conditions (substrate temperature and impinging Ga/N flux ratio). The relative intensities of the different emission lines, in particular those related to structural defects, appear to be correlated with the growth conditions, and clearly linked to the NC sample morphology. We demonstrate, in particular, that all lines comprised between 3.10 and 3.42 eV rapidly lose intensity when the growth conditions are such that the NC coalescence is reduced. The well-known line around 3.45 eV, characteristic of GaN NC samples, shows, however, a behavior that is exactly the opposite of the other lines, namely, for growth conditions leading to reduced NC coalescence, this line tends to become more prominent, thus proving to be intrinsic to individual GaN NCs.

  17. Prediction and Verification of Ductile Crack Growth from Simulated Defects in Strength Overmatched Butt Welds

    NASA Technical Reports Server (NTRS)

    Nishioka, Owen S.

    1997-01-01

    Defects that develop in welds during the fabrication process are frequently manifested as embedded flaws from lack of fusion or lack of penetration. Fracture analyses of welded structures must be able to assess the effect of such defects on the structural integrity of weldments; however, the transferability of R-curves measured in laboratory specimens to defective structural welds has not been fully examined. In the current study, the fracture behavior of an overmatched butt weld containing a simulated buried, lack-of-penetration defect is studied. A specimen designed to simulate pressure vessel butt welds is considered; namely, a center crack panel specimen, of 1.25 inch by 1.25 inch cross section, loaded in tension. The stress-relieved double-V weld has a yield strength 50% higher than that of the plate material, and displays upper shelf fracture behavior at room temperature. Specimens are precracked, loaded monotonically while load-CMOD measurements are made, then stopped and heat tinted to mark the extent of ductile crack growth. These measurements are compared to predictions made using finite element analysis of the specimens using the fracture mechanics code Warp3D, which models void growth using the Gurson-Tvergaard dilitant plasticity formulation within fixed sized computational cells ahead of the crack front. Calibrating data for the finite element analyses, namely cell size and initial material porosities are obtained by matching computational predictions to experimental results from tests of welded compact tension specimens. The R-curves measured in compact tension specimens are compared to those obtained from multi-specimen weld tests, and conclusions as to the transferability of R-curves is discussed.

  18. Effects of O/sub 2/ addition on the growth of columnar shadowing defects in sputtered Ni

    SciTech Connect

    Patten, J.W.; Moss, R.W.

    1981-04-01

    Ni was sputter deposited in a supported discharge Kr plasma with O/sub 2/ concentrations up to approximately 80%. The sputtering system is described. Microstructural data are presented to indicate that O/sub 2/ addition increased the severity of columnar shadowing defect growth in direct proportion to O/sub 2/ concentration and that the Ni-O reaction occurring at the substrate surface dominated film growth for O/sub 2/ concentration above approximately 70%. Implications for interpretation of growth structures in terms of temperature and system pressure are discussed. An expanded model describing parameter dependence of defect growth in thick, line-of-sight deposited films is presented.

  19. Relationships of RNA polymerase II genetic interactors to transcription start site usage defects and growth in Saccharomyces cerevisiae.

    PubMed

    Jin, Huiyan; Kaplan, Craig D

    2014-11-06

    Transcription initiation by RNA Polymerase II (Pol II) is an essential step in gene expression and regulation in all organisms. Initiation requires a great number of factors, and defects in this process can be apparent in the form of altered transcription start site (TSS) selection in Saccharomyces cerevisiae (Baker's yeast). It has been shown previously that TSS selection in S. cerevisiae is altered in Pol II catalytic mutants defective in a conserved active site feature known as the trigger loop. Pol II trigger loop mutants show growth phenotypes in vivo that correlate with biochemical defects in vitro and exhibit wide-ranging genetic interactions. We assessed how Pol II mutant growth phenotypes and TSS selection in vivo are modified by Pol II genetic interactors to estimate the relationship between altered TSS selection in vivo and organismal fitness of Pol II mutants. We examined whether the magnitude of TSS selection defects could be correlated with Pol II mutant-transcription factor double mutant phenotypes. We observed broad genetic interactions among Pol II trigger loop mutants and General Transcription Factor (GTF) alleles, with reduced-activity Pol II mutants especially sensitive to defects in TFIIB. However, Pol II mutant growth defects could be uncoupled from TSS selection defects in some Pol II allele-GTF allele double mutants, whereas a number of other Pol II genetic interactors did not influence ADH1 start site selection alone or in combination with Pol II mutants. Initiation defects are likely only partially responsible for Pol II allele growth phenotypes, with some Pol II genetic interactors able to exacerbate Pol II mutant growth defects while leaving initiation at a model TSS selection promoter unaffected.

  20. Role of BMP receptor traffic in synaptic growth defects in an ALS model

    PubMed Central

    Deshpande, Mugdha; Feiger, Zachary; Shilton, Amanda K.; Luo, Christina C.; Silverman, Ethan; Rodal, Avital A.

    2016-01-01

    TAR DNA-binding protein 43 (TDP-43) is genetically and functionally linked to amyotrophic lateral sclerosis (ALS) and regulates transcription, splicing, and transport of thousands of RNA targets that function in diverse cellular pathways. In ALS, pathologically altered TDP-43 is believed to lead to disease by toxic gain-of-function effects on RNA metabolism, as well as by sequestering endogenous TDP-43 and causing its loss of function. However, it is unclear which of the numerous cellular processes disrupted downstream of TDP-43 dysfunction lead to neurodegeneration. Here we found that both loss and gain of function of TDP-43 in Drosophila cause a reduction of synaptic growth–promoting bone morphogenic protein (BMP) signaling at the neuromuscular junction (NMJ). Further, we observed a shift of BMP receptors from early to recycling endosomes and increased mobility of BMP receptor–containing compartments at the NMJ. Inhibition of the recycling endosome GTPase Rab11 partially rescued TDP-43–induced defects in BMP receptor dynamics and distribution and suppressed BMP signaling, synaptic growth, and larval crawling defects. Our results indicate that defects in receptor traffic lead to neuronal dysfunction downstream of TDP-43 misregulation and that rerouting receptor traffic may be a viable strategy for rescuing neurological impairment. PMID:27535427

  1. Defective in vitro growth of the hemopoietic progenitor cells in the acquired immunodeficiency syndrome.

    PubMed Central

    Stella, C C; Ganser, A; Hoelzer, D

    1987-01-01

    In addition to immunologic derangement, hematological abnormalities have been reported in the majority of patients with acquired immunodeficiency syndrome (AIDS). In this study 15 patients with AIDS or AIDS-related complex (ARC) were evaluated for the in vitro growth of hemopoietic progenitor cells. In all patients a significant reduction of growth (mean +/- SEM) of colony-forming unit-granulocyte, erythrocyte, macrophage, (megakaryocyte) (CFU-GEM) (1.2 +/- 0.3), burst-forming unit-erythroid (BFU-E) (17 +/- 10), CFU-megakaryocyte (CFU-Mk) (1.7 +/- 0.6), and CFU-granulocyte-macrophage (CFU-GM) (35 +/- 10) was observed in comparison with normal controls. Depletion of T cells from the bone marrow before culture led to a significant increase in colony growth, which indicated an imbalance of the normally modulating T cell subsets. This increase was reversed by readdition of autologous T cells causing a decrease in colony growth to a degree, dependent on the T4 to T8 ratio. A decreased number of hemopoietic progenitor cells and/or a defective modulation of progenitor cell growth, normally carried out by T lymphocyte subsets, might be the cause of the hematological abnormalities in AIDS patients. PMID:3497175

  2. The Detached Bridgman Process: Application for the Growth of Low-Defect Germanium Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Croell, A.; Dold, P.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    During crystal growth in the vertical Bridgman process, both the melt and the growing crystal are in contact with the ampoule wall. The different thermal coefficients of expansion of the crystal and the ampoule wall can lead to stresses, crystal defects, and not rarely to cracks and/or polycrystalline growth in the crystal. The detached Bridgman process is characterized by the fact that the melt meniscus frees itself from the ampoule wall and the crystal can be grown without wall contact with the ampoule. After the effect of detachment was observed due to the reduced force of gravity during the early experiments under microgravity conditions, in the past few years the Bridgman process likewise has been successfully used to grow at least partially detached under 1g-condition. If the requirements for detaching the melt meniscus from the ampoule wall are not fulfilled by the material-specific parameters (like e.g. wetting behavior between ampoule and melt and the growth angle of the crystal), detachment can be obtained also by the imposition of suitable pressure ratios in the growth ampoule. In the context of this paper, the growth of germanium by the detached and vertical Bridgman processes in pyrolytic boron nitride crucibles will be reported, Typical gap widths between ampoule wall and detached grown crystals are approximately 10-50 microns. Compared to the crystals grown with wall contact, a reduction of the etch pit density of approximately two orders of magnitude could be obtained by growing with the detached process.

  3. Growth parameters of Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and aerobic mesophilic bacteria of apple cider amended with nisin-EDTA.

    PubMed

    Ukuku, Dike O; Zhang, Howard; Huang, Lihan

    2009-05-01

    The effect of nisin (0 or 300 IU/mL), ethylenediamine tetraacetic acid (EDTA, 20 mM), and nisin (300 IU)-EDTA (20 mM) on growth parameters, including lag period (LP) and generation time, of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella spp. in the presence or absence of aerobic mesophilic bacteria of apple cider during storage at 5 degrees C for up to 16 days or 23 degrees C for 16 h was investigated. The growth data were analyzed and fitted to the modified Gompertz model. The LP values for aerobic mesophilic bacteria of apple cider (control) and those amended with EDTA and nisin during storage at 5 degrees C were 1.61, 1.76, and 5.45 days, respectively. In apple cider stored at 23 degrees C for 16 h, the LP values for the same bacteria and treatment were 3.24, 3.56, and 5.85 h, respectively. The LP values for E. coli O157:H7 determined in the presence of aerobic mesophilic bacteria of apple cider stored at 23 degrees C for 16 h was 1.48 h, while populations for L. monocytogenes and Salmonella in the same cider declined. In sterile apple cider left at 23 degrees C for 16 h, the LP values for E. coli O157:H7, Salmonella, and L. monocytogenes averaged 2.74, 2.37, and 3.16 h, respectively. The generation time for these pathogens were 0.402, 0.260, and 0.187 log (CFU/mL)/h, respectively. Addition of nisin and EDTA combination caused a decline in lag phase duration and the populations for all pathogens tested, suggesting possible addition of this additive to freshly prepared apple cider to enhance its microbial safety and prevent costly recalls.

  4. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  5. [Recombinant Escherichia coli strains deficient in mixed acid fermentation pathways and capable of rapid aerobic growth on glucose with a reduced Crabtree effect].

    PubMed

    Morzhakova, A A; Skorokhodova, A Iu; Gulevich, A Iu; Debabov, V G

    2013-01-01

    In this study, we constructed and characterized Escherichia coli strains deficient for mixed acid fermentation pathways, which are capable of rapid aerobic growth on glucose without pronounced bacterial Crabtree effect. The main pathways of production of acetic and lactic acids and ethanol in these strains were inactivated by a deletion of the ackA, pta, poxB, IdhA, and adhEgenes. The phosphoenolpyruvate-dependent phosphotransferase system of glucose transport and phosphorylation was inactivated in the strains by a deletion of the ptsG gene. The possibility of alternative transport and phosphorylation of the carbohydrate substrate was ensured in recombinants by constitutive expression of the galP and glk genes, which encode the low-affinity H+-symporter of D-galactose and glucokinase, respectively. SGMI.0DeltaptsG PtacgalP and SG M1.0DeltaptsG PIglk PtacgalP strains were capable of rapid aerobic growth in a minimal medium containing 2.0 and 10.0 g/l of glucose and secreted only small amounts of acetic acid and trace amounts of pyruvic acid.

  6. Growth of Campylobacter incubated aerobically in fumarate-pyruvate media or media supplemented with dairy, meat, or soy extracts and peptones.

    PubMed

    Hinton, Arthur

    2016-09-01

    The ability of Campylobacter to grow aerobically in media supplemented with fumarate-pyruvate or with dairy, meat, or soy extracts or peptones was examined. Optical densities (OD) of Campylobacter cultured in basal media, media supplemented with fumarate-pyruvate or with 1.0, 2.5, 5.0, or 7.5% beef extract was measured. Growth was also compared in media supplemented with other extracts or peptones. Finally, cfu/mL of Campylobacter recovered from basal media or media supplemented with fumarate-pyruvate, casamino acids, beef extract, soytone, or beef extract and soytone was determined. Results indicated that OD of cultures grown in media supplemented with fumarate-pyruvate or with 5.0 or 7.5% beef extract were higher than OD of isolates grown in basal media or media supplemented with lower concentrations of beef extract. Highest OD were produced by isolates grown in media supplemented with beef extract, peptone from meat, polypeptone, proteose peptone, or soytone. Also, more cfu/mL were recovered from media with fumarate-pyruvate, beef extract, soytone, or beef extract-soytone than from basal media or media with casamino acids. Findings indicate that media supplemented with organic acids, vitamins, and minerals and media supplemented with extracts or peptones containing these metabolites can support aerobic growth of Campylobacter.

  7. Development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions.

    PubMed

    Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E

    2016-05-01

    The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (μmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the μmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken.

  8. Defective Ca2+ metabolism in Duchenne muscular dystrophy: effects on cellular and viral growth.

    PubMed Central

    Fingerman, E; Campisi, J; Pardee, A B

    1984-01-01

    Normal fibroblasts in medium containing 0.02 mM CaCl2 arrested growth within 24 hr, whereas Duchenne muscular dystrophy fibroblasts continued to grow for 5 days, albeit at 40% of their rate in standard medium (1.8 mM CaCl2). Moreover, Duchenne cells in calcium-deficient medium showed an enhanced rate of protein synthesis (60% over the rate in standard medium), whereas normal cells were unaffected. Previously we described a general assay for detection of mutant cells by using herpes simplex virus I replication as a probe of cellular function. By altering the growth medium, one can elicit changes in viral DNA replication that depend upon cellular differences. Duchenne fibroblasts in calcium-deficient low-serum (0.5%) medium supported viral replication at a rate 7- to 10-fold greater than did normal cells infected under the same conditions. Using this viral assay, we have successfully identified all 10 samples of a blind coded set of Duchenne muscular dystrophy, normal, and heterozygote cells. In addition, differences of a lower magnitude were found between these cell strains as measured by cellular growth or protein synthesis. Therefore, a cell's ability to grow and support viral replication in calcium-deficient medium can be used to readily distinguish Duchenne muscular dystrophy fibroblasts from normal ones. These results suggest that the viral assay could be used as a prenatal diagnostic test. A defect related to calcium metabolism may be fundamental to this disease. PMID:6095311

  9. Growth of defect-free colloidal hard-sphere crystals using colloidal epitaxy

    NASA Astrophysics Data System (ADS)

    Dasgupta, Tonnishtha; Edison, John R.; Dijkstra, Marjolein

    2017-02-01

    Using event-driven Brownian dynamics simulations, we investigate the epitaxial growth of hard-sphere crystals with a face-centered-cubic (fcc) structure on the three densest cross-sectional planes of the fcc: (i) fcc (100), (ii) fcc (111), and (iii) fcc (110). We observe that for high settling velocities, large fcc crystals with very few extended defects grow on the fcc (100) template. Our results show good agreement with the experiments of Jensen et al. [Soft Matter 9, 320 (2013)], who observed such large fcc crystals upon centrifugation on an fcc (100) template. We also compare the quality of the fcc crystal formed on the fcc (111) and fcc (110) templates with that of the fcc (100) template and conclude that the latter yields the best crystal. We also briefly discuss the dynamical behavior of stacking faults that occur in the sediments.

  10. Growth of defect-free colloidal hard-sphere crystals using colloidal epitaxy.

    PubMed

    Dasgupta, Tonnishtha; Edison, John R; Dijkstra, Marjolein

    2017-02-21

    Using event-driven Brownian dynamics simulations, we investigate the epitaxial growth of hard-sphere crystals with a face-centered-cubic (fcc) structure on the three densest cross-sectional planes of the fcc: (i) fcc (100), (ii) fcc (111), and (iii) fcc (110). We observe that for high settling velocities, large fcc crystals with very few extended defects grow on the fcc (100) template. Our results show good agreement with the experiments of Jensen et al. [Soft Matter 9, 320 (2013)], who observed such large fcc crystals upon centrifugation on an fcc (100) template. We also compare the quality of the fcc crystal formed on the fcc (111) and fcc (110) templates with that of the fcc (100) template and conclude that the latter yields the best crystal. We also briefly discuss the dynamical behavior of stacking faults that occur in the sediments.

  11. cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth.

    PubMed Central

    Neuwald, A F; Krishnan, B R; Brikun, I; Kulakauskas, S; Suziedelis, K; Tomcsanyi, T; Leyh, T S; Berg, D E

    1992-01-01

    The initial steps in assimilation of sulfate during cysteine biosynthesis entail sulfate uptake and sulfate activation by formation of adenosine 5'-phosphosulfate, conversion to 3'-phosphoadenosine 5'-phosphosulfate, and reduction to sulfite. Mutations in a previously uncharacterized Escherichia coli gene, cysQ, which resulted in a requirement for sulfite or cysteine, were obtained by in vivo insertion of transposons Tn5tac1 and Tn5supF and by in vitro insertion of resistance gene cassettes. cysQ is at chromosomal position 95.7 min (kb 4517 to 4518) and is transcribed divergently from the adjacent cpdB gene. A Tn5tac1 insertion just inside the 3' end of cysQ, with its isopropyl-beta-D-thiogalactopyranoside-inducible tac promoter pointed toward the cysQ promoter, resulted in auxotrophy only when isopropyl-beta-D-thiogalactopyranoside was present; this conditional phenotype was ascribed to collision between converging RNA polymerases or interaction between complementary antisense and cysQ mRNAs. The auxotrophy caused by cysQ null mutations was leaky in some but not all E. coli strains and could be compensated by mutations in unlinked genes. cysQ mutants were prototrophic during anaerobic growth. Mutations in cysQ did not affect the rate of sulfate uptake or the activities of ATP sulfurylase and its protein activator, which together catalyze adenosine 5'-phosphosulfate synthesis. Some mutations that compensated for cysQ null alleles resulted in sulfate transport defects. cysQ is identical to a gene called amtA, which had been thought to be needed for ammonium transport. Computer analyses, detailed elsewhere, revealed significant amino acid sequence homology between cysQ and suhB of E. coli and the gene for mammalian inositol monophosphatase. Previous work had suggested that 3'-phosphoadenoside 5'-phosphosulfate is toxic if allowed to accumulate, and we propose that CysQ helps control the pool of 3'-phosphoadenoside 5'-phosphosulfate, or its use in sulfite synthesis

  12. Anti-oncogenic activity of signalling-defective epidermal growth factor receptor mutants.

    PubMed Central

    Redemann, N; Holzmann, B; von Rüden, T; Wagner, E F; Schlessinger, J; Ullrich, A

    1992-01-01

    Overexpression and autocrine activation of the epidermal growth factor receptor (EGF-R) cause transformation of cultured cells and correlate with tumor progression in cancer patients. Dimerization and transphosphorylation are crucial events in the process by which receptors with tyrosine kinase activity generate normal and transforming cellular signals. Interruption of this process by inactive receptor mutants offers the potential to inhibit ligand-induced cellular responses. Using recombinant retroviruses, we have examined the effects of signalling-incompetent EGF-R mutants on the growth-promoting and transforming potential of ligand-activated, overexpressed wild-type EGF-R and the v-erbB oncogene product. Expression of a soluble extracellular EGF-R domain had little if any effect on the growth and transformation of NIH 3T3 cells by either tyrosine kinase. However, both a kinase-negative EGF-R point mutant (HERK721A) and an EGF-R lacking 533 C-terminal amino acids efficiently inhibited wild-type EGF-R-mediated, de novo DNA synthesis and cell transformation in a dose-dependent manner. Furthermore, coexpression with the v-erbBES4 oncogene product in NIH 3T3 cells resulted in transphosphorylation of the HERK721A mutant receptor and reduced soft-agar colony growth but had no effect in a focus formation assay. These results demonstrate that signalling-defective receptor tyrosine kinase mutants differentially interfere with oncogenic signals generated by either overexpressed EGF-R or the retroviral v-erbBES4 oncogene product. Images PMID:1346334

  13. Growth mode and defect evaluation of GaSb on GaAs substrate: a transmission electron microscopy study.

    PubMed

    Huang, Shenghong; Balakrishnan, Ganesh; Huffaker, Diana L

    2011-06-01

    We use transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques to confirm and analyze the interfacial misfit (IMF) and non-IMF growth modes for GaSb epilayers on GaAs substrates. Under optimized IMF growth conditions, only pure 90 degrees dislocations are generated along both [110] and [1-10] directions and located exactly at the epi-substrate interface, which leads to very low density of misfit dislocations propagating from the GaSb/GaAs interface along the growth direction, compared to the non-IMF growth condition. The mechanism of defect annihilation indicates that this IMF mergence process happens without formation of threading dislocations into the GaSb epilayer, which is a completely relaxed growth mode with extremely low defect density. Based on scanning several sets of wafer surfaces, plan-view TEM confirms that the misfit defect densities are estimated to be approximately 5 x 10(5) cm(-2) for IMF growth mode and approximately 10(9) cm(-2) for non-IMF growth mode.

  14. The influence of defects and impurities on the nucleation and growth of oriented films by evaporation

    NASA Technical Reports Server (NTRS)

    Green, A. K.

    1973-01-01

    The influence of substrate imperfections on the nucleation and growth of fcc metals on alkali halides is discussed. Films deposited on well characterized substrated under well defined vacuum evaporation conditions are investigated. The experimental results of this work are correlated with similar work by other investigators. Models which have been proposed by various authors to explain experimental results are critically examined and areas of difficulty are pointed out. The influence of defects on nucleation rate and the orientation of the film is emphasized. Specific examples of impurity effects, irradiation effects and the influence of amorphous layers are discussed in detail. Evidence is shown that the formation of multiply twinned particles is a result of coalescence and growth. The only consistent model for the orienting influence of impurities is shown to be a chemical reaction effect. It is demonstrated that an alkali metal impurity is very likely responsible for the orienting influence of both water vapor exposure and irradiation. A negative result is found for the reported possibility of an orienting influence being transmitted through an amorphous layer.

  15. Defective Kernel 1 (DEK1) is required for three-dimensional growth in Physcomitrella patens

    PubMed Central

    Perroud, Pierre-François; Demko, Viktor; Johansen, Wenche; Wilson, Robert C; Olsen, Odd-Arne; Quatrano, Ralph S

    2014-01-01

    Orientation of cell division is critical for plant morphogenesis. This is evident in the formation and function of meristems and for morphogenetic transitions. Mosses undergo such transitions: from two-dimensional tip-growing filaments (protonema) to the generation of three-dimensional leaf-like structures (gametophores). The Defective Kernel 1 (DEK1) protein plays a key role in the perception of and/or response to positional cues that specify the formation and function of the epidermal layer in developing seeds of flowering plants. The moss Physcomitrella patens contains the highly conserved DEK1 gene. Using efficient gene targeting, we generated a precise PpDEK1 deletion (Δdek1), which resulted in normal filamentous growth of protonema. Two distinct mutant phenotypes were observed: an excess of buds on the protonema, and abnormal cell divisions in the emerging buds resulting in developmental arrest and the absence of three-dimensional growth. Overexpression of a complete PpDEK1 cDNA, or the calpain domain of PpDEK1 alone, successfully complements both phenotypes. These results in P. patens demonstrate the morphogenetic importance of the DEK1 protein in the control of oriented cell divisions. As it is not for protonema, it will allow dissection of the structure/function relationships of the different domains of DEK1 using gene targeting in null mutant background. PMID:24844771

  16. Constitutive expression of Campylobacter jejuni truncated hemoglobin CtrHb improves the growth of Escherichia coli cell under aerobic and anaerobic conditions.

    PubMed

    Yang, Jiang-Ke; Xiong, Wei; Xu, Li; Li, Jia; Zhao, Xiu-Ju

    2015-01-01

    Bacteria hemoglobin could bind to the oxygen, transfer it from the intracellular microenvironment to the respiration process and sustain the energy for the metabolism and reproduction of cells. Heterologous expression of bacteria hemoglobin gene could improve the capacity of the host on oxygen-capturing and allow it to grow even under microaerophilic condition. To develop a system based on hemoglobin to help bacteria cells overcome the oxygen shortage in fermentation, in this study, Campylobacter jejuni truncated hemoglobin (CtrHb) gene was synthesized and expressed under the control of constitutive expression promoters P2 and P(SPO1-II) in Escherichia coli. As showed by the growth curves of the two recombinants P2-CtrHb and P(SPO1-II)-CtrHb, constitutive expression of CtrHb improved cell growth under aerobic shaking-flasks, anaerobic capped-bottles and bioreactor conditions. According to the NMR analysis, this improvement might come from the expression of hemoglobin which could boost the metabolism of cells by supplying more oxygen to the respiratory chain processes. Through semi-quantitative RT-PCR and CO differential spectrum assays, we further discussed the connection between the growth patterns of the recombinants, the expression level of CtrHb and oxygen binding capacity of CtrHb in cells. Based on the growth patterns of these recombinants in bioreactor, a possible choice on different type of recombinants under specific fermentation conditions was also suggested in this study.

  17. iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis.

    PubMed

    Fukao, Yoichiro; Ferjani, Ali; Tomioka, Rie; Nagasaki, Nahoko; Kurata, Rie; Nishimori, Yuka; Fujiwara, Masayuki; Maeshima, Masayoshi

    2011-04-01

    The micronutrient zinc is essential for all living organisms, but it is toxic at high concentrations. Here, to understand the effects of excess zinc on plant cells, we performed an iTRAQ (for isobaric tags for relative and absolute quantification)-based quantitative proteomics approach to analyze microsomal proteins from Arabidopsis (Arabidopsis thaliana) roots. Our approach was sensitive enough to identify 521 proteins, including several membrane proteins. Among them, IRT1, an iron and zinc transporter, and FRO2, a ferric-chelate reductase, increased greatly in response to excess zinc. The expression of these two genes has been previously reported to increase under iron-deficient conditions. Indeed, the concentration of iron was significantly decreased in roots and shoots under excess zinc. Also, seven subunits of the vacuolar H(+)-ATPase (V-ATPase), a proton pump on the tonoplast and endosome, were identified, and three of them decreased significantly in response to excess zinc. In addition, excess zinc in the wild type decreased V-ATPase activity and length of roots and cells to levels comparable to those of the untreated de-etiolated3-1 mutant, which bears a mutation in V-ATPase subunit C. Interestingly, excess zinc led to the formation of branched and abnormally shaped root hairs, a phenotype that correlates with decreased levels of proteins of several root hair-defective mutants. Our results point out mechanisms of growth defects caused by excess zinc in which cross talk between iron and zinc homeostasis and V-ATPase activity might play a central role.

  18. Identification and Control of Gravity Related Defect Formation During Melt Growth of Bismuth-Silicate (Bi12SiO20)

    NASA Technical Reports Server (NTRS)

    Zheng, Y.; Witt, A. F.

    1999-01-01

    In the light of strong indications that a majority of critical defects formed in bismuth silicon oxide (BSO) during growth from the melt is related directly or indirectly to gravitational interference, it is suggested to use the reduced gravity environment of outer space for experimentation directed at the identification and control of these defects. The results of these experiments are expected to lead to advances in our understanding of crystal growth related defect formation in general and will establish a basis for effective defect engineering, the approach to efficient achievement of defect related, application specific properties in opto-electronic materials

  19. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation.

    PubMed Central

    Xu, K; Delling, J; Elliott, T

    1992-01-01

    Insertion mutagenesis has been used to isolate Salmonella typhimurium strains that are blocked in the conversion of 5-aminolevulinic acid (ALA) to heme. These mutants define the steps of the heme biosynthetic pathway after ALA. Insertions were recovered at five unlinked loci: hemB, hemCD, and hemE, which have been mapped previously in S. typhimurium, and hemG and hemH, which have been described only for Escherichia coli. No other simple hem mutants were found. However, double mutants are described that are auxotrophic for heme during aerobic growth and fail to convert coproporphyrinogen III to protoporphyrinogen IX. These mutant strains are defective in two genes, hemN and hemF. Single mutants defective only in hemN require heme for anaerobic growth on glycerol plus nitrate but not for aerobic growth on glycerol. Mutants defective only in hemF have no apparent growth defect. We suggest that these two genes encode alternative forms of coproporphyrinogen oxidase. Anaerobic heme synthesis requires hemN function, while either hemN or hemF is sufficient for aerobic heme synthesis. These phenotypes are consistent with the requirement of a well-characterized class of coproporphyrinogen oxidase for molecular oxygen. PMID:1317844

  20. Effect of semisynthetic extracellular matrix-like hydrogel containing hepatocyte growth factor on repair of femoral neck defect in rabbits.

    PubMed

    Liu, Pengfei; Guo, Lin; Huang, Lanfeng; Zhao, Dewei; Zhen, Ruixin; Hu, Xiaoning; Yuan, Xiaolin

    2015-01-01

    Using tissue engineering technology research to develop organized artificial bone, then repair bone defect. This work aims to investigate the role of semisynthetic extracellular matrix-like hydrogel (sECMH) containing hepatocyte growth factor (HGF) on repair of femoral neck defect in rabbits. 18 New Zealand rabbits were used in this study. According to autologous paired comparison method, the left and right sides of rabbit were used as control and experimental side, respectively. The models of bilateral femoral neck bone defect were established. In experimental side, sECMH containing HGF was implanted in the defect area. In control side, no material was implanted in the defect area. At the 2nd, 4th and 8th week after surgery, the gross observation, histological examination and molybdenum target (Mo-target) X-ray examination were performed on the specimens to study the repair of femoral neck defect. In gross observation, there was no macroscopic difference of femoral neck specimen between the 2nd and 4th postoperative week. At the 8th week, the defect orifice was closed with immature cortical bone, with unblocked marrow cavity. HE staining results showed that, at the 4th week, there were more new vessels in defect area of experimental side, compared with control side. At the 8th week, in experimental side there was immature cortical bone connecting the fracture end in defect area, with visible bone marrow cells. Mo-target X-ray examination found that, at the 8th week, the bone tissue repair in experimental side was better than control side. As a new drug delivery system, sECMH containing HGF has good application prospect in bone tissue repair.

  1. ADAM12-deficient zebrafish exhibit retardation in body growth at the juvenile stage without developmental defects.

    PubMed

    Tokumasu, Yudai; Iida, Atsuo; Wang, Zi; Ansai, Satoshi; Kinoshita, Masato; Sehara-Fujisawa, Atsuko

    2016-05-01

    ADAM (a disintegrin and metalloprotease) constitutes a family of multi-domain proteins that are involved in development, homeostasis, and disease. ADAM12 plays important roles in myogenesis and adipogenesis in mice; however, the precise physiological mechanisms are not known, and the function of this gene in other vertebrates has not been examined. In this study, we used a simple model vertebrate, the zebrafish, to investigate the functions of ADAM12 during development. Zebrafish adam12 is conserved with those of mammals in the synteny and the amino-acid sequence. We examined adam12 expression in zebrafish embryos by whole mount in situ hybridization and the promoter activity of the adam12 upstream sequence. We found that adam12 is strongly expressed in the cardiovascular system, erythroid progenitors, brain, and jaw cartilage during zebrafish development, and adam12-knockout zebrafish exhibited reduced body size in the juvenile stage without apparent morphological defects. Taken together, these results suggest that adam12 plays a significant role in the regulation of body growth during juvenile stage in zebrafish, although the precise molecular mechanisms await further study.

  2. Endochondral Growth Defect and Deployment of Transient Chondrocyte Behaviors Underlie Osteoarthritis Onset in a Natural Murine Model

    PubMed Central

    Staines, K. A.; Madi, K.; Mirczuk, S. M.; Parker, S.; Burleigh, A.; Poulet, B.; Hopkinson, M.; Bodey, A. J.; Fowkes, R. C.; Farquharson, C.; Lee, P. D.

    2016-01-01

    Objective To explore whether aberrant transient chondrocyte behaviors occur in the joints of STR/Ort mice (which spontaneously develop osteoarthritis [OA]) and whether they are attributable to an endochondral growth defect. Methods Knee joints from STR/Ort mice with advanced OA and age‐matched CBA (control) mice were examined by Affymetrix microarray profiling, multiplex polymerase chain reaction (PCR) analysis, and immunohistochemical labeling of endochondral markers, including sclerostin and MEPE. The endochondral phenotype of STR/Ort mice was analyzed by histologic examination, micro–computed tomography, and ex vivo organ culture. A novel protocol for quantifying bony bridges across the murine epiphysis (growth plate fusion) using synchrotron x‐ray computed microtomography was developed and applied. Results Meta‐analysis of transcription profiles showed significant elevation in functions linked with endochondral ossification in STR/Ort mice (compared to CBA mice; P < 0.05). Consistent with this, immunolabeling revealed increased matrix metalloproteinase 13 (MMP‐13) and type X collagen expression in STR/Ort mouse joints, and multiplex quantitative reverse transcriptase–PCR showed differential expression of known mineralization regulators, suggesting an inherent chondrocyte defect. Support for the notion of an endochondral defect included accelerated growth, increased zone of growth plate proliferative chondrocytes (P < 0.05), and widespread type X collagen/MMP‐13 labeling beyond the expected hypertrophic zone distribution. OA development involved concomitant focal suppression of sclerostin/MEPE in STR/Ort mice. Our novel synchrotron radiation microtomography method showed increased numbers (P < 0.001) and mean areal growth plate bridge densities (P < 0.01) in young and aged STR/Ort mice compared to age‐matched CBA mice. Conclusion Taken together, our data support the notion of an inherent endochondral defect that is linked to growth dynamics and

  3. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes.

    PubMed

    Iyalomhe, Osigbemhe; Chen, Yuanxiu; Allard, Joanne; Ntekim, Oyonumo; Johnson, Sheree; Bond, Vernon; Goerlitz, David; Li, James; Obisesan, Thomas O

    2015-09-01

    There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, p<0.01). These changes were not observed in the stretch group. Importantly, the differences in the expression profiles correlated with significant improvement in maximal oxygen uptake (VO2max) in the aerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype.

  4. Meckel’s and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible

    PubMed Central

    Biosse Duplan, Martin; Komla-Ebri, Davide; Heuzé, Yann; Estibals, Valentin; Gaudas, Emilie; Kaci, Nabil; Benoist-Lasselin, Catherine; Zerah, Michel; Kramer, Ina; Kneissel, Michaela; Porta, Diana Grauss; Di Rocco, Federico; Legeai-Mallet, Laurence

    2016-01-01

    Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel’s) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel’s and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders. PMID:27260401

  5. The Staphylococcus aureus SrrAB Regulatory System Modulates Hydrogen Peroxide Resistance Factors, Which Imparts Protection to Aconitase during Aerobic Growth

    PubMed Central

    Mashruwala, Ameya A.; Boyd, Jeffrey M.

    2017-01-01

    The SrrAB two-component regulatory system (TCRS) positively influences the transcription of genes involved in aerobic respiration in response to changes in respiratory flux. Hydrogen peroxide (H2O2) can arise as a byproduct of spontaneous interactions between dioxygen and components of respiratory pathways. H2O2 damages cellular factors including protein associated iron-sulfur cluster prosthetic groups. We found that a Staphylococcus aureus strain lacking the SrrAB two-component regulatory system (TCRS) is sensitive to H2O2 intoxication. We tested the hypothesis that SrrAB manages the mutually inclusive expression of genes required for aerobic respiration and H2O2 resistance. Consistent with our hypothesis, a ΔsrrAB strain had decreased transcription of genes encoding for H2O2 resistance factors (kat, ahpC, dps). SrrAB was not required for the inducing the transcription of these genes in cells challenged with H2O2. Purified SrrA bound to the promoter region for dps suggesting that SrrA directly influences dps transcription. The H2O2 sensitivity of the ΔsrrAB strain was alleviated by iron chelation or deletion of the gene encoding for the peroxide regulon repressor (PerR). The positive influence of SrrAB upon H2O2 metabolism bestowed protection upon the solvent accessible iron-sulfur (FeS) cluster of aconitase from H2O2 poisoning. SrrAB also positively influenced transcription of scdA (ytfE), which encodes for a FeS cluster repair protein. Finally, we found that SrrAB positively influences H2O2 resistance only during periods of high dioxygen-dependent respiratory activity. SrrAB did not influence H2O2 resistance when cellular respiration was diminished as a result of decreased dioxygen availability, and negatively influenced it in the absence of respiration (fermentative growth). We propose a model whereby SrrAB-dependent regulatory patterns facilitate the adaptation of cells to changes in dioxygen concentrations, and thereby aids in the prevention of H2O2

  6. The cellular proteome is affected by a gelsolin (BbGEL1) during morphological transitions in aerobic surface versus liquid growth in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    He, Pu-Hong; Dong, Wei-Xia; Chu, Xin-Ling; Feng, Ming-Guang; Ying, Sheng-Hua

    2016-11-01

    The gelsolin superfamily includes seven protein members: gelsolin, villin, adseverin, CapG, advillin, supervillin and flightless I. The gelsolin proteins are actin-binding proteins that contain three or six gelsolin-like domains, and they play important roles in remodelling actin dynamics and cellular processes in eukaryotes. The entomopathogenic fungus Beauveria bassiana expresses a unique CapG protein (BbGEL1) that contains three gelsolin-like domains. BbGEL1p is associated with actin during mycelial growth and plays an important role in fungal morphological transitions under both aerobic and submerged conditions. The ΔBbGEL1 mutant displays abnormal spore-producing structures that reduce the conidial and blastospore yields by approximately 70% and 90% respectively. The virulence of the ΔBbGEL1 mutant is notably reduced as indicated by topical and intrahemocoel injection assays. Two comparative proteomics analyses indicated that BbGEL1 has significantly different roles in the development of conidia and blastospores, and the results revealed the potential targets of BbGEL1 in the corresponding developmental processes. Additionally, as an overlapping downstream protein of BbGEL1, the hydrophobin-like protein gene BbHyd3 is required for conidiation but has a negative role in blastospore formation. Our findings indicate that in addition to its function as an actin-interacting protein, BbGEL1 contributes to fungal morphological transitions via broad genetic pathways.

  7. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0.

    PubMed Central

    Schleper, C; Puehler, G; Holz, I; Gambacorta, A; Janekovic, D; Santarius, U; Klenk, H P; Zillig, W

    1995-01-01

    Two species belonging to a novel genus of archaea, designated Picrophilus oshimae and Picrophilus torridus, have been isolated from two different solfataric locations in northern Japan. One habitat harboring both organisms was a dry, extremely acidic soil (pH < 0.5) that was heated by solfataric gases to about 55 degrees C. In the laboratory both species grew heterotrophically on yeast extract and poorly on tryptone under aerobic conditions at temperatures between 45 and 65 degrees C; they grew optimally at 60 degrees C. The pH optimum was 0.7, but growth occurred even around pH 0. Under optimal conditions, the generation time was about 6 h, yielding densities of up to 10(10) cells per ml. The cells were surrounded by a highly filigreed regular tetragonal S-layer, and the core lipids of the membrane were mainly bis-phytanyltetraethers. The 16S rRNA sequences of the two species were about 3% different. The complete 16S rRNA sequence of P. oshimae was 9.3% different from that of the closest relative, Thermoplasma acidophilum. The morphology and physiological properties of the two species characterize Picrophilus as a novel genus that is a member of a novel family within the order Thermoplasmales. PMID:8522509

  8. Intrinsic point defect behavior in silicon crystals during growth from the melt: A model derived from experimental results

    NASA Astrophysics Data System (ADS)

    Abe, Takao; Takahashi, Toru

    2011-11-01

    During the growth of float-zoning (FZ) and Czochralski (CZ) Si crystals, the temperature distributions from the growth interface were measured using a two-color infrared thermometer for the FZ crystal surfaces and three thermocouples within the CZ bulk crystals. The results showed that the thermal gradient is a decreasing function of the growth rate, which forms the basis of this work. In a comparison of the shape variations in the growth interfaces observed in both FZ and CZ crystals of three different diameters, all of the results were in agreement with the above premise. In consideration of Stefan's condition the premise above is discussed. One of the most important observations is that the region of increasing thermal gradient extends not only to the region grown before but also to the region afterward by stopping the pulling in FZ crystals or lowering the growth rate in CZ crystals. This phenomenon is termed the “BA (before and after) effect”. The growing CZ crystals are detached from the melt and rapidly cooled so that the point defects are frozen. Using the anomalous oxygen precipitation (AOP) phenomenon obtained by the above detaching, which demonstrates the existence of vacancies in the crystal, we found that the growth interface is always filled with vacancies. By increasing the thermal gradient, which can be controlled by lowering the growth rate, the vacancy (AOP) region is reduced, due to the generation of a silicon interstitial-rich region. The ratio of vacancies from the growth interface and silicon interstitials generated by the thermal gradient ultimately determines the nature of the bulk silicon crystal grown from the melt, i.e., with voids, defect-free or with dislocation loops.

  9. Point defects in Cd1-xZnxTe1-ySey crystals grown by using Bridgman growth and traveling heater method(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gul, Rubi; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; Egarievwe, Stephen U.; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.

    2016-09-01

    Point defects and their concentrations play an important role in limiting the electrical and spectral properties of crystals. It is observed that the crystal-growth process causes the generation of different types of point defects, and these defects create non-uniformities that can be detrimental to device performance. In this research Cd1-xZnxTe1-ySey (CZTS) crystals grown by Bridgman and Travelling heater methods are studied for their point defects. The focus is on the types of defects, their concentrations and the variations with the selected growth method. In addition the effects of growth-related medium and deep energy traps and their corresponding densities are related to the resistivity, life-time of charge carriers and -product for electrons.

  10. Treatment of agro based industrial wastewater in sequencing batch reactor: performance evaluation and growth kinetics of aerobic biomass.

    PubMed

    Lim, J X; Vadivelu, V M

    2014-12-15

    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively.

  11. Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis.

    PubMed

    Klinner, U; Fluthgraf, S; Freese, S; Passoth, V

    2005-04-01

    The fermentative and respiratory metabolism of Pichia stipitis wild-type strain CBS 5774 and the derived auxotrophic transformation recipient PJH53 trp5-10 his3-1 were examined in differentially oxygenated glucose cultures in the hermetically sealed Sensomat system. There was a good agreement of the kinetics of gas metabolism, growth, ethanol formation and glucose utilisation, proving the suitability of the Sensomat system for rapid and inexpensive investigation of strains and mutants for their respiratory and fermentative metabolism. Our study revealed respiro-fermentative growth by the wild-type strain, although the cultures were not oxygen-limited. The induction of respiro-fermentative behaviour was obviously due to the decrease in oxygen tension but not falling below a threshold of oxygen tension. The responses differed depending on the velocity of the decrease in oxygen tension. At high oxygenation (slow decrease in oxygen tension), ethanol production was induced but glucose uptake was not influenced. At low oxygenation, glucose uptake and ethanol formation increased during the first hours of cultivation. The transformation recipient PJH53 most probably carries a mutation that influences the response to a slow decrease in oxygen tension, since almost no ethanol formation was found under these conditions.

