Sample records for aerobic incubation conditions

  1. Spectroscopic characterization of organic matter of a soil and vinasse mixture during aerobic or anaerobic incubation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doelsch, Emmanuel; Masion, Armand; Cazevieille, Patrick

    2009-06-15

    Mineralization potentials are often used to classify organic wastes. These methods involve measuring CO{sub 2} production during batch experiments, so variations in chemical compounds are not addressed. Moreover, the physicochemical conditions are not monitored during the reactions. The present study was designed to address these deficiencies. Incubations of a mixture of soil and waste (vinasse at 20% dry matter from a fermentation industry) were conducted in aerobic and anaerobic conditions, and liquid samples obtained by centrifugation were collected at 2 h, 1 d and 28 d. Dissolved organic carbon (DOC) patterns highlighted that: there was a 'soil effect' which increasedmore » organic matter (OM) degradation in all conditions compared to vinasse incubated alone; and OM degradation was faster under aerobic conditions since 500 mg kg{sup -1} of C remained after aerobic incubation, as compared to 4000 mg kg{sup -1} at the end of the anaerobic incubation period. No changes were detected by Fourier transform infrared spectroscopy (FTIR) between 2 h and 1 d incubation. At 28 days incubation, the FTIR signal of the aerobic samples was deeply modified, thus confirming the high OM degradation. Under anaerobic conditions, the main polysaccharide contributions ({nu}(C-O)) disappeared at 1000 and 1200 cm{sup -1}, as also confirmed by the {sup 13}C NMR findings. Under aerobic incubation, a 50% decrease in the polysaccharide proportion was observed. Under anaerobic conditions, significant chemical modifications of the organic fraction were detected, namely formation of low molecular weight organic acids.« less

  2. Selective medium for aerobic incubation of Campylobacter

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted on the formulation of a selective medium that could be used to isolate Campylobacter from mixed bacterial cultures using aerobic incubation. A non-selective, basal broth medium was prepared and supplemented with Bolton, Cefex, or Skirrow antibiotic mixtures. The ability of pur...

  3. Comparison of different incubation conditions for microbiological environmental monitoring.

    PubMed

    Gordon, Oliver; Berchtold, Manfred; Staerk, Alexandra; Roesti, David

    2014-01-01

    Environmental monitoring represents an integral part of the microbiological quality control system of a pharmaceutical manufacturing operation. However, guidance documents differ regarding recommendation of a procedure, particularly regarding incubation time, incubation temperature, or nutrient media. Because of these discrepancies, many manufacturers decide for a particular environmental monitoring sample incubation strategy and support this decision with validation data. Such validations are typically laboratory-based in vitro studies, meaning that these are based on comparing incubation conditions and nutrient media through use of cultured microorganisms. An informal survey of the results of these in vitro studies performed at Novartis or European manufacturing sites of different pharmaceutical companies highlighted that no consensus regarding the optimal incubation conditions for microbial recovery existed. To address this question differently, we collected a significant amount of samples directly from air, inanimate surfaces, and personnel in pharmaceutical production and packaging rooms during manufacturing operation (in situ study). Samples were incubated under different conditions suggested in regulatory guidelines, and recovery of total aerobic microorganisms as well as moulds was assessed. We found the highest recovery of total aerobic count from areas with personnel flow using a general microbiological growth medium incubated at 30-35 °C. The highest recovery of moulds was obtained with mycological medium incubated at 20-25 °C. Single-plate strategies (two-temperature incubation or an intermediate incubation temperature of 25-30 °C) also yielded reasonable recovery of total aerobic count and moulds. However, recovery of moulds was found to be highly inefficient at 30-35 °C compared to lower incubation temperatures. This deficiency could not be rectified by subsequent incubation at 20-25 °C. A laboratory-based in vitro study performed in parallel was

  4. Fur-dependent detoxification of organic acids by rpoS mutants during prolonged incubation under aerobic, phosphate starvation conditions.

    PubMed

    Guillemet, Mélanie L; Moreau, Patrice L

    2008-08-01

    The activity of amino acid-dependent acid resistance systems allows Escherichia coli to survive during prolonged incubation under phosphate (P(i)) starvation conditions. We show in this work that rpoS-null mutants incubated in the absence of any amino acid survived during prolonged incubation under aerobic, P(i) starvation conditions. Whereas rpoS(+) cells incubated with glutamate excreted high levels of acetate, rpoS mutants grew on acetic acid. The characteristic metabolism of rpoS mutants required the activity of Fur (ferric uptake regulator) in order to decrease the synthesis of the small RNA RyhB that might otherwise inhibit the synthesis of iron-rich proteins. We propose that RpoS (sigma(S)) and the small RNA RyhB contribute to decrease the synthesis of iron-rich proteins required for the activity of the tricarboxylic acid (TCA) cycle, which redirects the metabolic flux toward the production of acetic acid at the onset of stationary phase in rpoS(+) cells. In contrast, Fur activity, which represses ryhB, and the lack of RpoS activity allow a substantial activity of the TCA cycle to continue in stationary phase in rpoS mutants, which decreases the production of acetic acid and, eventually, allows growth on acetic acid and P(i) excreted into the medium. These data may help explain the fact that a high frequency of E. coli rpoS mutants is found in nature.

  5. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    USDA-ARS?s Scientific Manuscript database

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  6. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  7. Inhibition of Salmonella Typhimurium by Cultures of Cecal Bacteria during Aerobic Incubation

    USDA-ARS?s Scientific Manuscript database

    Two trials were conducted to examine the ability of cecal bacterial cultures from broilers to inhibit growth of Salmonella Typhimurium during aerobic incubation. Cecal broth media was inoculated with 10 µl of cecal contents from 6 week old broilers taken from 2 separate flocks. Cultures were incubat...

  8. Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions.

    PubMed

    Naz, Iffat; Batool, Syeda Ain-ul; Ali, Naeem; Khatoon, Nazia; Atiq, Niama; Hameed, Abdul; Ahmed, Safia

    2013-08-01

    The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.

  9. Aerobic conditioning for team sport athletes.

    PubMed

    Stone, Nicholas M; Kilding, Andrew E

    2009-01-01

    Team sport athletes require a high level of aerobic fitness in order to generate and maintain power output during repeated high-intensity efforts and to recover. Research to date suggests that these components can be increased by regularly performing aerobic conditioning. Traditional aerobic conditioning, with minimal changes of direction and no skill component, has been demonstrated to effectively increase aerobic function within a 4- to 10-week period in team sport players. More importantly, traditional aerobic conditioning methods have been shown to increase team sport performance substantially. Many team sports require the upkeep of both aerobic fitness and sport-specific skills during a lengthy competitive season. Classic team sport trainings have been shown to evoke marginal increases/decreases in aerobic fitness. In recent years, aerobic conditioning methods have been designed to allow adequate intensities to be achieved to induce improvements in aerobic fitness whilst incorporating movement-specific and skill-specific tasks, e.g. small-sided games and dribbling circuits. Such 'sport-specific' conditioning methods have been demonstrated to promote increases in aerobic fitness, though careful consideration of player skill levels, current fitness, player numbers, field dimensions, game rules and availability of player encouragement is required. Whilst different conditioning methods appear equivalent in their ability to improve fitness, whether sport-specific conditioning is superior to other methods at improving actual game performance statistics requires further research.

  10. The lipid response of aerobic marine methanotroph communities under changing environmental conditions.

    NASA Astrophysics Data System (ADS)

    Rush, D.; Villanueva, L.; van der Meer, M.; S Sinninghe Damsté, J.

    2017-12-01

    Methane (CH4) originating from marine environments accounts for a significant amount of atmospheric greenhouse gas. Aerobic methanotrophs, which convert CH4 to CO­2, are responsible for quenching a part of this methane before its release. Modern-day climate projections show a rapid shift towards a warmer, more acidic ocean. How do these important methanotrophic communities respond to such changes to their environment? Here, we present the results of microcosm experiments from three marine regions influenced by CH4. Particulate organic matter and sediment were collected from the Black Sea, the Baltic Sea, and the North Sea, at depths ideal for aerobic methanotroph communities at the time of sampling (e.g. oxic, in area of active CH4 release). These were incubated under different temperatures, pHs, and labelled 13CH4 concentrations. We monitored methane concentration in these microcosms as an indication of 13CH4 consumption by methanotrophs. Once the methane concentration was <0.1%, incubations were terminated. We will trace isotopically heavy 13C in the DNA and lipids of the organisms oxidising methane in order to elucidate which organisms are performing methane oxidation and whether they synthesize specific biomarker lipids. Particular attention will be paid to the abundances and diversity of bacteriohopanepolyol lipids, known methanotroph biomarkers. The ultimate goal of our investigation is to determine the effect changes in these environmental parameters have on aerobic methanotroph community structures and their lipid fingerprints. By establishing reliable biomarker lipids for aerobic methanotrophy at certain conditions, we will then be able to investigate the contribution of aerobic methanotrophy throughout Earth's history, especially at times when CH4 concentrations were higher than they are at present.

  11. Measurements of bovine sperm velocities under true anaerobic and aerobic conditions.

    PubMed

    Krzyzosiak, J; Molan, P; Vishwanath, R

    1999-04-30

    Velocities of bovine spermatozoa in a medium containing glucose were similar under true anaerobic and aerobic conditions. Spermatozoa were not able to sustain motility under anaerobic conditions when glycolysis was inhibited, but regained motility when re-aerated. This demonstrates that immobilisation was due to lack of oxygen and that conditions under which motility was analysed were truly anaerobic. Sperm motility parameters were not significantly different in the presence and absence of 4 microM antimycin A and 4 microM rotenone when glucose was present in the medium. After each incubation, functionality of sperm mitochondria was assayed by washing sperm into the medium which supported respiration but not glycolysis, and motility was visually assessed. All sperm samples were highly motile in this medium indicating that their mitochondria were functional. When glycolysis was inhibited, antimycin and rotenone abolished sperm motility immediately after addition. Bovine sperm can maintain similar levels of motility aerobically and anaerobically if a glycolysable substrate is available. Available data on bovine sperm energetics support this view.

  12. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  13. Technical note: enumeration of mesophilic aerobes in milk: evaluation of standard official protocols and Petrifilm aerobic count plates.

    PubMed

    Freitas, R; Nero, L A; Carvalho, A F

    2009-07-01

    Enumeration of mesophilic aerobes (MA) is the main quality and hygiene parameter for raw and pasteurized milk. High levels of these microorganisms indicate poor conditions in production, storage, and processing of milk, and also the presence of pathogens. Fifteen raw and 15 pasteurized milk samples were submitted for MA enumeration by a conventional plating method (using plate count agar) and Petrifilm Aerobic Count plates (3M, St. Paul, MN), followed by incubation according to 3 official protocols: IDF/ISO (incubation at 30 degrees C for 72 h), American Public Health Association (32 degrees C for 48 h), and Brazilian Ministry of Agriculture (36 degrees C for 48 h). The results were compared by linear regression and ANOVA. Considering the results from conventional methodology, good correlation indices and absence of significant differences between mean counts were observed, independent of type of milk sample (raw or pasteurized) and incubation conditions (IDF/ISO, American Public Health Association, or Ministry of Agriculture). Considering the results from Petrifilm Aerobic Count plates, good correlation indices and absence of significant differences were only observed for raw milk samples. The microbiota of pasteurized milk interfered negatively with the performance of Petrifilm Aerobic Count plates, probably because of the presence of microorganisms that poorly reduce the dye indicator of this system.

  14. Aerobic and Anaerobic Methanotrophic Communities Associated with Methane Hydrates Exposed on the Seafloor: A High-Pressure Sampling and Stable Isotope-Incubation Experiment

    PubMed Central

    Case, David H.; Ijiri, Akira; Morono, Yuki; Tavormina, Patricia; Orphan, Victoria J.; Inagaki, Fumio

    2017-01-01

    High-pressure (HP) environments represent the largest volumetric majority of habitable space for microorganisms on the planet, including the deep-sea and subsurface biosphere. However, the importance of pressure as an environmental variable affecting deep microbial life and their biogeochemical functions in carbon cycling still remains poorly understood. Here, we designed a new high-volume HP-sediment core sampler that is deployable on the payload of a remotely operated vehicle and can maintain in situ HP conditions throughout multi-month enrichment incubations including daily amendments with liquid media and gases and daily effluent sampling for geochemical or microbiological analysis. Using the HP core device, we incubated sediment and overlying water associated with methane hydrate-exposed on the seafloor of the Joetsu Knoll, Japan, at 10 MPa and 4°C for 45 days in the laboratory. Diversity analyses based on 16S rRNA and methane-related functional genes, as well as carbon isotopic analysis of methane and bicarbonate, indicated the stimulation of both aerobic and anaerobic methanotrophy driven by members of the Methylococcales, and ANME, respectively: i.e., aerobic methanotrophy was observed upon addition of oxygen whereas anaerobic processes subsequently occurred after oxygen consumption. These laboratory-measured rates at 10 MPa were generally in agreement with previously reported rates of methane oxidation in other oceanographic locations. PMID:29312247

  15. [Isolation of heterotrophic nitrifiers/aerobic denitrifiers and their roles in N2O production for different incubations].

    PubMed

    Jiang, Jing-Yan; Hu, Zheng-Hua; Huang, Yao

    2009-07-15

    Soil microorganisms are important sources of N2O for the atmosphere. Peak emissions of N2O are often observed after wetting of soil. The simultaneous heterotrophic nitrifying and aerobic denitrifying bacteria with respect to N2O emission were studied to obtain more information about the microbiologcal aspects of peak emissions. Using acetamide as the C and N source, two strains of nitrifying and denitrifying bacteria were isolated, coded as XM1 and HX2,respectively. XM1 strain was Gram-negative chain-like bacilli, and the HX2 was Gram-negative cocci. In enrichment culture, N2O production of HX2 was 76 times more than XM1. Two strains could grow with glucose, mannitol or sodium tartrate as sole carbon source, respectively. They could nitrify with sodium nitrate or denitrify with ammonium sulfate as unique nitrogen source, and produce intermediate product nitrite. XM1 strain growth velocity and nitrite formation were obviously higher than HX2. The phylogentic analysis based on partial 16S rDNA showed that two isolated strains were the closest relative of Pseudomonas sp.99% sequence similarity. Under different WFPS (water-filled-pore-space) conditions, the aerobic autoclaved soil incubation trial showed that, HX2 strain was suitable for growing in 30% WFPS, and N2O production was (36.01 +/- 2.48) ng/g which was 1.9 times than that in 60% WFPS. But XM1 was suitable for growing in 60% WFPS and almost had no N2O production. To investigate the nitrifying and denitrifying mechanisms of heterotrophic nitrifiers/aerobic denitrifiers should be useful for mastering the mitigation way of soil N2O emission in future.

  16. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing

    PubMed Central

    Pickens, Charles L.; Navarre, Brittany M.; Nair, Sunila G.

    2010-01-01

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-sec tone-shock pairings) fear training and high fear after 1–2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18–20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. PMID:20600654

  17. Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing.

    PubMed

    Pickens, C L; Navarre, B M; Nair, S G

    2010-09-15

    We recently adapted the conditioned suppression of operant responding method to study fear incubation. We found that food-restricted rats show low fear 2 days after extended (10 d; 100 30-s tone-shock pairings) fear training and high fear after 1-2 months. Here, we studied a potential mechanism of fear incubation: extended food-restriction stress. We also studied whether fear incubation is observed after fear training with a prolonged-duration (6-min) tone conditioned stimulus (CS), and whether conditioned freezing incubates after extended training in rats with or without a concurrent operant task. Conditioned fear was assessed 2 days and 1 month after training. In the conditioned suppression method, fear incubation was reliably observed in rats under moderate food-restriction conditions (18-20 g food/day) that allowed for weight gain, and after extended (10 d), but not limited (1 d), fear training with the 6-min CS. Incubation of conditioned freezing was observed after extended fear training in rats lever-pressing for food and, to a lesser degree, in rats not performing an operant task. Results indicate that prolonged hunger-related stress does not account for fear incubation in the conditioned suppression method, and that fear incubation occurs to a longer-duration (6-min) fear CS. Extended training also leads to robust fear incubation of conditioned freezing in rats performing an operant task and weaker fear incubation in rats not performing an operant task. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Enrofloxacin degradation in broiler chicken manure under various laboratory conditions.

    PubMed

    Slana, Marko; Sollner-Dolenc, Marija

    2016-03-01

    The rate of degradation of enrofloxacin in broiler chicken manure has been characterized in the laboratory according to the CVMP guideline on determining the fate of veterinary medicinal products in manure. Degradation was followed in a flow-through system under aerobic and anaerobic conditions, in the dark and in the presence of light. The rate of degradation of enrofloxacin and the formation of its degradation products are dependent on laboratory conditions. A rapid degradation of enrofloxacin in the dark was noticed, where a shorter degradation half-life under aerobic (DT50 = 59.1 days), comparing to anaerobic conditions (DT50 = 88.9 days), was determined. The presence of light slowed down the enrofloxacin degradation half-life, which was significantly shorter under aerobic (DT50 = 115.0 days), comparing to anaerobic conditions (DT50 = 190.8 days). Desethylene-enrofoxacin was the only degradation product formed, its concentrations ranged from 2.5 to 14.9 %. The concentration of the degradation product was approximately 2.5-fold higher under aerobic conditions. Enrofloxacin degradation in sterile manure incubated under sterile conditions was marginal comparing to non-sterile conditions; after 120 days of incubation, approximately 80 % of enrofloxacin was still present in manure and only 1 % of desethylene-enrofloxacin was formed. The present work demonstrates that enrofloxacin degradation in chicken manure is relatively fast when incubated in the dark under aerobic conditions which is the recommended incubation system for chicken manure according to CVMP guideline.

  19. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  20. Home-based aerobic conditioning for management of symptoms of fibromyalgia: a pilot study.

    PubMed

    Harden, R Norman; Song, Sharon; Fasen, Jo; Saltz, Samuel L; Nampiaparampil, Devi; Vo, Andrew; Revivo, Gadi

    2012-06-01

    This pilot study was designed to evaluate the impact of a home-based aerobic conditioning program on symptoms of fibromyalgia and determine if changes in symptoms were related to quantitative changes in aerobic conditioning (VO(2) max). Twenty-six sedentary individuals diagnosed with fibromyalgia syndrome participated in an individualized 12-week home-based aerobic exercise program with the goal of daily aerobic exercise of 30 minutes at 80% of estimated maximum heart rate. The aerobic conditioning took place in the participants' homes, outdoors, or at local fitness clubs at the discretion of the individual under the supervision of a physical therapist. Patients were evaluated at baseline and completion for physiological level of aerobic conditioning (VO(2) max), pain ratings, pain disability, depression, and stress. In this pilot study subjects who successfully completed the 12-week exercise program demonstrated an increase in aerobic conditioning, a trend toward decrease in pain measured by the McGill Pain Questionnaire-Short Form and a weak trend toward improvements in visual analog scale, depression, and perceived stress. Patients who were unable or unwilling to complete this aerobic conditioning program reported significantly greater pain and perceived disability (and a trend toward more depression) at baseline than those who completed the program. Patients suffering from fibromyalgia who can participate in an aerobic conditioning program may experience physiological and psychological benefits, perhaps with improvement in symptoms of fibromyalgia, specifically pain ratings. More definitive trials are needed, and this pilot demonstrates the feasibility of the quantitative VO2 max method. Subjects who experience significant perceived disability and negative affective symptoms are not likely to maintain a home-based conditioning program, and may need a more comprehensive interdisciplinary program offering greater psychological and social support. Wiley

  1. Changes in Amino Acid Content of Excised Leaves During Incubation I. The Effect of Water Content of Leaves and Atmospheric Oxygen Level

    PubMed Central

    Thompson, John F.; Stewart, Cecil R.; Morris, Clayton J.

    1966-01-01

    Excised leaves were incubated at various water contents to determine the effect of water status on amino acid composition. Considerable proteolysis took place during incubation with a resultant increase in each amino acid in the non-protein fraction. However, serine, proline, γ-aminobutyric acid and methyleysteine sulfoxide were the only amino acids in which there was an accumulation (i.e., net synthesis). Serine showed a small but consistent accumulation lasting for 6 days. Proline showed a greater accumulation but this ceased after 2 days. To learn more about the control of the proline accumulation during wilting, turgid and wilted leaves were incubated under aerobic and anaerobic conditions. The amino acid analyses showed that turgid leaves did not accumulate proline and that proline and methylcysteine sulfoxide accumulation was abolished by anaerobiosis. With other amino acids, relative concentration changes between wilted and non-wilted leaves were less striking than the difference between aerobic and anaerobic conditions. Under anaerobic conditions there was an increase in alanine and a large increase in γ-aminobutyric acid which were not evident in air. Serine, aspartic acid, glutamic acid, and glutamine disappeared more rapidly and glycine disappeared less rapidly under anaerobic than under aerobic conditions. On the basis of these results, several pathways of amino acid degradation were suggested. PMID:16656443

  2. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.

    PubMed

    Tsuge, Yota; Hori, Yoshimi; Kudou, Motonori; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-10-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.

  3. Comparative study of the in vitro activity of various antifungal drugs against Scedosporium spp. in aerobic and hyperbaric atmosphere versus normal atmosphere.

    PubMed

    Farina, C; Marchesi, G; Passera, M; Diliberto, C; Russello, G

    2012-06-01

    Scedosporium spp. have been observed with increasing frequency over the last decade in immunocompromised patients and trauma patients. This mould is often multi-drug resistant and its mortality rate remains very high. The primary goal of this study was to obtain data concerning the in vitro susceptibility of 13 Scedosporium strains comparing the in vitro incubation in aerobic versus hyperbaric conditions. Chemosensitivity of thirteen Scedosporium strains was evaluated after a 72h-incubation in a normoxic (21% O2) normobaric (1 ATA) atmosphere versus a hyperoxic (100% O2) hyperbaric (2-3 ATA), and after a re-incubation at room temperature for an additional 72h. All S. apiospermum and S. prolificans strains showed no growth after incubation in hyperbaric hyperoxic atmosphere. However, when plates were then maintained at room temperature in aerobic conditions, growth was systematically observed from 36 to 96h, and Minimal inhibitory concentration (MIC) values were the same obtained after incubation in aerobic conditions. These results suggest impressive in vitro fungistatic activity of the hyperoxic hyperbaric atmosphere, even if its effect is strictly time-dependent. This preliminary in vitro study has potential clinical relevance because it focuses on examining in vitro combination therapy using hyperoxic hyperbaric conditions plus a single antifungal agent, rather than using combinations of different antifungal drugs, to potentially increase the antifungal activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. Remote monitoring of parental incubation conditions in the greater sandhill crane

    USGS Publications Warehouse

    Gee, G.F.; Hatfield, J.; Howey, P.J.

    1995-01-01

    To monitor incubation conditions in nests of greater sandhill cranes, a radiotransmitting egg was built using six temperature sensors, a position sensor, and a light sensor. Sensor readings were received, along with time of observations, and stored in a computer. The egg was used to monitor incubation in nests of six pairs of cranes during 1987 and 1988. Ambient temperature was also measured. Analysis of covariance (ANCOVA) was used to relate highest egg temperature, core egg temperature, and lowest egg temperature to ambient temperature, time since the egg was last turned, and time since the beginning of incubation. Ambient temperature had the greatest effect on egg temperature (P 0.0001), followed by the time since the beginning of incubation and time since the egg was last turned. Pair effect, the class variable in the ANCOVA. was also very significant (P < 0.0001). A nine-term Fourier series was used to estimate the average core egg temperature versus time of day and was found to fit the data well (r2 = 0.94). The Fourier series will be used to run a mechanical incubator to simulate natural incubation conditions for cranes.

  5. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobicmore » condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed

  6. Diffusion of 99-technetium in compacted bentonite under aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Večerník, P.; Jedináková-Křížová, V.

    2006-01-01

    The main aim of this study was to investigate diffusion of technetium 99Tc under different conditions. Because technetium represents one of the most dangerous fission products due to its very long halftime and high mobility in aerobic conditions diffusion experiments of technetium (as 99TcO 4 - anion) in Czech bentonite from Rokle locality have been carried out. For performance and evaluation of experiments the through-diffusion method was chosen and apparent (Da) and effective (De) diffusion coefficients were evaluated. The effects of particle mesh-size, dry bulk density and aerobic or anaerobic conditions on diffusion were studied. In the presence of oxygen, technetium occurs in oxidation state VII, as an anion, soluble and mobile in the environment. However, under reducing conditions it occurs in a lower oxidation states, mainly as insoluble oxides or hydroxides. Aerobic experiments were carried out under laboratory conditions and anaerobic experiments were performed in a nitrogen atmosphere in a glove box, to simulate the real underground conditions.

  7. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    PubMed

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  8. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    PubMed

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  9. Aerobic exercise conditioning: a nonpharmacological antiarrhythmic intervention.

    PubMed

    Billman, George E

    2002-02-01

    Sudden, unexpected cardiac death due to ventricular fibrillation is the leading cause of death in most industrially developed countries. Yet, despite the enormity of this problem, the development of safe and effective antiarrhythmic therapies has proven to be an elusive goal. In fact, many initially promising antiarrhythmic medications were subsequently found to increase rather than to decrease cardiac mortality. It is now known that cardiac disease alters cardiac autonomic balance and that the patients with the greatest changes in this cardiac neural regulation (i.e., decreased parasympathetic coupled with increased sympathetic activity) are also the patients at the greatest risk for sudden death. A growing body of experimental and epidemiological data demonstrates that aerobic exercise conditioning can dramatically reduce cardiac mortality, even in patients with preexisting cardiac disease. Conversely, the lack of exercise is strongly associated with an increased incidence of many chronic debilitating diseases, including coronary heart disease. Because it is well established that aerobic exercise conditioning can alter autonomic balance (increasing parasympathetic tone and decreasing sympathetic activity), a prudently designed exercise program could prove to be an effective and nonpharmacological way to enhance cardiac electrical stability, thereby protecting against sudden cardiac death.

  10. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.

    PubMed

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-02-01

    According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills. Copyright © 2015. Published by Elsevier Ltd.

  11. Multicenter Study on Incubation Conditions for Environmental Monitoring and Aseptic Process Simulation.

    PubMed

    Guinet, Roland; Berthoumieu, Nicole; Dutot, Philippe; Triquet, Julien; Ratajczak, Medhi; Thibaudon, Michel; Bechaud, Philippe; Arliaud, Christophe; Miclet, Edith; Giordano, Florine; Larcon, Marjorie; Arthaud, Catherine

    Environmental monitoring and aseptic process simulations represent an integral part of the microbiological quality control system of sterile pharmaceutical products manufacturing operations. However, guidance documents and manufacturers practices differ regarding recommendations for incubation time and incubation temperature, and, consequently, the environmental monitoring and aseptic process simulation incubation strategy should be supported by validation data. To avoid any bias coming from in vitro studies or from single-site manufacturing in situ studies, we performed a collaborative study at four manufacturing sites with four samples at each location. The environmental monitoring study was performed with tryptic soy agar settle plates and contact plates, and the aseptic process simulation study was performed with tryptic soy broth and thioglycolate broth. The highest recovery rate was obtained with settle plates (97.7%) followed by contact plates (65.4%) and was less than 20% for liquid media (tryptic soy broth 19% and thioglycolate broth 17%). Gram-positive cocci and non-spore-forming Gram-positive rods were largely predominant with more than 95% of growth and recovered best at 32.5 °C. The highest recovery of molds was obtained at 22.5 °C alone or as the first incubation temperature. Strict anaerobes were not recovered. At the end of the five days of incubation no significant statistical difference was obtained between the four conditions. Based on these data a single incubation temperature at 32.5 °C could be recommended for these four manufacturing sites for both environmental monitoring and aseptic process simulation, and a second plate could be used, periodically incubated at 22.5 °C. Similar studies should be considered for all manufacturing facilities in order to determine the optimal incubation temperature regime for both viable environmental monitoring and aseptic process simulation. Microbiological environmental monitoring and aseptic process

  12. Screening of Lactic Acid Bacteria for Anti-Fusarium Activity and Optimization of Incubation Conditions.

    PubMed

    Zhao, Hui; Vegi, Anuradha; Wolf-Hall, Charlene

    2017-10-01

    Anti-Fusarium activities of lactic acid bacteria (LAB) Lactobacillus plantarum 299V, L. plantarum NRRL-4496, and Lactobacillus rhamnosus VT1 were determined by a microdilution assay developed in this study against Fusarium graminearum 08/RG/BF/51. A cell-free Lactobacillus culture supernatant (CFLCS) of L. rhamnosus VT1 had the highest anti-Fusarium activity. Response surface methodology was used to optimize the incubation conditions for production of CFLCS. A Box-Behnken factorial design was used to investigate the effects of incubation time, shaking speed, and incubation temperature on the inhibition rate of CFLCS. A model equation was generated to predict the inhibition rate of CFLCS under various incubation conditions. A low probability value (0.0012) and associated F value of 25.10 suggested that the model was highly significant. A high R 2 value (0.978) indicated a very satisfactory model performance. Response surface methodology analysis suggested that an incubation temperature at 34°C, a shaking speed at 170 rpm, and an incubation time of 55 h were the best combination for production of CFLCS from L. rhamnosus VT1. Under these incubation conditions, a 10% L. rhamnosus VT1 CFLCS solution was predicted to inhibit the growth of F. graminearum by 75.6% in vitro and inhibited 83.7% of the growth in the validation experiment. Thus, the CFLCS of L. rhamnosus VT1 was an effective anti-Fusarium mixture.

  13. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition.

    PubMed

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-07-15

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed. 2010 Elsevier B.V. All rights reserved.

  14. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids.

    PubMed

    Novak, John T; Sadler, Mary E; Murthy, Sudhir N

    2003-07-01

    Laboratory anaerobic and aerobic digestion studies were conducted using waste activated sludges from two municipal wastewater treatment plants in order to gain insight into the mechanisms of floc destruction that account for changes in sludge conditioning and dewatering properties when sludges undergo anaerobic and aerobic digestion. Batch digestion studies were conducted at 20 degrees C and the dewatering properties, solution biopolymer concentration and conditioning dose requirements measured. The data indicated that release of biopolymer from sludges occurred under both anaerobic and aerobic conditions but that the release was much greater under anaerobic conditions. In particular, the release of protein into solution was 4-5 times higher under anaerobic than under aerobic conditions. Both the dewatering rate, as characterized by the specific resistance to filtration and the amount of polymer conditioning chemicals required was found to depend directly on the amount of biopolymer (protein + polysaccharide) in solution. Little difference in dewatering properties and conditioning doses was seen between the two activated sludges from different plants. Differences in the cations released between anaerobic and aerobic digestion suggest that the digestion mechanisms differ for the two types of processes. Enzyme activity data showed that during aerobic digestion, polysaccharide degradation activity decreased to near zero and this was consistent with the accumulation of polysaccharides in aerobic digesters.

  15. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions.

    PubMed

    Oh, Euna; McMullen, Lynn; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni, a microaerophilic foodborne pathogen, inescapably faces high oxygen tension during its transmission to humans. Thus, the ability of C. jejuni to survive under oxygen-rich conditions may significantly impact C. jejuni viability in food and food safety as well. In this study, we investigated the impact of oxidative stress resistance on the survival of C. jejuni under aerobic conditions by examining three mutants defective in key antioxidant genes, including ahpC, katA, and sodB. All the three mutants exhibited growth reduction under aerobic conditions compared to the wild-type (WT), and the ahpC mutant showed the most significant growth defect. The CFU reduction in the mutants was recovered to the WT level by complementation. Higher levels of reactive oxygen species were accumulated in C. jejuni under aerobic conditions than microaerobic conditions, and supplementation of culture media with an antioxidant recovered the growth of C. jejuni. The levels of lipid peroxidation and protein oxidation were significantly increased in the mutants compared to WT. Additionally, the mutants exhibited different morphological changes under aerobic conditions. The ahpC and katA mutants developed coccoid morphology by aeration, whereas the sodB mutant established elongated cellular morphology. Compared to microaerobic conditions, interestingly, aerobic culture conditions substantially induced the formation of coccoidal cells, and antioxidant treatment reduced the emergence of coccoid forms under aerobic conditions. The ATP concentrations and PMA-qPCR analysis supported that oxidative stress is a factor that induces the development of a viable-but-non-culturable state in C. jejuni. The findings in this study clearly demonstrated that oxidative stress resistance plays an important role in the survival and morphological changes of C. jejuni under aerobic conditions.

  16. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    PubMed

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions.

    PubMed

    Nittami, Tadashi; Oi, Hiroshi; Matsumoto, Kanji; Seviour, Robert J

    2011-12-15

    Previous research has suggested that enhanced biological phosphorus removal (EBPR) from wastewater can be achieved under continuous aerobic conditions over the short term. However, little is known how environmental conditions might affect aerobic EBPR performance. Consequently we have investigated the impact of temperature, pH and dissolved oxygen (DO) concentrations on EBPR performance under strictly aerobic conditions. A sequencing batch reactor (SBR) was operated for 108 days on a six-hour cycle (four cycles a day). The SBR ran under alternating anaerobic-aerobic conditions as standard and then operated under strictly aerobic conditions for one cycle every three or four days. SBR operational temperature (10, 15, 20, 25 and 30°C), pH (6, 7, 8 and 9) and DO concentration (0.5, 2.0 and 3.5mg/L) were changed consecutively during the aerobic cycle. Recorded increases in mixed liquor phosphorus (P) concentrations during aerobic carbon source uptake (P release) were affected by the biomass P content rather than the imposed changes in the operational conditions. Thus, P release levels increased with biomass P content. By contrast, subsequent aerobic P assimilation (P uptake) levels were both affected by changes in operational temperature and pH, and peaked at 20-25°C and pH 7-8. Highest P uptake detected under these SBR operating conditions was 15.4 mg Pg-MLSS(-1) (at 25°C, pH 7 and DO 2.0mg/L). The ability of the community for linked aerobic P release and P uptake required the presence of acetate in the medium, a finding which differs from previous data, where these are reported to occur in the absence of any exogenous carbon source. Fluorescence in situ hybridization was performed on samples collected from the SBR, and Candidatus 'Accumulibacter phosphatis' cells were detected with PAOmix probes through the operational periods. Thus, Candidatus 'Accumulibacter phosphatis' seemed to perform P removal in the SBR as shown in previous studies on P removal under

  18. Soil Redox Conditions Are a Strong Determinant of Microbial Community Composition and the Fate of Carbon Following Permafrost Thaw.

    NASA Astrophysics Data System (ADS)

    Bottos, E. M.; Bramer, L.; Kim, Y. M.; Fansler, S.; Nicora, C.; Zink, E.; Chu, R. K.; Tfaily, M. M.; Metz, T. O.; Jansson, J.; Stegen, J.

    2016-12-01

    Permafrost-affected soils contain enormous stocks of carbon, which are becoming increasingly available to microbial transformation as permafrost regions warm; however, how this warming will influence the permafrost microbiome and the transformation of soil carbon remains unclear. We hypothesize that the redox conditions that arise following permafrost thaw will dictate the structure and function of the microbial community, and strongly influence the nature of carbon transformations. To examine this, permafrost-affected soils from Caribou Poker Creek Research Watershed, Alaska were incubated at 4 °C under aerobic and anaerobic conditions for periods of 9 and 94 days. Over the incubation period, rates of CO2 and CH4 production were measured by gas chromatography, shifts in microbial community structure were characterized by 16S rRNA gene sequencing, and changes in metabolite and organic matter composition were analyzed by GC-MS and ESI-FTICR MS, respectively. CO2 production rates were significantly higher in aerobic treatments in 9-day and 94-day incubations, by 3-times and 12-times, respectively. Rates of CH4 production were not significantly different between treatments in 9-day incubations, but were 1.6-times higher in anaerobic treatments in 94-day incubations. The community composition remained largely unchanged in the incubated samples, with the exception of the 94-day aerobic incubations, which shifted strongly to become dominated by a single OTU, Rhodoferax ferrireducens. Metabolite profiles also shifted most strongly in the 94-day aerobic incubations, with the abundance of phosphorylated carbon compounds overrepresented in these samples. This work suggests that the redox conditions that arise following permafrost thaw will be a strong determinant of community composition and will govern the ultimate fate of carbon stocks in permafrost-affected soils. Our results are currently being integrated with numerical models aimed at predicting the coupled microbiome

  19. A simplified and cost-effective enrichment protocol for the isolation of Campylobacter spp. from retail broiler meat without microaerobic incubation

    PubMed Central

    2011-01-01

    Background To simplify the methodology for the isolation of Campylobacter spp. from retail broiler meat, we evaluated 108 samples (breasts and thighs) using an unpaired sample design. The enrichment broths were incubated under aerobic conditions (subsamples A) and for comparison under microaerobic conditions (subsamples M) as recommended by current reference protocols. Sensors were used to measure the dissolved oxygen (DO) in the broth and the percentage of oxygen (O2) in the head space of the bags used for enrichment. Campylobacter isolates were identified with multiplex PCR assays and typed using pulsed-field gel electrophoresis (PFGE). Ribosomal intergenic spacer analyses (RISA) and denaturing gradient gel electrophoresis (DGGE) were used to study the bacterial communities of subsamples M and A after 48 h enrichment. Results The number of Campylobacter positive subsamples were similar for A and M when all samples were combined (P = 0.81) and when samples were analyzed by product (breast: P = 0.75; thigh: P = 1.00). Oxygen sensors showed that DO values in the broth were around 6 ppm and O2 values in the head space were 14-16% throughout incubation. PFGE demonstrated high genomic similarity of isolates in the majority of the samples in which isolates were obtained from subsamples A and M. RISA and DGGE results showed a large variability in the bacterial populations that could be attributed to sample-to-sample variations and not enrichment conditions (aerobic or microaerobic). These data also suggested that current sampling protocols are not optimized to determine the true number of Campylobacter positive samples in retail boiler meat. Conclusions Decreased DO in enrichment broths is naturally achieved. This simplified, cost-effective enrichment protocol with aerobic incubation could be incorporated into reference methods for the isolation of Campylobacter spp. from retail broiler meat. PMID:21812946

  20. Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditions.

    PubMed

    Ma, Ting; Ji, Kaihua; Wang, Wei; Wang, Jinghong; Li, Zhaoyu; Ran, Haitao; Liu, Bin; Li, Guoqiang

    2012-12-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. In static cultivation at 30 °C for 72 h under anoxic, oxygen-limited and aerated conditions, cellulose production exceeded 5 g/l, which indicated that oxygen was not essential for production of BC by Enterobacter sp. FY-07. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis showed that the microstructure of the BC was similar to that produced by aerobic bacteria such as Gluconacetobacter xylinum BCRC12335 and Acetobacter sp. V6. The crystallinity index of the BC was 63.3%. Water-holding capacity (approximately 11000%) and rehydration ratio (24.4%) were superior to those reported for BC produced by the aerobic bacteria G. xylinum BCRC12335 and Acetobacter sp. V6. These results will facilitate static submerged fermentation for the production of BC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Leaf wound induced ultraweak photon emission is suppressed under anoxic stress: Observations of Spathiphyllum under aerobic and anaerobic conditions using novel in vivo methodology.

    PubMed

    Oros, Carl L; Alves, Fabio

    2018-01-01

    Plants have evolved a variety of means to energetically sense and respond to abiotic and biotic environmental stress. Two typical photochemical signaling responses involve the emission of volatile organic compounds and light. The emission of certain leaf wound volatiles and light are mutually dependent upon oxygen which is subsequently required for the wound-induced lipoxygenase reactions that trigger the formation of fatty acids and hydroperoxides; ultimately leading to photon emission by chlorophyll molecules. A low noise photomultiplier with sensitivity in the visible spectrum (300-720 nm) is used to continuously measure long duration ultraweak photon emission of dark-adapting whole Spathiphyllum leaves (in vivo). Leaves were mechanically wounded after two hours of dark adaptation in aerobic and anaerobic conditions. It was found that (1) nitrogen incubation did not affect the pre-wound basal photocounts; (2) wound induced leaf biophoton emission was significantly suppressed when under anoxic stress; and (3) the aerobic wound induced emission spectra observed was > 650 nm, implicating chlorophyll as the likely emitter. Limitations of the PMT photocathode's radiant sensitivity, however, prevented accurate analysis from 700-720 nm. Further examination of leaf wounding profile photon counts revealed that the pre-wounding basal state (aerobic and anoxic), the anoxic wounding state, and the post-wounding aerobic state statistics all approximate a Poisson distribution. It is additionally observed that aerobic wounding induces two distinct exponential decay events. These observations contribute to the body of plant wound-induced luminescence research and provide a novel methodology to measure this phenomenon in vivo.

  2. Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature.

    PubMed

    Shao, Liming; Wang, Tianfeng; Li, Tianshui; Lü, Fan; He, Pinjing

    2013-07-01

    Aerobic and anaerobic digestion are popular methods for the treatment of waste activated sludge. However, the differences in degradation of sludge during aerobic and anaerobic digestion remain unclear. In this study, the sludge degradation during aerobic and anaerobic digestion was investigated at mesophilic temperature, focused on protein based on the degradation efficiency and degree of humification. The duration of aerobic and anaerobic digestion was about 90 days. The final degradation efficiency of volatile solid was 66.1 ± 1.6% and 66.4 ± 2.4% under aerobic and anaerobic conditions, respectively. The final degradation efficiency of protein was 67.5 ± 1.4% and 65.1 ± 2.6% under aerobic and anaerobic conditions, respectively. The degradation models of volatile solids were consistent with those of protein under both aerobic and anaerobic conditions. The solubility of protein under aerobic digestion was greater than that under anaerobic digestion. Moreover, the humification index of dissolved organic matter of aerobic digestion was greater than that during anaerobic digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Differential Isotopic Fractionation during Cr(VI) Reduction by an Aquifer-Derived Bacterium under Aerobic versus Denitrifying Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, R.; Qin, L.; Brown, S. T.