  12. The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production.

    PubMed

    Aklujkar, Muktak; Prince, Roger C; Beatty, J Thomas

    2005-05-15

    A conserved orf of previously unknown function (herein designated as puhE) is located 3' of the reaction centre H (puhA) gene in purple photosynthetic bacteria, in the order puhABCE in Rhodobacter capsulatus. Disruptions of R. capsulatus puhE resulted in a long lag in the growth of photosynthetic cultures inoculated with cells grown under high aeration, and increased the level of the peripheral antenna, light-harvesting complex 2 (LH2). The amount of the photosynthetic reaction centre (RC) and its core antenna, light-harvesting complex 1 (LH1), was reduced; however, there was no decrease in expression of a lacZ reporter fused to the puf (RC and LH1) promoter, in RC assembly in the absence of LH1, or in LH1 assembly in the absence of the RC. In strains that lack LH2, disruption of puhE increased the in vivo absorption at 780 nm, which we attribute to excess bacteriochlorophyll a (BChl) pigment production. This effect was seen in the presence and absence of PufQ, a protein that stimulates BChl biosynthesis. Expression of puhE from a plasmid reduced A(780) production in puhE mutants. We suggest that PuhE modulates BChl biosynthesis independently of PufQ, and that the presence of excess BChl in PuhE(-)LH2(+) strains results in excess LH2 assembly and also interferes with the adaptation of cells during the transition from aerobic respiratory to anaerobic photosynthetic growth.

  13. Aerobic glucose fermentation by Trypanosoma cruzi axenic culture amastigote-like forms during growth and differentiation to epimastigotes.

    PubMed

    Engel, J C; Franke de Cazzulo, B M; Stoppani, A O; Cannata, J J; Cazzulo, J J

    1987-11-01

    Axenic culture amastigote-like forms of Trypanosoma cruzi, grown at 28 degrees C, reach a stationary phase after two generations, and differentiate to epimastigotes, which then resume growth. Axenic culture amastigotes readily ferment glucose to succinate and acetate, and do not excrete NH3; they have high activities of hexokinase and phosphoenolpyruvate carboxykinase, and very low citrate synthase activity; cytochrome o is absent, and cytochrome b-like is present at a very low level. Epimastigotes catabolize glucose and produce succinate and acetate at a considerably lower rate; they exhibit lower levels of hexokinase and carboxykinase, and much higher levels of citrate synthase and cytochromes o and b-like. They catabolize amino acids, as shown by excretion of NH3 to the medium. The results suggest that axenic culture amastigotes have an essentially glycolytic metabolism, and they acquire the ability to oxidize substrates such as amino acids only after differentiation to epimastigotes.

  14. Simulating Interface Growth and Defect Generation in CZT – Simulation State of the Art and Known Gaps

    SciTech Connect

    Henager, Charles H.; Gao, Fei; Hu, Shenyang Y.; Lin, Guang; Bylaska, Eric J.; Zabaras, Nicholas

    2012-11-01

    This one-year, study topic project will survey and investigate the known state-of-the-art of modeling and simulation methods suitable for performing fine-scale, fully 3-D modeling, of the growth of CZT crystals at the melt-solid interface, and correlating physical growth and post-growth conditions with generation and incorporation of defects into the solid CZT crystal. In the course of this study, this project will also identify the critical gaps in our knowledge of modeling and simulation techniques in terms of what would be needed to be developed in order to perform accurate physical simulations of defect generation in melt-grown CZT. The transformational nature of this study will be, for the first time, an investigation of modeling and simulation methods for describing microstructural evolution during crystal growth and the identification of the critical gaps in our knowledge of such methods, which is recognized as having tremendous scientific impacts for future model developments in a wide variety of materials science areas.

  15. Structural defects in the growth of multiple periods of InAs quantum dots on a GaAs substrate

    NASA Astrophysics Data System (ADS)

    Lee, Hwack Joo; Ryu, Hyun; Leam, Jae Y.; Noh, Sam K.; Lee, Hyung G.; Nahm, Sahn

    1997-02-01

    Microstructural observations on 20 periods of InAs quantum dots on a GaAs substrate grown by molecular beam epitaxy system were carried out by using high resolution transmission electron microscopy. The spherical cap-shaped InAs quantum dots were formed in a self-organized fashion, dot over dot, along the growth direction. However, two types of anomalities were found in the growth of these superlattice structures. One is the stoppage of quantum dot formation after 4 or 5 layers have been deposited. The morphology of the quantum dots was rather flat and faceted and a black and white contrast layer has appeared in the dot structure. The other type was a volcano-like defect which was grown vertically along the growth direction with a size of about 120 nm in diameter and about 400 nm in spacing. Inside the defect, black and white contrast layers have been formed along the [110] direction at the bottom of the epilayer and then changed to the [111] direction as the growth continued to the top layer.

  16. Loss of the Max-interacting protein Mnt in mice results in decreased viability, defective embryonic growth and craniofacial defects: relevance to Miller-Dieker syndrome.

    PubMed

    Toyo-oka, Kazuhito; Hirotsune, Shinji; Gambello, Michael J; Zhou, Zi-Qiang; Olson, Lorin; Rosenfeld, Michael G; Eisenman, Robert; Hurlin, Peter; Wynshaw-Boris, Anthony

    2004-05-15

    The Mnt gene encodes a Mad-family bHLH transcription factor located on human 17p13.3. Mnt is one of 20 genes deleted in a heterozygous fashion in Miller-Dieker syndrome (MDS), a contiguous gene syndrome that consists of severe neuronal migration defects and craniofacial dysmorphic features. Mnt can inhibit Myc-dependent cell transformation and is hypothesized to counterbalance the effects of c-Myc on growth and proliferation in vivo by competing with Myc for binding to Max and by repressing target genes activated by Myc : Max heterodimers. Unlike the related Mad family members, Mnt is expressed ubiquitously and Mnt/Max heterodimers are found in proliferating cells that contain Myc/Max heterodimers, suggesting a unique role for Mnt during proliferation. To examine the role of Mnt in vivo, we produced mice with null (Mnt(KO)) and loxP-flanked conditional knock-out (Mnt(CKO)) alleles of Mnt. Virtually all Mnt(KO/KO) mutants in a mixed (129S6 x NIH Black Swiss) or inbred (129S6) genetic background died perinatally. Mnt-deficient embryos exhibited small size throughout development and showed reduced levels of c-Myc and N-Myc. In addition, 37% of the mixed background mutants displayed cleft palate as well as retardation of skull development, a phenotype not observed in the inbred mutants. These results demonstrate an important role for Mnt in embryonic development and survival, and suggest that Mnt may play a role in the craniofacial defects displayed by MDS patients.

  17. Identification and Control of Gravity Related Defect Formation During Melt Growth of Electro-Optic Single Crystals Bismuth Silicate(Bi12SiO20)

    NASA Technical Reports Server (NTRS)

    Becia, Piotr; Wiegel, Michaela E. K.

    2004-01-01

    A research carried out under Award Number NAG8-1487 was aimed at to the design, conduct and analysis of experiments directed at the identification and control of gravitational effects on crystal growth, segregation and defect formation in the Sillenite system: bismuth silicate (Bi(12)SiO(20)). Correlation analyses was conducted in order to establish the influence of gravity related defects introduced during crystal growth on critical, application specific properties. Achievement of the states objective was conducted during the period from Feb. 01, 1998 to Dec. 31, 2003 with the following anticipated milestones: 1. Establishment of capabilities for (a) reproducible Czochralski and Bridgman-type growth of BSO single crystals and (b) for comprehensive analysis of crystalline and chemical defects as well as for selective property characterization of grown crystals (year 1). 2. Design and execution of critical space growth experiment(s) based on analyses of prefatory space results (experiments aimed at establishing the viability of planned approaches and procedures) and on unresolved issues related to growth, segregation and defect formation associated with conventional growth in Bridgman geometries. Comparative analysis of growth under conventional and under mu-g conditions; identification of gravity related defect formation during conventional Bridgman growth and formulation of approaches for their control (years 2 and 3). Development of charge confinement system which permits growth interface demarcation (in a mu-g environment) as well as minimization of confinement related stress and contamination during growth; design of complementary mu-g growth experiments aimed at quantitative mu-g growth and segregation analyses (year 4). 3. Conduct of quantitative mu-g growth experiments directed at: (a) identification and control of gravity related crystalline and chemical defect formation during single crystal growth of Bi(12)SiO(20) and at (b) defect engineering -the

  18. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  19. Defective transcription initiation causes postnatal growth failure in a mouse model of nucleotide excision repair (NER) progeria.

    PubMed

    Kamileri, Irene; Karakasilioti, Ismene; Sideri, Aria; Kosteas, Theodoros; Tatarakis, Antonis; Talianidis, Iannis; Garinis, George A

    2012-02-21

    Nucleotide excision repair (NER) defects are associated with cancer, developmental disorders and neurodegeneration. However, with the exception of cancer, the links between defects in NER and developmental abnormalities are not well understood. Here, we show that the ERCC1-XPF NER endonuclease assembles on active promoters in vivo and facilitates chromatin modifications for transcription during mammalian development. We find that Ercc1(-/-) mice demonstrate striking physiological, metabolic and gene expression parallels with Taf10(-/-) animals carrying a liver-specific transcription factor II D (TFIID) defect in transcription initiation. Promoter occupancy studies combined with expression profiling in the liver and in vitro differentiation cell assays reveal that ERCC1-XPF interacts with TFIID and assembles with POL II and the basal transcription machinery on promoters in vivo. Whereas ERCC1-XPF is required for the initial activation of genes associated with growth, it is dispensable for ongoing transcription. Recruitment of ERCC1-XPF on promoters is accompanied by promoter-proximal DNA demethylation and histone marks associated with active hepatic transcription. Collectively, the data unveil a role of ERCC1/XPF endonuclease in transcription initiation establishing its causal contribution to NER developmental disorders.

  20. Defect, Kinetics and Heat Transfer of CDTE Bridgman Growth without Wall Contact

    NASA Technical Reports Server (NTRS)

    Larson, D. J., Jr.; Zhang, H.

    2003-01-01

    A detached growth mechanism has been proposed, which is similar to that proposed by Duffar et al. and used to study the current detached growth system. From numerical results, we can conclude that detached growth will more likely appear if the growth and wetting angles are large and meniscus is flat. Detached thickness is dependent on growth angle, wetting angle, and gap width and shape of the fins. The model can also explain why the detached growth will not happen for metals in which the growth angle is almost zero. Since the growth angle of CdZnTe cannot be changed, to promote detached growth, the number density of the fins should be low and the wetting angle should be high. Also, a much smaller gap width of the fins should be used in the ground experiment and the detached gap width is much smaller. The shape of the fins has minor influence on detached growth. An integrated numerical model for detached solidification has been developed combining a global heat transfer sub-model and a wall contact sub-model. The global heat transfer sub-model accounts for heat and mass transfer in the multiphase system, convection in the melt, macro-segregation, and interface dynamics. The location and dynamics of the solidification interface are accurately tracked by a multizone adaptive grid generation scheme. The wall contact sub-model accounts for the meniscus dynamics at the three-phase boundary. Simulations have been performed for crystal growth in a conventional ampoule and a designed ampoule to understand the benefits of detached solidification and its impacts on crystalline structural quality, e.g., stoichiometry, macro-segregation, and stress. From simulation results, both the Grashof and Marangoni numbers will have significant effects on the shape of growth front, Zn concentration distribution, and radial segregation. The integrated model can be used in designing apparatus and determining the optimal geometry for detached solidification in space and on the ground.

  1. Transforming growth factor-beta reverses a posttranscriptional defect in elastin synthesis in a cutis laxa skin fibroblast strain.

    PubMed Central

    Zhang, M C; Giro, M; Quaglino, D; Davidson, J M

    1995-01-01

    Skin fibroblasts from two cases of autosomal recessive cutis laxa (CL), having insignificant elastin production and mRNA levels, were challenged with transforming growth factor beta-1 (TGF-beta 1). Elastin production was brought from undetectable values to amounts typical of normal human skin fibroblasts in a dose-dependent fashion. Basic fibroblast growth factor (100 ng/ml) alone or in combination with TGF-beta 1 reduced elastin production and mRNA expression in CL skin fibroblasts more extensively than in normal cells. In situ hybridization showed that these effects were at the transcript level. One of the CL strains was examined in detail. Transcription rates for elastin were similar in normal and CL and unchanged by TGF-beta 1 or TGF-beta 2 (10 ng/ml), while in CL elastin mRNA half-life was increased > 10-fold by TGF-beta 2 and reduced 6-fold after TGF-beta 2 withdrawal, as compared with a control strain. Cycloheximide partially reversed elastin mRNA instability. These data are consistent with a defect in elastin mRNA stability that requires synthesis of labile factors or intact translational machinery, resulting in an extremely low steady state level of mRNA present in this strain of CL. Furthermore, TGF-beta can relieve elastin mRNA instability in at least one CL strain and elastin production defects in both CL strains. Images PMID:7884000

  2. Studies of Growth-In Defects and Transport Properties Versus Growth Parameters in III-V Compound Semiconductors.

    DTIC Science & Technology

    1982-06-10

    calls [1-51. For example, a cas- cade p-n junction solar cell structure with open circuit 273 I-$5iS/I2/11024VI] 0UM 0 I" AIME t 73 - *tj--e --.- I I f...electrical properties of the grown-in defects and their correlation to the performance character- istics of the AlxGalxAs/GaAs cascade solar cells . To achieve...as a window layer in the solar cell ’structure, and is much more heavily doped (S5xlO 18 cm- 3) than the undoped n-AlO. 3GaO.7As and n-GaAs LPE layers

  3. Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.

    PubMed

    Iwata, Jun-ichi; Suzuki, Akiko; Pelikan, Richard C; Ho, Thach-Vu; Chai, Yang

    2013-10-11

    Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2(fl/fl);Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2(fl/fl);Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2(fl/fl);Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.

  4. Nucleation and growth of intragranular defect and insoluble atom clusters in nuclear oxide fuels

    NASA Astrophysics Data System (ADS)

    Garcia, P.; Martin, G.; Sabathier, C.; Carlot, G.; Michel, A.; Martin, P.; Dorado, B.; Freyss, M.; Bertolus, M.; Skorek, R.; Noirot, J.; Noirot, L.; Kaitasov, O.; Maillard, S.

    2012-04-01

    Uranium and plutonium oxides are subjected to high levels of radiation damage due to the slowing of fission fragments. In addition the composition of the material evolves over time as a result of fission events. Rare gases which constitute an abundant class of fission products are particularly insoluble and therefore tend either to be released from the fuel or form small nanometre size clusters. Bubbles are liable to grow and become trapping sites for migrating defects or other insoluble atoms. Interactions between migrating atoms, defects and existing clusters will determine the rate and extent to which clusters grow. Because the transfer of gas from within the grain to the grain boundaries is thought of as being the rate limiting process for fission gas release, a review of phenomena occurring on the sub-grain scale is carried out. The microstructural modifications induced by neutron irradiations of UO2 fuels are discussed with an emphasis on their relation to fission gas release. Based mainly on TEM studies, the phenomena which are usually taken into account in fission gas behaviour models are looked at and the limitations of these models outlined. More recent experimental and modelling approaches involving ion-irradiation experiments and atomic scale modelling are presented. It is shown that combining these approaches may lead, despite the complexity inherent to the system, to a better understanding of basic radiation induced microstructural changes, clustering events, and rare gas behaviour.

  5. Complementation of growth defect in an ampC deletion mutant of Escherichia coli.

    PubMed

    Bishop, R E; Weiner, J H

    1993-12-15

    beta-Lactamase genes of class-A (Rtem) and class-C (ampC) were placed under control of an inducible tac-promoter and expressed in Escherichia coli. Expression of RTEM had no observable effect on the growth properties of E. coli strains HB101 (ampC+) or MI1443 (delta ampC). E. coli MI1443 exhibited a decline in growth rate at mid-exponential phase which could be delayed by expression of AmpC at early-exponential phase. AmpC expression otherwise inhibited growth, particularly during the transition into exponential phase where growth was prevented altogether. We suggest that the AmpC beta-lactamase, but not RTEM, may have an additional cellular function as a peptidoglycan hydrolase.

  6. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma.

    PubMed

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-07-10

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.

  7. Treatment of a large postextraction buccal wall defect with mineralized allograft, β-TCP, and rhPDGF-BB: a growth factor-mediated bone regenerative approach.

    PubMed

    Snyder, Mark B

    2012-12-01

    Buccal wall defects following tooth removal are frequent in the anterior portions of the mandible and maxilla. Common reasons for such defects include thin buccal bone, preexisting periodontal disease, bundle bone resorption, difficult orthodontic movement, and traumatic extractions. Regeneration of the postextraction defect with vital, well-vascularized, dense bone is critical to a successful implant-supported restoration. This case report examines the effectiveness of using a composite graft of freeze-dried bone allograft and β-tricalcium phosphate plus recombinant human platelet-derived growth factor BB to regenerate healthy, dense bone in a large mandibular anterior buccal wall defect. The importance of access to the overlying periosteum as a readily available source of osteogenic cells in growth factor-mediated bone regenerative procedures is emphasized.

  8. Impact of ArcA loss in Shewanella oneidensis revealed by comparative proteomics under aerobic and anaerobic conditions

    SciTech Connect

    Yuan, Jie; Wei, Buyun; Lipton, Mary S.; Gao, Haichun

    2012-06-01

    Shewanella inhabit a wide variety of niches in nature and can utilize a broad spectrum of electron acceptors under anaerobic conditions. How they modulate their gene expression to adapt is poorly understood. ArcA, homologue of a global regulator controlling hundreds of genes involved in aerobic and anaerobic respiration in E. coli, was shown to be important in aerobiosis/anaerobiosis of S. oneidensis as well. Loss of ArcA, in addition to altering transcription of many genes, resulted in impaired growth under aerobic condition, which was not observed in E. coli. To further characterize the impact of ArcA loss on gene expression on the level of proteome under aerobic and anaerobic conditions, liquid-chromatography-mass-spectrometry (LC-MS) based proteomic approach was employed. Results show that ArcA loss led to globally altered gene expression, generally consistent with that observed with transcripts. Comparison of transcriptomic and proteomic data permitted identification of 17 high-confidence ArcA targets. Moreover, our data indicate that ArcA is required for regulation of cytochrome c proteins, and the menaquinone level may play a role in regulating ArcA as in E. coli. Proteomic-data-guided growth assay revealed that the aerobic growth defect of ArcA mutant is presumably due to impaired peptide utilization.

  9. Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon

    SciTech Connect

    Dabrowski, J. Lippert, G.; Schroeder, T.; Lupina, G.

    2014-11-10

    Hexagonal boron nitride (h-BN) is an attractive substrate for graphene, as the interaction between these materials is weak enough for high carrier mobility to be retained in graphene but strong enough to allow for some epitaxial relationship. We deposited graphene on exfoliated h-BN by molecular beam epitaxy (MBE), we analyzed the atomistic details of the process by ab initio density functional theory (DFT), and we linked the DFT and MBE results by random walk theory. Graphene appears to nucleate around defects in virgin h-BN. The DFT analysis reveals that sticking of carbon to perfect h-BN is strongly reduced by desorption, so that pre-existing seeds are needed for the nucleation. The dominant nucleation seeds are C{sub N}C{sub B} and O{sub N}C{sub N} pairs and B{sub 2}O{sub 3} inclusions in the virgin substrate.

  10. Collaborative Research: failure of RockMasses from Nucleation and Growth of Microscopic Defects and Disorder

    SciTech Connect

    Klein, William

    2016-09-12

    Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structure of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.

  11. A brief review of mathematical models of thin film growth and surfaces. A possible route to avoid defects in stents.

    PubMed

    Forgerini, Fabricio L; Marchiori, Roberto

    2014-01-01

    The morphology of thin films has been extensively studied in the last years. The properties of a thin film are closely related to its microstructure, especially to its morphology and surface roughness. Optical reflectivity, conductivity, and porosity are characteristics that depend on the film structure. The knowledge of atomistic details of the thin film growth process is useful for the development of new techniques and the control of thin films and new materials. Models of growth process are very powerful tools that can help researchers to predict and control physical, chemical, and mechanical properties. In this work we briefly summarize the theoretical models that have been used in the studies of thin films growth. By describing the deposition process of atoms/molecules on the surface of the substrate, one can study the evolution of the bulk and the surface roughness of a thin film. If an experimental growth process is appropriately described by a theoretical model (or even a combination of one or more different models), it can also provide indications to control the surface roughness and porosity of the film. Controlling the growth process one can obtain materials with a set of desired properties, namely tribological, porosity, and electrical ones. These characteristics are necessary for example, for hosting a solid lubricant on the surface of the material. We believe that the models presented in this work can be very useful in understanding the mechanisms of control and adherence of electrodeposited films which are commonly used in medical applications such as stent devices. We also believe that the models can be helpful to the understanding surface problems related to the superficial defects in stents.

  12. Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog

    PubMed Central

    Momose, Takehito; Miyaji, Hirofumi; Kato, Akihito; Ogawa, Kosuke; Yoshida, Takashi; Nishida, Erika; Murakami, Syusuke; Kosen, Yuta; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Objective: Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation defects in beagle dogs. Methods: Collagen hydrogel was fabricated from bovine type I collagen with an ascorbate-copper ion cross-linking system. Collagen hydrogel was mingled with FGF2 and injected into sponge-form collagen. Subsequently, FGF2 (50 µg)/collagen hydrogel scaffold and collagen hydrogel scaffold alone were implanted into class II furcation defects in dogs. In addition, no implantation was performed as a control. Histometric parameters were assessed at 10 days and 4 weeks after surgery. Result: FGF2 application to scaffold promoted considerable cell and tissue ingrowth containing numerous cells and blood vessel-like structure at day 10. At 4 weeks, reconstruction of alveolar bone was stimulated by implantation of scaffold loaded with FGF2. Furthermore, periodontal attachment, consisting of cementum-like tissue, periodontal ligament-like tissue and Sharpey’s fibers, was also repaired, indicating that FGF2-loaded scaffold guided self-assembly and then re-established the function of periodontal organs. Aberrant healing, such as ankylosis and root resorption, was not observed. Conclusion: FGF2-loaded collagen hydrogel scaffold possessed excellent biocompatibility and strongly promoted periodontal tissue engineering, including periodontal attachment re-organization. PMID:27583044

  13. Rinderpest Viruses Lacking the C and V Proteins Show Specific Defects in Growth and Transcription of Viral RNAs

    PubMed Central

    Baron, Michael D.; Barrett, Thomas

    2000-01-01

    Rinderpest virus is a morbillivirus and the causative agent of an important disease of cattle and wild bovids. The P genes of all morbilliviruses give rise to two proteins in addition to the P protein itself: use of an alternate start translation site, in a second open reading frame, gives rise to the C protein, while cotranscriptional insertion of an extra base gives rise to the V protein, a fusion of the amino-terminal half of P to a short, highly conserved, cysteine-rich zinc binding domain. Little is known about the function of either of these two proteins in the rinderpest virus life cycle. We have constructed recombinant rinderpest viruses in which the expression of these proteins has been suppressed, individually and together, and studied the replication of these viruses in tissue culture. We show that the absence of the V protein has little effect on the replication rate of the virus but does lead to an increase in synthesis of genome and antigenome RNAs and a change in cytopathic effect to a more syncytium-forming phenotype. Virus that does not express the C protein, on the other hand, is clearly defective in growth in all cell lines tested, and this defect appears to be related to a decreased transcription of mRNA from viral genes. The phenotypes of both individual mutant virus types are both expressed in the double mutant expressing neither V nor C. PMID:10684274

  14. Decreased Mitochondrial OGG1 Expression is Linked to Mitochondrial Defects and Delayed Hepatoma Cell Growth

    PubMed Central

    Lee, Young-Kyoung; Youn, Hwang-Guem; Wang, Hee-Jung; Yoon, Gyesoon

    2013-01-01

    Many solid tumor cells exhibit mitochondrial respiratory impairment; however, the mechanisms of such impairment in cancer development remain unclear. Here, we demonstrate that SNU human hepatoma cells with declined mitochondrial respiratory activity showed decreased expression of mitochondrial 8-oxoguanine DNA glycosylase/lyase (mtOGG1), a mitochondrial DNA repair enzyme; similar results were obtained with human hepatocellular carcinoma tissues. Among several OGG1-2 variants with a mitochondrial- targeting sequence (OGG1-2a, -2b, -2c, -2d, and -2e), OGG1-2a was the major mitochondrial isoform in all examined hepatoma cells. Interestingly, hepatoma cells with low mtOGG1 levels showed delayed cell growth and increased intracellular reactive oxygen species (ROS) levels. Knockdown of OGG1-2 isoforms in Chang-L cells, which have active mitochondrial respiration with high mtOGG1 levels, significantly decreased cellular respiration and cell growth, and increased intracellular ROS. Overexpression of OGG1-2a in SNU423 cells, which have low mtOGG1 levels, effectively recovered cellular respiration and cell growth activities, and decreased intracellular ROS. Taken together, our results suggest that mtOGG1 plays an important role in maintaining mitochondrial respiration, thereby contributing to cell growth of hepatoma cells. PMID:23677377

  15. Computational Simulation of Containment Influence on Defect Generation During Growth of GeSi

    NASA Technical Reports Server (NTRS)

    Motakef, Shariar; Yesilyurt, S.; Vujisic, L.

    2001-01-01

    This report contains results of theoretical work in conjunction with the NASA RDGS program. It is specifically focused on factors controlling the stability of detachment and the sensitivity of the detachment process to the processing and geometric parameters of the crystal growth process.

  16. Reversal of axonal growth defects in an extraocular fibrosis model by engineering the kinesin–microtubule interface

    PubMed Central

    Minoura, Itsushi; Takazaki, Hiroko; Ayukawa, Rie; Saruta, Chihiro; Hachikubo, You; Uchimura, Seiichi; Hida, Tomonobu; Kamiguchi, Hiroyuki; Shimogori, Tomomi; Muto, Etsuko

    2016-01-01

    Mutations in human β3-tubulin (TUBB3) cause an ocular motility disorder termed congenital fibrosis of the extraocular muscles type 3 (CFEOM3). In CFEOM3, the oculomotor nervous system develops abnormally due to impaired axon guidance and maintenance; however, the underlying mechanism linking TUBB3 mutations to axonal growth defects remains unclear. Here, we investigate microtubule (MT)-based motility in vitro using MTs formed with recombinant TUBB3. We find that the disease-associated TUBB3 mutations R262H and R262A impair the motility and ATPase activity of the kinesin motor. Engineering a mutation in the L12 loop of kinesin surprisingly restores a normal level of motility and ATPase activity on MTs carrying the R262A mutation. Moreover, in a CFEOM3 mouse model expressing the same mutation, overexpressing the suppressor mutant kinesin restores axonal growth in vivo. Collectively, these findings establish the critical role of the TUBB3-R262 residue for mediating kinesin interaction, which in turn is required for normal axonal growth and brain development. PMID:26775887

  17. Point Defect Distributions in ZnSe Crystals: Effects of Gravity Vector Orientation During Physical Vapor Transport Growth

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.

    1999-01-01

    ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.

  18. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  19. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  20. Growth and characteristics of self-assembly defect-free GaN surface islands by molecular beam epitaxy.

    PubMed

    Hsu, Kuang-Yuan; Wang, Cheng-Yu; Liu, Chuan-Pu

    2011-04-01

    GaN surface nano-islands of high crystal quality, without any dislocations or other extended defects, are grown on a c-plane sapphire substrate by plasma-assisted molecular beam epitaxy. Nano-island growth requires special conditions in terms of V/III ratio and substrate temperature, distinct from either film or nanocolumn growth. The insertion of a nitrided Ga layer can effectively improve the uniformity of the nano-islands in both shape and size. The islands are well faced truncated pyramids with island size ranged from 30 to 110 nm, and height ranged from 30 to 55 nm. On, the other hand, the density and facet of the GaN surface islands would be affected by the growth conditions. An increase of the V/III ratio from 30 to 40 led to an increase in density from 1.4 x 10(9) to 4.3 x 10(9) cm(-2) and an evolution from {1-21-1} facets to {1-21-2} facets. The GaN layers containing the surface islands can moderate the compressive strain due to the lattice and thermal mismatch between GaN and c-sapphire. Conductive atomic force microscopy shows that the off-axis sidewall facets are more electrically active than those at the island center. The formation of the GaN surface islands is strongly induced by the Ehrlich-Schwoebel barrier effect of preexisting islands grown in the early growth stage. GaN surface islands are ideal templates for growing nano-devices.

  1. NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth.

    PubMed

    Zha, Xiaojun; Hu, Zhongdong; Ji, Shuang; Jin, Fuquan; Jiang, Keguo; Li, Chunjia; Zhao, Pan; Tu, Zhenzhen; Chen, Xianguo; Di, Lijun; Zhou, Haisheng; Zhang, Hongbing

    2015-04-01

    Accumulating evidence indicates that mammalian target of rapamycin (mTOR) exerts a crucial role in aerobic glycolysis and tumorigenesis, but the underlying mechanisms remain largely obscure. Results from Tsc1- or Tsc2-null mouse embryonic fibroblasts (MEFs) and human cancer cell lines consistently indicate that the expression of glucose transporter 3 (Glut3) is dramatically up-regulated by mTOR. The rapamycin-sensitive mTOR complex 1 (mTORC1), but not the rapamycin-insensitive mTOR complex 2 (mTORC2), was involved in the regulation of Glut3 expression. Moreover, mTORC1 enhances Glut3 expression through the activation of the IKK/NFκB pathway. Depletion of Glut3 led to the suppression of aerobic glycolysis, the inhibition of cell proliferation and colony formation, and the attenuation of the tumorigenic potential of the cells with aberrantly hyper-activated mTORC1 signaling in nude mice. We conclude that Glut3 is a downstream target of mTORC1, and it is critical for oncogenic mTORC1-mediated aerobic glycolysis and tumorigenesis. Hence Glut3 may be a potential target for therapy against cancers caused by the aberrantly activated mTORC1 signaling.

  2. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess.

    PubMed

    Wyrwoll, Caitlin S; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R; Rog-Zielinska, Eva A; Moran, Carmel M; Seckl, Jonathan R; Chapman, Karen E; Holmes, Megan C

    2016-05-31

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2(-/-) mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2(+/+), Hsd11b2(+/-), and Hsd11b2(-/-) littermates from heterozygous (Hsd11b(+/-)) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2(-/-) fetuses did not undergo the normal gestational increase seen in Hsd11b2(+/+) littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2(-/-) fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2(-/-) fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2(-/-) fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction.

  3. Pravastatin ameliorates placental vascular defects, fetal growth, and cardiac function in a model of glucocorticoid excess

    PubMed Central

    Wyrwoll, Caitlin S.; Noble, June; Thomson, Adrian; Tesic, Dijana; Miller, Mark R.; Rog-Zielinska, Eva A.; Moran, Carmel M.; Seckl, Jonathan R.; Chapman, Karen E.; Holmes, Megan C.

    2016-01-01

    Fetoplacental glucocorticoid overexposure is a significant mechanism underlying fetal growth restriction and the programming of adverse health outcomes in the adult. Placental glucocorticoid inactivation by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) plays a key role. We previously discovered that Hsd11b2−/− mice, lacking 11β-HSD2, show marked underdevelopment of the placental vasculature. We now explore the consequences for fetal cardiovascular development and whether this is reversible. We studied Hsd11b2+/+, Hsd11b2+/−, and Hsd11b2−/− littermates from heterozygous (Hsd11b+/−) matings at embryonic day (E)14.5 and E17.5, where all three genotypes were present to control for maternal effects. Using high-resolution ultrasound, we found that umbilical vein blood velocity in Hsd11b2−/− fetuses did not undergo the normal gestational increase seen in Hsd11b2+/+ littermates. Similarly, the resistance index in the umbilical artery did not show the normal gestational decline. Surprisingly, given that 11β-HSD2 absence is predicted to initiate early maturation, the E/A wave ratio was reduced at E17.5 in Hsd11b2−/− fetuses, suggesting impaired cardiac function. Pravastatin administration from E6.5, which increases placental vascular endothelial growth factor A and, thus, vascularization, increased placental fetal capillary volume, ameliorated the aberrant umbilical cord velocity, normalized fetal weight, and improved the cardiac function of Hsd11b2−/− fetuses. This improved cardiac function occurred despite persisting indications of increased glucocorticoid exposure in the Hsd11b2−/− fetal heart. Thus, the pravastatin-induced enhancement of fetal capillaries within the placenta and the resultant hemodynamic changes correspond with restored fetal cardiac function. Statins may represent a useful therapeutic approach to intrauterine growth retardation due to placental vascular hypofunction. PMID:27185937

  4. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase.

    PubMed

    Shah, Naman B; Duncan, Thomas M

    2015-08-21

    F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.

  5. Lack of correlation between natural killer activity and tumor growth control in nude mice with different immune defects.

    PubMed

    Fodstad, O; Hansen, C T; Cannon, G B; Statham, C N; Lichtenstein, G R; Boyd, M R

    1984-10-01

    To elucidate the in vivo role of natural killer (NK) cells, the growth of several murine and human tumors was studied in four variants of athymic, nude mice with different levels of NK activity. Beige-nude mice, homozygous for both the beige and the nude genes, had very low levels of NK activity, and their response to the B-cell mitogen, bacterial lipopolysaccharide, was lower than that of high-NK, adult NIH nude mice. Young and adult NIH nudes had different NK levels and showed different response in assays for K-cell, T-cell, and B-cell activity. The B-cell-defective NIH-II mice had slightly lower NK levels than adult NIH animals, but much lower response in the antibody-dependent cell-mediated cytotoxicity assay. No correlation was found between host NK activity and the s.c. growth of various human (LOX, CEM, K562) and murine (YAC-1) tumor cells. Low NK activity was not associated with increased lung colony formation in a metastasis model using i.v.-injected human (LOX) and murine (B16F10) melanoma cells. No relationship was found between host NK activity and the rate of elimination of i.v.-injected 5-iodo-2'-deoxyuridine-labeled LOX, B16F10, and YAC-1 cells from lungs, liver, or spleen. The results fail to support the view that NK cells exert significant direct effects on tumor cells in vivo.

  6. The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants

    SciTech Connect

    Kawabe, N.; Yoshinao, M. )

    1991-07-01

    Growth plate cartilage cultivated in vitro was attached with a fibrin clot to a full-thickness articular cartilage defect on knee joints in allogeneic New Zealand rabbits. The healing of the defects was assessed by gross examination, light microscopy, and immunologic analysis for 24 weeks. Immunologic assessment of cell-mediated immunity, cytotoxicity of a humoral antibody by a 51 chromium release assay, and immunofluorescence studies were carried out. During the first two weeks following grafting, healing was excellent in 11 of the 17 defects. From three to 24 weeks, 11 of 42 defects examined had good results. Host lymphocytes had accumulated around the allograft at two to 12 weeks. Most of the implanted cartilage grown in vitro died and was replaced by fibrous tissue. The immunologic studies suggested that the implanted cartilage began to degenerate two to three weeks after implantation partially because of a humoral immune response but more importantly because of cell-mediated cytotoxicity.

  7. Defect-free zinc-blende structured InAs nanowires realized by in situ two V/III ratio growth in molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Lu, Zhen-Yu; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2015-08-07

    In this study, we devised a two-V/III-ratio procedure to control the Au-assisted growth of defect-free InAs nanowires in molecular beam epitaxy. The demonstrated two V/III ratio procedure consists of a first high V/III ratio growth step to prepare the nanowire foundation on the substrate surface, followed by a low V/III ratio step to induce the nanowire growth. By manipulating the V/III ratios in different steps, we have achieved the controlled growth of pure defect-free zinc-blende structured InAs nanowires on the GaAs {1̄1̄1̄} substrates. This study provides an approach to control not only the crystal structure of semiconductor nanowires, but also their structural qualities.

  8. Defect of hepatocyte growth factor production by fibroblasts in human pulmonary emphysema.

    PubMed

    Plantier, Laurent; Marchand-Adam, Sylvain; Marchal-Sommé, Joëlle; Lesèche, Guy; Fournier, Michel; Dehoux, Monique; Aubier, Michel; Crestani, Bruno

    2005-04-01

    Pulmonary emphysema results from an excessive degradation of lung parenchyma associated with a failure of alveolar repair. Secretion by pulmonary fibroblasts of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) is crucial to an effective epithelial repair after lung injury. We hypothesized that abnormal HGF or KGF secretion by pulmonary fibroblasts could play a role in the development of emphysema. We measured in vitro production of HGF and KGF by human fibroblasts cultured from emphysematous and normal lung samples. HGF and KGF production was quantified at basal state and after stimulation. Intracellular content of HGF was lower in emphysema (1.52 pg/mug, range of 0.15-7.40 pg/mug) than in control fibroblasts (14.16 pg/mug, range of 2.50-47.62 pg/mug; P = 0.047). HGF production by emphysema fibroblasts (19.3 pg/mug protein, range of 10.4-39.2 pg/mug) was lower than that of controls at baseline (57.5 pg/mug, range of 20.4-116 pg/mug; P = 0.019) and after stimulation with interleukin-1beta or prostaglandin E(2). Neither retinoic acids (all-trans and 9-cis) nor N-acetylcysteine could reverse this abnormality. KGF production by emphysema fibroblasts (5.3 pg/mug, range of 2.2-9.3 pg/mug) was similar to that of controls at baseline (2.6 pg/mug, range of 1-6.1 pg/mug; P = 0.14) but could not be stimulated with interleukin-1beta. A decreased secretion of HGF by pulmonary fibroblasts could contribute to the insufficient alveolar repair in pulmonary emphysema.

  9. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis.

    PubMed

    Besmer, Dahlia M; Curry, Jennifer M; Roy, Lopamudra D; Tinder, Teresa L; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y; Gendler, Sandra J; Mukherjee, Pinku

    2011-07-01

    MUC1 is overexpressed and aberrantly glycosylated in more than 60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In this study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared with both KC and KCM. Cell lines derived from KCKO tumors have significantly less tumorigenic capacity compared with cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared with mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor, platelet-derived growth factor, or matrix metalloproteinase 9. Further, significantly less KCKO cells entered the G(2)-M phase of the cell cycle compared with the KCM cells. Proteomics and Western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of mitogen-activated protein kinase (MAPK), as well as a significant decrease in nestin and tubulin-α2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro.

  10. Overexpression of the Nucleoporin CAN/NUP214 Induces Growth Arrest, Nucleocytoplasmic Transport Defects, and Apoptosis

    PubMed Central

    Boer, Judith; Bonten-Surtel, Jacqueline; Grosveld, Gerard

    1998-01-01

    The human CAN gene was first identified as a target of t(6;9)(p23;q34), associated with acute myeloid leukemia and myelodysplastic syndrome, which results in the expression of a DEK-CAN fusion gene. CAN, also called NUP214, is a nuclear pore complex (NPC) protein that contains multiple FG-peptide sequence motifs. It interacts at the NPC with at least two other proteins, the nucleoporin NUP88 and hCRM1 (exportin 1), which was recently shown to function as a nuclear export receptor. Depletion of CAN in knockout mouse embryonic cells results in cell cycle arrest in G2, followed by inhibition of nuclear protein import and a block of mRNA export. We overexpressed CAN and DEK-CAN in U937 myeloid precursor cells. DEK-CAN expression did not interfere with terminal myeloid differentiation of U937 cells, whereas CAN-overexpressing cells arrested in G0, accumulated mRNA in their nuclei, and died in an apoptotic manner. Interestingly, we found that hCRM1 and import factor p97/importin β colocalized with the ectopically expressed CAN protein, resulting in depletion of both factors from the NPC. Overexpression of the C-terminal FG-repeat region of CAN, which contains the binding site for hCRM1, caused sequestering of hCRM1 in the nucleoplasm and was sufficient to inhibit cell growth and to induce apoptosis. These results confirm that CAN plays a crucial role in nucleocytoplasmic transport and imply an essential role for hCRM1 in cell growth and survival. PMID:9488438

  11. The growth of Paracoccus halodenitrificans in a defined medium

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1984-01-01

    A synthetic medium, consisting of inorganic salts and any of a number of carbon sources, supported the aerobic growth of Paracoccus halodenitrificans when supplemented with thiamine. The same medium plus a nitrogenous oxide supported anaerobic growth when additionally supplemented with methionine. The observation that vitamin B12 or betaine replaced methionine suggested that P. halodenitrificans had a defect in the cobalamin dependent pathway for methionine biosynthesis, as well as the inability to synthesize betanine when growing anaerobically.

  12. The growth of paracoccus halodenitrificans in a defined medium

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Tomlinson, G. A.

    1983-01-01

    A synthetic medium, consisting of inorganic salts and any of a number of carbon sources, supported the aerobic growth of Paracoccus halodenitrificans when supplemented with thiamine. The same medium plus a nitrogenous oxide supported anaerobic growth when additionally supplemented with methionine. The observation that vitamin B12 or betaine replaced methionine suggested that P. halodenitrificans had a defect in the cobalamin dependent pathway for methionine biosynthesis, as well as the inability to synthesize betaine when growing anaerobically.

  13. Effect of insulin-like growth factor-1 and hyaluronic acid in experimentally produced osteochondral defects in rats

    PubMed Central

    Alemdar, Celil; Yücel, İstemi; Erbil, Barış; Erdem, Havva; Atiç, Ramazan; Özkul, Emin

    2016-01-01

    Background: The common purpose of almost all methods used to treat the osteochondral injuries is to produce a normal cartilage matrix. However current methods are not sufficient to provide a normal cartilage matrix. For that reason, researchers have studied to increase the effectiveness of this methods using chondrogenic and chondroprotective molecules in recent experimental studies. Insulin-like growth factor-1 (IGF-1) and hyaluronic acid (HA) are two important agents used in this field. This study compared the effects of IGF-1 and HA in an experimental osteochondral defect in rat femora. Materials and Methods: The rats were divided into three groups (n = 15 per group) as follows: The IGF-1 group, HA group, and control group. An osteochondral defect of a diameter of 1.5 mm and a depth of 2 mm was created on the patellar joint side of femoral condyles. The IGF-1 group received an absorbable gelatin sponge soaked with 15 μg/15 μl of IGF-1, and the HA group received an absorbable gelatin sponge soaked with 80 μg HA. The control group received only an absorbable gelatin sponge. Rats were sacrificed at the 6th week, and the femur condyles were evaluated histologically. Results: According to the total Mankin scale, there was a statistically significant difference between IGF-1 and HA groups and between IGF-1 and control groups. There was also a significant statistical difference between HA and control groups. Conclusion: It was shown histopathologically that IGF-1 is an effective molecule for osteochondral lesions. Although it is weaker than IGF-1, HA also strengthened the repair tissue. PMID:27512224

  14. Defect-free high Sn-content GeSn on insulator grown by rapid melting growth

    PubMed Central

    Liu, Zhi; Cong, Hui; Yang, Fan; Li, Chuanbo; Zheng, Jun; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2016-01-01

    GeSn is an attractive semiconductor material for Si-based photonics. However, large lattice mismatch between GeSn and Si and the low solubility of Sn in Ge limit its development. In order to obtain high Sn-content GeSn on Si, it is normally grown at low temperature, which would lead to inevitable dislocations. Here, we reported a single-crystal defect-free graded GeSn on insulator (GSOI) stripes laterally grown by rapid melting growth (RMG). The Sn-content reaches to 14.2% at the end of the GSOI stripe. Transmission electron microscopy observation shows the GSOI stripe without stacking fault and dislocations. P-channel pseudo metal-oxide-semiconductor field effect transistors (MOSFETs) and metal-semiconductor-metal (MSM) Schottky junction photodetectors were fabricated on these GSOIs. Good transistor performance with a low field peak hole mobility of 402 cm2/Vs is obtained, which indicates a high-quality of this GSOI structure. Strong near-infrared and short-wave infrared optical absorption of the MSM photodetectors at 1550 nm and 2000 nm were observed. Owing to high Sn-content and defect-free, responsivity of 236 mA/W@-1.5 V is achieved at 1550 nm wavelength. In addition, responsivity reaches 154 mA/W@-1.5 V at 2000 nm with the optical absorption layer only 200 nm-thick, which is the highest value reported for GeSn junction photodetectors until now. PMID:27941825

  15. Defect-free high Sn-content GeSn on insulator grown by rapid melting growth

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Cong, Hui; Yang, Fan; Li, Chuanbo; Zheng, Jun; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2016-12-01

    GeSn is an attractive semiconductor material for Si-based photonics. However, large lattice mismatch between GeSn and Si and the low solubility of Sn in Ge limit its development. In order to obtain high Sn-content GeSn on Si, it is normally grown at low temperature, which would lead to inevitable dislocations. Here, we reported a single-crystal defect-free graded GeSn on insulator (GSOI) stripes laterally grown by rapid melting growth (RMG). The Sn-content reaches to 14.2% at the end of the GSOI stripe. Transmission electron microscopy observation shows the GSOI stripe without stacking fault and dislocations. P-channel pseudo metal-oxide-semiconductor field effect transistors (MOSFETs) and metal-semiconductor-metal (MSM) Schottky junction photodetectors were fabricated on these GSOIs. Good transistor performance with a low field peak hole mobility of 402 cm2/Vs is obtained, which indicates a high-quality of this GSOI structure. Strong near-infrared and short-wave infrared optical absorption of the MSM photodetectors at 1550 nm and 2000 nm were observed. Owing to high Sn-content and defect-free, responsivity of 236 mA/W@-1.5 V is achieved at 1550 nm wavelength. In addition, responsivity reaches 154 mA/W@-1.5 V at 2000 nm with the optical absorption layer only 200 nm-thick, which is the highest value reported for GeSn junction photodetectors until now.

  16. Growth temperature dependence of Si doping efficiency and compensating deep level defect incorporation in Al{sub 0.7}Ga{sub 0.3}N

    SciTech Connect

    Armstrong, Andrew M. Moseley, Michael W.; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan J.

    2015-05-14

    The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al{sub 0.7}Ga{sub 0.3}N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, including thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al{sub 0.7}Ga{sub 0.3}N.

  17. Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride

    SciTech Connect

    Hrkac, Viktor Schürmann, Ulrich; Kienle, Lorenz; Kobler, Aaron; Kübel, Christian; Marauska, Stephan; Wagner, Bernhard; Petraru, Adrian; Kohlstedt, Hermann; Kiran Chakravadhanula, Venkata Sai; Duppel, Viola; Lotsch, Bettina Valeska

    2015-01-07

    The real structure and morphology of piezoelectric aluminum nitride (AlN) thin films as essential components of magnetoelectric sensors are investigated via advanced transmission electron microscopy methods. State of the art electron diffraction techniques, including precession electron diffraction and automated crystal orientation mapping (ACOM), indicate a columnar growth of the AlN grains optimized for piezoelectric application with a (0 0 0 1) texture. Comparing ACOM with piezoresponse force microscopy measurements, a visual correlation of the structure and the piezoelectric properties is enabled. With a quantitative analysis of the ACOM measurements, a statistical evaluation of grain rotations is performed, indicating the presence of coincidence site lattices with Σ7, Σ13a, Σ13b, Σ25. Using a geometric phase analysis on high resolution micrographs, the occurrence of strain is detected almost exclusively at the grain boundaries. Moreover, high resolution imaging was applied for solving the atomic structure at stacking mismatch boundaries with a displacement vector of 1/2 〈1 0 -1 1〉. All real structural features can be interpreted via simulations based on crystallographic computing in terms of a supercell approach.

  18. Defects and inhomogeneities in Fe3O4(111) thin film growth on Pt(111)

    NASA Astrophysics Data System (ADS)

    Sala, A.; Marchetto, H.; Qin, Z.-H.; Shaikhutdinov, S.; Schmidt, Th.; Freund, H.-J.

    2012-10-01

    Growth and surface termination of a Fe3O4(111) thin film on a Pt(111) surface were examined by a combination of low-energy electron microscopy, selected area low-energy electron diffraction (LEED), and x-ray-induced photoemission electron microscopy. The film exhibits the predominance of one out of two possible rotational domains, independent of film thickness. The morphology strongly depends on preparation conditions, e.g., at high oxidation temperature FeO/Pt(111) domains are formed that prevent the closure of the thin film. Dynamical LEED analysis and spot-profile analysis LEED (SPA-LEED) show that the surface exposes ¼ monolayer of Fe over a close-packed oxygen layer only when the sample is subsequently annealed in ultrahigh vacuum at 900 K. In contrast, the as-prepared films grown by oxidation at 1000 K and subsequent cooling down in oxygen, additionally exhibit small FeOx agglomerates that rest upon the canonical surface termination. Their formation as a function of the various preparation conditions of the thin film is discussed.

  19. What Is Aerobic Dancing?

    MedlinePlus

    ... aerobics can reach up to six times the force of gravity, which is transmitted to each of the 26 bones in the foot. Because of the many side-to-side motions, shoes need an arch design that will compensate ...

  20. Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance

    PubMed Central

    Xing, Shuping; Mehlhorn, Dietmar Gerald; Wallmeroth, Niklas; Asseck, Lisa Yasmin; Kar, Ritwika; Voss, Alessa; Denninger, Philipp; Schmidt, Vanessa Aphaia Fiona; Schwarzländer, Markus; Stierhof, York-Dieter

    2017-01-01

    Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins are key players in cellular trafficking and coordinate vital cellular processes, such as cytokinesis, pathogen defense, and ion transport regulation. With few exceptions, SNAREs are tail-anchored (TA) proteins, bearing a C-terminal hydrophobic domain that is essential for their membrane integration. Recently, the Guided Entry of Tail-anchored proteins (GET) pathway was described in mammalian and yeast cells that serve as a blueprint of TA protein insertion [Schuldiner M, et al. (2008) Cell 134(4):634–645; Stefanovic S, Hegde RS (2007) Cell 128(6):1147–1159]. This pathway consists of six proteins, with the cytosolic ATPase GET3 chaperoning the newly synthesized TA protein posttranslationally from the ribosome to the endoplasmic reticulum (ER) membrane. Structural and biochemical insights confirmed the potential of pathway components to facilitate membrane insertion, but the physiological significance in multicellular organisms remains to be resolved. Our phylogenetic analysis of 37 GET3 orthologs from 18 different species revealed the presence of two different GET3 clades. We identified and analyzed GET pathway components in Arabidopsis thaliana and found reduced root hair elongation in Atget lines, possibly as a result of reduced SNARE biogenesis. Overexpression of AtGET3a in a receptor knockout (KO) results in severe growth defects, suggesting presence of alternative insertion pathways while highlighting an intricate involvement for the GET pathway in cellular homeostasis of plants. PMID:28096354

  1. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  2. The treatment of segmental bone defects in rabbit tibiae with vascular endothelial growth factor (VEGF)-loaded gelatin/hydroxyapatite "cryogel" scaffold.

    PubMed

    Ozturk, Burak Yagmur; Inci, Ilyas; Egri, Sinan; Ozturk, Akif Muhtar; Yetkin, Haluk; Goktas, Guleser; Elmas, Cigdem; Piskin, Erhan; Erdogan, Deniz

    2013-10-01

    The aim of this study was to investigate the effectiveness of a novel hydroxyapatite containing gelatin scaffold--with and without local vascular endothelial growth factor (VEGF) administration--as the synthetic graft material in treatment of critical-sized bone defects. An experimental nonunion model was established by creating critical-sized (10 mm. in length) bone defects in the proximal tibiae of 30 skeletally mature New Zealand white rabbits. Following tibial intramedullary fixation, the rabbits were grouped into three: The defects were left empty in the first (control) group, the defects were grafted with synthetic scaffolds in the second group, and synthetic scaffolds loaded with VEGF were administered at bone defects in the third group. Five rabbits in each group were killed on 6th and 12th weeks, and new bone growth was assessed radiologically, histologically and with dual-energy X-ray absorptiometry (DEXA). At 6 weeks, VEGF-administered group had significantly better scores than the other two groups. The second group also had significantly better scores than the control group. At 12 weeks, while no significant difference was noted between the second and third groups, these two groups both had significantly better scores in all criteria compared with the control group. There were no signs of complete fracture healing in the control group. The administration of hydroxyapatite containing gelatin scaffold yielded favorable results in grafting the critical-sized bone defects in this experimental model. The local administration of VEGF on the graft had a positive effect in the early phase of fracture healing.

  3. A Longitudinal Study of Growth and Development and the Incidence of Physical Defects at Ages 9 and 10. A Progress Report to the Bernard van Leer Foundation on the Growth and Development Study of the Mt. Druitt Longitudinal Study.

    ERIC Educational Resources Information Center

    Clark, Anne; O'Brien, Peter

    A longitudinal comparative study was made of the physical growth and development of Australian fourth-grade students from low, medium, and high socioeconomic groups. Specific questions addressed were (1) Do children differing in socioeconomic status differ in anthropometric characteristics and incidence of physical defects? (2) What is the…

  4. Effects of concomitant use of fibroblast growth factor (FGF)-2 with beta-tricalcium phosphate ({beta}-TCP) on the beagle dog 1-wall periodontal defect model

    SciTech Connect

    Anzai, Jun; Kitamura, Masahiro; Nozaki, Takenori; Nagayasu, Toshie; Terashima, Akio; Asano, Taiji; Murakami, Shinya

    2010-12-17

    Research highlights: {yields} Concomitant use of FGF-2 and {beta}-TCP (an osteo-conductive scaffold) significantly promotes periodontal regeneration in the severe periodontitis model (1-wall defect model) of beagle dog. {yields} FGF-2 enhanced new bone formation via {beta}-TCP at the defects. {yields} In particular, FGF-2 dramatically regenerated new periodontal ligament and cementum formations at the defects, that is one of the most important healing outcomes during the process of periodontal regeneration. {yields} Epithelial downgrowth (undesirable wound healing) was decreased by administration of FGF-2. {yields} This manuscript indicates for the first time that concomitant use of FGF-2 and {beta}-TCP is efficacious in regenerating periodontal tissue following severe destruction of the tissue by progression of periodontitis. -- Abstract: The effects of concomitant use of fibroblast growth factor-2 (FGF-2) and beta-tricalcium phosphate ({beta}-TCP) on periodontal regeneration were investigated in the beagle dog 1-wall periodontal defect model. One-wall periodontal defects were created in the mesial portion of both sides of the mandibular first molars, and 0.3% FGF-2 plus {beta}-TCP or {beta}-TCP alone was administered. Radiographic evaluation was performed at 0, 3, and 6 weeks. At 6 weeks, the periodontium with the defect site was removed and histologically analyzed. Radiographic findings showed that co-administration of FGF-2 significantly increased bone mineral contents of the defect sites compared with {beta}-TCP alone. Histologic analysis revealed that the length of the regenerated periodontal ligament, the cementum, distance to the junctional epithelium, new bone height, and area of newly formed bone were significantly increased in the FGF-2 group. No abnormal inflammatory response or ankylosis was observed in either group. These findings indicate the efficacy of concomitant use of FGF-2 and {beta}-TCP as an osteoconductive material for periodontal

  5. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  6. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    SciTech Connect

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung; Hwang, Sung-Chul; Seong Hwang, Eun; Yoon, Gyesoon

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  7. An Intracellular Iron Chelator Pleiotropically Suppresses Enzymatic and Growth Defects of Superoxide Dismutase-Deficient Escherichia coli

    PubMed Central

    Maringanti, Sujatha; Imlay, James A.

    1999-01-01

    Mutants of Escherichia coli that lack cytoplasmic superoxide dismutase (SOD) exhibit auxotrophies for sulfur-containing, branched-chain, and aromatic amino acids and cannot catabolize nonfermentable carbon sources. A secondary-site mutation substantially relieved all of these growth defects. The requirement for fermentable carbon and the branched-chain auxotrophy occur because superoxide (O2−) leaches iron from the [4Fe-4S] clusters of a family of dehydratases, thereby inactivating them; the suppression of these phenotypes was mediated by the restoration of activity to these dehydratases, evidently without changing the intracellular concentration of O2−. Cloning, complementation, and sequence analysis identified the suppressor mutation to be in dapD, which encodes tetrahydrodipicolinate succinylase, an enzyme involved in diaminopimelate and lysine biosynthesis. A block in dapB, which encodes dihydrodipicolinate reductase in the same pathway, conferred similar protection. Genetic analysis indicated that the protection stems from the intracellular accumulation of tetrahydro- or dihydrodipicolinate. Heterologous expression in the SOD mutants of the dipicolinate synthase of Bacillus subtilis generated dipicolinate and similarly protected them. Dipicolinates are excellent iron chelators, and their accumulation in the cell triggered derepression of the Fur regulon and a large increase in the intracellular pool of free iron, presumably as a dipicolinate chelate. A fur mutation only partially relieved the auxotrophies, indicating that Fur derepression assists but is not sufficient for suppression. It seems plausible that the abundant internal iron permits efficient reactivation of superoxide-damaged iron-sulfur clusters. This result provides circumstantial evidence that the sulfur and aromatic auxotrophies of SOD mutants are also directly or indirectly linked to iron metabolism. PMID:10368155

  8. Methyl Anthranilate, an Inhibitor for the Germination of Spores of Aerobic Bacilli

    PubMed Central

    Prasad, Chandan; Srinivasan, V. R.

    1969-01-01

    Methylanthranilate inhibited the germination of spores of aerobic bacilli without affecting growth and sporulation. The inhibition of germination could not be reversed by removal of methylanthranilate. PMID:4979580

  9. 2D ultrathin core-shell Pd@Ptmonolayer nanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance

    NASA Astrophysics Data System (ADS)

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-07-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst. Electronic supplementary information (ESI) available: Sample preparation, physical and electrochemical characterization, Fig. S1 to S11. See DOI: 10.1039/c5nr02748a

  10. Experimental bone defect healing with xenogenic demineralized bone matrix and bovine fetal growth plate as a new xenograft: radiological, histopathological and biomechanical evaluation.

    PubMed

    Bigham, A S; Dehghani, S N; Shafiei, Z; Nezhad, S Torabi

    2009-02-01

    The following study was designed to evaluate xenogenic bovine demineralized bone matrix (DBM) and new xenograft (Bovine fetal growth plate) effects on bone healing process. Twenty male White New Zealand rabbits were used in this study. In group I (n = 10) the defect was filled by xenogenic DBM and in group II (n = 10) the defect was filled by a segment of bovine fetal growth plate and was fixed by cercelage wire. Radiological, histopathological, and biomechanical evaluations were performed blindly and results scored and analyzed statistically. Statistical tests did not support significant differences between two groups radiographically (P > 0.05). There was a significant difference for union at the 28th postoperative radiologically (P < 0.05). Xenograft was superior to DBM group at the 28th postoperative day for radiological union (P < 0.03). Histopathological and biomechanical evaluation revealed no significant differences between two groups. In conclusion, the results of this study indicate that satisfactory healing occurred in rabbit radius defect filled with xenogenic bovine DBM and xenogenic bovine fetal growth plate. Complications were not identified and healing was faster in two grafting groups.

  11. Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources.

    PubMed

    Alippi, Adriana M; Reynaldi, Francisco J

    2006-03-01

    The bacterium Paenibacillus larvae, the causative agent of American foulbrood disease of honeybee larvae, occurs throughout the world and is found in many beekeeping areas of Argentina. The potential as biocontrol agents of antagonic aerobic spore-forming bacteria isolated from honey samples and other apiarian sources were evaluated. Each isolate was screened against one strain of Paenibacillus larvae (ATCC 9545) by using a perpendicular streak technique. Ten randomly selected bacterial strains from the group that showed the best antagonistic effect to P. larvae ATCC 9545 were selected for further study. These were identified as Bacillus subtilis (m351), B. pumilus (m350), B. licheniformis (m347), B. cereus (mv33), B. cereus (m387), B. cereus (m6c), B. megaterium (m404), Brevibacillus laterosporus (BLAT169), B. laterosporus (BLAT170), and B. laterosporus (BLAT171). The antagonistic strains were tested against 17 P. larvae strains from different geographical origins by means of a spot test in wells. The analysis of variance and posterior comparison of means by Tukey method (P < 0.01) showed that the best antagonists were B. megaterium (m404), B. licheniformis (m347), B. cereus (m6c), B. cereus (mv33), and B. cereus (m387).

  12. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  13. [Population development characteristics of rice crop cultivated on aerobic soil with mulching].

    PubMed

    Sheng, Haijun; Shen, Qirong; Feng, Ke

    2004-01-01

    Field experiments were carried out to study the population development characteristics of rice crop cultivated both on aerobic and waterlogged soil conditions. The results showed that the whole growth duration of rice growing on aerobic soil was one week longer than that on waterlogged soil. Shorter and narrower leaves and smaller LAI of rice population were found on aerobic soil than on waterlogged soil, which resulted in a decreased photosynthesis, smaller amount and lighter weight of rice grains on aerobic soil, compared with those on waterlogged soil. Among the aerobic treatments, more tillers, lower percentage of filled grains and shorter duration of grain forming were found on soils covered with plastic film than on soils covered with semi-decomposed straw or without mulching. The rice grain yield was decreased in the order of waterlogged soil > aerobic soil covered with plastic film > aerobic soil covered with semi-decomposed straw > aerobic soil without mulching.

  14. Implementation of Aerobic Programs.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This information is intended for health professionals interested in implementing aerobic exercise programs in public schools, institutions of higher learning, and business and industry workplaces. The papers are divided into three general sections. The introductory section presents a basis for adhering to a health fitness lifestyle, using…

  15. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  16. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  17. Differential sensitivity of aerobic gram-positive and gram-negative microorganisms to 2,4,6-trinitrotoluene (TNT) leads to dissimilar growth and TNT transformation: Results of soil and pure culture studies

    SciTech Connect

    Fuller, M.E.; Manning, J.F. Jr.

    1996-07-30

    The effects of 2,4,6-trinitrotoluene (TNT) on indigenous soil populations and pure bacterial cultures were examined. The number of colony-forming units (CFU) appearing when TNT-contaminated soil was spread on 0.3% molasses plates decreased by 50% when the agar was amended with 67 {mu}g TNT mL{sup -1}, whereas a 99% reduction was observed when uncontaminated soil was plated. Furthermore, TNT-contaminated soil harbored a greater number of organisms able to grow on plates amended with greater than 10 {mu}g TNT mL{sup -1}. The percentage of gram-positive isolates was markedly less in TNT-contaminated soil (7%; 2 of 30) than in uncontaminated soil (61%; 20 of 33). Pseudomonas aeruginosa, Pseudomonas corrugate, Pseudomonasfluorescens and Alcaligenes xylosoxidans made up the majority of the gram-negative isolates from TNT-contaminated soil. Gram-positive isolates from both soils demonstrated marked growth inhibition when greater than 8-16 {mu}g TNT mL{sup -1} was present in the culture media. Most pure cultures of known aerobic gram-negative organisms readily degraded TNT and evidenced net consumption of reduced metabolites. However, pure cultures of aerobic gram-positive bacteria were sensitive to relatively low concentrations of TNT as indicated by the 50% reduction in growth and TNT transformation which was observed at approximately 10 {mu}g TNT mL{sup -1}. Most non-sporeforming gram-positive organisms incubated in molasses media amended with 80 {mu}g TNT mL{sup -1} or greater became unculturable, whereas all strains tested remained culturable when incubated in mineral media amended with 98 {mu}g TNT mL{sup -1}, indicating that TNT sensitivity is likely linked to cell growth. These results indicate that gram-negative organisms are most likely responsible for any TNT transformation in contaminated soil, due to their relative insensitivity to high TNT concentrations and their ability to transform TNT.

  18. Adenovirus encoding human platelet-derived growth factor-B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use.

    PubMed

    Chang, Po-Chun; Cirelli, Joni A; Jin, Qiming; Seol, Yang-Jo; Sugai, James V; D'Silva, Nisha J; Danciu, Theodora E; Chandler, Lois A; Sosnowski, Barbara A; Giannobile, William V

    2009-05-01

    Platelet-derived growth factor (PDGF) gene therapy offers promise for tissue engineering of tooth-supporting alveolar bone defects. To date, limited information exists regarding the safety profile and systemic biodistribution of PDGF gene therapy vectors when delivered locally to periodontal osseous defects. The aim of this preclinical study was to determine the safety profile of adenovirus encoding the PDGF-B gene (AdPDGF-B) delivered in a collagen matrix to periodontal lesions. Standardized alveolar bone defects were created in rats, followed by delivery of matrix alone or containing AdPDGF-B at 5.5 x 10(8) or 5.5 x 10(9) plaque-forming units/ml. The regenerative response was confirmed histologically. Gross clinical observations, hematology, and blood chemistries were monitored to evaluate systemic involvement. Bioluminescence and quantitative polymerase chain reaction were used to assess vector biodistribution. No significant histopathological changes were noted during the investigation. Minor alterations in specific hematological and blood chemistries were seen; however, most parameters were within the normal range for all groups. Bioluminescence analysis revealed vector distribution at the axillary lymph nodes during the first 2 weeks with subsequent return to baseline levels. AdPDGF-B was well contained within the localized osseous defect area without viremia or distant organ involvement. These results indicate that AdPDGF-B delivered in a collagen matrix exhibits acceptable safety profiles for possible use in human clinical studies.

  19. The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis

    PubMed Central

    Lum, Julian J.; Bui, Thi; Gruber, Michaela; Gordan, John D.; DeBerardinis, Ralph J.; Covello, Kelly L.; Simon, M. Celeste; Thompson, Craig B.

    2007-01-01

    Mammalian cells are believed to have a cell-intrinsic ability to increase glucose metabolism in response to hypoxia. Here we show that the ability of hematopoietic cells to up-regulate anaerobic glycolysis in response to hypoxia is dependent on receptor-mediated signal transduction. In the absence of growth factor signaling, hematopoietic cells fail to express hypoxia-inducible transcription factor (Hif-1α) mRNA. Growth factor-deprived hematopoietic cells do not engage in glucose-dependent anabolic synthesis and neither express Hif-1α mRNA nor require HIF-1α protein to regulate cell survival in response to hypoxia. However, HIF-1α is adaptive for the survival of growth factor-stimulated cells, as suppression of HIF-1α results in death when growing cells are exposed to hypoxia. Growth factor-dependent HIF-1α expression reprograms the intracellular fate of glucose, resulting in decreased glucose-dependent anabolic synthesis and increased lactate production, an effect that is enhanced when HIF-1α protein is stabilized by hypoxia. Together, these data suggest that HIF-1α contributes to the regulation of growth factor-stimulated glucose metabolism even in the absence of hypoxia. PMID:17437992

  20. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect.

    PubMed Central

    Paidhungat, M; Garrett, S

    1997-01-01

    Previous studies attributed the yeast (Saccharomyces cerevisiae) cdc1(Ts) growth defect to loss of an Mn2+-dependent function. In this report we show that cdc1(Ts) temperature-sensitive growth is also associated with an increase in cytosolic Ca2+. We identified two recessive suppressors of the cdc1(Ts) temperature-sensitive growth which block Ca2+ uptake and accumulation, suggesting that cytosolic Ca2+ exacerbates or is responsible for the cdc1(Ts) growth defect. One of the cdc1(Ts) suppressors is identical to a gene, MID1, recently implicated in mating pheromone-stimulated Ca2+ uptake. The gene (CCH1) corresponding to the second suppressor encodes a protein that bears significant sequence similarity to the pore-forming subunit (alpha1) of plasma membrane, voltage-gated Ca2+ channels from higher eukaryotes. Strains lacking Mid1 or Cch1 protein exhibit a defect in pheromone-induced Ca2+ uptake and consequently lose viability upon mating arrest. The mid1delta and cch1delta mutants also display reduced tolerance to monovalent cations such as Li+, suggesting a role for Ca2+ uptake in the calcineurin-dependent ion stress response. Finally, mid1delta cch1delta double mutants are, by both physiological and genetic criteria, identical to single mutants. These and other results suggest Mid1 and Cch1 are components of a yeast Ca2+ channel that may mediate Ca2+ uptake in response to mating pheromone, salt stress, and Mn2+ depletion. PMID:9343395

  1. Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shu, Guoyang; Dai, Bing; Ralchenko, V. G.; Khomich, A. A.; Ashkinazi, E. E.; Bolshakov, A. P.; Bokova-Sirosh, S. N.; Liu, Kang; Zhao, Jiwen; Han, Jiecai; Zhu, Jiaqi

    2017-04-01

    We studied defects and stress distributions in mosaic epitaxial diamond film using a confocal Raman spectroscopy, with a special attention to the junction area between the crystals. The mosaics was grown by microwave plasma CVD on closely arranged (1 0 0)-oriented HPHT type Ib substrates. The width of stress affected and defect enriched region around the junction show a tendency of extending with the film thickness, from ≈40 μm on the film-substrate interface to ≈250 μm in the layer 500 μm above the substrate, as found from the mosaics analysis in cross-section. The stress field around the junction demonstrates a complex pattern, with mixed domains of tensile and compressive stress, with maximum value of σ ≈ 0.6 GPa. A similar non-uniform pattern was observed for defect distribution as well. No sign of amorphous sp2 carbon in the junction zone was revealed.

  2. Reversion of lethality and growth defects in Fatiga oxygen-sensor mutant flies by loss of hypoxia-inducible factor-alpha/Sima.

    PubMed

    Centanin, Lázaro; Ratcliffe, Peter J; Wappner, Pablo

    2005-11-01

    Hypoxia-Inducible Factor (HIF) prolyl hydroxylase domains (PHDs) have been proposed to act as sensors that have an important role in oxygen homeostasis. In the presence of oxygen, they hydroxylate two specific prolyl residues in HIF-alpha polypeptides, thereby promoting their proteasomal degradation. So far, however, the developmental consequences of the inactivation of PHDs in higher metazoans have not been reported. Here, we describe novel loss-of-function mutants of fatiga, the gene encoding the Drosophila PHD oxygen sensor, which manifest growth defects and lethality. We also report a null mutation in dHIF-alpha/sima, which is unable to adapt to hypoxia but is fully viable in normoxic conditions. Strikingly, loss-of-function mutations of sima rescued the developmental defects observed in fatiga mutants and enabled survival to adulthood. These results indicate that the main functions of Fatiga in development, including control of cell size, involve the regulation of dHIF/Sima.

  3. Reversion of lethality and growth defects in Fatiga oxygen-sensor mutant flies by loss of Hypoxia-Inducible Factor-α/Sima

    PubMed Central

    Centanin, Lázaro; Ratcliffe, Peter J; Wappner, Pablo

    2005-01-01

    Hypoxia-Inducible Factor (HIF) prolyl hydroxylase domains (PHDs) have been proposed to act as sensors that have an important role in oxygen homeostasis. In the presence of oxygen, they hydroxylate two specific prolyl residues in HIF-α polypeptides, thereby promoting their proteasomal degradation. So far, however, the developmental consequences of the inactivation of PHDs in higher metazoans have not been reported. Here, we describe novel loss-of-function mutants of fatiga, the gene encoding the Drosophila PHD oxygen sensor, which manifest growth defects and lethality. We also report a null mutation in dHIF-α/sima, which is unable to adapt to hypoxia but is fully viable in normoxic conditions. Strikingly, loss-of-function mutations of sima rescued the developmental defects observed in fatiga mutants and enabled survival to adulthood. These results indicate that the main functions of Fatiga in development, including control of cell size, involve the regulation of dHIF/Sima. PMID:16179946

  4. Analysis of defect structure in silicon. Silicon sheet growth development for the large area silicon sheet task of the Low-Cost Solar array Project

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Mena, M.; Plichta, M.; Smith, J. M.; Sellani, M. A.

    1982-01-01

    One hundred ninety-three silicon sheet samples, approximately 880 square centimeters, were analyzed for twin boundary density, dislocation pit density, and grain boundary length. One hundred fifteen of these samples were manufactured by a heat exchanger method, thirty-eight by edge defined film fed growth, twenty-three by the silicon on ceramics process, and ten by the dendritic web process. Seven solar cells were also step-etched to determine the internal defect distribution on these samples. Procedures were developed or the quantitative characterization of structural defects such as dislocation pits, precipitates, twin & grain boundaries using a QTM 720 quantitative image analyzing system interfaced with a PDP 11/03 mini computer. Characterization of the grain boundary length per unit area for polycrystalline samples was done by using the intercept method on an Olympus HBM Microscope.

  5. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation.

  6. Aerobic glycolysis suppresses p53 activity to provide selective protection from apoptosis upon loss of growth signals or inhibition of BCR-Abl

    PubMed Central

    Mason, Emily F.; Zhao, Yuxing; Goraksha-Hicks, Pankuri; Coloff, Jonathan L.; Gannon, Hugh; Jones, Stephen N.; Rathmell, Jeffrey C.

    2010-01-01

    Unlike the growth factor-dependence of normal cells, cancer cells can maintain growth factor-independent glycolysis and survival through expression of oncogenic kinases, such as BCR-Abl. While targeted kinase inhibition can promote cancer cell death, therapeutic resistance develops frequently and further mechanistic understanding is needed. Cell metabolism may be central to this cell death pathway, as we have shown that growth factor deprivation leads to decreased glycolysis that promotes apoptosis via p53 activation and induction of the pro-apoptotic protein Puma. Here, we extend these findings to demonstrate that elevated glucose metabolism, characteristic of cancer cells, can suppress PKCδ-dependent p53 activation to maintain cell survival after growth factor withdrawal. In contrast, DNA damage-induced p53 activation was PKCδ-independent and was not metabolically sensitive. Both stresses required p53 serine 18 phosphorylation for maximal activity but led to unique patterns of p53 target gene expression, demonstrating distinct activation and response pathways for p53 that were differentially regulated by metabolism. Consistent with oncogenic kinases acting to replace growth factors, treatment of BCR-Abl-expressing cells with the kinase inhibitor imatinib led to reduced metabolism and p53- and Puma-dependent cell death. Accordingly, maintenance of glucose uptake inhibited p53 activation and promoted imatinib resistance. Furthermore, inhibition of glycolysis enhanced imatinib sensitivity in BCR-Abl-expressing cells with wild type p53 but had little effect on p53 null cells. These data demonstrate that distinct pathways regulate p53 after DNA damage and metabolic stress and that inhibiting glucose metabolism may enhance the efficacy of and overcome resistance to targeted molecular cancer therapies. PMID:20876800

  7. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  8. Perinatal Natural History of the Ts1Cje Mouse Model of Down Syndrome: Growth Restriction, Early Mortality, Heart Defects, and Delayed Development

    PubMed Central

    Ferrés, Millie A.; Bianchi, Diana W.; Siegel, Ashley E.; Bronson, Roderick T.; Huggins, Gordon S.; Guedj, Faycal

    2016-01-01

    Background The Ts1Cje model of Down syndrome is of particular interest for perinatal studies because affected males are fertile. This permits affected pups to be carried in wild-type females, which is similar to human pregnancies. Here we describe the early natural history and growth profiles of Ts1Cje embryos and neonates and determine if heart defects are present in this strain. Methods Pups were studied either on embryonic (E) day 15.5, or from postnatal (P) day 3 through weaning on P21. PCR amplification targeting the neomycin cassette (present in Ts1Cje) and Sry (present in males) was used to analyze pup genotypes and sex ratios. Body weights and lengths, as well as developmental milestones, were recorded in Ts1Cje mice and compared to their wild-type (WT) littermates. Histological evaluations were performed at E15.5 to investigate the presence or absence of heart defects. Pups were divided into two groups: Ts1Cje-I pups survived past weaning and Ts1Cje-II pups died at some point before P21. Results Ts1Cje mouse embryos showed expected Mendelian ratios (45.8%, n = 66 for Ts1Cje embryos; 54.2%, n = 78 for WT embryos). Histological analysis revealed the presence of ventricular septal defects (VSDs) in 21% of Ts1Cje E15.5 embryos. After weaning, only 28.2% of pups were Ts1Cje (185 Ts1Cje out of 656 total pups generated), with males predominating (male:female ratio of 1.4:1). Among the recovered dead pups (n = 207), Ts1Cje (63.3%, n = 131, p<0.01) genotype was found significantly more often than WT (36.7%, n = 76). Retrospective analysis of Ts1Cje-II (pre-weaning deceased) pups showed that they were growth restricted compared to Ts1Cje-I pups (post-weaning survivors). Growth restriction correlated with statistically significant delays in achieving several neonatal milestones between P3 and P21 compared to Ts1Cje-I (post-weaning survivors) neonates and WT littermates. Conclusions Ts1Cje genotype is not associated with increased early in utero mortality. Cardiac

  9. Generating controlled reducing environments in aerobic recombinant Escherichia coli fermentations: effects on cell growth, oxygen uptake, heat shock protein expression, and in vivo CAT activity.

    PubMed

    Gill, R T; Cha, H J; Jain, A; Rao, G; Bentley, W E

    1998-07-20

    The independent control of culture redox potential (CRP) by the regulated addition of a reducing agent, dithiothreitol (DTT) was demonstrated in aerated recombinant Escherichia coli fermentations. Moderate levels of DTT addition resulted in minimal changes to specific oxygen uptake, growth rate, and dissolved oxygen. Excessive levels of DTT addition were toxic to the cells resulting in cessation of growth. Chloramphenicol acetyltransferase (CAT) activity (nmoles/microgram total protein min.) decreased in batch fermentation experiments with respect to increasing levels of DTT addition. To further investigate the mechanisms affecting CAT activity, experiments were performed to assay heat shock protein expression and specific CAT activity (nmoles/microgram CAT min.). Expression of such molecular chaperones as GroEL and DnaK were found to increase after addition of DTT. Additionally, sigma factor 32 (sigma32) and several proteases were seen to increase dramatically during addition of DTT. Specific CAT activity (nmoles/microgram CAT min. ) varied greatly as DTT was added, however, a minimum in activity was found at the highest level of DTT addition in E. coli strains RR1 [pBR329] and JM105 [pROEX-CAT]. In conjunction, cellular stress was found to reach a maximum at the same levels of DTT. Although DTT addition has the potential for directly affecting intracellular protein folding, the effects felt from the increased stress within the cell are likely the dominant effector. That the effects of DTT were measured within the cytoplasm of the cell suggests that the periplasmic redox potential was also altered. The changes in specific CAT activity, molecular chaperones, and other heat shock proteins, in the presence of minimal growth rate and oxygen uptake alterations, suggest that the ex vivo control of redox potential provides a new process for affecting the yield and conformation of heterologous proteins in aerated E. coli fermentations.

  10. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair

    PubMed Central

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing

    2014-01-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. PMID:25154784

  11. Growth and Defect Characterization of Quantum Dot-Embedded III-V Semiconductors for Advanced Space Photovoltaics

    DTIC Science & Technology

    2014-05-15

    provide, which could be useful in the future development of intermediate band solar cell (IBSC) devices. Defect spectroscopy was also performed on OMVPE...grown InAs/GaAs QD-embedded solar cells . A large increase in mid-gap trap density surrounding the embedded QDs was found and points to a potentially... cell calibration, high altitude solar cell calibration, high altitude balloon solar cell calibration, III-V compound semiconductors, solar cells

  12. Aerobic secondary utilization of a non-growth and inhibitory substrate 2,4,6-trichlorophenol by Sphingopyxis chilensis S37 and sphingopyxis-like strain S32.

    PubMed

    Aranda, Carlos; Godoy, Félix; Becerra, José; Barra, Ricardo; Martínez, Miguel

    2003-08-01

    This paper reports 2,4,6-trichlorophenol (246TCP) degradation by Sphingopyxis chilensis S37 and Sphingopyxis chilensis-like strain S32, which were unable to use 246TCP as the sole carbon and energy source. In R2A broth, the strains degraded 246TCP up to 0.5 mM. Results with mixtures of different 246TCP and glucose concentrations in mineral salt media demonstrated dependence on glucose to allow bacterial growth and degradation of 246TCP. Strain S32 degraded halophenol up to 0.2 mM when 5.33 mM glucose was simultaneously added, while strain S37 degraded the compound up to 0.1 mM when 1.33 mM glucose was added. These 246TCP concentrations were lethal for inocula in absence of glucose. Stoichiometric releases of chloride and analysis by HPLC, GC-ECD and GC-MS indicated 246TCP mineralisation by both strains. To our knowledge, this is the first report of bacteria able to mineralize a chlorophenol as a non-growth and inhibitory substrate. The concept of secondary utilization instead of cometabolism is proposed for this activity.

  13. Ethanol-induced impairment of polyamine homeostasis – A potential cause of neural tube defect and intrauterine growth restriction in fetal alcohol syndrome

    SciTech Connect

    Haghighi Poodeh, Saeid; Alhonen, Leena; Salonurmi, Tuire; Savolainen, Markku J.

    2014-03-28

    Highlights: • Polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. • Alcohol administration perturbs polyamine levels in the tissues with various patterns. • Total absence of polyamines in the embryo head at 9.5 dpc is critical for development. • The deficiency is associated with reduction in endothelial cell sprouting in the head. • Retarded migration of neural crest cells may cause development of neural tube defect. - Abstract: Introduction: Polyamines play a fundamental role during embryogenesis by regulating cell growth and proliferation and by interacting with RNA, DNA and protein. The polyamine pools are regulated by metabolism and uptake from exogenous sources. The use of certain inhibitors of polyamine synthesis causes similar defects to those seen in alcohol exposure e.g. retarded embryo growth and endothelial cell sprouting. Methods: CD-1 mice received two intraperitoneal injections of 3 g/kg ethanol at 4 h intervals 8.75 days post coitum (dpc). The fetal head, trunk, yolk sac and placenta were collected at 9.5 and 12.5 dpc and polyamine concentrations were determined. Results: No measurable quantity of polyamines could be detected in the embryo head at 9.5 dpc, 12 h after ethanol exposure. Putrescine was not detectable in the trunk of the embryo at that time, whereas polyamines in yolk sac and placenta were at control level. Polyamine deficiency was associated with slow cell growth, reduction in endothelial cell sprouting, an altered pattern of blood vessel network formation and consequently retarded migration of neural crest cells and growth restriction. Discussion: Our results indicate that the polyamine pools in embryonic and extraembryonic tissues are developmentally regulated. Alcohol administration, at the critical stage, perturbs polyamine levels with various patterns, depending on the tissue and its developmental stage. The total absence of polyamines in the embryo head at 9.5 dpc may explain why this

  14. Influence of acidic fibroblast growth factor on bone regeneration in experimental cranial defects using spongostan and Bio-Oss as protein carriers.

    PubMed

    Arias-Gallo, Javier; Chamorro-Pons, Manuel; Avendaño, Carlos; Giménez-Gallego, Guillermo

    2013-09-01

    The objective of this study was to valuate 2 substances as potential carriers of fibroblast growth factor 1 (FGF-1) in a rat craniectomy model: gelatin sponge (Spongostan; Ferrosan A/S, Søborg, Denmark) and natural bone mineral (Bio-Oss; Geistlich Biomaterials, Wolhusen, Switzerland).Forty-eight adult male Sprague-Dawley rats were used. A 5-mm-diameter circular craniectomy was performed in the left parietal bone. Animals were divided into 6 experimental groups of 8 rats, each group receiving a different treatment: control (no substance added), Spongostan, Bio-Oss, FGF, FGF + Spongostan, and FGF + Bio-Oss. Animals were killed 12 weeks after surgery.Descriptive histology and stereology were used, the latter to measure the volumes of regenerated bone and Bio-Oss remaining in the defect. Analysis of variance was used to determine differences in bone regeneration between groups, and Mann-Whitney U test was used to compare the volume of remaining Bio-Oss particles.Histologically, the control defects behaved like critical size defects, showing incomplete bone regeneration. Only the FGF + Spongostan group achieved nearly complete bone regeneration. Bio-Oss particles seemed to reduce centripetal bone regeneration. Spongostan by itself did not interfere with spontaneous bone healing.Stereologic measurements of the volume of new bone growth, measured in cubic millimeter, were as follows: control group, 3.86 ± 1.03; Bio-Oss, 2.26 ± 1.06; Spongostan, 3.00 ± 0.81; FGF, 3.99 ± 1.85; FGF + Bio-Oss, 3.02 ± 1.88; and FGF + Spongostan, 8.93 ± 1.28. Analysis of variance showed a statistically significant difference between the FGF + Spongostan group and the other groups (P < 0.001). Comparison among the other groups did not show significant differences.Fibroblast growth factor 1 with a Spongostan carrier has shown great efficacy for bone regeneration in cranial critical size defects in rats. Bio-Oss did not produce a regenerative effect, either alone or with FGF-1.

  15. Birth Defects

    MedlinePlus

    ... how the body looks, works or both. Some birth defects like cleft lip or neural tube defects are structural problems that can be easy to see. To find others, like heart defects, doctors use special tests. Birth defects can vary from mild to severe. Some ...

  16. Defect blocking via laterally induced growth of semipolar (1 0 1̅ 1) GaN on patterned substrates

    NASA Astrophysics Data System (ADS)

    Khoury, Michel; Vennéguès, Philippe; Leroux, Mathieu; Delaye, Vincent; Feuillet, Guy; Zúñiga-Pérez, Jesus

    2016-11-01

    Semipolar (1 0 \\overline{1}  1) GaN thin films with state-of-the-art optical and structural quality have been obtained on silicon substrates by metal organic chemical vapor deposition using a novel defect reduction method. We initially apply a classical patterning approach on Si (0 0 1) {{7}\\circ} off substrates to reveal the Si (1 1 1) facets over which the subsequent inclined epitaxy will be carried out. After the growth of AlN, the sample is etched with \\text{S}{{\\text{F}}6} before the GaN growth is done on the same structure. The process has shown to induce the spontaneous formation of a defect blocking layer that substantially reduces the presence of threading dislocations and basal stacking faults. This is confirmed by correlated optical and structural characterizations. Further, a simple model explaining the origin and working-principle of the blocking layer will be discussed.

  17. Aminoglycoside-resistant mutants of Pseudomonas aeruginosa deficient in cytochrome d, nitrite reductase, and aerobic transport.

    PubMed Central

    Bryan, L E; Kwan, S

    1981-01-01

    Two gentamicin-resistant mutants of Pseudomonas aeruginosa PAO 503 were selected after ethyl methane sulfonate mutagenesis. Mutant PAO 2403 had significantly increased resistance to aminoglycoside but not to other antibiotics. Mutant PAO 2402 showed a similar spectrum of resistance but of lower magnitude. Both mutants showed no detectable cytochrome d and had a high frequency of reversion to a fully wild-type phenotype. PAO 2403 had a marked decrease and PAO 2402 had a moderate decrease in nitrite reductase activity. Both mutants had reduced uptake of gentamicin and dihydrostreptomycin. Mutant PAO 2403 showed a general decrease in transport rate of cationic compounds, whereas mutant PAO 2402 had only deficient glucose transport. Both mutants showed enhanced rates of glutamine transport and no change in glutamic acid transport. Other components of electron transport and oxidative phosphorylation were normal. These mutants involve ferrocytochrome C551 oxidoreductase formed only on anaerobic growth but illustrate transport defects in aerobically grown cells. PMID:6791588

  18. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  19. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  20. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  1. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  2. Development of Aerobic Fitness in Young Team Sport Athletes.

    PubMed

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

  3. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.

    PubMed

    Usongo, Valentine; Martel, Makisha; Balleydier, Aurélien; Drolet, Marc

    2016-04-01

    R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low

  4. Effect of defects in oxide templates on Non-catalytic growth of GaN nanowires for high-efficiency light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hwang, Sung Won; Choi, Suk-Ho

    2016-04-01

    Two kinds of oxide templates, one with and one without undercuts, are employed to study the effect of defects in oxide templates on non-catalytic growth of GaN nanowires (NWs). GaN NWs abnormally grown from the templates containing undercuts exhibit two types of patterns: earlystage growth of premature NWs and abnormally-overgrown (~2 μm) NWs. GaN NWs grown on perfectly-symmetric template patterns are highly crystalline and have high aspect ratios (2 ~ 5), and their tops are shaped as pyramids with semipolar facets, clearly indicating hexagonal symmetry. The internal quantum efficiency of the well-grown NWs is 10% larger than that of the deformed NWs, as estimated by using photoluminescence. These results suggest that our technique is an effective approach for growing large-area-patterned, vertically-aligned, hexagonal GaN NWs without catalysts, in strong contrast to catalytic vapor-liquid-solid growth, and that good formation of the oxide templates is crucial for the growth of high-quality GaN NWs.