    2012-01-27

    We studied Cr isotopic fractionation during Cr(VI) reduction by Pseudomonas stutzeri strain RCH2. Finally, despite the fact that strain RCH2 reduces Cr(VI) cometabolically under both aerobic and denitrifying conditions and at similar specific rates, fractionation was markedly different under these two conditions (ε was ~2‰ aerobically and ~0.4‰ under denitrifying conditions).

  5. Self-Report of Aerobic Activity among Older African Americans with Multiple Chronic Conditions.

    PubMed

    McCaskill, Gina M; Bolland, Kathleen A; Brown, Cynthia J; Mark Beasley, T

    2018-02-23

    Physical inactivity among older adults around the world is a growing concern. In the United States, older African Americans report high levels of physical inactivity, especially older African Americans with chronic conditions. This study examined the influence of chronic conditions on aerobic activity among a sample of community-dwelling, older African Americans with a self-reported diagnosis of type 2 diabetes and other chronic conditions, such as hypertension and arthritis. Findings indicate that regardless of age, the number of chronic conditions was a significant influence in self-report of aerobic activity. Successful self-management of type 2 diabetes and other chronic conditions may promote physical activity among sedentary older African Americans with multiple chronic conditions. Furthermore, research that considers a life course epidemiological approach are needed to enhance our understanding about the cumulative effects of MCC on physical activity among sedentary, older African Americans with MCC.

  6. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China.

    PubMed

    Song, Changchun; Wang, Xianwei; Miao, Yuqing; Wang, Jiaoyue; Mao, Rong; Song, Yanyu

    2014-07-15

    The carbon (C) pool of permafrost peatland is very important for the global C cycle. Little is known about how permafrost thaw could influence C emissions in the Great Hing'an Mountains of China. Through aerobic and anaerobic incubation experiments, we studied the effects of permafrost thaw on CH4 and CO2 emissions. The rates of CH4 and CO2 emissions were measured at -10, 0 and 10°C. Although there were still C emissions below 0°C, rates of CH4 and CO2 emissions significantly increased with permafrost thaw under aerobic and anaerobic conditions. The C release under aerobic conditions was greater than under anaerobic conditions, suggesting that permafrost thaw and resulting soil environment change should be important influences on C emissions. However, CH4 stored in permafrost soils could affect accurate estimation of CH4 emissions from microbial degradation. Calculated Q10 values in the permafrost soils were significantly higher than values in active-layer soils under aerobic conditions. Our results highlight that permafrost soils have greater potential decomposability than soils of the active layer, and such carbon decomposition would be more responsive to the aerobic environment. © 2013 Elsevier B.V. All rights reserved.

  7. Short-term water-based aerobic training promotes improvements in aerobic conditioning parameters of mature women.

    PubMed

    Costa, Rochelle Rocha; Reichert, Thais; Coconcelli, Leandro; Simmer, Nicole Monticelli; Bagatini, Natália Carvalho; Buttelli, Adriana Cristine Koch; Bracht, Cláudia Gomes; Stein, Ricardo; Kruel, Luiz Fernando Martins

    2017-08-01

    Aging is accompanied by a decrease in aerobic capacity. Therefore, physical training has been recommended to soften the effects of advancement age. The aim of this study was to assess the effects of a short-term water-based aerobic training on resting heart rate (HR rest ), heart rate corresponding to anaerobic threshold (HR AT ), peak heart rate (HR peak ), percentage value of HR AT in relation to HR peak and test duration (TD) of mature women. Twenty-two women (65.91 ± 4.83 years) were submitted to a five-week water-based interval aerobic training. Aerobic capacity parameters were evaluated through an aquatic incremental test. After training, there was an increase in TD (16%) and HR AT percentage in relation to HR peak (4.68%), and a reduction of HR rest (9%). It is concluded that a water-based aerobic interval training prescribed through HR AT of only five weeks is able to promote improvements in aerobic capacity of mature women. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Treatment of raw and ozonated oil sands process-affected water under decoupled denitrifying anoxic and nitrifying aerobic conditions: a comparative study.

    PubMed

    Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2016-11-01

    Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.

  9. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  10. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    PubMed

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  11. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis

    Treesearch

    T. W. Jeffries

    1981-01-01

    Candida tropicalis converts xylose to ethanol under aerobic, but not anaerobic, conditions. Ethanol production lags behind growth and is accelerated by increased aeration. Adding xylose to active cultures stimulates ethanol production as does serial subculture in a medium containing xylose as a sole carbon source.

  12. Rapid production of Candida albicans chlamydospores in liquid media under various incubation conditions.

    PubMed

    Alicia, Zavalza-Stiker; Blanca, Ortiz-Saldivar; Mariana, García-Hernández; Magdalena, Castillo-Casanova; Alexandro, Bonifaz

    2006-01-01

    The production of chlamydospores is a diagnostic tool used to identify Candida albicans; these structures also represent a model for morphogenetic research. The time required to produce them with standard methods is 48-72 hours in rice meal agar and tensoactive agents. This time can be shorted using liquid media such as cornmeal broth (CMB) and dairy supplements. Five media were tested: CMB plus 1% Tween-80, CMB plus 5% milk, CMB plus 5% milk serum, milk serum, and milk serum plus 1% Tween-80, under different incubation conditions: at 28 degrees C and 37 degrees C in a metabolic bath stirring at 150 rpm, and at 28 degrees C in a culture stove. The reading time points were established at 8 and 16 hours. The best results were obtained at 16 hours with CMB plus 5% milk under incubation at 28 degrees C and stirring at 150 rpm. The next most efficient methods were CMB plus 5% milk serum and CMB plus 1% Tween-80, under the same incubation conditions. The other media were ineffective in producing chlamydospores. The absence of stirring at 28 degrees C prevented the formation of chlamydospores within the set time points, and incubation at 37 degrees C decreased their production. This paper reports that the time to form C. albicans chlamydospores can be reduced.

  13. Culture conditions affect cytotoxin production by Serratia marcescens.

    PubMed

    Carbonell, G V; Fonseca, B A; Figueiredo, L T; Darini, A L; Yanaguita, R M

    1996-12-31

    Cytotoxins have been implicated in the pathogenesis of bacterial infections. In this study, the influence of different culture conditions was evaluated on cytotoxin production of Serratia marcescens. Parameters such as culture media, incubation temperature, starting pH of culture medium, aeration, anaerobiosis, carbon sources, iron concentration in he culture media, and release of cell-bond toxin by polymyxin B were investigated. The data suggest that this cytotoxin is predominantly extracellular and is not induced by iron limitation. Aerobic culture with shaking resulted in higher cytotoxicity than static aerobic or anaerobic culture. Bacteria grown in glucose, sucrose or galactose were more cytotoxic than those grown in inositol or maltose. The culture conditions that were identified as optimal for cytotoxin production by Serratia marcescens were incubation temperature ranging from 30 to 37 degrees C, in medium adjusted pH 8.5, with shaking. This work will contribute to further studies on the identification of this cytotoxic activity.

  14. Blockade of CB1 receptors prevents retention of extinction but does not increase low pre-incubated conditioned fear in the fear incubation procedure

    PubMed Central

    Pickens, Charles L.; Theberge, Florence R.

    2015-01-01

    We recently developed a procedure to study fear incubation in which rats given 100 tone-shock pairings over 10 days show low fear 2 days after conditioned fear training and high fear after 30 days. Notably, fear 2 days after 10 sessions of fear conditioning is lower than fear seen 2 days after a single session of fear conditioning, suggesting that fear is suppressed. Here, we investigate the potential role of CB1 receptor activation by endocannabinoids in this fear suppression. We gave rats 10 days of fear conditioning and then gave systemic injections of the CB1 receptor antagonist SR141716 before a conditioned fear test conducted 2 days later under extinction conditions. A second test was conducted without any injections on the following day (3 days post-training) to examine fear extinction retention. SR141716 injections did not increase fear expression 2 days after extended fear conditioning or affect within-session extinction, but impaired retention of between-session fear extinction in the day 3 test. These data suggest that CB1 receptor activation is not suppressing fear soon after extended fear conditioning in the fear incubation task. The data also add to an existing literature on the effects of CB1 receptors in extinction of conditioned fear. PMID:24346290

  15. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Kathleen M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26°C and downshifted 30-26-30°C) and females (constant 30°C and upshifted 26-30-26°C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26°C group and 93% males from the downshifted group. 100% females resulted from both the constant 30°C group and the upshifted group. Turtles hatching from eggsmore » incubated constantly at 26°C were significantly larger than hatchlings from eggs incubated at a constant 30°C or downshifted. Hatchlings were raised in individual aquaria at 25°C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30°C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.« less

  16. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, K.M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26[degree]C and downshifted 30-26-30[degree]C) and females (constant 30[degree]C and upshifted 26-30-26[degree]C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26[degree]C group and 93% males from the downshifted group. 100% females resulted from both the constant 30[degree]C group and the upshifted group. Turtles hatching from eggsmore » incubated constantly at 26[degree]C were significantly larger than hatchlings from eggs incubated at a constant 30[degree]C or downshifted. Hatchlings were raised in individual aquaria at 25[degree]C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30[degree]C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.« less

  17. Effects of biochars on the bioaccessibility of phenanthrene/pyrene/zinc/lead and microbial community structure in a soil under aerobic and anaerobic conditions.

    PubMed

    Ni, Ni; Shi, Renyong; Liu, Zongtang; Bian, Yongrong; Wang, Fang; Song, Yang; Jiang, Xin

    2018-01-01

    The immobilization of co-contaminants of organic and inorganic pollutants by biochar is an efficient remediation strategy. However, the effect of biochar amendments on the bioaccessibility of the co-contaminants in dry versus flooded soils has rarely been compared. In batch experiments, bamboo-derived biochar (BB) had a higher sorption capacity for phenanthrene (Phe)/pyrene (Pyr)/zinc (Zn) than corn straw-derived biochar (CB), while CB had a higher sorption capacity for lead (Pb) than BB. After 150days of incubation, the amendments of 2% CB, 0.5% BB and 2% BB effectively suppressed the dissipation and reduced the bioaccessibility of Phe/Pyr by 15.65%/18.02%, 17.07%/18.31% and 25.43%/27.11%, respectively, in the aerobic soils. This effectiveness was more significant than that in the anaerobic soils. The accessible Zn/Pb concentrations were also significantly lower in the aerobic soils than in the anaerobic soils, regardless of treatments. The Gram-negative bacterial biomass and the Shannon-Weaver index in the aerobic soil amended with 2% CB were the highest. The soil microbial community structure was jointly affected by changes in the bioaccessibility of the co-contaminants and the soil physiochemical properties caused by biochar amendments under the two conditions. Therefore, dry land farming may be more reliable than paddy soil cultivation at reducing the bioaccessibility of Phe/Pyr/Zn/Pb and enhancing the soil microbial diversity in the short term. Copyright © 2017. Published by Elsevier B.V.

  18. Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions.

    PubMed

    Bordeleau, Geneviève; Martel, Richard; Bamba, Abraham N'Valoua; Blais, Jean-François; Ampleman, Guy; Thiboutot, Sonia

    2014-10-01

    The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils. The role of SOM in NG degradation has already been documented under anoxic conditions, and was attributed to SOM-mediated electron transfer involving different reducing agents. However, unsaturated soils are usually well-oxygenated, and it was not clear whether SOM could participate in NG degradation under these conditions. Our results from batch- and column-type experiments clearly demonstrate that in presence of dissolved organic matter (DOM) leached from a natural soil, partial NG degradation can be achieved. In presence of particulate organic matter (POM) from the same soil, complete NG degradation was achieved. Furthermore, POM caused rapid sorption of NG, which should result in NG retention in the organic matter-rich shallow horizons of the soil profile, thus promoting degradation. Based on degradation products, the reaction pathway appears to be reductive, in spite of the aerobic conditions. The relatively rapid reaction rates suggest that this process could significantly participate in the natural attenuation of NG, both on military training ranges and in contaminated soil at production facilities. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows.

    PubMed

    Ardia, Daniel R; Pérez, Jonathan H; Clotfelter, Ethan D

    2010-06-22

    Nest microclimate can have strong effects that can carry over to later life-history stages. We experimentally cooled the nests of tree swallows (Tachycineta bicolor). Females incubating in cooled nests reduced incubation time and allowed egg temperatures to drop, leading to extended incubation periods. We partially cross-fostered nestlings to test carry-over effects of cooling during incubation on nestling innate constitutive immunity, assessed through bacteria killing ability (BKA) of blood. Nestlings that had been cooled as eggs showed a lower ability to kill bacteria than control nestlings, regardless of the treatment of their foster mother. However, there was no effect of treatment of rearing females on nestling BKA in control nestlings, even though cooled females made significantly fewer feeding visits than did control females. This suggests that the effect of cooling occurred during incubation and was not due to carry-over effects on nestling condition. Nestlings that were exposed to experimental cooling as embryos had lower residual body mass and absolute body mass at all four ages measured. Our results indicate that environmental conditions and trade-offs experienced during one stage of development can have important carry-over effects on later life-history stages.

  20. Influence of bovine lactoferrin on the growth of selected probiotic bacteria under aerobic conditions.

    PubMed

    Chen, Po-Wen; Ku, Yu-We; Chu, Fang-Yi

    2014-10-01

    Bovine lactoferrin (bLf) is a natural glycoprotein, and it shows broad-spectrum antimicrobial activity. However, reports on the influences of bLf on probiotic bacteria have been mixed. We examined the effects of apo-bLf (between 0.25 and 128 mg/mL) on both aerobic and anaerobic cultures of probiotics. We found that bLf had similar effects on the growth of probiotics under aerobic or anaerobic conditions, and that it actively and significantly (at concentrations of >0.25 mg/mL) retarded the growth rate of Bifidobacterium bifidum (ATCC 29521), B. longum (ATCC 15707), B. lactis (BCRC 17394), B. infantis (ATCC 15697), Lactobacillus reuteri (ATCC 23272), L. rhamnosus (ATCC 53103), and L. coryniformis (ATCC 25602) in a dose-dependent manner. Otherwise, minimal inhibitory concentrations (MICs) were 128 or >128 mg/mL against B. bifidum, B. longum, B. lactis, L. reuteri, and L. rhamnosus (ATCC 53103). With regard to MICs, bLf showed at least four-fold lower inhibitory effect on probiotics than on pathogens. Intriguingly, bLf (>0.25 mg/mL) significantly enhanced the growth of Rhamnosus (ATCC 7469) and L. acidophilus (BCRC 14065) by approximately 40-200 %, during their late periods of growth. Supernatants produced from aerobic but not anaerobic cultures of L. acidophilus reduced the growth of Escherichia coli by about 20 %. Thus, bLf displayed a dose-dependent inhibitory effect on the growth of most probiotic strains under either aerobic or anaerobic conditions. An antibacterial supernatant prepared from the aerobic cultures may have significant practical use.

  1. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Simon, Cedric J; Smith, Gregory G; Carter, Chris G; Battaglene, Stephen C

    2017-05-01

    We examined the effects of temperature on the growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi, in order to determine if temperature acclimated aerobic scope correlates with optimum for growth and to establish the thermal tolerance window for this emerging aquaculture species. Juvenile lobsters (initial weight=10.95±0.47g) were reared (n=7) at temperatures from 11.0 to 28.5°C for 145days. All lobsters survived from 14.5 to 25.0°C while survival was reduced at 11.0°C (86%) and all lobsters died at 28.5°C. Lobster specific growth rate and specific feed consumption displayed a unimodal response with temperature, peaking at 21.5°C. Lobster standard, routine and maximum metabolic rates, and aerobic scope all increased exponentially up to maximum non-lethal temperature. Optimum temperature for growth did not correspond to that for maximum aerobic scope suggesting that aerobic scope is not an effective predictor of the thermal optimum of spiny lobsters. Plateauing of specific feed consumption beyond 21.5°C suggests that temperature dependent growth of lobsters is limited by capacity to ingest or digest sufficient food to meet increasing maintenance metabolic demands at high temperatures. The nutritional condition of lobsters was not influenced by temperature and feed conversion ratio was improved at lower temperatures. These findings add to a growing body of evidence questioning the generality of aerobic scope to describe the physiological thermal boundaries of aquatic ectotherms and suggest that feed intake plays a crucial role in regulating performance at thermal extremes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  3. Laboratory degradation rates of 11 pyrethroids under aerobic and anaerobic conditions.

    PubMed

    Meyer, Brian N; Lam, Chung; Moore, Sean; Jones, Russell L

    2013-05-22

    Degradation of 11 pyrethroids was measured over approximately 100 days in three sediment/water systems under aerobic and anaerobic conditions at 25 °C in the dark. The three California sediments represented a range of textures and organic matter. Test compounds were bifenthrin, cypermethrin, ζ-cypermethrin, cyfluthrin, β-cyfluthrin, deltamethrin, esfenvalerate, fenpropathrin, γ-cyhalothrin, λ-cyhalothrin, and permethrin. A non-standard design was employed to keep conditions essentially the same for all compounds. The test compounds were applied as two test mixtures (six active ingredients per mixture, with bifenthrin common to both) at approximately 50 μg of test compound/kg of sediment (dry weight). Extracts of sediment/water were cleaned up by solid-phase extraction, concentrated, and analyzed by gas chromatography/mass spectrometry (except deltamethrin) against matrix-matched standards, with cyfluthrin-d6 as an internal standard. Deltamethrin was analyzed by liquid chromatography/tandem mass spectrometry using deltamethrin-phenoxy-(13)C6 as an internal standard. Similar degradation rates of bifenthrin and for related isomeric compounds (e.g., cyfluthrin and β-cyfluthrin) were generally measured in both mixtures for each sediment. First-order half-lives under aerobic conditions ranged from 2.9 to greater than 200 days, with a median value of 18 days. Under anaerobic conditions, the range was from 20 to greater than 200 days, with a median value of 70 days.

  4. Don't wait to incubate: immediate versus delayed incubation in divergent thinking.

    PubMed

    Gilhooly, Kenneth J; Georgiou, George J; Garrison, Jane; Reston, Jon D; Sirota, Miroslav

    2012-08-01

    Previous evidence for the effectiveness of immediate incubation in divergent creative tasks has been weak, because earlier studies exhibited a range of methodological problems. This issue is theoretically important, as a demonstration of the effects of immediate incubation would strengthen the case for the involvement of unconscious work in incubation effects. For the present experiment, we used a creative divergent-thinking task (alternative uses) in which separate experimental groups had incubation periods that were either delayed or immediate and that consisted of either spatial or verbal tasks. Control groups were tested without incubation periods, and we carried out checks for intermittent conscious work on the target task during the incubation periods. The results showed significant incubation effects that were stronger for immediate than for delayed incubation. Performance was not different between the verbal and spatial incubation conditions, and we found no evidence for intermittent conscious working during the incubation periods. These results support a role for unconscious work in creative divergent thinking, particularly in the case of immediate incubation.

  5. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions.

    PubMed

    Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Andaya, Christina; Rezes, Rachel; Michalsen, Mandy M; Crocker, Fiona H; Indest, Karl J; Jung, Carina M; Alon Blakeney, G; Istok, Jonathan D; Hammett, Steven A

    2017-07-01

    Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in laboratory columns following biostimulation and bioaugmentation was investigated using sediment and groundwater from a contaminated aquifer at a US Navy facility. No RDX degradation was observed following aerobic biostimulation with either fructose or lactate (both 0.1 mM) prior to bioaugmentation. Replicate columns were then bioaugmented with either Gordonia sp. KTR9, Pseudomonas fluorescens I-C (Ps I-C), or both strains. Under aerobic conditions (influent dissolved oxygen (DO) >6 mg/L), RDX was degraded following the addition of fructose, and to a lesser extent with lactate, in columns bioaugmented with KTR9. No degradation was observed in columns bioaugmented with only Ps I-C under aerobic conditions, consistent with the known anaerobic RDX degradation pathway for this strain. When influent DO was reduced to <2 mg/L, good RDX degradation was observed in the KTR9-bioaugmented column, and some degradation was also observed in the Ps I-C-bioaugmented column. After DO levels were kept below 1 mg/L for more than a month, columns bioaugmented with KTR9 became unresponsive to fructose addition, while RDX degradation was still observed in the Ps I-C-bioaugmented columns. These results indicate that bioaugmentation with the aerobic RDX degrader KTR9 could be effective at sites where site geology or geochemistry allow higher DO levels to be maintained. Further, inclusion of strains capable of anoxic RDX degradation such as Ps I-C may facilitate bimodal RDX removal when DO levels decrease.

  6. Bacterially Induced Dolomite Formation in the Presence of Sulfate Ions under Aerobic Conditions

    NASA Astrophysics Data System (ADS)

    Sanchez-Roman, M.; McKenzie, J. A.; Vasconcelos, C.; Rivadeneyra, M.

    2005-12-01

    The origin of dolomite remains a long-standing enigma in sedimentary geology because, although thermodynamically favorable, precipitation of dolomite from modern seawater does not occur. Experiments conducted at elevated temperatures (200 oC) indicated that the presence of small concentrations of sulfate ions inhibits the transformation of calcite to dolomite [1]. Indeed, sulfate ions appeared to inhibit dolomite formation above 2 mM concentration (versus 28 mM in modern seawater). Recently, culture experiments have demonstrated that sulfate-reducing bacteria mediate the precipitation of dolomite at Earth surface conditions in the presence of sustained sulfate ion concentrations [2,3]. Additionally, in a number of modern hypersaline environments, dolomite forms from solutions with high sulfate ion concentrations (2 to 70 times seawater). These observations suggest that the experimentally observed sulfate-ion inhibition [1] may not apply to all ancient dolomite formation. Here, we report aerobic culture experiments conducted at low temperatures (25 and 35 oC) and variable sulfate ion concentrations (0, 0.5, 1 and 2 x seawater values) using moderately halophilic bacteria, Halomonas meridiana. After an incubation period of 15 days, experiments at 35 oC with variable sulfate ion concentrations (0, 0.5 x and seawater values) contained crystals of Ca-dolomite and stochiometric dolomite. The experiment at 35 oC with 2 x seawater sulfate ion concentration produced dolomite crystals after 20 days of incubation. In a parallel set of experiments at 25 oC, precipitation of dolomite was observed after 25 days of incubation in cultures with variable sulfate ion concentrations (0, 0.5 x and seawater values). In the culture with 2 x seawater sulfate ion concentration, dolomite crystals were observed after 30 days. Our study demonstrates that halophilic bacteria (or heterotrophic microorganisms), which do not require sulfate ions for metabolism, can mediate dolomite precipitation

  7. The Benthic Exchange of O2, N2 and Dissolved Nutrients Using Small Core Incubations.

    PubMed

    Owens, Michael S; Cornwell, Jeffrey C

    2016-08-03

    The measurement of sediment-water exchange of gases and solutes in aquatic sediments provides data valuable for understanding the role of sediments in nutrient and gas cycles. After cores with intact sediment-water interfaces are collected, they are submerged in incubation tanks and kept under aerobic conditions at in situ temperatures. To initiate a time course of overlying water chemistry, cores are sealed without bubbles using a top cap with a suspended stirrer. Time courses of 4-7 sample points are used to determine the rate of sediment water exchange. Artificial illumination simulates day-time conditions for shallow photosynthetic sediments, and in conjunction with dark incubations can provide net exchanges on a daily basis. The net measurement of N2 is made possible by sampling a time course of dissolved gas concentrations, with high precision mass spectrometric analysis of N2:Ar ratios providing a means to measure N2 concentrations. We have successfully applied this approach to lakes, reservoirs, estuaries, wetlands and storm water ponds, and with care, this approach provides valuable information on biogeochemical balances in aquatic ecosystems.

  8. Mood after various brief exercise and sport modes: aerobics, hip-hop dancing, ice skating, and body conditioning.

    PubMed

    Kim, Sungwoon; Kim, Jingu

    2007-06-01

    To investigate the potential psychological benefits of brief exercise and sport activities on positive mood alterations, 45 Korean high school and 232 undergraduate students enrolled in physical education and stress management classes voluntarily participated and were randomly assigned to one of four activities: aerobic exercise, body conditioning, hip-hop dancing, and ice skating. Mood changes from before to after exercise (2 pm to 3 pm) were measured based on a Korean translation of the Subjective Exercise Experiences Scale. The findings suggested that the aerobics and hip-hop dancing groups rated positive well-being higher than the body conditioning and ice skating groups. Immediately after exercise, psychological distress was rated lower in the aerobics and hip-hop dancing groups, as was fatigue.

  9. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions.

    PubMed

    Zhao, Lanmei; Bao, Mutai; Yan, Miao; Lu, Jinren

    2016-09-01

    Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer

    USGS Publications Warehouse

    Aelion, C.M.; Bradley, P.M.

    1991-01-01

    In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 ??mol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 ??mol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation.

  11. Incubation of ethanol reinstatement depends on test conditions and how ethanol consumption is reduced.

    PubMed

    Ginsburg, Brett C; Lamb, R J

    2015-04-01

    In reinstatement studies (a common preclinical procedure for studying relapse), incubation occurs (longer abstinence periods result in more responding). This finding is discordant with the clinical literature. Identifying determinants of incubation could aid in interpreting reinstatement and identifying processes involved in relapse. Reinstated responding was examined in rats trained to respond for ethanol and food under a multiple concurrent schedule (Component 1: ethanol FR5, food FR150; Component 2: ethanol FR5, food FR5-alternating across the 30-min session). Ethanol consumption was then reduced for 1 or 16 sessions either by suspending training (rats remained in home cage) or by providing alternative reinforcement (only Component 2 stimuli and contingencies were presented throughout the session). In the next session, stimuli associated with Component 1 were presented and responses recorded but ethanol and food were never delivered. Two test conditions were studied: fixed-ratio completion either produced ethanol- or food-associated stimuli (signaled) or had no programmed consequence (unsignaled). Incubation of ethanol responding was observed only after suspended training during signaled test sessions. Incubation of food responding was also observed after suspended training. These results are most consistent with incubation resulting from a degradation of feedback functions limiting extinction responding, rather than from increased motivation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition.

    PubMed

    Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong

    2017-05-01

    The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has <50% sulfide removal with no elemental sulfur transformation. Under micro-aerobic condition to remove <5% sulfide by chemical oxidation pathway, 100% sulfide removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of sublethal concentrations of silver nanoparticles on Escherichia coli and Bacillus subtilis under aerobic and anaerobic conditions.

    PubMed

    Garuglieri, Elisa; Cattò, Cristina; Villa, Federica; Zanchi, Raffaella; Cappitelli, Francesca

    2016-12-16

    The present work is aimed at comparing the effects of sublethal concentrations of silver nanoparticles (AgNPs) on the growth kinetic, adhesion ability, oxidative stress, and phenotypic changes of model bacteria (Escherichia coli and Bacillus subtilis) under both aerobic and anaerobic conditions. Growth kinetic tests conducted in 96-well microtiter plates revealed that sublethal concentrations of AgNPs do not affect E. coli growth, whereas 1 μg/ml AgNPs increased B. subtilis growth rate under aerobic conditions. At the same concentration, AgNPs promoted B. subtilis adhesion, while it discouraged E. coli attachment to the surface in the presence of oxygen. As determined by 2,7-dichlorofluorescein-diacetate assays, AgNPs increased the formation of intracellular reactive oxygen species, but not at the highest concentrations, suggesting the activation of scavenging systems. Finally, motility assays revealed that 0.01 and 1 μg/ml AgNPs, respectively, promoted surface movement in E. coli and B. subtilis under aerobic and anaerobic conditions. The results demonstrate that E. coli and B. subtilis react differently from AgNPs over a wide range of sublethal concentrations examined under both aerobic and anaerobic conditions. These findings will help elucidate the behavior and impact of engineered nanoparticles on microbial ecosystems.

  14. Impact of changing wind conditions on foraging and incubation success in male and female wandering albatrosses.

    PubMed

    Cornioley, Tina; Börger, Luca; Ozgul, Arpat; Weimerskirch, Henri

    2016-09-01

    Wind is an important climatic factor for flying animals as by affecting their locomotion, it can deeply impact their life-history characteristics. In the context of globally changing wind patterns, we investigated the mechanisms underlying recently reported increase in body mass of a population of wandering albatrosses (Diomedea exulans) with increasing wind speed over time. We built a foraging model detailing the effects of wind on movement statistics and ultimately on mass gained by the forager and mass lost by the incubating partner. We then simulated the body mass of incubating pairs under varying wind scenarios. We tracked the frequency at which critical mass leading to nest abandonment was reached to assess incubation success. We found that wandering albatrosses behave as time minimizers during incubation as mass gain was independent of any movement statistics but decreased with increasing mass at departure. Individuals forage until their energy requirements, which are determined by their body conditions, are fulfilled. This can come at the cost of their partner's condition as mass loss of the incubating partner depended on trip duration. This behaviour is consistent with strategies of long-lived species which favoured their own survival over their current reproductive attempt. In addition, wind speed increased ground speed which in turn reduced trip duration and males foraged further away than females at high ground speed. Contrasted against an independent data set, the simulation performed satisfactorily for males but less so for females under current wind conditions. The simulation predicted an increase in male body mass growth rate with increasing wind speed, whereas females' rate decreased. This trend may provide an explanation for the observed increase in mass of males but not of females. Conversely, the simulation predicted very few nest abandonments, which is in line with the high breeding success of this species and is contrary to the hypothesis that

  15. Assessment of the endogenous respiration rate and the observed biomass yield for methanol-fed denitrifying bacteria under anoxic and aerobic conditions.

    PubMed

    Alikhani, Jamal; Al-Omari, Ahmed; De Clippeleir, Haydee; Murthy, Sudhir; Takacs, Imre; Massoudieh, Arash

    2017-01-01

    In this study, the endogenous respiration rate and the observed biomass yield of denitrifying methylotrophic biomass were estimated through measuring changes in denitrification rates (DNR) as a result of maintaining the biomass under methanol deprived conditions. For this purpose, activated sludge biomass from a full-scale wastewater treatment plant was kept in 10-L batch reactors for 8 days under fully aerobic and anoxic conditions at 20 °C without methanol addition. To investigate temperature effects, another biomass sample was placed under starvation conditions over a period of 10 days under aerobic conditions at 25 °C. A series of secondary batch tests were conducted to measure DNR and observed biomass yields. The decline in DNR over the starvation period was used as a surrogate to biomass decay rate in order to infer the endogenous respiration rates of the methylotrophs. The regression analysis on the declining DNR data shows 95% confidence intervals of 0.130 ± 0.017 day -1 for endogenous respiration rate under aerobic conditions at 20 °C, 0.102 ± 0.013 day -1 under anoxic conditions at 20 °C, and 0.214 ± 0.044 day -1 under aerobic conditions at 25 °C. Results indicated that the endogenous respiration rate of methylotrophs is 20% slower under anoxic conditions than under aerobic conditions, and there is a significant temperature dependency, with an Arrhenius coefficient of 1.10. The observed biomass yield value showed an increasing trend from approximately 0.2 to 0.6 when the starvation time increased from 0 to 10 days.

  16. Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state condition.

    PubMed

    Gong, H; Pishgar, R; Tay, J H

    2018-04-27

    Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANNs), computational tools capable of describing complex non-linear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (Model I) and total nitrogen removal efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60%, 20%, and 20%, and 80%, 10%, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R 2 ) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modelling the performance of aerobic granular reactors. R 2 value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56, respectively, after applying the new data division methods. The results demonstrated that ANN-based models were capable simulation approach to predict a complicated process like aerobic granulation.

  17. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  18. Role of biotransformation, sorption and mineralization of (14)C-labelled sulfamethoxazole under different redox conditions.

    PubMed

    Alvarino, T; Nastold, P; Suarez, S; Omil, F; Corvini, P F X; Bouju, H

    2016-01-15

    (14)C-sulfamethoxazole biotransformation, sorption and mineralization was studied with heterotrophic and autotrophic biomass under aerobic and anoxic conditions, as well as with anaerobic biomass. The (14)C-radiolabelled residues distribution in the solid, liquid and gas phases was closely monitored along a total incubation time of 190 h. Biotransformation was the main removal mechanism, mineralization and sorption remaining below 5% in all the cases, although the presence of a carbon source exerted a positive effect on the mineralization rate by the aerobic heterotrophic bacteria. In fact, an influence of the type of primary substrate and the redox potential was observed in all cases on the biotransformation and mineralization rates, since an enhancement of the removal rate was observed when an external carbon source was used as a primary substrate under aerobic conditions, while a negligible effect was observed under nitrifying conditions. In the liquid phases collected from all assays, up to three additional peaks corresponding to (14)C-radiolabelled residues were detected. The highest concentration was observed under anaerobic conditions, where two radioactive metabolites were detected representing each around 15% of the total applied radioactivity after 180 h incubation. One of the metabolites detected under anoxic and anaerobic conditions, is probably resulting from ring cleavage of the isoxazole ring. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Biodegradation of NSO-compounds under different redox-conditions

    NASA Astrophysics Data System (ADS)

    Dyreborg, S.; Arvin, E.; Broholm, K.

    1997-03-01

    Laboratory experiments were carried out to investigate the potential of groundwater microorganisms to degrade selected heterocyclic aromatic compounds containing nitrogen, sulphur, or oxygen (NSO-compounds) under four redox-conditions over a period of 846 days. Eight compounds (pyrrole, 1-methylpyrrole, quinoline, indole, carbazole, dibenzothiophene, benzofuran, and dibenzofuran) were degraded under aerobic conditions, whereas thiophene and benzothiophene were degraded only when other compounds were degraded concomitantly. Quinoline and indole were the only two NSO-compounds degraded under anaerobic conditions, even though the microorganisms present in the anaerobic microcosms were active throughout the incubation period. A high variability in the lag period among the NSO-compounds was observed under aerobic conditions. While quinoline, indole, and carbazole were degraded with a lag period of 3-25 days, the lag periods for pyrrole, dibenzothiophene, benzofuran, and dibenzofuran were significantly longer (29-278 days). Under anaerobic conditions, lag periods of 100-300 days were observed. Differences in the degradation rate among the compounds were also observed. Indole, quinoline, carbazole, and benzofuran were quickly degraded in the aerobic microcosms, whereas a slow degradation of dibenzothiophene and dibenzofuran was observed. Pyrrole and 1-methylpyrrole were slowly degraded and 1-methylpyrrole was not completely removed within the 846 days. The anaerobic degradation rate was significantly slower than the aerobic degradation rate. The degradation rate under sulphate-reducing conditions was higher than under denitrifying and methanogenic conditions, though after re-addition of a compound a quick removal was observed. The persistence of many NSO-compounds under anaerobic conditions together with the long lag periods and the low degradation rates under aerobic conditions suggest that NSO-compounds might persist in groundwater at creosote-contaminated sites.

  20. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    PubMed

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils.

  1. Anaerobic growth of Candida albicans does not support biofilm formation under similar conditions used for aerobic biofilm.

    PubMed

    Biswas, Swarajit K; Chaffin, W LaJean

    2005-08-01

    C. albicans is an opportunistic fungus causing life-threatening systemic infections particularly in immunocompromised individuals. The organism is a commensal in humans and grows either aerobically, e.g., the oral cavity, or anaerobically, e.g., the gut. We studied anaerobic growth of C. albicans in a defined yeast nitrogen base dextrose medium after adaptation and subculturing in an anaerobic chamber. At 37 degrees C in suspension culture, much slower growth was observed anaerobically with a generation time of 248 min compared to 98 min for aerobic growth. Although the organism grew well on solid medium, shaking increased the growth rate in suspension culture at 37 degrees C. Growth was enhanced at acidic pH compared to neutral or alkaline pH. Cells grown anaerobically produced hyphae, but did not produce biofilm on plastic surface or denture acrylic under either static conditions or with mild shaking, conditions that support aerobic biofilm formation.

  2. Effect of Aerobic Priming on the Response of Echinochloa crus-pavonis to Anaerobic Stress (Protein Synthesis and Phosphorylation).

    PubMed Central

    Zhang, F.; Lin, J. J.; Fox, T. C.; Mujer, C. V.; Rumpho, M. E.; Kennedy, R. A.

    1994-01-01

    Echinochloa species differ in their ability to germinate and grow in the absence of oxygen. Seeds of Echinochloa crus-pavonis (H.B.K.) Schult do not germinate under anoxia but remain viable for extended periods (at least 30 d) when incubated in an anaerobic environment. E. crus-pavonis can be induced to germinate and grow in an anaerobic environment if the seeds are first subjected to a short (1-18 h) exposure to aerobic conditions (aerobic priming). Changes in polypeptide patterns (constitutive and de novo synthesized) and protein phosphorylation induced by aerobic priming were investigated. In the absence of aerobic priming protein degradation was not evident under anaerobic conditions, although synthesis of a 20-kD polypeptide was induced. During aerobic priming, however, synthesis of 37- and 55-kD polypeptides was induced and persisted upon return of the seeds to anoxia. Furthermore, phosphorylation of two 18-kD polypeptides was observed only in those seeds that were labeled with 32PO4 during the aerobic priming period. Subsequent chasing in an anaerobic environment resulted in a decrease in phosphorylation of these polypeptides. Likewise, phosphorylation of the 18-kD polypeptides was not observed if the seeds were labeled in an anaerobic atmosphere. These results suggest that the regulated induction of the 20-, 37-, and 55- kD polypeptides may be important for anaerobic germination and growth of E. crus-pavonis and that the specific phosphorylation of the 18-kD polypeptides may be a factor in regulating this induction. PMID:12232272

  3. Modeling the growth of Salmonella in raw poultry stored under aerobic conditions.

    PubMed

    Dominguez, Silvia A; Schaffner, Donald W

    2008-12-01

    The presence of Salmonella in raw poultry is a well-recognized risk factor for foodborne illness. The objective of this study was to develop and validate a mathematical model that predicts the growth of Salmonella in raw poultry stored under aerobic conditions at a variety of temperatures. One hundred twelve Salmonella growth rates were extracted from 12 previously published studies. These growth rates were used to develop a square-root model relating the growth rate of Salmonella to storage temperature. Model predictions were compared to growth rate measurements collected in our laboratory for four poultry-specific Salmonella strains (two antibiotic-resistant and two nonresistant strains) inoculated onto raw chicken tenderloins. Chicken was inoculated at two levels (10(3) CFU/cm2 and < or = 10 CFU/cm2) and incubated at temperatures ranging from 10 to 37 degrees C. Visual inspection of the data, bias and accuracy factors, and comparison with two other published models were used to analyze the performance of the new model. Neither antibiotic resistance nor inoculum size affected Salmonella growth rates. The presence of spoilage microflora did not appear to slow the growth of Salmonella. Our model provided intermediate predicted growth rates when compared with the two other published models. Our model predicted slightly faster growth rates than those observed in inoculated chicken in the temperature range of 10 to 28 degrees C but slightly slower growth rates than those observed between 30 and 37 degrees C. Slightly negative bias factors were obtained in every case (-5 to -3%); however, application of the model may be considered fail-safe for storage temperatures below 28 degrees C.

  4. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material.

    PubMed

    Bruhn, D; Mikkelsen, T N; Obro, J; Willats, W G T; Ambus, P

    2009-11-01

    This study examines the effects of different irradiance types on aerobic methane (CH(4)) efflux rates from terrestrial plant material. Furthermore, the role of the enzyme pectin methyl esterase (PME) on CH(4) efflux potential was also examined. Different types of plant tissue and purified pectin were incubated in glass vials with different combinations of irradiation and/or temperature. Purified dry pectin was incubated in solution, and with or without PME. Before and after incubation, the concentration of CH(4) was measured with a gas chromatograph. Rates of CH(4) emission were found to depend exponentially on temperature and linearly on UV-B irradiance. UV-B had a greater stimulating effect than UV-A, while visible light had no effect on emission rates. PME was found to substantially reduce the potential for aerobic CH(4) emissions upon demethylation of pectin.

  5. Devitalization of bacterial and parasitic germs in sewage sludge during aerobic digestion under laboratory conditions.

    PubMed

    Juris, P; Plachý, P; Lauková, A

    1995-05-01

    The survival of 8 bacterial species (Pseudomonas sp., Salmonella sp., Enterobacteriae, Streptococcus sp., Escherichia coli) was detected in municipal sewage sludge up to 37 hours of mesophilic aerobic digestion under laboratory conditions. The model strain Enterococcus faecium CCM 4231 survived almost twice as long as the above-mentioned isolates. Similar findings, regarding the viability of the microorganisms studied, were also determined during thermophilic aerobic digestion of municipal sewage sludges. The final reduction in the total count of bacteria was not directly dependent on the temperature during aerobic digestion. It may be supposed that E. faecium CCM 4231 strain as a bacteriocin-producing strain with a broad antimicrobial spectrum, inoculated into the sludges, could inhibit the growth of microorganisms in the sludges by the way of its bacteriocin activity. Studying the effect of aerobic digestion on the viability of helminth eggs, the observed negative effect of higher temperatures was more expressive in comparison with bacterial strains. During thermophilic digestion process all helminth eggs (Ascaris suum, Toxocara canis) were devitalized. All eggs of T. canis were killed in experiments under mesophilic temperature. However, 32% of nonembryonated A. suum eggs remained viable.

  6. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  7. Metabolite profiling of microfluidic cell culture conditions for droplet based screening.

    PubMed

    Bjork, Sara M; Sjostrom, Staffan L; Andersson-Svahn, Helene; Joensson, Haakan N

    2015-07-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format.