  5. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas

    NASA Astrophysics Data System (ADS)

    Margetis, J.; Mosleh, A.; Al-Kabi, S.; Ghetmiri, S. A.; Du, W.; Dou, W.; Benamara, M.; Li, B.; Mortazavi, M.; Naseem, H. A.; Yu, S.-Q.; Tolle, J.

    2017-04-01

    High quality, thick (up to 1.1 μm), strain relaxed GeSn alloys were grown on Ge-buffered Si (1 0 0) in an ASM Epsilon® chemical vapor deposition system using SnCl4 and low-cost commercial GeH4 precursors. The significance of surface chemistry in regards to growth rate and Sn-incorporation is discussed by comparing growth kinetics data in H2 and N2 carrier gas. The role of carrier gas is also explored in the suppression of Sn surface segregation and evolution of layer composition and strain profiles via secondary ion mass spectrometry and X-ray diffraction. Transmission electron microscopy revealed the spontaneous compositional splitting and formation of a thin intermediate layer in which dislocations are pinned. This intermediate layer enables the growth of a thick, strain relaxed, and defect-free epitaxial layer on its top. Last, we present photoluminescence results which indicate that both N2 and H2 growth methods produce optoelectronic device quality material.

  6. Molecular defects in the chondrodysplasias

    SciTech Connect

    Rimoin, D.L.

    1996-05-03

    There has been a recent explosion of knowledge concerning the biochemical and molecular defects in the skeletal dysplasia. Through both the candidate gene approach and positional cloning, specific gene defects that produce the skeletal dysplasia have been identified and may be classified into several general categories: (1) qualitative or quantitative abnormalities in the structural proteins of cartilage; (2) inborn errors of cartilage metabolism; (3) defects in local regulators of cartilage growth; and (4) systemic defects influencing cartilage development. 35 refs., 1 tab.

  7. Increased readthrough transcription across the simian virus 5 M-F gene junction leads to growth defects and a global inhibition of viral mRNA synthesis.

    PubMed

    Parks, G D; Ward, K R; Rassa, J C

    2001-03-01

    Recombinant simian virus 5 (rSV5) mutants containing substitutions in the M-F intergenic region were generated to determine the effect of increased readthrough transcription on the paramyxovirus growth cycle. We have previously shown, using an SV5 dicistronic minigenome, that replacement of the 22-base M-F intergenic region with a foreign sequence results in a template (Rep22) that directs very high levels of M-F readthrough transcription. An rSV5 containing the Rep22 substitution grew slower and to final titers that were 50- to 80-fold lower than those of wild-type (WT) rSV5. Cells infected with the Rep22 virus produced very low levels of monocistronic M and F mRNA, consistent with the M-F readthrough phenotype. Surprisingly, Rep22 virus-infected cells also displayed a global decrease in the accumulation of viral mRNA from genes located upstream and downstream of the M-F junction, and overall viral protein synthesis was reduced. Second-site revertants of the Rep22 virus that had regained WT transcription and growth properties contained a single base substitution that increased the M gene end U tract from four to eight residues, suggesting that the growth defects originated from higher-than-normal M-F readthrough transcription. Thus, the primary growth defect for the Rep22 virus appears to be in viral RNA synthesis and not in morphogenesis. A second rSV5 virus (G14), which contained a different foreign M-F intergenic sequence, grew to similar or slightly higher titers than WT rSV5 in some cell types and produced ~1.5- to 2-fold more mRNA and viral protein. The data support the hypothesis that inhibition of Rep22 virus growth is due to increased access by the polymerase to the 5' end of the genome and to the resulting overexpression of L protein. We propose that the elevated naturally occurring M-F readthrough which is characteristic of many paramyxoviruses serves as a mechanism to fine-tune the level of polymerase that is optimal for virus growth.

  8. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  9. Growth suppression by an E2F-binding-defective retinoblastoma protein (RB): contribution from the RB C pocket.

    PubMed

    Whitaker, L L; Su, H; Baskaran, R; Knudsen, E S; Wang, J Y

    1998-07-01

    Growth suppression by the retinoblastoma protein (RB) is dependent on its ability to form complexes with transcription regulators. At least three distinct protein-binding activities have been identified in RB: the large A/B pocket binds E2F, the A/B pocket binds the LXCXE peptide motif, and the C pocket binds the nuclear c-Abl tyrosine kinase. Substitution of Trp for Arg 661 in the B region of RB (mutant 661) inactivates both E2F and LXCXE binding. The tumor suppression function of mutant 661 is not abolished, because this allele predisposes its carriers to retinoblastoma development with a low penetrance. In cell-based assays, 661 is shown to inhibit G1/S progression. This low-penetrance mutant also induces terminal growth arrest with reduced but detectable activity. We have constructed mutations that disrupt C pocket activity. When overproduced, the RB C-terminal fragment did not induce terminal growth arrest but could inhibit G1/S progression, and this activity was abolished by the C-pocket mutations. In full-length RB, the C-pocket mutations reduced but did not abolish RB function. Interestingly, combination of the C-pocket and 661 mutations completely abolished RB's ability to cause an increase in the percentage of cells in G1 and to induce terminal growth arrest. These results suggest that the A/B or C region can induce a prolongation of G1 through mechanisms that are independent of each other. In contrast, long-term growth arrest requires combined activities from both regions of RB. In addition, E2F and LXCXE binding are not the only mechanisms through which RB inhibits cell growth. The C pocket also contributes to RB-mediated growth suppression.

  10. Crystal growth, defects, and mechanical and spectral properties of a novel mixed laser crystal Nd:GdYNbO4

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Liu, Wenpeng; Zhang, Qingli; Peng, Fang; Luo, Jianqiao; Dou, Renqin; Sun, Guihua; Sun, Dunlu

    2017-01-01

    A mixed laser crystal of Nd-doped GYNO crystal was grown successfully by Czochralski method. The crystal belongs to monoclinic system with space group I2/a, the structural parameters are obtained by the X-ray Rietveld refinement method. The defects and dislocations along three crystallographic orientations were studied by using the chemical etching method with the phosphoric acid etchant. The mechanical properties (including hardness, yield strength, fracture toughness, and brittle index) of the crystal were estimated by Vickers hardness test. The transmission spectrum was measured at room temperature, and the absorption peaks were assigned. Spectral properties of the as-grown crystal were investigated by Judd-Ofelt theory, and the Judd-Ofelt intense parameters Ω2,4,6 were obtained to be 9.674 × 10-20, 2.092 × 10-20, and 4.061 × 10-20 cm2, respectively.

  11. Genetic and Functional Studies Implicate Synaptic Overgrowth and Ring Gland cAMP/PKA Signaling Defects in the Drosophila melanogaster Neurofibromatosis-1 Growth Deficiency

    PubMed Central

    Walker, James A.; Gouzi, Jean Y.; Long, Jennifer B.; Huang, Sidong; Maher, Robert C.; Xia, Hongjing; Khalil, Kheyal; Ray, Arjun; Van Vactor, David; Bernards, René; Bernards, André

    2013-01-01

    Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise

  12. Two null alleles for the insulin receptor and a concomitant defect of the epidermal growth factor receptor in a severe form of leprechaunism

    SciTech Connect

    Longo, N.; Langley, S.D.; Griffin, L.D.; Elsas, L.J.

    1994-09-01

    Leprechaunism is an autosomal recessive disorder caused by mutations in the insulin receptor gene and characterized by growth restriction and severe insulin-resistance. Here we report the characterization of a female patient, GE, who died at 7 weeks of age with a severe form of this syndrome. {sup 126}I-Insulin binding to fibroblasts from patient GE, her mother and father was reduced to 5, 40, and 28 percent of controls, respectively. Analysis of other tyrosine kinase receptors indicated that the proband`s cells had a concomitant defect in EGF binding, which was reduced to 20-40% of matched controls. Binding of IGF-I and PDGF-AA was normal in the proband`s cells. Defective EGF binding was due to decreased affinity for EGF (K{sub D} =6.8 nM, normal range 0.5-1.5 nM) with a minor reduction in the number of EGF binding sites. Reduced EGF binding in the proband`s fibroblasts was accompanied by decreased ability of EGF to simulate DNA synthesis and by reduced in vitro growth. EGF binding was normal in fibroblasts cultured from both parents. Analysis of the insulin receptor gene by PCR amplification using primers flanking each of the 22 exons and direct DNA sequencing identified two different mutations in patient GE. The paternal allele had a single nucleotide insertion in exon 10 which changed the codon for Thr 657 (ACC) to Asp (GAC) in the insulin repector cDNA. The resulting frame shift produced a premature STOP codon in position 665. The maternal mutation was an insertion of a single nucleotide in exon 10 which converted the codon for Cys 682 (TGC) to a STOP codon (TAG). We conclude that patient GE was a compound heterozygote for two null alleles in the insulin receptor gene. The concomitant partial defect in the EGF receptor may be secondary to the complete absence of functional insulin receptors which in turn may further impair growth.

  13. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  14. Ricinus communis-based biopolymer and epidermal growth factor regulations on bone defect repair: A rat tibia model

    NASA Astrophysics Data System (ADS)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Altuzar, V.; Tomás, S. A.

    2003-01-01

    We report the effect of the addition of an epidermal growth factor to a Ricinus communis-based biopolymer in the healing of a rat tibia model. Bone repair and osteointegration after a period of three weeks were evaluated employing photoacoustic spectroscopy and x-ray diffraction. A parallel study was performed at 1, 2, 3, 4, 5, 6, 7, and 8 weeks with energy dispersive x-ray spectroscopy. We conclude that the use of an epidermal growth factor (group EGF) in vivo accelerates the process of bony repair in comparison with other groups, and that the employment of the Ricinus communis-based biopolymer as a bone substitute decreases bone production.

  15. Growth and structure of GaN layers on silicon carbide synthesized on a Si substrate by the substitution of atoms: A model of the formation of V-defects during the growth of GaN

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Rozhavskaya, M. M.; Myasoedov, A. V.; Troshkov, S. I.; Lundin, V. V.; Sorokin, L. M.; Tsatsul'nikov, A. F.

    2015-09-01

    This paper presents the results of the electron microscopic study of GaN/AlGaN/AlN/SiC/Si(111) structures grown by the metal-organic vapor phase epitaxy. A SiC epitaxial buffer nanolayer has been grown by a new method of substitution of atoms on the Si(111) substrate. It has been found that there is a strong dependence of the density of dislocations and V-defects on the synthesis conditions of SiC and the thickness of the AlN layer. It has been proved experimentally that the creation of a low-temperature AlN insert with a simultaneous decrease in the thickness of the AlN layer to values of no more than 50 nm makes it possible to almost completely prevent the formation of V-defects in the GaN layer. The density of screw and mixed dislocations in the GaN layer of the studied samples lies in the range from 5 × 109 to 1 × 1010 cm-2. A theoretical model of the formation of V-defects during the growth of GaN has been developed.

  16. Aerobic biodegradation of selected monoterpenes.

    PubMed

    Misra, G; Pavlostathis, S G; Perdue, E M; Araujo, R

    1996-07-01

    Batch experiments were conducted to assess the biotransformation potential of four hydrocarbon monoterpenes (d-limonene, alpha-pinene, gamma-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and alpha-terpineol) under aerobic conditions at 23 degrees C. Both forest-soil extract and enriched cultures were used as inocula for the biodegradation experiments conducted first without, then with prior microbial acclimation to the monoterpenes tested. All four hydrocarbons and two alcohols were readily degraded. The increase in biomass and headspace CO2 concentrations paralleled the depletion of monoterpenes, thus confirming that terpene disappearance was the result of biodegradation accompanied by microbial growth and mineralization. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. A significant fraction of d-limonene-derived carbon was accounted for as non-extractable, dissolved organic carbon, whereas terpineol exhibited a much higher degree of utilization. The rate and extent of monoterpene biodegradation were not significantly affected by the presence of dissolved natural organic matter.

  17. Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice.

    PubMed

    Awasthy, Disha; Bharath, Sowmya; Subbulakshmi, Venkita; Sharma, Umender

    2012-02-01

    Alanine racemase (Alr) is an essential enzyme in most bacteria; however, some species (e.g. Listeria monocytogenes) can utilize d-amino acid transaminase (Dat) to generate d-alanine, which renders Alr non-essential. In addition to the conflicting reports on gene knockout of alr in Mycobacterium smegmatis, a recent study concluded that depletion of Alr does not affect the growth of M. smegmatis. In order to get an unambiguous answer on the essentiality of Alr in Mycobacterium tuberculosis and validate it as a drug target in vitro and in vivo, we have inactivated the alr gene of M. tuberculosis and found that it was not possible to generate an alr knockout in the absence of a complementing gene copy or d-alanine in the growth medium. The growth kinetics of the alr mutant revealed that M. tuberculosis requires very low amounts of d-alanine (5-10 µg ml(-1)) for optimum growth. Survival kinetics of the mutant in the absence of d-alanine indicated that depletion of this amino acid results in rapid loss of viability. The alr mutant was found to be defective for growth in macrophages. Analysis of phenotype in mice suggested that non-availability of d-alanine in mice leads to clearance of bacteria followed by stabilization of bacterial number in lungs and spleen. Additionally, reversal of d-cycloserine inhibition in the presence of d-alanine in M. tuberculosis suggested that Alr is the primary target of d-cycloserine. Thus, Alr of M. tuberculosis is a valid drug target and inhibition of Alr alone should result in loss of viability in vitro and in vivo.

  18. The Effect of the Wall Contact and Post-Growth C001-Down on Defects in CdTe Crystals Grown by Contactless PVT

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Dudley, M.; Raghothamachar, B.; Cai, L.; Durose, K.; Halliday, D.; Boyall, N. M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    In crystal growth, the quality of the final material may depend, among other factors, on its interaction with the walls of the ampoule during and after the growth, and on the rate of the crystal cool-down at the end of ate the process. To investigate the above phenomena, a series of CdTe crystal growth processes was carried out, The crystals were grown by physical vapor transport without contact with the side walls of the silica glass ampoules, applying the Low Supersaturation Nucleation technique. The source temperature was 930 C, the undercooling was a few degrees. The crystals, having the diameter of 25 mm, grew at the rate of a few mm per day. The post-growth cool-down to the room temperature was conducted at different rates, and lasted from a few minutes to four days. The crystals were characterized using chemical etching low temperature luminescence, and Synchrotron White Beam X-ray Topography techniques. The dislocation (etch pit) density was measured and its distribution was analyzed by comparison with Poisson curves and with the Normalized Radial Distribution Correlation Function. It was found that the contact of the crystal with silica leads to a strain field and high (in the 105 sq cm range) dislocation (etch pit) density. Similar defect concentrations were found in crystals subjected to fast post-growth cool-down. Typical EPD values for lower cool-down rates and in regions not affected by wall interactions are in the lower 10(exp 4) sq cm range. In some areas the actual dislocation density was about 10(exp 3) sq cm or even less. No apparent effect of the cool-down rate on polygonization was observed. A fine structure could be discerned in low-temperature PL spectra of crystals with low dislocation density.

  19. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418.

    PubMed Central

    Forage, R G; Lin, E C

    1982-01-01

    In Klebsiella pneumoniae NCIB 418, the pathways normally responsible for aerobic growth on glycerol and sn-glycerol 3-phosphate (the glp system) are superrepressed. However, aerobic growth on glycerol can take place by the intervention of the NAD-linked glycerol dehydrogenase and the ATP-dependent dihydroxyacetone kinase of the dha system normally inducible only anaerobically by glycerol or dihydroxyacetone. Conclusive evidence that the dha system is responsible for both aerobic and anaerobic dissimilation of glycerol was provided by a Tn5 insertion mutant lacking dihydroxyacetone kinase. An enzymatically coupled assay specific for this enzyme was devised. Spontaneous reactivation of the glp system was achieved by selection for aerobic growth on sn-glycerol 3-phosphate or on limiting glycerol as the sole carbon and energy source. However, the expression of this system became constitutive. Aerobic operation of the glp system highly represses synthesis of the dha system enzymes by catabolite repression. Images PMID:6284704

  20. Clinical Evaluation of Insulin like Growth Factor-I and Vascular Endothelial Growth Factor with Alloplastic Bone Graft Material in the Management of Human Two Wall Intra-Osseous Defects

    PubMed Central

    Dixit, Jaya

    2016-01-01

    Introduction In recent years, emphasis on the use of growth factors for periodontal healing is gaining great momentum. Several growth factors showed promising results in periodontal regeneration. Aim This study was designed to compare the clinical outcomes of 0.8μg recombinant human Vascular Endothelial Growth Factor (rh-VEGF) and 10μg recombinant human Insulin Like Growth Factor-I (rh-IGF-I) with β-Tricalcium Phosphate (β-TCP) and Polylactide-Polyglycolide Acid (PLGA) membrane in two wall intra-osseous defects. Materials and Methods A total of 29 intra-osseous defects in 27 subjects were randomly divided into 3 test and 1 control group. Test group I (n=8) received rh-VEGF+ rh-IGF-I, Test group II (n=7) rh-VEGF, Test group III (n=7) rh-IGF-I and control group (n=7) with no growth factor, β-TCP and PLGA membrane was used in all the groups. Baseline soft tissue parameters including Probing Pocket Depth (PPD), Clinical Attachment Level (CAL), and Gingival Recession (GR) at selected sites were recorded at baseline and at 6 months. Intrasurgically, intra-osseous component was calculated as a) Cemento-Enamel Junction to Bone Crest (CEJ to BC), b) Bone Crest to Base of the Defect (BC to BD) at baseline and at re-entry. The mean changes at baseline and after 6 months within each group were compared using Wilcoxon Signed Rank Test. The mean changes for each parameter between groups were compared using Mann-Whitney U test. Results After 6 months, maximum mean PPD reduction occurred in test group I followed by test group II, III and control group. Similar trend was observed in CAL gain. Non-significant GR was present in test group I and control group whereas in test group II and III GR was absent. The use of rh-VEGF+ rhIGF-I exhibited 95.8% osseous fill as compared to 54.8% in test group II, 52.7% in test group III and 41.1 % in the control group. Conclusion Within the limitations of this study, it can be concluded that, rh-IGF-I+rh-VEGF treated sites resulted in greater

  1. Platelet-Derived Growth Factor-Mediated Guided Bone Regeneration in Immediate Implant Placement in Molar Sites with Buccal Bone Defects.

    PubMed

    Santana, Ronaldo B; Santana, Carolina Mm; Dibart, Serge

    2015-01-01

    This study compared the clinical outcomes of recombinant human platelet-derived growth factor BB and beta-tricalcium phosphate (rhPDGF-BB/βTCP) with guided bone regeneration (GBR) in immediate implant placement in molar extraction sockets with buccal bone defects versus conventional implant placement. Twenty-eight implants were placed in fourteen patients. Clinical and radiographic evaluations assessed peri-implant soft and hard tissue parameters after 12 months. No implants were lost during the 1-year observation period, yielding a survival rate of 100%. Similar clinical and radiographic parameters were observed for both treatment groups. Use of rhPDGF-BB/βTCP and GBR in immediate implants in molars was as successful as conventional implant placement in fully healed extraction sites.

  2. Metabolomics Revealed an Association of Metabolite Changes and Defective Growth in Methylobacterium extorquens AM1 Overexpressing ecm during Growth on Methanol.

    PubMed

    Cui, Jinyu; Good, Nathan M; Hu, Bo; Yang, Jing; Wang, Qianwen; Sadilek, Martin; Yang, Song

    2016-01-01

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targeted metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm over-expressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. This research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.

  3. Metabolomics Revealed an Association of Metabolite Changes and Defective Growth in Methylobacterium extorquens AM1 Overexpressing ecm during Growth on Methanol

    PubMed Central

    Hu, Bo; Yang, Jing; Wang, Qianwen; Sadilek, Martin; Yang, Song

    2016-01-01

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targeted metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)–meso-diaminopimelic acid (mDAP) and Ala–mDAP–Ala, each over 45-fold higher in the ecm over-expressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. This research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens. PMID:27116459

  4. Metabolomics revealed an association of metabolite changes and defective growth in Methylobacterium extorquens AM1 overexpressing ecm during growth on methanol

    DOE PAGES

    Cui, Jinyu; Good, Nathan M.; Hu, Bo; ...

    2016-04-26

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targetedmore » metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm overexpressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. Lastly, this research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.« less

  5. Overexpression of 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases causes growth defects possibly due to abnormal auxin transport in Arabidopsis.

    PubMed

    Kim, Bokyung; Kim, Gyusik; Fujioka, Shozo; Takatsuto, Suguru; Choe, Sunghwa

    2012-07-01

    Sterols play crucial roles as membrane components and precursors of steroid hormones (e.g., brassinosteroids, BR). Within membranes, sterols regulate membrane permeability and fluidity by interacting with other lipids and proteins. Sterols are frequently enriched in detergent-insoluble membranes (DIMs), which organize molecules involved in specialized signaling processes, including auxin transporters. To be fully functional, the two methyl groups at the C-4 position of cycloartenol, a precursor of plant sterols, must be removed by bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases (3βHSD/D). To understand the role of 3βHSD/D in Arabidopsis development, we analyzed the phenotypes of knock-out mutants and overexpression lines of two 3βHSD/D genes (At1g47290 and At2g26260). Neither single nor double knock-out mutants displayed a noticeable phenotype; however, overexpression consistently resulted in plants with wrinkled leaves and short inflorescence internodes. Interestingly, the internode growth defects were opportunistic; even within a plant, some stems were more severely affected than others. Endogenous levels of BRs were not altered in the overexpression lines, suggesting that the growth defect is not primarily due to a flaw in BR biosynthesis. To determine if overexpression of the sterol biosynthetic genes affects the functions of membrane-localized auxin transporters, we subjected plants to the auxin efflux carrier inhibitor, 1-N-naphthylphthalamic acid (NPA). Where-as the gravity vectors of wild-type roots became randomly scattered in response to NPA treatment, those of the overexpression lines continued to grow in the direction of gravity. Overexpression of the two Arabidopsis 3βHSD/D genes thus appears to affect auxin transporter activity, possibly by altering sterol composition in the membranes.

  6. A missense mutation in the glucosamine-6-phosphate N-acetyltransferase-encoding gene causes temperature-dependent growth defects and ectopic lignin deposition in Arabidopsis.

    PubMed

    Nozaki, Mamoru; Sugiyama, Munetaka; Duan, Jun; Uematsu, Hiroshi; Genda, Tatsuya; Sato, Yasushi

    2012-08-01

    To study the regulatory mechanisms underlying lignin biosynthesis, we isolated and characterized lignescens (lig), a previously undescribed temperature-sensitive mutant of Arabidopsis thaliana that exhibits ectopic lignin deposition and growth defects under high-temperature conditions. The lig mutation was identified as a single base transition in GNA1 encoding glucosamine-6-phosphate N-acetyltransferase (GNA), a critical enzyme of UDP-N-acetylglucosamine (UDP-GlcNAc) biosynthesis. lig harbors a glycine-to-serine substitution at residue 68 (G68S) of GNA1. Enzyme activity assays of the mutant protein (GNA1(G68S)) showed its thermolability relative to the wild-type protein. The lig mutant exposed to the restrictive temperature contained a significantly smaller amount of UDP-GlcNAc than did the wild type. The growth defects and ectopic lignification of lig were suppressed by the addition of UDP-GlcNAc. Since UDP-GlcNAc is an initial sugar donor of N-glycan synthesis and impaired N-glycan synthesis is known to induce the unfolded protein response (UPR), we examined possible relationships between N-glycan synthesis, UPR, and the lig phenotype. N-glycans were reduced and LUMINAL BINDING PROTEIN3, a typical UPR gene, was expressed in lig at the restrictive temperature. Furthermore, treatment with UPR-inducing reagents phenocopied the lig mutant. Our data collectively suggest that impairment of N-glycan synthesis due to a shortage of UDP-GlcNAc leads to ectopic lignin accumulation, mostly through the UPR.

  7. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  8. Flux pinning properties in YBCO films with growth-controlled nano-dots and heavy-ion irradiation defects

    NASA Astrophysics Data System (ADS)

    Sueyoshi, T.; Kotaki, T.; Uraguchi, Y.; Suenaga, M.; Makihara, T.; Fujiyoshi, T.; Ishikawa, N.

    2016-11-01

    In order to clarify the influence of size and spatial distribution of three-dimensional pinning centres (3D-PCs) on hybrid flux pinning, columnar defects (CDs) were installed by using 200 MeV Xe ions along the c-axis direction into quasi-multilayered films consisting of YBa2Cu3Oy layers and pseudo layers of BaSnO3. The positive effect of the BaSnO3 doping on the hybrid flux pinning stands out for the critical current density Jc around B || c in high magnetic field and/or inclined magnetic field off the c-axis, which is more remarkable for the multilayered film grown at higher temperature, possibly due to larger BaSnO3 nano-dots. In the case of the in-plane distributed BaSnO3 nano-dots, the Jc around B || ab is remarkably enhanced, whereas there is a detrimental effect on the Jc around B || c. These imply that the tuning of 3D-PCs is one of the keys to improve the Jc at all magnetic field orientations for the hybrid flux pinning.

  9. A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis.

    PubMed

    Yang, Guohua; Gao, Peng; Zhang, Hua; Huang, Shanjin; Zheng, Zhi-Liang

    2007-10-24

    Root hair tip growth provides a unique model system for the study of plant cell polarity. Transgenic plants expressing constitutively active (CA) forms of ROP (Rho-of-plants) GTPases have been shown to cause the disruption of root hair polarity likely as a result of the alteration of actin filaments (AF) and microtubules (MT) organization. Towards understanding the mechanism by which ROP controls the cytoskeletal organization during root hair tip growth, we have screened for CA-rop2 suppressors or enhancers using CA1-1, a transgenic line that expresses CA-rop2 and shows only mild disruption of tip growth. Here, we report the characterization of a CA-rop2 enhancer (cae1-1 CA1-1) that exhibits bulbous root hairs. The cae1-1 mutation on its own caused a waving and branching root hair phenotype. CAE1 encodes the root hair growth-related, ARM domain-containing kinesin-like protein MRH2 (and thus cae1-1 was renamed to mrh2-3). Cortical MT displayed fragmentation and random orientation in mrh2 root hairs. Consistently, the MT-stabilizing drug taxol could partially rescue the wavy root hair phenotype of mrh2-3, and the MT-depolymerizing drug Oryzalin slightly enhanced the root hair tip growth defect in CA1-1. Interestingly, the addition of the actin-depolymerizing drug Latrunculin B further enhanced the Oryzalin effect. This indicates that the cross-talk of MT and AF organization is important for the mrh2-3 CA1-1 phenotype. Although we did not observe an apparent effect of the MRH2 mutation in AF organization, we found that mrh2-3 root hair growth was more sensitive to Latrunculin B. Moreover, an ARM domain-containing MRH2 fragment could bind to the polymerized actin in vitro. Therefore, our genetic analyses, together with cell biological and pharmacological evidence, suggest that the plant-specific kinesin-related protein MRH2 is an important component that controls MT organization and is likely involved in the ROP2 GTPase-controlled coordination of AF and MT during

  10. Metabolomics revealed an association of metabolite changes and defective growth in Methylobacterium extorquens AM1 overexpressing ecm during growth on methanol

    SciTech Connect

    Cui, Jinyu; Good, Nathan M.; Hu, Bo; Yang, Jing; Wang, Qianwen; Sadilek, Martin; Yang, Song; Berg, Ivan A.

    2016-04-26

    Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multi-carbon compounds. The ethylmalonyl-CoA (EMC) pathway is one of the central assimilatory pathways in M. extorquens during growth on C1 and C2 substrates. Previous studies had shown that ethylmalonyl-CoA mutase functioned as a control point during the transition from growth on succinate to growth on ethylamine. In this study we overexpressed ecm, phaA, mcmAB and found that upregulating ecm by expressing it from the strong constitutive mxaF promoter caused a 27% decrease in growth rate on methanol compared to the strain with an empty vector. Targeted metabolomics demonstrated that most of the central intermediates in the ecm over-expressing strain did not change significantly compared to the control strain; However, poly-β-hydroxybutyrate (PHB) was 4.5-fold lower and 3-hydroxybutyryl-CoA was 1.6-fold higher. Moreover, glyoxylate, a toxic and highly regulated essential intermediate, was determined to be 2.6-fold higher when ecm was overexpressed. These results demonstrated that overexpressing ecm can manipulate carbon flux through the EMC pathway and divert it from the carbon and energy storage product PHB, leading to an accumulation of glyoxylate. Furthermore, untargeted metabolomics discovered two unusual metabolites, alanine (Ala)-meso-diaminopimelic acid (mDAP) and Ala-mDAP-Ala, each over 45-fold higher in the ecm overexpressing strain. These two peptides were also found to be highly produced in a dose-dependent manner when glyoxylate was added to the control strain. Overall, this work has explained a direct association of ecm overexpression with glyoxylate accumulation up to a toxic level, which inhibits cell growth on methanol. Lastly, this research provides useful insight for manipulating the EMC pathway for efficiently producing high-value chemicals in M. extorquens.

  11. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  12. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    , molecular beam epitaxy (MBE) delivers high quality ZnMgO-ZnO quantum well structures. Other thin film techniques such as PLD or MOCVD are also widely used. The main problem at present is to consistently achieve reliable p-type doping. For this topic, see also Chap. 5. In the past years, there have been numerous publications on p-type doping of ZnO, as well as ZnO p-n junctions and light emitting diodes (LEDs). However, a lot of these reports are in one way or the other inconsistent or at least incomplete. It is quite clear from optical data that once a reliable hole injection can be achieved, high brightness ZnO LEDs should be possible. In contrast to that expectation, none of the LEDs reported so far shows efficient light emission, as would be expected from a reasonable quality ZnO-based LED. See also Chap. 13. As a matter of fact, there seems to be no generally accepted and reliable technique for p-type doping available at present. The reason for this is the unfavorable position of the band structure of ZnO relative to the vacuum level, with a very low lying valence band. See also Fig. 5.1. This makes the incorporation of electrically active acceptors difficult. Another difficulty is the huge defect density in ZnO. There are many indications that defects play a major role in transport and doping. In order to solve the doping problem, it is generally accepted that the quality of the ZnO material grown by the various techniques needs to be improved. Therefore, the optimization of ZnO epitaxy is thought to play a key role in the further development of this material system. Besides being used as an active material in optoelectronic devices, ZnO plays a major role as transparent contact material in thin film solar cells. Polycrystalline, heavily n-type doped ZnO is used for this, combining a high electrical conductivity with a good optical transparency. In this case, ZnO thin films are fabricated by large area growth techniques such as sputtering. For this and other

  13. Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth

    PubMed Central

    Basenko, Evelina Y.; Sasaki, Takahiko; Ji, Lexiang; Prybol, Cameron J.; Burckhardt, Rachel M.; Schmitz, Robert J.; Lewis, Zachary A.

    2015-01-01

    H3K9 methylation directs heterochromatin formation by recruiting multiple heterochromatin protein 1 (HP1)-containing complexes that deacetylate histones and methylate cytosine bases in DNA. In Neurospora crassa, a single H3K9 methyltransferase complex, called the DIM-5,-7,-9, CUL4, DDB1 Complex (DCDC), is required for normal growth and development. DCDC-deficient mutants are hypersensitive to the genotoxic agent methyl methanesulfonate (MMS), but the molecular basis of genotoxic stress is unclear. We found that both the MMS sensitivity and growth phenotypes of DCDC-deficient strains are suppressed by mutation of embryonic ectoderm development or Su-(var)3-9; E(z); Trithorax (set)-7, encoding components of the H3K27 methyltransferase Polycomb repressive complex-2 (PRC2). Trimethylated histone H3K27 (H3K27me3) undergoes genome-wide redistribution to constitutive heterochromatin in DCDC- or HP1-deficient mutants, and introduction of an H3K27 missense mutation is sufficient to rescue phenotypes of DCDC-deficient strains. Accumulation of H3K27me3 in heterochromatin does not compensate for silencing; rather, strains deficient for both DCDC and PRC2 exhibit synthetic sensitivity to the topoisomerase I inhibitor Camptothecin and accumulate γH2A at heterochromatin. Together, these data suggest that PRC2 modulates the response to genotoxic stress. PMID:26578794

  14. Stem Cells Cultured on Beta Tricalcium Phosphate (β-TCP) in Combination with Recombinant Human Platelet-Derived Growth Factor - BB (rh-PDGF-BB) for the Treatment of Human Infrabony Defects.

    PubMed

    Dhote, Roshani; Charde, Priti; Bhongade, Manohar; Rao, Jyotsana

    2015-01-01

    Knowledge gained from the field of tissue engineering, helped to develop a biological substitute that promotes tissue regeneration. The usual biological substitute consists of stem cells, growth factors and an appropriate scaffold. The present randomized controlled clinical and radiographic study was undertaken to evaluate the effectiveness of mesenchymal stem cells cultured on beta tricalcium phosphate (β-TCP) in combination with rh-PDGF-BB in treatment of infrabony defect in humans. A total of 24 infrabony defects in 14 systemically healthy patients were selected for the present study. The selected defects exhibited a probing pocket depth (PPD) of ≥ 5 mm and depth of infrabony component ≥ 3 mm as assessed by clinical and radiographic measurements and later confirmed by intrasurgical measurement. Baseline measurements included were Plaque Index (PI), Papillary Bleeding Index (PBI), Probing Pocket Depth (PPD), Relative gingival marginal level (RGML), Relative Clinical Attachment Level (R-CAL) and Radiographic Defect Depth (DD) and linear bone growth (LBG). 6 weeks after initial therapy, the defects were randomly assigned to either test group or control group. The control group was treated by an open flap debridement (OFD) only, while the test group was treated by a Stem cells cultured on β-TCP in combination with rh-PDGF-BB. All the measurements recorded preoperatively were repeated at 6 months after the surgery. The efficacy of each treatment modality was investigated through statistical analysis. Mean probing pocket depth reduction was significantly greater in test group (4.50 ± 1.08 mm) compared to the OFD group (3.50 ± 0.90 mm). Mean gains in clinical attachment level was 3.91 ± 1.37 mm in the test group and 2.08 ± 0.90 mm in the control group. The mean increase in gingival recession (GR) was less in test group (0.58 ± 0.79 mm) compared to OFD group (1.4 ± 0.66 mm). Radiographic defect depth reduction was greater in the test group (3.50 ± 0.67 mm

  15. Misexpression of a Chloroplast Aspartyl Protease Leads to Severe Growth Defects and Alters Carbohydrate Metabolism in Arabidopsis1[C][W

    PubMed Central

    Paparelli, Eleonora; Gonzali, Silvia; Parlanti, Sandro; Novi, Giacomo; Giorgi, Federico M.; Licausi, Francesco; Kosmacz, Monika; Feil, Regina; Lunn, John E.; Brust, Henrike; van Dongen, Joost T.; Steup, Martin; Perata, Pierdomenico

    2012-01-01

    The crucial role of carbohydrate in plant growth and morphogenesis is widely recognized. In this study, we describe the characterization of nana, a dwarf Arabidopsis (Arabidopsis thaliana) mutant impaired in carbohydrate metabolism. We show that the nana dwarf phenotype was accompanied by altered leaf morphology and a delayed flowering time. Our genetic and molecular data indicate that the mutation in nana is due to a transfer DNA insertion in the promoter region of a gene encoding a chloroplast-located aspartyl protease that alters its pattern of expression. Overexpression of the gene (oxNANA) phenocopies the mutation. Both nana and oxNANA display alterations in carbohydrate content, and the extent of these changes varies depending on growth light intensity. In particular, in low light, soluble sugar levels are lower and do not show the daily fluctuations observed in wild-type plants. Moreover, nana and oxNANA are defective in the expression of some genes implicated in sugar metabolism and photosynthetic light harvesting. Interestingly, some chloroplast-encoded genes as well as genes whose products seem to be involved in retrograde signaling appear to be down-regulated. These findings suggest that the NANA aspartic protease has an important regulatory function in chloroplasts that not only influences photosynthetic carbon metabolism but also plastid and nuclear gene expression. PMID:22987884

  16. A study of the preparation of epitaxy-ready polished surfaces of (100) Gallium Antimonide substrates demonstrating ultra-low surface defects for MBE growth

    NASA Astrophysics Data System (ADS)

    Martinez, Rebecca; Tybjerg, Marius; Flint, Patrick; Fastenau, Joel; Lubyshev, Dmitri; Liu, Amy W. K.; Furlong, Mark J.

    2016-05-01

    Gallium Antimonide (GaSb) is an important Group III-V compound semiconductor which is suitable for use in the manufacture of a wide variety of optoelectronic devices such as infra-red (IR) focal plane detectors. A significant issue for the commercialisation of these products is the production of epitaxy ready GaSb, which remains a challenge for the substrate manufacturer, as the stringent demands of the MBE process, requires a high quality starting wafer. In this work large diameter GaSb crystals were grown by the Czochralski (Cz) method and wafers prepared for chemo-mechanical polishing (CMP). Innovative epi-ready treatments and novel post polish cleaning methodologies were applied. The effect of these modified finishing chemistries on substrate surface quality and the performance of epitaxially grown MBE GaSb IR detector structures were investigated. Improvements in the lowering of surface defectivity, maintaining of the surface roughness and optimisation of all flatness parameters is confirmed both pre and post MBE growth. In this paper we also discuss the influence of bulk GaSb quality on substrate surface performance through the characterisation of epitaxial structures grown on near zero etch pit density (EPD) crystals. In summary progression and development of current substrate polishing techniques has been demonstrated to deliver a consistent improved surface on GaSb wafers with a readily desorbed oxide for epitaxial growth.

  17. Effects of CdTe growth conditions and techniques on the efficiency limiting defects and mechanisms in CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Chou, H. C.; Jokerst, N. M.; Thomas, E. W.; Ferekides, C.; Kamra, S.; Feng, Z. C.; Dugan, K. M.

    1996-01-01

    CdTe solar cells were fabricated by depositing CdTe films on CdS/SnO2/glass substrates using close-spaced sublimation (CSS) and metalorganic chemical vapor deposition (MOCVD). Te/Cd mole ratio was varied in the range of 0.02 to 6 in the MOCVD growth ambient in an attempt to vary the native defect concentration. Polycrystalline CdTe layers grown by MOCVD and CSS both showed average grain size of about 2 μm. However, the CdTe films grown by CSS were found to be less faceted and more dense compared to the CdTe grown by MOCVD. CdTe growth techniques and conditions had a significant impact on the electrical characteristics of the cells. The CdTe solar cells grown by MOCVD in the Te-rich growth condition and by the CSS technique gave high cell efficiencies of 11.5% and 12.4%, respectively, compared to 6.6% efficient MOCVD cells grown in Cd-rich conditions. This large difference in efficiency is explained on the basis of (a) XRD measurements which showed a higher degree of atomic interdiffusion at the CdS/CdTe interface in high performance devices, (b) Raman measurements which endorsed more uniform and preferred grain orientation by revealing a sharp CdTe TO mode in the high efficiency cells, and (c) carrier transport mechanism which switched from tunneling/interface recombination to depletion region recombination in the high efficiency cells. In this study, Cu/Au layers were evaporated on CdTe for the back contact. Lower efficiency of the Te-rich MOCVD cells, compared to the CSS cells, was attributed to contact related additional loss mechanisms, such as Cd pile-up near Cu/CdTe interface which can give rise to Cd-vacancy defects in the bulk, and higher Cu concentration in the CdTe layer which can cause shunts in the device. Finally, SIMS measurements on the CdTe films of different crystallinity and grain size confirmed that grain boundaries are the main conduits for Cu migration into the CdTe film. Thus larger CdTe grain size or lower grain boundary area per unit volume

  18. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2014-01-01

    Although it is known that a part of lactic acid bacteria can produce carotenoid, little is known about the regulation of carotenoid production. The objective of this study was to determine whether aerobic growth condition influences carotenoid production in carotenoid-producing Enterococcus gilvus. Enterococcus gilvus was grown under aerobic and anaerobic conditions. Its growth was slower under aerobic than under anaerobic conditions. The decrease in pH levels and production of lactic acid were also lower under aerobic than under anaerobic conditions. In contrast, the amount of carotenoid pigments produced by E. gilvus was significantly higher under aerobic than under anaerobic conditions. Further, real-time quantitative reverse transcription PCR revealed that the expression level of carotenoid biosynthesis genes crtN and crtM when E. gilvus was grown under aerobic conditions was 2.55-5.86-fold higher than when it was grown under anaerobic conditions. Moreover, after exposure to 16- and 32-mM H2O2, the survival rate of E. gilvus grown under aerobic conditions was 61.5- and 72.5-fold higher, respectively, than when it was grown under anaerobic conditions. Aerobic growth conditions significantly induced carotenoid production and the expression of carotenoid biosynthesis genes in E. gilvus, resulting in increased oxidative stress tolerance.

  19. Pancreatic Ductal Adenocarcinoma (PDA) mice lacking Mucin 1 have a profound defect in tumor growth and metastasis

    PubMed Central

    Besmer, Dahlia M.; Curry, Jennifer M.; Roy, Lopamudra D.; Tinder, Teresa L.; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y.; Gendler, Sandra J.; Mukherjee, Pinku

    2011-01-01

    MUC1 is over expressed and aberrantly glycosolated in >60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In the present study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared to both KC and KCM. Cell lines derived from KCKO tumors have significantly lower tumorigenic capacity compared to cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared to mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or matrix metalloproteinase-9 (MMP9). Further, significantly fewer KCKO cells entered the G2M phase of the cell cycle compared to the KCM cells. Proteomics and western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of MAPK, as well as a significant decrease in Nestin and Tubulin α-2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse in order to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. PMID:21558393

  20. Characterization of the defects in bacteriophage T7 DNA synthesis during growth in the Escherichia coli mutant tsnB.

    PubMed Central

    DeWyngaert, M A; Hinkle, D C

    1980-01-01

    The Escherichia coli mutant tsnB (M. Chamberlin, J. Virol. 14:509-516, 1974) is unable to support the growth of bacteriophage T7, although all classes of phage proteins are produced and the host is killed by the infection. During growth in this mutant host, the rate of phage DNA synthesis is reduced and the DNA is not packaged into stable, phagelike particles. The replicating DNA forms concatemers but the very large replicative intermediates (approximately 440S) identified by Paetkau et al. (J. Virol. 22:130-141, 1977) are not detected in T7+-infected tsnB cells. These large structures are formed in tsnB cells infected with a T7 gene 3 (endonuclease) mutant, where normal processing of the large intermediates into shorter concatemers is blocked. At later times during infection of tsnB cells, the replicating DNA accumulates in molecules about 30% shorter than unit length. Analysis of this DNA with a restriction endonuclease indicates that it is missing sequences from the ends (particularly the left end) of the genome. The loss of these specific sequences does not occur during infections with T7 gene 10 (head protein) or gene 19 (maturation protein) mutants. This suggests that the processing of concatemers into unit-length DNA molecules may occur normally in T7 -infected tsnB cells and that the shortened DNA arises from exonucleolytic degradation of the mature DNA molecules. These results are discussed in relation to our recent observation (M. A. DeWyngaert and D. C. Hinkle, J. Biol. Chem. 254:11247-11253, 1979) that E. coli tsnB produces an altered RNA polymerase which is resistance to inhibition by the T7 gene 2 protein. Images PMID:6997508

  1. Characterization of the defects in bacteriophage T7 DNA synthesis during growth in the Escherichia coli mutant tsnB.

    PubMed

    DeWyngaert, M A; Hinkle, D C

    1980-02-01

    The Escherichia coli mutant tsnB (M. Chamberlin, J. Virol. 14:509-516, 1974) is unable to support the growth of bacteriophage T7, although all classes of phage proteins are produced and the host is killed by the infection. During growth in this mutant host, the rate of phage DNA synthesis is reduced and the DNA is not packaged into stable, phagelike particles. The replicating DNA forms concatemers but the very large replicative intermediates (approximately 440S) identified by Paetkau et al. (J. Virol. 22:130-141, 1977) are not detected in T7+-infected tsnB cells. These large structures are formed in tsnB cells infected with a T7 gene 3 (endonuclease) mutant, where normal processing of the large intermediates into shorter concatemers is blocked. At later times during infection of tsnB cells, the replicating DNA accumulates in molecules about 30% shorter than unit length. Analysis of this DNA with a restriction endonuclease indicates that it is missing sequences from the ends (particularly the left end) of the genome. The loss of these specific sequences does not occur during infections with T7 gene 10 (head protein) or gene 19 (maturation protein) mutants. This suggests that the processing of concatemers into unit-length DNA molecules may occur normally in T7 -infected tsnB cells and that the shortened DNA arises from exonucleolytic degradation of the mature DNA molecules. These results are discussed in relation to our recent observation (M. A. DeWyngaert and D. C. Hinkle, J. Biol. Chem. 254:11247-11253, 1979) that E. coli tsnB produces an altered RNA polymerase which is resistance to inhibition by the T7 gene 2 protein.

  2. Reduced Insulin/Insulin-Like Growth Factor Receptor Signaling Mitigates Defective Dendrite Morphogenesis in Mutants of the ER Stress Sensor IRE-1

    PubMed Central

    Salzberg, Yehuda; Cohen-Berkman, Moran; Biederer, Thomas; Bülow, Hannes E.

    2017-01-01

    Neurons receive excitatory or sensory inputs through their dendrites, which often branch extensively to form unique neuron-specific structures. How neurons regulate the formation of their particular arbor is only partially understood. In genetic screens using the multidendritic arbor of PVD somatosensory neurons in the nematode Caenorhabditis elegans, we identified a mutation in the ER stress sensor IRE-1/Ire1 (inositol requiring enzyme 1) as crucial for proper PVD dendrite arborization in vivo. We further found that regulation of dendrite growth in cultured rat hippocampal neurons depends on Ire1 function, showing an evolutionarily conserved role for IRE-1/Ire1 in dendrite patterning. PVD neurons of nematodes lacking ire-1 display reduced arbor complexity, whereas mutations in genes encoding other ER stress sensors displayed normal PVD dendrites, specifying IRE-1 as a selective ER stress sensor that is essential for PVD dendrite morphogenesis. Although structure function analyses indicated that IRE-1’s nuclease activity is necessary for its role in dendrite morphogenesis, mutations in xbp-1, the best-known target of non-canonical splicing by IRE-1/Ire1, do not exhibit PVD phenotypes. We further determined that secretion and distal localization to dendrites of the DMA-1/leucine rich transmembrane receptor (DMA-1/LRR-TM) is defective in ire-1 but not xbp-1 mutants, suggesting a block in the secretory pathway. Interestingly, reducing Insulin/IGF1 signaling can bypass the secretory block and restore normal targeting of DMA-1, and consequently normal PVD arborization even in the complete absence of functional IRE-1. This bypass of ire-1 requires the DAF-16/FOXO transcription factor. In sum, our work identifies a conserved role for ire-1 in neuronal branching, which is independent of xbp-1, and suggests that arborization defects associated with neuronal pathologies may be overcome by reducing Insulin/IGF signaling and improving ER homeostasis and function. PMID

  3. Defect formation in Cu(In,Ga)Se{sub 2} thin films due to the presence of potassium during growth by low temperature co-evaporation process

    SciTech Connect

    Pianezzi, F. Reinhard, P.; Chirilă, A.; Nishiwaki, S.; Bissig, B.; Buecheler, S.; Tiwari, A. N.

    2013-11-21

    Doping the Cu(In,Ga)Se{sub 2} (CIGS) absorber layer with alkaline metals is necessary to process high efficiency solar cells. When growth of CIGS solar cells is performed on soda-lime glass (SLG), the alkaline elements naturally diffuse from the substrate into the absorber layer. On the other hand, when CIGS is grown on alkaline free substrates, the alkaline metals have to be added from another source. In the past, Na was believed to be the most important dopant of the alkaline elements, even though K was also observed to diffuse into CIGS from the SLG. Recently, the beneficial effect of a post deposition treatment with KF was pointed out and enabled the production of a 20.4% CIGS solar cell grown at low substrate temperature (<500 °C). However, possible negative effects of the presence or addition of the alkaline impurities during the low temperature growth process were observed for Na, but were not investigated for K so far. In this study, we investigate in detail the role of K on the defect formation in CIGS layers deposited at low temperature on alkaline free polyimide with intentional addition of K during selected time intervals of the CIGS layer growth. By means of admittance spectroscopy and deep level transient spectroscopy, we identify a deep minority carrier trap at around 280 meV below the conduction band E{sub C} in CIGS layers grown with K. Its influence on recombination and minority carrier lifetime in the absorber layer is investigated with external quantum efficiency measurements and time-resolved photoluminescence. Furthermore, to support the experimental findings device simulations were performed using the software SCAPS.

  4. Deregulation of the OsmiR160 Target Gene OsARF18 Causes Growth and Developmental Defects with an Alteration of Auxin Signaling in Rice

    PubMed Central

    Huang, Jian; Li, Zhiyong; Zhao, Dazhong

    2016-01-01

    MicroRNAs (miRNAs) control gene expression as key negative regulators at the post-transcriptional level. MiR160 plays a pivotal role in Arabidopsis growth and development through repressing expression of its target AUXIN RESPONSE FACTOR (ARF) genes; however, the function of miR160 in monocots remains elusive. In this study, we found that the mature rice miR160 (OsmiR160) was mainly derived from OsMIR160a and OsMIR160b genes. Among four potential OsmiR160 target OsARF genes, the OsARF18 transcript was cleaved at the OsmiR160 target site. Rice transgenic plants (named mOsARF18) expressing an OsmiR160-resistant version of OsARF18 exhibited pleiotropic defects in growth and development, including dwarf stature, rolled leaves, and small seeds. mOsARF18 leaves were abnormal in bulliform cell differentiation and epidermal cell division. Starch accumulation in mOsARF18 seeds was also reduced. Moreover, auxin induced expression of OsMIR160a, OsMIR160b, and OsARF18, whereas expression of OsMIR160a and OsMIR160b as well as genes involved in auxin signaling was altered in mOsARF18 plants. Our results show that negative regulation of OsARF18 expression by OsmiR160 is critical for rice growth and development via affecting auxin signaling, which will advance future studies on the molecular mechanism by which miR160 fine-tunes auxin signaling in plants. PMID:27444058

  5. Growth Temperature Dependence of Si Doping Efficiency and Compensating Deep Level Defect Incorporation in Al0.7Ga0.3N

    SciTech Connect

    Armstrong, Andrew; Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan

    2015-05-11

    The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al0.7Ga0.3N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Furthermore, deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, which includes thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al0.7Ga0.3N.

  6. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.

    PubMed

    Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian; Velazquez, Eric M; Byndloss, Mariana X; Chávez-Arroyo, Alfredo; Lokken, Kristen L; Tsolis, Renée M; Winter, Sebastian E; Bäumler, Andreas J

    2016-09-16

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.

  7. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration

    PubMed Central

    Lopez, Christopher A.; Miller, Brittany M.; Rivera-Chávez, Fabian; Velazquez, Eric; Byndloss, Mariana X.; Chávez-Arroyo, Alfredo; Lokken, Kristen L.; Tsolis, Renée M.; Winter, Sebastian E.; Bäumler, Andreas J.

    2016-01-01

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration. PMID:27634526

  8. Growth of Trypanosoma cruzi in a cloned macrophage cell line and in a variant defective in oxygen metabolism.

    PubMed Central

    Tanaka, Y; Tanowitz, H; Bloom, B R

    1983-01-01

    A continuous cloned murine macrophage-like cell line, clone 16 derived from J774, has been found upon appropriate stimulation to be capable of oxidizing glucose by the hexose monophosphate shunt and producing O2- and H2O2. A variant in oxidative metabolism, clone C3C, was selected from this cell line which under similar conditions is unable to produce significant amounts of O2- and H2O2. When cells of the parental clone 16 were infected with epimastigotes of Trypanosoma cruzi, there was significant killing or growth inhibition of the parasites at 3 to 4 days after infection. In contrast, the parasites grew in the oxidative variant, clone C3C. Trypomastigote forms of T. cruzi were found to be only partially killed in the parental clone 16 but grew abundantly in the oxidative variant. Infection of the parental clone, but not the variant, was sufficient to stimulate oxygen metabolism as demonstrated by the increased reduction of nitro blue tetrazolium. Studies on the killing of T. cruzi epimastigotes in cell-free suspension by xanthine-xanthine oxidase indicated that 90% of the killing was catalase sensitive and due to H2O2, with at most 7 to 8% killing which could be inhibited by scavengers of . OH and singlet oxygen (1O2). In the in vitro experiment with H2O2 produced by glucose and glucose oxidase, the 50% lethal doses of epimastigotes and trypomastigotes were 6.0 and 8.7 nmol of H2O2 per min per ml, respectively, indicating that trypomastigotes were more resistant to killing by H2O2 than epimastigotes were. A reconstitution experiment of trypanocidal activity in clone C3C by ingestion of zymosan particles coupled with glucose oxidase showed that H2O2 was essential for this cytocidal process in the macrophage cell line. These results provide clear evidence for killing of an intracellular parasite by a continuous macrophage-like cell line and suggest the importance of the oxidative cytocidal mechanism in this process. Images PMID:6350185

  9. Atomic-scale investigation of structural defects in GaN layer on c-plane sapphire substrate during initial growth stage

    NASA Astrophysics Data System (ADS)

    Matsubara, Tohoru; Sugimoto, Kohei; Okada, Narihito; Tadatomo, Kazuyuki

    2016-04-01

    Structural defects in the initial growth stages of GaN on sapphire, including stacking faults (SFs), threading dislocations (TDs), and mosaic structure containing grain boundaries, are investigated at the atomic scale. Individual grains in the as-deposited low temperature-GaN buffer layer are found to have twists correlated with those of the adjacent grains. These grains have little similarity on the stacking sequences, and the atomic arrangement on each side of the grain boundaries may be rearranged by annealing to achieve higher similarity in the stacking sequence. The TD identified as a-type at the top of the SFs-rich interfacial region is thought to originate from Frank partial dislocations. The Frank partial dislocation produces a distorted wurtzite-type structure. At the intermediate region of the basal-plane stacking fault between Frank and Shockley partial dislocations, the TD relieves the distortion in the wurtzite-type structure. In the TD, the wurtzite structure slips relative to the surrounding wurtzite.

  10. SCID Dogs: Similar Transplant Potential but Distinct Intra-Uterine Growth Defects and Premature Replicative Senescence Compared with SCID Mice1

    PubMed Central

    Meek, Katheryn; Jutkowitz, Ari; Allen, Lisa; Glover, Jillian; Convery, Erin; Massa, Alisha; Mullaney, Tom; Stanley, Bryden; Rosenstein, Diana; Bailey, Susan M.; Johnson, Cheri; Georges, George

    2014-01-01

    We have previously described DNA-dependent protein kinase (DNA-PKcs) mutations in horses and dogs that result in deficits in V(D)J recombination, DNA repair, and SCID. In this paper, we document substantial developmental growth defects in DNA-PKcs-deficient dogs that are not apparent in SCID mice. Fibroblast cell strains derived from either fetal or adult SCID dogs proliferate poorly in culture and undergo premature replicative senescence, somewhat reminiscent of cells derived from Ku-deficient mice. A limited number of animals have been immune reconstituted (by bone marrow transplantation) so that they can be maintained in a normal environment for long periods. Several of these animals have developed conditions associated with premature ageing at 2–3 years of age, roughly 20% of their expected lifespan. These conditions include intestinal malabsorption and primary neural cell neoplasia. These results suggest that DNA-PKcs deficiency is not tolerated equally in all species, perhaps providing insight into why DNA-PKcs deficiency has not been observed in humans. Finally, this study demonstrates the feasibility of maintaining SCID dogs for extended periods of time and documents their utility for bone marrow transplantation studies and as hosts for the propagation of xenografts. In sum, SCID dogs may present researchers with new possibilities for the development of animal models of human disease. PMID:19635917

  11. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel.

    PubMed

    Ahlfeld, Tilman; Akkineni, Ashwini Rahul; Förster, Yvonne; Köhler, Tino; Knaack, Sven; Gelinsky, Michael; Lode, Anja

    2017-01-01

    Additive manufacturing enables the fabrication of scaffolds with defined architecture. Versatile printing technologies such as extrusion-based 3D plotting allow in addition the incorporation of biological components increasing the capability to restore functional tissues. We have recently described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of an oil-based CPC paste under mild conditions. In the present study, we have developed a strategy for growth factor loading based on multichannel plotting: a biphasic scaffold design was realised combining CPC with VEGF-laden, highly concentrated hydrogel strands. As hydrogel component, alginate and an alginate-gellan gum blend were evaluated; the blend exhibited a more favourable VEGF release profile and was chosen for biphasic scaffold fabrication. After plotting, two-step post-processing was performed for both, hydrogel crosslinking and CPC setting, which was shown to be compatible with both materials. Finally, a scaffold was designed and fabricated which can be applied for testing in a rat critical size femur defect. Optimization of CPC plotting enabled the fabrication of highly resolved structures with strand diameters of only 200 µm. Micro-computed tomography revealed a precise strand arrangement and an interconnected pore space within the biphasic scaffold even in swollen state of the hydrogel strands.

  12. Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental, and humoral requirements for this growth factor.

    PubMed

    Wiktor-Jedrzejczak, W; Urbanowska, E; Aukerman, S L; Pollard, J W; Stanley, E R; Ralph, P; Ansari, A A; Sell, K W; Szperl, M

    1991-11-01

    Mice that are mutant at the op locus have a severe deficiency of mononuclear phagocytes due to an inactivating mutation in the CSF-1 (macrophage colony-stimulating factor, M-CSF) gene. op/op mice are toothless, possessing skeletal abnormalities, a low body weight, and compromised fertility; they are osteopetrotic due to a deficiency of osteoclasts. The congenital osteopetrosis, toothless phenotype, osteoclast deficit, and the defects in splenic and femoral macrophages were corrected by routes of administration of human recombinant CSF-1 that maintained normal circulating CSF-1 concentrations. Early restoration of circulating CSF-1 was required for rescue of the toothless phenotype, but only partially restored body weight. In contrast, the deficiencies of pleural and peritoneal cavity macrophages and the reduced female fertility were not corrected by restoration of circulating CSF-1. These results suggest that although circulating CSF-1 is required for osteoclast and macrophage production, local synthesis and action of the growth factor are important for certain target cell populations.

  13. Biotransformation of phytosterols under aerobic conditions.

    PubMed

    Dykstra, Christy M; Giles, Hamilton D; Banerjee, Sujit; Pavlostathis, Spyros G

    2014-07-01

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

  14. Clinical and Microcomputed Topography Evaluation of the Concentrated Growth Factors as a Sole Material in a Cystic Bony Defect in Alveolar Bone Followed by Dental Implantation: A Case Report.

    PubMed

    Shyu, Shih-Shiun; Fu, Earl; Shen, E-Chin

    2016-10-01

    Concentrated growth factors (CGFs) can be used to enhance wound healing. This case report describes a short-term effect of CGF grafting followed by implant placement in a cystic bony defect within the mandible. Healing conditions were monitored by 2 implant-related surgeries, radiographs, and a microcomputed topography examination. Continuous increase of radiopacity in radiographs was noticed till 6 months after grafting. Bone core specimen was taken at 3.5 months after grafting, and percent bone volume reached 32.7% analyzed by microcomputed topography. In conclusion, the present case showed bone regeneration in the cystic bony defect grafted by CGFs alone.

  15. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  16. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  17. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  18. Single crystal growth of Ga[subscript 2](Se[subscript x]Te[subscript 1;#8722;x])[subscript 3] semiconductors and defect studies via positron annihilation spectroscopy

    SciTech Connect

    Abdul-Jabbar, N.M.; Bourret-Courchesne, E.D.; Wirth, B.D.

    2012-12-10

    Small single crystals of Ga{sub 2}(Se{sub x}Te{sub 1-x}){sub 3} semiconductors, for x = 0.1, 0.2, 0.3, were obtained via modified Bridgman growth techniques. High resolution powder x-ray diffractometry confirms a zincblende cubic structure, with additional satellite peaks observed near the (111) Bragg line. This suggests the presence of ordered vacancy planes along the [111] direction that have been previously observed in Ga{sub 2}Te{sub 3}. Defect studies via positron annihilation spectroscopy show an average positron lifetime of {approx} 400 ps in bulk as-grown specimens. Such a large lifetime suggests that the positron annihilation sites in these materials are dominated by defects. Moreover, analyzing the electron momenta via coincidence Doppler broadening measurements suggests a strong presence of large open-volume defects, likely to be vacancy clusters or voids.

  19. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells.

    PubMed

    Bruckmann, Astrid; Hensbergen, Paul J; Balog, Crina I A; Deelder, André M; Brandt, Raymond; Snoek, I S Ishtar; Steensma, H Yde; van Heusden, G Paul H

    2009-01-30

    The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.

  20. The influence of the scatter of heat flux at the m/c interface on the frequency of appearance of poly body and twin defects during 6″ semi-insulating GaAs crystal growth by the VGF method

    NASA Astrophysics Data System (ADS)

    Marchenko, Marina P.; Liu, Weiguo; Badawi, M. Hani; Yin, Phil

    2008-04-01

    The challenge of increasing and maintaining a high yield for 6″ GaAs crystal growth is of utmost importance for meeting the price requirements dictated by today's requirements for semi-insulating GaAs substrates. For maintaining a low dislocation density in the grown ingots, the growth process time is typically long and, sometimes, the final ingots may exhibit twins and poly-crystalline formation. These defects may occur at the beginning of the cylindrical part of the ingot, or even at the conical part of pBN crucible so the whole ingot is rejected. On the other hand, these defects may appear further away from the seed and the location of the onset of these defects will determine the extent of the useful (production worthy) crystal length, also known as "yield". The reasons for the onset of these defects are, however, not fully understood [M. Jurisch, F. Borner, Th. Bunger, St. Eichler, T. Flade, U. Kretser, A. Kohler, J. Stenzenberger, B. Weinert. J. Crystal Growth 275 (2005) 283]. In this study, we conducted numerical simulation using the transient two-dimensional mathematical model of the GaAs crystal growth by vertical gradient freeze method (VGF-method). We defined a new parameter " A" that is equal to the scatter of heat fluxes at m/c interface. Our study showed that some correlation exists between the defect appearance and A-value at m/c interface close to crucible wall. We have found that the frequency of a totally bad crystal length is higher if the A-value exceeds a certain value. Close to the crystal tail the scatter must be less than a defined A-value at the beginning of crystallization. Reduction in A-value was found to occur due to anomalies in the melt flow close to the m/c interface and crucible wall leading to the higher frequency of defects close to the crystal tail. Based on the correlation found, we developed a new technology regime that results in crystals grown with a lower frequency of defect occurrence at crucible wall.

  1. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  2. Clarification of signaling pathways mediated by insulin and insulin-like growth factor I receptors in fibroblasts from patients with specific defect in insulin receptor.

    PubMed

    Sasaoka, T; Kobayashi, M; Takata, Y; Ishibashi, O; Iwasaki, M; Shigeta, Y; Goji, K; Hisatomi, A

    1988-11-01

    Receptor binding and biological action of insulin and insulin-like growth factor I (IGF-I) were studied in fibroblasts from a patient with leprechaunism and a patient with type A syndrome of insulin resistance. Insulin binding was reduced to 18.8 and 27.7% of control value, respectively. In contrast, IGF-I binding was normal in both patients. In competitive binding studies, IGF-I had 0.2% of the ability of insulin to compete with 125I-labeled insulin binding, and insulin had 0.1% of the ability of IGF-I to compete with 125I-labeled IGF-I binding in control subjects and patient fibroblasts. The dose-response curves of insulin stimulation assessed by glucose incorporation and alpha-aminoisobutyric acid uptake showed normal responsiveness, and ED50 was significantly shifted to the right in fibroblasts from both patients. However, normal responsiveness and sensitivity were observed in thymidine incorporation studies. For IGF-I, dose-response curves of glucose incorporation, alpha-aminoisobutyric acid uptake, and thymidine incorporation were all normal in both patients. These results indicate that 1) the defect is specific to the insulin-receptor binding in these patients, 2) insulin and IGF-I activate glucose incorporation and alpha-aminoisobutyric acid uptake mainly through their own specific receptors, but 3) the IGF-I receptor appears to have a more important role in stimulating thymidine incorporation than the insulin receptor in physiological condition or, alternatively, an unknown postreceptor process with cascade signal transmission may overcome the decreased insulin-receptor binding to produce a normal dose-response curve.

  3. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  4. Differential effects of hydrogen peroxide and ascorbic acid on the aerobic thermosensitivity of yeast cells grown under aerobic and anoxic conditions.

    PubMed

    Moraitis, Christos; Curran, Brendan P G

    2010-02-01

    We have previously demonstrated that in aerobically-grown cells of the yeast Saccharomyces cerevisiae, hydrogen peroxide (H(2)O(2)) increases and ascorbic acid decreases cellular thermosensitivity, as determined by the inducibility of a heat shock (HS)-reporter gene. In this work, we reveal that the aerobic thermosensitivity of anaerobically-grown yeast cells also increases in the presence of H(2)O(2), albeit differentially between cells with two different lipid profiles. In comparison to aerobically-grown fermenting cells treated with the same H(2)O(2) concentration, both these types of anaerobically-grown cells were found to be considerably less sensitive to aerobic heat shock and considerably more thermotolerant. Paradoxically, and in contrast to ascorbate-pretreated aerobically-grown yeast cells, when anaerobically-grown cells were heat-shocked aerobically in the presence of the same ascorbic acid concentration, they exhibited increased thermosensitivity and decreased intrinsic thermotolerance with respect to their untreated counterparts. These findings are discussed with respect to what is currently known about the redox and physiological status of yeast cells grown aerobically and cells reoxygenated following anoxic growth.

  5. Silicon sheet growth development for the large area silicon sheet task of the low cost solar array project. Quantitative analysis of defects in silicon

    NASA Technical Reports Server (NTRS)

    Natesh, R.

    1978-01-01

    The various steps involved in obtaining quantitative information of structural defects in crystalline silicon samples are described. Procedures discussed include: (1) chemical polishing; (2) chemical etching; and (3) automated image analysis of samples on the QTM 720 System.

  6. Congenital Defects.

    ERIC Educational Resources Information Center

    Goldman, Allen S.; And Others

    There are two general categories (not necessarily mutually exclusive) of congenital defects: (1) abnormalities that have an hereditary basis, such as single and multiple genes, or chromosomal abberration; and (2) abnormalities that are caused by nonhereditary factors, such as malnutrition, maternal disease, radiation, infections, drugs, or…

  7. Aerobic granulation of aggregating consortium X9 isolated from aerobic granules and role of cyclic di-GMP.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Wang, Xin-Yue; Yang, Qiaoli; Pan, Xiangliang

    2014-01-01

    This study monitored the granulation process of an aggregating functional consortium X9 that was consisted of Pseudomonas putida X-1, Acinetobacter sp. X-2, Alcaligenes sp. X-3 and Comamonas testosteroni X-4 in shaken reactors. The growth curve of X9 was fit using logistic model as follows y=1.49/(1+21.3*exp(-0.33x)), the maximum specific cell growth rate for X9 was 0.33 h(-1). Initially X9 consumed polysaccharides (PS) and secreted proteins (PN) to trigger granulation. Then X9 grew in biomass and formed numerous micro-granules, driven by increasing hydrophobicity of cell membranes and of accumulated extracellular polymeric substances (EPS). In later stage the intracellular cyclic diguanylate (c-di-GMP) was at high levels for inhibiting bacteria swarming motility, thereby promotion formation of large aerobic granules. The findings reported herein advise the way to accelerate granule formation and to stabilize operation in aerobic granular reactors.

  8. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy

    PubMed Central

    Schadler, Keri L.; Thomas, Nicholas J.; Galie, Peter A.; Bhang, Dong Ha; Roby, Kerry C.; Addai, Prince; Till, Jacob E.; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S.; Ryeom, Sandra

    2016-01-01

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant. PMID:27589843

  9. In situ aerobic cometabolism of chlorinated solvents: a review.

    PubMed

    Frascari, Dario; Zanaroli, Giulio; Danko, Anthony S

    2015-01-01

    The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.

  10. WWOX loss activates aerobic glycolysis.

    PubMed

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis-a state known as "aerobic glycolysis." Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state.

  11. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  12. Aerobic Metabolism of Streptococcus agalactiae

    PubMed Central

    Mickelson, M. N.

    1967-01-01

    Streptococcus agalactiae cultures possess an aerobic pathway for glucose oxidation that is strongly inhibited by cyanide. The products of glucose oxidation by aerobically grown cells of S. agalactiae 50 are lactic and acetic acids, acetylmethylcarbinol, and carbon dioxide. Glucose degradation products by aerobically grown cells, as percentage of glucose carbon, were 52 to 61% lactic acid, 20 to 23% acetic acid, 5.5 to 6.5% acetylmethylcarbinol, and 14 to 16% carbon dioxide. There was no evidence for a pentose cycle or a tricarboxylic acid cycle. Crude cell-free extracts of S. agalactiae 50 possessed a strong reduced nicotinamide adenine dinucleotide (NADH2) oxidase that is also cyanide-sensitive. Dialysis or ultrafiltration of the crude, cell-free extract resulted in loss of NADH2 oxidase activity. Oxidase activity was restored to the inactive extract by addition of the ultrafiltrate or by addition of menadione or K3Fe(CN)6. Noncytochrome iron-containing pigments were present in cell-free extracts of S. agalactiae. The possible participation of these pigments in the respiration of S. agalactiae is presently being studied. PMID:4291090

  13. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults.

    PubMed

    Whiteman, Andrew S; Young, Daniel E; He, Xuemei; Chen, Tai C; Wagenaar, Robert C; Stern, Chantal E; Schon, Karin

    2014-02-01

    Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory.

  14. Misexpression of AtTX12 encoding a Toll/interleukin-1 receptor domain induces growth defects and expression of defense-related genes partially independently of EDS1 in Arabidopsis

    PubMed Central

    Song, Sang-Kee

    2016-01-01

    In this study, a tissue-specific GAL4/UAS activation tagging system was used for the characterization of genes which could induce lethality when ubiquitously expressed. A dominant mutant exhibiting stunted growth was isolated and named defective root development 1-D (drd1-D). The T-DNA tag was located within the promoter region of AtTX12, which is predicted to encode a truncated nucleotide-binding leucine-rich repeat (NLR) protein, containing a Toll/interleukin-1 receptor (TIR) domain. The transcript levels of AtTX12 and defense-related genes were elevated in drd1-D, and the misexpression of AtTX12 recapitulated the drd1-D phenotypes. In the presence of ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), a key transducer of signals triggered by TIR-type NLRs, a low-level of AtTX12 misexpression induced strong defective phenotypes including seedling lethality whereas, in the absence of EDS1, a high-level of AtTX12 misexpression induced weak growth defects like dwarfism, suggesting that AtTX12 might function mainly in an EDS1-dependent and partially in an EDS1-independent manner. [BMB Reports 2016; 49(12): 693–698] PMID:27802841

  15. Influence of an aniline supplement on the stability of aerobic granular sludge.

    PubMed

    Dai, Yajie; Jiang, Yixin; Su, Haijia

    2015-10-01

    In order to evaluate the stability of aerobic granules in a toxic environment, this study discussed the influence of an aniline supplement on the properties and microbial community of aerobic granules. In the early stages of sequencing batch reactor (SBR) operation, an aniline supplement slightly affected the properties of the aerobic granules (strength, growth rate, SVI and so on). This effect was thereafter removed because of a change in the microbial community and the structure of aerobic granules: with the present of aniline, microbes with biodegradation ability appeared and gathered in the aerobic granules and the aerobic granules densified and settled faster as their SVI decreased to 35 mL/g and settling velocity increased to 41.56 m/h. When a synthetic waste water containing acetate as carbon source was used as influent, aniline (10-500 mg/L) could be degraded in 6 h, at a rate as high as 37.5 mg aniline/(L·h), with a removal rate in excess of 90%, while the effluent COD fell below 100 mg/L from the initial about 2000 mg/L. The aerobic granules cultured by acetate were compact, stable and resistant to aniline.

  16. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.

  17. Testing Asymmetry in Plasma-Ball Growth Seeded by a Nanoscale Absorbing Defect Embedded in a SiO2 Thin-Film Matrix Subjected to UV Pulsed-Laser Radiation

    SciTech Connect

    Papernov, S.; Schmid, A.W.

    2008-09-16

    Previous studies of ultraviolet, nanosecond-pulsed-laser damage in thin films revealed nanoscale absorbing defects as a major source of damage initiation. It was also demonstrated that damage (crater formation) is facilitated by plasma-ball formation around absorbing defects. In this work an attempt is made to verify the symmetry of the plasma ball by irradiating SiO2 thin film with embedded gold nanoparticles from the side of either the air/film or substrate/film interfaces. Crater-formation thresholds derived in each case support preferential plasma-ball growth in the direction of the laser-beam source. The strong impact of internal E-field distribution is identified.

  18. Defects in flexoelectric solids

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Purohit, Prashant K.

    2015-11-01

    A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since strain gradients are large near defects, we expect the flexoelectric effect to be prominent there and decay away at distances much larger than a flexoelectric length scale. Here, we quantify this expectation by computing displacement, stress and polarization fields near defects in flexoelectric solids. For point defects we recover some well known results from strain gradient elasticity and non-local piezoelectric theories, but with different length scales in the final expressions. For edge dislocations we show that the electric potential is a maximum in the vicinity of the dislocation core. We also estimate the polarized line charge density of an edge dislocation in an isotropic flexoelectric solid which is in agreement with some measurements in ice. We perform an asymptotic analysis of the crack tip fields in flexoelectric solids and show that our results share some features from solutions in strain gradient elasticity and piezoelectricity. We also compute the energy release rate for cracks using simple crack face boundary conditions and use them in classical criteria for crack growth to make predictions. Our analysis can serve as a starting point for more sophisticated analytic and computational treatments of defects in flexoelectric solids which are gaining increasing prominence in the field of nanoscience and nanotechnology.

  19. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  20. The intellectual capacity of patients with Laron syndrome (LS) differs with various molecular defects of the growth hormone receptor gene. Correlation with CNS abnormalities.

    PubMed

    Shevah, O; Kornreich, L; Galatzer, A; Laron, Z

    2005-12-01

    The correlation between the molecular defects of the GH receptor (R), psychosocial development and brain abnormalities were evaluated in 10 patients with Laron syndrome (LS), in whom all data were available. The findings revealed that the intelligence quotient (IQ) and abnormalities in the brain of the patients with LS differ with various molecular defects of the GH-receptor. The most severe mental deficits and brain pathology occurred in patients with 3, 5, 6 exon deletion. Patients with point mutations in exons 2, 4 and 7 presented various degrees of medium to mild CNS abnormalities that correlated with the IQ. Notably, the patient with the E180 splice mutation in exon 6 had a normal IQ, which fits the report on normal IQ in a large Ecuadorian cohort with the same mutation. This is the first report to support a correlation between IQ, brain abnormalities and localization of the molecular defects in the GH-R gene. As all patients with LS are IGF-I-deficient, it must be assumed that other as yet unknown factors related to the molecular defects in the GH-R are the major cause of the differences in intellect and brain abnormalities.

  1. Quantitative analysis of defects in silicon. Silicon sheet growth development for the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project. Final report

    SciTech Connect

    Natesh, R.; Smith, J.M.; Bruce, T.; Qidwai, H.A.

    1980-04-01

    The complete procedures for the defect analysis of silicon samples using a QTM-720 Image Analyzing System are described, chemical polishing, etching, and QTM operation are discussed. The data from one hundred and seventy four (174) samples, and a discussion of the data are included. The data include twin boundary density, dislocation pit density, and grain boundary length. (WHK)

  2. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions.

  3. Genetic sperm defects.

    PubMed

    Chenoweth, Peter J

    2005-08-01

    Genetic sperm defects are specific sperm defects, which have been shown to have a genetic mode of transmission. Such genetic linkage, either direct or indirect, has been associated with a number of sperm defects in different species, with this number increasing with improved diagnostic capabilities. A number of sperm defects, which have proven or suspected genetic modes of transmission are discussed herein, with particular emphasis on cattle. These include: 1. Acrosome defects (knobbed, ruffled and incomplete); 2. Head defects (abnormal condensation, decapitated, round head, rolled head, nuclear crest); 3. Midpiece abnormalities ("Dag" defect, "corkscrew" defect, "pseudo-droplet" defect); 4. Tail defects ("tail stump" defect, primary ciliary dyskinesia).

  4. Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4

    NASA Technical Reports Server (NTRS)

    Yamamoto, M.; Yamamoto, K. T.

    1999-01-01

    The partially agravitropic growth habit of roots of an auxin-resistant mutant of Arabidopsis thaliana, axr4, was restored by the addition of 30-300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole 3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axrl mutants is different from that of axr4.

  5. The Influence of Lattice Imperfections on the Chemical Reactivity of Solids. The Growth, Perfection and Defect Properties of PETN (Pentaerythritol Tetranitrate) and RDX (Cyclotrimethylene Trinitramine) Single Crystals. Part 1.

    DTIC Science & Technology

    1984-02-01

    in organic secondary explosive materials and (2) to assess the role of these defects in crystal growth and in the microplasticity of the sclid. 1.1...detailed studies of the microplasticity of the materials using stress/strain stages designed to fit the X-ray topographic camera. This allows the...and High Strain Rate Phenomena in Metals : Concepts and Applications, Editors M.A. Mayer and L.E. Muir (Plenum, New York) 1981, p. 313. 10. W.L. Elban

  6. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  7. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  8. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  9. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  10. The Yfe and Feo Transporters Are Involved in Microaerobic Growth and Virulence of Yersinia pestis in Bubonic Plague

    PubMed Central

    Fetherston, Jacqueline D.; Mier, Ildefonso; Truszczynska, Helena

    2012-01-01

    The Yfe/Sit and Feo transport systems are important for the growth of a variety of bacteria. In Yersinia pestis, single mutations in either yfe or feo result in reduced growth under static (limited aeration), iron-chelated conditions, while a yfe feo double mutant has a more severe growth defect. These growth defects were not observed when bacteria were grown under aerobic conditions or in strains capable of producing the siderophore yersiniabactin (Ybt) and the putative ferrous transporter FetMP. Both fetP and a downstream locus (flp for fet linked phenotype) were required for growth of a yfe feo ybt mutant under static, iron-limiting conditions. An feoB mutation alone had no effect on the virulence of Y. pestis in either bubonic or pneumonic plague models. An feo yfe double mutant was still fully virulent in a pneumonic plague model but had an ∼90-fold increase in the 50% lethal dose (LD50) relative to the Yfe+ Feo+ parent strain in a bubonic plague model. Thus, Yfe and Feo, in addition to Ybt, play an important role in the progression of bubonic plague. Finally, we examined the factors affecting the expression of the feo operon in Y. pestis. Under static growth conditions, the Y. pestis feo::lacZ fusion was repressed by iron in a Fur-dependent manner but not in cells grown aerobically. Mutations in feoC, fnr, arcA, oxyR, or rstAB had no significant effect on transcription of the Y. pestis feo promoter. Thus, the factor(s) that prevents repression by Fur under aerobic growth conditions remains to be identified. PMID:22927049

  11. Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.

    PubMed Central

    Rhee, S K; Lee, G M; Yoon, J H; Park, Y H; Bae, H S; Lee, S T

    1997-01-01

    New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications. PMID:9212408

  12. Biomaterials in periodontal osseous defects

    PubMed Central

    Lal, Nand; Dixit, Jaya

    2012-01-01

    Introduction Osseous defects in periodontal diseases require osseous grafts and guided tissue regeneration (GTR) using barrier membranes. The present study was undertaken with the objectives to clinically evaluate the osteogenic potential of hydroxyapatite (HA), cissus quadrangularis (CQ), and oxidized cellulose membrane (OCM) and compare with normal bone healing. Materials and Methods Twenty subjects with periodontitis in the age group ranging from 20 years to 40 years were selected from our outpatient department on the basis of presence of deep periodontal pockets, clinical probing depth ≥5 mm, vertical osseous defects obvious on radiograph and two- or three-walled involvement seen on surgical exposure. Infrabony defects were randomly divided into four groups on the basis of treatment to be executed, such that each group comprised 5 defects. Group I was control, II received HA, III received CQ and IV received OCM. Probing depth and attachment level were measured at regular months after surgery. Defects were re-exposed using crevicular incisions at 6 months. Results There was gradual reduction in the mean probing pocket depth in all groups, but highly significant in the site treated with HA. Gain in attachment level was higher in sites treated with HA, 3.2 mm at 6 months. Conclusion Hydroxyapatite and OCM showed good reduction in pocket depth, attachment level gain and osseous defect fill. Further study should be conducted by using a combination of HA and OCM in periodontal osseous defects with growth factors and stem cells. PMID:25756030

  13. Aerobic fitness testing: an update.

    PubMed

    Stevens, N; Sykes, K

    1996-12-01

    This study confirms that all three tests are reliable tools for the assessment of cardiorespiratory fitness and the prediction of aerobic capacity. While this particular study consisted of active, youthful subjects, subsequent studies at University College Chester have found similar findings with larger databases and a wider cross-section of subjects. The Astrand cycle test and Chester step test are submaximal tests with error margins of 5-15 per cent and therefore, not as precise as maximal testing. However, they still give a reasonably accurate reflection of an individual's fitness without the cost, time, effort and risk on the part of the subject. The bleep test is a low-cost maximal test designed for well-motivated, active individuals who are used to running to physical exhaustion. Used on other groups, results will not accurately reflect cardiorespiratory fitness values. While all three tests have inherent advantages and disadvantages, perhaps the most important factors are the knowledge and skills of the tester. Without a sound understanding of the physiological principles underlying these tests, and the ability to conduct an accurate assessment and evaluation of results in a knowledgeable and meaningful way, then the credibility of the tests and the results become suspect. However, used correctly, aerobic capacity tests can provide valuable baseline data about the fitness levels of individuals and data from which exercise programmes may be developed. The tests also enable fitness improvements to be monitored, help to motivate participants by establishing reasonable and achievable goals, assist in risk stratification and facilitate participants' education about the importance of physical fitness for work and for life. Since this study was completed, further tests have been repeated on 140 subjects of a wider age and ability range. This large database confirms the results found in this study.

  14. Aerobic glycolysis and lymphocyte transformation

    PubMed Central

    Hume, David A.; Radik, Judith L.; Ferber, Ernst; Weidemann, Maurice J.

    1978-01-01

    1. The role of enhanced aerobic glycolysis in the transformation of rat thymocytes by concanavalin A has been investigated. Concanavalin A addition doubled [U-14C]glucose uptake by rat thymocytes over 3h and caused an equivalent increased incorporation into protein, lipids and RNA. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused a specific increase in pyruvate oxidation, leading to an increase in the percentage contribution of glucose to the respiratory fuel. 2. Acetoacetate metabolism, which was not affected by concanavalin A, strongly suppressed pyruvate oxidation in the presence of [U-14C]glucose, but did not prevent the concanavalin A-induced stimulation of this process. Glucose uptake was not affected by acetoacetate in the presence or absence of concanavalin A, but in each case acetoacetate increased the percentage of glucose uptake accounted for by lactate production. 3. [3H]Thymidine incorporation into DNA in concanavalin A-treated thymocyte cultures was sensitive to the glucose concentration in the medium in a biphasic manner. Very low concentrations of glucose (25μm) stimulated DNA synthesis half-maximally, but maximum [3H]thymidine incorporation was observed only when the glucose concentration was raised to 1mm. Lactate addition did not alter the sensitivity of [3H]-thymidine uptake to glucose, but inosine blocked the effect of added glucose and strongly inhibited DNA synthesis. 4. It is suggested that the major function of enhanced aerobic glycolysis in transforming lymphocytes is to maintain higher steady-state amounts of glycolytic intermediates to act as precursors for macromolecule synthesis. PMID:310305

  15. Processed-induced defects in EFG ribbons

    NASA Technical Reports Server (NTRS)

    Cunningham, B.; Ast, D. G.

    1982-01-01

    The defect structure of processed edge defined film-fed growth (EFG) silicon ribbons was studied using a variety of electron microscopic techniques. Comparison between the present results and previous studies on as-grown ribbons has shown that solar cell processing introduces additional defects into the ribbons. The creation of point defects during high temperature phosphorus diffusion induces dislocation climb, resulting in the formation of dislocation helices in the diffused layer.

  16. Proteome analysis of aerobic and fermentative metabolism in Rhizobium etli CE3.

    PubMed

    Encarnación, Sergio; Guzmán, Yudith; Dunn, Michael F; Hernández, Magdalena; del Carmen Vargas, Maria; Mora, Jaime

    2003-06-01

    Rhizobium etli undergoes a transition from an aerobic to a fermentative metabolism during successive subcultures in minimal medium. This metabolic transition does not occur in cells subcultured in rich medium, or in minimal medium containing either biotin or thiamine. In this report, we characterize the aerobic and fermentative metabolism of R. etli using proteome analysis. According to their synthesis patterns in response to aerobic (rich medium, minimal medium with biotin or minimal medium with thiamine) or fermentative (minimal medium without supplements) growth conditions, proteins were assigned to five different classes: (i) proteins produced only in aerobic conditions (e.g., catalase-peroxidase KatG and the E2 component of pyruvate dehydrogenase); (ii) protein produced under both conditions but strongly induced in aerobic metabolism (e.g., malate dehydrogenase and the succinyl-CoA synthetase beta subunit); (iii) proteins that were induced equally under all conditions tested (e.g., AniA, DnaK, and GroEL); (iv) proteins downregulated during aerobic metabolism, and (v) proteins specific to only one of the conditions analyzed. Northern blotting studies of katG expression confirmed the proteome data for this protein. The negative regulation of carbon metabolism proteins observed in fermentative metabolism is consistent with the drastic physiological changes which occur during this process.

  17. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  18. Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—A quantitative model

    NASA Astrophysics Data System (ADS)

    Schewski, R.; Baldini, M.; Irmscher, K.; Fiedler, A.; Markurt, T.; Neuschulz, B.; Remmele, T.; Schulz, T.; Wagner, G.; Galazka, Z.; Albrecht, M.

    2016-12-01

    We study the homoepitaxial growth of β-Ga2O3 (100) grown by metal-organic vapour phase as dependent on miscut-angle vs. the c direction. Atomic force microscopy of layers grown on substrates with miscut-angles smaller than 2° reveals the growth proceeding through nucleation and growth of two-dimensional islands. With increasing miscut-angle, step meandering and finally step flow growth take place. While step-flow growth results in layers with high crystalline perfection, independent nucleation of two-dimensional islands causes double positioning on the (100) plane, resulting in twin lamellae and stacking mismatch boundaries. Applying nucleation theory in the mean field approach for vicinal surfaces, we can fit experimentally found values for the density of twin lamellae in epitaxial layers as dependent on the miscut-angle. The model yields a diffusion coefficient for Ga adatoms of D = 7 × 10-9 cm2 s-1 at a growth temperature of 850 °C, two orders of magnitude lower than the values published for GaAs.