  8. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Wang, Xinming; Li, Dejun; Yi, Zhigang

    2010-12-01

    Food wastes collected from typical urban residential communities were investigated for the emission of volatile organic sulfur compounds (VOSCs) during laboratory-controlled aerobic decomposition in an incubator for a period of 41 days. Emission of VOSCs from the food wastes totaled 409.9 mg kg -1 (dry weight), and dimethyl disulfide (DMDS), dimethyl sulfide (DMS), methyl 2-propenyl disulfide, carbonyl sulfide and methyl 1-propenyl sulfide were the five most abundant VOSCs, with shares of 75.5%, 13.5%, 4.8%, 2.2% and 1.3% in total 15 VOSCs released, respectively. The emission fluxes of major VOSCs were very low at the beginning (day 0). They peaked at days 2-4 and then decreased sharply until they leveled off after 10 days of incubation. For most VOSCs, over 95% of their emission occurred in the first 10 days. The time series of VOSC emission fluxes, as well as their significant correlation with internal food waste temperature ( p < 0.05) during incubation, suggested that production of VOSC species was induced mainly by microbial activities during the aerobic decomposition instead of as inherited. Released VOSCs accounted for 5.3% of sulfur content in the food wastes, implying that during aerobic decomposition considerable portion of sulfur in food wastes would be released into the atmosphere as VOSCs, primarily as DMDS, which is very short-lived in the atmosphere and thus usually less considered in the sources and sinks of reduced sulfur gases.

  9. Nitrate reductase and nitrous oxide production by Fusarium oxysporum 11dn1 under aerobic and anaerobic conditions.

    PubMed

    Kurakov, A V; Nosikov, A N; Skrynnikova, E V; L'vov, N P

    2000-08-01

    The fungus Fusarium oxysporum 11dn1 was found to be able to grow and produce nitrous oxide on nitrate-containing medium in anaerobic conditions. The rate of nitrous oxide formation was three to six orders of magnitude lower than the rates of molecular nitrogen production by common denitrifying bacteria. Acetylene and ammonia did not affect the release of nitrous oxide release. It was shown that under anaerobic conditions fast increase of nitrate reductase activity occurred, caused by the synthesis of enzyme de novo and protein dephosphorylation. Reverse transfer of the mycelium to aerobic conditions led to a decline in nitrate reductase activity and stopped nitrous oxide production. The presence of two nitrate reductases was shown, which differed in molecular mass, location, temperature optima, and activity in nitrate- and ammonium-containing media. Two enzymes represent assimilatory and dissimilatory nitrate reductases, which are active in aerobic and anaerobic conditions, respectively.

  10. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica.

    PubMed

    Tahon, Guillaume; Willems, Anne

    2017-09-01

    This study investigated the culturable aerobic phototrophic bacteria present in soil samples collected in the proximity of the Belgian Princess Elisabeth Station in the Sør Rondane Mountains, East Antarctica. Until recently, only oxygenic phototrophic bacteria (Cyanobacteria) were well known from Antarctic soils. However, more recent non-cultivation-based studies have demonstrated the presence of anoxygenic phototrophs and, particularly, aerobic anoxygenic phototrophic bacteria in these areas. Approximately 1000 isolates obtained after prolonged incubation under different growth conditions were studied and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Representative strains were identified by sequence analysis of 16S rRNA genes. More than half of the isolates grouped among known aerobic anoxygenic phototrophic taxa, particularly with Sphingomonadaceae, Methylobacterium and Brevundimonas. In addition, a total of 330 isolates were tested for the presence of key phototrophy genes. While rhodopsin genes were not detected, multiple isolates possessed key genes of the bacteriochlorophyll synthesis pathway. The majority of these potential aerobic anoxygenic phototrophic strains grouped with Alphaproteobacteria (Sphingomonas, Methylobacterium, Brevundimonas and Polymorphobacter). Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. Biodegradation of methyl t-butyl ether by aerobic granules under a cosubstrate condition.

    PubMed

    Zhang, L L; Chen, J M; Fang, F

    2008-03-01

    Aerobic granules efficient at degrading methyl tert-butyl ether (MTBE) with ethanol as a cosubstrate were successfully developed in a well-mixed sequencing batch reactor (SBR). Aerobic granules were first observed about 100 days after reactor startup. Treatment efficiency of MTBE in the reactor during stable operation exceeded 99.9%, and effluent MTBE was in the range of 15-50 microg/L. The specific MTBE degradation rate was observed to increase with increasing MTBE initial concentration from 25 to 500 mg/L, which peaked at 22.7 mg MTBE/g (volatile suspended solids).h and declined with further increases in MTBE concentration as substrate inhibition effects became significant. Microbial-community deoxyribonucleic acid profiling was carried out using denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16S ribosomal ribonucleic acid. The reactor was found to be inhabited by several diverse bacterial species, most notably microorganisms related to the genera Sphingomonas, Methylobacterium, and Hyphomicrobium vulgare. These organisms were previously reported to be associated with MTBE biodegradation. A majority of the bands in the reactor represented a group of organisms belonging to the Flavobacteria-Proteobacteria-Actinobacteridae class of bacteria. This study demonstrates that MTBE can be effectively degraded by aerobic granules under a cosubstrate condition and gives insight into the microorganisms potentially involved in the process.

  12. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    PubMed

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Degradation of toxaphene in water during anaerobic and aerobic conditions.

    PubMed

    LacayoR, M; van Bavel, B; Mattiasson, B

    2004-08-01

    The degradation of technical toxaphene in water with two kinds of bioreactors operating in sequence was studied. One packed bed reactor was filled with Poraver (foam glass particles) running at anaerobic conditions and one suspended carrier biofilm reactor working aerobically. Chemical oxygen demand (COD), chloride, sulphate, pH, dissolved oxygen, total toxaphene and specific toxaphene isomers were measured. After 6 weeks approx. 87% of the total toxaphene was degraded reaching 98% by week 39. The majority of the conversion took place in the anaerobic reactor. The concentrations of toxaphene isomers with more chlorine substituents decreased more rapidly than for isomers with less chlorine substituents.

  14. Electrolysis of trichloromethylated organic compounds under aerobic conditions catalyzed by the B12 model complex for ester and amide formation.

    PubMed

    Shimakoshi, Hisashi; Luo, Zhongli; Inaba, Takuya; Hisaeda, Yoshio

    2016-06-21

    The electrolysis of benzotrichloride at -0.9 V vs. Ag/AgCl in the presence of the B12 model complex, heptamethyl cobyrinate perchlorate, in ethanol under aerobic conditions using an undivided cell equipped with a platinum mesh cathode and a zinc plate anode produced ethylbenzoate in 56% yield with 92% selectivity. The corresponding esters were obtained when the electrolysis was carried out in various alcohols such as methanol, n-propanol, and i-propanol. Benzoyl chloride was detected by GC-MS during the electrolysis as an intermediate for the ester formation. When the electrolysis was carried out under anaerobic conditions, partially dechlorinated products, 1,1,2,2-tetrachloro-1,2-diphenylethane and 1,2-dichlorostilibenes (E and Z forms), were obtained instead of an ester. ESR spin-trapping experiments using 5,5,-dimethylpyrroline N-oxide (DMPO) revealed that the corresponding oxygen-centered radical and carbon-centered radical were steadily generated during the electrolyses under aerobic and anaerobic conditions, respectively. Applications of the aerobic electrolysis to various organic halides, such as substituted benzotrichlorides, are described. Furthermore, the formation of amides with moderate yields by the aerobic electrolysis of benzotrichloride catalyzed by the B12 model complex in the presence of amines in acetonitrile is reported.

  15. Arsenic release from Floridan Aquifer rock during incubations simulating aquifer storage and recovery operations.

    PubMed

    Jin, Jin; Zimmerman, Andrew R; Norton, Stuart B; Annable, Michael D; Harris, Willie G

    2016-05-01

    While aquifer storage and recovery (ASR) is becoming widely accepted as a way to address water supply shortages, there are concerns that it may lead to release of harmful trace elements such as arsenic (As). Thus, mechanisms of As release from limestone during ASR operations were investigated using 110-day laboratory incubations of core material collected from the Floridan Aquifer, with treatment additions of labile or refractory dissolved organic matter (DOM) or microbes. During the first experimental phase, core materials were equilibrated with native groundwater lacking in DO to simulate initial non-perturbed anaerobic aquifer conditions. Then, ASR was simulated by replacing the native groundwater in the incubations vessels with DO-rich ASR source water, with DOM or microbes added to some treatments. Finally, the vessels were opened to the atmosphere to mimic oxidizing conditions during later stages of ASR. Arsenic was released from aquifer materials, mainly during transitional periods at the beginning of each incubation stage. Most As released was during the initial anaerobic experimental phase via reductive dissolution of Fe oxides in the core materials, some or all of which may have formed during the core storage or sample preparation period. Oxidation of As-bearing Fe sulfides released smaller amounts of As during the start of later aerobic experimental phases. Additions of labile DOM fueled microbially-mediated reactions that mobilized As, while the addition of refractory DOM did not, probably due to mineral sorption of DOM that made it unavailable for microbial utilization or metal chelation. The results suggest that oscillations of groundwater redox conditions, such as might be expected to occur during an ASR operation, are the underlying cause of enhanced As release in these systems. Further, ASR operations using DOM-rich surface waters may not necessarily lead to additional As releases. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions

    PubMed Central

    Willumeit, Regine; Möhring, Anneke; Feyerabend, Frank

    2014-01-01

    Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture. PMID:24857908

  17. Optimization of cell adhesion on mg based implant materials by pre-incubation under cell culture conditions.

    PubMed

    Willumeit, Regine; Möhring, Anneke; Feyerabend, Frank

    2014-05-05

    Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.

  18. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  19. Assessing effects of aerobic and anaerobic conditions on phosphorus sorption and retention capacity of water treatment residuals.

    PubMed

    Oliver, Ian W; Grant, Cameron D; Murray, Robert S

    2011-03-01

    Water treatment residuals (WTRs) are the by-products of drinking water clarification processes, whereby chemical flocculants such as alum or ferric chloride are added to raw water to remove suspended clay particles, organic matter and other materials and impurities. Previous studies have identified a strong phosphorus (P) fixing capacity of WTRs which has led to experimentation with their use as P-sorbing materials for controlling P discharges from agricultural and forestry land. However, the P-fixing capacity of WTRs and its capacity to retain sorbed P under anaerobic conditions have yet to be fully demonstrated, which is an issue that must be addressed for WTR field applications. This study therefore examined the capacity of WTRs to retain sorbed P and sorb further additional P from aqueous solution under both aerobic and anaerobic conditions. An innovative, low cost apparatus was constructed and successfully used to rapidly establish anoxic conditions in anaerobic treatments. The results showed that even in treatments with initial solution P concentrations set at 100 mg l(-1), soluble reactive P concentrations rapidly fell to negligible levels (due to sorption by WTRs), while total P (i.e. dissolved + particulate and colloidal P) was less than 3 mg l(-1). This equated to an added P retention rate of >98% regardless of anaerobic or aerobic status, indicating that WTRs are able to sorb and retain P in both aerobic and anaerobic conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions

    PubMed Central

    Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile

    2016-01-01

    Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection. PMID:27790195

  1. All three quinone species play distinct roles in ensuring optimal growth under aerobic and fermentative conditions in E. coli K12

    PubMed Central

    Nitzschke, Annika

    2018-01-01

    The electron transport chain of E. coli contains three different quinone species, ubiquinone (UQ), menaquinone (MK) and demethylmenaquinone (DMK). The content and ratio of the different quinone species vary depending on the external conditions. To study the function of the different quinone species in more detail, strains with deletions preventing UQ synthesis, as well as MK and/or DMK synthesis were cultured under aerobic and anaerobic conditions. The strains were characterized with respect to growth and product synthesis. As quinones are also involved in the control of ArcB/A activity, we analyzed the phosphorylation state of the response regulator as well as the expression of selected genes.The data show reduced aerobic growth coupled to lactate production in the mutants defective in ubiquinone synthesis. This confirms the current assumption that ubiquinone is the main quinone under aerobic growth conditions. In the UQ mutant strains the amount of MK and DMK is significantly elevated. The strain synthesizing only DMK is less affected in growth than the strain synthesizing MK as well as DMK. An inhibitory effect of MK on aerobic growth due to increased oxidative stress is postulated.Under fermentative growth conditions the mutant synthesizing only UQ is severely impaired in growth. Obviously, UQ is not able to replace MK and DMK during anaerobic growth. Mutations affecting quinone synthesis have an impact on ArcA phosphorylation only under anaerobic conditions. ArcA phosphorylation is reduced in strains synthesizing only MK or MK plus DMK. PMID:29614086

  2. Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor.

    PubMed

    Yu, Hao; Chen, Chuan; Ma, Jincai; Xu, Xijun; Fan, Ronggui; Wang, Aijie

    2014-05-01

    Limited oxygen supply to anaerobic wastewater treatment systems had been demonstrated as an effective strategy to improve elemental sulfur (S(0)) recovery, coupling sulfate reduction and sulfide oxidation. However, little is known about the impact of dissolved oxygen (DO) on the microbial functional structures in these systems. We used a high throughput tool (GeoChip) to evaluate the microbial community structures in a biological desulfurization reactor under micro-aerobic conditions (DO: 0.02-0.33 mg/L). The results indicated that the microbial community functional compositions and structures were dramatically altered with elevated DO levels. The abundances of dsrA/B genes involved in sulfate reduction processes significantly decreased (p < 0.05, LSD test) at relatively high DO concentration (DO: 0.33 mg/L). The abundances of sox and fccA/B genes involved in sulfur/sulfide oxidation processes significantly increased (p < 0.05, LSD test) in low DO concentration conditions (DO: 0.09 mg/L) and then gradually decreased with continuously elevated DO levels. Their abundances coincided with the change of sulfate removal efficiencies and elemental sulfur (S(0)) conversion efficiencies in the bioreactor. In addition, the abundance of carbon degradation genes increased with the raising of DO levels, showing that the heterotrophic microorganisms (e.g., fermentative microorganisms) were thriving under micro-aerobic condition. This study provides new insights into the impacts of micro-aerobic conditions on the microbial functional structure of sulfate-reducing sulfur-producing bioreactors, and revealed the potential linkage between functional microbial communities and reactor performance. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. The Bactec FX Blood Culture System Detects Brucella melitensis Bacteremia in Adult Patients within the Routine 1-Week Incubation Period.

    PubMed

    Sagi, Moshe; Nesher, Lior; Yagupsky, Pablo

    2017-03-01

    The performance of the Bactec FX blood culture system for detecting Brucella bacteremia within the routine 1-week incubation period was assessed in a prospective study conducted in an area in southern Israel in which Brucella melitensis is endemic. Aerobic vials (BD Bactec Plus Aerobic/F medium) inoculated with blood specimens obtained from adult patients with positive Rose-Bengal screening test results were monitored for 4 consecutive weeks, and blind subcultures of negative vials were performed on solid media on days 7 and 28. During a 16-month period, a total of 31 (35.2%) of 88 cultures, obtained from 19 (38.0%) of 50 patients, were positive for Brucella melitensis The blood culture instrument identified 30 (96.8%) of 31 positive vials within 7 days of incubation; the single positive vial that was missed by the automated readings was detected only by the blind subculture performed on day 28. It is concluded that the Bactec FX system is able to detect the vast majority of episodes of Brucella bacteremia within the 1-week incubation protocol instituted in most clinical microbiology laboratories and without the need to perform blind subcultures of negative vials, enabling early diagnosis and saving labor and incubation time and space. Copyright © 2017 American Society for Microbiology.

  4. Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup.

    PubMed

    Wan, Chunli; Sun, Supu; Lee, Duu-Jong; Liu, Xiang; Wang, Li; Yang, Xue; Pan, Xiangliang

    2013-08-01

    This study applied a novel strategy to rapid startup of partial nitrification in continuous-flow reactor using aerobic granules. Mature aerobic granules were first cultivated in a sequencing batch reactor at high chemical oxygen demand in 16 days. The strains including the Pseudoxanthomonas mexicana strain were enriched in cultivated granules to enhance their structural stability. Then the cultivated granules were incubated in a continuous-flow reactor with influent chemical oxygen deamnad being stepped decreased from 1,500 ± 100 (0-19 days) to 750 ± 50 (20-30 days), and then to 350 ± 50 mg l(-1) (31-50 days); while in the final stage 350 mg l(-1) bicarbonate was also supplied. Using this strategy the ammonia-oxidizing bacterium, Nitrosomonas europaea, was enriched in the incubated granules to achieve partial nitrification efficiency of 85-90% since 36 days and onwards. The partial nitrification granules were successfully harvested after 52 days, a period much shorter than those reported in literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Transcriptome and metabolome responses of Shewanella oneidensis MR-1 to methyl orange under microaerophilic and aerobic conditions.

    PubMed

    Cao, Xinhua; Qi, Yueling; Xu, Chen; Yang, Yuyi; Wang, Jun

    2017-04-01

    Shewanella oneidensis MR-1 degrades various azo dyes under microaerophilic and anaerobic conditions, but this process is inhibited under aerobic conditions. The mechanisms underlying azo dye biodegradation and inhibition remain unknown. Therefore, we investigated metabolic and transcriptional changes in strain MR-1, which was cultured under different conditions, to elucidate these mechanisms. At the transcriptional level, genes involved in certain metabolic processes, particularly the tricarboxylic acid (TCA) cycle, amino acid biodegradation, and the electron transfer system, were significantly altered (M ≧ 2, p > 0.8 ) in the presence of methyl orange (MO). Moreover, a high concentration of dissolved oxygen heavily impacted the expression levels of genes involved in fatty acid biodegradation. Metabolome analysis revealed significant alteration (p < 0.05) in the concentrations of nine metabolites when strain MR-1 was cultured under aerobic conditions; the majority of these metabolites were closely associated with amino acid metabolism and DNA replication. Accordingly, we propose a possible pathway for MO biodegradation and discuss the most likely causes of biodegradation inhibition due to dissolved oxygen.

  6. Aerobic Microbial Respiration in Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Schunck, Harald; Loescher, Carolin; Desai, Dhwani K.; LaRoche, Julie; Schmitz-Streit, Ruth; Kuypers, Marcel M. M.

    2014-05-01

    In the oxygen minimum zones (OMZs) of the tropical oceans, sluggish ventilation combined with strong microbial respiration of sinking organic matter results in the depletion of oxygen (O2). When O2 concentrations drop below ~5 µmol/L, organic matter is generally assumed to be respired with nitrate, ultimately leading to the loss of fixed inorganic nitrogen via anammox and denitrification. However, direct measurements of microbial O2 consumption at low O2 levels are - apart from a single experiment conducted in the OMZ off Peru - so far lacking. At the same time, consistently observed active aerobic ammonium and nitrite oxidation at non-detectable O2 concentrations (<1 µmol/L) in all major OMZs, suggests aerobic microorganisms, likely including heterotrophs, to be well adapted to near-anoxic conditions. Consequently, microaerobic (≤5 µmol/L) remineralization of organic matter, and thus release of ammonium, in low- O2 environments might be significantly underestimated at present. Here we present extensive measurements of microbial O2 consumption in OMZ waters, combined with highly sensitive O2 (STOX) measurements and meta-omic functional gene analyses. Short-term incubation experiments with labelled O2 (18-18O2) carried out in the Namibian and Peruvian OMZ, revealed persistent aerobic microbial activity at depths with non-detectable concentrations of O2 (≤50 nmol/L). In accordance, examination of metagenomes and metatranscriptomes from Chilean and Peruvian OMZ waters identified genes encoding for terminal respiratory oxidases with high O2 affinities as well as their expression by diverse microbial communities. Oxygen consumption was particularly enhanced near the upper OMZ boundaries and could mostly (~80%) be assigned to heterotrophic microbial activity. Compared to previously identified anaerobic microbial processes, microaerobic organic matter respiration was the dominant remineralization pathway and source of ammonium (~90%) in the upper Namibian and

  7. Examining the effect of altered redox conditions on deep soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Gabriel, C.; Kellman, L. M.; Ziegler, S. E.

    2013-12-01

    Since subsoil horizons contribute significantly to terrestrial carbon (C) budgets, understanding the influence of disturbances such as forest harvesting on subsoil C stability is critical. Clearcut harvesting leads to changes in the soil physico-chemical environment, including altering redox conditions arising from changes in soil hydrology that increase soil saturation, soil temperature, and pH. These physico-chemical changes have the potential to alter the adsorption of soil organic matter (SOM) to minerals, particularly at depth where SOM is primarily associated with mineral phases. The objective of this study was to determine the effect of differing redox states (aerobic vs. anaerobic) and temperature upon SOM stability of forested soils representative of the Acadian Forest Region of Eastern North America. Composite soil samples through depth (0-10, 10-20, 20-35, and 35-50 cm) from a mature red spruce forest (110 years) were incubated under optimum (aerobic) or saturated (anaerobic) conditions for 1 or 4 months at two temperatures (5 and 15 C). Following incubation, soil leachate was analyzed for dissolved organic carbon (DOC), and UV-vis absorbance in order to determine soil C losses and its optical character. Specific UV-vis absorbance SUVA (254 nm) and spectral slope ratios were calculated in order to assess the composition of chromophoric dissolved organic matter (CDOM). Preliminary results from the 1 month incubation indicate that under anaerobic conditions, all depths released DOC with a higher SUVA than under aerobic conditions, with the largest change observed in the 0-10 cm depth increment. Soil incubated at 5 C produced leachate with significantly less DOC and with a lower absorbance compared to 15 C under both redox conditions. These results suggest that both temperature and redox state are important in determining the aromaticity of DOC released from soils. Spectral slope ratios revealed that a greater proportion of CDOM of lower molecular weight

  8. Meta-analysis: aerobic exercise for the treatment of anxiety disorders.

    PubMed

    Bartley, Christine A; Hay, Madeleine; Bloch, Michael H

    2013-08-01

    This meta-analysis investigates the efficacy of exercise as a treatment for DSM-IV diagnosed anxiety disorders. We searched PubMED and PsycINFO for randomized, controlled trials comparing the anxiolytic effects of aerobic exercise to other treatment conditions for DSM-IV defined anxiety disorders. Seven trials were included in the final analysis, totaling 407 subjects. The control conditions included non-aerobic exercise, waitlist/placebo, cognitive-behavioral therapy, psychoeducation and meditation. A fixed-effects model was used to calculate the standardized mean difference of change in anxiety rating scale scores of aerobic exercise compared to control conditions. Subgroup analyses were performed to examine the effects of (1) comparison condition; (2) whether comparison condition controlled for time spent exercising and (3) diagnostic indication. Aerobic exercise demonstrated no significant effect for the treatment of anxiety disorders (SMD=0.02 (95%CI: -0.20-0.24), z = 0.2, p = 0.85). There was significant heterogeneity between trials (χ(2) test for heterogeneity = 22.7, df = 6, p = 0.001). The reported effect size of aerobic exercise was highly influenced by the type of control condition. Trials utilizing waitlist/placebo controls and trials that did not control for exercise time reported large effects of aerobic exercise while other trials report no effect of aerobic exercise. Current evidence does not support the use of aerobic exercise as an effective treatment for anxiety disorders as compared to the control conditions. This remains true when controlling for length of exercise sessions and type of anxiety disorder. Future studies evaluating the efficacy of aerobic exercise should employ larger sample sizes and utilize comparison interventions that control for exercise time. Copyright © 2013. Published by Elsevier Inc.

  9. Effect of irrigation water salinity on the organic carbon mineralization in soil (laboratory incubation)

    NASA Astrophysics Data System (ADS)

    Mancer, Halima; Bouhoun, Mustapha Daddi

    2018-05-01

    In a laboratory study, the impact of salts on mineralization of organic carbon of soil was examined through the monitoring of the amount of CO2-C released from soil. The soil used was classified as a nonsaline soil which has been irrigated with artificially salinized water, a factorial combination of three types of salts (NaCl, MgCl2, CaCl2) with three levels of electrical conductivities (3, 6, and 9 dS.m-1) was used to assess the Carbon mineralization. The incubation was carried out under aerobic conditions and at a constant temperature of 28 °C during 70 days with moisture adjusted to 2/3 of the field capacity. No significant (P > 0.05) variation in the amount of CO2-C release from soil was observed until day 56 of the incubation, but it was significantly different due to the irrigation with salt solutions during the days: 70 (p ≤ 0.05). The results suggest that the rate of C-CO2 evolution decreased with the increase in water salinity compared to the control. Also this decrease of C-mineralization in the soils irrigated by the salts solutions of NaCl was the greatest compared to the other two salts (CaCl2, and MgCl2). These results suggest that C mineralization depended on the type of salts as well as the duration of incubation.

  10. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  11. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  12. Temporal variation of aerobic methane oxidation over a tidal cycle in a wetland of northern Taiwan.

    NASA Astrophysics Data System (ADS)

    Lee, T. Y.; Wang, P. L.; Lin, L. H.

    2017-12-01

    Aerobic methanotrophy plays an important role in controlling methane emitted from wetlands. However, the activity of aerobic methanotrophy regulated by temporal fluctuation of oxygen and methane supply in tidal wetlands is not well known. This study aims to examine the dynamics of methane fluxes and potential aerobic methane consumption rates in a tidal wetland of northern Taiwan, where the variation of environmental characteristics, such as sulfate and methane concentration in pore water has been demonstrated during a tidal cycle. Two field campaigns were carried out in December of 2016 and March of 2017. Fluxes of methane emission, methane concentrations in surface sediments and oxygen profiles were measured at different tidal phases. Besides, batch incubations were conducted on surface sediments in order to quantify potential microbial methane consumption rates and to derive the kinetic parameters for aerobic methanotrophy. Our results demonstrated temporal changes of the surface methane concentration and the methane emission flux during a tidal cycle, while the oxygen flux into the sediment was kept at a similar magnitude. The methane flux was low when the surface was exposed for both shortest and longest periods of time. The potential aerobic methane oxidation rate was high for sample collected from the surface sediments exposed the longest. No correlation could be found between the potential aerobic methane oxidation rate and either the oxygen downward flux or methane emission flux. The decoupled relationships between these observed rates and fluxes suggest that, rather than aerobic methanotrophy, heterotrophic respirations exert a profound control on oxygen flux, and the methane emission is not only been affected by methane consumption but also methane production at depths. The maximum potential rate and the half saturation concentration determined from the batch incubations were high for the surface sediments collected in low tide, suggesting that aerobic

  13. Comparison of gene expression levels of appA, ppsR, and EL368 in Erythrobacter litoralis spheroplasts under aerobic and anaerobic conditions, and under blue light, red light, and dark conditions.

    PubMed

    Nishino, Koki; Takahashi, Sawako; Nishida, Hiromi

    2018-03-31

    We compared the gene expression levels of the blue-light-responsive genes, appA (encoding photosynthesis promoting protein AppA), ppsR (encoding photosynthesis suppressing protein PpsR), and EL368 (encoding a blue-light-activated histidine kinase with a light, oxygen, or voltage domain) between aerobic and anaerobic conditions in spheroplasts of the aerobic photosynthetic bacterium Erythrobacter litoralis. The spheroplasts conducted photosynthesis under red light but not under blue light. All three blue-light-responsive genes showed higher expression under aerobic conditions than under anaerobic conditions under blue light. In contrast, under red light, although the expression level of appA was higher in the presence of oxygen than in the absence of oxygen, the expression levels of ppsR and EL368 were similar in the presence and absence of oxygen. Our findings demonstrate that the expression of blue-light-responsive genes is strongly affected by oxygen in E. litoralis spheroplasts.

  14. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.

    PubMed

    Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique

    2016-10-01

    Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Long, Xiaoyong; Ji, Junfeng; Barrón, Vidal; Torrent, José

    2016-10-01

    Iron oxides are widely distributed across the surface of the Earth as a result of the aerobic weathering of primary Fe-bearing minerals. Pedogenic iron oxides which consist mainly of hematite (Hm), goethite (Gt), maghemite (Mgh), are often concentrated synchronously in aerobic soils under low to moderate rainfall regimes. Magnetic susceptibility (χ) and redness, which respectively reflect the content of Mgh and Hm in soils, are considered reasonable pedogenic and climatic indicators in soil taxonomy and paleorainfall reconstruction. However, under high rainfall regimes, the grain growth of Mgh and transformation to Hm, combined with the prior formation of Gt under conditions of high relative humidity (RH), can result in magnetic reduction and dramatic yellowing of soils and sediments, which explains the existence of rainfall thresholds for Mgh and Hm at a large scale even before the pedogenic environment turns anaerobic. In order to capture the rainfall thresholds for Mgh and Hm occurring under aerobic conditions, we explored a tropical transect across a granitic region where the soil color turned from red to yellow under a wide rainfall range of 900-2200 mm/yr and a corresponding mean annual RH range of 77%-85%. We observed a lower rainfall threshold of ∼1500 mm/yr and a corresponding RH ∼80% for Mgh and Hm along this transect, as well as a higher rainfall threshold of ∼1700 mm/yr and a corresponding RH of ∼81% for Gt and total pedogenic iron oxides (citrate/bicarbonate/dithionite-extractable Fe, Fed). Cross-referencing with comparable studies in temperate and subtropical regions, we noted that the rainfall or RH thresholds for Fed and Hm or Mgh likewise increase with temperature. Moreover, the different thresholds for total and individual iron oxide phase indicates that a negative correlation between chemical weathering intensity and redness or χ in sediment sequences can occur under the prevalent climate regime just between their thresholds. Finally

  16. Intense Exercise and Aerobic Conditioning Associated with Chromium or L-Carnitine Supplementation Modified the Fecal Microbiota of Fillies

    PubMed Central

    Feringer, Walter Heinz; Carvalho, Júlia Ribeiro Garcia; Rodrigues, Isadora Mestriner; Jordão, Lilian Rezende; Fonseca, Mayara Gonçalves; Carneiro de Rezende, Adalgiza Souza; de Queiroz Neto, Antonio; Weese, J. Scott; da Costa, Márcio Carvalho

    2016-01-01

    Recent studies performed in humans and rats have reported that exercise can alter the intestinal microbiota. Athletic horses perform intense exercise regularly, but studies characterizing horse microbiome during aerobic conditioning programs are still limited. Evidence has indicated that this microbial community is involved in the metabolic homeostasis of the host. Research on ergogenic substances using new sequencing technologies have been limited to the intestinal microbiota and there is a considerable demand for scientific studies that verify the effectiveness of these supplements in horses. L-carnitine and chromium are potentially ergogenic substances for athletic humans and horses since they are possibly able to modify the metabolism of carbohydrates and lipids. This study aimed to assess the impact of acute exercise and aerobic conditioning, associated either with L-carnitine or chromium supplementation, on the intestinal microbiota of fillies. Twelve “Mangalarga Marchador” fillies in the incipient fitness stage were distributed into four groups: control (no exercise), exercise, L-carnitine (10g/day) and chelated chromium (10mg/day). In order to investigate the impact of acute exercise or aerobic conditioning on fecal microbiota all fillies undergoing the conditioning program were analyzed as a separate treatment. The fillies underwent two incremental exercise tests before and after training on a treadmill for 42 days at 70–80% of the lactate threshold intensity. Fecal samples were obtained before and 48 h after acute exercise (incremental exercise test). Bacterial populations were characterized by sequencing the V4 region of the 16S rRNA gene using the MiSeq Illumina platform, and 5,224,389 sequences were obtained from 48 samples. The results showed that, overall, the two most abundant phyla were Firmicutes (50.22%) followed by Verrucomicrobia (15.13%). The taxa with the highest relative abundances were unclassified Clostridiales (17.06%) and "5 genus

  17. Intense Exercise and Aerobic Conditioning Associated with Chromium or L-Carnitine Supplementation Modified the Fecal Microbiota of Fillies.

    PubMed

    Almeida, Maria Luiza Mendes de; Feringer, Walter Heinz; Carvalho, Júlia Ribeiro Garcia; Rodrigues, Isadora Mestriner; Jordão, Lilian Rezende; Fonseca, Mayara Gonçalves; Carneiro de Rezende, Adalgiza Souza; de Queiroz Neto, Antonio; Weese, J Scott; Costa, Márcio Carvalho da; Lemos, Eliana Gertrudes de Macedo; Ferraz, Guilherme de Camargo

    2016-01-01

    Recent studies performed in humans and rats have reported that exercise can alter the intestinal microbiota. Athletic horses perform intense exercise regularly, but studies characterizing horse microbiome during aerobic conditioning programs are still limited. Evidence has indicated that this microbial community is involved in the metabolic homeostasis of the host. Research on ergogenic substances using new sequencing technologies have been limited to the intestinal microbiota and there is a considerable demand for scientific studies that verify the effectiveness of these supplements in horses. L-carnitine and chromium are potentially ergogenic substances for athletic humans and horses since they are possibly able to modify the metabolism of carbohydrates and lipids. This study aimed to assess the impact of acute exercise and aerobic conditioning, associated either with L-carnitine or chromium supplementation, on the intestinal microbiota of fillies. Twelve "Mangalarga Marchador" fillies in the incipient fitness stage were distributed into four groups: control (no exercise), exercise, L-carnitine (10g/day) and chelated chromium (10mg/day). In order to investigate the impact of acute exercise or aerobic conditioning on fecal microbiota all fillies undergoing the conditioning program were analyzed as a separate treatment. The fillies underwent two incremental exercise tests before and after training on a treadmill for 42 days at 70-80% of the lactate threshold intensity. Fecal samples were obtained before and 48 h after acute exercise (incremental exercise test). Bacterial populations were characterized by sequencing the V4 region of the 16S rRNA gene using the MiSeq Illumina platform, and 5,224,389 sequences were obtained from 48 samples. The results showed that, overall, the two most abundant phyla were Firmicutes (50.22%) followed by Verrucomicrobia (15.13%). The taxa with the highest relative abundances were unclassified Clostridiales (17.06%) and "5 genus

  18. Aerobic biodegradation of sludge with high hydrocarbon content generated by a Mexican natural gas processing facility.

    PubMed

    Roldán-Carrillo, T; Castorena-Cortés, G; Zapata-Peñasco, I; Reyes-Avila, J; Olguín-Lora, P

    2012-03-01

    The biodegradation of oil sludge from Mexican sour gas and petrochemical facilities contaminated with a high content of hydrocarbons, 334.7 ± 7.0 g kg(-1) dry matter (dm), was evaluated. Studies in microcosm systems were carried out in order to determine the capacity of the native microbiota in the sludge to reduce hydrocarbon levels under aerobic conditions. Different carbon/nitrogen/phosphorous (C/N/P) nutrient ratios were tested. The systems were incubated at 30 °C and shaken at 100 rpm. Hydrocarbon removals from 32 to 51% were achieved in the assays after 30 days of incubation. The best assay had C/N/P ratio of 100/1.74/0.5. The results of the Microtox(®) and Ames tests indicated that the original sludge was highly toxic and mutagenic, whereas the best assay gave a final product that did not show toxicity or mutagenicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The role of aerobic fitness and exercise intensity on endurance performance in uncompensable heat stress conditions.

    PubMed

    Périard, Julien D; Caillaud, Corinne; Thompson, Martin W

    2012-06-01

    The aim of this study was to examine the influence of aerobic fitness and exercise intensity on the development of thermal and cardiovascular strain in uncompensable heat stress conditions. In three separate trials, eight aerobically trained and eight untrained subjects cycled to exhaustion at 60% (H60%) and 75% (H75%) of maximal oxygen uptake [Formula: see text] in 40°C conditions, and for 60 min at 60% [Formula: see text] in 18°C conditions (CON). Training status had no influence on time to exhaustion between trained (61 ± 10 and 31 ± 9 min) and untrained (58 ± 12 and 26 ± 10 min) subjects (H60% and H75%, respectively). Rectal temperature at exhaustion was also not significantly different between trained (39.8 ± 0.3, 39.3 ± 0.6 and 38.2 ± 0.3°C) and untrained (39.4 ± 0.5, 38.8 ± 0.5 and 38.2 ± 0.4°C) subjects, but was different between trials (H60%, H75% and CON, respectively; P < 0.01). However, because exercise was terminated on reaching the ethics approved rectal temperature limit in four trained subjects in the H60% trial and two in the H75% trial, it is speculated that increased rectal temperature may have further occurred in this cohort. Nonetheless, exhaustion occurred >96% of maximum heart rate in both cohorts and was accompanied by significant declines in stroke volume (15-26%), cardiac output (5-10%) and mean arterial pressure (9-13%) (P < 0.05). The increase in cardiovascular strain appears to represent the foremost factor precipitating fatigue during moderate and high intensity aerobic exercise in the heat in both trained and untrained subjects.

  20. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  1. Avian Incubation Patterns Reflect Temporal Changes in Developing Clutches

    PubMed Central

    2013-01-01

    Incubation conditions for eggs influence offspring quality and reproductive success. One way in which parents regulate brooding conditions is by balancing the thermal requirements of embryos with time spent away from the nest for self-maintenance. Age related changes in embryo thermal tolerance would thus be expected to shape parental incubation behavior. We use data from unmanipulated Black-capped Chickadee (Poecile atricapillus) nests to examine the temporal dynamics of incubation, testing the prediction that increased heat flux from eggs as embryos age influences female incubation behavior and/or physiology to minimize temperature fluctuations. We found that the rate of heat loss from eggs increased with embryo age. Females responded to increased egg cooling rates by altering incubation rhythms (more frequent, shorter on- and off- bouts), but not brood patch temperature. Consequently, as embryos aged, females were able to increase mean egg temperature and decrease variation in temperature. Our findings highlight the need to view full incubation as more than a static rhythm; rather, it is a temporally dynamic and finely adjustable parental behavior. Furthermore, from a methodological perspective, intra- and inter-specific comparisons of incubation rhythms and average egg temperatures should control for the stage of incubation. PMID:23840339

  2. Evolution of Incubation Models: Evidence from the Italian Incubation Industry

    ERIC Educational Resources Information Center

    Grandi, Alessandro; Grimaldi, Rosa

    2004-01-01

    This paper addresses the role of incubators in supporting new venture creation. A mapping of four different types of incubator is proposed: corporate private incubators (CPIs), independent private incubators (IPIs), business innovation centres (BICs) and university business incubators (UBIs). This mapping is exemplified through case studies of one…

  3. Removal of trichloroethylene (TCE) contaminated soil using a two-stage anaerobic-aerobic composting technique.

    PubMed

    Ponza, Supat; Parkpian, Preeda; Polprasert, Chongrak; Shrestha, Rajendra P; Jugsujinda, Aroon

    2010-01-01

    The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present.

  4. Effects of UCS intensity and duration of exposure of nonreinforced CS on conditioned electrodermal responses: an experimental analysis of the incubation theory of anxiety.

    PubMed

    Chorot, P; Sandín, B

    1993-12-01

    Eysenck's incubation theory of fear or anxiety was examined in a human Pavlovian conditioning experiment with skin-conductance responses as the dependent variable. The conditioned stimuli (CSs) were fear-relevant slides (snakes and spiders) and the unconditioned stimuli (UCSs) were aversive tones. Different groups of subjects were presented two tone intensities during the acquisition phase and three durations of nonreinforced CS (extinction phase) in a delay differential conditioning paradigm. Resistance to extinction of conditioned skin-conductance responses (conditioned fear responses) exhibited was largest for high intensity of tone and short presentations of the nonreinforced CS (CS+presented alone). The result tends to support Eysenck's incubation theory of anxiety.

  5. A meta-analysis of experiments linking incubation conditions with subsequent leg weakness in broiler chickens.

    PubMed

    Groves, Peter J; Muir, Wendy I

    2014-01-01

    A series of incubation and broiler growth studies were conducted using one strain of broiler chicken (fast feathering dam line) observing incubation effects on femoral bone ash % at hatch and the ability of the bird to remain standing at 6 weeks of age (Latency-To-Lie). Egg shell temperatures during incubation were consistently recorded. Parsimonious models were developed across eight studies using stepwise multiple linear regression of egg shell temperatures over 3-day periods and both bone ash at hatch and Latency-To-Lie. A model for bone ash at hatch explained 70% of the variation in this factor and revealed an association with lower egg shell temperatures during days 4-6 and 13-15 and higher egg shell temperatures during days 16-18 of incubation. Bone ash at hatch and subsequent Latency-To-Lie were positively correlated (r = 0.57, P<0.05). A model described 66% of the variation Latency-To-Lie showing significant association of the interaction of femoral ash at hatch and lower average egg shell temperatures over the first 15 days of incubation. Lower egg shell temperature in the early to mid incubation process (days 1-15) and higher egg shell temperatures at a later stage (days 16-18) will both tend to delay the hatch time of incubating eggs. Incubation profiles that resulted in later hatching chicks produced birds which could remain standing for a longer time at 6 weeks of age. This supports a contention that the effects of incubation observed in many studies may in fact relate more to earlier hatching and longer sojourn of the hatched chick in the final stage incubator. The implication of these outcomes are that the optimum egg shell temperature during incubation for broiler leg strength development may be lower than that regarded as ideal (37.8°C) for maximum hatchability and chick growth.

  6. Varying hydric conditions during incubation influence egg water exchange and hatchling phenotype in the red-eared slider turtle.

    PubMed

    Delmas, Virginie; Bonnet, Xavier; Girondot, Marc; Prévot-Julliard, Anne-Caroline

    2008-01-01

    Environmental conditions within the nest, notably temperature and moisture of substrate, exert a powerful influence during embryogenesis in oviparous reptiles. The influence of fluctuating nest temperatures has been experimentally examined in different reptile species; however, similar experiments using moisture as the key variable are lacking. In this article, we examine the effect of various substrate moisture regimes during incubation on different traits (egg mass, incubation length, and hatchling mass) in a chelonian species with flexible-shelled eggs, the red-eared slider turtle (Trachemys scripta elegans). Our results show that the rate of water uptake by the eggs was higher in wet than in dry substrate and varied across development. More important, during the first third of development, the egg mass changes were relatively independent of the soil moisture level; they became very sensitive to moisture levels during the other two-thirds. Moreover, hydric conditions exerted a strong influence on the eggs' long-term sensitivity to the moisture of the substrate. Even short-term episodes of high or low levels of moisture modified permanently their water sensitivity, notably through modification of eggshell shape and volume, and in turn entailed significant effects on hatchling mass (and hence offspring quality). Such complex influences of fluctuating moisture levels at various incubation stages on hatchling phenotype better reflect the natural situation, compared to experiments based on stable, albeit different, moisture levels.