  19. Improved Aerobic Colony Count Technique for Hydrophobic Grid Membrane Filters

    PubMed Central

    Parrington, Lorna J.; Sharpe, Anthony N.; Peterkin, Pearl I.

    1993-01-01

    The AOAC International official action procedure for performing aerobic colony counts on hydrophobic grid membrane filters (HGMFs) uses Trypticase soy-fast green FCF agar (FGA) incubated for 48 h. Microbial growths are various shades of green on a pale green background, which can cause problems for automated as well as manual counting. HGMFs which had been incubated 24 or 48 h at 35°C on Trypticase soy agar were flooded underneath with 1 to 2 ml of 0.1% triphenyltetrazolium chloride (TTC) solution by simply lifting one corner of the filter while it was still on the agar and adding the reagent. Microbial growths on HGMFs were counted after color had been allowed to develop for 15 min at room temperature. With representative foods, virtually all colonies stained pink to red. Automated electronic counts made by using the MI-100 HGMF Interpreter were easier and more reliable than control HGMF counts made by the AOAC International official action procedure. Manual counting was easier as well because of increased visibility of the microbial growths. Except in the case of dairy products, 24-h TTC counts did not differ significantly from 48-h FGA counts, whereas the FGA counts at 24 h were always significantly lower, indicating that for many food products the HGMF TTC flooding method permits aerobic colony counts to be made after 24 h. PMID:16349033

  20. Improved aerobic colony count technique for hydrophobic grid membrane filters.

    PubMed

    Parrington, L J; Sharpe, A N; Peterkin, P I

    1993-09-01

    The AOAC International official action procedure for performing aerobic colony counts on hydrophobic grid membrane filters (HGMFs) uses Trypticase soy-fast green FCF agar (FGA) incubated for 48 h. Microbial growths are various shades of green on a pale green background, which can cause problems for automated as well as manual counting. HGMFs which had been incubated 24 or 48 h at 35 degrees C on Trypticase soy agar were flooded underneath with 1 to 2 ml of 0.1% triphenyltetrazolium chloride (TTC) solution by simply lifting one corner of the filter while it was still on the agar and adding the reagent. Microbial growths on HGMFs were counted after color had been allowed to develop for 15 min at room temperature. With representative foods, virtually all colonies stained pink to red. Automated electronic counts made by using the MI-100 HGMF Interpreter were easier and more reliable than control HGMF counts made by the AOAC International official action procedure. Manual counting was easier as well because of increased visibility of the microbial growths. Except in the case of dairy products, 24-h TTC counts did not differ significantly from 48-h FGA counts, whereas the FGA counts at 24 h were always significantly lower, indicating that for many food products the HGMF TTC flooding method permits aerobic colony counts to be made after 24 h.

  1. Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism.

    PubMed

    Li, Yongtao; Huang, Le; Li, Bo; Wang, Xiaoting; Zhou, Ziqi; Li, Jingbo; Wei, Zhongming

    2016-09-27

    Heterostructures constructed by low-dimensional (such as 0D, 1D, and 2D) materials have opened up opportunities for exploring interesting physical properties and versatile (opto)electronics. Recently, 2D/2D heterostructures, in particular, atomically thin graphene and transition-metal dichalcogenides, including graphene/MoS2, WSe2/MoS2, and WS2/WSe2, were efficiently prepared (by transfer techniques, chemical vapor deposition (CVD) growth, etc.) and systematically studied. In contrast, investigation of 1D/2D heterostructures was still very challenging and rarely reported, and the understanding of such heterostructures was also not well established. Herein, we demonstrate the one-step growth of a heterostructure on the basis of a 1D-Bi2S3 nanowire and a 2D-MoS2 monolayer through the CVD method. Multimeans were employed, and the results proved the separated growth of a Bi2S3 nanowire and a MoS2 sheet in the heterostructure rather than forming a BixMo1-xSy alloy due to their large lattice mismatch. Defect-induced co-nucleus growth, which was an important growth mode in 1D/2D heterostructures, was also experimentally confirmed and systematically investigated in our research. Such 1D/2D heterostructures were further fabricated and utilized in (opto)electronic devices, such as field-effect transistors and photodetectors, and revealed their potential for multifunctional design in electrical properties. The direct growth of such nanostructures will help us to gain a better comprehension of these specific configurations and allow device functionalities in potential applications.

  2. The effects of aerobic training on children's creativity, self-perception, and aerobic power.

    PubMed

    Herman-Tofler, L R; Tuckman, B W

    1998-10-01

    The article examines whether participation in an aerobic exercise program (AE), as compared with a traditional physical education class (PE), significantly increased children's perceived athletic competence, physical appearance, social acceptance, behavioral conduct, and global self-worth; increased their figural creativity; and improved aerobic power as measured by an 800-meter run around a track. Further research on the effects of different types of AE is discussed, as well as the need for aerobic conditioning in the elementary school.

  3. Facts about Birth Defects

    MedlinePlus

    ... and Palate Clubfoot Craniosynostosis Down Syndrome Eye Defects Fetal Alcohol Syndrome Disorders Gastroschisis Heart Defects Coarctation of the Aorta ... grow and develop. For some birth defects, like fetal alcohol syndrome, we know the cause. But for most birth ...

  4. Atrial septal defect (ASD)

    MedlinePlus

    ... other heart defects of the ventricular septum and mitral valve . Secundum defects can be a single, small ... Sometimes, open-heart surgery may be needed to repair the defect. The type of surgery is more ...

  5. Single Ventricle Defects

    MedlinePlus

    ... Healthy Heart Function Common Types of Heart Defects - Aortic Valve Stenosis (AVS) - Atrial Septal Defect (ASD) - Coarctation of the Aorta (CoA) - Complete Atrioventricular Canal defect (CAVC) - d-Transposition ...

  6. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  7. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  8. The rise of oxygen and aerobic biochemistry.

    PubMed

    Saito, Mak A

    2012-01-11

    Analysis of conserved protein folding domains across extant genomes by Kim et al. in this issue of Structure provides insights into the timing of some of the earliest aerobic metabolisms to arise on Earth.

  9. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  10. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  11. Deguelins, Natural Product Modulators of NF1-Defective Astrocytoma Cell Growth Identified by High-Throughput Screening of Partially Purified Natural Product Extracts.

    PubMed

    Henrich, Curtis J; Cartner, Laura K; Wilson, Jennifer A; Fuller, Richard W; Rizzo, Anthony E; Reilly, Karlyne M; McMahon, James B; Gustafson, Kirk R

    2015-11-25

    A high-throughput screening assay for modulators of Trp53/NF1 mutant astrocytoma cell growth was adapted for use with natural product extracts and applied to a novel collection of prefractionated/partially purified extracts. Screening 68 427 samples identified active fractions from 95 unique extracts, including the terrestrial plant Millettia ichthyotona. Only three of these extracts showed activity in the crude extract form, thus demonstrating the utility of a partial purification approach for natural product screening. The NF1 screening assay was used to guide purification of active compounds from the M. ichthyotona extract, which yielded the two rotenones deguelin (1) and dehydrodeguelin (2). The deguelins have been reported to affect growth of a number of cancer cell lines. They potently inhibited growth of only one of a panel of NF1/Trp53 mutant murine astrocytoma cell lines, possibly related to epigenetic factors, but had no effect on the growth of normal astrocytes. These results suggest the potential utility of deguelins as tools for further investigating NF1 astrocytoma cell growth. These bioprobes were identified only as a result of screening partially purified natural product extracts.

  12. Growth mechanism and microstructure of low defect density InN (0001) In-face thin films on Si (111) substrates

    SciTech Connect

    Kehagias, Th.; Dimitrakopulos, G. P.; Koukoula, T.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.; Tsagaraki, K.; Adikimenakis, A.

    2013-10-28

    Transmission electron microscopy has been employed to analyze the direct nucleation and growth, by plasma-assisted molecular beam epitaxy, of high quality InN (0001) In-face thin films on (111) Si substrates. Critical steps of the heteroepitaxial growth process are InN nucleation at low substrate temperature under excessively high N-flux conditions and subsequent growth of the main InN epilayer at the optimum conditions, namely, substrate temperature 400–450 °C and In/N flux ratio close to 1. InN nucleation occurs in the form of a very high density of three dimensional (3D) islands, which coalesce very fast into a low surface roughness InN film. The reduced reactivity of Si at low temperature and its fast coverage by InN limit the amount of unintentional Si nitridation by the excessively high nitrogen flux and good bonding/adhesion of the InN film directly on the Si substrate is achieved. The subsequent overgrowth of the main InN epilayer, in a layer-by-layer growth mode that enhances the lateral growth of InN, reduces significantly the crystal mosaicity and the density of threading dislocations is about an order of magnitude less compared to InN films grown using an AlN/GaN intermediate nucleation/buffer layer on Si. The InN films exhibit the In-face polarity and very smooth atomically stepped surfaces.

  13. Beneficial defects: exploiting the intrinsic polishing-induced wafer roughness for the catalyst-free growth of Ge in-plane nanowires

    PubMed Central

    2014-01-01

    We outline a metal-free fabrication route of in-plane Ge nanowires on Ge(001) substrates. By positively exploiting the polishing-induced defects of standard-quality commercial Ge(001) wafers, micrometer-length wires are grown by physical vapor deposition in ultra-high-vacuum environment. The shape of the wires can be tailored by the epitaxial strain induced by subsequent Si deposition, determining a progressive transformation of the wires in SiGe faceted quantum dots. This shape transition is described by finite element simulations of continuous elasticity and gives hints on the equilibrium shape of nanocrystals in the presence of tensile epitaxial strain. PACS 81.07.Gf; 68.35.bg; 68.35.bj; 62.23.Eg PMID:25114649

  14. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  15. Inhibition of Salmonella Typhimurium by Cultures of Cecal Bacteria during Aerobic Incubation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two trials were conducted to examine the ability of cecal bacterial cultures from broilers to inhibit growth of Salmonella Typhimurium during aerobic incubation. Cecal broth media was inoculated with 10 µl of cecal contents from 6 week old broilers taken from 2 separate flocks. Cultures were incubat...

  16. Rational defect introduction in silicon nanowires.

    PubMed

    Shin, Naechul; Chi, Miaofang; Howe, Jane Y; Filler, Michael A

    2013-05-08

    The controlled introduction of planar defects, particularly twin boundaries and stacking faults, in group IV nanowires remains challenging despite the prevalence of these structural features in other nanowire systems (e.g., II-VI and III-V). Here we demonstrate how user-programmable changes to precursor pressure and growth temperature can rationally generate both transverse twin boundaries and angled stacking faults during the growth of <111> oriented Si nanowires. We leverage this new capability to demonstrate prototype defect superstructures. These findings yield important insight into the mechanism of defect generation in semiconductor nanowires and suggest new routes to engineer the properties of this ubiquitous semiconductor.

  17. Characterization of an Escherichia coli K12 mutant that is sensitive to chlorate when grown aerobically.

    PubMed Central

    Giordano, G; Grillet, L; Rosset, R; Dou, J H; Azoulay, E; Haddock, B A

    1978-01-01

    Escherichia coli can normally grow aerobically in the presence of chlorate; however, mutants can be isolated that can no longer grow under these conditions. We present here the biochemical characterization of one such mutant and show that the primary genetic lesion occurs in the ubiquinone-8-biosynthetic pathway. As a consequence of this, under aerobic growth conditions the mutant is apparently unable to synthesize formate dehydrogenase, but can synthesize a Benzyl Viologen-dependent nitrate reductase activity. The nature of this activity is discussed. PMID:369552

  18. Biotechnology for aerobic conversion of food waste into organic fertilizer.

    PubMed

    Stabnikova, Olena; Ding, Hong-Bo; Tay, Joo-Hwa; Wang, Jing-Yuan

    2005-02-01

    A biotechnology for aerobic conversion of food waste into organic fertilizer under controlled aeration, stirring, pH and temperature at 55-65 degrees C, is proposed. To maintain neutral pH at the beginning of the bioconversion 5% CaCO3 was added to the total solids of the food waste. The addition of 20% horticultural waste compost as a bulking agent to the food wastes (w.w./w.w.), improved the bioconversion and increased the stability of the final product. No starter culture was needed for aerobic bioconversion of food waste into organic fertilizer for 10 days. The low contents of heavy metals in the raw materials used in the bioconversions ensured the safety of fertilizer from food waste for application in agriculture. The addition of 4% organic fertilizer to the subsoil increased the yield and growth of Ipomoea aquatica (Kang Kong) by 1.5 to 2 times. The addition of phosphorus is required to enhance the positive effect of organic fertilizer on plant growth.

  19. Suppression of OsKu80 results in defects in developmental growth and increased telomere length in rice (Oryza sativa L.).

    PubMed

    Byun, Mi Young; Cui, Li Hua; Kim, Woo Taek

    2015-12-25

    The Ku70-Ku80 heterodimer plays a critical role in the maintenance of genomic stability in humans and yeasts. In this report, we identified and characterized OsKu80 in rice, a model monocot crop. OsKu80 forms a heterodimer with OsKu70 in yeast and plant cells, as demonstrated by yeast two-hybrid, in vivo co-immunoprecipitation, and bimolecular fluorescence complementation assays. RNAi-mediated knock-down T3 transgenic rice plants (Ubi:RNAi-OsKu80) displayed a retarded growth phenotype at the post-germination stage. In addition, the Ubi:RNAi-OsKu80 knock-down progeny exhibited noticeably increased telomere length as compared to wild-type rice. These results are discussed with the idea that OsKu80 plays a role in developmental growth and telomere length regulation in rice plants.

  20. The Effect of the Wall Contact and Post-Growth Cool-Down on Defects in CdTe Crystals Grown by 'Contactless' Physical Vapour Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Durose, K.; Halliday, D. P.; Boyall, N. M.; Dudley, M.; Raghothamachar, B.; Cai, L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of cadmium telluride crystals grown by physical vapor transport without contact with the ampoule walls and cooled at different rates were characterized using synchrotron X-ray topography, photoluminescence, and chemical etching. Strain from sticking to silica glass and its effect on the dislocation density is shown. It was found that very fast cool-down increases dislocation density by at least one order of magnitude. None of the samples had random dislocation distributions but coarse clumping of dislocations on the scale of more than 100 microns was more prevalent in slowly cooled crystals. Photoluminescence revealed that slow cooling favored the donor-acceptor luminescence involving complex A centers. This was diminished in fast cooled material; and effect presumed to be due to dislocation gettering. Fast cooling also enhanced the formation of shallow acceptors. Implications for Bridgman growth of CdTe and the vapor growth of CdZnTe are discussed briefly.

  1. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  2. Effect of long term anaerobic and intermittent anaerobic/aerobic starvation on aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2009-08-01

    The effect of long term anaerobic and intermittent anaerobic/aerobic starvation on the structure and activity of aerobic granules was studied. Aerobic granular sludge treating abattoir wastewater and achieving high levels of nutrient removal was subjected to 4-5 week starvation under anaerobic and intermittent anaerobic/aerobic conditions. Microscopic pictures of granules at the beginning of the starvation period presented a round and compact surface morphology with a much defined external perimeter. Under both starvation conditions, the morphology changed at the end of starvation with the external border of the granules surrounded by floppy materials. The loss of granular compactness was faster and more pronounced under anaerobic/aerobic starvation conditions. The release of Ca(2+) at the onset of anaerobic/aerobic starvation suggests a degradation of extracellular polymeric substances. The activity of ammonia oxidizing bacteria was reduced by 20 and 36% during anaerobic and intermittent anaerobic/aerobic starvation, respectively. When fresh wastewater was reintroduced, the granules recovered their initial morphology within 1 week of normal operation and the nutrient removal activity recovered fully in 3 weeks. The results show that both anaerobic and intermittent anaerobic/aerobic conditions are suitable for maintaining granule structure and activity during starvation.

  3. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen‑transformed MEF cells.

    PubMed

    Jiang, Qiying; Zhang, Zhi; Li, Shulian; Wang, Zhaoyang; Ma, Yuanfang; Hu, Yanzhong

    2015-11-01

    Heat shock factor 1 (Hsf1) serves an important role in regulating the proliferation of human tumor cell lines in vitro and tissue specific tumorigenesis in certain mouse models. However, its role in viral‑oncogenesis remains to be fully elucidated. In the current study, the role of Hsf1 in fibroblastoma derived from simian virus 40/T antigen (SV40/TAG)‑transformed mouse embryonic fibroblast (MEF) cell lines was investigated. Knockout of Hsf1 inhibited MEF cell proliferation in vitro and fibroblastoma growth and metastasis to the lungs in vivo in nude mice. Knockout of Hsf1 increased the protein expression levels of p53 and phosphorylated retinoblastoma protein (pRb), however reduced the expression of heat shock protein 25 (Hsp25) in addition to the expression of the angiogenesis markers vascular endothelial growth factor, cluster of differentiation 34 and factor VIII related antigen. Furthermore, immunoprecipitation indicated that knockout of Hsf1 inhibited the association between SV40/TAG and p53 or pRb. These data suggest that Hsf1 is involved in the regulation of SV40/TAG‑derived fibroblastoma growth and metastasis by modulating the association between SV40/TAG and tumor suppressor p53 and pRb. The current study provides further evidence that Hsf1 may be a novel therapeutic target in the treatment of cancer.

  4. Growth and sporulation defects in Bacillus subtilis mutants with a single rrn operon can be suppressed by amplification of the rrn operon.

    PubMed

    Yano, Koichi; Masuda, Kenta; Akanuma, Genki; Wada, Tetsuya; Matsumoto, Takashi; Shiwa, Yuh; Ishige, Taichiro; Yoshikawa, Hirofumi; Niki, Hironori; Inaoka, Takashi; Kawamura, Fujio

    2016-01-01

    The genome of Bacillus subtilis strain 168 encodes ten rRNA (rrn) operons. We previously reported that strains with only a single rrn operon had a decreased growth and sporulation frequency. We report here the isolation and characterization of suppressor mutants from seven strains that each have a single rrn operon (rrnO, A, J, I, E, D or B). The suppressor mutants for strain RIK656 with a single rrnO operon had a higher frequency of larger colonies. These suppressor mutants had not only increased growth rates, but also increased sporulation frequencies and ribosome levels compared to the parental mutant strain RIK656. Quantitative PCR analyses showed that all these suppressor mutants had an increased number of copies of the rrnO operon. Suppressor mutants were also isolated from the six other strains with single rrn operons (rrnA, J, I, E, D or B). Next generation and capillary sequencing showed that all of the suppressor mutants had tandem repeats of the chromosomal locus containing the remaining rrn operon (amplicon). These amplicons varied in size from approximately 9 to 179 kb. The amplifications were likely to be initiated by illegitimate recombination between non- or micro-homologous sequences, followed by unequal crossing-over during DNA replication. These results are consistent with our previous report that rrn operon copy number has a major role in cellular processes such as cell growth and sporulation.

  5. Value of the O-nitrophenyl-beta-D-galactopyranoside test to differentiate among the aerobic actinomycetes.

    PubMed Central

    Flores, M; Ford, E G; Janda, J M

    1990-01-01

    A comparative study to determine beta-D-galactosidase activity among 171 strains of aerobic actinomycetes (including mycobacteria and rhodococci) was performed by using two growth media and four O-nitrophenyl-beta-D-galactopyranoside (ONPG) substrates. The ONPG test was found to be a valuable screening test to differentiate between the ONPG-positive Nocardia spp. and the rapidly growing ONPG-negative mycobacteria and rhodococci. However, ONPG results varied significantly depending on the growth medium and test substrate used. PMID:2121796

  6. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  7. PTH Promotes Bone Anabolism by Stimulating Aerobic Glycolysis via IGF Signaling.

    PubMed

    Esen, Emel; Lee, Seung-Yon; Wice, Burton M; Long, Fanxin

    2015-11-01

    Teriparatide, a recombinant peptide corresponding to amino acids 1-34 of human parathyroid hormone (PTH), has been an effective bone anabolic drug for over a decade. However, the mechanism whereby PTH stimulates bone formation remains incompletely understood. Here we report that in cultures of osteoblast-lineage cells, PTH stimulates glucose consumption and lactate production in the presence of oxygen, a hallmark of aerobic glycolysis, also known as Warburg effect. Experiments with radioactively labeled glucose demonstrate that PTH suppresses glucose entry into the tricarboxylic acid cycle (TCA cycle). Mechanistically, the increase in aerobic glycolysis is secondary to insulin-like growth factor (Igf) signaling induced by PTH, whereas the metabolic effect of Igf is dependent on activation of mammalian target of rapamycin complex 2 (mTORC2). Importantly, pharmacological perturbation of glycolysis suppresses the bone anabolic effect of intermittent PTH in the mouse. Thus, stimulation of aerobic glycolysis via Igf signaling contributes to bone anabolism in response to PTH.

  8. Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata.

    PubMed

    Benzhai, Hai; Lei, Liu; Ge, Qin; Yuwan, Peng; Ping, Li; Qingxiang, Yang; Hailei, Wang

    2014-10-01

    In the present paper, aerobic granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater, and 81 % of granular rate was obtained after 15-day cultivation. Aerobic granules have a 96 % BOD removal to the wastewater, and the reactor harbors a mount of biomass including bacteria, fungi and protozoa. In view of the complexity of kinetic behaviors of sludge and biological mechanisms of the granular SBR, a cellular automata model was established to simulate the process of wastewater treatment. The results indicate that the model not only visualized the complex adsorption and degradation process of aerobic granules, but also well described the BOD removal of wastewater and microbial growth in the reactor. Thus, CA model is suitable for simulation of synthetic wastewater treatment. This is the first report about dynamical and visual simulation of treatment process of synthetic wastewater in a granular SBR.

  9. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri

    PubMed Central

    McDonald, Michael J.; Galafassi, Silvia; Compagno, Concetta; Piškur, Jure

    2017-01-01

    The Crabtree positive yeasts, such as Saccharomyces cerevisiae, prefer fermentation to respiration, even under fully aerobic conditions. The selective pressures that drove the evolution of this trait remain controversial because of the low ATP yield of fermentation compared to respiration. Here we propagate experimental populations of the weak-Crabtree yeast Lachancea kluyveri, in competitive co-culture with bacteria. We find that L. kluyveri adapts by producing quantities of ethanol lethal to bacteria and evolves several of the defining characteristics of Crabtree positive yeasts. We use precise quantitative analysis to show that the rate advantage of fermentation over aerobic respiration is insufficient to provide an overall growth advantage. Thus, the rapid consumption of glucose and the utilization of ethanol are essential for the success of the aerobic fermentation strategy. These results corroborate that selection derived from competition with bacteria could have provided the impetus for the evolution of the Crabtree positive trait. PMID:28282411

  10. Analysis of Stoichiometry-Related Defects in Group III - Nitrides

    DTIC Science & Technology

    2003-12-31

    defect determination 05 2.1 In-situ Defect Determination: DRS 05 2.2 Overview: Reproducible LT-GaAs growth 08 2.3 Ultrahigh-doped epilayers and their...Low temperature growth of GaAs and defect determination 2.1 In-situ Defect Determination: DRS In an effort to develop the use of common measurement...systems for the evaluation of the defect population in MBE grown III-V epilayers we applied in-situ diffuse reflectance spectroscopy ( DRS ) to monitor

  11. The Effect of the Wall Contact and Post-Growth, Cool-Down on Defects in CdTe Crystals Grown By 'Contactless' PVT

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Dudley, M.; Raghothamachar, B.; Cai, L.; Dunrose, K.; Halliday, D.; Boyall, N. M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    To take a maximum advantage of materials processing in microgravity for understanding the effects of gravity, gravity-independent effects should be minimized. In crystal growth, the quality of the grown crystals may depend, among other factors, on their interaction with the walls of the processing container during and after growth, and on the rate of the crystal cool-down at the end of the process. To investigate the above phenomena, a series of CdTe crystal growth processes was carried out. The crystals were grown by physical vapor transport without contact with the side walls of the silica glass ampoules. To eliminate the effect of the seed quality, and to reduce the number of nuclei and related crystal grains, the Low Supersaturation Nucleation technique was applied. The source temperature was 930 C, the undercooling was a few degrees. The crystals, having the diameter of 25 mm, grew at the rate of a few mm per day. The post-growth cool-down to the room temperature was conducted at different rates, and lasted from a few minutes to four days. The crystals were characterized using chemical etching, low temperature luminescence, and Synchrotron White Beam X-ray Topography techniques. The dislocation (etch pit) density was measured and its distribution was analyzed by comparison with Poisson curves and with the Normalized Radial Distribution Correlation Function. In the regions where the crystal is in contact with silica, the materials show a considerable strain field which extends for a few mm or more from the silica-crystal interface. In the reference crystal grown with contact with the ampoule walls, and when the crystals are cooled at the highest rates, the etch pit/dislocation density is in the high 10(exp 5) per square centimeter region. Typical EPD values for lower cool-down rates are in the lower 10(exp 4) per square centimeter region. In some areas the actual dislocation density was about 10(exp 3) per square centimeter or even less. No apparent effect of

  12. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks.

    PubMed

    Lessard, Sarah J; Rivas, Donato A; Alves-Wagner, Ana B; Hirshman, Michael F; Gallagher, Iain J; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L; Qi, Nathan R; Gustafsson, Thomas; Fielding, Roger A; Timmons, James A; Britton, Steven L; Koch, Lauren G; Goodyear, Laurie J

    2013-08-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are "exercise-resistant" and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease.

  13. Role of point defects/defect complexes in silicon device processing. Book of abstracts, fourth workshop

    SciTech Connect

    Not Available

    1994-06-01

    The 41 abstracts are arranged into 6 sessions: impurities and defects in commercial substrates: their sources, effects on material yield, and material quality; impurity gettering in silicon: limits and manufacturability of impurity gettering and in silicon solar cells; impurity/defect passivation; new concepts in silicon growth: improved initial quality and thin films; and silicon solar cell design opportunities.

  14. Comparative in vitro study of the proliferation and growth of ovine osteoblast-like cells on various alloplastic biomaterials manufactured for augmentation and reconstruction of tissue or bone defects.

    PubMed

    Schmitt, Sandra C; Wiedmann-Al-Ahmad, Margit; Kuschnierz, Jens; Al-Ahmad, Ali; Huebner, Ute; Schmelzeisen, Rainer; Gutwald, Ralf

    2008-03-01

    In this in vitro study ovine osteoblast-like cells were cultured on seven different alloplastic biomaterials used for augmentation and for reconstruction of bone defects in dental and craniomaxillofacial surgery. The aim of this study was to examine the growth behaviour (viability, cell density and morphology) of ovine osteoblast-like cells on the investigated biomaterials to get knowledge which biomaterial is qualified to act as a cell carrier system in further in vivo experiments. The biomaterials were either synthetically manufactured or of natural origin. As synthetically manufactured biomaterials Ethisorb, MakroSorb, PalacosR, and PDS film were used. As biomaterials of natural origin BeriplastP, Bio-Oss and Titanmesh were investigated. The cell proliferation and cell colonization were analyzed by a proliferation assay and scanning electron microscopy. Osteoblast-like cells proliferated and attached on all biomaterials, except on Beriplast. On Ethisorb the highest cell proliferation rate was measured followed by PalacosR. Both biomaterials offer suitable growth and proliferation conditions for ovine osteoblast-like cells. The proliferation rates of Bio-Oss, MakroSorb, PDS-film and Titanmesh were low and SEM examinations of these materials showed less spread osteoblast-like cells. The results showed that ovine osteoblast-like cells appear to be sensitive to substrate composition and topography. This in vitro study provides the basis for further in vivo studies using the sheep model to examine the biocompatibility and the long-term interaction between the test material and tissue (bone regeneration).

  15. Aerobic granules: microbial landscape and architecture, stages, and practical implications.

    PubMed

    Gonzalez-Gil, Graciela; Holliger, Christof

    2014-06-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In "old" granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters "rooting" from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation.

  16. Aerobic Granules: Microbial Landscape and Architecture, Stages, and Practical Implications

    PubMed Central

    Holliger, Christof

    2014-01-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In “old” granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters “rooting” from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation. PMID:24657859

  17. Light quality and quantity regulate aerobic methane emissions from plants.

    PubMed

    Martel, Ashley B; Qaderi, Mirwais M

    2017-03-01

    Studies have been mounting in support of the finding that plants release aerobic methane (CH4 ), and that these emissions are increased by both short-term and long-term environmental stress. It remains unknown whether or not they are affected by variation in light quantity and quality, whether emissions change over time, and whether they are influenced by physiological parameters. Light is the primary energy source of plants, and therefore an important regulator of plant growth and development. Both shade-intolerant sunflower and shade-tolerant chrysanthemum were investigated for the release of aerobic CH4 emissions, using either low or high light intensity, and varying light quality, including control, low or normal red:far-red ratio (R:FR), and low or high levels of blue, to discern the relationship between light and CH4 emissions. It was found that low levels of light act as an environmental stress, facilitating CH4 release from both species. R:FR and blue lights increased emissions under low light, but the results varied with species, providing evidence that both light quantity and quality regulate CH4 emissions. Emission rates of 6.79-41.13 ng g(-1) DW h(-1) and 18.53-180.25 ng g(-1) DW h(-1) were observed for sunflower and chrysanthemum, respectively. Moreover, emissions decreased with age as plants acclimated to environmental conditions. Since effects were similar in both species, there may be a common trend among a number of shade-tolerant and shade-intolerant species. Light quantity and quality are influenced by factors including cloud covering, so it is important to know how plants will be affected in the context of aerobic CH4 emissions.

  18. Therapeutic aspects of aerobic dance participation.

    PubMed

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  19. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  20. A Selaginella lepidophylla Trehalose-6-Phosphate Synthase Complements Growth and Stress-Tolerance Defects in a Yeast tps1 Mutant1

    PubMed Central

    Zentella, Rodolfo; Mascorro-Gallardo, José O.; Van Dijck, Patrick; Folch-Mallol, Jorge; Bonini, Beatriz; Van Vaeck, Christophe; Gaxiola, Roberto; Covarrubias, Alejandra A.; Nieto-Sotelo, Jorge; Thevelein, Johan M.; Iturriaga, Gabriel

    1999-01-01

    The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Δ mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Δ mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39°C and induced thermotolerance at 50°C. The osmosensitive phenotype of the yeast tps1Δ mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla. PMID:10198107

  1. Nanoselective area growth of defect-free thick indium-rich InGaN nanostructures on sacrificial ZnO templates.

    PubMed

    Puybaret, Renaud; Rogers, David; El Gmili, Youssef; Sundaram, Suresh; Jordan, Matthew; Li, Xin; Patriarche, Gilles; Teherani, Ferechteh; Sandana, Eric; Bove, Philippe; Voss, Paul; McClintock, Ryan; Razeghi, Manijeh; Ferguson, Ian; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2017-03-30

    Nanoselective area growth by metal organic vapor phase epitaxy of high-quality InGaN nanopyramids on GaN-coated ZnO/c-sapphire is reported. Nanopyramids grown on epitaxial low-temperature GaN-on-ZnO are highly uniform and appear to be single crystalline, as well as free of dislocations and V-pits. They are also indium-rich (with homogeneous 22% indium incorporation) and relatively thick (100 nm). These properties make them comparable to nanostructures grown on GaN and AlN/Si templates, in terms of crystallinity, quality, morphology, chemical composition and thickness. Moreover, the ability to selectively etch away the ZnO allows for the potential lift-off and transfer of the InGaN / GaN nanopyramids onto alternative substrates, e.g. cheaper and/or flexible. This technology offers an attractive alternative to NSAG on AlN/Si as a platform for the fabrication of high quality, thick and indium-rich InGaN monocrystals suitable for cheap, flexible and tunable light-emitting diodes.

  2. [Stability control of aerobic granules using an innovative reactor].

    PubMed

    Li, Zhi-Hua; Yang, Fan; Li, Sheng; Xie, Lei; Wang, Xiao-Chang

    2012-06-01

    Uncontrolled variation of diameter and density of aerobic granules frequently resulted in instability and thus brought about operation failure. An innovative reactor was therefore developed for the control of diameter and density of aerobic granules. There were two ways to select the sludge, one was the short settling time select the big and dense granules in the reactor, and the other was the hydro cyclone that washed out the big and compact granules preventing big and compact fourthly growth in the reactor. By these means, the diameter of granules could maintained in the range of 300-1 000 microm for a long time, consequently, the long term stability could be obtained. According to the kinetic analysis, it was found that the energy maintenance coefficient was 0.08-0.10, which was much higher than the conventional granular system (0.06), and the ratio of the COD used for maintenance to the influent was higher than the conventional one. Additionally, the removal efficiencies of COD and ammonia were 92% and 60%, respectively.

  3. Aerobic sugar metabolism in the spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Merico, Annamaria; Capitanio, Daniele; Vigentini, Ileana; Ranzi, Bianca Maria; Compagno, Concetta

    2003-12-01

    Despite the importance of some Zygosaccharomyces species as agents causing spoilage of food, the carbon and energy metabolism of most of them is yet largely unknown. This is the case with Zygosaccharomyces bailii. In this study the occurrence of the Crabtree effect in the petite-negative yeast Z. bailii ATCC 36947 was investigated. In this yeast the aerobic ethanol production is strictly dependent on the carbon source utilised. In glucose-limited continuous cultures a very low level of ethanol was produced. In fructose-limited continuous cultures ethanol was produced at a higher level and its production increased with the dilution rate. As a consequence, on fructose the onset of respiro-fermentative metabolism caused a reduction in biomass yield. An immediate aerobic alcoholic fermentation in Z. bailii was observed during the transition from sugar limitation to sugar excess, both on glucose and on fructose. The analysis of some key enzymes of the fermentative metabolism showed a high level of acetyl-CoA synthetase in Z. bailii growing on fructose. At high dilution rates, the activities of glucose- and fructose-phosphorylating enzymes, as well as of pyruvate decarboxylase and alcohol dehydrogenase, were higher in cells during growth on fructose than on glucose.

  4. Development of microorganisms in the chernozem under aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Polyanskaya, L. M.; Gorbacheva, M. A.; Milanovskii, E. Yu.; Zvyagintsev, D. G.

    2010-03-01

    A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in different horizons of a chernozem. It was revealed that, under aerobic conditions, all the microorganisms grow irrespective of the soil horizon; fungi and bacteria grow at the first succession stages, and actinomycetes grow at the last stages. It was shown that, in the case of a simulated anaerobiosis commonly used to study anaerobic populations of bacteria, the mycelium of micromycetes grows in the upper part of the chernozem’s A horizon. Under anaerobic conditions, the peak of the mycelium development is shifted from the 3rd to 7th days (typical for aerobic conditions) to the 7th to 15th days of incubation. The level of mycelium length’s stabilization under aerobic and anaerobic conditions also differs: it is higher or lower than the initial one, respectively. Under anaerobic conditions, the growth of fungal mycelium, bacteria, and actinomycetes in the lower part of the A horizon and in the B horizon is extremely weak. There was not any observed growth of actinomycetes in all the chernozem’s horizons under anaerobic conditions.

  5. Atrioventricular Canal Defect

    MedlinePlus

    ... al. Clinical manifestations, pathophysiology, and diagnosis of atrioventricular (AV) canal defects. http://www.uptodate.com/home. Accessed ... CE, et al. Management and outcome of atrioventricular (AV) canal defects. http://www.uptodate.com/home. Accessed ...

  6. Birth Defects (For Parents)

    MedlinePlus

    ... to create energy. Examples of metabolic defects include Tay-Sachs disease , a fatal disease that affects the central nervous ... called recessive inheritance and includes conditions such as Tay-Sachs disease and cystic fibrosis . A disease or defect also ...

  7. Mycobacterium tuberculosis mtrA merodiploid strains with point mutations in the signal-receiving domain of MtrA exhibit growth defects in nutrient broth.

    PubMed

    Al Zayer, Maha; Stankowska, Dorota; Dziedzic, Renata; Sarva, Krishna; Madiraju, Murty V; Rajagopalan, Malini

    2011-05-01

    The genetic and biochemical aspects of the essential Mycobacteriumtuberculosis MtrAB two-component regulatory signal transduction (2CRS) system have not been extensively investigated. We show by bacterial two-hybrid assay that the response regulator (RR) MtrA and the sensor kinase MtrB interact. We further demonstrate that divalent metal ions [Mg²+, Ca²+ or both] promote MtrB kinase autophosphorylation activity, but only Mg²+ promotes phosphotransfer to MtrA. Replacement of the conserved aspartic acid residues at positions 13 and 56 with alanine (D13A), glutamine (D56E) or asparagine (D56N) prevented MtrA phosphorylation, indicating that these residues are important for phosphorylation. The MtrA(D56E) and MtrA(D13A) proteins bound to the promoter of fbpB, the gene encoding antigen 85B protein, efficiently in the absence of phosphorylation, whereas MtrA(D56N) did not. We also show that M.tuberculosismtrA merodiploids overproducing MtrA(D13A), unlike cells overproducing wild-type MtrA, grow poorly in nutrient broth and show reduced expression of fbpB. These latter findings are reminiscent of a phenotype associated with MtrA overproduction during intramacrophage growth. Our results suggest that MtrA(D13A) behaves like a constitutively active response regulator and that further characterization of mtrA merodiploid strains will provide valuable clues to the MtrAB system.

  8. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  9. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  10. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  11. Aerobic exercise in fibromyalgia: a practical review.

    PubMed

    Thomas, Eric N; Blotman, Francis

    2010-07-01

    The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references found from the initial search. Study selection included randomized clinical trials that compared an aerobic-only exercise intervention (land or pool based) with an untreated control, a non-exercise intervention or other exercise programs in patients responding to the 1990 American College of Rheumatology criteria for FM. The following outcome data were obtained: pain, tender points, perceived improvement in FM symptoms such as the Fibromyalgia Impact Questionnaire total score (FIQ), physical function, depression (e.g., Beck Depression Inventory, FIQ subscale for depression), fatigue and sleep were extracted from 19 clinical trials that considered the effects of aerobic-only exercise in FM patients. Data synthesis shows that there is moderate evidence of important benefit of aerobic-only exercise in FM on physical function and possibly on tender points and pain. It appears to be sufficient evidence to support the practice of AE as a part of the multidisciplinary management of FM. However, future studies must be more adequately sized, homogeneously assessed, and monitored for adherence, to draw definitive conclusions.

  12. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  13. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  14. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

    PubMed Central

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W.; Browne, Tristan; Cox, Kevin; Paul, Andrew T.; Ko, Seung-Hyun B.; Mortensen, Joel E.; Lam, Joseph S.; Muruve, Daniel A.; Hassett, Daniel J.

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains. PMID:27064218

  15. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients.

    PubMed

    Ali, Zizi M Ibrahim; El-Refay, Basant H; Ali, Rania Reffat

    2015-03-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20-40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20-40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60 min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance.

  16. Topological defect lasers

    NASA Astrophysics Data System (ADS)

    Knitter, Sebastian; Fatt Liew, Seng; Xiong, Wen; Guy, Mikhael I.; Solomon, Glenn S.; Cao, Hui

    2016-01-01

    We introduce a topological defect to a regular photonic crystal defect cavity with anisotropic unit cell. Spatially localized resonances are formed and have high quality factor. Unlike the regular photonic crystal defect states, the localized resonances in the topological defect structures support powerflow vortices. Experimentally we realize lasing in the topological defect cavities with optical pumping. This work shows that the spatially inhomogeneous variation of the unit cell orientation adds another degree of freedom to the control of lasing modes, enabling the manipulation of the field pattern and energy flow landscape.

  17. Congenital defects of sheep.

    PubMed

    Dennis, S M

    1993-03-01

    With increasing incrimination of viruses, plants, and drugs as causes of ovine congenital defects, concerted efforts are required to identify environmental teratogens. Expanding knowledge of congenital defects requires studying as many defective lambs as possible; recording and documenting; detailed diagnostic examinations; genetic analyses and chromosomal examinations, whenever possible; and field investigations. Adopting standardized classification, terminology, and diagnostic procedures should improve descriptions, diagnoses, and interdisciplinary exchange of information. That, in turn, should improve our knowledge of and diagnosis of congenital defects of sheep in the future. Finally, veterinary clinicians and diagnosticians are encouraged to take an interest in congenital defects and teratology.

  18. Defect production in ceramics

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  19. InsP6-Sensitive Variants of the Gle1 mRNA Export Factor Rescue Growth and Fertility Defects of the ipk1 Low-Phytic-Acid Mutation in Arabidopsis

    PubMed Central

    Lee, Ho-Seok; Lee, Du-Hwa; Cho, Hui Kyung; Kim, Song Hee; Auh, Joong Hyuck; Pai, Hyun-Sook

    2015-01-01

    Myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid, accumulates in large quantities in plant seeds, serving as a phosphorus reservoir, but is an animal antinutrient and an important source of water pollution. Here, we report that Gle1 (GLFG lethal 1) in conjunction with InsP6 functions as an activator of the ATPase/RNA helicase LOS4 (low expression of osmotically responsive genes 4), which is involved in mRNA export in plants, supporting the Gle1-InsP6-Dbp5 (LOS4 homolog) paradigm proposed in yeast. Interestingly, plant Gle1 proteins have modifications in several key residues of the InsP6 binding pocket, which reduce the basicity of the surface charge. Arabidopsis thaliana Gle1 variants containing mutations that increase the basic charge of the InsP6 binding surface show increased sensitivity to InsP6 concentrations for the stimulation of LOS4 ATPase activity in vitro. Expression of the Gle1 variants with enhanced InsP6 sensitivity rescues the mRNA export defect of the ipk1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) InsP6-deficient mutant and, furthermore, significantly improves vegetative growth, seed yield, and seed performance of the mutant. These results suggest that Gle1 is an important factor responsible for mediating InsP6 functions in plant growth and reproduction and that Gle1 variants with increased InsP6 sensitivity may be useful for engineering high-yielding low-phytate crops. PMID:25670768

  20. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of Alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5.

    PubMed

    Wang, ZhenXiong; Hicks, David B; Guffanti, Arthur A; Baldwin, Katisha; Krulwich, Terry Ann

    2004-06-18

    Mitchell's (Mitchell, P. (1961) Nature 191, 144-148) chemiosmotic model of energy coupling posits a bulk electrochemical proton gradient (Deltap) as the sole driving force for proton-coupled ATP synthesis via oxidative phosphorylation (OXPHOS) and for other bioenergetic work. Two properties of proton-coupled OXPHOS by alkaliphilic Bacillus species pose a challenge to this tenet: robust ATP synthesis at pH 10.5 that does not correlate with the magnitude of the Deltap and the failure of artificially imposed potentials to substitute for respiration-generated potentials in energizing ATP synthesis at high pH (Krulwich, T. (1995) Mol. Microbiol. 15, 403-410). Here we show that these properties, in alkaliphilic Bacillus pseudofirmus OF4, depend upon alkaliphile-specific features in the proton pathway through the a- and c-subunits of ATP synthase. Site-directed changes were made in six such features to the corresponding sequence in Bacillus megaterium, which reflects the consensus sequence for non-alkaliphilic Bacillus. Five of the six single mutants assembled an active ATPase/ATP synthase, and four of these mutants exhibited a specific defect in non-fermentative growth at high pH. Most of these mutants lost the ability to generate the high phosphorylation potentials at low bulk Deltap that are characteristic of alkaliphiles. The aLys(180) and aGly(212) residues that are predicted to be in the proton uptake pathway of the a-subunit were specifically implicated in pH-dependent restriction of proton flux through the ATP synthase to and from the bulk phase. The evidence included greatly enhanced ATP synthesis in response to an artificially imposed potential at high pH. The findings demonstrate that the ATP synthase of extreme alkaliphiles has special features that are required for non-fermentative growth and OXPHOS at high pH.

  1. InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis.

    PubMed

    Lee, Ho-Seok; Lee, Du-Hwa; Cho, Hui Kyung; Kim, Song Hee; Auh, Joong Hyuck; Pai, Hyun-Sook

    2015-02-01

    Myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP(6)), also known as phytic acid, accumulates in large quantities in plant seeds, serving as a phosphorus reservoir, but is an animal antinutrient and an important source of water pollution. Here, we report that Gle1 (GLFG lethal 1) in conjunction with InsP(6) functions as an activator of the ATPase/RNA helicase LOS4 (low expression of osmotically responsive genes 4), which is involved in mRNA export in plants, supporting the Gle1-InsP(6)-Dbp5 (LOS4 homolog) paradigm proposed in yeast. Interestingly, plant Gle1 proteins have modifications in several key residues of the InsP(6) binding pocket, which reduce the basicity of the surface charge. Arabidopsis thaliana Gle1 variants containing mutations that increase the basic charge of the InsP(6) binding surface show increased sensitivity to InsP(6) concentrations for the stimulation of LOS4 ATPase activity in vitro. Expression of the Gle1 variants with enhanced InsP(6) sensitivity rescues the mRNA export defect of the ipk1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) InsP(6)-deficient mutant and, furthermore, significantly improves vegetative growth, seed yield, and seed performance of the mutant. These results suggest that Gle1 is an important factor responsible for mediating InsP(6) functions in plant growth and reproduction and that Gle1 variants with increased InsP(6) sensitivity may be useful for engineering high-yielding low-phytate crops.

  2. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

    PubMed

    Koblížek, Michal

    2015-11-01

    Recognition of the environmental role of photoheterotrophic bacteria has been one of the main themes of aquatic microbiology over the last 15 years. Aside from cyanobacteria and proteorhodopsin-containing bacteria, aerobic anoxygenic phototrophic (AAP) bacteria are the third most numerous group of phototrophic prokaryotes in the ocean. This functional group represents a diverse assembly of species which taxonomically belong to various subgroups of Alpha-, Beta- and Gammaproteobacteria. AAP bacteria are facultative photoheterotrophs which use bacteriochlorophyll-containing reaction centers to harvest light energy. The light-derived energy increases their bacterial growth efficiency, which provides a competitive advantage over heterotrophic species. Thanks to their enzymatic machinery AAP bacteria are active, rapidly growing organisms which contribute significantly to the recycling of organic matter. This chapter summarizes the current knowledge of the ecology of AAP bacteria in aquatic environments, implying their specific role in the microbial loop.

  3. Development of a Zero-Headspace Aerobic Suspended Growth Bioreactor

    DTIC Science & Technology

    1994-08-01

    are metabolized via enzymatic -based oxidation reac- tions that use molecular oxygen as the electron acceptor. During the metabolic degradation of...biotreatment of contaminated soils (Zappi et al. 1993). DO is released from hydrogen peroxide because of its hydrolysis , which is mediated by metals...found in the soil matrix or through enzymatic -based degradation via catalases and peroxidases produced by microorganisms (Bajpai and Zappi 1994). These

  4. Hbr1 Activates and Represses Hyphal Growth in Candida albicans and Regulates Fungal Morphogenesis under Embedded Conditions

    PubMed Central

    Pendrak, Michael L.; Roberts, David D.

    2015-01-01

    Transitions between yeast and hyphae are essential for Candida albicans pathogenesis. The genetic programs that regulate its hyphal development can be distinguished by embedded versus aerobic surface agar invasion. Hbr1, a regulator of white-opaque switching, is also a positive and negative regulator of hyphal invasion. During embedded growth at 24°C, an HBR1/hbr1 strain formed constitutively filamentous colonies throughout the matrix, resembling EFG1 null colonies, and a subset of long unbranched hyphal aggregates enclosed in a spindle-shaped capsule. Inhibition of adenylate cyclase with farnesol perturbed the filamentation of HBR1/hbr1 cells producing cytokinesis-defective hyphae whereas farnesol treated EFG1 null cells produced abundant opaque-like cells. Point mutations in the Hbr1 ATP-binding domain caused distinct filamentation phenotypes including uniform radial hyphae, hyphal sprouts, and massive yeast cell production. Conversely, aerobic surface colonies of the HBR1 heterozygote on Spider and GlcNAc media lacked filamentation that could be rescued by growth under low (5%) O2. Consistent with these morphogenesis defects, the HBR1 heterozygote exhibited attenuated virulence in a mouse candidemia model. These data define Hbr1 as an ATP-dependent positive and negative regulator of hyphal development that is sensitive to hypoxia. PMID:26039220

  5. Postdevelopment defect evaluation

    NASA Astrophysics Data System (ADS)

    Miyahara, Osamu; Kiba, Yukio; Ono, Yuko

    2001-08-01

    Reduction of defects after development is a critical issue in photolithography. A special category of post development defects is the satellite defect which is located in large exposed areas generally in proximity to large unexposed regions of photoresist. We have investigated the formation of this defect type on ESCAP and ACETAL DUV resists with and without underlying organic BARCs, In this paper, we will present AFM and elemental analysis data to determine the origin of the satellite defect. Imaging was done on a full-field Nikon 248nm stepper and resist processing was completed on a TEL CLEAN TRACK ACT 8 track. Defect inspection and review were performed on a KLA-Tencor and Hitachi SEM respectively. Results indicate that the satellite defect is generated on both BARC and resist films and defect counts are dependent on the dark erosion. Elemental analysis indicates that the defects are composed of sulfur and nitrogen compounds. We suspect that the defect is formed as a result of a reaction between PAG, quencher and TMAH. This defect type is removed after a DIW re-rinse.

  6. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  7. Aerobic Fitness Linked to Cortical Brain Development in Adolescent Males: Preliminary Findings Suggest a Possible Role of BDNF Genotype

    PubMed Central

    Herting, Megan M.; Keenan, Madison F.; Nagel, Bonnie J.

    2016-01-01

    Aerobic exercise has been shown to impact brain structure and cognition in children and adults. Exercise-induced activation of a growth protein known as brain derived neurotrophic factor (BDNF) is thought to contribute to such relationships. To date, however, no study has examined how aerobic fitness relates to cortical brain structure during development and if BDNF genotype moderates these relationships. Using structural magnetic resonance imaging (MRI) and FreeSurfer, the current study examined how aerobic fitness relates to volume, thickness, and surface area in 34 male adolescents, 15 to 18 years old. Moreover, we examined if the val66met BDNF genotype moderated these relationships. We hypothesized that aerobic fitness would relate to greater thickness and volumes in frontal, parietal, and motor regions, and that these relationships would be less robust in individuals carrying a Met allele, since this genotype leads to lower BDNF expression. We found that aerobic fitness positively related to right rostral middle frontal cortical volume in all adolescents. However, results also showed BDNF genotype moderated the relationship between aerobic fitness and bilateral medial precuneus surface area, with a positive relationship seen in individuals with the Val/Val allele, but no relationship detected in those adolescents carrying a Met allele. Lastly, using self-reported levels of aerobic activity, we found that higher-fit adolescents showed larger right medial pericalcarine, right cuneus and left precuneus surface areas as compared to their low-fit peers. Our findings suggest that aerobic fitness is linked to cortical brain development in male adolescents, and that more research is warranted to determine how an individual’s genes may influence these relationships. PMID:27445764

  8. Aerobic glycolysis tunes YAP/TAZ transcriptional activity

    PubMed Central

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-01-01

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ. PMID:25796446

  9. Aerobic glycolysis tunes YAP/TAZ transcriptional activity.

    PubMed

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-05-12

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ.

  10. Ventricular Septal Defect (For Parents)

    MedlinePlus

    ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System ECG (Electrocardiogram) Anesthesia - What to Expect Tetralogy of ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System Contact Us Print Resources Send to a friend ...

  11. Ventricular Septal Defect (For Parents)

    MedlinePlus

    ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System ECG (Electrocardiogram) Anesthesia - What to Expect Tetralogy of ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System Contact Us Print Resources Send to a Friend ...

  12. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  13. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures.

    PubMed

    Oliver, Christy E; Beier, Ross C; Hume, Michael E; Horrocks, Shane M; Casey, Thomas A; Caton, Joel S; Nisbet, David J; Smith, David J; Krueger, Nathan A; Anderson, Robin C

    2010-04-01

    Experiments were conducted to determine factors that affect sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5mM). In our first experiment, cultures grown without chlorate grew more rapidly than those with chlorate. An extended lag before logarithmic growth was observed in anaerobic but not aerobic cultures containing chlorate. Chlorate inhibition of growth during aerobic culture began later than that observed in anaerobic cultures but persisted once inhibition was apparent. Conversely, anaerobic cultures appeared to adapt to chlorate after approximately 10h of incubation, exhibiting rapid compensatory growth. In anaerobic chlorate-containing cultures, 20% of total viable counts were resistant to chlorate by 6h and had propagated to 100% resistance (>10(9)CFU mL(-1)) by 24h. In the aerobic chlorate-containing cultures, 12.9% of colonies had detectable resistance to chlorate by 6h, but only 1% retained detectable resistance at 24h, likely because these cultures had opportunity to respire on oxygen and were thus not enriched via the selective pressure of chlorate. In another study, treatment with shikimic acid (0.34 mM), molybdate (1mM) or their combination had little effect on aerobic or anaerobic growth of Salmonella in the absence of added chlorate. As observed in our earlier study, chlorate resistance was not detected in any cultures without added chlorate. Chlorate resistant Salmonella were recovered at equivalent numbers regardless of treatment after 8h of aerobic or anaerobic culture with added chlorate; however, by 24h incubation chlorate sensitivity was completely restored to aerobic but not anaerobic cultures treated with shikimic acid or molybdate but not their combination. Results indicate that anaerobic adaptation of S. Typhimurium to sodium chlorate during pure culture is likely due to the selective propagation of low numbers of cells exhibiting spontaneous resistance to chlorate and this resistance is not reversible by

  14. Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically.

    PubMed

    Wu, Hong; Wang, Huan; Chen, Jinchun; Chen, Guo-Qiang

    2014-12-01

    Micro-aeration is a situation that will be encountered in bacterial cell growth especially when the saturated dissolved oxygen level cannot match the demand from cells grown to a high density. Therefore, it is desirable to separate aerobic growth and micro-aerobic product formation into two stages using methods including anaerobic or micro-aerobic promoters that are inducible under low aeration intensity. Eleven potential low aeration-inducible promoters were cloned and studied for their induction strengths under micro-aerobic conditions. Of them, Vitreoscilla hemoglobin promoter (P vgb ) was found to be the strongest among all 11 promoters. At the same time, six E. coli hosts harboring poly(R-3-hydroxybutyrate) (PHB) synthesis operon phaCAB were compared for their ability to accumulate poly(hydroxyalkanoates) (PHA). E. coli S17-1 was demonstrated to be the best host achieving a 70 % (mass fraction) PHB in the cell dry weigh (CDW) after 48 h under micro-aerobic growth. Cascaded P vgb repeats (P nvgb ) were investigated for enhanced expression level under micro-aerobic growth. The highest PHA production was obtained when a promoter containing eight cascaded P vgb repeats (P 8vgb ) was used, 5.37 g/l CDW containing 90 % PHB was obtained from recombinant in E. coli S17-1. Cells grew further to 6.30 g/l CDW containing 91 % PHB when oxygen-responsive transcription factor ArcA (arcA) was deleted in the same recombinant E. coli S17-1. This study revealed that vgb promoter containing cascaded P vgb repeats (P 8vgb ) is useful for product formation under low aeration intensity.

  15. Generation mechanism of large-size invisible defects on Si epitaxial wafers

    NASA Astrophysics Data System (ADS)

    Lee, Kyuhyung; Park, Jungkil; Shin, Jungwon; Kim, Jayoung; Kang, Heebog; Lee, Boyoung

    2017-03-01

    The new Si epitaxial (epi) defects not seen in scanning electron microscope (SEM) measurements were investigated. Morphologies of these defects were measured by atomic force microscope (AFM) but source of defect was not found in transmission electron microscope (TEM) measurements. In order to find the origin of the invisible defect, we observed the morphological changes of the various substrate defects after epi growth process. Most of the defects were removed during hydrogen (H2) baking and hydrogen chloride (HCl) etching steps, but some particles survived. Among the survived defects, it was confirmed that the non-metallic particles having 200 nm or more were the origin of the invisible epi defects.

  16. Is Maximum Food Intake in Endotherms Constrained by Net or Factorial Aerobic Scope? Lessons from the Leaf-Eared Mouse

    PubMed Central

    Maldonado, Karin; Sabat, Pablo; Piriz, Gabriela; Bogdanovich, José M.; Nespolo, Roberto F.; Bozinovic, Francisco

    2016-01-01

    Food availability varies substantially throughout animals' lifespans, thus the ability to profit from high food levels may directly influence animal fitness. Studies exploring the link between basal metabolic rate (BMR), growth, reproduction, and other fitness traits have shown varying relationships in terms of both magnitude and direction. The diversity of results has led to the hypothesis that these relationships are modulated by environmental conditions (e.g., food availability), suggesting that the fitness consequences of a given BMR may be context-dependent. In turn, there is indirect evidence that individuals with an increased capacity for aerobic work also have a high capacity for acquiring energy from food. Surprisingly, very few studies have explored the correlation between maximum rates of energy acquisition and BMR in endotherms, and to the best of our knowledge, none have attempted to elucidate relationships between the former and aerobic capacity [e.g., maximum metabolic rate (MMR), aerobic scope (Factorial aerobic scope, FAS; Net aerobic scope, NAS)]. In this study, we measured BMR, MMR, maximum food intake (recorded under low ambient temperature and ad libitum food conditions; MFI), and estimated aerobic scope in the leaf-eared mouse (Phyllotis darwini). We, then, examined correlations among these variables to determine whether metabolic rates and aerobic scope are functionally correlated, and whether an increased aerobic capacity is related to a higher MFI. We found that aerobic capacity measured as NAS is positively correlated with MFI in endotherms, but with neither FAS nor BMR. Therefore, it appears plausible that the capacity for assimilating energy under conditions of abundant resources is determined adaptively by NAS, as animals with higher NAS would be promoted by selection. In theory, FAS is an invariant measurement of the extreme capacity for energy turnover in relation to resting expenditure, whereas NAS represents the maximum capacity for

  17. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: a voxel-based morphometry study1

    PubMed Central

    Whiteman, Andrew S.; Young, Daniel E.; Budson, Andrew E.; Stern, Chantal E.; Schon, Karin

    2015-01-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N = 33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. PMID:26631814

  18. Effect of iron ions (Fe(2+), Fe(3+)) on the formation and structure of aerobic granular sludge.

    PubMed

    Yilmaz, Gulsum; Bozkurt, Umit; Magden, Karin Aleksanyan

    2017-02-01

    Aerobic granulation is a promising technology for wastewater treatment, but problems regarding its formation and stability need to be solved. Divalent metal ions, especially Ca(2+), Mg(2+) and Mn(2+), have been demonstrated to play an important role in the process of aerobic granulation. Here, we studied whether iron ions can affect aerobic granulation. Granular sludge formed without iron ion addition (<0.02 mg Fe(2+) L(-1)) was fluffy and had a finger-type structure and filamentous out-growth. The addition of iron ions to concentrations of 1 and 10 mg Fe(2+) L(-1) repressed the finger-type structure and filamentous out-growth. The results show that chemical precipitation in the granules with iron ion addition was higher than that in the granules without ferrous addition. The amount of precipitates was higher inside the granules than outside. This study demonstrates that iron ions (Fe(2+)/Fe(3+)) increase the size and stability of aerobic granular sludge but do not affect the granulation time, which is the time that the first granular sludge is observed. The study shows that aerobic granular sludge technology can be confidently applied to actual wastewater containing a high concentration of iron compounds.

  19. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study.

    PubMed

    Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin

    2016-02-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system.

  20. Membrane biofouling mechanism in an aerobic granular reactor degrading 4-chlorophenol.

    PubMed

    Buitrón, Germán; Moreno-Andrade, Iván; Arellano-Badillo, Víctor M; Ramírez-Amaya, Víctor

    2014-01-01

    The membrane fouling of an aerobic granular reactor coupled with a submerged membrane in a sequencing batch reactor (SBR) was evaluated. The fouling analysis was performed by applying microscopy techniques to determine the morphology and structure of the fouling layer on a polyvinylidene fluoride membrane. It was found that the main cause of fouling was the polysaccharide adsorption on the membrane surface, followed by the growth of microorganisms to form a biofilm.

  1. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  2. The metabolic impact of extracellular nitrite on aerobic metabolism of Paracoccus denitrificans.

    PubMed

    Hartop, K R; Sullivan, M J; Giannopoulos, G; Gates, A J; Bond, P L; Yuan, Z; Clarke, T A; Rowley, G; Richardson, D J

    2017-02-07

    Nitrite, in equilibrium with free nitrous acid (FNA), can inhibit both aerobic and anaerobic growth of microbial communities through bactericidal activities that have considerable potential for control of microbial growth in a range of water systems. There has been much focus on the effect of nitrite/FNA on anaerobic metabolism and so, to enhance understanding of the metabolic impact of nitrite/FNA on aerobic metabolism, a study was undertaken with a model denitrifying bacterium Paracoccus denitrificans PD1222. Extracellular nitrite inhibits aerobic growth of P. denitrificans in a pH-dependent manner that is likely to be a result of both nitrite and free nitrous acid (pKa = 3.25) and subsequent reactive nitrogen oxides generated from the intracellular passage of FNA into P. denitrificans. Increased expression of a gene encoding a flavohemoglobin protein (Fhp) (Pden_1689) was observed in response to extracellular nitrite. Construction and analysis of a deletion mutant established Fhp to be involved in endowing nitrite/FNA resistance at high extracellular nitrite concentrations. Global transcriptional analysis confirmed nitrite-dependent expression of fhp and indicated that P. denitrificans expressed a number of stress response systems associated with protein, DNA and lipid repair. It is therefore suggested that nitrite causes a pH-dependent stress response that is due to the production of associated reactive nitrogen species, such as nitric oxide from the internalisation of FNA.

  3. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.

  4. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product.

  5. High purith low defect FZ silicon

    NASA Technical Reports Server (NTRS)

    Kimura, H.; Robertson, G.

    1985-01-01

    The most common intrinsic defects in dislocation-free float zone (FZ) silicon crystals are the A- and B-type swirl defects. The mechanisms of their formation and annihilation have been extensively studied. Another type of defect in dislocation-free FZ crystals is referred to as a D-type defect. Concentrations of these defects can be minimized by optimizing the growth conditions, and the residual swirls can be reduced by the post-growth extrinsic gettering process. Czochralski (Cz) silicon wafers are known to exhibit higher resistance to slip and warpage due to thermal stress than do FZ wafers. The Cz crystals containing dislocations are more resistant to dislocation movement than dislocated FZ crystals because of the locking of dislocations by oxygen atoms present in the Cz crystals. Recently a transverse magnetic field was applied during the FZ growth of extrinsic silicon. Resultant flow patterns, as revealed by striation etching and spreading resistance in Ga-doped silicon crystals, indicate strong effects of the transverse magnetic field on the circulation within the melt. At fields of 5500 gauss, the fluid flow in the melt volume is so altered as to affect the morphology of the growing crystal.

  6. Defective chloroplast development inhibits maintenance of normal levels of abscisic acid in a mutant of the Arabidopsis RH3 DEAD-box protein during early post-germination growth.

    PubMed

    Lee, Kwang-Hee; Park, Jiyoung; Williams, Donna S; Xiong, Yuqing; Hwang, Inhwan; Kang, Byung-Ho

    2013-03-01

    The plastid has its own translation system, and its ribosomes are assembled through a complex process in which rRNA precursors are processed and ribosomal proteins are inserted into the rRNA backbone. DEAD-box proteins have been shown to play roles in multiple steps in ribosome biogenesis. To investigate the cellular and physiological roles of an Arabidopsis DEAD-box protein, RH3, we examined its expression and localization and the phenotypes of rh3-4, a T-DNA insertion mutant allele of RH3. The promoter activity of RH3 is strongest in the greening tissues of 3-day and 1-week-old seedlings but reduced afterwards. Cotyledons were pale and seedling growth was retarded in the mutant. The most obvious abnormality in the mutant chloroplasts was their lack of normal ribosomes. Electron tomography analysis indicated that ribosome density in the 3-day-old mutant chloroplasts is only 20% that of wild-type chloroplasts, and the ribosomes in the mutant are smaller. These chloroplast defects in rh3-4 were alleviated in 2-week-old cotyledons and true leaves. Interestingly, rh3-4 seedlings have lower amounts of abscisic acid prior to recovery of their chloroplasts, and were more sensitive to abiotic stresses. Transcriptomic analysis indicated that nuclear genes for chloroplast proteins are down-regulated, and proteins mediating chloroplast-localized steps of abscisic acid biosynthesis are expressed to a lower extent in 1-week-old rh3-4 seedlings. Taken together, these results suggest that conversion of eoplasts into chloroplasts in young seedlings is critical for the seedlings to start carbon fixation as well as for maintenance of abscisic acid levels for responding to environmental challenges.

  7. Exploring atomic defects in molybdenum disulphide monolayers

    PubMed Central

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 1013 cm−2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. PMID:25695374

  8. Platelet rich fibrin in jaw defects

    NASA Astrophysics Data System (ADS)

    Nica, Diana; Ianes, Emilia; Pricop, Marius

    2016-03-01

    Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.

  9. Pulmonary complications of abdominal wall defects.

    PubMed

    Panitch, Howard B

    2015-01-01

    The abdominal wall is an integral component of the chest wall. Defects in the ventral abdominal wall alter respiratory mechanics and can impair diaphragm function. Congenital abdominal wall defects also are associated with abnormalities in lung growth and development that lead to pulmonary hypoplasia, pulmonary hypertension, and alterations in thoracic cage formation. Although infants with ventral abdominal wall defects can experience life-threatening pulmonary complications, older children typically experience a more benign respiratory course. Studies of lung and chest wall function in older children and adolescents with congenital abdominal wall defects are few; such investigations could provide strategies for improved respiratory performance, avoidance of respiratory morbidity, and enhanced exercise ability for these children.

  10. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  11. Assessment of bacterial and structural dynamics in aerobic granular biofilms

    PubMed Central

    Weissbrodt, David G.; Neu, Thomas R.; Kuhlicke, Ute; Rappaz, Yoan; Holliger, Christof

    2013-01-01

    Aerobic granular sludge (AGS) is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors (SBR) fed with synthetic wastewater, namely a bubble column (BC-SBR) operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR) and Competibacter (GAO-SBR) operated at steady-state. In the BC-SBR, granules formed within 2 weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37–79%) led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80–100%), nitrogen removal (43–83%), and high but unstable dephosphatation (75–100%) were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5%) were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56 ± 10%) that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37 ± 11%). Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant

  12. Evaluating Printability of Buried Native EUV Mask Phase Defects through a Modeling and Simulation Approach

    SciTech Connect

    Upadhyaya, Mihir; Jindal, Vibhu; Basavalingappa, Adarsh; Herbol, Henry; Harris-Jones, Jenah; Jang, Il-Yong; Goldberg, Kenneth A.; Mochi, Iacopo; Marokkey, Sajan; Demmerle, Wolfgang; Pistor, Thomas V.; Denbeaux, Gregory

    2015-03-16

    The availability of defect-free masks is considered to be a critical issue for enabling extreme ultraviolet lithography (EUVL) as the next generation technology. Since completely defect-free masks will be hard to achieve, it is essential to have a good understanding of the printability of the native EUV mask defects. In this work, we performed a systematic study of native mask defects to understand the defect printability caused by them. The multilayer growth over native substrate mask blank defects was correlated to the multilayer growth over regular-shaped defects having similar profiles in terms of their width and height. To model the multilayer growth over the defects, a novel level-set multilayer growth model was used that took into account the tool deposition conditions of the Veeco Nexus ion beam deposition tool. The same tool was used for performing the actual deposition of the multilayer stack over the characterized native defects, thus ensuring a fair comparison between the actual multilayer growth over native defects, and modeled multilayer growth over regular-shaped defects. Further, the printability of the characterized native defects was studied with the SEMATECH-Berkeley Actinic Inspection Tool (AIT), an EUV mask-imaging microscope at Lawrence Berkeley National Laboratory (LBNL). Printability of the modeled regular-shaped defects, which were propagated up the multilayer stack using level-set growth model was studied using defect printability simulations implementing the waveguide algorithm. Good comparison was observed between AIT and the simulation results, thus demonstrating that multilayer growth over a defect is primarily a function of a defect’s width and height, irrespective of its shape. This would allow us to predict printability of the arbitrarily-shaped native EUV mask defects in a systematic and robust manner.

  13. Aerobic microbiology and culture sensitivity of head and neck space infection of odontogenic origin

    PubMed Central

    Shah, Amit; Ramola, Vikas; Nautiyal, Vijay

    2016-01-01

    Context: Head and neck space infections source, age, gender, tooth involved, fascial spaces involved, microbiological study of aerobic flora, and antibiotic susceptibilities. Aims: The aim of the present study is to identify causative aerobic microorganisms responsible for deep fascial spaces of head and neck infections and evaluate the resistance of antibiotics used in the treatment of such. Settings and Design: Prospective study in 100 patients. Materials and Methods: This prospective study was conducted on 100 patients who reported in the outpatient department and fulfilled the inclusion criteria to study aerobic microbiology and antibiotic sensitivity in head and neck space infection of odontogenic origin. Pus sample was obtained either by aspiration or by swab stick from the involved spaces, and culture and sensitivity tests were performed. Statistical Analysis Used: Chi-square test and level of significance. Results: Result showed aerobic Gram-positive isolates were 73% and aerobic Gram-negative isolates were 18%. Nine percent cases showed no growth. Streptococcus viridans was the highest isolate in 47% cases among Gram-positive bacteria, and in Gram-negative, Klebsiella pneumoniae was the highest isolate of total cases 11%. Amoxicillin showed resistance (48.4%) as compared to other antibiotics such as ceftriaxone, carbenicillin, amikacin, and imipenem had significantly higher sensitivity. Conclusions: Amoxicillin with clavulanic acid showed (64.8%) efficacy for all organisms isolated, whereas ceftriaxone showed (82.4%) efficacy and could be used in odontogenic infections for both Gram-positive and Gram-negative microorganisms. Substitution of third generation cephalosporin for amoxicillin in the empirical management of deep fascial space infections can also be used. Carbenicillin, amikacin, and imipenem showed (93.4%) sensitivity against all microorganisms and should be reserved for more severe infection. Newer and broad-spectrum antibiotics are more

  14. Intracellular azo decolorization is coupled with aerobic respiration by a Klebsiella oxytoca strain.

    PubMed

    Yu, Lei; Zhang, Xiao-Yu; Xie, Tian; Hu, Jin-Mei; Wang, Shi; Li, Wen-Wei

    2015-03-01

    Reduction of azo dye methyl red coupled with aerobic respiration by growing cultures of Klebsiella oxytoca GS-4-08 was investigated. In liquid media containing dye and 0.6 % glucose in a mineral salts base, 100 mg l(-1) of the dye are completely removed in 3 h under shaking conditions. The dye cannot be aerobically decolorized by strain GS-4-08 without extra carbon sources, indicating a co-metabolism process. Higher initial dye concentration prolonged the lag phase of the cell growth, but final cell concentrations of each batches reached a same level with range from 6.3 to 7.6 mg l(-1) after the dye adaption period. This strain showed stronger dye tolerance and decolorization ability than many reported strains. Furthermore, a new intracellular oxygen-insensitive azoreductase was isolated from this strain, and the specific activity of enzyme was 0.846 and 0.633 U mg(-1) protein in the presence of NADH and NADPH, respectively. N,N dimethyl-p-phenylenediamine and anthranilic acid were stoichiometrically released from MR dye, indicating the breakage of azo bonds accounts for the intracellular decolorization. Combining the characteristics of azoreductase, the stoichiometry of EMP, and TCA cycle, the electron transfer chain theory of aerobic respiration, and the possible mechanism of aerobic respiration coupled with azo reduction by K. oxytoca GS-4-08 are proposed. This study is expected to provide a sound theoretical basis for the development of the K. oxytoca strain in aerobic process for azo dye containing wastewaters.

  15. Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer's disease.

    PubMed

    Baker, Laura D; Frank, Laura L; Foster-Schubert, Karen; Green, Pattie S; Wilkinson, Charles W; McTiernan, Anne; Cholerton, Brenna A; Plymate, Stephen R; Fishel, Mark A; Watson, G Stennis; Duncan, Glen E; Mehta, Pankaj D; Craft, Suzanne

    2010-01-01

    Impaired glucose regulation is a defining characteristic of type 2 diabetes mellitus (T2DM) pathology and has been linked to increased risk of cognitive impairment and dementia. Although the benefits of aerobic exercise for physical health are well-documented, exercise effects on cognition have not been examined for older adults with poor glucose regulation associated with prediabetes and early T2DM. Using a randomized controlled design, twenty-eight adults (57-83 y old) meeting 2-h tolerance test criteria for glucose intolerance completed 6 months of aerobic exercise or stretching, which served as the control. The primary cognitive outcomes included measures of executive function (Trails B, Task Switching, Stroop, Self-ordered Pointing Test, and Verbal Fluency). Other outcomes included memory performance (Story Recall, List Learning), measures of cardiorespiratory fitness obtained via maximal-graded exercise treadmill test, glucose disposal during hyperinsulinemic-euglycemic clamp, body fat, and fasting plasma levels of insulin, cortisol, brain-derived neurotrophic factor, insulin-like growth factor-1, amyloid-β (Aβ40 and Aβ42). Six months of aerobic exercise improved executive function (MANCOVA, p=0.04), cardiorespiratory fitness (MANOVA, p=0.03), and insulin sensitivity (p=0.05). Across all subjects, 6-month changes in cardiorespiratory fitness and insulin sensitivity were positively correlated (p=0.01). For Aβ42, plasma levels tended to decrease for the aerobic group relative to controls (p=0.07). The results of our study using rigorous controlled methodology suggest a cognition-enhancing effect of aerobic exercise for older glucose intolerant adults. Although replication in a larger sample is needed, our findings potentially have important therapeutic implications for a growing number of adults at increased risk of cognitive decline.

  16. Impact of salinity on the aerobic metabolism of phosphate-accumulating organisms.

    PubMed

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2015-04-01

    The use of saline water in urban areas for non-potable purposes to cope with fresh water scarcity, intrusion of saline water, and disposal of industrial saline wastewater into the sewerage lead to elevated salinity levels in wastewaters. Consequently, saline wastewater is generated, which needs to be treated before its discharge into surface water bodies. The objective of this research was to study the effects of salinity on the aerobic metabolism of phosphate-accumulating organisms (PAO), which belong to the microbial populations responsible for enhanced biological phosphorus removal (EBPR) in activated sludge systems. In this study, the short-term impact (hours) of salinity (as NaCl) was assessed on the aerobic metabolism of a PAO culture, enriched in a sequencing batch reactor (SBR). All aerobic PAO metabolic processes were drastically affected by elevated salinity concentrations. The aerobic maintenance energy requirement increased, when the salinity concentration rose up to a threshold concentration of 2 % salinity (on a W/V basis as NaCl), while above this concentration, the maintenance energy requirements seemed to decrease. All initial rates were affected by salinity, with the NH4- and PO4-uptake rates being the most sensitive. A salinity increase from 0 to 0.18 % caused a 25, 46, and 63 % inhibition of the O2, PO4, and NH4-uptake rates. The stoichiometric ratios of the aerobic conversions confirmed that growth was the process with the highest inhibition, followed by poly-P and glycogen formation. The study indicates that shock loads of 0.18 % salt, which corresponds to the use or intrusion of about 5 % seawater may severely affect the EBPR process already in wastewater treatment plants not exposed regularly to high salinity concentrations.

  17. Defect mode properties of two-dimensional plasma-filled defective metallic photonic crystal

    SciTech Connect

    Fu, T.; Yang, Z.; Tang, X.; Shi, Z.; Lan, F.

    2014-01-15

    This paper studies the frequency and amplitude properties of a defect mode which is only in a plasma-filled metallic photonic crystal with defect layer. Results show that the frequency almost has no change and the amplitude declines gradually with the growth of the number of the layers. The frequency of the defect mode not only can be modulated by filling ratio but also can be tuned by plasma density without modifying the structure. The amplitude can be modified by plasma angular frequency as well. These characteristics provide a foundation to design tunable filters, high power millimeter devices.

  18. Construction of Radial Defect Models in Rabbits to Determine the Critical Size Defects

    PubMed Central

    Zhang, Xin-Chao; Gui, Ke-Ke; Xiong, Min; Yin, Wang-Ping; Yuan, Feng-Lai; Cai, Guo-Ping

    2016-01-01

    Many studies aimed at investigating bone repair have been conducted through animal models in recent years. However, limitations do exist in these models due to varying regeneration potential among different animal species. Even using the same animal, big differences exist in the size of critical size defects (CSD) involving the same region. This study aimed to investigate the standardization of radial bone defect models in rabbits and further establish more reliable CSD data. A total of 40 6-month-old New Zealand white rabbits of clean grade totaling 80 radial bones were prepared for bone defect models, according to the principle of randomization. Five different sizes (1.0, 1.2, 1.4, 1.7 and 2.0 cm) of complete periosteal defects were introduced under anesthesia. At 12 weeks postoperatively, with the gradual increase in defect size, the grades of bone growth were significantly decreased in all 5 groups. X-ray, CT scans and H&E staining of the 1.4, 1.7, and 2.0-cm groups showed lower grades of bone growth than that of the 1.0 and 1.2-cm groups respectively (P < 0.05). Using rabbit radial defect model involving 6-month-old healthy New Zealand white rabbits, this study indicates that in order to be critical sized, defects must be greater than 1.4 cm. PMID:26731011

  19. Pattern Formation, Defect Motions and Onset of Defect Chaos in the Electrohydrodynamic Instability of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kai, Shoichi; Chizumi, Nobuyuki; Kohno, Mitsuhiro

    1989-10-01

    Pattern formation processes and the associated defect motion are experimentally studied for various rectangular cells in the electrohydrodynamic instability. Wavenumber selection arises from the competition between the growth of the most rapidly growing mode and the finally stable mode in the Williams domain (WD) state. Defect motion is associated with such a competitive growth into the final stage. The fluctuating WD (FWD) is strongly related to the oscillatory gliding motion of defects. Temporally nonperiodic change of the number of defects is observed in the FWD state with a power spectrum of 1/f type (defect chaos). A large hysteresis is observed near the onset of FWD. A detailed phase diagram of stable convective patterns in the plane spanned by the threshold voltage and the applied frequency is presented with the characteristic behavior of defect motions.

  20. [Sulfa-drug wastewater treatment with anaerobic/aerobic process].

    PubMed

    Wu, L; Zhang, H; Zhu, H; Zhang, Z; Zhuang, Y; Dai, S

    2001-09-01

    Sulfa drug wastewater was treated with anaerobic/aerobic process. The removal ratios of TOC reached about 50% in anaerobic phase and about 70% in aerobic phase respectively, while volume loading rate of TOC was about 1.2 kg/(m3.d) in anaerobic phase and about 0.6 kg/(m3.d) in aerobic phase. Removal of TOC in anaerobic phase was attributed to the reduction of sulfate.

  1. [Cardiovascular protection and mechanisms of actions of aerobic exercise].

    PubMed

    Hou, Zuo-Xu; Zhang, Yuan; Gao, Feng

    2014-08-01

    It is well established that aerobic exercise exerts beneficial effect on cardiovascular system, but the underlying mechanisms are yet to be elucidated. Recent studies have shown that aerobic exercise ameliorates insulin resistance, inflammation and mitochondrial dysfunction which play important roles in the development of cardiovascular disease. In this review, we discussed the underlying mechanisms of the cardioprotective role of aerobic exercise, especially the latest progress in this field.

  2. Microtubule defects & Neurodegeneration.

    PubMed

    Baird, Fiona J; Bennett, Craig L

    2013-12-06

    One of the major challenges facing the long term survival of neurons is their requirement to maintain efficient axonal transport over long distances. In humans as large, long-lived vertebrates, the machinery maintaining neuronal transport must remain efficient despite the slow accumulation of cell damage during aging. Mutations in genes encoding proteins which function in the transport system feature prominently in neurologic disorders. Genes known to cause such disorders and showing traditional Mendelian inheritance have been more readily identified. It has been more difficult, however, to isolate factors underlying the complex genetics contributing to the more common idiopathic forms of neurodegenerative disease. At the heart of neuronal transport is the rail network or scaffolding provided by neuron specific microtubules (MTs). The importance of MT dynamics and stability is underscored by the critical role tau protein plays in MT-associated stabilization versus the dysfunction seen in Alzheimer's disease, frontotemporal dementia and other tauopathies. Another example of the requirement for tight regulation of MT dynamics is the need to maintain balanced levels of post-translational modification of key MT building-blocks such as α-tubulin. Tubulins require extensive polyglutamylation at their carboxyl-terminus as part of a novel post-translational modification mechanism to signal MT growth versus destabilization. Dramatically, knock-out of a gene encoding a deglutamylation family member causes an extremely rapid cell death of Purkinje cells in the ataxic mouse model, pcd. This review will examine a range of neurodegenerative conditions where current molecular understanding points to defects in the stability of MTs and axonal transport to emphasize the central role of MTs in neuron survival.

  3. Hydrogen evolution by strictly aerobic hydrogen bacteria under anaerobic conditions.

    PubMed

    Kuhn, M; Steinbüchel, A; Schlegel, H G

    1984-08-01

    When strains and mutants of the strictly aerobic hydrogen-oxidizing bacterium Alcaligenes eutrophus are grown heterotrophically on gluconate or fructose and are subsequently exposed to anaerobic conditions in the presence of the organic substrates, molecular hydrogen is evolved. Hydrogen evolution started immediately after the suspension was flushed with nitrogen, reached maximum rates of 70 to 100 mumol of H2 per h per g of protein, and continued with slowly decreasing rates for at least 18 h. The addition of oxygen to an H2-evolving culture, as well as the addition of nitrate to cells (which had formed the dissimilatory nitrate reductase system during the preceding growth), caused immediate cessation of hydrogen evolution. Formate is not the source of H2 evolution. The rates of H2 evolution with formate as the substrate were lower than those with gluconate. The formate hydrogenlyase system was not detectable in intact cells or crude cell extracts. Rather the cytoplasmic, NAD-reducing hydrogenase is involved by catalyzing the release of excessive reducing equivalents under anaerobic conditions in the absence of suitable electron acceptors. This conclusion is based on the following experimental results. H2 is formed only by cells which had synthesized the hydrogenases during growth. Mutants lacking the membrane-bound hydrogenase were still able to evolve H2. Mutants lacking the NAD-reducing or both hydrogenases were unable to evolve H2.

  4. Aerobic biodegradation of propylene glycol by soil bacteria.

    PubMed

    Toscano, Giuseppe; Cavalca, Lucia; Letizia Colarieti, M; Scelza, Rosalia; Scotti, Riccardo; Rao, Maria A; Andreoni, Vincenza; Ciccazzo, Sonia; Greco, Guido

    2013-09-01

    Propylene glycol (PG) is a main component of aircraft deicing fluids and its extensive use in Northern airports is a source of soil and groundwater contamination. Bacterial consortia able to grow on PG as sole carbon and energy source were selected from soil samples taken along the runways of Oslo Airport Gardermoen site (Norway). DGGE analysis of enrichment cultures showed that PG-degrading populations were mainly composed by Pseudomonas species, although Bacteroidetes were found, as well. Nineteen bacterial strains, able to grow on PG as sole carbon and energy source, were isolated and identified as different Pseudomonas species. Maximum specific growth rate of mixed cultures in the absence of nutrient limitation was 0.014 h(-1) at 4 °C. Substrate C:N:P molar ratios calculated on the basis of measured growth yields are in good agreement with the suggested values for biostimulation reported in literature. Therefore, the addition of nutrients is suggested as a suitable technique to sustain PG aerobic degradation at the maximum rate by autochthonous microorganisms of unsaturated soil profile.

  5. Aerobic Capacity and Postprandial Flow Mediated Dilation.

    PubMed

    Ballard, Kevin D; Miller, James J; Robinson, James H; Olive, Jennifer L

    The consumption of a high-fat meal induces transient vascular dysfunction. Aerobic exercise enhances vascular function in healthy individuals. Our purpose was to determine if different levels of aerobic capacity impact vascular function, as measured by flow mediated dilation, following a high-fat meal. Flow mediated dilation of the brachial artery was determined before, two- and four-hours postprandial a high-fat meal in young males classified as highly trained (n = 10; VO2max = 74.6 ± 5.2 ml·kg·min(-1)) or moderately active (n = 10; VO2max = 47.3 ± 7.1 ml·kg·min(-1)). Flow mediated dilation was reduced at two- (p < 0.001) and four-hours (p < 0.001) compared to baseline for both groups but was not different between groups at any time point (p = 0.108). Triglycerides and insulin increased at two- (p < 0.001) and four-hours (p < 0.05) in both groups. LDL-C was reduced at four-hours (p = 0.05) in highly trained subjects, and two- and four-hours (p ≤ 0.01) in moderately active subjects. HDL-C decreased at two- (p = 0.024) and four-hours (p = 0.014) in both groups. Glucose increased at two-hours postprandial for both groups (p = 0.003). Our results indicate that a high-fat meal results in reduced endothelium-dependent vasodilation in highly trained and moderately active individuals with no difference between groups. Thus, high aerobic capacity does not protect against transient reductions in vascular function after the ingestion of a single high-fat meal compared to individuals who are moderately active.

  6. Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a marine microbial mat

    NASA Astrophysics Data System (ADS)

    Yurkov, Vladimir V.; Van Gemerden, Hans

    Data have been collected on the abundance of obligately aerobic, bacteriochlorophyll- a-containing bacteria in a marine microbial mat on the West Frisian Island of Texel, The Netherlands. Plate counts on media rich in organic matter revealed average numbers of 3 ∗10 5·cm -3 sediment in the top 10 mm of the mat; the number of purple non-sulphur bacteria was of the same magnitude. Due to the relatively small dimensions of obligately aerobic anoxygenic phototrophic bacteria and purple non-sulphur bacteria, compared to those of purple sulphur bacteria, the contributions of either of the two former groups to the biomass of Bchl- a-containing organisms was approximately 3%. The specific Bchl- a-content of the isolated obligately aerobic phototrophs was very low (0.8 to 1.0 μg·mg -1 protein) compared to that of purple non-sulphur bacteria (16 to 20 μg·mg -1 protein), and purple sulphur bacteria (27 to 30 μg·mg -1). As a consequence, the relative contribution to the total Bchl a concentration of the two former groups (0.1% and 2.1%, respectively) was negligible, compared to that of the purple sulphur bacteria (97.8%). Salinities <50 had little effect on growth rate and yield of isolates; at salinities between 50 and 100 the doubling time increased progressively with a concomitant decrease in yield; no growth occurred at salinities > 140.

  7. Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy.

    PubMed

    Lu, Weiqin; Hu, Yumin; Chen, Gang; Chen, Zhao; Zhang, Hui; Wang, Feng; Feng, Li; Pelicano, Helene; Wang, Hua; Keating, Michael J; Liu, Jinsong; McKeehan, Wallace; Wang, Huamin; Luo, Yongde; Huang, Peng

    2012-01-01

    Elevated aerobic glycolysis in cancer cells (the Warburg effect) may be attributed to respiration injury or mitochondrial dysfunction, but the underlying mechanisms and therapeutic significance remain elusive. Here we report that induction of mitochondrial respiratory defect by tetracycline-controlled expression of a dominant negative form of DNA polymerase γ causes a metabolic shift from oxidative phosphorylation to glycolysis and increases ROS generation. We show that upregulation of NOX is critical to support the elevated glycolysis by providing additional NAD+. The upregulation of NOX is also consistently observed in cancer cells with compromised mitochondria due to the activation of oncogenic Ras or loss of p53, and in primary pancreatic cancer tissues. Suppression of NOX by chemical inhibition or genetic knockdown of gene expression selectively impacts cancer cells with mitochondrial dysfunction, leading to a decrease in cellular glycolysis, a loss of cell viability, and inhibition of cancer growth in vivo. Our study reveals a previously unrecognized function of NOX in cancer metabolism and suggests that NOX is a potential novel target for cancer treatment.