  7. Bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions.

    PubMed

    Hu, Nan; Ding, De-xin; Li, Shi-mi; Tan, Xiang; Li, Guang-yue; Wang, Yong-dong; Xu, Fei

    2016-04-01

    In order to study the bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions, microcosm were amended with ethanol, lactate and glucose, and incubated under suboxic conditions. During the incubation, total dissolved U in amended microcosms decreased from 0.95 mg/L to 0.03 mg/L. Pyrosequencing results showed that, the proportion of anaerobic microorganisms capable of reducing U(VI) under suboxic conditions was small compared with that under anoxic conditions; the proportion of aerobic and facultative anaerobic microorganisms capable of consuming the dissolved oxygen was large; and some of the facultative anaerobic microorganisms could reduce U(VI). These results indicated that different microbial communities were responsible for the bioreduction of U(VI) under suboxic and anoxic conditions. After the electron donors were exhausted, total dissolved U in the amended microcosms remained unchanged, while the U(VI)/U(IV) ratio in the solid phase of sediments increased obviously. This implied that the performance of bioreduction of the U(VI) can be maintained under suboxic condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The influence of dissolved oxygen level and medium on biofilm formation by Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2017-02-01

    Campylobacter jejuni survival in aerobic environments has been suggested to be mediated by biofilm formation. Biofilm formation by eight C. jejuni strains under both aerobic and microaerobic conditions in different broths (Mueller-Hinton (MH), Bolton and Brucella) was quantified. The dissolved oxygen (DO) content of the broths under both incubation atmospheres was determined. Biofilm formation for all strains was highest in MH broth under both incubation atmospheres. Four strains had lower biofilm formation in MH under aerobic as compared to microaerobic incubation, while biofilm formation by the other four strains did not differ under the 2 atm. Two strains had higher biofilm formation under aerobic as compared to microaerobic atmospheres in Bolton broth. Biofilm formation by all other strains in Bolton, and all strains in Brucella broth, did not differ under the 2 atm. Under aerobic incubation DO levels in MH > Brucella > Bolton broth. Under microaerobic conditions levels in MH = Brucella > Bolton broth. Levels of DO in MH and Brucella broth were lower under microaerobic conditions but those of Bolton did not differ under the 2 atm. Experimental conditions and especially the DO of broth media confound previous conclusions drawn about aerobic biofilm formation by C. jejuni. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Meta-Analysis of Experiments Linking Incubation Conditions with Subsequent Leg Weakness in Broiler Chickens

    PubMed Central

    Groves, Peter J.; Muir, Wendy I.

    2014-01-01

    A series of incubation and broiler growth studies were conducted using one strain of broiler chicken (fast feathering dam line) observing incubation effects on femoral bone ash % at hatch and the ability of the bird to remain standing at 6 weeks of age (Latency-To-Lie). Egg shell temperatures during incubation were consistently recorded. Parsimonious models were developed across eight studies using stepwise multiple linear regression of egg shell temperatures over 3-day periods and both bone ash at hatch and Latency-To-Lie. A model for bone ash at hatch explained 70% of the variation in this factor and revealed an association with lower egg shell temperatures during days 4–6 and 13–15 and higher egg shell temperatures during days 16–18 of incubation. Bone ash at hatch and subsequent Latency-To-Lie were positively correlated (r = 0.57, P<0.05). A model described 66% of the variation Latency-To-Lie showing significant association of the interaction of femoral ash at hatch and lower average egg shell temperatures over the first 15 days of incubation. Lower egg shell temperature in the early to mid incubation process (days 1–15) and higher egg shell temperatures at a later stage (days 16–18) will both tend to delay the hatch time of incubating eggs. Incubation profiles that resulted in later hatching chicks produced birds which could remain standing for a longer time at 6 weeks of age. This supports a contention that the effects of incubation observed in many studies may in fact relate more to earlier hatching and longer sojourn of the hatched chick in the final stage incubator. The implication of these outcomes are that the optimum egg shell temperature during incubation for broiler leg strength development may be lower than that regarded as ideal (37.8°C) for maximum hatchability and chick growth. PMID:25054636

  10. The effects of heterospecifics and climatic conditions on incubation behavior within a mixed-species colony

    USGS Publications Warehouse

    Coates, Peter S.; Brussee, Brianne E.; Hothem, Roger L.; Howe, Kristy H.; Casazza, Michael L.; Eadie, John M.

    2016-01-01

    Parental incubation behavior largely influences nest survival, a critical demographic process in avian population dynamics, and behaviors vary across species with different life history breeding strategies. Although research has identified nest survival advantages of mixing colonies, behavioral mechanisms that might explain these effects is largely lacking. We examined parental incubation behavior using video-monitoring techniques on Alcatraz Island, California, of black-crowned night-heron Nycticorax nycticorax(hereinafter, night-heron) in a mixed-species colony with California gulls Larus californicus and western gulls L. occidentalis. We first quantified general nesting behaviors (i.e. incubation constancy, and nest attendance), and a suite of specific nesting behaviors (i.e. inactivity, vigilance, preening, and nest maintenance) with respect to six different daily time periods. We employed linear mixed effects models to investigate environmental and temporal factors as sources of variation in incubation constancy and nest attendance using 211 nest days across three nesting seasons (2010–2012). We found incubation constancy (percent of time on the eggs) and nest attendance (percent of time at the nest) were lower for nests that were located < 3 m from one or more gull nest, which indirectly supports the predator protection hypothesis, whereby heterospecifics provide protection allowing more time for foraging and other self-maintenance activities. To our knowledge, this is the first empirical evidence of the influence of one nesting species on the incubation behavior of another. We also identified distinct differences between incubation constancy and nest attentiveness, indicating that these biparental incubating species do not share similar energetic constraints as those that are observed for uniparental species. Additionally, we found that variation in incubation behavior was a function of temperature and precipitation, where the strength of these effects

  11. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    PubMed Central

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852

  12. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  13. Radiocarbon in CO2 and Soil Organic Matter from Laboratory Incubations, Barrow, Alaska, 2014

    DOE Data Explorer

    Lydia Vaughn; Margaret Torn

    2018-02-20

    Dataset includes 14C measurements made from soil organic matter and CO2 from paired anaerobic and aerobic laboratory soil incubations of active layer soils collected in Barrow, Alaska in 2014. In addition to 14CO2, dataset includes CO2 production rates and carbon and nitrogen concentrations. Samples were collected from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons.

  14. Effectiveness of an acoustical product in reducing high-frequency sound within unoccupied incubators.

    PubMed

    Kellam, Barbara; Bhatia, Jatinder

    2009-08-01

    Few noise measurement studies in the neonatal intensive care unit have reported sound frequencies within incubators. Sound frequencies within incubators are markedly different from sound frequencies within the gravid uterus. This article reports the results of sound spectral analysis (SSA) within unoccupied incubators under control and treatment conditions. SSA indicated that acoustical foam panels (treatment condition) markedly reduced sound frequencies > or =500 Hz when compared with the control condition. The main findings of this study (a) illustrate the need to monitor high-frequency sound within incubators and (b) indicate one method to reduce atypical sound exposure within incubators.

  15. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.

    PubMed

    Fresno, Teresa; Peñalosa, Jesús M; Santner, Jakob; Puschenreiter, Markus; Prohaska, Thomas; Moreno-Jiménez, Eduardo

    2016-09-01

    Arsenic is a non-threshold carcinogenic metalloid. Thus, human exposure should be minimised, e.g. by chemically stabilizing As in soil. Since iron is a potential As immobiliser, it was investigated whether root iron plaque, formed under aerobic conditions, affects As uptake, metabolism and distribution in Lupinus albus plants. White lupin plants were cultivated in a continuously aerated hydroponic culture containing Fe/EDDHA or FeSO4 and exposed to arsenate (5 or 20 μM). Only FeSO4 induced surficial iron plaque in roots. LA-ICP-MS analysis accomplished on root sections corroborated the association of As to this surficial Fe. Additionally, As(V) was the predominant species in FeSO4-treated roots, suggesting less efficient As uptake in the presence of iron plaque. Fe/EDDHA-exposed roots neither showed such surficial FeAs co-localisation nor As(V) accumulation; in contrast As(III) was the predominant species in root tissue. Furthermore, FeSO4-treated plants showed reduced shoot-to-root As ratios, which were >10-fold lower compared to Fe/EDDHA treatment. Our results highlight the role of an iron plaque formed in roots of white lupin under aerobic conditions on As immobilisation. These findings, to our knowledge, have not been addressed before for this plant and have potential implications on soil remediation (phytostabilisation) and food security (minimising As in crops). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The study of a pilot-scale aerobic/Fenton/anoxic/aerobic process system for the treatment of landfill leachate.

    PubMed

    Hu, Wenyong; Zhou, Yu; Min, Xiaobo; Liu, Jingyi; Li, Xinyu; Luo, Lin; Zhang, Jiachao; Mao, Qiming; Chai, Liyuan; Zhou, YaoYu

    2017-06-29

    In this study, a combined aerobic-Fenton-anoxic/aerobic system was designed for the remediation of raw landfill leachate in a pilot-scale experiment. This system included (i) a granular sludge biological oxidation procedure that achieves the accumulation of nitrite nitrogen ([Formula: see text]) under aerobic conditions; (ii) a Fenton process that improves the biodegradability of the biotreated leachate and (iii) an activated sludge biological oxidation component under anoxic and aerobic conditions. Additionally, a shortcut nitrification and denitrification pathway was achieved. The effects of free ammonia, temperature and pH on nitrite accumulation were discussed. The change in the biochemical oxygen demand/chemical oxygen demand ratio of the effluent after shortcut nitrification was also analysed. The microbial community in the reactor were also investigated. The problem of the lack of carbon source in the denitrification process can be solved by the Fenton reagent method. Moreover, it was beneficial to achieving nitrogen removal as well as the more extensive removal of organic matter. The treatment strategy employed in this study exhibited good results and provided the potential practical application for treating landfill leachate.

  17. Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment.

    PubMed

    Yan, Lawrence K Q; Fung, Ka Y; Ng, Ka M

    2018-06-01

    In this study, the capability of using aerobic granules to undergo simultaneous anaerobic decolorization and aerobic aromatic amines degradation was demonstrated for azo dye wastewater treatment. An integrated acclimation-granulation process was devised, with Mordant Orange 1 as the model pollutant. Performance tests were carried out in a batch column reactor to evaluate the effect of various operating parameters. The optimal condition was to use 1.0-1.7 mm (1.51 ± 0.33 mm) granules, 5 g/L biomass, and 4000 mg/L organics as nutrient; and supplement the wastewater with 1  mg/L dissolved oxygen. This led to a dye mineralization of 61 ± 2%, an anaerobic dye removal of 88 ± 1%, and an aerobic aromatic amines removal of 70 ± 3% within 48 h. This study showed that simultaneous anaerobic/aerobic process by aerobic granules could be a possible alternative to the conventional activated sludge process.

  18. Effect of population, collection year, after-ripening and incubation condition on seed germination of Stipa bungeana.

    PubMed

    Zhang, Rui; Baskin, J M; Baskin, C C; Mo, Qing; Chen, Lijun; Hu, Xiaowen; Wang, Yanrong

    2017-10-24

    Knowledge of the germination behavior of different populations of a species can be useful in the selection of appropriate seed sources for restoration. The aim of this study was to test the effect of seed population, collection year, after-ripening and incubation conditions on seed dormancy and germination of Stipa bungeana, a perennial grass used for revegetation of degraded grasslands on the Loess Plateau, China. Fresh S. bungeana seeds were collected from eight locally-adapted populations in 2015 and 2016. Dormancy and germination characteristics of fresh and 6-month-old dry-stored seeds were determined by incubating them over a range of alternating temperature regimes in light. Effect of water stress on germination was tested for fresh and 6-month-old dry-stored seeds. Seed dormancy and germination of S. bungeana differed with population and collection year. Six months of dry storage broke seed dormancy, broadened the temperature range for germination and increased among-population differences in germination percentage. The rank order of germination was not consistent in all germination tests, and it varied among populations. Thus, studies on comparing seed dormancy and germination among populations must consider year of collection, seed dormancy states and germination test conditions when selecting seeds for grassland restoration and management.

  19. Biodegradation of Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) Plastic under Anaerobic Sludge and Aerobic Seawater Conditions: Gas Evolution and Microbial Diversity.

    PubMed

    Wang, Shunli; Lydon, Keri A; White, Evan M; Grubbs, Joe B; Lipp, Erin K; Locklin, Jason; Jambeck, Jenna R

    2018-05-15

    Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) (poly(3HB- co-3HHx)) thermoplastics are a promising biodegradable alternative to traditional plastics for many consumer applications. Biodegradation measured by gaseous carbon loss of several types of poly(3HB- co-3HHx) plastic was investigated under anaerobic conditions and aerobic seawater environments. Under anaerobic conditions, the biodegradation levels of a manufactured sheet of poly(3HB- co-3HHx) and cellulose powder were not significantly different from one another over 85 days with 77.1 ± 6.1 and 62.9 ± 19.7% of the carbon converted to gas, respectively. However, the sheet of poly(3HB- co-3HHx) had significantly higher methane yield ( p ≤ 0.05), 483.8 ± 35.2 mL·g -1 volatile solid (VS), compared to cellulose controls, 290.1 ± 92.7 mL·g -1 VS, which is attributed to a greater total carbon content. Under aerobic seawater conditions (148-195 days at room temperature), poly(3HB- co-3HHx) sheets were statistically similar to cellulose for biodegradation as gaseous carbon loss (up to 83% loss in about 6 months), although the degradation rate was lower than that for cellulose. The microbial diversity was investigated in both experiments to explore the dominant bacteria associated with biodegradation of poly(3HB- co-3HHx) plastic. For poly(3HB- co-3HHx) treatments, Cloacamonales and Thermotogales were enriched under anaerobic sludge conditions, while Clostridiales, Gemmatales, Phycisphaerales, and Chlamydiales were the most enriched under aerobic seawater conditions.

  20. Low-temperature incubation using a water supply

    USGS Publications Warehouse

    Wolf, K.; Quimby, M.C.

    1967-01-01

    Cell and tissue culture has been concerned primarily with homiothermic vertebrate cells which require incubation at about 37 C, and there is a great variety of incubators designed to maintain temperatures which are usually above ambient. The culture of poikilothermic vertebrate cells--and invertebrate, plant, and some microbial cells--can often be carried out at ambient temperatures, but for some work cooler conditions must be provided. Variety among the so-called low-temperature incubators is somewhat restricted; there are no small units, and all require a power source to maintain temperatures below ambient. We have used a gravity-fed water supply for 5 years to provide trouble-free, constant, low-temperature incubation of stock cultures of fish and amphibian cells. Though it is but a small part of our low-temperature incubator capacity, it has no power requirements and it provides maximal protection against temperature rises which could be lethal to some of the cell lines. Though the system has limitations, there is a considerable likelihood that the domestic water supply in other laboratories can also be used to provide low-temperature incubation.

  1. Aerobic methane production in surface waters of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Finke, N.; Crespo-Medina, M.; Schweers, J.; Joye, S. B.

    2011-12-01

    Near surface water of the global oceans often show elevated methane concentrations compared to the water column below with concentrations in supersaturation in regard to the atmosphere (Lamontagne et al. 1973), resulting in a source of this potent greenhouse gas to the atmosphere. The mechanisms leading to methane supersaturation in surface waters remains unclear. Incubations with Trichodesmium-containing Pacific surface water suggested methylphosphonate as potential methane precursor under phosphate limiting conditions (Karl et al. 2008), whereas in phosphate rich Arctic surface waters, DMSP addition stimulated methane production (Damm et al. 2010). Surface waters of the Gulf of Mexico typically exhibit a methane maximum that is conincident with the deep chlorophyll maximum, below the depths where Trichodesmium is abundant. Addition of methylphosphonate, dimethylsulfoniopropionate (DMSP) or methane thiol (MeSH), the proposed methane precursor in DMSP conversion to methane, to oxic sea water did not affect methane production within the chlorophyll maximum at most stations, whereas methyl phosphonate addition stimulated methane production in the surface water and proposed deep Trichodesmium horizon. Pre-filtration of the water through a 10 μm sieve, which eliminated Trichodesmium, or through a 1.2 μm filter, which eliminated additional cyanobacteria such as Synechococcus, did not reduce methane production. Under dark oxic and dark anoxic conditions, however, methane production was reduced 5 and 7-20 fold, respectively, indicating that anerobic methane production in anoxic microniches is not responsible for the methane production. The reduction of methane production under dark conditions suggests that methane production is, in some yet unrecognized way, linked to phototrophic metabolism. Cyanobacteria are likely not responsible for the observed aerobic methane production in the surface waters of the Gulf of Mexico and while methylphosphonate is a potential

  2. Effect of ensiling whole crop oat with lucerne in different ratios on fermentation quality, aerobic stability and in vitro digestibility on the Tibetan plateau.

    PubMed

    Chen, L; Guo, G; Yuan, X J; Zhang, J; Wen, A Y; Sun, X H; Shao, T

    2017-10-01

    The objective of this study was to determine the effect of ensiling different ratios of whole crop oat to lucerne on fermentation quality, aerobic stability and in vitro digestibility of silage on the Tibetan plateau. Four experimental treatments were produced varying in the ratio of forages on a fresh matter (FM) basis: 1) 100% oat (control, dry matter (DM) content: 317 g/kg), 2) 90% oat + 10% lucerne (OL10, DM content: 316 g/kg), 3) 80% oat+ 20% lucerne (OL20, DM content: 317 g/kg) and 4) 70% oat+ 30% lucerne (OL30, DM content: 318 g/kg). All treatments were packed into laboratory-scale silos and ensiled for 60 days and then subjected to an aerobic stability test for 15 days. Further, the four experimental treatments were incubated in vitro with buffered rumen fluid to study the nutrient digestibility. All silages were well preserved with low pH and NH 3 -N contents, and high lactic acid contents and V-scores (evaluation of silage quality). Increasing the lucerne proportion increased (p < 0.05) crude protein (CP) content of silage, whereas neutral (NDF) and acid (ADF) detergent fibre contents were not affected. Under aerobic conditions, the control silage showed higher (p < 0.05) yeast counts (>10 5  cfu/g FM) followed by OL10 silage, and OL10 silage improved aerobic stability for 74 h. OL20 and OL30 silages showed fewer (p < 0.05) yeasts (<10 5  cfu/g FM) and markedly (p < 0.05) improved the aerobic stability (>360 h). After 48-h incubation, OL30 silage increased (p < 0.05) in vitro dry matter digestibility (IVDMD) and neutral detergent fibre digestibility (IVNDFD) compared with the control silage. These results suggest that replacing oat with lucerne had no unfavourable effects on fermentation quality of silage, but improved CP content, aerobic stability IVDMD and IVNDFD. OL30 silage was the best among the three mixed silages. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  3. Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats.

    PubMed

    Madsen, Heather B; Zbukvic, Isabel C; Luikinga, Sophia J; Lawrence, Andrew J; Kim, Jee Hyun

    2017-09-01

    Relapse to drug use is often precipitated by exposure to drug associated cues that evoke craving. Cue-induced drug craving has been observed in both animals and humans to increase over the first few weeks of abstinence and remain high over extended periods, a phenomenon known as 'incubation of craving'. As adolescence represents a period of vulnerability to developing drug addiction, potentially due to persistent reactivity to drug associated cues, we first compared incubation of cocaine craving in adolescent and adult rats. Adolescent (P35) and adult (P70) rats were trained to lever press to obtain intravenous cocaine, with each drug delivery accompanied by a light cue that served as the conditioned stimulus (CS). Following acquisition of stable responding, rats were tested for cue-induced cocaine-seeking after either 1 or 30days of abstinence. Additional groups of rats were also tested after 30days of abstinence, however these rats were subjected to a cue extinction session 1week into the abstinence period. Rats were injected with aripiprazole, a dopamine 2 receptor (D2R)-like partial agonist, or vehicle, 30min prior to cue extinction. We found that adolescent and adult rats acquired and maintained a similar level of cocaine self-administration, and rats of both ages exhibited a higher level of cue-induced cocaine-seeking if they were tested after 30days of abstinence compared to 1day. Incubation of cocaine craving was significantly reduced to 1day levels in both adults and adolescents that received cue extinction training. Administration of aripiprazole prior to cue extinction did not further reduce cue-induced drug-seeking. These results indicate that cue extinction training during abstinence may effectively reduce cue-induced relapse at a time when cue-induced drug craving is usually high. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  5. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions.

    PubMed

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Microbial transformation of pharmaceuticals naproxen, bisoprolol, and diclofenac in aerobic and anaerobic environments.

    PubMed

    Lahti, Marja; Oikari, Aimo

    2011-08-01

    Although biotransformation is generally considered to be the main process by which to remove pharmaceuticals, both in sewage treatment plants and in aquatic environments, quantitative information on specific compounds is scarce. In this study, the transformations of diclofenac (DCF), naproxen (NPX), and bisoprolol (BSP) were studied under aerobic and anaerobic conditions using inocula taken from activated and digested sludge processes, respectively. Whereas concentration decays were monitored by LC-tandem mass spectrometry, oxygen consumption and methane production were used for the evaluation of the performance of overall conditions. DCF was recalcitrant against both aerobic and anaerobic biotransformation. More than one third of the BSP disappeared under aerobic conditions, whereas only 14% was anaerobically biotransformed in 161 days. Under aerobic conditions, complete removal of NPX was evident within 14 days, but anaerobic transformation was also efficient. Formation of 6-O-desmethylnaproxen, a previously reported aerobic metabolite, was also detected under anaerobic conditions and persisted for 161 days.

  7. SBA-15-functionalized 3-oxo-ABNO as recyclable catalyst for aerobic oxidation of alcohols under metal-free conditions.

    PubMed

    Karimi, Babak; Farhangi, Elham; Vali, Hojatollah; Vahdati, Saleh

    2014-09-01

    The nitroxyl radical 3-oxo-9-azabicyclo [3.3.1]nonane-N-oxyl (3-oxo-ABNO) has been prepared using a simple protocol. This organocatalyst is found to be an efficient catalyst for the aerobic oxidation of a wide variety of alcohols under metal-free conditions. In addition, the preparation and characterization of a supported version of 3-oxo-ABNO on ordered mesoporous silica SBA-15 (SABNO) is described for the first time. The catalyst has been characterized using several techniques including simultaneous thermal analysis (STA), transmission electron microscopy (TEM), and nitrogen sorption analysis. This catalyst exhibits catalytic performance comparable to its homogeneous analogue and much superior catalytic activity in comparison with (2,2,6,6-tetramethylpiperidin-1-yl)oxy (TEMPO) for the aerobic oxidation of almost the same range of alcohols under identical reaction conditions. It is also found that SABNO can be conveniently recovered and reused at least 12 times without significant effect on its catalytic efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Muscular and Aerobic Fitness, Working Memory, and Academic Achievement in Children.

    PubMed

    Kao, Shih-Chun; Westfall, Daniel R; Parks, Andrew C; Pontifex, Matthew B; Hillman, Charles H

    2017-03-01

    This study investigated the relationship between aerobic and muscular fitness with working memory and academic achievement in preadolescent children. Seventy-nine 9- to 11-yr-old children completed an aerobic fitness assessment using a graded exercise test; a muscular fitness assessment consisting of upper body, lower body, and core exercises; a serial n-back task to assess working memory; and an academic achievement test of mathematics and reading. Hierarchical regression analyses indicated that after controlling for demographic variables (age, sex, grade, IQ, socioeconomic status), aerobic fitness was associated with greater response accuracy and d' in the 2-back condition and increased mathematic performance in algebraic functions. Muscular fitness was associated with increased response accuracy and d', and longer reaction time in the 2-back condition. Further, the associations of muscular fitness with response accuracy and d' in the 2-back condition were independent of aerobic fitness. The current findings suggest the differential relationships between the aerobic and the muscular aspects of physical fitness with working memory and academic achievement. With the majority of research focusing on childhood health benefits of aerobic fitness, this study suggests the importance of muscular fitness to cognitive health during preadolescence.

  9. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions.

    PubMed

    Presentato, Alessandro; Piacenza, Elena; Anikovskiy, Max; Cappelletti, Martina; Zannoni, Davide; Turner, Raymond J

    2016-12-15

    Tellurite (TeO 3 2- ) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO 3 2- into the less toxic and available form of elemental Tellurium (Te 0 ), producing Te-deposits or Te-nanostructures. The use of TeO 3 2- -reducing bacteria can lead to the decontamination of polluted environments and the development of "green-synthesis" methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO 3 2- have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically grown BCP1 cells showed high tolerance towards TeO 3 2- with a minimal inhibitory concentration (MIC) of 2800 μg/mL (11.2 mM). TeO 3 2- consumption has been evaluated exposing the BCP1 strain to either 100 or 500 μg/mL of K 2 TeO 3 (unconditioned growth) or after re-inoculation in fresh medium with new addition of K 2 TeO 3 (conditioned growth). A complete consumption of TeO 3 2- at 100 μg/mL was observed under both growth conditions, although conditioned cells showed higher consumption rate. Unconditioned and conditioned BCP1 cells partially consumed TeO 3 2- at 500 μg/mL. However, a greater TeO 3 2- consumption was observed with conditioned cells. The production of intracellular, not aggregated and rod-shaped Te-nanostructures (TeNRs) was observed as a consequence of TeO 3 2- reduction. Extracted TeNRs appear to be embedded in an organic surrounding material, as suggested by the chemical-physical characterization. Moreover, we observed longer TeNRs depending on either the concentration of precursor (100 or 500 μg/mL of K 2 TeO 3 ) or the growth conditions (unconditioned or conditioned grown cells). Rhodococcus aetherivorans BCP1 is able to tolerate high concentrations of TeO 3 2- during its growth under aerobic conditions. Moreover, compared to unconditioned

  10. Incongruity between Prion Conversion and Incubation Period following Coinfection.

    PubMed

    Langenfeld, Katie A; Shikiya, Ronald A; Kincaid, Anthony E; Bartz, Jason C

    2016-06-15

    When multiple prion strains are inoculated into the same host, they can interfere with each other. Strains with long incubation periods can suppress conversion of strains with short incubation periods; however, nothing is known about the conversion of the long-incubation-period strain during strain interference. To investigate this, we inoculated hamsters in the sciatic nerve with long-incubation-period strain 139H prior to superinfection with the short-incubation-period hyper (HY) strain of transmissible mink encephalopathy (TME). First, we found that 139H is transported along the same neuroanatomical tracks as HY TME, adding to the growing body of evidence indicating that PrP(Sc) favors retrograde transneuronal transport. In contrast to a previous report, we found that 139H interferes with HY TME infection, which is likely due to both strains targeting the same population of neurons following sciatic nerve inoculation. Under conditions where 139H blocked HY TME from causing disease, the strain-specific properties of PrP(Sc) corresponded with the strain that caused disease, consistent with our previous findings. In the groups of animals where incubation periods were not altered, we found that the animals contained a mixture of 139H and HY TME PrP(Sc) This finding expands the definition of strain interference to include conditions where PrP(Sc) formation is altered yet disease outcome is unaltered. Overall, these results contradict the premise that prion strains are static entities and instead suggest that strain mixtures are dynamic regardless of incubation period or clinical outcome of disease. Prions can exist as a mixture of strains in naturally infected animals, where they are able to interfere with the conversion of each other and to extend incubation periods. Little is known, however, about the dynamics of strain conversion under conditions where incubation periods are not affected. We found that inoculation of the same animal with two strains can result in

  11. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff

    2011-05-15

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less

  12. Effects of microbial processes on gas generation under expected WIPP repository conditions: Annual report through 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, A.J.; Gillow, J.B.

    1993-09-01

    Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term (< 6 months) and long-term (> 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and undergroundmore » workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation.« less

  13. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium.

    PubMed

    Idelevich, E A; Schüle, I; Grünastel, B; Wüllenweber, J; Peters, G; Becker, K

    2014-10-01

    Rapid identification of the causative microorganism is important for appropriate antimicrobial therapy of bloodstream infections. Bacteria from positive blood culture (BC) bottles are not readily available for identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lysis and centrifugation procedures suggested for direct MALDI-TOF MS from positive BCs without previous culture are associated with additional hands-on processing time and costs. Here, we describe an alternative approach applying MALDI-TOF MS from bacterial cultures incubated very briefly on solid medium. After plating of positive BC broth on Columbia blood agar (n = 165), MALDI-TOF MS was performed after 1.5, 2, 3, 4, 5, 6, 7, 8, 12 and (for control) 24 h of incubation until reliable identification to the species level was achieved (score ≥2.0). Mean incubation time needed to achieve species-level identification was 5.9 and 2.0 h for Gram-positive aerobic cocci (GPC, n = 86) and Gram-negative aerobic rods (GNR, n = 42), respectively. Short agar cultures with incubation times ≤2, ≤4, ≤6, ≤8 and ≤12 h yielded species identification in 1.2%, 18.6%, 64.0%, 96.5%, 98.8% of GPC, and in 76.2%, 95.2%, 97.6%, 97.6%, 97.6% of GNR, respectively. Control species identification at 24 h was achieved in 100% of GPC and 97.6% of GNR. Ethanol/formic acid protein extraction performed for an additional 34 GPC isolates cultivated from positive BCs showed further reduction in time to species identification (3.1 h). MALDI-TOF MS using biomass subsequent to very short-term incubation on solid medium allows very early and reliable bacterial identification from positive BCs without additional time and cost expenditure. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  14. Blockade of CB1 receptors prevents retention of extinction but does not increase low preincubated conditioned fear in the fear incubation procedure.

    PubMed

    Pickens, Charles L; Theberge, Florence R

    2014-02-01

    We recently developed a procedure to study fear incubation, in which rats given 100 tone-shock pairings over 10 days show low fear 2 days after conditioned fear training and high fear after 30 days. Notably, fear 2 days after 10 sessions of fear conditioning is lower than fear seen 2 days after a single session of fear conditioning, suggesting that fear is suppressed. Here, we investigate the potential role of CB1 receptor activation by endocannabinoids in this fear suppression. We subjected rats to 10 days of fear conditioning and then administered systemic injections of the CB1 receptor antagonist SR141716 before a conditioned fear test was conducted 2 days later under extinction conditions. A second test was conducted without any injections on the following day (3 days after training) to examine retention of fear extinction. SR141716 injections did not increase fear expression 2 days after extended fear conditioning or affect within-session extinction; however, it impaired retention of between-session fear extinction in the day 3 test. These data suggest that CB1 receptor activation does not suppress fear soon after extended fear conditioning in the fear incubation task. The data also add to the existing literature on the role of CB1 receptors in extinction of conditioned fear.

  15. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    PubMed

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites.

  16. Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.

    PubMed

    Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki

    2017-08-01

    We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.

  17. Dynamics of sperm subpopulations based on motility and plasma membrane status in thawed ram spermatozoa incubated under conditions that support in vitro capacitation and fertilisation.

    PubMed

    García-Álvarez, Olga; Maroto-Morales, Alejandro; Ramón, Manuel; del Olmo, Enrique; Jiménez-Rabadán, Pilar; Fernández-Santos, M Rocio; Anel-López, Luis; Garde, J Julián; Soler, Ana J

    2014-06-01

    The present study evaluated modifications occurring in thawed ram spermatozoa during incubation in different media that supported in vitro capacitation and fertilisation, and examines how these changes relate to IVF. Thawed sperm samples were incubated under capacitating (Cap) and non-capacitating (non-Cap) conditions for 0, 1 and 2h and used in an IVF test. During incubation, changes related to membrane status and the motility pattern of spermatozoa were assessed, the latter being used to characterise sperm subpopulations. A significantly greater increase (P≤0.05) in the percentage of spermatozoa with higher membrane fluidity was observed in samples incubated with Cap medium from the beginning of incubation. In addition, changes over time in the distribution of the motile subpopulation were particularly evident when spermatozoa were incubated with Cap medium, with a noted increase in spermatozoa classified as 'hyperactivated like', with major changes occurring after 1h incubation. Both characteristics (i.e. membrane fluidity and the percentage of the hyperactivated-like subpopulation) were significantly related with in vitro fertility, and only sperm samples incubated with the Cap medium were capable of fertilising oocytes. These results support the idea that changes in sperm membrane fluidity and motility pattern (i.e. an increase in hyperactivated spermatozoa) are needed for fertilisation to take place.

  18. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  19. Effect of temperature and dispersant (COREXIT® EC 9500A) on aerobic biodegradation of benzene in a coastal salt marsh sediment.

    PubMed

    Tao, Rui; Olivera-Irazabal, Miluska; Yu, Kewei

    2018-08-01

    The coastal ecosystem in the northern Gulf of Mexico (GoM) has been seriously impacted by the 2010 BP oil spill. Two experiments were conducted to study the effect of temperature and addition of the dispersant on biodegradation of benzene, as a representative of petroleum hydrocarbon, in a coastal salt marsh sediment under aerobic conditions. The results show that benzene biodegradation was approximately 6 time faster under aerobic conditions (Eh > +300 mV) than under anaerobic iron-reduction conditions (+14 mV < Eh < +162 mV). Benzene biodegradation in response to temperature was in an order of 20 °C > 10 °C > 30 °C as expected in a saline environment. Application of the dispersant caused initial fluctuations of benzene vapor pressure during the incubation due to its hydrophobic and hydrophilic nature of the molecules. Presence of the dispersant shows an inhibitory effect on benzene biodegradation, and the inhibition increased with concentration of the dispersant. The Gulf coast sediment seems in a favorable scenario to recover from the BP oil spill with an average temperature around 20 °C in spring and fall season. Application of the dispersant may be necessary for the oil spill rescue operation, but its side effects may deserve further investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A comparison of artificial incubation and natural incubation hatching success of gopher tortoise (Gopherus polyphemus) eggs in southern Mississippi

    USGS Publications Warehouse

    Noel, Krista M.; Qualls, Carl P.; Ennen, Joshua R.

    2012-01-01

    Recent studies have found that Gopher Tortoise, Gopherus polyphemus, populations in southern Mississippi exhibit low recruitment, due in part to very low hatching success of their eggs. We sought to determine if the cause(s) of this low hatching success was related to egg quality (intrinsic factors), unsuitability of the nest environment (extrinsic factors), or a combination of the two. In 2003, hatching success was monitored simultaneously for eggs from the same clutches that were incubated in the laboratory and left to incubate in nests. A subset of randomly chosen eggs from each clutch was incubated in the laboratory under physical conditions that were known to be conducive to successful hatching to estimate the proportion of eggs that were capable of hatching in a controlled setting. Hatching success in the laboratory was compared with that of eggs incubated in natural nests to estimate the proportion of eggs that failed to hatch presumably from extrinsic factors. Laboratory hatching success was 58.8%, suggesting that roughly 40% of the eggs were intrinsically incapable of hatching even when incubated under controlled conditions. Hatching success in natural nests, 16.7%, was significantly lower than hatching success in the laboratory, suggesting that approximately 42.1% of eggs were capable of hatching but failed to hatch due to some extrinsic aspect(s) of the nest environment. Thus, the low hatching success of Gopher Tortoise eggs in southern Mississippi appears to be attributable to a combination of intrinsic (egg quality) and extrinsic (nest environment) factors.

  1. Microbial C:P stoichiometry is shaped by redox conditions along an elevation gradient in humid tropical rainforests

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Gross, A.; Silver, W. L.

    2017-12-01

    Elemental stoichiometry of microorganisms is intimately related to ecosystem carbon and nutrient fluxes and is ultimately controlled by the chemical (plant tissue, soil, redox) and physical (temperature, moisture, aeration) environment. Previous meta-analyses have shown that the C:P ratio of soil microbial biomass exhibits significant variations among and within biomes. Little is known about the underlying causes of this variability. We examined soil microbial C:P ratios along an elevation gradient in the Luquillo Experimental Forest in Puerto Rico. We analyzed soils from mixed forest paired with monodominant palm forest every 100 m from 300 m to 1000 m a.s.l.. Mean annual precipitation increased with increasing elevation, resulting in stronger reducing conditions and accumulation of soil Fe(II) at higher elevations. The mean value and variability of soil microbial C:P ratios generally increased with increasing elevation except at 1000 m. At high elevations (600-900 m), the average value of microbial C:P ratio (108±10:1) was significantly higher than the global average ( 55:1). We also found that soil organic P increased with increasing elevation, suggesting that an inhibition of organic P mineralization, not decreased soil P availability, may cause the high microbial C:P ratio. The soil microbial C:P ratio was positively correlated with soil HCl-extractable Fe(II), suggesting that reducing conditions may be responsible for the elevational changes observed. In a follow-up experiment, soils from mixed forests at four elevation levels (300, 500, 700, and 1000 m) were incubated under aerobic and anaerobic conditions for two weeks. We found that anaerobic incubation consistently increased the soil microbial C:P ratio relative to the aerobic incubation. Overall, our results indicate that redox conditions can shift the elemental composition of microbial biomass. The high microbial C:P ratios induced under anoxic conditions may reflect inhibition of microbial P

  2. Aerobic Methane Oxidation in Alaskan Lakes Along a Latitudinal Transect

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K. C.; Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Anthony, P.; Thalasso, F.

    2013-12-01

    Karla Martinez-Cruz* **, Armando Sepulveda-Jauregui*, Katey M. Walter Anthony*, Peter Anthony*, and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Methane (CH4) is the third most important greenhouse gas in the atmosphere, after carbon dioxide and water vapor. Boreal lakes play an important role in the current global warming by contributing as much as 6% of global atmospheric CH4 sources annually. On the other hand, aerobic methane oxidation (methanotrophy) in lake water is a fundamental process in global methane cycling that reduces the amount of CH4 emissions to the atmosphere. Several environmental factors affect aerobic methane oxidation in the water column both directly and indirectly, including concentration of CH4 and O2, temperature and carbon budgets of lakes. We analyzed the potential of aerobic methane oxidation (PMO) rates in incubations of water collected from 30 Alaskan lakes along a north-south transect during winter and summer 2011. Our findings showed an effect of CH4 and O2 concentrations, temperature and yedoma thawing permafrost on PMO activity in the lake water. The highest PMO rates were observed in summer by lakes situated on thawing yedoma permafrost, most of them located in the interior of Alaska. We also estimated that 60-80% of all CH4 produced in Alaskan lakes could be taken up by methanotrophs in the lake water column, showing the significant influence of aerobic methane oxidation of boreal lakes to the global CH4 budget.

  3. The effect of acute aerobic and resistance exercise on working memory.

    PubMed

    Pontifex, Matthew B; Hillman, Charles H; Fernhall, Bo; Thompson, Kelli M; Valentini, Teresa A

    2009-04-01

    The goal of this investigation was to assess the influence of acute bouts of aerobic versus resistance exercise on the executive control of working memory. Twenty-one young adult participants completed a cardiorespiratory fitness test and maximal strength tests. On subsequent days, task performance measures of reaction time (RT) and accuracy were collected while participants completed a modified Sternberg working memory task before the start of, immediately after, and 30 min after an intervention consisting of 30 min of either resistance or aerobic exercise and a seated rest control. Findings indicated shorter RT immediately and 30 min after acute aerobic exercise relative to the preexercise baseline with no such effects observed after resistance exercise or seated rest. Further, in the aerobic condition, a larger reduction in RT from the baseline occurred during task conditions requiring increased working memory capacity. Again, no effect was observed in the resistance exercise or the seated rest conditions. These data extend the current knowledge base by indicating that acute exercise-induced changes in cognition are disproportionately related to executive control and may be specific to the aerobic exercise domain.

  4. Biparental incubation-scheduling: no experimental evidence for major energetic constraints

    PubMed Central

    Cresswell, Will; Rutten, Anne L.; Valcu, Mihai; Kempenaers, Bart

    2015-01-01

    Incubation is energetically demanding, but it is debated whether these demands constrain incubation-scheduling (i.e., the length, constancy, and timing of incubation bouts) in cases where both parents incubate. Using 2 methods, we experimentally reduced the energetic demands of incubation in the semipalmated sandpiper, a biparental shorebird breeding in the harsh conditions of the high Arctic. First, we decreased the demands of incubation for 1 parent only by exchanging 1 of the 4 eggs for an artificial egg that heated up when the focal bird incubated. Second, we reanalyzed the data from the only published experimental study that has explicitly tested energetic constraints on incubation-scheduling in a biparentally incubating species (Cresswell et al. 2003). In this experiment, the energetic demands of incubation were decreased for both parents by insulating the nest cup. We expected that the treated birds, in both experiments, would change the length of their incubation bouts, if biparental incubation-scheduling is energetically constrained. However, we found no evidence that heating or insulation of the nest affected the length of incubation bouts: the combined effect of both experiments was an increase in bout length of 3.6min (95% CI: −33 to 40), which is equivalent to a 0.5% increase in the length of the average incubation bout. These results demonstrate that the observed biparental incubation-scheduling in semipalmated sandpipers is not primarily driven by energetic constraints and therefore by the state of the incubating bird, implying that we still do not understand the factors driving biparental incubation-scheduling. PMID:25713473

  5. Biparental incubation-scheduling: no experimental evidence for major energetic constraints.

    PubMed

    Bulla, Martin; Cresswell, Will; Rutten, Anne L; Valcu, Mihai; Kempenaers, Bart

    2015-01-01

    Incubation is energetically demanding, but it is debated whether these demands constrain incubation-scheduling (i.e., the length, constancy, and timing of incubation bouts) in cases where both parents incubate. Using 2 methods, we experimentally reduced the energetic demands of incubation in the semipalmated sandpiper, a biparental shorebird breeding in the harsh conditions of the high Arctic. First, we decreased the demands of incubation for 1 parent only by exchanging 1 of the 4 eggs for an artificial egg that heated up when the focal bird incubated. Second, we reanalyzed the data from the only published experimental study that has explicitly tested energetic constraints on incubation-scheduling in a biparentally incubating species (Cresswell et al. 2003). In this experiment, the energetic demands of incubation were decreased for both parents by insulating the nest cup. We expected that the treated birds, in both experiments, would change the length of their incubation bouts, if biparental incubation-scheduling is energetically constrained. However, we found no evidence that heating or insulation of the nest affected the length of incubation bouts: the combined effect of both experiments was an increase in bout length of 3.6min (95% CI: -33 to 40), which is equivalent to a 0.5% increase in the length of the average incubation bout. These results demonstrate that the observed biparental incubation-scheduling in semipalmated sandpipers is not primarily driven by energetic constraints and therefore by the state of the incubating bird, implying that we still do not understand the factors driving biparental incubation-scheduling.