  8. Screening and identification of aerobic denitrifiers

    NASA Astrophysics Data System (ADS)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  9. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  10. Aerobic carboxydotrophy under extremely haloalkaline conditions in Alkalispirillum/Alkalilimnicola strains isolated from soda lakes.

    PubMed

    Sorokin, Dimitry Yu; Tourova, Tatjana P; Kovaleva, Olga L; Kuenen, J Gijs; Muyzer, Gerard

    2010-03-01

    Aerobic enrichments from soda lake sediments with CO as the only substrate resulted in the isolation of five bacterial strains capable of autotrophic growth with CO at extremely high pH and salinity. The strains belonged to the Alkalispirillum/Alkalilimnicola cluster in the Gammaproteobacteria, where the ability to oxidize CO, but not growth with CO, has been demonstrated previously. The growth with CO was possible only at an oxygen concentration below 5 % and CO concentration below 20 % in the gas phase. The isolates were also capable of growth with formate but not with H(2). The carboxydotrophic growth occurred within a narrow pH range from 8 to 10.5 (optimum at 9.5) and a broad salt concentration from 0.3 to 3.5 M total Na(+) (optimum at 1.0 M). Cells grown on CO had high respiration activity with CO and formate, while the cells grown on formate actively oxidized formate alone. In CO-grown cells, CO-dehydrogenase (CODH) activity was detectable both in soluble and membrane fractions, while the NAD-independent formate dehydrogenase (FDH) resided solely in membranes. The results of total protein profiling and the failure to detect CODH with conventional primers for the coxL gene indicated that the CO-oxidizing enzyme in haloalkaliphilic isolates might differ from the classical aerobic CODH complex. A single cbbL gene encoding the RuBisCO large subunit was detected in all strains, suggesting the presence of the Calvin cycle of inorganic carbon fixation. Overall, these results demonstrated the possibility of aerobic carboxydotrophy under extremely haloalkaline conditions.

  11. Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites

    PubMed Central

    Coleman, Nicholas V.; Mattes, Timothy E.; Gossett, James M.; Spain, Jim C.

    2002-01-01

    Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day−1), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day−1), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (Ks) values for VC were between 0.5 and 3.2 μM, while Ks values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC. PMID:12450841

  12. Diabetes mellitus and birth defects

    PubMed Central

    Correa, Adolfo; Gilboa, Suzanne M.; Besser, Lilah M.; Botto, Lorenzo D.; Moore, Cynthia A.; Hobbs, Charlotte A.; Cleves, Mario A.; Riehle-Colarusso, Tiffany J.; Waller, D. Kim; Reece, E. Albert

    2016-01-01

    OBJECTIVE The purpose of this study was to examine associations between diabetes mellitus and 39 birth defects. STUDY DESIGN This was a multicenter case-control study of mothers of infants who were born with (n = 13,030) and without (n = 4895) birth defects in the National Birth Defects Prevention Study (1997–2003). RESULTS Pregestational diabetes mellitus (PGDM) was associated significantly with noncardiac defects (isolated, 7/23 defects; multiples, 13/23 defects) and cardiac defects (isolated, 11/16 defects; multiples, 8/16 defects). Adjusted odds ratios for PGDM and all isolated and multiple defects were 3.17 (95% CI, 2.20–4.99) and 8.62 (95% CI, 5.27–14.10), respectively. Gestational diabetes mellitus (GDM) was associated with fewer noncardiac defects (isolated, 3/23 defects; multiples, 3/23 defects) and cardiac defects (isolated, 3/16 defects; multiples, 2/16 defects). Odds ratios between GDM and all isolated and multiple defects were 1.42 (95% CI, 1.17–1.73) and 1.50 (95% CI, 1.13–2.00), respectively. These associations were limited generally to offspring of women with prepregnancy body mass index ≥25 kg/m2. CONCLUSION PGDM was associated with a wide range of birth defects; GDM was associated with a limited group of birth defects. PMID:18674752

  13. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

    PubMed Central

    Hao, W.; Wang, H. L.; Ning, T. T.; Yang, F. Y.; Xu, C. C.

    2015-01-01

    The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 107 to 1010 cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 109 cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR. PMID:25925059

  14. Defects in Calcite.

    DTIC Science & Technology

    1991-05-13

    AD-A245 645 A TRIDENT SCHOLAR PROJECT REPORT NO. 181 "DEFECTS IN CALCITE " DTTC %N FEB 5-1912 UNITED STATES NAVAL ACADEMY ANNAPOLIS, MARYLAND 92-02841...report; no. 181 (1991) "DEFECTS IN CALCITE " A Trident Scholar Project Report by Midshipman Anthony J. Kotarski, Class of 1991 U. S. Naval Academy Annapolis...REPORT TYPE AND DATES COVERED 13 May 1991 Final 1990/91 . TITLE AND SUBTITLE s. FUNDING NUMBERS DEFECTS IN CALCITE 6. AUTHOR(S) Anthony J. Kotarski 7

  15. The hematopoietic defect in PNH is not due to defective stroma, but is due to defective progenitor cells.

    PubMed

    Nishimura, Jun-ichi; Ware, Russell E; Burnette, Angela; Pendleton, Andrew L; Kitano, Kiyoshi; Hirota, Toshiyuki; Machii, Takashi; Kitani, Teruo; Smith, Clay A; Rosse, Wendell F

    2002-01-01

    Although paroxysmal nocturnal hemoglobinuria (PNH) is often associated with aplastic anemia (AA), the nature of the pathogenetic link between PNH and AA remains unclear. Moreover, the PIG-A mutation appears to be necessary but not sufficient for the development of PNH, suggesting other factors are involved. The ability of PNH marrow cells to form in vitro hematopoietic colonies and the ability of PNH marrow to generate stroma that could support hematopoiesis of normal or PNH marrow in cross culture were investigated. PNH marrow from both post-Ficoll and post-lineage depleted hematopoietic progenitor cells grew similarly significantly fewer colonies than normal marrow. Sorting of CD59(+) and CD59(-) CD34(+) CD38(-) cells from patients with PNH showed similarly impaired clonogenic efficiency, indicating that the hematopoietic defect in PNH does not directly relate to GPI-anchored protein expression. PNH marrow readily grew stroma similar to marrow from normal donors. Cross culture experiments revealed that PNH stroma appears to function normally in vitro; it can support growth of normal marrow cells as well as normal stroma does, but neither PNH nor normal stroma could support the growth of PNH marrow cells. The hematopoietic defect in PNH is not due to defective stroma, but is due to defective progenitor cell growth related to additional unknown factors.

  16. Induction of E. coli oh8Gua endonuclease by oxidative stress: its significance in aerobic life.

    PubMed

    Kim, H S; Park, Y W; Kasai, H; Nishimura, S; Park, C W; Choi, K H; Chung, M H

    1996-06-12

    The induction of 8-hydroxyguanine (oh8Gua) endonuclease, a DNA repair enzyme for an oxidatively modified guanine, oh8Gua was studied in various growth conditions in Escherichia coli (AB1157). Anaerobically grown E. coli were found to have a very low activity of this enzyme while aerobically grown cells showed activity about 20 times that of the anaerobic level. Under the same condition, superoxide dismutase (SOD) showed about 6-fold increase in activity. A shift in growth conditions from anaerobic to aerobic resulted in rapid induction of this enzyme, and this induction was blocked (but not completely) by chloramphenicol. It is indicated that molecular oxygen is an effective stimulator to the induction of this enzyme and its induction depends partly on protein synthesis. Superoxide-producing compounds such as paraquat and menadione also increased the activity of endonuclease as well as SOD, but H2O2 showed no effect. Thus, superoxides are also implied as a stimulator. In contrast, hyperoxia induced only SOD not the endonuclease. This induction of the endonuclease by hyperoxia was only observed in a SOD-deficient strain (QC774). The aerobic activity of the endonuclease in QC774 was the same as that of wild types (AB1157, GC4468). It is implied that the responsiveness of oh8Gua endonuclease to superoxides is less sensitive than that of SOD. The endonuclease was also induced by a temperature shift from 30 to 43 degrees C and treatment with nalidixic acid. Among the stimuli used, molecular oxygen seems to be most effective for its induction. The inducible nature of this enzyme will serve as an important mechanism for the protection of oxidative DNA damage in the aerobic environment.

  17. Aerobic treatment of wine-distillery wastewaters

    SciTech Connect

    Sales, D.; Valcarcel, M.J.; Perez, L.; de la Ossa, E.M.

    1987-01-01

    Waste from food-processing and allied industries is largely made up of organic compounds which can be metabolized by aerobic or anaerobic means. However, these wastes present a series of problems to biological depuration plants, such as the need for prior treatment to establish conditions suitable for the development of the microorganisms responsible for the process; and the long retention time of the biomass if acceptable effluents are to be obtained. Again, the seasonal nature of many of these industries makes for very heterogeneous waste. This means that treatment plant must be versatile and are subject to rapid successions of close-down and start-up interspersed with long intervals of inactivity. All these difficulties oblige the industries in the sector to adapt depurative technology to their particular needs. Wine distilleries fall into this general category. Their waste (called vinasses) is acidic, has a high organic content and varies widely according to the raw matter distilled: wine, lies, etc. This paper studies the start-up of digestors for aerobic treatment of vinasses and the establishment of optimum operating conditions for an adequate depurative performance.

  18. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  19. Defect-free thin InAs nanowires grown using molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2016-01-21

    In this study, we designed a simple method to achieve the growth of defect-free thin InAs nanowires with a lateral dimension well below their Bohr radius on different substrate orientations. By depositing and annealing a thin layer of Au thin film on a (100) substrate surface, we have achieved the growth of defect-free uniform-sized thin InAs nanowires. This study provides a strategy to achieve the growth of pure defect-free thin nanowires.

  20. Congenital Heart Defects

    MedlinePlus

    ... Treatment can include medicines, catheter procedures, surgery, and heart transplants. The treatment depends on the type of the defect, how severe it is, and a child's age, size, and general health. NIH: National Heart, Lung, and Blood Institute

  1. Ventricular Septal Defect (VSD)

    MedlinePlus

    ... specially sized mesh device to close the hole. Hybrid procedure. A hybrid procedure uses surgical and catheter-based techniques. Access ... clinicalkey.com. Accessed Sept. 15, 2014. Konetti NR. Hybrid muscular ventricular defect closure: Surgeon or physician. Indian ...

  2. Birth defects monitoring

    SciTech Connect

    Klingberg, M.A.; Papier, C.M.; Hart, J.

    1983-01-01

    Population monitoring of birth defects provides a means for detecting relative changes in their frequency. Many varied systems have been developed throughout the world since the thalidomide tragedy of the early 1960s. Although it is difficult to pinpoint specific teratogenic agents based on rises in rates of a particular defect or a constellation of defects, monitoring systems can provide clues for hypothesis testing in epidemiological investigations. International coordination of efforts in this area resulted in the founding of the International Clearinghouse for Birth Defects Monitoring Systems (ICBDMS) in 1974. In this paper we will describe the functions and basic requirements of monitoring systems in general, and look at the development and activities of the ICBDMS. A review of known and suspected environmental teratogenic agents (eg, chemical, habitual, biological, physical, and nutritional) is also presented.

  3. Intrinsic defect formation in peptide self-assembly

    NASA Astrophysics Data System (ADS)

    Deng, Li; Zhao, Yurong; Xu, Hai; Wang, Yanting

    2015-07-01

    In contrast to extensively studied defects in traditional materials, we report here a systematic investigation of the formation mechanism of intrinsic defects in self-assembled peptide nanostructures. The Monte Carlo simulations with our simplified dynamic hierarchical model revealed that the symmetry breaking of layer bending mode at the two ends during morphological transformation is responsible for intrinsic defect formation, whose microscopic origin is the mismatch between layer stacking along the side-chain direction and layer growth along the hydrogen bond direction. Moreover, defect formation does not affect the chirality of the self-assembled structure, which is determined by the initial steps of the peptide self-assembly process.

  4. Echocardiography for the Assessment of Congenital Heart Defects in Calves.

    PubMed

    Mitchell, Katharyn Jean; Schwarzwald, Colin Claudio

    2016-03-01

    Congenital heart disease should be considered when evaluating calves with chronic respiratory signs, failure to thrive, poor growth, or if a murmur is heard on physical examination. Echocardiography is currently the gold standard for diagnosing congenital heart defects. A wide variety of defects, either alone or in combination with a ventricular septal defect, are possible. A standardized approach using sequential segmental analysis is required to fully appreciate the nature and severity of more complex malformations. The prognosis for survival varies from guarded to poor and depends on the hemodynamic relevance of the defects and the degree of cardiac compensation.

  5. Aerobic Physical Activity and the Leadership of Principals

    ERIC Educational Resources Information Center

    Kiser, Kari

    2016-01-01

    The purpose of this study was to explore if there was a connection between regular aerobic physical activity and the stress and energy levels of principals as they reported it. To begin the research, the current aerobic physical activity level of principals was discovered. Additionally, the energy and stress levels of the principals who do engage…

  6. The Effectiveness of Aerobic Exercise Instruction for Totally Blind Women.

    ERIC Educational Resources Information Center

    Ponchillia, S. V.; And Others

    1992-01-01

    A multifaceted method (involving verbal and hands-on training) was used to teach aerobic exercises to 3 totally blind women (ages 24-37). All three women demonstrated positive gains in their performance, physical fitness, and attitudes toward participating in future mainstream aerobic exercise classes. (DB)

  7. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  8. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  9. p53 aerobics: the major tumor suppressor fuels your workout.

    PubMed

    Kruse, Jan-Philipp; Gu, Wei

    2006-07-01

    In addition to its role as the central regulator of the cellular stress response, p53 can regulate aerobic respiration via the novel transcriptional target SCO2, a critical regulator of the cytochrome c oxidase complex (Matoba et al., 2006). Loss of p53 results in decreased oxygen consumption and aerobic respiration and promotes a switch to glycolysis, thereby reducing endurance during physical exercise.

  10. The Acute Effect of Aerobic Exercise on Measures of Stress.

    ERIC Educational Resources Information Center

    Fort, Inza L.; And Others

    The immediate response of stress to aerobic exercise was measured by utilizing the Palmar Sweat Index (PSI) and the State-Trait Anxiety Inventory (STAI). Forty subjects (20 male and 20 female) from the ages of 18-30 sustained a single bout of aerobic activity for 30 minutes at 60 percent of their maximum heart rate. Pre-treatment procedures…

  11. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  12. Aerobic Fitness Thresholds Associated with Fifth Grade Academic Achievement

    ERIC Educational Resources Information Center

    Wittberg, Richard; Cottrell, Lesley A.; Davis, Catherine L.; Northrup, Karen L.

    2010-01-01

    Background: Whereas effects of physical fitness and physical activity on cognitive function have been documented, little is known about how they are related. Purpose: This study assessed student aerobic fitness measured by FITNESSGRAM Mile times and/or Pacer circuits and whether the nature of the association between aerobic fitness and…

  13. Factors associated with low levels of aerobic fitness among adolescents

    PubMed Central

    Gonçalves, Eliane Cristina de Andrade; Silva, Diego Augusto Santos

    2016-01-01

    Abstract Objective: To evaluate the prevalence of low aerobic fitness levels and to analyze the association with sociodemographic factors, lifestyle and excess body fatness among adolescents of southern Brazil. Methods: The study included 879 adolescents aged 14-19 years the city of São José/SC, Brazil. The aerobic fitness was assessed by Canadian modified test of aerobic fitness. Sociodemographic variables (skin color, age, sex, study turn, economic level), sexual maturation and lifestyle (eating habits, screen time, physical activity, consumption of alcohol and tobacco) were assessed by a self-administered questionnaire. Excess body fatness was evaluated by sum of skinfolds triceps and subscapular. We used logistic regression to estimate odds ratios and 95% confidence intervals. Results: Prevalence of low aerobic fitness level was 87.5%. The girls who spent two hours or more in front screen, consumed less than one glass of milk by day, did not smoke and had an excess of body fatness had a higher chance of having lower levels of aerobic fitness. White boys with low physical activity had had a higher chance of having lower levels of aerobic fitness. Conclusions: Eight out of ten adolescents were with low fitness levels aerobic. Modifiable lifestyle factors were associated with low levels of aerobic fitness. Interventions that emphasize behavior change are needed. PMID:26743851

  14. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  15. Metabolism of 2-methylpropene (isobutylene) by the aerobic bacterium Mycobacterium sp. strain ELW1.

    PubMed

    Kottegoda, Samanthi; Waligora, Elizabeth; Hyman, Michael

    2015-03-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h(-1)) with a yield of 0.38 mg (dry weight) mg 2-methylpropene(-1). Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates.

  16. Metabolism of 2-Methylpropene (Isobutylene) by the Aerobic Bacterium Mycobacterium sp. Strain ELW1

    PubMed Central

    Kottegoda, Samanthi; Waligora, Elizabeth

    2015-01-01

    An aerobic bacterium (Mycobacterium sp. strain ELW1) that utilizes 2-methylpropene (isobutylene) as a sole source of carbon and energy was isolated and characterized. Strain ELW1 grew on 2-methylpropene (growth rate = 0.05 h−1) with a yield of 0.38 mg (dry weight) mg 2-methylpropene−1. Strain ELW1 also grew more slowly on both cis- and trans-2-butene but did not grow on any other C2 to C5 straight-chain, branched, or chlorinated alkenes tested. Resting 2-methylpropene-grown cells consumed ethene, propene, and 1-butene without a lag phase. Epoxyethane accumulated as the only detected product of ethene oxidation. Both alkene consumption and epoxyethane production were fully inhibited in cells exposed to 1-octyne, suggesting that alkene oxidation is initiated by an alkyne-sensitive, epoxide-generating monooxygenase. Kinetic analyses indicated that 1,2-epoxy-2-methylpropane is rapidly consumed during 2-methylpropene degradation, while 2-methyl-2-propen-1-ol is not a significant metabolite of 2-methylpropene catabolism. Degradation of 1,2-epoxy-2-methylpropane by 2-methylpropene-grown cells led to the accumulation and further degradation of 2-methyl-1,2-propanediol and 2-hydroxyisobutyrate, two sequential metabolites previously identified in the aerobic microbial metabolism of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Growth of strain ELW1 on 2-methylpropene, 1,2-epoxy-2-methylpropane, 2-methyl-1,2-propanediol, and 2-hydroxyisobutyrate was fully inhibited when cobalt ions were omitted from the growth medium, while growth on 3-hydroxybutyrate and other substrates was unaffected by the absence of added cobalt ions. Our results suggest that, like aerobic MTBE- and TBA-metabolizing bacteria, strain ELW1 utilizes a cobalt/cobalamin-dependent mutase to transform 2-hydroxyisobutyrate. Our results have been interpreted in terms of their impact on our understanding of the microbial metabolism of alkenes and ether oxygenates. PMID:25576605

  17. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    PubMed

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii.

  18. Muscle deoxygenation in aerobic and anaerobic exercise.

    PubMed

    Nioka, S; Moser, D; Lech, G; Evengelisti, M; Verde, T; Chance, B; Kuno, S

    1998-01-01

    It has been generally accepted that the use of oxygen is a major contributor of ATP synthesis in endurance exercise but not in short sprints. In anaerobic exercise, muscle energy is thought to be initially supported by the PCr-ATP system followed by glycolysis, not through mitochondrial oxidative phosphorylation. However, in real exercise practice, we do not know how much of this notion is true when an athlete approaches his/her maximal capacity of aerobic and anaerobic exercise, such as during a graded VO2max test. This study investigates the use of oxygen in aerobic and anaerobic exercise by monitoring oxygen concentration of the vastus lateralis muscle at maximum intensity using Near Infra-red Spectroscopy (NIRS). We tested 14 sprinters from the University of Penn track team, whose competitive events are high jump, pole vault, 100 m, 200 m, 400 m, and 800 m. The Wingate anaerobic power test was performed on a cycle ergometer with 10% body weight resistance for 30 seconds. To compare oxygenation during aerobic exercise, a steady-state VO2max test with a cycle ergometer was used with 25 watt increments every 2 min. until exhaustion. Results showed that in the Wingate test, total power reached 774 +/- 86 watt, about 3 times greater than that in the VO2max test (270 +/- 43 watt). In the Wingate test, the deoxygenation reached approximately 80% of the established maximum value, while in the VO2max test resulted in approximately 36% deoxygenation. There was no delay in onset of deoxygenation in the Wingate test, while in the VO2max test, deoxygenation did not occur under low intensity work. The results indicate that oxygen was used from the beginning of sprint test, suggesting that the mitochondrial ATP synthesis was triggered after a surprisingly brief exercise duration. One explanation is that prior warm-up (unloaded exercise) was enough to provide the mitochondrial substrates; ADP and Pi to activate oxidative phosphorylation by the type II a and type I myocytes. In

  19. Nonlinear optical imaging of defects in cubic silicon carbide epilayers.

    PubMed

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A

    2014-06-11

    Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.

  20. Does aerobic exercise affect the hypothalamic-pituitary-adrenal hormonal response in patients with fibromyalgia syndrome?

    PubMed Central

    Genc, Aysun; Tur, Birkan Sonel; Aytur, Yesim Kurtais; Oztuna, Derya; Erdogan, Murat Faik

    2015-01-01

    [Purpose] The hypothalamic-pituitary-adrenal (HPA) axis in the etiopathogenesis of fibromyalgia is not clear. This study aimed to analyze the effects of a 6-week aerobic exercise program on the HPA axis in patients with fibromyalgia and to investigate the effects of this program on the disease symptoms, patients’ fitness, disability, and quality of life. [Subjects and Methods] Fifty fibromyalgia patients were randomized to Group 1 (stretching and flexibility exercises at home for 6 weeks) and Group 2 (aerobic exercise three times a week and the same at-home exercises as Group 1 for 6 weeks). Serum levels of cortisol, adrenocorticotropic hormone, insulin-like growth factor-1, and growth hormone were analyzed at baseline and at the end of, and 1 hr after an exercise stress test. [Results] Group 2 showed better improvement in morning stiffness duration and pain. Growth hormone levels significantly increased after intervention and cortisol levels significantly decreased at time-time interaction in both groups. No significant differences in adrenocorticotropic hormone and insulin-like growth factor-1 were found. [Conclusion] The results of this study seem to support the hypothesis that there is a dysregulation of the HPA axis in patients with FM, and that a six-week exercise program can influence symptoms and affect the HPA axis hormones. PMID:26311959

  1. Effectiveness of the modified progressive aerobic capacity endurance run test for assessing aerobic fitness in Hispanic children who are obese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to evaluate the effectiveness of the progressive aerobic capacity endurance run (PACER) and a newly designed modified PACER (MPACER) for assessing aerobic fitness in Hispanic children who are obese. Thirty-nine (aged 7-12 years) children who were considered obese (= 95 ...

  2. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  3. Magnesium carbonate precipitate strengthened aerobic granules.

    PubMed

    Lee, Duu-Jong; Chen, Yu-You

    2015-05-01

    Aerobic granules were precipitated internally with magnesium carbonate to enhance their structural stability under shear. The strengthened granules were tested in continuous-flow reactors for 220 days at organic loadings of 6-39 kg/m(3)/day, hydraulic retention times of 0.44-19 h, and temperatures of 10 or 28°C. The carbonate salt had markedly improved the granule strength without significant changes in granule morphology or microbial communities (with persistent strains Streptomyces sp., Rhizobium sp., Brevundimonas sp., and Nitratireductor sp.), or sacrifice in biological activity for organic degradation. MgCO3 precipitated granules could be used in continuous-flow reactor for wastewater treatment at low cost and with easy processing efforts.

  4. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  5. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  6. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  7. Effects of Kettlebell Training on Aerobic Capacity.

    PubMed

    Falatic, J Asher; Plato, Peggy A; Holder, Christopher; Finch, Daryl; Han, Kyungmo; Cisar, Craig J

    2015-07-01

    This study examined the effects of a kettlebell training program on aerobic capacity. Seventeen female National Collegiate Athletic Association Division I collegiate soccer players (age: 19.7 ± 1.0 years, height: 166.1 ± 6.4 cm, weight: 64.2 ± 8.2 kg) completed a graded exercise test to determine maximal oxygen consumption (V̇O2max). Participants were assigned to a kettlebell intervention group (KB) (n = 9) or a circuit weight-training (CWT) control group (n = 8). Participants in the KB group completed a kettlebell snatch test to determine individual snatch repetitions. Both groups trained 3 days a week for 4 weeks in addition to their off-season strength and conditioning program. The KB group performed the 15:15 MVO2 protocol (20 minutes of kettlebell snatching with 15 seconds of work and rest intervals). The CWT group performed multiple free-weight and dynamic body-weight exercises as part of a continuous circuit program for 20 minutes. The 15:15 MVO2 protocol significantly increased V̇O2max in the KB group. The average increase was 2.3 ml·kg⁻¹·min⁻¹, or approximately a 6% gain. There was no significant change in V̇O2max in the CWT control group. Thus, the 4-week 15:15 MVO2 kettlebell protocol, using high-intensity kettlebell snatches, significantly improved aerobic capacity in female intercollegiate soccer players and could be used as an alternative mode to maintain or improve cardiovascular conditioning.

  8. Birth Defects. Matrix No. 2.

    ERIC Educational Resources Information Center

    Brent, Robert L.

    This report discusses the magnitude of the problem of birth defects, outlines advances in the birth defects field in the past decade, and identifies those areas where research is needed for the prevention, treatment, and management of birth defects. The problem of birth defects has consumed a greater portion of our health care resources because of…

  9. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    PubMed Central

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters. PMID:26413045

  10. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    PubMed

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  11. Structural birth defects associated with neural tube defects in Hawai'i from 1986 until 2001.

    PubMed

    Forrester, Mathias B; Merz, Ruth D

    2007-09-01

    Using birth defects registry data, this study identified birth defects associated with anencephaly, spina bifida, and encephalocele. Musculoskeletal defects were associated with anencephaly; central nervous system defects, gastrointestinal atresia/stenosis, genitourinary system defects, and musculoskeletal system defects with spina bifida; and central nervous system defects, respiratory defects, oral clefts, genitourinary system defects, and musculoskeletal system defects with encephalocele.

  12. Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes

    SciTech Connect

    Callister, Stephen J.; Nicora, Carrie D.; Zeng, Xiaohua; Roh, Jung Hyeob; Dominguez, Migual; Tavano, Christine; Monroe, Matthew E.; Kaplan, Samuel; Donohue, Timothy; Smith, Richard D.; Lipton, Mary S.

    2006-07-05

    Proteomes from aerobic and photosynthetic grown Rhodobacter sphaeroides 2.4.1 cell cultures were characterized using liquid chromatography-mass spectrometry in conjunction with an accurate mass and elution time (AMT) tag approach. Roughly 8000 high quality peptides were detected that represented 1,445 gene products and 34% of the predicted proteins. The identified proteins corresponded primarily to open reading frames (ORFs) contained within the two chromosomal elements of this bacterium, but a significant number were also observed from ORFs associated with 5 naturally occurring plasmids. Data mining of peptides revealed a number of proteins uniquely detected within the photosynthetic cell culture. Proteins observed in both aerobic respiratory and photosynthetic grown cultures were analyzed semi-quantitatively by comparing their estimated abundances to provide insights into bioenergetic models for aerobic respiration and photosynthesis. Additional emphasis was placed on gene products annotated as hypothetical to gain information as to their potential roles within these two growth conditions. Where possible, transcriptome data for R. sphaeroides obtained under the same culture conditions were compared with these results. This comparative study demonstrated the applicability of the AMT tag approach for high-throughput proteomic analyses of pathways associated with the photosynthetic lifestyle.

  13. Rate limiting factors in trichloroethylene co-metabolic degradation by phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, Joo Hwa

    2014-04-01

    The potential of aerobic granular sludge in co-metabolic removal of recalcitrant substances was evaluated using trichloroethylene (TCE) as the model compound. Aerobic granules cultivated in a sequencing batch reactor with phenol as the growth substrate exhibited TCE and phenol degradation activities lower than previously reported values. Depletion of reducing energy and diffusion limitation within the granules were investigated as the possible rate limiting factors. Sodium formate and citrate were supplied to the granules in batch studies as external electron sources. No significant enhancing effect was observed on the instant TCE transformation rates, but 10 mM formate could improve the ultimate transformation capacity by 26 %. Possible diffusion barrier was studied by sieving the biomass into five size fractions, and determining their specific TCE and phenol degradation rates and capacities. Biomass in the larger size fractions generally showed lower activities. Large granules of >700 μm diameter exhibited only 22 % of the flocs' TCE transformation capacity and 35 % of its phenol dependent SOUR, indicating the possible occurrence of diffusion limitation in larger biomass. However, the highest specific TCE transformation rate was observed with the fraction that mostly consisted of small granules (150-300 μm), suggesting an optimal size range while applying aerobic granules in TCE co-metabolic removal.

  14. Mathematical modeling of the effects of aerobic and anaerobic chelate bioegradation on actinide speciation.

    SciTech Connect

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-03-19

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems.

  15. Biodegradation and kinetics of aerobic granules under high organic loading rates in sequencing batch reactor.

    PubMed

    Chen, Yao; Jiang, Wenju; Liang, David Tee; Tay, Joo Hwa

    2008-05-01

    Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m(-3) day(-1) in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (muoverall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (kd), observed yield (Yobs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Yobs) is associated with an increased solid retention time, while kd and Y changed insignificantly and can be regarded as constants under different organic loading rates.

  16. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions.

    PubMed

    Zhao, Lanmei; Bao, Mutai; Yan, Miao; Lu, Jinren

    2016-09-01

    Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product.

  17. Cardioprotective effects of early and late aerobic exercise training in experimental pulmonary arterial hypertension.

    PubMed

    Moreira-Gonçalves, Daniel; Ferreira, Rita; Fonseca, Hélder; Padrão, Ana Isabel; Moreno, Nuno; Silva, Ana Filipa; Vasques-Nóvoa, Francisco; Gonçalves, Nádia; Vieira, Sara; Santos, Mário; Amado, Francisco; Duarte, José Alberto; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago

    2015-11-01

    Clinical studies suggest that aerobic exercise can exert beneficial effects in pulmonary arterial hypertension (PAH), but the underlying mechanisms are largely unknown. We compared the impact of early or late aerobic exercise training on right ventricular function, remodeling and survival in experimental PAH. Male Wistar rats were submitted to normal cage activity (SED), exercise training in early (EarlyEX) and in late stage (LateEX) of PAH induced by monocrotaline (MCT, 60 mg/kg). Both exercise interventions resulted in improved cardiac function despite persistent right pressure-overload, increased exercise tolerance and survival, with greater benefits in EarlyEX+MCT. This was accompanied by improvements in the markers of cardiac remodeling (SERCA2a), neurohumoral activation (lower endothelin-1, brain natriuretic peptide and preserved vascular endothelial growth factor mRNA), metabolism and mitochondrial oxidative stress in both exercise interventions. EarlyEX+MCT provided additional improvements in fibrosis, tumor necrosis factor-alpha/interleukin-10 and brain natriuretic peptide mRNA, and beta/alpha myosin heavy chain protein expression. The present study demonstrates important cardioprotective effects of aerobic exercise in experimental PAH, with greater benefits obtained when exercise training is initiated at an early stage of the disease.

  18. Effect of Aerobic Priming on the Response of Echinochloa crus-pavonis to Anaerobic Stress (Protein Synthesis and Phosphorylation).

    PubMed Central

    Zhang, F.; Lin, J. J.; Fox, T. C.; Mujer, C. V.; Rumpho, M. E.; Kennedy, R. A.

    1994-01-01

    Echinochloa species differ in their ability to germinate and grow in the absence of oxygen. Seeds of Echinochloa crus-pavonis (H.B.K.) Schult do not germinate under anoxia but remain viable for extended periods (at least 30 d) when incubated in an anaerobic environment. E. crus-pavonis can be induced to germinate and grow in an anaerobic environment if the seeds are first subjected to a short (1-18 h) exposure to aerobic conditions (aerobic priming). Changes in polypeptide patterns (constitutive and de novo synthesized) and protein phosphorylation induced by aerobic priming were investigated. In the absence of aerobic priming protein degradation was not evident under anaerobic conditions, although synthesis of a 20-kD polypeptide was induced. During aerobic priming, however, synthesis of 37- and 55-kD polypeptides was induced and persisted upon return of the seeds to anoxia. Furthermore, phosphorylation of two 18-kD polypeptides was observed only in those seeds that were labeled with 32PO4 during the aerobic priming period. Subsequent chasing in an anaerobic environment resulted in a decrease in phosphorylation of these polypeptides. Likewise, phosphorylation of the 18-kD polypeptides was not observed if the seeds were labeled in an anaerobic atmosphere. These results suggest that the regulated induction of the 20-, 37-, and 55- kD polypeptides may be important for anaerobic germination and growth of E. crus-pavonis and that the specific phosphorylation of the 18-kD polypeptides may be a factor in regulating this induction. PMID:12232272

  19. Influence of dopants on defect formation in GaN

    SciTech Connect

    Liliental-Weber, Z.; Jasinski, J.; Benamara, M.; Grzegory, I.; Porowski, S.; Lampert, D.J.H.; Eiting, C.J.; Dupuis R.D.

    2001-10-15

    Influence of p-dopants (Mg and Be) on the structure of GaN has been studied using Transmission Electron Microscopy (TEM). Bulk GaN:Mg and GaN:Be crystals grown by a high pressure and high temperature process and GaN:Mg grown by metal-organic chemical-vapor deposition (MOCVD) have been studied. Structural dependence on growth polarity was observed in the bulk crystals. Spontaneous ordering in bulk GaN:Mg on c-plane (formation of Mg-rich planar defects with characteristics of inversion domains) was observed for growth in the N to Ga polar direction (N polarity). On the opposite site of the crystal (growth in the Ga to N polar direction) Mg-rich pyramidal defects empty inside (pinholes) were observed. Both these defects were also observed in MOCVD grown crystals. Pyramidal defects were also observed in the bulk GaN:Be crystals.

  20. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    PubMed

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories.

  1. Wire insulation defect detector

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R. (Inventor)

    2004-01-01

    Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.

  2. Reconstruction of Mandibular Defects

    PubMed Central

    Chim, Harvey; Salgado, Christopher J.; Mardini, Samir; Chen, Hung-Chi

    2010-01-01

    Defects requiring reconstruction in the mandible are commonly encountered and may result from resection of benign or malignant lesions, trauma, or osteoradionecrosis. Mandibular defects can be classified according to location and extent, as well as involvement of mucosa, skin, and tongue. Vascularized bone flaps, in general, provide the best functional and aesthetic outcome, with the fibula flap remaining the gold standard for mandible reconstruction. In this review, we discuss classification and approach to reconstruction of mandibular defects. We also elaborate upon four commonly used free osteocutaneous flaps, inclusive of fibula, iliac crest, scapula, and radial forearm. Finally, we discuss indications and use of osseointegrated implants as well as recent advances in mandibular reconstruction. PMID:22550439

  3. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.

    PubMed

    Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng

    Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (Msum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in Msum, we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.

  4. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms.

    PubMed

    Cassilhas, R C; Lee, K S; Fernandes, J; Oliveira, M G M; Tufik, S; Meeusen, R; de Mello, M T

    2012-01-27

    A growing body of scientific evidence indicates that exercise has a positive impact on human health, including neurological health. Aerobic exercise, which is supposed to enhance cardiovascular functions and metabolism, also induces neurotrophic factors that affect hippocampal neurons, thereby improving spatial learning and memory. Alternatively, little is known about the effect of resistance exercise on hippocampus-dependent memory, although this type of exercise is increasingly recommended to improve muscle strength and bone density and to prevent age-related disabilities. Therefore, we evaluated the effects of resistance training on spatial memory and the signaling pathways of brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1), comparing these effects with those of aerobic exercise. Adult male Wistar rats underwent 8 weeks of aerobic training on a treadmill (AERO group) or resistance training on a vertical ladder (RES group). Control and sham groups were also included. After the training period, both AERO and RES groups showed improved learning and spatial memory in a similar manner. However, both groups presented distinct signaling pathways. Although the AERO group showed increased level of IGF-1, BDNF, TrkB, and β-CaMKII (calcium/calmodulin-dependent kinase II) in the hippocampus, the RES group showed an induction of peripheral and hippocampal IGF-1 with concomitant activation of receptor for IGF-1 (IGF-1R) and AKT in the hippocampus. These distinct pathways culminated in an increase of synapsin 1 and synaptophysin expression in both groups. These findings demonstrated that both aerobic and resistance exercise can employ divergent molecular mechanisms but achieve similar results on learning and spatial memory.

  5. Point-defect-mediated dehydrogenation of alane

    NASA Astrophysics Data System (ADS)

    Ismer, Lars

    2011-03-01

    For the engineering of better hydrogen storage materials a systematic understanding of their hydrogen sorption kinetics is crucial. Theoretical studies on metal hydrides have indicated that in many cases point defects control mass transport and hence hydrogen uptake and release. Manipulating point-defect concentrations thus allows control over hydrogen sorption kinetics, opening up new engineering strategies. However, in some cases the relevance of kinetic limitations due to point defects is still under debate; kinetic inhibition of hydrogen sorption has also been attributed to surface effects, e.g. oxide layers or low recombination rates. We present a systematic analysis of the dehydrogenation kinetics of alane (AlH3), one of the prime candidate materials for hydrogen storage. Using hybrid-density functional calculations we determine the concentrations and mobilities of point defects and their complexes. Kinetic Monte Carlo simulations are used to describe the full dehydrogenation reaction. We show that under dehydrogenation conditions charged hydrogen vacancy defects form in the crystal, which have a strong tendency towards clustering. The vacancy clusters denote local nuclei of Al phase, and the growth of these nuclei eventually drives the AlH3/Al transformation. However, the low concentration of vacancy defects limits the transport of hydrogen across the bulk, and hence acts as the rate-limiting part of the process. The dehydrogenation is therefore essentially inactive at room temperature, explaining why AlH3 is metastable for years, even though it is thermodynamically unstable. Our derived activation energy and dehydrogenation curves are in excellent agreement with the experimental data, providing evidence for the relevance of bulk point-defect kinetics. Work performed in collaboration with A. Janotti and C. G. Van de Walle, and supported by DOE.

  6. Supersymmetric k-defects

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Trodden, Mark

    2016-04-01

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  7. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    NASA Astrophysics Data System (ADS)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  8. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    NASA Astrophysics Data System (ADS)

    Suchowska-Kisielewicz, Monika; Jędrczak, Andrzej; Sadecka, Zofia

    2014-12-01

    An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  9. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  10. Cyctotoxicities of mitomycin C and x rays to aerobic and hypoxic cells in vitro

    SciTech Connect

    Rockwell, S.

    1982-01-01

    Aerobic and hypoxic EMT6 mouse mammary tumor cells in exponential growth in vitro were used to study cell survival after treatment with radiation (250k V X rays) and mitomycin C in various combinations. The cytotoxicities of the two agents were found to be additive as judged by comparing dose-response curves for each agent alone with survival curves after combination therapy and by isobologram analysis. The cytotoxicities resulting from combination treatments were found to be independent of the sequence of the treatments or the interval between treatments.

  11. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  12. Aerobic deterioration stimulates outgrowth of spore-forming Paenibacillus in corn silage stored under oxygen-barrier or polyethylene films.

    PubMed

    Borreani, Giorgio; Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca

    2013-08-01

    The occurrence of Bacillus and Paenibacillus spores in silage is of great concern to dairy producers because their spores can survive pasteurization and some strains are capable of subsequently germinating and growing under refrigerated conditions in pasteurized milk. The objectives of this study were to verify the role of aerobic deterioration of corn silage on the proliferation of Paenibacillus spores and to evaluate the efficacy of oxygen-barrier films used to cover silage during fermentation and storage to mitigate these undesirable bacterial outbreaks. The trial was carried out on whole-crop maize (Zea mays L.) inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium. A standard polyethylene film and a polyethylene-polyamide film with an enhanced oxygen barrier were used to produce the silage bags for this experiment. The silos were stored indoors at ambient temperature (18 to 22°C) and opened after 110 d. The silage was sampled after 0, 2, 5, 7, 9, and 14 d of aerobic exposure to quantify the growth of endospore-forming bacteria during the exposure of silages to air. Paenibacillus macerans (gram-positive, facultatively anaerobic bacteria) was able to develop during the aerobic exposure of corn silage. This species was present in the herbage at harvesting, together with clostridial spores, and survived ensiling fermentation; it constituted more than 60% of the anaerobic spore formers at silage opening. During silage spoilage, the spore concentration of P. macerans increased to values greater than 7.0 log10 cfu/g of silage. The use of different plastic films to seal silages affected the growth of P. macerans and the number of spores during aerobic exposure of silages. These results indicate that the number of Paenibacillus spores could greatly increase in silage after exposure to air, and that oxygen-barrier films could help to reduce the potential for silage contamination of this important group of milk spoilage

  13. Defect reduction in gallium nitride using cantilever epitaxy.

    SciTech Connect

    Mitchell, Christine Charlotte

    2003-08-01

    Cantilever epitaxy (CE) has been developed to produce GaN on sapphire with low dislocation densities as needed for improved devices. The basic mechanism of seeding growth on sapphire mesas and lateral growth of cantilevers until they coalesce has been modified with an initial growth step at 950 C. This step produces a gable with (11{bar 2}2) facets over the mesas, which turns threading dislocations from vertical to horizontal in order to reduce the local density above mesas. This technique has produced material with densities as low as 2-3x10{sup 7}/cm{sup 2} averaged across extended areas of GaN on sapphire, as determined with AFM, TEM and cathodoluminescence (CL). This density is about two orders of magnitude below that of conventional planar growths; these improvements suggest that locating wide-area devices across both cantilever and mesa regions is possible. However, the first implementation of this technique also produced a new defect: cracks at cantilever coalescences with associated arrays of lateral dislocations. These defects have been labeled 'dark-block defects' because they are non-radiative and appear as dark rectangles in CL images. Material has been grown that does not have dark-block defects. Examination of the evolution of the cantilever films for many growths, both partial and complete, indicates that producing a film without these defects requires careful control of growth conditions and crystal morphology at multiple steps. Their elimination enhances optical emission and uniformity over large (mm) size areas.

  14. Quantum computing with defects.

    PubMed

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  15. Effects of a Rebound Exercise Training Program on Aerobic Capacity and Body Composition.

    ERIC Educational Resources Information Center

    Tomassoni, Teresa L.; And Others

    1985-01-01

    This study was designed to determine if aerobic dancing on rebound exercise equipment (minitrampolines) is an effective way to improve aerobic capacity and body composition. Although aerobic capacity improved, percent body fat did not change. Results were similar to those produced by conventional aerobic dance programs of like intensity. (MT)

  16. Issues of Health, Appearance and Physical Activity in Aerobic Classes for Women

    ERIC Educational Resources Information Center

    D'Abundo, Michelle Lee

    2009-01-01

    The purpose of this research was to explore what appearance-focused messages were conveyed by aerobic instructors in aerobic classes for women. This qualitative research was influenced by the concept of wellness and how feminist pedagogy can be applied to promote individuals' well-being in aerobic classes. The practices of five aerobic instructors…

  17. Analysis of defect structure in silicon. Characterization of SEMIX material. Silicon sheet growth development for the large area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Natesh, R.; S