  6. Guano exposed: Impact of aerobic conditions on bat fecal microbiota.

    PubMed

    Fofanov, Viacheslav Y; Furstenau, Tara N; Sanchez, Daniel; Hepp, Crystal M; Cocking, Jill; Sobek, Colin; Pagel, Nicole; Walker, Faith; Chambers, Carol L

    2018-06-01

    Bats and their associated guano microbiota provide important terrestrial and subterranean ecosystem services and serve as a reservoir for a wide range of epizootic and zoonotic diseases. Unfortunately, large-scale studies of bats and their guano microbiotas are limited by the time and cost of sample collection, which requires specially trained individuals to work at night to capture bats when they are most active. Indirectly surveying bat gut microbiota through guano deposits could be a more cost-effective alternative, but it must first be established whether the postdefecation exposure to an aerobic environment has a large impact on the guano microbial community. A number of recent studies on mammalian feces have shown that the impact of aerobic exposure is highly species specific; therefore, it is difficult to predict how exposure will affect the bat guano microbiota without empirical data. In our study, we collected fresh guano samples from 24 individuals of 10 bat species that are common throughout the arid environments of the American southwest and subjected the samples to 0, 1, and 12 hr of exposure. The biodiversity decreased rapidly after the shift from an anaerobic to an aerobic environment-much faster than previously reported in mammalian species. However, the relative composition of the core guano microbiota remained stable and, using highly sensitive targeted PCR methods, we found that pathogens present in the original, non-exposed samples could still be recovered after 12 hr of exposure. These results suggest that with careful sample analysis protocols, a more efficient passive collection strategy is feasible; for example, guano could be collected on tarps placed near the roost entrance. Such passive collection methods would greatly reduce the cost of sample collection by allowing more sites or roosts to be surveyed with a fraction of trained personnel, time, and effort investments needed.

  7. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving

    DTIC Science & Technology

    2013-09-30

    Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving...Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving 5a...two day period in September, 2012. The first major huddle to the study was to determine the effect of the overnight shipping of the viability of

  8. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving

    DTIC Science & Technology

    2014-09-30

    that are too small have less effective results with mechanical trituration that follows digestion). 5. Move dish and sample into the cell culture...Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving...Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving 5a

  9. Developing Rural Business Incubators.

    ERIC Educational Resources Information Center

    Weinberg, Mark L.; Burnier, DeLysa

    1991-01-01

    Offers background on rural entrepreneurship and incubation in the United States, with particular focus on rural incubators at community colleges and regional incubation systems. Explains how incubators, which provide shared services and business/management assistance for tenant companies, differ from other entrepreneurial development strategies.…

  10. BIODEGRADATION KINETICS AND TOXICITY OF VEGETABLE OIL TRIACYLGLYCEROLS UNDER AEROBIC CONDITIONS

    EPA Science Inventory

    The aerobic biodegradation of five triacylglycerols (TAGs), three liquids [triolein (OOO), trilinolein (LLL), and trilinolenin (LnLnLn)] and two solids [tripalmitin (PPP) and tristearin (SSS)] was studied in water. Respirometry tests were designed and conducted to determine the b...

  11. Comparison of aerobic conjunctival bacterial flora in pregnant, reproductive-aged and postmenopausal women

    PubMed Central

    Balikoglu-Yilmaz, Melike; Sen, Emine; Sevket, Osman; Polat, Yusuf; Karabulut, Aysun; Uysal, Omer

    2012-01-01

    AIM To evaluate the effect of hormonal status on aerobic conjunctival flora in women. METHODS One hundred fifty-eight women [reproductive-aged (n=55), pregnant (n=51), and postmenopausal (n=52)] who admitted to outpatient clinic of Obstetrics and Gynecology Department of Denizli State Hospital were enrolled. Age, body-mass index (BMI), obstetric history, cigarette smoking, drug usage, presence of systemic disease, and intraocular pressure (IOP) were recorded for each patient. The samples were taken from the lower fornix with two culture swabs and directly incubated in culture containing 5% sheep blood, eosin-methylene blue and chocolate agar. The other swab specimen was Gram stained. All growths and microscopic results were analyzed. RESULTS The coagulase-negative Staphylococcus was the predominant organism isolated in the conjunctival samples in both three groups. The aerobic microorganism growth rate for all isolated aerobic organisms revealed no significant change in the three groups (P >0.05). The conjunctival culture positivity rates were similar in the three groups (49% in reproductive-aged, 57% in pregnant and 58% in postmenopausal women) (P >0.05). Age, IOP, BMI, gravidity, parity, cigarette smoking, drug usage, and presence of systemic diseases did not have an effect on culture positivity in three groups. CONCLUSION Results of this study showed that conjunctival aerobic flora and bacterial colonization did not differ between reproductive-aged, pregnant and postmenopausal women. PMID:23275909

  12. Incubation temperature impacts nestling growth and survival in an open-cup nesting passerine.

    PubMed

    Ospina, Emilie A; Merrill, Loren; Benson, Thomas J

    2018-03-01

    For oviparous species such as birds, conditions experienced while in the egg can have long-lasting effects on the individual. The impact of subtle changes in incubation temperature on nestling development, however, remains poorly understood, especially for open-cup nesting species with altricial young. To investigate how incubation temperature affects nestling development and survival in such species, we artificially incubated American robin ( Turdus migratorius ) eggs at 36.1°C ("Low" treatment) and 37.8°C ("High" treatment). Chicks were fostered to same-age nests upon hatching, and we measured mass, tarsus, and wing length of experimental nestlings and one randomly selected, naturally incubated ("Natural"), foster nest-mate on days 7 and 10 posthatch. We found significant effects of incubation temperature on incubation duration, growth, and survival, in which experimentally incubated nestlings had shorter incubation periods (10.22, 11.50, and 11.95 days for High, Low, and Natural eggs, respectively), and nestlings from the Low treatment were smaller and had reduced survival compared to High and Natural nestlings. These results highlight the importance of incubation conditions during embryonic development for incubation duration, somatic development, and survival. Moreover, these findings indicate that differences in incubation temperature within the natural range of variation can have important carryover effects on growth and survival in species with altricial young.

  13. Forced Incubation.

    ERIC Educational Resources Information Center

    Wells, Donald H.

    1996-01-01

    A survey of 98 college professors regarding their creative writing habits and productivity found that creative productivity was significantly correlated with the use of forced incubation (deliberate time delay to allow naturally unenhanced incubation of ideas to occur). Professors who intentionally set aside manuscripts for a period of time to…

  14. Incubation environment impacts the social cognition of adult lizards.

    PubMed

    Siviter, Harry; Deeming, D Charles; van Giezen, M F T; Wilkinson, Anna

    2017-11-01

    Recent work exploring the relationship between early environmental conditions and cognition has shown that incubation environment can influence both brain anatomy and performance in simple operant tasks in young lizards. It is currently unknown how it impacts other, potentially more sophisticated, cognitive processes. Social-cognitive abilities, such as gaze following and social learning, are thought to be highly adaptive as they provide a short-cut to acquiring new information. Here, we investigated whether egg incubation temperature influenced two aspects of social cognition, gaze following and social learning in adult reptiles ( Pogona vitticeps ). Incubation temperature did not influence the gaze following ability of the bearded dragons; however, lizards incubated at colder temperatures were quicker at learning a social task and faster at completing that task. These results are the first to show that egg incubation temperature influences the social cognitive abilities of an oviparous reptile species and that it does so differentially depending on the task. Further, the results show that the effect of incubation environment was not ephemeral but lasted long into adulthood. It could thus have potential long-term effects on fitness.

  15. Biodegradation of bilge water: Batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions.

    PubMed

    Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S

    2018-07-01

    The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    NASA Astrophysics Data System (ADS)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  17. Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase.

    PubMed

    Cheng, Huijun; Asakura, Yuya; Kanda, Kosuke; Fukui, Ryo; Kawano, Yoshihisa; Okugawa, Yuki; Tashiro, Yukihiro; Sakai, Kenji

    2018-04-12

    Autothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation. Cell lysis activities toward gram-negative bacteria, but not gram-positive bacteria, were detected in the ATAD samples in the middle and final phases. During shaking incubation in initial-phase samples at 30 °C, major operational taxonomic units (OTUs) related to Acinetobacter indicus and Arcobacter cibarius dramatically increased along with decreases in several major OTUs. In middle-phase samples at 45 °C, we observed a major alteration of OTUs related to Caldicellulosiruptor bescii and Aciditerrimonas ferrireducens, together with distinct decreases in several other OTUs. Final-phase samples maintained a stable bacterial community with major OTUs showing limited similarities to Heliorestis baculata, Caldicellulosiruptorbescii, and Ornatilinea apprima. In conclusion, the changes in the bacterial community observed during ATAD could be partially attributed to the cell lysis activity toward gram-negative bacteria in the middle and final phases. The microcosm assay suggested that certain physical factors, such as a high oxygen supply and shearing forces, also might contribute to bacterial community changes in the initial and middle phases, and to the stable bacterial community in the final phase of ATAD. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Sequential anaerobic/aerobic biodegradation of chloroethenes--aspects of field application.

    PubMed

    Tiehm, Andreas; Schmidt, Kathrin R

    2011-06-01

    Because of a range of different industrial activities, sites contaminated with chloroethenes are a world-wide problem. Chloroethenes can be biodegraded by reductive dechlorination under anaerobic conditions as well as by oxidation under aerobic conditions. The tendency of chloroethenes to undergo reductive dechlorination decreases with a decreasing number of chlorine substituents, whereas with less chlorine substituents chloroethenes more easily undergo oxidative degradation. There is currently a growing interest in aerobic metabolic degradation of chloroethenes, which demonstrates advantages compared to cometabolic degradation pathways. Sequential anaerobic/aerobic biodegradation can overcome the disadvantages of reductive dechlorination and leads to complete mineralization of the chlorinated pollutants. This approach shows promise for site remediation in natural settings and in engineered systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  20. Biotransformation of gabapentin in surface water matrices under different redox conditions and the occurrence of one major TP in the aquatic environment.

    PubMed

    Henning, Nina; Kunkel, Uwe; Wick, Arne; Ternes, Thomas A

    2018-06-15

    Laboratory-scale incubation experiments in water/sediment systems were conducted to test the transformation behavior of the anticonvulsant gabapentin (GBP) under different environmental conditions (aerobic, anaerobic, with abiotic controls). GBP was transformed by biological processes as it was eliminated quickly under aerobic conditions (dissipation time 50% of initial concentration (DT 50 ): 2-7 days) whereas no decrease was observed under anaerobic conditions. Measurements via high resolution mass spectrometry (LC-Orbitrap-MS) revealed eight biological transformation products (TPs). Three of them were identified with reference standards (GBP-Lactam, TP186, TP213), while for the other five TPs tentative structures were proposed from information by MS 2 /MS 3 experiments. Furthermore, the quantitatively most relevant TP GBP-Lactam was formed via intramolecular amidation (up to 18% of initial GBP concentration). Incubation experiments with GBP-Lactam revealed a higher stability against biotic degradation (DT 50 : 12 days) in contrast to GBP, while it was stable under anaerobic and abiotic conditions. Besides GBP, GBP-Lactam was detected in surface water in the μg L -1 range. Finally, GBP and GBP-Lactam were found in potable water with concentrations up to 0.64 and 0.07 μg L -1 , respectively. According to the elevated environmental persistence of GBP-Lactam compared to GBP and its presumed enhanced toxicity, we recommend to involve GBP-Lactam into monitoring programs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Evaluation of a brief aerobic exercise intervention for high anxiety sensitivity.

    PubMed

    Broman-Fulks, Joshua J; Storey, Katelyn M

    2008-04-01

    Anxiety sensitivity, or the belief that anxiety-related sensations can have negative consequences, has been shown to play an important role in the etiology and maintenance of panic disorder and other anxiety-related pathology. Aerobic exercise involves exposure to physiological cues similar to those experienced during anxiety reactions. The present study sought to investigate the efficacy of a brief aerobic exercise intervention for high anxiety sensitivity. Accordingly, 24 participants with high anxiety sensitivity scores (Anxiety Sensitivity Index-Revised scores >28) were randomly assigned to complete either six 20-minute sessions of aerobic exercise or a no-exercise control condition. The results indicated that individuals assigned to the aerobic exercise condition reported significantly less anxiety sensitivity subsequent to exercise, whereas anxiety sensitivity scores among non-exercisers did not significantly change. The clinical research and public health implications of these findings are discussed, and several potential directions for additional research are recommended.

  2. Sludge stabilization through aerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, R.B.; Smith, D.G.; Bennett, E.R.

    1979-10-01

    The aerobic digestion process with certain modifications is evaluated as an alternative for sludge processing capable of developing a product with characteristics required for land application. Environmental conditions, including temperature, solids concentration, and digestion time, that affect the aerobic digestion of a mixed primary sludge-trickling filter humus are investigated. Variations in these parameters that influence the characteristics of digested sludge are determined, and the parameters are optimized to: provide the maximum rate of volatile solids reduction; develop a stable, nonodorous product sludge; and provide the maximum rate of oxidation of the nitrogenous material present in the feed sludge. (3 diagrams,more » 9 graphs, 15 references, 3 tables)« less

  3. Incubation environment impacts the social cognition of adult lizards

    PubMed Central

    van Giezen, M. F. T.

    2017-01-01

    Recent work exploring the relationship between early environmental conditions and cognition has shown that incubation environment can influence both brain anatomy and performance in simple operant tasks in young lizards. It is currently unknown how it impacts other, potentially more sophisticated, cognitive processes. Social-cognitive abilities, such as gaze following and social learning, are thought to be highly adaptive as they provide a short-cut to acquiring new information. Here, we investigated whether egg incubation temperature influenced two aspects of social cognition, gaze following and social learning in adult reptiles (Pogona vitticeps). Incubation temperature did not influence the gaze following ability of the bearded dragons; however, lizards incubated at colder temperatures were quicker at learning a social task and faster at completing that task. These results are the first to show that egg incubation temperature influences the social cognitive abilities of an oviparous reptile species and that it does so differentially depending on the task. Further, the results show that the effect of incubation environment was not ephemeral but lasted long into adulthood. It could thus have potential long-term effects on fitness. PMID:29291066

  4. Pavlovian Incubation of US Signal Value

    ERIC Educational Resources Information Center

    Goddard, Murray J.

    2013-01-01

    Four experiments with rats examined Pavlovian incubation, in which responding increases when Pavlovian conditioning is followed by a testing delay. In a within-subjects design, Experiment 1 first showed that when a single food pellet unconditioned stimulus (US) signaled the delivery of three additional pellets, responding after the single US was…

  5. Some Incubated Thoughts on Incubation.

    ERIC Educational Resources Information Center

    Guilford, J. P.

    1979-01-01

    The author reviews research and theory about the role of incubation (a period in which there is no apparent activity toward problem solving but some progress toward a solution occurs) in creative thinking. Note: For related information, see EC 120 233-238. (CL)

  6. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    PubMed

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Thermal management in closed incubators: New software for assessing the impact of humidity on the optimal incubator air temperature.

    PubMed

    Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Durand, Estelle; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre

    2017-08-01

    Low-birth-weight (LBW) neonates are nursed in closed incubators to prevent transcutaneous water loss. The RH's impact on the optimal incubator air temperature setting has not been studied. On the basis of a clinical cohort study, we modelled all the ambient parameters influencing body heat losses and gains. The algorithm quantifies the change in RH on the air temperature, to maintain optimal thermal conditions in the incubator. Twenty-three neonates (gestational age (GA): 30.0 [28.9-31.6] weeks) were included. A 20% increase and a 20% decrease in the RH induced a change in air temperature of between -1.51 and +1.85°C for a simulated 650g neonate (GA: 26 weeks), between -1.66 and +1.87°C for a 1000g neonate (GA: 31 weeks), and between -1.77 and +1.97°C for a 2000g neonate (GA: 33 weeks) (p<0.001). According to regression analyses, the optimal incubator air temperature=a+b relative humidity +c age +d weight (p<0.001). We have developed new mathematical equations for calculating the optimal temperature for the incubator air as a function of the latter's relative humidity. The software constitutes a decision support tool for improving patient care in routine clinical practice. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. The Central Amygdala Nucleus is Critical for Incubation of Methamphetamine Craving

    PubMed Central

    Li, Xuan; Zeric, Tamara; Kambhampati, Sarita; Bossert, Jennifer M; Shaham, Yavin

    2015-01-01

    Cue-induced methamphetamine seeking progressively increases after withdrawal but mechanisms underlying this ‘incubation of methamphetamine craving' are unknown. Here we studied the role of central amygdala (CeA), ventral medial prefrontal cortex (vmPFC), and orbitofrontal cortex (OFC), brain regions implicated in incubation of cocaine and heroin craving, in incubation of methamphetamine craving. We also assessed the role of basolateral amygdala (BLA) and dorsal medial prefrontal cortex (dmPFC). We trained rats to self-administer methamphetamine (10 days; 9 h/day, 0.1 mg/kg/infusion) and tested them for cue-induced methamphetamine seeking under extinction conditions during early (2 days) or late (4–5 weeks) withdrawal. We first confirmed that ‘incubation of methamphetamine craving' occurs under our experimental conditions. Next, we assessed the effect of reversible inactivation of CeA or BLA by GABAA+GABAB receptor agonists (muscimol+baclofen, 0.03+0.3 nmol) on cue-induced methamphetamine seeking during early and late withdrawal. We also assessed the effect of muscimol+baclofen reversible inactivation of vmPFC, dmPFC, and OFC on ‘incubated' cue-induced methamphetamine seeking during late withdrawal. Lever presses in the cue-induced methamphetamine extinction tests were higher during late withdrawal than during early withdrawal (incubation of methamphetamine craving). Muscimol+baclofen injections into CeA but not BLA decreased cue-induced methamphetamine seeking during late but not early withdrawal. Muscimol+baclofen injections into dmPFC, vmPFC, or OFC during late withdrawal had no effect on incubated cue-induced methamphetamine seeking. Together with previous studies, results indicate that the CeA has a critical role in incubation of both drug and non-drug reward craving and demonstrate an unexpected dissociation in mechanisms of incubation of methamphetamine vs cocaine craving. PMID:25475163

  9. Organic Complexation of Dissolved Copper and Iron from Shipboard Incubations in the Central California Current System: Investigating the Impacts of Light Conditions and Phytoplankton Growth on Iron- and Copper-Binding Ligand Characteristics

    NASA Astrophysics Data System (ADS)

    Mellett, T.; Parker, C.; Brown, M.; Coale, T.; Duckham, C.; Chappell, D.; Maldonado, M. T.; Bruland, K. W.; Buck, K. N.

    2016-02-01

    Two shipboard incubation experiments were carried out in July of 2014 to investigate potential sources and sinks of iron- and copper-binding organic ligands in the surface ocean. Seawater for the experiments was collected from the central California Current System (cCCS) and incubated under varying light conditions and in the presence and absence of natural phytoplankton communities. Incubation treatments were sampled over a period of up to 3 days for measurements of total dissolved copper and iron, and for the concentration and conditional stability constants of copper- and iron-binding organic ligands. Dissolved copper and iron were determined by inductively coupled plasma-mass spectrometry (ICP-MS) following preconcentration on a Nobias PA1 resin. Organic ligand characteristics for iron and copper were determined using a method of competitive ligand exchange-absorptive cathodic stripping voltammetry (CLE-ACSV) with the added competing ligand salicylaldoxime. Trends in ligand concentrations and conditional stability constants across the different treatments and over the course of the incubation experiments will be presented.

  10. Interaction between phosphorus removal and hybrid granular sludge formation under low hydraulic selection pressure at alternating anaerobic/aerobic conditions.

    PubMed

    Lang, Longqi; Wan, Junfeng; Zhang, Jing; Wang, Jie; Wang, Yan

    2015-01-01

    The hybrid granular sludge (HGS) formation and its performances on phosphorus removal were investigated in a sequencing batch airlift reactor. Under conditions of low superficial air velocity (SAV = 0.68 cm s(-1)) and relatively long settling time (15-30 min), aerobic granules appeared and coexisted with bio-flocs after 120 days operation. At the stable phase, 54% of total suspended solid (m/m) was granular sludge with the two typical sizes (D(mean) = 1.77 ± 0.33 and 0.89 ± 0.11 mm) in the reactor, where the settling velocity was 98.7 ± 12.4 and 37.8 ± 0.9 m h(-1) for the big and small granules. With progressive extension of anaerobic time from 15 to 60 min before aerobic condition per cycle during the whole experiment, the HGS system can be maintained at a high total phosphorus removal efficiency (ca. 99%) since Day-270. The phosphorus content (wt %) in biomass was respectively 9.54 ± 0.29, 7.60 ± 0.48 and 6.15 ± 0.59 for the big granules, small granules and flocs.

  11. Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27

    PubMed Central

    Park, Doyoung; Kim, Hayeon

    2017-01-01

    ABSTRACT N2O-reducing organisms with nitrous oxide reductases (NosZ) are known as the only biological sink of N2O in the environment. Among the most abundant nosZ genes found in the environment are nosZ genes affiliated with the understudied Gemmatimonadetes phylum. In this study, a unique regulatory mechanism of N2O reduction in Gemmatimonas aurantiaca strain T-27, an isolate affiliated with the Gemmatimonadetes phylum, was examined. Strain T-27 was incubated with N2O and/or O2 as the electron acceptor. Significant N2O reduction was observed only when O2 was initially present. When batch cultures of strain T-27 were amended with O2 and N2O, N2O reduction commenced after O2 was depleted. In a long-term incubation with the addition of N2O upon depletion, the N2O reduction rate decreased over time and came to an eventual stop. Spiking of the culture with O2 resulted in the resuscitation of N2O reduction activity, supporting the hypothesis that N2O reduction by strain T-27 required the transient presence of O2. The highest level of nosZ transcription (8.97 nosZ transcripts/recA transcript) was observed immediately after O2 depletion, and transcription decreased ∼25-fold within 85 h, supporting the observed phenotype. The observed difference between responses of strain T-27 cultures amended with and without N2O to O2 starvation suggested that N2O helped sustain the viability of strain T-27 during temporary anoxia, although N2O reduction was not coupled to growth. The findings in this study suggest that obligate aerobic microorganisms with nosZ genes may utilize N2O as a temporary surrogate for O2 to survive periodic anoxia. IMPORTANCE Emission of N2O, a potent greenhouse gas and ozone depletion agent, from the soil environment is largely determined by microbial sources and sinks. N2O reduction by organisms with N2O reductases (NosZ) is the only known biological sink of N2O at environmentally relevant concentrations (up to ∼1,000 parts per million by volume [ppmv

  12. Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27.

    PubMed

    Park, Doyoung; Kim, Hayeon; Yoon, Sukhwan

    2017-06-15

    N 2 O-reducing organisms with nitrous oxide reductases (NosZ) are known as the only biological sink of N 2 O in the environment. Among the most abundant nosZ genes found in the environment are nosZ genes affiliated with the understudied Gemmatimonadetes phylum. In this study, a unique regulatory mechanism of N 2 O reduction in Gemmatimonas aurantiaca strain T-27, an isolate affiliated with the Gemmatimonadetes phylum, was examined. Strain T-27 was incubated with N 2 O and/or O 2 as the electron acceptor. Significant N 2 O reduction was observed only when O 2 was initially present. When batch cultures of strain T-27 were amended with O 2 and N 2 O, N 2 O reduction commenced after O 2 was depleted. In a long-term incubation with the addition of N 2 O upon depletion, the N 2 O reduction rate decreased over time and came to an eventual stop. Spiking of the culture with O 2 resulted in the resuscitation of N 2 O reduction activity, supporting the hypothesis that N 2 O reduction by strain T-27 required the transient presence of O 2 The highest level of nosZ transcription (8.97 nosZ transcripts/ recA transcript) was observed immediately after O 2 depletion, and transcription decreased ∼25-fold within 85 h, supporting the observed phenotype. The observed difference between responses of strain T-27 cultures amended with and without N 2 O to O 2 starvation suggested that N 2 O helped sustain the viability of strain T-27 during temporary anoxia, although N 2 O reduction was not coupled to growth. The findings in this study suggest that obligate aerobic microorganisms with nosZ genes may utilize N 2 O as a temporary surrogate for O 2 to survive periodic anoxia. IMPORTANCE Emission of N 2 O, a potent greenhouse gas and ozone depletion agent, from the soil environment is largely determined by microbial sources and sinks. N 2 O reduction by organisms with N 2 O reductases (NosZ) is the only known biological sink of N 2 O at environmentally relevant concentrations (up to ∼1

  13. Carbon Mineralization Can Be Sustained or Even Stimulated under Fluctuating Redox Conditions in Tropical and Temperate Soils

    NASA Astrophysics Data System (ADS)

    Huang, W.; Hall, S. J.

    2017-12-01

    Soil carbon (C) mineralization is widely thought to be affected by O2 availability, and anaerobiosis represents a significant global mechanism of C stabilization. However, mineral-associated organic C (e.g. Fe-bound organic C) may be vulnerable to redox fluctuations due to release following Fe reduction, which could counteract protective effects of anaerobiosis. Many soils, including temperate Mollisols and tropical Oxisols, experience fluctuating redox conditions following moisture variations that could impact C cycling and stabilization. Here we incubated two soils with C4 leaf litter at different duration and frequencies of anaerobic periods for 128 days to investigate how redox fluctuations affect soil C mineralization. The treatments included static aerobic (control), and 2-, 4-, 8- and 12- day anaerobic followed by 4-day aerobic. We measured CO2, CH4, and their C isotope ratios. Longer durations of anaerobic conditions promoted greater Fe reduction and more DOC released. Notably, in both soils despite their large differences in composition, the production of CO2 and CH4 was stimulated under aerobic conditions following anaerobic conditions (relative to the control), which compensated for the decrease under anaerobic conditions. After 128 days, cumulative C mineralization in the control was similar between the Mollisol (9.7 mg C g-1) and the Oxisol (10.1 mg C g-1). The value in the Mollisol was significantly higher in the 12-day anaerobic treatment (11.2 mg C g-1) than the aerobic control and the 2-day anaerobic treatment (9.7 mg C g-1). In the Oxisol, cumulative C mineralization was not significantly affected by any of the fluctuating redox treatments relative to the control. Our findings challenge theory by showing that redox fluctuations can counteract the suppressive effects of O2 limitation on decomposition.

  14. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils

    DOE PAGES

    Schadel, Christina; Bader, Martin K. F.; Schuur, Edward; ...

    2016-01-01

    Increasing temperatures in northern high latitudes are causing permafrost to thaw, making large amounts of previously frozen organic matter vulnerable to microbial decomposition. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studiesmore » from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systemsreleasingCO2 andCH4 for a given amount of C.« less

  15. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    NASA Astrophysics Data System (ADS)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  16. A System for Incubations at High Gas Partial Pressure

    PubMed Central

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120°C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid–gas–rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could

  17. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    USGS Publications Warehouse

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    1999-01-01

    Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  18. Examining physiotherapist use of structured aerobic exercise testing to decrease barriers to aerobic exercise.

    PubMed

    Foster B Sc, Evan; Fraser, Julia E; Inness PhD, Elizabeth L; Munce, Sarah; Biasin, Louis; Poon, Vivien; Bayley, Mark

    2018-04-03

    To determine the frequency of physiotherapist-administered aerobic exercise testing/training, the proportion of physiotherapists who administer this testing/training, and the barriers that currently exist across different practice environments. A secondary objective is to identify the learning needs of physiotherapists for the development of an education curriculum in aerobic exercise testing and training with electrocardiograph (ECG) administration and interpretation. National, cross-sectional survey. Registered physiotherapists practicing in Canada. Out of 137 participants, most (75%) physiotherapists prescribed aerobic exercise on a regular basis (weekly); however, 65% had never conducted an aerobic exercise test. There were no significant differences in frequency of aerobic exercise testing across different practice environments or across years of physiotherapy experience. Physiotherapists perceived the main barriers to aerobic exercise testing as being a lack of equipment/space (78%), time (65%), and knowledge (56%). Although most (82%) were uncomfortable administering 12-lead ECG-monitored aerobic exercise tests, 60% stated they would be interested in learning more about ECG interpretation. This study found that physiotherapists are regularly implementing aerobic exercise. This exercise was infrequently guided by formal aerobic exercise testing, which could increase access to safe and effective exercise within the optimal aerobic training zone. As well, this could facilitate training in patients with cardiovascular diagnoses that require additional testing for medical clearance. Increased ECG training and access to equipment for physiotherapists may augment pre-screening aerobic exercise testing. This training should include learning the key arrhythmias for aerobic exercise test termination as defined by the American College of Sports Medicine.

  19. [Ambient air interference in oxygen intake measurements in liquid incubating media with the use of open polarographic cells].

    PubMed

    Miniaev, M V; Voronchikhina, L I

    2007-01-01

    A model of oxygen intake by aerobic bio-objects in liquid incubating media was applied to investigate the influence air-media interface area on accuracy of measuring the oxygen intake and error value. It was shown that intrusion of air oxygen increases the relative error to 24% in open polarographic cells and to 13% in cells with a reduced interface area. Results of modeling passive media oxygenation laid a basis for proposing a method to reduce relative error by 66% for open cells and by 15% for cells with a reduced interface area.

  20. Effects of environmental factors on incubation patterns of Greater Sage-Grouse

    USGS Publications Warehouse

    Coates, Peter S.; Delehanty, David J.

    2008-01-01

    Birds in which only one sex incubates the eggs are often faced with a direct conflict between foraging to meet metabolic needs and incubation. Knowledge of environmental and ecological factors that shape life-history strategies of incubation is limited. We used continuous videography to make precise measurements of female Greater Sage-Grouse (Centrocercus urophasianus) incubation constancy (percentage of time spent at the nest in a 24-hour period) and recess duration. We used an information-theoretic approach to evaluate incubation patterns in relation to grouse age, timing of incubation, raven abundance, microhabitat, weather, and food availability. Overall, sage-grouse females showed an incubation constancy of 96% and a distinctive bimodal distribution of brief incubation recesses that peaked at sunset and 30 min prior to sunrise. Grouse typically returned to their nests during low light conditions. Incubation constancy of yearlings was lower than that of adults, particularly in the later stages of incubation. Yearlings spent more time away from nests later in the morning and earlier in the evening compared to adults. Video images revealed that nearly all predation events by Common Ravens (Corvus corax), the most frequently recorded predator at sage-grouse nests, took place during mornings and evenings after sunrise and before sunset, respectively. These were the times of the day when sage-grouse typically returned from incubation recesses. Recess duration was negatively related to raven abundance. We found evidence that incubation constancy increased with greater visual obstruction, usually from vegetation, of nests. An understanding of how incubation patterns relate to environmental factors will help managers make decisions aimed at increasing productivity through successful incubation.

  1. Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties?

    PubMed Central

    2014-01-01

    In biparental species, parents may be in conflict over how much they invest into their offspring. To understand this conflict, parental care needs to be accurately measured, something rarely done. Here, we quantitatively describe the outcome of parental conflict in terms of quality, amount, and timing of incubation throughout the 21-day incubation period in a population of semipalmated sandpipers (Calidris pusilla) breeding under continuous daylight in the high Arctic. Incubation quality, measured by egg temperature and incubation constancy, showed no marked difference between the sexes. The amount of incubation, measured as length of incubation bouts, was on average 51min longer per bout for females (11.5h) than for males (10.7h), at first glance suggesting that females invested more than males. However, this difference may have been offset by sex differences in the timing of incubation; females were more often off nest during the warmer period of the day, when foraging conditions were presumably better. Overall, the daily timing of incubation shifted over the incubation period (e.g., for female incubation from evening–night to night–morning) and over the season, but varied considerably among pairs. At one extreme, pairs shared the amount of incubation equally, but one parent always incubated during the colder part of the day; at the other extreme, pairs shifted the start of incubation bouts between days so that each parent experienced similar conditions across the incubation period. Our results highlight how the simultaneous consideration of different aspects of care across time allows sex-specific investment to be more accurately quantified. PMID:24347997

  2. Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties?

    PubMed

    Bulla, Martin; Valcu, Mihai; Rutten, Anne L; Kempenaers, Bart

    2014-01-01

    In biparental species, parents may be in conflict over how much they invest into their offspring. To understand this conflict, parental care needs to be accurately measured, something rarely done. Here, we quantitatively describe the outcome of parental conflict in terms of quality, amount, and timing of incubation throughout the 21-day incubation period in a population of semipalmated sandpipers ( Calidris pusilla ) breeding under continuous daylight in the high Arctic. Incubation quality, measured by egg temperature and incubation constancy, showed no marked difference between the sexes. The amount of incubation, measured as length of incubation bouts, was on average 51min longer per bout for females (11.5h) than for males (10.7h), at first glance suggesting that females invested more than males. However, this difference may have been offset by sex differences in the timing of incubation; females were more often off nest during the warmer period of the day, when foraging conditions were presumably better. Overall, the daily timing of incubation shifted over the incubation period (e.g., for female incubation from evening-night to night-morning) and over the season, but varied considerably among pairs. At one extreme, pairs shared the amount of incubation equally, but one parent always incubated during the colder part of the day; at the other extreme, pairs shifted the start of incubation bouts between days so that each parent experienced similar conditions across the incubation period. Our results highlight how the simultaneous consideration of different aspects of care across time allows sex-specific investment to be more accurately quantified.

  3. Role of childhood aerobic fitness in successful street crossing.

    PubMed

    Chaddock, Laura; Neider, Mark B; Lutz, Aubrey; Hillman, Charles H; Kramer, Arthur F

    2012-04-01

    Increased aerobic fitness is associated with improved cognition, brain health, and academic achievement during preadolescence. In this study, we extended these findings by examining the relationship between aerobic fitness and an everyday real-world task: street crossing. Because street crossing can be a dangerous multitask challenge and is a leading cause of injury in children, it is important to find ways to improve pedestrian safety. A street intersection was modeled in a virtual environment, and higher-fit (n = 13, 7 boys) and lower-fit (n = 13, 5 boys) 8- to 10-yr-old children, as determined by V˙O(2max) testing, navigated trafficked roads by walking on a treadmill that was integrated with an immersive virtual world. Child pedestrians crossed the street while undistracted, listening to music, or conversing on a hands-free cellular phone. Cell phones impaired street crossing success rates compared with the undistracted or music conditions for all participants (P = 0.004), a result that supports previous research. However, individual differences in aerobic fitness influenced these patterns (fitness × condition interaction, P = 0.003). Higher-fit children maintained street crossing success rates across all three conditions (paired t-tests, all P > 0.4), whereas lower-fit children showed decreased success rates when on the phone, relative to the undistracted (P = 0.018) and music (P = 0.019) conditions. The results suggest that higher levels of childhood aerobic fitness may attenuate the impairment typically associated with multitasking during street crossing. It is possible that superior cognitive abilities of higher-fit children play a role in the performance differences during complex real-world tasks.

  4. Low Incubation Temperature Induces DNA Hypomethylation in Lizard Brains.

    PubMed

    Paredes, Ursula; Radersma, Reinder; Cannell, Naomi; While, Geoffrey M; Uller, Tobias

    2016-07-01

    Developmental stress can have organizational effects on suites of physiological, morphological, and behavioral characteristics. In lizards, incubation temperature is perhaps the most significant environmental variable affecting embryonic development. Wall lizards (Podarcis muralis) recently introduced by humans from Italy to England experience stressfully cool incubation conditions, which we here show reduce growth and increase the incidence of scale malformations. Using a methylation-sensitive AFLP protocol optimized for vertebrates, we demonstrate that this low incubation temperature also causes hypomethylation of DNA in brain tissue. A consistent pattern across methylation-susceptible AFLP loci suggests that hypomethylation is a general response and not limited to certain CpG sites. The functional consequences of hypomethylation are unknown, but it could contribute to genome stability and regulation of gene expression. Further studies of the effects of incubation temperature on DNA methylation in ectotherm vertebrates may reveal mechanisms that explain why the embryonic thermal environment often has physiological and behavioral consequences for offspring. © 2016 Wiley Periodicals, Inc.

  5. CYSTEAMINE PROTECTION OF GRASSHOPPER CHROMOSOMES FROM X-RAY-INDUCED ABERRATIONS UNDER AEROBIC AND ANAEROBIC CONDTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray-Chaudhuri, S.P.; Chaudhuri, J.P.; Chatterjee, S.

    1962-10-01

    The effect of cysteamine pre-treatment on the frequency of x-ray-induced chromosome aberrations was determined under both aerobic and anaerobic conditions by counting the dicentric bridges in the first division meiotic anaphase of the grasshopper, Gesonula punctifrons. Under aerobic conditions in the cysteamine- treated animals 20.73% bridges were scored as compared with 30 to 90% in the controls. Under anaerobic conditions the scores were 5.35% and 8.22% in the treated and controls, respectively. Thus the degree of protection by cysteamine under both aerobic and anaerobic conditions was found to be more or less the same. The possible mode of protection ismore » discussed. (auth)« less

  6. Rural Incubator Profile.

    ERIC Educational Resources Information Center

    Weinberg, Mark L.

    This profile summarizes the responses of 20 managers of rural business incubators, reporting on their operations, entry and exit policies, facility promotion, service arrangements and economic development outcomes. Incubators assist small businesses in the early stages of growth by providing them with rental space, shared services, management and…

  7. Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming.

    PubMed

    Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula

    2017-01-01

    Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation.

  8. Characterization of injury in isolated rat proximal tubules during cold incubation and rewarming

    PubMed Central

    Bienholz, Anja; Walter, Björn; Pless-Petig, Gesine; Guberina, Hana; Kribben, Andreas; Witzke, Oliver; Rauen, Ursula

    2017-01-01

    Organ shortage leads to an increased utilization of marginal organs which are particularly sensitive to storage-associated damage. Cold incubation and rewarming-induced injury is iron-dependent in many cell types. In addition, a chloride-dependent component of injury has been described. This work examines the injury induced by cold incubation and rewarming in isolated rat renal proximal tubules. The tissue storage solution TiProtec® and a chloride-poor modification, each with and without iron chelators, were used for cold incubation. Incubation was performed 4°C for up to 168 h, followed by rewarming in an extracellular buffer (3 h at 37°C). After 48, 120 and 168 h of cold incubation LDH release was lower in solutions containing iron chelators. After rewarming, injury increased especially after cold incubation in chelator-free solutions. Without addition of iron chelators LDH release showed a tendency to be higher in chloride-poor solutions. Following rewarming after 48 h of cold incubation lipid peroxidation was significantly decreased and metabolic activity was tendentially better in tubules incubated with iron chelators. Morphological alterations included mitochondrial swelling and fragmentation being partially reversible during rewarming. ATP content was better preserved in chloride-rich solutions. During rewarming, there was a further decline of ATP content in the so far best conditions and minor alterations under the other conditions, while oxygen consumption was not significantly different compared to non-stored control tubules. Results show an iron-dependent component of preservation injury during cold incubation and rewarming in rat proximal renal tubules and reveal a benefit of chloride for the maintenance of tubular energy state during cold incubation. PMID:28672023

  9. Activity and diversity of aerobic methanotrophs in a coastal marine oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Padilla, C. C.; Bristow, L. A.; Sarode, N. D.; Garcia-Robledo, E.; Girguis, P. R.; Thamdrup, B.; Stewart, F. J.

    2016-02-01

    The pelagic ocean is a sink for the potent greenhouse gas methane, with methane consumption regulated primarily by aerobic methane-oxidizing bacteria (MOB). Marine oxygen minimum zones (OMZs) contain the largest pool of pelagic methane in the oceans but remain largely unexplored for their potential to harbor MOB communities and contribute to methane cycling. Here, we present meta-omic and geochemical evidence that aerobic MOB are present and active in a coastal OMZ, in Golfo Dulce, Costa Rica. Oxygen concentrations were < 50 nM below 85 m, and sulfide accumulated below 140 m, with methane concentrations ranging from trace levels above the oxycline to 78 nM at 180 m. The upper OMZ (90 m) was characterized by an abundant MOB and methylotroph community representing diverse lineages of the Methylophilaceae, Methylophaga, and Methylococcales. Of these, Type I methanotrophs of the Order Methylococcales dominated , representing >5% of total 16S rRNA genes and >19% of 16S rRNA transcripts. This peak in ribosomal abundance and activity was affiliated with methane oxidation rates of 2.6 ± 0.7 nM d-1, measured in seawater incubations with estimated O2 concentrations of 50 nM. Rates fell to zero with the addition of acetylene, an inhibitor of aerobic methanotrophy. In contrast, methane oxidation was below detection at lower depths in the OMZ (100 m and 120 m). Metatranscriptome sequencing indicated a peak at 90 m in the expression of pathways essential to Methylococcales, including aerobic methanotrophy and the RuMP pathway of carbon assimilation, as well as the serine pathway of Type II methanotrophs. Preliminary analysis of single-cell genomes suggests distinct adaptations by Methylococcales from the Golfo Dulce, helping explain the persistence of putative aerobic methanotrophs under very low oxygen in this OMZ. Taken together, these data suggest the boundary layers of OMZs, despite extreme oxygen depletion, are a niche for aerobic MOBs and therefore potentially important

  10. Aerobic and anaerobic degradation and mineralization of 14C-chitin by water column and sediment inocula of the York River estuary, Virginia.

    PubMed Central

    Boyer, J N

    1994-01-01

    Potential rates of chitin degradation (Cd) and mineralization (Cm) by estuarine water and sediment bacteria were measured as a function of inoculum source, temperature, and oxygen condition. In the water column inoculum, 88 to 93% of the particulate chitin was mineralized to CO2 with no apparent lag between degradation and mineralization. No measurable dissolved pool of radiolabel was found in the water column. For the sediment inocula, 70 to 90% of the chitin was degraded while only 55 to 65% was mineralized to CO2. 14C label recoveries in the dissolved pool were 19 to 21% for sand, 17 to 24% in aerobic mud, and 12 to 21% for the anaerobic mud. This uncoupling between degradation and mineralization occurred in all sediment inocula. More than 98% of the initial 14C-chitin was recovered in the three measured fractions. The highest Cd and Cm values, 30 and 27% day-1, occurred in the water column inoculum at 25 degrees C. The lowest Cd and Cm values were found in the aerobic and anaerobic mud inocula incubated at 15 degrees C. Significant differences in Cd and Cm values among water column and sediment inocula as well as between temperature treatments were evident. An increased incubation temperature resulted in shorter lag times before the onset of chitinoclastic bacterial growth, degradation, and mineralization and resulted in apparent Q10 values of 1.1 for water and 1.3 to 2.1 for sediment inocula. It is clear that chitin degradation and mineralization occur rapidly in the estuary and that water column bacteria may be more important in this process than previously acknowledged. PMID:8117075

  11. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  12. Grey water treatment in a series anaerobic--aerobic system for irrigation.

    PubMed

    Abu Ghunmi, Lina; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2010-01-01

    This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant effluent flow rate and varying liquid volume. Subsequent aerobic step is equipped with mechanical aeration and the system is insulated for sustaining winter conditions. The COD removal achieved by the anaerobic and aerobic units in summer and winter are 45%, 39% and 53%, 64%, respectively. Sludge in the anaerobic and aerobic reactor has a concentration of 168 and 8 mg VSL(-1), respectively. Stability of sludge in the anaerobic and aerobic reactors is 80% and 93%, respectively, based on COD. Aerobic effluent quality, except for pathogens, agrees with the proposed irrigation water quality guidelines for reclaimed water in Jordan.

  13. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  14. Autoheated thermophilic aerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeny, K.; Hahn, H.; Leonhard, D.

    1991-10-01

    Autothermal thermophilic aerobic digestion (ATAD) is first and foremost a digestion process, the primary purpose of which is to decompose a portion of the waste organic solids generated from wastewater treatment. As a result of the high operating temperature, digestion is expected to occur within a short time period (6 days) and accomplish a high degree of pathogen reduction. ATAD systems are two-stage aerobic digestion processes that operate under thermophilic temperature conditions (40 to 80C) without supplemental heat. Like composting, the systems rely on the conservation of heat released during digestion itself to attain and sustain the desired operating temperature.more » Typical ATAD systems operate at 55C and may reach temperatures of 60 to 65C in the second-stage reactor. Perhaps because of the high operating temperature, this process has been referred to as Liquid Composting.' Major advantages associated with thermophilic operation include high biological reaction rates and a substantial degree of pathogen reduction.« less

  15. Aerobic Glycolysis Is Essential for Normal Rod Function and Controls Secondary Cone Death in Retinitis Pigmentosa.

    PubMed

    Petit, Lolita; Ma, Shan; Cipi, Joris; Cheng, Shun-Yun; Zieger, Marina; Hay, Nissim; Punzo, Claudio

    2018-05-29

    Aerobic glycolysis accounts for ∼80%-90% of glucose used by adult photoreceptors (PRs); yet, the importance of aerobic glycolysis for PR function or survival remains unclear. Here, we further established the role of aerobic glycolysis in murine rod and cone PRs. We show that loss of hexokinase-2 (HK2), a key aerobic glycolysis enzyme, does not affect PR survival or structure but is required for normal rod function. Rods with HK2 loss increase their mitochondrial number, suggesting an adaptation to the inhibition of aerobic glycolysis. In contrast, cones adapt without increased mitochondrial number but require HK2 to adapt to metabolic stress conditions such as those encountered in retinitis pigmentosa, where the loss of rods causes a nutrient shortage in cones. The data support a model where aerobic glycolysis in PRs is not a necessity but rather a metabolic choice that maximizes PR function and adaptability to nutrient stress conditions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils

    USGS Publications Warehouse

    Schädel, Christina; Bader, Martin K.-F.; Schuur, Edward A.G.; Biasi, Christina; Bracho, Rosvel; Čapek, Petr; De Baets, Sarah; Diáková, Kateřina; Ernakovich, Jessica; Estop-Aragones, Cristian; Graham, David E.; Hartley, Iain P.; Iversen, Colleen M.; Kane, Evan S.; Knoblauch, Christian; Lupascu, Massimo; Martikainen, Pertti J.; Natali, Susan M.; Norby, Richard J.; O'Donnell, Jonathan A.; Roy Chowdhury, Taniya; Šantrůčková, Hana; Shaver, Gaius; Sloan, Victoria L.; Treat, Claire C.; Turetsky, Merritt R.; Waldrop, Mark P.; Wickland, Kimberly P.

    2016-01-01

    Increasing temperatures in northern high latitudes are causing permafrost to thaw, making large amounts of previously frozen organic matter vulnerable to microbial decomposition. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 °C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systems releasing CO2 and CH4 for a given amount of C.

  17. Aerobic exercise (image)

    MedlinePlus

    Aerobic exercise gets the heart working to pump blood through the heart more quickly and with more ... must be oxygenated more quickly, which quickens respiration. Aerobic exercise strengthens the heart and boosts healthy cholesterol ...

  18. Growth of Campylobacter incubated aerobically in fumarate-pyruvate media or media supplemented with dairy, meat, or soy extracts and peptones.

    PubMed

    Hinton, Arthur

    2016-09-01

    The ability of Campylobacter to grow aerobically in media supplemented with fumarate-pyruvate or with dairy, meat, or soy extracts or peptones was examined. Optical densities (OD) of Campylobacter cultured in basal media, media supplemented with fumarate-pyruvate or with 1.0, 2.5, 5.0, or 7.5% beef extract was measured. Growth was also compared in media supplemented with other extracts or peptones. Finally, cfu/mL of Campylobacter recovered from basal media or media supplemented with fumarate-pyruvate, casamino acids, beef extract, soytone, or beef extract and soytone was determined. Results indicated that OD of cultures grown in media supplemented with fumarate-pyruvate or with 5.0 or 7.5% beef extract were higher than OD of isolates grown in basal media or media supplemented with lower concentrations of beef extract. Highest OD were produced by isolates grown in media supplemented with beef extract, peptone from meat, polypeptone, proteose peptone, or soytone. Also, more cfu/mL were recovered from media with fumarate-pyruvate, beef extract, soytone, or beef extract-soytone than from basal media or media with casamino acids. Findings indicate that media supplemented with organic acids, vitamins, and minerals and media supplemented with extracts or peptones containing these metabolites can support aerobic growth of Campylobacter. Published by Elsevier Ltd.

  19. 'Green incubation': avian offspring benefit from aromatic nest herbs through improved parental incubation behaviour.

    PubMed

    Gwinner, Helga; Capilla-Lasheras, Pablo; Cooper, Caren; Helm, Barbara

    2018-06-13

    Development of avian embryos requires thermal energy, usually from parents. Parents may, however, trade off catering for embryonic requirements against their own need to forage through intermittent incubation. This dynamically adjusted behaviour can be affected by properties of the nest. Here, we experimentally show a novel mechanism by which parents, through incorporation of aromatic herbs into nests, effectively modify their incubation behaviour to the benefit of their offspring. Our study species, the European starling, includes in its nest aromatic herbs which promote offspring fitness. We provided wild starlings with artificial nests including or excluding the typically selected fresh herbs and found strong support for our prediction of facilitated incubation. Herb effects were not explained by thermal changes of the nests per se , but by modified parental behaviours. Egg temperatures and nest attendance were higher in herb than herbless nests, egg temperatures dropped less frequently below critical thresholds and parents started their active day earlier. These effects were dynamic over time and particularly strong during early incubation. Incubation period was shorter in herb nests, and nestlings were heavier one week after hatching. Aromatic herbs hence influenced incubation in beneficial ways for offspring, possibly through pharmacological effects on incubating parents. © 2018 The Author(s).

  20. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  1. Role of seagrass photosynthesis in root aerobic processes.

    PubMed

    Smith, R D; Dennison, W C; Alberte, R S

    1984-04-01

    The role of shoot photosynthesis as a means of supporting aerobic respiration in the roots of the seagrass Zostera marina was examined. O(2) was transported rapidly (10-15 minutes) from the shoots to the root-rhizome tissues upon shoot illumination. The highest rates of transport were in shoots possessing the greatest biomass and leaf area. The rates of O(2) transport do not support a simple gas phase diffusion mechanism. O(2) transport to the root-rhizome system supported aerobic root respiration and in many cases exceeded respiratory requirements leading to O(2) release from the subterranean tissue. Release of O(2) can support aerobic processes in reducing sediments typical of Z. marina habitats. Since the root-rhizome respiration is supported primarily under shoot photosynthetic conditions, then the daily period of photosynthesis determines the diurnal period of root aerobiosis.

  2. Effects of environmental enrichment on the incubation of cocaine craving

    PubMed Central

    Chauvet, Claudia; Goldberg, Steven R.; Jaber, Mohamed; Solinas, Marcello

    2012-01-01

    Recent studies have demonstrated that exposure to environmental enrichment (EE) during withdrawal periods reduces the risks of relapse to drug-seeking behavior. In this study, we investigated whether EE could prevent the development of time-dependent increases in cocaine-seeking behavior (incubation of craving). In addition, we investigated whether EE could eliminate already developed incubation and whether the effects of EE would last when enrichment is discontinued. For this, we allowed rats to self-administer cocaine for 10 daily 6h sessions and measured cocaine seeking 1, 30 and 60 days after the last self-administration session. In between these tests, rats were kept in forced abstinence and housed either in EE or standard environments (SE). Between day 30 and 60 of withdrawal, half of the rats in each group were maintained in their original environmental condition and the other half was switched to the other environmental condition. We found that exposure to EE prevents development of incubation of cocaine craving and eliminates already developed incubation. In addition, contrary to our expectations, when EE was discontinued, its positive effects on incubation of craving disappeared. These results indicate that EE can reduce cocaine seeking but only temporarily and questions the hypothesis that EE can permanently eliminate the neural consequences of exposure to drugs of abuse. Therefore, stimulating environments could have positive effects on the treatment of cocaine addiction only if they are maintained for long periods of abstinence that encompass the time-frame during which addicts are most vulnerable to relapse. PMID:22634364

  3. Siderophore production by bacterioplankton in enriched seawater incubations

    NASA Astrophysics Data System (ADS)

    Gledhill, M.; McCormack, P.; Worsfold, P. J.

    2003-04-01

    Iron is known to limit primary productivity in about 40 % of the worlds oceans. However the role of Fe in controlling bacterioplankton productivity is still a subject of debate, as carbon is also likely to be a significant limiting factor. Furthermore bacterioplankton are thought to have evolved a high affinity Fe transport mechanism utilising siderophores, which would enable acquisition even in the most Fe limited regions of the ocean. However, it is not yet certain if or how such a mechanism is employed in the oceans. Progress in this research area has been hindered by the lack of sufficiently sensitive analytical techniques for the determination of siderophores. We have recently developed a novel, highly sensitive technique for the detection of siderophore type compounds using electrospray ionisation - mass spectrometry (ESI-MS). Coupling of the technique with high performance liquid chromatography (HPLC) has allowed us to separate and identify siderophore type compounds present in complex mixtures at low concentrations (pM), thus allowing us to work with natural assemblages of bacteria in seawater. In this presentation we report on results obtained from incubations of natural bacterioplankton assemblages using coastal seawater from the English Channel. Known and unknown siderophores were identified in incubations carried out with additions of carbon, nitrogen and phosphorous. Iron speciation in the incubations was modified through the presence or absence of the chelating agent ethylenediamine-N,N-diacetic acid. Results show that different siderophores are produced under different conditions, probably a reflection of the type of bacterioplankton best able to exploit the incubation conditions. The results will be discussed with respect to their relevance to the marine environment.

  4. Kangaroo transport instead of incubator transport.

    PubMed

    Sontheimer, Dieter; Fischer, Christine B; Buch, Kerstin E

    2004-04-01

    Compared with in utero transport, incubator transport for preterm infants has several disadvantages including instability during transport with increased mortality and morbidity, lack of adequate systems for securing the infant in the event of an accident, and separation of mother and infant. As a new kind of postnatal transportation that bears some analogy to in utero transport and may be safer than incubator transport, we investigated kangaroo transport, transporting the infant on the mother's or other caregiver's chest. This article presents a description and preliminary data for kangaroo transport. We conducted kangaroo transports of 31 stable preterm and term infants in different settings and recorded data regarding transport conditions and cardiorespiratory stability. Eighteen transports were back transfers, and 13 were transfers in. Twenty-seven transports were conducted by the mother, 1 by the father, 2 by nurses, and 1 by a doctor. Transport distance was 2 to 400 km. Heart rate, respiratory rate, oxygen saturation, and rectal temperature remained stable during all kangaroo transports lasting 10 to 300 minutes. Weight at transport was 1220 to 3720 g. Parents felt very comfortable and safe and appreciated this method of transport. Kangaroo transport promotes mother-infant closeness and might ameliorate several of the risks associated with incubator transport.

  5. Determinants of incubation period: do reptilian embryos hatch after a fixed total number of heart beats?

    PubMed

    Du, Wei-Guo; Radder, Rajkumar S; Sun, Bo; Shine, Richard

    2009-05-01

    The eggs of birds typically hatch after a fixed (but lineage-specific) cumulative number of heart beats since the initiation of incubation. Is the same true for non-avian reptiles, despite wide intraspecific variation in incubation period generated by variable nest temperatures? Non-invasive monitoring of embryo heart beat rates in one turtle species (Pelodiscus sinensis) and two lizards (Bassiana duperreyi and Takydromus septentrionalis) show that the total number of heart beats during embryogenesis is relatively constant over a wide range of warm incubation conditions. However, incubation at low temperatures increases the total number of heart beats required to complete embryogenesis, because the embryo spends much of its time at temperatures that require maintenance functions but that do not allow embryonic growth or differentiation. Thus, cool-incubated embryos allocate additional metabolic effort to maintenance costs. Under warm conditions, total number of heart beats thus predicts incubation period in non-avian reptiles as well as in birds (the total number of heart beats are also similar); however, under the colder nest conditions often experienced by non-avian reptiles, maintenance costs add significantly to total embryonic metabolic expenditure.

  6. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  7. Neonatal response to control of noise inside the incubator.

    PubMed

    Johnson, A N

    2001-01-01

    The purpose of this study was to test the effect of acoustical foam on the level of noise inside the incubator and examine neonatal response behaviors to changes in environmental noise. The study used a repeated measure, within subject, comparative design. Data on 65 premature neonates were collected over a 14-month period at a large teaching hospital in Delaware. Sound levels, oxygen saturation, and infant states were measured and recorded during three study conditions: pre-study neonate in incubator, neonate in incubator with 5 x 5 x 1 inch acoustical foam pieces placed in each of four corners, and post-study recovery of neonate in incubator with foam removed. All state assessments were measured with oxygen saturation and sound level measurements every 2 minutes of the study for a total 40 minutes. The findings demonstrate a significant treatment effect of acoustical foam on decreasing environmental noise measurements inside the incubator (p = 0.006). Findings also demonstrate significantly changed neonatal state response behaviors with decreasing environmental noise measurements inside the incubator (p = 0.00). The results of this study support the use of acoustical foam as one method of environmental noise management in the intensive care nursery. Because there was a significant correlation between higher noise levels and oxygen support therapy, the findings suggest that special nursing considerations should be taken when caring for ventilator-dependent infants. Noise control protocols should focus on essential environmental interventions for care of these infants.

  8. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors.

    PubMed

    Tay, J H; Liu, Q S; Liu, Y

    2002-08-01

    Aerobic granules were cultivated in two column-type sequential aerobic sludge blanket reactors fed with glucose and acetate, respectively. The characteristics of aerobic granules were investigated. Results indicated that the glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density, hydrophobicity, physical strength, microbial activity and storage stability. Substrate component does not seem to be a key factor on the formation of aerobic granules. However, microbial diversity of the granules is closely associated with the carbon sources supplied to the reactors. Compared with the conventional activated sludge flocs, aerobic granules exhibit excellent physical characteristics that would be essential for industrial application. This research provides a complete set of characteristics data of aerobic granules grown on glucose and acetate, which would be useful for further development of aerobic granules-based compact bioreactor for handling high strength organic wastewater.

  9. The Effect of Aerobic Exercise on Neuroplasticity within the Motor Cortex following Stroke

    PubMed Central

    Murdoch, Kate; Buckley, Jonathan D.; McDonnell, Michelle N.

    2016-01-01

    Background Aerobic exercise is associated with enhanced plasticity in the motor cortex of healthy individuals, but the effect of aerobic exercise on neuroplasticity following a stroke is unknown. Objective The aim of this study was to compare corticomotoneuronal excitability and neuroplasticity in the upper limb cortical representation following a single session of low intensity lower limb cycling, or a rest control condition. Methods We recruited chronic stroke survivors to take part in three experimental conditions in a randomised, cross-over design. Corticomotoneuronal excitability was examined using transcranial magnetic stimulation to elicit motor evoked potentials in the affected first dorsal interosseus muscle. Following baseline measures, participants either cycled on a stationary bike at a low exercise intensity for 30 minutes, or remained resting in a seated position for 30 minutes. Neuroplasticity within the motor cortex was then examined using an intermittent theta burst stimulation (iTBS) paradigm. During the third experimental condition, participants cycled for the 30 minutes but did not receive any iTBS. Results Twelve participants completed the study. We found no significant effect of aerobic exercise on corticomotoneuronal excitability when compared to the no exercise condition (P > 0.05 for all group and time comparisons). The use of iTBS did not induce a neuroplastic-like response in the motor cortex with or without the addition of aerobic exercise. Conclusions Our results suggest that following a stroke, the brain may be less responsive to non-invasive brain stimulation paradigms that aim to induce short-term reorganisation, and aerobic exercise was unable to induce or improve this response. PMID:27018862

  10. Incubation temperature and hemoglobin dielectric of chicken embryos incubated under the influence of electric field.

    PubMed

    Shafey, T M; Al-Batshan, H A; Shalaby, M I; Ghannam, M M

    2006-01-01

    Eggs from a layer-type breeder flock (Baladi, King Saud University) between 61 and 63 weeks of age were used in 3 trials to study the effects of electric field (EF) during incubation on the internal temperature of incubation, and eggs and hemoglobin (Hb) dielectric of chicken embryos at 18 days of age. Dielectric relative permittivity (epsilon') and conductivity (sigma) of Hb were examined in the range of frequency from 20 to 100 kHz. The values of dielectric increment (Deltaepsilon') and the relaxation times (tau) of Hb molecules were calculated. The internal temperature of eggs was measured in empty (following the removal of egg contents) and fertilized eggs in trials 1 and 2, respectively. The level of the EF was 30 kV/m, 60 Hz. EF incubation of embryos influenced the temperature of incubation and electrical properties of Hb molecules and did not influence the temperature of incubation and internal environment of eggs when empty eggs were incubated. EF incubation of fertilized eggs significantly raised the temperature of incubation, egg air cell, and at the surface of the egg yolk by approximately 0.09, 0.60, and 0.61 degrees F, respectively and Hb epsilon', sigma, Deltaepsilon', and tau as a function of the range of frequency of 20 to 100 kHz when compared with their counterparts of the control group. It was concluded that the exposure of fertilized chicken eggs to EF of 30 kV/m, 60 Hz, during incubation altered dielectric properties of Hb and that probably affected cell to cell communication and created the right environment for enhancing the growing process and heat production of embryos consequently increasing the temperature of the internal environment of the egg, and incubation.

  11. Noise level in neonatal incubators: A comparative study of three models.

    PubMed

    Fernández Zacarías, F; Beira Jiménez, J L; Bustillo Velázquez-Gaztelu, P J; Hernández Molina, R; Lubián López, Simón

    2018-04-01

    Preterm infants usually have to spend a long time in an incubator, excessive noise in which can have adverse physiological and psychological effects on neonates. In fact, incubator noise levels typically range from 45 to 70 dB but differences in this respect depend largely on the noise measuring method used. The primary aim of this work was to assess the extent to which noise in an incubator comes from its own fan and how efficiently the incubator can isolate external noise. Three different incubator models were characterized for acoustic performance by measuring their internal noise levels in an anechoic chamber, and also for noise isolation efficiency by using a pink noise source in combination with an internal and an external microphone that were connected to an SVAN958 noise analyzer. The incubators studied produced continuous equivalent noise levels of 53.5-58 dB and reduced external noise by 5.2-10.4 dB. A preterm infant in an incubator is exposed to noise levels clearly exceeding international recommendations even though such levels usually comply with the limit set in the standard IEC60601-2-19: 2009 (60 dBA) under normal conditions of use. Copyright © 2018. Published by Elsevier B.V.

  12. Trans-shell infection by pathogenic micro-organisms reduces the shelf life of non-incubated bird's eggs: a constraint on the onset of incubation?

    PubMed

    Cook, Mark I; Beissinger, Steven R; Toranzos, Gary A; Rodriguez, Roberto A; Arendt, Wayne J

    2003-11-07

    Many birds initiate incubation before clutch completion, which results in asynchronous hatching. The ensuing within-brood size disparity often places later-hatched nestlings at a developmental disadvantage, but the functional significance of the timing of the onset of incubation is poorly understood. Early incubation may serve to maintain the viability of early-laid eggs, which declines over time owing to the putative effects of ambient temperature. An unexplored risk to egg viability is trans-shell infection by micro-organisms. We experimentally investigated the rate and magnitude of microbial trans-shell infection of the egg, and the relative effects of ambient temperature and micro-organisms on hatching success. We show that infection of egg contents is prevalent and occurs within the time required to lay a clutch. The probability of infection depends on the climatic conditions, the exposure period and the phylogenetic composition of the eggshell microbiota. We also demonstrate that microbial infection and ambient temperature act independently to reduce egg viability considerably. Our results suggest that these two factors could affect the onset of avian incubation in a wide range of environments.

  13. Production of PFOS from aerobic soil biotransformation of two perfluoroalkyl sulfonamide derivatives.

    PubMed

    Mejia Avendaño, Sandra; Liu, Jinxia

    2015-01-01

    The continuous production and use in certain parts of the world of perfluoroalkyl sulfonamide derivatives that can degrade to perfluorooctane sulfonic acid (PFOS) has called for better understanding of the environmental fate of these PFOS precursors. Aerobic soil biotransformation of N-ethyl perfluorooctane sulfonamide (EtFOSA, also known as Sulfluramid) was quantitatively investigated in semi-closed soil microcosms over 182 d for the first time. The apparent soil half-life of EtFOSA was 13.9±2.1 d and the yield to PFOS by the end of incubation was 4.0 mol%. A positive identification of a previously suspected degradation product, EtFOSA alcohol, provided strong evidence to determine degradation pathways. The lower mass balance in sterile soil than live soil suggested likely strong irreversible sorption of EtFOSA to the test soil. The aerobic soil biotransformation of a technical grade N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) was semi-quantitatively examined, and the degradation pathways largely followed those in activated sludge and marine sediments. Aside from PFOS, major degradation products included N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorooctane sulfonamide (FOSA) and perfluorooctane sulfonamide acetic acid (FOSAA). This study confirms that aerobic soil biotransformation of EtFOSE and EtFOSA contributes significantly to the PFOS observed in soil environment, as well as to several highly persistent sulfonamide derivatives frequently detected in biosolid-amended soils and landfill leachates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Community Structure of Active Aerobic Methanotrophs in Red Mangrove (Kandelia obovata) Soils Under Different Frequency of Tides.

    PubMed

    Shiau, Yo-Jin; Cai, Yuanfeng; Lin, Yu-Te; Jia, Zhongjun; Chiu, Chih-Yu

    2018-04-01

    Methanotrophs are important microbial communities in coastal ecosystems. They reduce CH 4 emission in situ, which is influenced by soil conditions. This study aimed to understand the differences in active aerobic methanotrophic communities in mangrove forest soils experiencing different inundation frequency, i.e., in soils from tidal mangroves, distributed at lower elevations, and from dwarf mangroves, distributed at higher elevations. Labeling of pmoA gene of active methanotrophs using DNA-based stable isotope probing (DNA-SIP) revealed that methanotrophic activity was higher in the dwarf mangrove soils than in the tidal mangrove soils, possibly because of the more aerobic soil conditions. Methanotrophs affiliated with the cluster deep-sea-5 belonging to type Ib methanotrophs were the most dominant methanotrophs in the fresh mangrove soils, whereas type II methanotrophs also appeared in the fresh dwarf mangrove soils. Furthermore, Methylobacter and Methylosarcina were the most important active methanotrophs in the dwarf mangrove soils, whereas Methylomonas and Methylosarcina were more active in the tidal mangrove soils. High-throughput sequencing of the 16S ribosomal RNA (rRNA) gene also confirmed similar differences in methanotrophic communities at the different locations. However, several unclassified methanotrophic bacteria were found by 16S rRNA MiSeq sequencing in both fresh and incubated mangrove soils, implying that methanotrophic communities in mangrove forests may significantly differ from the methanotrophic communities documented in previous studies. Overall, this study showed the feasibility of 13 CH 4 DNA-SIP to study the active methanotrophic communities in mangrove forest soils and revealed differences in the methanotrophic community structure between coastal mangrove forests experiencing different tide frequencies.

  15. Epithelial Coculture and l-Lactate Promote Growth of Helicobacter cinaedi under H2-Free Aerobic Conditions

    PubMed Central

    Taniguchi, Takako; Misawa, Naoaki

    2016-01-01

    ABSTRACT Helicobacter cinaedi is an emerging opportunistic pathogen associated with infections of diverse anatomic sites. Nevertheless, the species demonstrates fastidious axenic growth; it has been described as requiring a microaerobic atmosphere, along with a strong preference for supplemental H2 gas. In this context, we examined the hypothesis that in vitro growth of H. cinaedi could be enhanced by coculture with human epithelial cells. When inoculated (in Ham's F12 medium) over Caco-2 monolayers, the type strain (ATCC BAA-847) gained the ability to proliferate under H2-free aerobic conditions. Identical results were observed during coculture with several other monolayer types (LS-174T, AGS, and HeLa). Under chemically defined conditions, 40 amino acids and carboxylates were screened for their effect on the organism's atmospheric requirements. Several molecules promoted H2-free aerobic proliferation, although it occurred most prominently with millimolar concentrations of l-lactate. The growth response of H. cinaedi to Caco-2 cells and l-lactate was confirmed with a collection of 12 human-derived clinical strains. mRNA sequencing was next performed on the type strain under various growth conditions. In addition to providing a whole-transcriptome profile of H. cinaedi, this analysis demonstrated strong constitutive expression of the l-lactate utilization locus, as well as differential transcription of terminal respiratory proteins as a function of Caco-2 coculture and l-lactate supplementation. Overall, these findings challenge traditional views of H. cinaedi as an obligate microaerophile. IMPORTANCE H. cinaedi is an increasingly recognized pathogen in people with compromised immune systems. Atypical among other members of its bacterial class, H. cinaedi has been associated with infections of diverse anatomic sites. Growing H. cineadi in the laboratory is quite difficult, due in large part to the need for a specialized atmosphere. The suboptimal growth of H

  16. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate.

    PubMed

    Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu

    2009-12-01

    In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.

  17. Combined anaerobic/aerobic digestion: effect of aerobic retention time on nitrogen and solids removal.

    PubMed

    Kim, Jongmin; Novak, John T

    2011-09-01

    A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.

  18. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions.

    PubMed

    Kristensen, N B; Sloth, K H; Højberg, O; Spliid, N H; Jensen, C; Thøgersen, R

    2010-08-01

    The present study aimed to investigate the effects of 2 corn silage inoculation strategies (homofermentative vs. heterofermentative inoculation) under field conditions and to monitor responses in silage variables over the feeding season from January to August. Thirty-nine commercial dairy farms participated in the study. Farms were randomly assigned to 1 of 3 treatments: control (nonactive carrier; Chr. Hansen A/S, Hørsholm, Denmark), Lactisil (inoculation with 1 x 10(5)Lactobacillus pentosus and 2.5 x 10(4)Pediococcus pentosaceus per gram of fresh matter; Chr. Hansen A/S), and Lalsil Fresh (inoculation with 3 x 10(5)Lactobacillus buchneri NCIMB 40788 per gram of fresh matter; Lallemand Animal Nutrition, Blagnac, France). Inoculation with Lactisil had no effects on fermentation variables and aerobic stability. On the contrary, inoculation with Lalsil Fresh doubled the aerobic stability: 37, 38, and 80+/-8h for control, Lactisil, and Lalsil Fresh, respectively. The effect of Lalsil Fresh on aerobic stability tended to differ between sampling times, indicating a reduced difference between treatments in samples collected in April. Lalsil Fresh inoculation increased silage pH and contents of acetic acid, propionic acid, propanol, propyl acetate, 2-butanol, propylene glycol, ammonia, and free AA. The contents and ratios of DL-lactic acid, L-lactic acid relative to DL-lactic acid, free glucose, and DL-lactic acid relative to acetic acid decreased with Lalsil Fresh inoculation. Lalsil Fresh inoculation increased the silage counts of total lactic acid bacteria and reduced yeast counts. The Fusarium toxins deoxynivalenol, nivalenol, and zearalenone were detected in all silages at all collections, but the contents were not affected by ensiling time or by inoculation treatment. The effect of inoculation treatments on milk production was assessed by collecting test-day results from the involved farms and comparing the actual milk production with predicted milk production

  19. Sequential anaerobic-aerobic degradation of munitions waste.

    PubMed

    Ibeanusi, Victor; Jeilani, Yassin; Houston, Samantha; Doss, Danielle; Coley, Bianca

    2009-01-01

    A sequential anaerobic-aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied. The results demonstrated that: (i) a complete degradation of RDX was achieved within 20 days using a consortium of bacteria from a wastewater activated sludge, (ii) RDX degradation did not occur under aerobic conditions alone, (iii) RDX-degrading bacterial strain that was isolated from the activated sludge completely degraded RDX within 2 days, and (iv) RDX- induced protein expressions were observed in the RDX-degrading bacterial strain. Based on fatty acid composition and a confirmation with a 16S rRNA analysis, the RDX-degrading bacterial strain was identified as a Bacillus pumilus-GC subgroup B.

  20. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. Copyright © 2010 S. Karger AG, Basel.

  1. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.

    PubMed

    Shah, Nadeem W; Thornton, Steven F; Bottrell, Simon H; Spence, Michael J

    2009-01-26

    The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 degrees C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6+/-1.6 microg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 microg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic

  2. The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste

    NASA Astrophysics Data System (ADS)

    Smet, Erik; Van Langenhove, Herman; De Bo, Inge

    Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of

  3. A single aerobic exercise session accelerates movement execution but not central processing.

    PubMed

    Beyer, Kit B; Sage, Michael D; Staines, W Richard; Middleton, Laura E; McIlroy, William E

    2017-03-27

    Previous research has demonstrated that aerobic exercise has disparate effects on speed of processing and movement execution. In simple and choice reaction tasks, aerobic exercise appears to increase speed of movement execution while speed of processing is unaffected. In the flanker task, aerobic exercise has been shown to reduce response time on incongruent trials more than congruent trials, purportedly reflecting a selective influence on speed of processing related to cognitive control. However, it is unclear how changes in speed of processing and movement execution contribute to these exercise-induced changes in response time during the flanker task. This study examined how a single session of aerobic exercise influences speed of processing and movement execution during a flanker task using electromyography to partition response time into reaction time and movement time, respectively. Movement time decreased during aerobic exercise regardless of flanker congruence but returned to pre-exercise levels immediately after exercise. Reaction time during incongruent flanker trials decreased over time in both an aerobic exercise and non-exercise control condition indicating it was not specifically influenced by exercise. This disparate influence of aerobic exercise on movement time and reaction time indicates the importance of partitioning response time when examining the influence of aerobic exercise on speed of processing. The decrease in reaction time over time independent of aerobic exercise indicates that interpreting pre-to-post exercise changes in behavior requires caution. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.

    PubMed

    Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

    2011-03-01

    The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Incubation temperature fluctuation does not affect incubation length and hatchling phenotype in the Chinese skink Plestiodon chinensis.

    PubMed

    Qu, Yan-Fu; Lu, Hong-Liang; Li, Hong; Ji, Xiang

    2014-12-01

    Studies examining the effects of incubation temperature fluctuation on the phenotype of hatchling reptiles have shown species variation. To examine whether incubation temperature fluctuation has a key role in influencing the phenotype of hatchling Chinese skinks (Plestiodon chinensis), we incubated eggs produced by 20 females under five thermal regimes (treatments). Eggs in three treatments were incubated in three incubators, one set constant at 27°C and two ramp-programmed at 27 ± 3°C and 27 ± 5°C on a cycle of 12h (+) and 12h (-). The remaining eggs were incubated in two chambers: one inside a room where temperatures varied from 23.0 to 31.1°C, with a mean of 27.0°C; the other outside the room where temperatures varied from 20.2 to 35.3°C, with a mean of 26.1°C. We found that: (1) for eggs at a given embryonic stage at ovipositon, the mean rather than the variance of incubation temperatures determined the length of incubation; (2) most (egg mass, embryonic stage at oviposition, incubation length and all examined hatchling traits except tail length and locomotor performance) of the examined variables were affected by clutch; and (3) body mass was the only hatchling trait that differed among the five treatments, but the differences were tiny. These findings suggest that incubation temperature fluctuation has no direct role in influencing incubation length and hatchling phenotype in P. chinensis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Efficient production and secretion of oxaloacetate from Halomonas sp. KM-1 under aerobic conditions.

    PubMed

    Hannya, Asuka; Nishimura, Taku; Matsushita, Isao; Tsubota, Jun; Kawata, Yoshikazu

    2017-11-21

    The alkaliphilic, halophilic bacterium Halomonas sp. KM-1 can utilize glucose for the intracellular storage of the bioplastic poly-(R)-3-hydroxybutyric acid (PHB) and extracellular secretion of pyruvate under aerobic conditions. In this study, we investigated the effects of sodium chloride concentration on PHB accumulation and pyruvate secretion in the KM-1 strain and, unexpectedly, observed that oxaloacetate, an important intermediate chemical in the TCA cycle, glycogenesis, and aspartic acid biosynthesis, was secreted. We then further analyzed oxaloacetate productivity after changing the sodium chloride additive concentration, additive time-shift, and culture temperature. In 42-h batch-cultivation experiments, we found that wild-type Halomonas sp. KM-1 secreted 39.0 g/L oxaloacetate at a rate of 0.93 g/(L h). The halophilic bacteria Halomonas has already gained attention for industrial chemical-production processes owing to its unique properties, such as contamination-free culture conditions and a tolerance for high substrate concentrations. Moreover, no commercial scale oxaloacetate production was previously reported to result from bacterial fermentation. Oxaloacetate is an important intermediate chemical in biosynthesis and is used as a health food based on its role in energy synthesis. Thus, these data provided important insights into the production of oxaloacetate and other derivative chemicals using this strain.

  7. An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment.

    PubMed

    Kalemelawa, Frank; Nishihara, Eiji; Endo, Tsuneyoshi; Ahmad, Zahoor; Yeasmin, Rumana; Tenywa, Moses M; Yamamoto, Sadahiro

    2012-12-01

    This study sought to evaluate the efficacy of aerobic and anaerobic composting of inoculated banana peels, and assess the agronomic value of banana peel-based compost. Changes in the chemical composition under aerobic and anaerobic conditions were examined for four formulations of banana peel-based wastes over a period of 12 weeks. The formulations i.e. plain banana peel (B), and a mixture with either cow dung (BC), poultry litter (BP) or earthworm (BE) were separately composted under aerobic and anaerobic conditions under laboratory conditions. Inoculation with either cow dung or poultry litter significantly facilitated mineralization in the order: BP>BC>B. The rate of decomposition was significantly faster under aerobic than in anaerobic composting conditions. The final composts contained high K (>100 g kg(-1)) and TN (>2%), indicating high potential as a source of K and N fertilizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Enteric bacteria in aerobically digested sludge.

    PubMed Central

    Farrah, S R; Bitton, G

    1984-01-01

    Indicator bacteria, Salmonella spp., and total aerobic bacteria were determined in samples of undigested sludge and sludge that had been treated by one or two stages of aerobic digestion. Aerobic sludge digestion reduced the level of indicator bacteria by 1 to 2 log10 per g. The level of Salmonella spp. was also reduced during aerobic treatment of sludge. In general, aerobic treatment of sludge reduced, but did not eliminate, indicator bacteria and Salmonella spp. PMID:6721492

  9. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau.

    PubMed

    Chen, Lei; Guo, Gang; Yuan, Xianjun; Zhang, Jie; Li, Junfeng; Shao, Tao

    2016-03-30

    The objective of this study was to investigate the effect of molasses, lactic acid bacteria and propionic acid on the fermentation quality, aerobic stability and in vitro gas production of total mixed ration (TMR) silage prepared with oat-common vetch intercrop on the Tibetan plateau. TMR (436 g kg(-1) dry matter (DM)) was ensiled with six experimental treatments: (1) no additives (control); (2) molasses (M); (3) an inoculant (Lactobacillus plantarum) (L); (4) propionic acid (P); (5) molasses + propionic acid (MP); (6) inoculant + propionic acid (LP). All silages were well preserved with low pH (< 4.19) and NH3-N contents, and high lactic acid contents after ensiling for 45 days. L and PL silages underwent a more efficient fermentation than silages without L. P and MP silages inhibited lactic acid production. Under aerobic conditions, M and L silage reduced aerobic stability for 15 and 74 h, respectively. All silages that had propionic acid in their treatments markedly (P < 0.05) improved the aerobic stability. After 72 h incubation, all additives treatments increased (P < 0.05) the 72 h cumulative gas production and in vitro DM digestibility (IVDMD) as compared with the control. L treatment decreased (P < 0.05) in vitro neutral detergent fibre degradability. Our findings show that TMR prepared with oat-common vetch intercrop can be well preserved. Although propionic acid is compatible with lactic acid bacteria, and when used together, they had minor effects on fermentation, aerobic stability and in vitro digestibility of TMR silage prepared with oat-common vetch intercrop. © 2015 Society of Chemical Industry.

  10. Integrated Anaerobic-Aerobic Biodegradation of Multiple Contaminants Including Chlorinated Ethylenes, Benzene, Toluene, and Dichloromethane.

    PubMed

    Yoshikawa, Miho; Zhang, Ming; Toyota, Koki

    2017-01-01

    Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis -dichloroethylene ( cis -DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis -DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.

  11. Trans-shell infection by pathogenic micro-organisms reduces the shelf life of non-incubated bird's eggs: a constraint on the onset of incubation?

    PubMed Central

    Cook, Mark I; Beissinger, Steven R; Toranzos, Gary A; Rodriguez, Roberto A; Arendt, Wayne J

    2003-01-01

    Many birds initiate incubation before clutch completion, which results in asynchronous hatching. The ensuing within-brood size disparity often places later-hatched nestlings at a developmental disadvantage, but the functional significance of the timing of the onset of incubation is poorly understood. Early incubation may serve to maintain the viability of early-laid eggs, which declines over time owing to the putative effects of ambient temperature. An unexplored risk to egg viability is trans-shell infection by micro-organisms. We experimentally investigated the rate and magnitude of microbial trans-shell infection of the egg, and the relative effects of ambient temperature and micro-organisms on hatching success. We show that infection of egg contents is prevalent and occurs within the time required to lay a clutch. The probability of infection depends on the climatic conditions, the exposure period and the phylogenetic composition of the eggshell microbiota. We also demonstrate that microbial infection and ambient temperature act independently to reduce egg viability considerably. Our results suggest that these two factors could affect the onset of avian incubation in a wide range of environments. PMID:14613609

  12. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil.

    PubMed

    Wang, Xiaonan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong; Al-Misned, Fahad A; Mortuza, M Golam; Gadd, Geoffrey Michael

    2017-03-01

    Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se 0 ) under both aerobic and anaerobic conditions. The biogenic nano-Se 0 converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg 0 ) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively. Addition of sodium dodecyl sulfonate enhanced Hg 0 remediation, probably owing to the release of intracellular nano-Se 0 from the bacterial cells for Hg fixation. The reaction product after remediation was identified as non-reactive HgSe that was formed by amalgamation of nano-Se 0 and Hg 0 . Biosynthesis of nano-Se 0 both aerobically and anaerobically therefore provides a versatile and cost-effective remediation approach for Hg 0 -contaminated surface and subsurface soils, where the redox potential often changes dramatically. Copyright © 2016. Published by Elsevier Ltd.

  13. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  14. Incubation temperature effects on physical characteristics of normal, dark, firm and dry, and halothane-carrier pork longissimus.

    PubMed

    McCaw, J; Ellis, M; Brewer, M S; McKeith, F K

    1997-06-01

    Pigs (n = 18) were selected to represent three different muscle conditions (six pigs per condition): normal: dark, firm, and dry; and halothane carrier. A 45-cm-long longissimus section was excised from each side of the carcass at 30 min postmortem and cut into six sections. Right side sections were assigned to the intermediate temperature incubation (23 degrees C), and left side sections were designated high temperature incubation (40 degrees C). Sections were randomly assigned to incubation times (0, 1, 2, 4, 6, or 8 h). The 0 h section from each incubation treatment was designated as a control and was placed directly into a 4 degree C cooler. Temperature and pH were evaluated on the control section and for each loin section a the end of the incubation time. Color (L*, a*, and b* values), percentage of purge loss, water-holding capacity, and drip loss were determined. Incubation treatment did not alter pH decline in dark, firm, and dry muscle; however, high temperature increased pH decline in normal and halothane carrier samples. Results suggest that there is a strong interaction between pH and temperature that affects pork quality attributes. High incubation temperature had a negative effect on most quality variables; however, muscle condition (normal or halothane carrier) had limited effects on muscle quality.

  15. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  16. Humidification of incubators.

    PubMed Central

    Harpin, V A; Rutter, N

    1985-01-01

    The effect of increasing the humidity in incubators was examined in 62 infants of less than 30 weeks' gestation. Thirty three infants nursed in high humidity for two weeks were compared retrospectively with 29 infants from an earlier study who were nursed under plastic bubble blankets or with topical paraffin but without raised humidity. Humidification reduced skin water loss and improved maintenance of body temperature from birth, but did not delay the normal postnatal maturation of the skin. Infants nursed without humidity frequently became hypothermic in spite of a high incubator air temperature. These advantages must be weighed against the finding that overheating was more common and Pseudomonas was more commonly isolated from the infants. It is recommended that incubator humidity is raised for babies under 30 weeks' gestation in the first days of life but meticulous attention should be paid to fluid balance, avoiding overheating, and cleansing of the humidifier reservoir. PMID:3985653

  17. Innovative dual-step management of semi-aerobic landfill in a tropical climate.

    PubMed

    Lavagnolo, Maria Cristina; Grossule, Valentina; Raga, Roberto

    2018-04-01

    Despite concerted efforts to innovate the solid waste management (SWM) system, land disposal continues to represent the most widely used technology in the treatment of urban solid waste worldwide. On the other hand, landfilling is an unavoidable step in closing the material cycle, since final residues, although minimized, need to be safely disposed of and confined. In recent years, the implementation of more sustainable landfilling aims to achieve the Final Storage Quality conditions as fast as possible. In particular, semi-aerobic landfill appears to represent an effective solution for use in the poorest economies due to lower management costs and shorter aftercare resulting from aerobic stabilisation of the waste. Nevertheless, the implementation of a semi-aerobic landfill in a tropical climate may affect the correct functioning of the plant: a lack of moisture during the dry season and heavy rainfalls during the wet season could negatively affect performance of both the degradation process, and of leachate and biogas management. This paper illustrates the results obtained through the experimentation of a potential dual-step management of semi-aerobic landfilling in a tropical climate in which composting process was reproduced during the dry season and subsequently flushing (high rainfall rate) during the wet period. Eight bioreactors specifically designed: four operated under anaerobic conditions and four under semi-aerobic conditions; half of the reactors were filled with high organic content waste, half with residual waste obtained following enhanced source segregation. The synergic effect of the subsequent phases (composting and flushing) in the semi-aerobic landfill was evaluated on the basis of both types of waste. Biogas production, leachate composition and waste stabilization were analysed during the trial and at the end of each step, and compared in view of the performance of anaerobic reactors. The results obtained underlined the effectiveness of the

  18. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms

    PubMed Central

    2013-01-01

    Background Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. Results When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Conclusions Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus

  19. AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA

    EPA Science Inventory

    MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...

  20. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  1. The relationship of oocyte diameter and incubation temperature to incubation time in temperate freshwater fish species.

    PubMed

    Teletchea, F; Gardeur, J-N; Kamler, E; Fontaine, P

    2009-02-01

    Based on the analysis of six egg variables and incubation temperature of 65 temperate freshwater fish species, the possible relationships between oocyte diameter, incubation time and incubation temperature were reassessed and compared to the results obtained from marine fishes. Most freshwater species have eggs (mean +/-s.d. 2.19 +/- 1.52 mm) larger than marine species, that are chiefly demersal and develop stuck to various substrata, such as plants or rocks. A strong negative relationship was found between incubation time (t, days) and incubation temperature (T, degrees C): t = 186.23e(-0.197T) (r(2)= 0.87). A strong dependence of incubation time on oocyte diameter (Ø, mm) and incubation temperature was also found and was defined as: log(10)t= 3.002 + 0.599 log(10)Ø - 1.91 log(10) (T + 2), which explained 92% of the variance of the data set. Five major groups of species were defined based on the principal component analysis (PCA) of four quantitative variables. There were two distinct groups of salmonids, displaying demersal and non-adhesive eggs with a long incubation time at low temperature, the eggs of which required a high number of degree-days. There was a large group of species possessing small, mostly demersal and adhesive eggs developing at high temperature during a short period of time, and requiring a low number of degree-days. Between these two extremes, there was a fourth group displaying intermediate values and a fifth group including three species with large, adhesive and demersal eggs incubating at high temperatures during a short period of time. The burbot Lota lota displayed an unusual combination of variables compared to the remaining species in the data set.

  2. The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis

    PubMed Central

    Pang, Marco YC; Eng, Janice J; Dawson, Andrew S; Gylfadóttir, Sif

    2011-01-01

    Objective To determine whether aerobic exercise improves aerobic capacity in individuals with stroke. Design A systematic review of randomized controlled trials. Databases searched MEDLINE, CINAHL, EMBASE, Cochrane Database of Systematic Reviews, Physiotherapy Evidence Database were searched. Inclusion criteria Design: randomized controlled trials; Participants: individuals with stroke; Interventions: aerobic exercise training aimed at improving aerobic capacity; Outcomes Primary outcomes: aerobic capacity [peak oxygen consumption (VO2), peak workload); Secondary outcomes: walking velocity, walking endurance. Data Analysis The methodological quality was assessed by the PEDro scale. Meta-analyses were performed for all primary and secondary outcomes. Results Nine articles (seven RCTs) were identified. The exercise intensity ranged from 50% to 80% heart rate reserve. Exercise duration was 20–40 minutes for 3–5 days a week. The total number of subjects included in the studies was 480. All studies reported positive effects on aerobic capacity, regardless of the stage of stroke recovery. Meta-analysis revealed a significant homogeneous standardized effect size (SES) in favour of aerobic exercise to improve peak VO2 (SES, 0.42; 95%CI, 0.15 to 0.69; p=0.001) and peak workload (SES, 0.50; 95%CI, 0.26 to 0.73; p<0.001). There was also a significant homogeneous SES in favour of aerobic training to improve walking velocity (SES, 0.26; 95%CI, 0.05 to 0.48; p=0.008) and walking endurance (SES, 0.30; 95%CI, 0.06to 0.55; p=0.008). Conclusions There is good evidence that aerobic exercise is beneficial for improving aerobic capacity in people with mild and moderate stroke. Aerobic exercise should be an important component of stroke rehabilitation. PMID:16541930

  3. Aerobic fitness and executive control of relational memory in preadolescent children.

    PubMed

    Chaddock, Laura; Hillman, Charles H; Buck, Sarah M; Cohen, Neal J

    2011-02-01

    the neurocognitive benefits of an active lifestyle in childhood have public health and educational implications, especially as children in today's technological society are becoming increasingly overweight, unhealthy, and unfit. Human and animal studies show that aerobic exercise affects both prefrontal executive control and hippocampal function. This investigation attempts to bridge these research threads by using a cognitive task to examine the relationship between aerobic fitness and executive control of relational memory in preadolescent 9- and 10-yr-old children. higher-fit and lower-fit children studied faces and houses under individual item (i.e., nonrelational) and relational encoding conditions, and the children were subsequently tested with recognition memory trials consisting of previously studied pairs and pairs of completely new items. With each subject participating in both item and relational encoding conditions, and with recognition test trials amenable to the use of both item and relational memory cues, this task afforded a challenge to the flexible use of memory, specifically in the use of appropriate encoding and retrieval strategies. Hence, the task provided a test of both executive control and memory processes. lower-fit children showed poorer recognition memory performance than higher-fit children, selectively in the relational encoding condition. No association between aerobic fitness and recognition performance was found for faces and houses studied as individual items (i.e., nonrelationally). the findings implicate childhood aerobic fitness as a factor in the ability to use effective encoding and retrieval executive control processes for relational memory material and, possibly, in the strategic engagement of prefrontal- and hippocampal-dependent systems.

  4. Sustainable Synthesis of Oxalic and Succinic Acid through Aerobic Oxidation of C6 Polyols Under Mild Conditions.

    PubMed

    Ventura, Maria; Williamson, David; Lobefaro, Francesco; Jones, Matthew D; Mattia, Davide; Nocito, Francesco; Aresta, Michele; Dibenedetto, Angela

    2018-03-22

    The sustainable chemical industry encompasses a shift from the use of fossil carbon to renewable carbon. The synthesis of chemicals from nonedible biomass (cellulosic or oil) represents one of the key steps for "greening" the chemical industry. In this paper, we report the aerobic oxidative cleavage of C6 polyols (5-HMF, glucose, fructose and sucrose) to oxalic acid (OA) and succinic acid (SA) in water under mild conditions using M@CNT and M@NCNT (M=Fe, V; CNT=carbon nanotubes; NCNT=N-doped CNT), which, under suitable conditions, were recoverable and reusable without any loss of efficiency. The influence of the temperature, O 2 pressure (PO2 ), reaction time and stirring rate are discussed and the best reaction conditions are determined for an almost complete conversion of the starting material and a good OA yield of 48 %. SA and formic acid were the only co-products. The former could be further converted into OA by oxidation in the presence of formic acid, resulting in an overall OA yield of >62 %. This process was clean and did not produce organic waste nor gas emissions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Incubation Temperature Alters Temperature-Dependent Oxygen Consumption in Northern Bobwhite Quail Hatchlings (Colinus virginianus).

    PubMed

    Marks, Christopher; Nickles, Natalie E; Wise, Tom; Mavroidis, Spiro

    This study investigated the effect of mismatching incubation and posthatch temperatures in northern bobwhite quail hatchlings. Quail embryos were incubated at 35.5° or 37.5°C. Metabolic rates were then measured in hatchlings acclimated to either the same or the opposite temperature treatment. While hatchlings expressed higher oxygen consumption when posthatch temperature did not match incubation temperature, the effect of mismatching temperatures was significant only when posthatch temperature was higher than incubation temperature. Our data suggest that bobwhite quail hatchlings may express increased metabolism due to mismatches between incubation and posthatch temperatures. More specifically, the nature or direction of the mismatch can determine the magnitude of the metabolic effect. These findings highlight the importance of considering the context of specific conditions experienced throughout ontogeny when observing phenotypic outcomes.

  6. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    NASA Astrophysics Data System (ADS)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  7. Small Technology Business Incubation Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2007-12-31

    This report contains a summary of typical business incubation needs of small technology companies. This document will serve as a guide in the design and implementation of services offered by the National Security Technology Incubator (NSTI), an incubator program being designed and developed as part of the National Security Preparedness Project (NSPP), performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the methodology used to perform the needs assessment and services proposed to meet the needs of client companies. The purpose of the NSPP is to promote national security technologiesmore » through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland.« less

  8. Dynamic comparison on the usage of probiotics in organic wastewater treatment under aerobic conditions in a diurnal environment.

    PubMed

    Liu, Jun; Liu, Yali; Li, Guoqin; Shen, Junda; Tao, Zhengrong; Tian, Yong; Chen, Li; Li, Chunmei; Lu, Lizhi

    2016-12-01

    This study aims at evaluating and comparing pollution removal in wastewater treatment via the use of probiotics alone or in combination under aerobic conditions in diurnal cycles. Herein, 650 mL of organic wastewater was stored in 1-L conical flasks and then randomly divided into three treatment groups, each experiment was repeated three times. Group A was supplemented with 2% (v/v) photosynthetic bacteria (PSB; Rhodopseudomonas palustris) alone; group B was supplemented with 2% (v/v) B. subtilis alone; and group C was supplemented with 1% (v/v) PSB and 1% (v/v) B. subtilis. Results showed that the pH increases were in the order: group A < group C < group B. The performance of the probiotics in terms of ammonia nitrogen and total nitrogen (TN) removal was in the order: group A < group C < group B, whereas in terms of total organic matter (TOC) and total carbon (TC) removal, the order was group C < group B < group A. These results showed that the effect of probiotics combination treatment on ammonia nitrogen and TN removal was better than that of using B. subtilis alone, but worse than that of using PSB alone. The effect of B. subtilis alone treatment on TOC and TC removal was better than that of using PSB alone, but the combination of PSB and B. subtilis showed greater benefits on TOC and TC removal. Photosynthetic bacteria and B. subtilis were used in this study to investigate carbon and nitrogen metabolism via the use of different probiotics and then study further on comparing and achieving the best pollution removal performance in probiotics alone or in combination treatment. To make observations realistic, the experiments were conducted under aerobic conditions in a diurnal cycle environment.

  9. State of the art of aerobic granulation in continuous flow bioreactors.

    PubMed

    Kent, Timothy R; Bott, Charles B; Wang, Zhi-Wu

    In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of

  10. Mid Columbia sturgeon incubation and rearing study

    USGS Publications Warehouse

    Parsley, Michael J.; Kofoot, Eric; Blubaugh, J

    2011-01-01

    This report describes the results from the second year of a three-year investigation on the effects of different thermal regimes on incubation and rearing early life stages of white sturgeon Acipenser transmontanus. The Columbia River has been significantly altered by the construction of dams resulting in annual flows and water temperatures that differ from historical levels. White sturgeon have been demonstrated to spawn in two very distinct sections of the Columbia River in British Columbia, Canada, which are both located immediately downstream of hydropower facilities. The thermal regimes differ substantially between these two areas. The general approach of this study was to incubate and rear white sturgeon early life stages under two thermal regimes; one mimicking the current, cool water regime of the Columbia River downstream from Revelstoke Dam, and one mimicking a warmer regime similar to conditions found on the Columbia River at the international border. Second-year results suggest that thermal regimes during incubation influence rate of egg development and size at hatch. Eggs incubated under the warm thermal regime hatched sooner than those incubated under the cool thermal regime. Mean length of free embryos at hatch was significantly different between thermal regimes with free embryos from the warm thermal regime being longer at hatch. However, free embryos from the cool thermal regime had a significantly higher mean weight at hatch. This is in contrast with results obtained during 2009. The rearing trials revealed that growth of fish reared in the cool thermal regime was substantially less than growth of fish reared in the warm thermal regime. The magnitude of mortality was greatest in the warm thermal regime prior to initiation of exogenous feeding, but chronic low levels of mortality in the cool thermal regime were higher throughout the period. The starvation trials showed that the fish in the warm thermal regime exhausted their yolk reserves faster

  11. Evaluation of TCDD biodegradability under different redox conditions.

    PubMed

    Kao, C M; Chen, S C; Liu, J K; Wu, M J

    2001-09-01

    Polychlorinated dibenzo-p-dioxins have been generated as unwanted by-products in many industrial processes. Although their widespread distribution in different environmental compartments has been recognized, little is known about their fate in the ultimate environment sinks. The highly stable dioxin isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been called the most toxic compound known to man. In this laboratory microcosm study, TCDD bioavailability was evaluated under five reduction/oxidation (redox) conditions including aerobic biodegradation, aerobic cometabolism, methanogenesis, iron reduction, and reductive dechlorination. Activated sludge and aquifer sediments from a TCDD and a pentachlorophenol (PCP) contaminated site were used as the inocula. Acetate, sludge cake, and cane molasses were used as the primary substrates (carbon sources) in cometabolism and reductive dechlorination microcosms. After a 90-day incubation period, microcosms constructed under reductive dechlorination conditions were the only treatment showing promising remediation results. The highest TCDD degradation rate [up to 86% of TCDD removal (with an initial concentration of 96 microg/kg of soil)] was observed in the microcosms with anaerobic activated sludge as the microbial inocula and sludge cakes as the primary substrates. Except for reductive dechlorination microcosms, no significant TCDD removal was observed in the microcosms prepared under other conditions. Thus, application of an effective primary substrate to enhance the reductive dechlorination process is a feasible method for TCDD bioremediation. Bioremediation expense can be significantly reduced by the supplement of some less expensive alternative substrates (e.g., sludge cakes, cane molasses). Results would be useful in designing a scale-up in situ or on-site bioremediation system such as bioslurry reactor for field application.

  12. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    DOE PAGES

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; ...

    2015-07-23

    In this study, accurately estimating methane (CH 4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH 4 flux requires explicit representations of microbial processes on CH 4 dynamics because all processes for CH 4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH 4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH 4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out bymore » four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO 2) and CH 4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO 2 and CH 4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO 2 and CH 4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH 4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.« less

  13. Effects of N-acetylcysteine on isolated skeletal muscle contractile properties after an acute bout of aerobic exercise.

    PubMed

    Jannig, Paulo R; Alves, Christiano R R; Voltarelli, Vanessa A; Bozi, Luiz H M; Vieira, Janaina S; Brum, Patricia C; Bechara, Luiz R G

    2017-12-15

    The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    NASA Astrophysics Data System (ADS)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-09-01

    Peatlands are carbon (C) storage ecosystems sustained by a high water table (WT). High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years). We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N), phosphorus (P) and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years) and long-term (decades) WT drawdown conditions under two nutrient regimes (bog and fen). The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees. Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition). Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period) summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P and N acquisition towards C

  15. Effects of different source additives and wilt conditions on the pH value, aerobic stability, and carbohydrate and protein fractions of alfalfa silage.

    PubMed

    Tao, Lian; Zhou, He; Zhang, Naifeng; Si, Bingwen; Tu, Yan; Ma, Tao; Diao, Qiyu

    2017-01-01

    To improve the silage quality and reduce the silage additive cost, the present experiment was designed to evaluate the potential of applying the fermented juice of epiphytic lactic acid bacteria (FJLB) as an additive in alfalfa silage. The effects of FJLB on the fermentation quality, carbohydrate and protein fractions, and aerobic stability of alfalfa silage wilted under five different conditions were investigated and compared with commercial lactic acid bacteria (CLAB) and the control. The FJLB application decreased the pH value, the volatile fatty acids and non-protein nitrogen content, and the loss of sugar by 9.9%, 22.9%, 19.6% and 9.6%, respectively; it increased the lactic acid concentration by 29.5% and the aerobic stability by 17 h in comparison to the control. The FJLB application also decreased the pH value (4.44 vs. 4.66) and volatile fatty acid content (38.32 vs. 44.82) and increased the lactic acid concentration (68.99 vs. 63.29) in comparison to the CLAB-treated silage. However, the FJLB treatment had lower aerobic stability (254 h vs. 274 h) than the CLAB treatment. The FJLB application improved silage quality in comparison to the control; in addition, its effect as a fermentation stimulant may be comparable to or even better than CLAB. © 2016 Japanese Society of Animal Science.

  16. Enumeration of total aerobic microorganisms in foods by SimPlate Total Plate Count-Color Indicator methods and conventional culture methods: collaborative study.

    PubMed

    Feldsine, Philip T; Leung, Stephanie C; Lienau, Andrew H; Mui, Linda A; Townsend, David E

    2003-01-01

    The relative efficacy of the SimPlate Total Plate Count-Color Indicator (TPC-CI) method (SimPlate 35 degrees C) was compared with the AOAC Official Method 966.23 (AOAC 35 degrees C) for enumeration of total aerobic microorganisms in foods. The SimPlate TPC-CI method, incubated at 30 degrees C (SimPlate 30 degrees C), was also compared with the International Organization for Standardization (ISO) 4833 method (ISO 30 degrees C). Six food types were analyzed: ground black pepper, flour, nut meats, frozen hamburger patties, frozen fruits, and fresh vegetables. All foods tested were naturally contaminated. Nineteen laboratories throughout North America and Europe participated in the study. Three method comparisons were conducted. In general, there was <0.3 mean log count difference in recovery among the SimPlate methods and their corresponding reference methods. Mean log counts between the 2 reference methods were also very similar. Repeatability (Sr) and reproducibility (SR) standard deviations were similar among the 3 method comparisons. The SimPlate method (35 degrees C) and the AOAC method were comparable for enumerating total aerobic microorganisms in foods. Similarly, the SimPlate method (30 degrees C) was comparable to the ISO method when samples were prepared and incubated according to the ISO method.

  17. Benefits of Incubation on Divergent Thinking

    ERIC Educational Resources Information Center

    Chiang, Noelle C.; Chen, Meng-Liang

    2017-01-01

    Studies on whether fixation cues provided in the first episode of divergent thinking tasks influence creative outcomes after incubation, as they do for convergent problem-solving tasks, remain limited. This research examined the beneficial effects of incubation using the delayed- and immediate-incubation paradigms. Participants in Experiment 1…

  18. Variation in incubation periods and egg metabolism in mallards: Intrinsic mechanisms to promote hatch synchrony

    USGS Publications Warehouse

    MacCluskie, Margaret C.; Flint, Paul L.; Sedinger, James S.

    1997-01-01

    We investigated factors affecting incubation time and metabolic rates of Mallard (Anas platyrhynchos) eggs incubated under constant environmental conditions. Time required to reach the star-pipped stage of hatch varied significantly among females, but not with laying sequence or egg size. Metabolic rate of eggs varied positively with position in the laying sequence and tended to vary among females. Metabolic rate did not vary with egg volume or incubation length. Our results indicate metabolic rate may act as one synchronization mechanism for hatch. The role of maternal effects in development time should be considered in subsequent studies of incubation time in ducks.

  19. Aerobic degradation of tylosin in cattle, chicken, and swine excreta.

    PubMed

    Teeter, Jerold Scott; Meyerhoff, Roger D

    2003-09-01

    Tylosin, a fermentation-derived macrolide antibiotic, was tested to determine its aerobic degradation rate in cattle, chicken, and swine excreta. For chicken, excreta from a hen administered 14C-tylosin as part of a metabolism study were used. For cattle and swine, 14C-tylosin was added to control excreta. The formation of 14C volatile breakdown products and 14CO2 was not observed throughout the study. Material balance for the carbon-14 label ranged between 94% and 104%. Initial, day-0, concentrations of tylosin-A averaged 119.52+/-4.39, 35.01+/-1.34, and 62.82+/-2.11 microg/g (dry weight basis) for cattle, chicken, and swine excreta samples, respectively. After 30 days, samples averaged 4.16+/-0.69 and 4.11+/-0.69 microg/g tylosin-A in cattle and swine excreta, respectively. No residues of tylosin-A or its factors were apparent in the chicken excreta samples after 30 days of incubation. In each case, tylosin declined to less than 6.5% of the initial level after 30 days. Calculated first-order half-lives under the test conditions were 6.2 days, <7.6 days, and 7.6 days for cattle, chicken, and swine excreta, respectively. The results indicate that tylosin residues degrade rapidly in animal excreta. Therefore, tylosin residues should not persist in the environment.

  20. Reductive dehalogenation of 3,5-dibromo-4-hydroxybenzoate by an aerobic strain of Delftia sp. EOB-17.

    PubMed

    Chen, Kai; Jian, Shanshan; Huang, Linglong; Ruan, Zhepu; Li, Shunpeng; Jiang, Jiandong

    2015-12-01

    To confirm the reductive dehalogenation ability of the aerobic strain of Delftia sp. EOB-17, finding more evidences to support the hypothesis that reductive dehalogenation may occur extensively in aerobic bacteria. Delftia sp. EOB-17, isolated from terrestrial soil contaminated with halogenated aromatic compounds, completely degraded 0.2 mM DBHB in 28 h and released two equivalents of bromides under aerobic conditions in the presence of sodium succinate. LC-MS analysis revealed that DBHB was transformed to 4-hydroxybenzoate via 3-bromo-4-hydroxybenzoate by successive reductive dehalogenation. Highly conserved DBHB-degrading genes, including reductive dehalogenase gene (bhbA3) and the extra-cytoplasmic binding receptor gene (bhbB3), were also found in strain EOB-17 by genome sequencing. The optimal temperature and pH for DBHB reductive dehalogenation activity are 30 °C and 8, respectively, and 0.1 mM Cd(2+), Cu(2+), Hg(2+) and Zn(2+) strongly inhibited dehalogenation activity. The aerobic strain of Delftia sp. EOB-17 was confirmed to reductively dehalogenate DBHB under aerobic conditions, providing another evidence to support the hypothesis that reductive dehalogenation occurs extensively in aerobic bacteria.

  1. 21 CFR 880.5400 - Neonatal incubator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neonatal incubator. 880.5400 Section 880.5400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... § 880.5400 Neonatal incubator. (a) Identification. A neonatal incubator is a device consisting of a...

  2. Micro-incubator for bacterial biosensing applications

    NASA Astrophysics Data System (ADS)

    Clasen, Estine; Land, Kevin; Joubert, Trudi-Heleen

    2016-02-01

    The presence of Escherichia coli (E. coli ) is a commonly used indicator micro-organism to determine whether water is safe for human consumption.1 This paper discusses the design of a micro-incubator that can be applied to concentrate bacteria prior to environmental water quality screening tests. High sensitivity and rapid test time is essential and there is a great need for these tests to be implemented on-site without the use of a laboratory infrastructure. In the light of these requirements, a mobile micro-incubator was designed, manufactured and characterised. A polydimethylsiloxane (PDMS) receptacle has been designed to house the 1-5 ml cell culture sample.2 A nano-silver printed electronics micro-heater has been designed to incubate the bacterial sample, with an array of temperature sensors implemented to accurately measure the sample temperature at various locations in the cell culture well. The micro-incubator limits the incubation temperature range to 37+/-3 °C in order to ensure near optimal growth of the bacteria at all times.3 The incubation time is adjustable between 30 minutes and 9 hours with a maximum rise time of 15 minutes to reach the set-point temperature. The surface area of the printed nano silver heating element is 500 mm2. Electrical and COMSOL Multiphysics simulations are included in order to give insight on micro-incubator temperature control. The design and characterization of this micro-incubator allows for further research in biosensing applications.

  3. National Security Technology Incubator Evaluation Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report describes the process by which the National Security Technology Incubator (NSTI) will be evaluated. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the components, steps, and measures of the proposed evaluation process. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages ofmore » early development. An effective evaluation process of the NSTI is an important step as it can provide qualitative and quantitative information on incubator performance over a given period. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The mission of the NSTI is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. To achieve success for both incubator businesses and the NSTI program, an evaluation process is essential to effectively measure results and implement corrective processes in the incubation design if needed. The evaluation process design will collect and analyze qualitative and quantitative data through performance evaluation system.« less

  4. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults

    PubMed Central

    Flodin, Pär; Jonasson, Lars S.; Riklund, Katrin; Nyberg, Lars; Boraxbekk, C. J.

    2017-01-01

    Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64–78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO2-peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO2-peak was negativly related to BOLD-signal fluctuations (BOLDSTD) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO2-related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and intrinsic

  6. Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults.

    PubMed

    Flodin, Pär; Jonasson, Lars S; Riklund, Katrin; Nyberg, Lars; Boraxbekk, C J

    2017-01-01

    Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO 2 -peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO 2 -peak was negativly related to BOLD-signal fluctuations (BOLD STD ) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO 2 -related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and

  7. Amphibacillus cookii sp. nov., a facultatively aerobic, spore-forming, moderately halophilic, alkalithermotolerant bacterium.

    PubMed

    Pugin, Benoît; Blamey, Jenny M; Baxter, Bonnie K; Wiegel, Juergen

    2012-09-01

    Novel strains of facultatively aerobic, moderately alkaliphilic and facultatively halophilic bacteria were isolated from a sediment sample taken from the Southern Arm of Great Salt Lake, Utah. Cells of strain JW/BP-GSL-QD(T) (and related strains JW/BP-GSL-RA and JW/BP-GSL-WB) were rod-shaped, spore-forming, motile bacteria with variable Gram-staining. Strain JW/BP-GSL-QD(T) grew under aerobic conditions between 14.5 and 47 °C (optimum 39 °C), in the pH(37 °C) range 6.5-10.3 (optimum pH(37 °C) 8.0), and between 0.1 and 4.5 M Na(+) (optimum 0.9 M Na(+)). No growth was observed in the absence of supplemented Na(+). Strain JW/BP-GSL-QD(T) utilized L-arabinose, D-fructose, D-galactose, D-glucose, inulin, lactose, maltose, mannitol, D-mannose, pyruvate, D-ribose, D-sorbitol, starch, trehalose, xylitol and D-xylose under both aerobic and anaerobic conditions, and used ethanol and methanol only under aerobic conditions. Strains JW/BP-GSL-WB and JW/BP-GSL-RA had the same profiles except that methanol was not used aerobically. During growth on glucose, the major organic compounds formed under aerobic conditions were acetate and lactate, and under anaerobic conditions, the fermentation products were formate, acetate, lactate and ethanol. Oxidase and catalase activities were not detected and cytochrome was absent. No respiratory quinones were detected. The main cellular fatty acids were iso-C(15 : 0) (39.1 %) and anteiso-C(15 : 0) (36.3 %). Predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and an unknown phospholipid. Additionally, a small amount of an unknown glycolipid was detected. The DNA G+C content of strain JW/BP-GSL-QD(T) was 35.4 mol% (determined by HPLC). For strain JW/BP-GSL-QD(T) the highest degree of 16S rRNA gene sequence similarity was found with Amphibacillus jilinensis (98.6 %), Amphibacillus sediminis (96.7 %) and Amphibacillus tropicus (95.6 %). The level of DNA-DNA relatedness between strain JW/BP-GSL-QD(T) and A. jilinensis Y1

  8. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.

    PubMed

    Gobi, K; Vadivelu, V M

    2014-06-01

    Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry.

    PubMed

    Zotta, T; Parente, E; Ricciardi, A

    2017-04-01

    This review outlines the recent advances in the knowledge on aerobic and respiratory growth of lactic acid bacteria, focusing on the features of respiration-competent lactobacilli. The species of the genus Lactobacillus have been traditionally classified as oxygen-tolerant anaerobes, but it has been demonstrated that several strains are able to use oxygen as a substrate in reactions mediated by flavin oxidases and, in some cases, to synthesize a minimal respiratory chain. The occurrence of genes related to aerobic and respiratory metabolism and to oxidative stress response apparently correlates with the taxonomic position of lactobacilli. Members of the ecologically versatile Lactobacillus casei, L. plantarum and L. sakei groups are apparently best equipped to deal with aerobic/respiratory growth. The shift from anaerobic growth to aerobic (oxygen) and/or respiratory promoting (oxygen, exogenous haem and menaquinone) conditions offers physiological advantages and affects the pattern of metabolite production in several species. Even if this does not result in dramatic increases in biomass production and growth rate, cells grown in these conditions have improved tolerance to heat and oxidative stresses. An overview of benefits and of the potential applications of Lactobacillus cultures grown under aerobic or respiratory conditions is also discussed. © 2017 The Society for Applied Microbiology.

  10. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  11. Sitting in the sun: Nest microhabitat affects incubation temperatures in seabirds.

    PubMed

    Hart, Lorinda A; Downs, Colleen T; Brown, Mark

    2016-08-01

    During incubation parent birds are committed to a nest site and endure a range of ambient conditions while regulating egg temperatures. Using artificial eggs containing temperature loggers alongside ambient temperature (Ta) controls, incubation profiles were determined for four tropical seabird species at different nest site locations. Camera traps were used for ad-hoc behavioural incubation observations. Eggs experienced a range of temperatures during incubation and varied significantly between species and in some cases between different microhabitats within a species. Such variation has important consequences in the phenotypic expression of both physical and physiological traits of chicks, and ultimately species fitness. Exposed nest sites were more strongly correlated to Tas. Camera traps highlighted different incubation strategies employed by these species that could be related to trade-offs in predator defence, feeding habits, and temperature regulation of eggs. This study provides evidence that species with similar breeding habits could be affected by environmental stressors in similar ways and that the differences shown in nest site selection could negate some of these effects. We propose that habitats providing suitable nest microclimates will become increasingly important for the successful breeding of seabird species, particularly under predicted climate change scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of concurrent and aerobic exercises on postexercise hypotension in elderly hypertensive men.

    PubMed

    Ferrari, Rodrigo; Umpierre, Daniel; Vogel, Guilherme; Vieira, Paulo J C; Santos, Lucas P; de Mello, Renato Bandeira; Tanaka, Hirofumi; Fuchs, Sandra C

    2017-11-01

    Despite the fact that simultaneous performance of resistance and aerobic exercises (i.e., concurrent exercise) has become a standard exercise prescription for the elderly, no information is available on its effects on post-exercise hypotension (PEH) in elderly men with hypertension. To compare the effects of different types of exercise on PEH in elderly men with hypertension. Twenty elderly men with essential hypertension participated in three crossover interventions, in random order, and on separate days: a non-exercise control session at seated rest, aerobic exercise performed for 45min, and 45min of concurrent resistance and aerobic exercise consisted of 4 sets of 8 repetitions at 70% 1RM of resistance exercise followed by aerobic exercise on treadmill. After each session, blood pressure (BP) was measured continuously for 1h in the laboratory and for 24h under ambulatory conditions. During the first hour in laboratory, diastolic BP was lower after aerobic (-5mmHg) and concurrent exercise (-6mmHg) in comparison with Control. Day-time diastolic BP was significantly lower after aerobic exercise (-7mmHg) when compared to the control. No significant differences were found among the three experimental sessions for night-time and 24-hour diastolic BP, as well as day-time, night-time and 24-hour systolic BP. Concurrent exercise produced acute PEH similar to aerobic exercise but such effect did not last as long as aerobic exercise in elderly patients with essential hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Noise levels in a neonatal transport incubator in medically configured aircraft.

    PubMed

    Sittig, Steven E; Nesbitt, Jeffrey C; Krageschmidt, Dale A; Sobczak, Steven C; Johnson, Robert V

    2011-01-01

    The purpose of this study was to evaluate exposure of neonates to noise during air medical transport as few commercially available hearing protective devices exist for premature newborns during air medical transport. Sound pressure levels in an infant incubator during actual flight conditions in four common medically configured aircraft were measured. Three noise dosimeters measured time-weighted average noise exposure during flight in each aircraft. One dosimeter was placed in the infant incubator, and the remaining dosimeters recorded noise levels in various parts of the aircraft cabin. The incubator provided a 6-dBA decrease in noise exposure from that in the crew cabin. The average noise level in the incubator in all aircraft was close to 80 dB, much higher than the proposed limits of 45 dB for neonatal intensive care unit noise exposure or 60 dB during transport. Exposure of neonates to elevated noise levels during transport may be harmful, and steps should be taken to protect the hearing of this patient population. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    PubMed

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2018-01-01

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  15. Aquatic metabolism of 3-trifluoromethyl-4-nitrophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fathulla, R.N.; Conteh, A.R.; Pogosyan, A.I.

    1995-12-01

    Aerobic and anaerobic aquatic metabolism of {sup 14}C-3-trifluoromethyl-4-nitrophenol ({sup 14}C-TFM) in lake water and sediment samples from Black River, Michigan, was investigated following Federal Insecticide, Fungicide, and Rodenticide Act EPA guidelines and according to Good Laboratory Practices. The half-life of {sup 14}C-TFM under anaerobic conditions was 2.1 days versus 5.5 days under aerobic conditions. After 30 days of anaerobic incubation, 93.5% of applied TFM was transferred to 4- amino-3-(trifluoromethyl) phenol (reduced TFM) and only 5.1% was incorporated into sediment organic compounds. After 30 days of aerobic incubation, 77.1 % of TFM transferred to high-molecular-weight compounds and bound residues, 7.8% CO{submore » 2}, and 2.2% remained unchanged. Reduced TFM reached a maximum level at Day 7 (38.4%), then decreased to 0.3% by Day 30. Incorporation could be caused by cross-coupling between amines or phenols independently, or between amines and phenols with subsequent bonding coupled compounds to sediment humic substances. Furthermore, polar compounds formed under aerobic conditions could be the products of substitution of the nitro group of TFM by a hydroxyl group, subsequent oxidation to quinone, polymerization, and bonding of polyphenols with sediment amino acids and peptides. These data suggest that TFM degrades under aerobic conditions to polar products, bound residues, and CO{sub 2}, and it degrades even faster tinder anaerobic conditions to reduced TFM, which seems to persist.« less

  16. A Biochemical Approach to Study the Role of the Terminal Oxidases in Aerobic Respiration in Shewanella oneidensis MR-1

    PubMed Central

    Le Laz, Sébastien; Kpebe, Arlette; Bauzan, Marielle; Lignon, Sabrina; Rousset, Marc; Brugna, Myriam

    2014-01-01

    The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed. PMID:24466040

  17. Microbial Methanogenesis In Laboratory Incubations Of Coal: Implications For A Sustainable Energy Resource In Subsurface Coalbeds

    NASA Astrophysics Data System (ADS)

    Harris, S. H.; Barker, C. E.; Smith, R. L.

    2005-12-01

    Methane desorbed from subsurface coalseams contributes about 8% of the total natural gas produced in the US. This value is expected to increase over the next several years as a growing proportion of energy demands are supplied from unconventional reservoirs. Isotopic analyses of gas samples from several geographically separate coalbeds indicates a substantial proportion of the sorbed methane is biogenic in origin. Furthermore, previous studies have shown the ability of microbial consortia to degrade coal in aerobic laboratory incubations. These findings suggests the stimulation of microbial methane production in subsurface coals may provide a sustainable source of domestic energy. To address this prospect, we assessed the ability of indigenous microbial populations to produce methane in coal maintained under anaerobic conditions in the laboratory and investigated factors that influenced the rate and extent of the process. Several freshly collected coals of different rank were examined for their ability to support methanogenesis in mineral medium alone or amended with different nutrients such as hydrogen (4 kPa), formate (20 mM), or acetate (25mM). Microbial methane production was distinguished from abiotic desorption by subtracting methane generated in replicate incubations that contained bromoethanesulfonic acid (5 mM), an inhibitor of methanogenesis. The extent and rate of methane production varied among the different coals. A relatively shallow (400 m), immature coal exhibited a rate of 700 nmole CH4*day-1*g coal-1, a value comparable to previous observations of contaminated sediments. Methane production was negligible in a deeper, relatively mature (650 m) coal obtained from the same borehole although the same material exhibited a rate of about 80 nmole CH4*day-1*g coal-1 after a formate amendment. In contrast, hydrogen proved to be ineffective as a methanogenic substrate, although this electron donor was rapidly consumed in coal incubations. A filter

  18. The Effect of Intermittent Head Cooling on Aerobic Performance in the Heat

    PubMed Central

    Walters, Peter; Thom, Nathaniel; Libby, Kai; Edgren, Shelby; Azadian, Amanda; Tannous, Daniel; Sorenson, Elisabeth; Hunt, Brian

    2017-01-01

    Thermoregulation is critical for athletes, particularly those for those who must perform in the heat. Most strategies aimed at reducing heat stress have cooled participants before or during activity. The objective of this study is to investigate whether seven minutes of head cooling applied between bouts of aerobic exercise in hot (35 ± 1.0 °C) and dry (14.68 ±4.29% rh) environmental conditions could positively effect participants peak power output (PP) on a maximal effort graded exercise test (GXT). Twenty-two recreational active men ages 18 to 23 (19.8 ± 1.6 yrs.) completed three performance trials over a 21 day period. During the first trial, participants were familiarized with procedures and completed a maximal effort GXT on a cycle ergometer to establish maximal baseline performances. The second and third trials, which were counterbalanced, consisted of a cooling and placebo condition. During both of these trials, participants cycled 40 minutes at 65% of their maximum VO2, in hot (35 ± 1.0 °C) and dry (17-20% rh) environmental conditions. Immediately after this initial bout of activity, participants were given seven minutes of recovery in which head cooling was applied during the cooling condition and withheld during the placebo condition. Participants then completed a maximal effort GXT. Significant differences (p < 0.001) in participants peak power output (W) were measured when cooling was applied compared to the placebo condition (304.23(W) ± 26.19(W) cooling, 291.68(W) ± 26.04(W) placebo). These results suggest that a relatively brief period of intermittent cooling may enhance subsequent aerobic performance. Key points Thermoregulation is a critical performance variable Pre-cooling and Mid-cooling methods have been shown to benefit aerobic and anaerobic performance To date, intermittent head mid-cooling has not been investigated This study demonstrated that seven minutes of intermittent head cooling was sufficient to positively effect aerobic

  19. Bio-Fluid Dynamics in a Centimeter-Scale Diagnostics Incubator with Integrated Perfusion

    NASA Astrophysics Data System (ADS)

    Vukasinovic, J.; Cullen, D. K.; Glezer, A.; Laplaca, M. C.

    2006-11-01

    Growing demands for long-term incubation of biologically faithful, three-dimensional neuronal and other cultures during extended physiological studies require efficient perfusion platforms with functional vasculatures that mimic the in vivo condition in a thermally regulated environment. While thermostatically controlled incubation baths with capillary action perfusion are available, their use is confined to specific experimental conditions. The interstitial nutrient and gas delivery remains diffusion limited over the long term and cultures decay metabolically. To overcome these problems, we describe simple fabrication and experimental characterization of a compact, diagnostics incubator that allows in situ monitoring of culture activity with a superior control of critical biological functions using convectively enhanced heat and mass transport. To overcome intercellular diffusion barriers culture is exposed to a direct flow of media issuing from an array of micro-nozzles that are directed normal to the substrate upholding the culture, and further improved by 3-D convection induced by jet interactions and biased, peripheral perfusate extraction through an array of microchannels as demonstrated by microPIV measurements.

  20. Influence of sulfate input on freshwater sediments: Insights from incubation experiments

    USGS Publications Warehouse

    Szynkiewicz, Anna; Jedrysek, Mariusz Orion; Kurasiewicz, M.; Mastalerz, Maria

    2008-01-01

    Incubation experiments were carried out under high and low SO42 - conditions to investigate the buffering capacity of lake sediments. Increased SO42 - content in the water column enhanced microbial SO42 - reduction, causing a continuous decrease of SO42 - content from 1086 to 83 mg/L paralleled by an increase of pH in the water column from 3.76 to 7.20. These changes were accompanied by decreased methanogenesis in the incubated sediments. The results demonstrate that the buffering capacity resulted from a variety of biodegradation pathways controlled to a large extent by SO42 - reduction, rather than by direct anaerobic oxidation of CH4. This is documented by distinctly lower ??13C values (from -73.99 to -65.24???) of the CH4 generated under higher SO42 - conditions compared to higher ??13C values (from -68.98 to -61.37???) of the CH4 generated under lower SO42 - conditions. ?? 2008 Elsevier Ltd. All rights reserved.

  1. Effects of incubation temperature on growth and performance of the veiled chameleon (Chamaeleo calyptratus).

    PubMed

    Andrews, Robin M

    2008-10-01

    I evaluated the effect of incubation temperature on phenotypes of the veiled chameleon, Chamaeleo calyptratus. I chose this species for study because its large clutch size (30-40 eggs or more) allows replication within clutches both within and among experimental treatments. The major research objectives were (1) to assess the effect of constant low, moderate, and high temperatures on embryonic development, (2) to determine whether the best incubation temperature for embryonic development also produced the "best" hatchlings, and (3) to determine how a change in incubation temperature during mid-development would affect phenotype. To meet these objectives, I established five experimental temperature regimes and determined egg survival and incubation length and measured body size and shape, selected body temperatures, and locomotory performance of lizards at regular intervals from hatching to 90 d, or just before sexual maturity. Incubation temperature affected the length of incubation, egg survival, and body mass, but did not affect sprint speed or selected body temperature although selected body temperature affected growth in mass independently of treatment and clutch. Incubation at moderate temperatures provided the best conditions for both embryonic and post-hatching development. The highest incubation temperatures were disruptive to development; eggs had high mortality, developmental rate was low, and hatchlings grew slowly. Changes in temperature during incubation increased the among-clutch variance in incubation length relative to that of constant temperature treatments. Copyright 2008 Wiley-Liss, Inc.

  2. Aerobic biotransformation of polyfluoroalkyl phosphate esters (PAPs) in soil.

    PubMed

    Liu, Chen; Liu, Jinxia

    2016-05-01

    Microbial transformation of polyfluoroalkyl phosphate esters (PAPs) into perfluorocarboxylic acids (PFCAs) has recently been confirmed to occur in activated sludge and soil. However, there lacks quantitative information about the half-lives of the PAPs and their significance as the precursors to PFCAs. In the present study, the biotransformation of 6:2 and 8:2 diPAP in aerobic soil was investigated in semi-dynamics reactors using improved sample preparation methods. To develop an efficient extraction method for PAPs, six different extraction solvents were compared, and the phenomenon of solvent-enhanced hydrolysis was investigated. It was found that adding acetic acid could enhance the recoveries of the diPAPs and inhibit undesirable hydrolysis during solvent extraction of soil. However 6:2 and 8:2 monoPAPs, which are the first breakdown products from diPAPs, were found to be unstable in the six solvents tested and quickly hydrolyzed to form fluorotelomer alcohols. Therefore reliable measurement of the monoPAPs from a live soil was not achievable. The apparent DT50 values of 6:2 diPAP and 8:2 diPAP biotransformation were estimated to be 12 and > 1000 days, respectively, using a double first-order in parallel model. At the end of incubation of day 112, the major degradation products of 6:2 diPAP were 5:3 fluorotelomer carboxylic acid (5:3 acid, 9.3% by mole), perfluoropentanoic acid (PFPeA, 6.4%) and perfluorohexanoic acid (PFHxA, 6.0%). The primary product of 8:2 diPAP was perfluorooctanoic acid (PFOA, 2.1%). The approximately linear relationship between the half-lives of eleven polyfluoroalkyl and perfluoroalkyl substances (PFASs, including 6:2 and 8:2 diPAPs) that biotransform in aerobic soils and their molecular weights suggested that the molecular weight is a good indicator of the general stability of low-molecular-weight PFAS-based compounds in aerobic soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The impact of nanoparticles on aerobic degradation of municipal solid waste.

    PubMed

    Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan

    2017-04-01

    The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO 2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO 2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg -1 of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min -1 kg -1 aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO 2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl - ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO 2 and Ag nanoparticles at concentrations of 100 mg kg -1 of solid waste do not have significant impacts on aerobic biological processes and waste management systems.

  4. Lewis Incubator for Technology (LIFT)

    NASA Technical Reports Server (NTRS)

    Zeman, Wayne P.; King, Joseph B.; Jankura, Richard E., Jr.

    2004-01-01

    This report summarizes the work done to operate the Lewis Incubator for Technology for the period October 2000 through September 2004. The Lewis Incubator helped the startup and growth of technology based businesses with the potential to incorporate technology from the NASA Glenn Research Center.

  5. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  6. Effects of ultrashort gamete co-incubation time on porcine in vitro fertilization.

    PubMed

    Almiñana, C; Gil, M A; Cuello, C; Parrilla, I; Roca, J; Vazquez, J M; Martinez, E A

    2008-07-01

    A reduction in co-incubation time has been suggested as an alternative method to reduce polyspermic fertilization. The aim of this study was to evaluate the effect of short periods of gamete co-incubation during pig in vitro fertilization. A total of 2,833 in vitro matured oocytes were inseminated with thawed spermatozoa and coincubated for 0.25, 1, 2, 3, 7, 10 min and 6h. The oocytes from the 0.25-10 min groups were washed three times in modified Tris-buffered medium (mTBM) medium to remove spermatozoa not bound to the zona and transferred to the same medium (containing no spermatozoa) until 6h of co-incubation time were completed. After 6h, presumptive zygotes from each group were cultured in NCSU-23 medium for 12-15 h to assess fertilization parameters. After each period of co-incubation, 45-50 oocytes from each group were stained with Hoechst-33342 and the number of spermatozoa bound to the zona was counted. Although the number of zona bound spermatozoa increased (p<0.05) with the co-incubation time, no increase was observed in penetration rates among groups from 2 min to 6h of co-incubation time (ranging from 53.5+/-2.8 to 61.3+/-2.6%). Similarly, the efficiency of fertilization reached a maximum for the 2 min of co-incubation group with values ranging between 32.3+/-2.4 and 41.9+/-2.5%. The reduction of co-incubation time did not affect the monospermy rate (range: 71.3+/-3.4-80.2+/-3.8%) and the mean number of spermatozoa/oocyte (range: 1.2+/-0.4-1.4+/-0.5). These results show that, under our in vitro conditions, high penetration rate can be obtained with co-incubation times as short as 2 min, although monospermy could not be improved using this strategy.

  7. Incubation and Intuition in Creative Problem Solving.

    PubMed

    Gilhooly, Kenneth J

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation.

  8. Incubation and Intuition in Creative Problem Solving

    PubMed Central

    Gilhooly, Kenneth J.

    2016-01-01

    Creative problem solving, in which novel solutions are required, has often been seen as involving a special role for unconscious processes (Unconscious Work) which can lead to sudden intuitive solutions (insights) when a problem is set aside during incubation periods. This notion of Unconscious Work during incubation periods is supported by a review of experimental studies and particularly by studies using the Immediate Incubation paradigm. Other explanations for incubation effects, in terms of Intermittent Work or Beneficial Forgetting are considered. Some recent studies of divergent thinking, using the Alternative Uses task, carried out in my laboratory regarding Immediate vs. Delayed Incubation and the effects of resource competition from interpolated activities are discussed. These studies supported a role for Unconscious Work as against Intermittent Conscious work or Beneficial Forgetting in incubation. PMID:27499745

  9. Mathematical Simulation of the Process of Aerobic Treatment of Wastewater under Conditions of Diffusion and Mass Transfer Perturbations

    NASA Astrophysics Data System (ADS)

    Bomba, A. Ya.; Safonik, A. P.

    2018-05-01

    A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.

  10. Mathematical Simulation of the Process of Aerobic Treatment of Wastewater under Conditions of Diffusion and Mass Transfer Perturbations

    NASA Astrophysics Data System (ADS)

    Bomba, A. Ya.; Safonik, A. P.

    2018-03-01

    A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.

  11. Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions.

    PubMed

    Kalyuzhnyi, S; Gladchenko, M; Epov, A

    2003-01-01

    As a first step of treatment of landfill leachates (total COD--1,430-3,810 mg/l, total nitrogen 90-162 mg/l), a performance of laboratory UASB reactors has been investigated under mesophilic (30 degrees C), sub-mesophilic (20 degrees C) and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRT) of around 7 h, when the average organic loading rates (OLR) were around 5 g COD/l/day, the total COD removal accounted for 81% (on the average) with the effluent concentrations close to anaerobic biodegradability limit (0.25 g COD/l) for mesophilic and sub-mesophilic regimes. The psychrophilic treatment conducted under the average HRT of 8 h and the average OLR of 4.22 g COD/l/day showed a total COD removal of 47% producing the effluents (0.75 g COD/l) more suitable for subsequent biological nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulphides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.

  12. Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias.

    PubMed

    Chaumont, F; Schanck, A N; Blum, J J; Opperdoes, F R

    1994-10-01

    Metabolic studies on Phytomonas sp. isolated from the lactiferous tubes of the latex-bearing spurge Euphorbia characias indicate that glucose is the preferred energy and carbon substrate during logarithmic growth. In stationary phase cells glucose consumption was dramatically reduced. Glucose consumption and end-product formation were measured on logarithmically growing cells, both under aerobic (air and 95% O2/5% CO2) and anaerobic (95% N2/5% CO2 and 100% N2) conditions. The rate of glucose consumption slightly increased under anaerobic conditions indicating that Phytomonas lacks a 'reverse Pasteur' effect contrary to the situation encountered in Leishmania major. Major end-products of glucose catabolism under aerobic conditions, detected by enzymatic and NMR measurements, were acetate, ethanol and carbon dioxide and under anaerobic conditions ethanol, glycerol and carbon dioxide. Smaller amounts of pyruvate, succinate, L-malate, L-lactate, phosphoenolpyruvate, alanine and aspartate were also detected.

  13. [Treatment of aerobic vaginitis and clinically uncertain causes of vulvovaginal discomfort].

    PubMed

    Cepický, P; Malina, J; Kuzelová, M

    2003-11-01

    The treatment of clinically uncertain conditions of vaginal discomforts with a mixed preparation of nifuratel + nystatin (Macmiror complex) and the relation of uncertain conditions to aerobic vaginitis. A prospective study. Gynecology-Obstetrics Outpatient Department LEVRET Ltd., AescuLab Ltd., Laboratory of Microbiology, Prague. 50 women with vaginal discomfort, causes of which had not been clarified by gynecological examination, determination of pH and the amine test, were examined by vaginal smears using microscopy. The results were evaluated in relation to aerobic vaginitis in a pure form or in combination with other nosological units. The authors also evaluated results of therapy by oral nifuratel (Macmiror tbl) 3 x 200 mg daily and a vaginal combined preparation containing nifuratel 500 mg + nystatin 200 kIU (Macmiror complex 500 glo vag) for the period of 7 days. In 50 women candida was demonstrated 24 times, presence of key cells 11 times, lactobacillus nine times with more than 50 in the field, six women were affected by aerobic vaginitis. In all these cases the pH was 4.8 or higher, leukocytes were significantly represented in all cases (> 15 in the field), as well as gram-negative bacteria and/or cocci (> 30 in the field), indicating a combined picture of mycosis, anaerobic vaginosis or lactobacillosis with aerobic vaginitis. The therapy was successful in all cases, the relapse of complaints during one month occurred in three cases. Aerobic vaginitis in a pure form or with anaerobic vaginosis, mycosis or lactobacillosis is frequently concealed under clinically uncertain pictures of vulvo-vaginal discomfort. The therapy by a combination of nifurated 3 x 200 mg orally together with the combined vaginal preparation nifuratel 500 mg + nystatin 200 kIU for the period of 7 days exerts high effect and a low number of relapses.

  14. The effect of ambient temperature, habitat quality and individual age on incubation behaviour and incubation feeding in a socially monogamous songbird.

    PubMed

    Amininasab, Seyed Mehdi; Kingma, Sjouke A; Birker, Martje; Hildenbrandt, Hanno; Komdeur, Jan

    Incubation is an important aspect of avian life history. The behaviour is energetically costly, and investment in incubation strategies within species, like female nest attentiveness and the feeding by the non-incubating partner during incubation, can therefore vary depending on environmental and individual characteristics. However, little is known about the combined effect of these characteristics. We investigated the importance of ambient temperature, habitat quality, and bird age on female incubation behaviour and male feeding of the incubating female (incubation feeding) in blue tits Cyanistes caeruleus , a socially monogamous songbird. An increase in ambient temperature resulted in a higher nest temperature, and this enabled females to increase the time off the nest for self-maintenance activities. Probably as a consequence of this, an increase in ambient temperature was associated with fewer incubation feedings by the male. Moreover, in areas with more food available (more deciduous trees), females had shorter incubation recesses and males fed females less often. Additionally, males fed young females more, presumably to increase such females' investment in their eggs, which were colder on average (despite the length of recesses and female nest attentiveness being independent of female age). Male age did not affect incubation feeding rate. In conclusion, the patterns of incubation behaviour were related to both environmental and individual characteristics, and male incubation feeding was adjusted to females' need for food according these characteristics, which can facilitate new insights to the study of avian incubation energetics. Parents often invest a substantial amount of energy in raising offspring. How much they do so depends on several environmental factors and on the extent they cooperate to raise the offspring. In birds, males can feed incubating females, which may allow females to stay longer on the nest, which, in turn, may ultimately improve

  15. AMPA receptor plasticity in accumbens core contributes to incubation of methamphetamine craving

    PubMed Central

    Scheyer, Andrew F.; Loweth, Jessica A.; Christian, Daniel T.; Uejima, Jamie; Rabei, Rana; Le, Tuan; Dolubizno, Hubert; Stefanik, Michael T.; Murray, Connor H.; Sakas, Courtney; Wolf, Marina E.

    2016-01-01

    BACKGROUND The incubation of cue-induced drug craving in rodents provides a model of persistent vulnerability to craving and relapse in human addicts. After prolonged withdrawal, incubated cocaine craving depends on strengthening of nucleus accumbens (NAc) core synapses through incorporation of Ca2+-permeable AMPA receptors (CP-AMPARs). Through mGlu1-mediated synaptic depression, mGlu1 positive allosteric modulators (PAMs) remove CP-AMPARs from these synapses and thereby reduce cocaine craving. This study aimed to determine if similar plasticity accompanies incubation of methamphetamine craving. METHODS Rats self-administered saline or methamphetamine under extended-access conditions. Cue-induced seeking tests demonstrated incubation of methamphetamine craving. After withdrawal periods ranging from 1 to >40 days, rats underwent one of the following procedures: 1) whole-cell patch clamp recordings to characterize AMPAR transmission, 2) intra-NAc core injection of the CP-AMPAR antagonist 1-napthyl acetyl spermine (naspm) prior to a seeking test, or 3) systemic administration of an mGlu1 PAM prior to a seeking test. RESULTS Incubation of methamphetamine craving was associated with CP-AMPAR accumulation in NAc core, and both effects were maximal after ~1 week of withdrawal. Expression of incubated craving was decreased by intra-NAc naspm injection or systemic mGlu1 PAM administration. CONCLUSIONS These results are the first to demonstrate a role for the NAc in the incubation of methamphetamine craving and describe adaptations in synaptic transmission associated with this model. They establish that incubation of craving and associated CP-AMPAR plasticity occur much more rapidly during withdrawal from methamphetamine than cocaine. However, a common mGlu1-based therapeutic strategy may be helpful for recovering cocaine and methamphetamine addicts. PMID:27264310

  16. Incubation behavior of king eiders on the coastal plain of Northern Alaska

    USGS Publications Warehouse

    Bentzen, R.L.; Powell, A.N.; Phillips, Laura M.; Suydam, R.S.

    2010-01-01

    Incubating birds balance their energetic demands during incubation with the needs of the developing embryos. Incubation behavior is correlated with body size; larger birds can accumulate more endogenous reserves and maintain higher incubation constancy. King eiders (Somateria spectabilis) contend with variable and cold spring weather, little nesting cover, and low food availability, and thus are likely to rely heavily on endogenous reserves to maintain high incubation constancy. We examined the patterns of nest attendance of king eiders at Teshekpuk and Kuparuk, Alaska (2002-2005) in relation to clutch size, daily temperature, and endogenous reserves to explore factors controlling incubation behavior. Females at Kuparuk had higher constancy (98.5 ?? 0.2%, n = 30) than at Teshekpuk (96.9 ?? 0.8%, n = 26), largely due to length of recesses. Mean recess length ranged from 21.5 to 23.7 min at Kuparuk, and from 28.5 to 51.2 min at Teshekpuk. Mean body mass on arrival at breeding grounds (range; Teshekpuk 1,541-1,805, Kuparuk 1,616-1,760), and at the end of incubation (Teshekpuk 1,113-1,174, Kuparuk 1,173-1,183), did not vary between sites or among years (F < 1.1, P > 0.3). Daily constancy increased 1% with every 5??C increase in minimum daily temperature (??min = 0.005, 95% CI 0.002, 0.009). Higher constancy combined with similar mass loss at Kuparuk implies that females there met foraging requirements with shorter recesses. Additionally, females took more recesses at low temperatures, suggesting increased maintenance needs which were potentially ameliorated by feeding during these recesses, indicating that metabolic costs and local foraging conditions drove incubation behavior. ?? 2010 US Government.

  17. Effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances from waste activated sludge.

    PubMed

    Zhang, Zhiqiang; Zhang, Jiao; Zhao, Jianfu; Xia, Siqing

    2015-02-01

    The effect of short-time aerobic digestion on bioflocculation of extracellular polymeric substances (EPSs) from waste activated sludge (WAS) was investigated. Bioflocculation of the EPS was found to be enhanced by 2∼6 h of WAS aerobic digestion under the conditions of natural sludge pH (about 7), high sludge concentration by gravity thickening, and dissolved oxygen of about 2 mg/L. With the same EPS extraction method, the total suspended solid content reduction of 0.20 and 0.36 g/L and the volatile suspended solid content reduction of 0.19 and 0.26 g/L were found for the WAS samples before and after aerobic digestion of 4 h. It indicates that more EPS is produced by short-time aerobic digestion of WAS. The scanning electron microscopy images of the WAS samples before and after aerobic digestion of 4 h showed that more EPS appeared on the surface of zoogloea by aerobic digestion, which reconfirmed that WAS aerobic digestion induced abundant formation of EPS. By WAS aerobic digestion, the flocculating rate of the EPS showed about 31 % growth, almost consistent with the growth of its yield (about 34 %). The EPSs obtained before and after the aerobic digestion presented nearly the same components, structures, and Fourier transform infrared spectra. These results revealed that short-time aerobic digestion of WAS enhanced the flocculation of the EPS by promoting its production.

  18. Sod1 deficiency reduces incubation time in mouse models of prion disease.

    PubMed

    Akhtar, Shaheen; Grizenkova, Julia; Wenborn, Adam; Hummerich, Holger; Fernandez de Marco, Mar; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E

    2013-01-01

    Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02) and Sod1 (P<0.0001) suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.

  19. Removal of Nitrate in Simulated Water at Low Temperature by a Novel Psychrotrophic and Aerobic Bacterium, Pseudomonas taiwanensis Strain J

    PubMed Central

    He, Tengxia; Ye, Qing; Sun, Quan; Cai, Xi; Ni, Jiupai

    2018-01-01

    Low temperatures and high pH generally inhibit the biodenitrification. Thus, it is important to explore the psychrotrophic and alkali-resisting microorganism for degradation of nitrogen. This research was mainly focused on the identification of a psychrotrophic strain and preliminary explored its denitrification characteristics. The new strain J was isolated using the bromothymol blue solid medium and identified as Pseudomonas taiwanensis on the basis of morphology and phospholipid fatty acid as well as 16S rRNA gene sequence analyses, which is further testified to work efficiently for removing nitrate from wastewater at low temperature circumstances. This is the first report that Pseudomonas taiwanensis possessed excellent tolerance to low temperature, with 15°C as its optimum and 5°C as viable. The Pseudomonas taiwanensis showed unusual ability of aerobic denitrification with the nitrate removal efficiencies of 100% at 15°C and 51.61% at 5°C. Single factor experiments showed that the optimal conditions for denitrification were glucose as carbon source, 15°C, shaking speed 150 r/min, C/N 15, pH ≥ 7, and incubation quantity 2.0 × 106 CFU/mL. The nitrate and total nitrogen removal efficiencies were up to 100% and 93.79% at 15°C when glucose is served as carbon source. These results suggested that strain J had aerobic denitrification ability, as well as the notable ability to tolerate the low temperature and high pH. PMID:29789796

  20. Removal of Nitrate in Simulated Water at Low Temperature by a Novel Psychrotrophic and Aerobic Bacterium, Pseudomonas taiwanensis Strain J.

    PubMed

    He, Tengxia; Ye, Qing; Sun, Quan; Cai, Xi; Ni, Jiupai; Li, Zhenlun; Xie, Deti

    2018-01-01

    Low temperatures and high pH generally inhibit the biodenitrification. Thus, it is important to explore the psychrotrophic and alkali-resisting microorganism for degradation of nitrogen. This research was mainly focused on the identification of a psychrotrophic strain and preliminary explored its denitrification characteristics. The new strain J was isolated using the bromothymol blue solid medium and identified as Pseudomonas taiwanensis on the basis of morphology and phospholipid fatty acid as well as 16S rRNA gene sequence analyses, which is further testified to work efficiently for removing nitrate from wastewater at low temperature circumstances. This is the first report that Pseudomonas taiwanensis possessed excellent tolerance to low temperature, with 15°C as its optimum and 5°C as viable. The Pseudomonas taiwanensis showed unusual ability of aerobic denitrification with the nitrate removal efficiencies of 100% at 15°C and 51.61% at 5°C. Single factor experiments showed that the optimal conditions for denitrification were glucose as carbon source, 15°C, shaking speed 150 r/min, C/N 15, pH ≥ 7, and incubation quantity 2.0 × 10 6  CFU/mL. The nitrate and total nitrogen removal efficiencies were up to 100% and 93.79% at 15°C when glucose is served as carbon source. These results suggested that strain J had aerobic denitrification ability, as well as the notable ability to tolerate the low temperature and high pH.

  1. Screening identification of aerobic denitrification bacteria with high soil desalinization capacity

    NASA Astrophysics Data System (ADS)

    Jin, H.; Chen, H.; Jin, H.; Qian, Y.; Zhang, K.

    2017-08-01

    In order to study the mechanism of bacteria used in the saline soil remediation process, the aerobic denitrification bacteria were isolated from an agricultural greenhouse soil in a farm in East China’s Zhejiang Province. The identification, nitrogen reducing characteristics and the denitrification effect of bacteria from different soils at various locations were investigated. The results showed that the NO3- removal rate was 91% with bacteria from the greenhouse soil under aerobic conditions in 52 h, and the bacteria were identified as Gram-positive Castellaniella denitrification bacteria.

  2. Southwest Regional Clean Energy Incubation Initiative (SRCEII)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webber, Michael

    The Austin Technology Incubator’s (ATI’s) Clean Energy Incubator at the University of Texas at Austin (ATI-CEI) utilized the National Incubator Initiative for Clean Energy (NIICE) funding to establish the Southwest Regional Clean Energy Incubation Initiative, composed of clean energy incubators from The University of Texas at Austin (UT-Austin), The University of Texas at El Paso (UTEP), The University of Texas at San Antonio (UTSA), and Texas A&M University (TAMU).

  3. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  4. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  5. Incubation of methamphetamine and palatable food craving after punishment-induced abstinence.

    PubMed

    Krasnova, Irina N; Marchant, Nathan J; Ladenheim, Bruce; McCoy, Michael T; Panlilio, Leigh V; Bossert, Jennifer M; Shaham, Yavin; Cadet, Jean L

    2014-07-01

    In a rat model of drug craving and relapse, cue-induced drug seeking progressively increases after withdrawal from methamphetamine and other drugs, a phenomenon termed 'incubation of drug craving'. However, current experimental procedures used to study incubation of drug craving do not incorporate negative consequences of drug use, which is a common factor promoting abstinence in humans. Here, we studied whether incubation of methamphetamine craving is observed after suppression of drug seeking by adverse consequences (punishment). We trained rats to self-administer methamphetamine or palatable food for 9 h per day for 14 days; reward delivery was paired with a tone-light cue. Subsequently, for one group within each reward type, 50% of the lever-presses were punished by mild footshock for 9-10 days, whereas for the other group lever-presses were not punished. Shock intensity was gradually increased over time. Next, we assessed cue-induced reward seeking in 1-h extinction sessions on withdrawal days 2 and 21. Response-contingent punishment suppressed extended-access methamphetamine or food self-administration; surprisingly, food-trained rats showed greater resistance to punishment than methamphetamine-trained rats. During the relapse tests, both punished and unpunished methamphetamine- and food-trained rats showed significantly higher cue-induced reward seeking on withdrawal day 21 than on day 2. These results demonstrate that incubation of both methamphetamine and food craving occur after punishment-induced suppression of methamphetamine or palatable food self-administration. Our procedure can be used to investigate mechanisms of relapse to drug and palatable food seeking under conditions that more closely approximate the human condition.

  6. Biotransformation of 17α-methyltestosterone in sediment under different electron acceptor conditions.

    PubMed

    Homklin, Supreeda; Ong, Say Kee; Limpiyakorn, Tawan

    2011-03-01

    17α-Methyltestosterone (MT), an anabolic androgenic steroid, is used widely in inducing an all male population in aquaculture farming of fish, such as Nile tilapia (Oreochromis niloticus). Current understanding of the occurrence and fate of MT in the sediments and the surrounding areas of the aquaculture ponds are very limited. Bioassay tests showed that MT was biotransformed under aerobic and sulfate-reducing conditions with a half-life of 3.8d and 5.3d, respectively, with complete disappearance of androgenic activity. However, under methanogenic condition, MT was found to biotransform but the androgenic activity continued to persist even after 45 d of incubation. In contrast, MT was found to transform slowly under iron(III)-reducing condition and was hardly transformed under nitrate-reducing condition. A possible reason for the lack of transformation of MT under nitrate-reducing condition is the presence of the methyl group at the C-17 position. The results of this study suggest that MT and its degradation products with androgenic activity may potentially accumulate in the sediments of fish farming ponds under iron(III)-reducing, nitrate-reducing and methanogenic conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings.

    PubMed

    Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F

    2014-01-01

    Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.

  8. Is Maximum Food Intake in Endotherms Constrained by Net or Factorial Aerobic Scope? Lessons from the Leaf-Eared Mouse.

    PubMed

    Maldonado, Karin; Sabat, Pablo; Piriz, Gabriela; Bogdanovich, José M; Nespolo, Roberto F; Bozinovic, Francisco

    2016-01-01

    Food availability varies substantially throughout animals' lifespans, thus the ability to profit from high food levels may directly influence animal fitness. Studies exploring the link between basal metabolic rate (BMR), growth, reproduction, and other fitness traits have shown varying relationships in terms of both magnitude and direction. The diversity of results has led to the hypothesis that these relationships are modulated by environmental conditions (e.g., food availability), suggesting that the fitness consequences of a given BMR may be context-dependent. In turn, there is indirect evidence that individuals with an increased capacity for aerobic work also have a high capacity for acquiring energy from food. Surprisingly, very few studies have explored the correlation between maximum rates of energy acquisition and BMR in endotherms, and to the best of our knowledge, none have attempted to elucidate relationships between the former and aerobic capacity [e.g., maximum metabolic rate (MMR), aerobic scope (Factorial aerobic scope, FAS; Net aerobic scope, NAS)]. In this study, we measured BMR, MMR, maximum food intake (recorded under low ambient temperature and ad libitum food conditions; MFI), and estimated aerobic scope in the leaf-eared mouse ( Phyllotis darwini ). We, then, examined correlations among these variables to determine whether metabolic rates and aerobic scope are functionally correlated, and whether an increased aerobic capacity is related to a higher MFI. We found that aerobic capacity measured as NAS is positively correlated with MFI in endotherms, but with neither FAS nor BMR. Therefore, it appears plausible that the capacity for assimilating energy under conditions of abundant resources is determined adaptively by NAS, as animals with higher NAS would be promoted by selection. In theory, FAS is an invariant measurement of the extreme capacity for energy turnover in relation to resting expenditure, whereas NAS represents the maximum capacity

  9. Model photoautrophs isolated from a Proterozoic ocean analog - aerobic life under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Hamilton, T. L.; de Beer, D.; Klatt, J.; Macalady, J.; Weber, M.; Lott, C.; Chennu, A.

    2016-12-01

    The 1-2 billion year delay before the final rise of oxygen at the end of the Proterozoic represents an important gap in our understanding of ancient biogeochemical cycling. Primary production fueled by sulfide-dependent anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, has been invoked as a mechanism for sustaining low atmospheric O2 throughout much of the Proterozoic. However, we understand very little about photoautotrophs that inhabit Proterozoic-like environments present on Earth today. Here we report on the isolation and characterization of a cyanobacterium and a green sulfur bacterium that are the dominant members of pinnacle mats in Little Salt Spring—a karst sinkhole in Florida with perennially low levels of dissolved oxygen and sulfide. The red pinnacle mats bloom in the anoxic basin of the sinkhole and receive light that is of very poor quality to support photosynthesis. Characterization of the isolates is consistent with observations of oxygenic and anoxygenic photosynthesis in situ—both organisms perform anoxygenic photosynthesis under conditions of very low light quality and quantity. Oxygenic photosynthesis by the cyanobacterium isolate is inhibited by the presence of sulfide and under optimal light conditions, rates of anoxygenic photosynthesis are nearly double that of oxygenic photosynthesis. The green sulfur bacterium is tolerant of oxygen and has a very low affinity for sulfide. In Little Salt Spring, oxygenic photosynthesis occurs for only four hours a day and the water column remains anoxic because of a continuous supply of sulfide. Isolation and characterization of these photoautotrophs combined with our high resolution microsensor data in situ highlight microbial biogeochemical cycling in this exceptional site where aerobic microorganisms persist in a largely anoxic ecosystem.

  10. An MR-compatible neonatal incubator.

    PubMed

    Paley, M N J; Hart, A R; Lait, M; Griffiths, P D

    2012-07-01

    To develop a neonatal MR-compatible incubator for transporting babies between a neonatal intensive care unit and an MRI unit that is within the same hospital but geographically separate. The system was strapped to a standard MR-compatible patient trolley, which provides space for resuscitation outside the incubator. A constant-temperature exothermic heat pad was used to maintain temperature together with a logging fluoro-optic temperature monitor and alarm system. The system has been designed to accommodate standard knee-sized coils from the major MR manufacturers. The original incubator was constructed from carbon fibre, but this required modification to prevent radiofrequency shading artefacts due to the conducting properties of the carbon fibre. A high-tensile polyester material was used, which combined light weight with high impact strength. The system could be moved onto the patient bed with the coils and infant in place by one technologist. Studies in eight neonatal patients produced high quality 1.5 T MR images with low motion artefacts. The incubator should also be compatible with imaging in 3 T MR systems, although further work is required to establish this. Images were acquired using both rapid and high-resolution sequences, including three-dimensional volumes, proton spectra and diffusion weighting. The incubator provides a safe, quiet environment for neonates during transport and imaging, at low cost.

  11. An MR-compatible neonatal incubator

    PubMed Central

    Paley, M N J; Hart, A R; Lait, M; Griffiths, P D

    2012-01-01

    Objectives To develop a neonatal MR-compatible incubator for transporting babies between a neonatal intensive care unit and an MRI unit that is within the same hospital but geographically separate. Methods The system was strapped to a standard MR-compatible patient trolley, which provides space for resuscitation outside the incubator. A constant-temperature exothermic heat pad was used to maintain temperature together with a logging fluoro-optic temperature monitor and alarm system. The system has been designed to accommodate standard knee-sized coils from the major MR manufacturers. The original incubator was constructed from carbon fibre, but this required modification to prevent radiofrequency shading artefacts due to the conducting properties of the carbon fibre. A high-tensile polyester material was used, which combined light weight with high impact strength. The system could be moved onto the patient bed with the coils and infant in place by one technologist. Results Studies in eight neonatal patients produced high quality 1.5 T MR images with low motion artefacts. The incubator should also be compatible with imaging in 3 T MR systems, although further work is required to establish this. Images were acquired using both rapid and high-resolution sequences, including three-dimensional volumes, proton spectra and diffusion weighting. Conclusion The incubator provides a safe, quiet environment for neonates during transport and imaging, at low cost. PMID:22167517

  12. National Security Technology Incubation Strategic Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This strategic plan contains information on the vision, mission, business and technology environment, goals, objectives, and incubation process of the National Security Technology Incubation Program (NSTI) at Arrowhead Center. The development of the NSTI is a key goal of the National Security Preparedness Project (NSPP). Objectives to achieve this goal include developing incubator plans (strategic, business, action, and operations), creating an incubator environment, creating a support and mentor network for companies in the incubator program, attracting security technology businesses to the region, encouraging existing business to expand, initiating business start-ups, evaluating products and processes of the incubator program, and achievingmore » sustainability of the incubator program. With the events of 9/11, the global community faces ever increasing and emerging threats from hostile groups determined to rule by terror. According to the National Nuclear Security Administration (NNSA) Strategic Plan, the United States must be able to quickly respond and adapt to unanticipated situations as they relate to protection of our homeland and national security. Technology plays a key role in a strong national security position, and the private business community, along with the national laboratories, academia, defense and homeland security organizations, provide this technology. Fostering innovative ideas, translated into relevant technologies answering the needs of NNSA, is the purpose of the NSTI. Arrowhead Center of New Mexico State University is the operator and manager of the NSTI. To develop the NSTI, Arrowhead Center must meet the planning, development, execution, evaluation, and sustainability activities for the program and identify and incubate new technologies to assist the NNSA in meeting its mission and goals. Technology alone does not give a competitive advantage to the country, but the creativity and speed with which it is employed does. For a company

  13. The Pre-Incubator: A Longitudinal Study of 10 Years of University Pre-Incubation in Wales

    ERIC Educational Resources Information Center

    Voisey, Pamela; Jones, Paul; Thomas, Brychan

    2013-01-01

    This paper describes a longitudinal study of over 10 years of university pre-incubation in Wales, using case studies of incubated businesses to track their performance since 2001. Surviving "graduated" businesses were investigated and quantitative and qualitative data were gathered to profile the current status of these businesses and…

  14. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater.

    PubMed

    Corsino, Santo Fabio; di Biase, Alessandro; Devlin, Tanner Ryan; Munz, Giulio; Torregrossa, Michele; Oleszkiewicz, Jan A

    2017-02-01

    Results obtained from three aerobic granular sludge reactors treating brewery wastewater are presented. Reactors were operated for 60d days in each of the two periods under different cycle duration: (Period I) short 6h cycle, and (Period II) long 12h cycle. Organic loading rates (OLR) varying from 0.7kgCODm -3 d -1 to 4.1kgCODm -3 d -1 were tested. During Period I, granules successfully developed in all reactors, however, results revealed that the feast and famine periods were not balanced and the granular structure deteriorated and became irregular. During Period II at decreased 12h cycle time, granules were observed to develop again with superior structural stability compared to the short 6h cycle time, suggesting that a longer starvation phase enhanced production of proteinaceous EPS. Overall, the extended famine conditions encouraged granule stability, likely because long starvation period favours bacteria capable of storage of energy compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Oxidation of aquatic pollutants by ferrous-oxalate complexes under dark aerobic conditions.

    PubMed

    Lee, Jaesang; Kim, Jungwon; Choi, Wonyong

    2014-06-15

    This study evaluates the ability of Fe(II)-oxalate complexes for the generation of OH through oxygen reduction and the oxidative degradation of aquatic pollutants under dark aerobic conditions (i.e., with oxygen but without light). The degradation of 4-chlorophenol (4-CP) was rapid in the mixture of Fe(2+) and oxalate prepared using ultrapure water, but was absent without either Fe(2+) or oxalate. The formation of Fe(II)-oxalate complexes enables two-electron reduction of oxygen to generate H2O2 and subsequent production of OH. The significant inhibition of 4-CP degradation in the presence of H2O2 and OH scavenger confirms such mechanisms. The degradation experiments with varying [Fe(2+)], [oxalate], and initial pH demonstrated that the degradation rate depends on [Fe(II)(Ox)2(2-)], but the degree of degradation is primarily determined by [Fe(II)(Ox)2(2-)]+[Fe(II)(Ox)(0)]. Efficient degradation of diverse aquatic pollutants, especially phenolic pollutants, was observed in the Fe(II)-oxalate complexes system, wherein the oxidation efficacy was primarily correlated with the reaction rate constant between pollutant and OH. The effect of various organic ligands (oxalate, citrate, EDTA, malonate, and acetate) on the degradation kinetics of 4-CP was investigated. The highest efficiency of oxalate for the oxidative degradation is attributed to its high capability to enhance the reducing power and low reactivity with OH. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhanced elementary sulfur recovery in integrated sulfate-reducing, sulfur-producing rector under micro-aerobic condition.

    PubMed

    Xu, Xi-jun; Chen, Chuan; Wang, Ai-jie; Fang, Ning; Yuan, Ye; Ren, Nan-qi; Lee, Duu-jong

    2012-07-01

    Biological treatment of sulfate-laden wastewater consists of two separate reactors to reduce sulfate to sulfide by sulfate-reducing bacteria (SRB) and to oxidize sulfide to sulfur (S(0)) by sulfide oxidation bacteria (SOB). To have SRB+SOB in a single reactor faced difficulty of low S(0) conversion. This study for the first time revealed that dissolved oxygen (DO) level can be used to manipulate SRB+SOB reactions in a single reactor. This work demonstrated successful operation of an integrated SRB+SOB reactor under micro-aerobic condition. At DO = 0.10-0.12 mg l(-1), since the activities of SOB were enhanced by limited oxygen, the removal efficiency for sulfate reached 81.5% and the recovery of S(0) peaked at 71.8%, higher than those reported in literature. At increased DO, chemical oxidation of sulfide with molecular oxygen competed with SOB so conversion of S(0) started to decline. At DO>0.30 mg l(-1) activities of SRB were inhibited, leading to failure of the SRB+SOB reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Exercise effect with the wheelchair aerobic fitness trainer on conditioning and metabolic function in disabled persons: a pilot study.

    PubMed

    Midha, M; Schmitt, J K; Sclater, M

    1999-03-01

    To determine the effect of exercise with the wheelchair aerobic fitness trainer (WAFT) on anthropometric indices, conditioning, and endocrine and metabolic parameters in persons with lower extremity disability. Exercise sessions with the WAFT lasted 20 to 30 minutes for two to three sessions. Tertiary-care Veterans Administration medical center. Twelve subjects (3 with quadriplegia, 7 with paraplegia, 1 with cerebrovascular accident, 1 with bilateral above-knee amputation). Anthropometric indices (heart rate, blood pressure, weight, oxygen utilization, body mass index, upper arm and abdominal circumference, arm power) and endocrine and metabolic parameters (fasting serum glucose, lipids, and thyroid function) were determined before and after 10 weeks of exercise with the WAFT. All patients noted improved feelings of well-being after training. Mean resting heart rate, upper arm fat area, and fasting serum cholesterol level decreased significantly. Peak oxygen consumption, midarm circumference, and free thyroxine index increased significantly with training. WAFT improves quality of life, conditioning, and endocrine-metabolic parameters in disabled persons.

  18. Managing a Small Business Incubator.

    ERIC Educational Resources Information Center

    Kirchner, Charles, Ed.

    An increasingly popular economic development tool to improve the success rate of new firms is the small business incubator. These are buildings in which a number of new or growing businesses can locate and operate at a much lower overhead cost than in conventional space where market rates prevail. Incubator facilities are characterized by access…

  19. An Introduction to Developing an Urban Business Incubator.

    ERIC Educational Resources Information Center

    Montgomery, James; And Others

    Designed to provide a brief overview of the considerations involved in establishing a small business incubator, this guide presents information on incubator classification, funding methods, incubator operation techniques, and two-year college involvement in the formation of a working business incubator. Part 1 describes a small business incubator…

  20. Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen.

    PubMed

    Wong, Pan Yu; Ginige, Maneesha P; Kaksonen, Anna H; Cord-Ruwisch, Ralf; Sutton, David C; Cheng, Ka Yu

    2015-01-01

    A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0-8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e(-)/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs.

  1. Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains

    PubMed Central

    Maresca, Diamante; Zotta, Teresa; Mauriello, Gianluigi

    2018-01-01

    Oxygen is considered one of the main factors affecting probiotic bacteria survival due to the induction of oxidative damages caused by the action of reactive oxygen species (ROS). It has been shown that oxidative stress resistance in lactic acid bacteria is strongly dependent on the type of cell metabolism. Shift from fermentative to respiratory metabolism (through the addition of heme and menaquinone and in presence of oxygen) was associated to increase in biomass, long-term survival, and production of antioxidant enzymes. The aim of this work was to investigate the effect of aerobic (presence of oxygen) and respiratory (presence of oxygen, heme, and menaquinone) cultivation on the growth kinetic, catalase production, oxygen uptake, and oxidative stress response of Lactobacillus johnsonii/gasseri strains previously isolated from infant feces. Seven strains showed to consume oxygen under aerobic and respiratory conditions. The strain AL5 showed a catalase activity in both growth conditions, while AL3 showed this activity only in respiratory condition. Respiratory condition improved their tolerance to oxidative compounds (hydrogen peroxide and ROS generators) and further they showed promising probiotic features. The exploration of respiratory competent phenotypes with probiotic features may be extremely useful for the development of competitive starter or probiotic cultures. PMID:29479342

  2. Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains.

    PubMed

    Maresca, Diamante; Zotta, Teresa; Mauriello, Gianluigi

    2018-01-01

    Oxygen is considered one of the main factors affecting probiotic bacteria survival due to the induction of oxidative damages caused by the action of reactive oxygen species (ROS). It has been shown that oxidative stress resistance in lactic acid bacteria is strongly dependent on the type of cell metabolism. Shift from fermentative to respiratory metabolism (through the addition of heme and menaquinone and in presence of oxygen) was associated to increase in biomass, long-term survival, and production of antioxidant enzymes. The aim of this work was to investigate the effect of aerobic (presence of oxygen) and respiratory (presence of oxygen, heme, and menaquinone) cultivation on the growth kinetic, catalase production, oxygen uptake, and oxidative stress response of Lactobacillus johnsonii/gasseri strains previously isolated from infant feces. Seven strains showed to consume oxygen under aerobic and respiratory conditions. The strain AL5 showed a catalase activity in both growth conditions, while AL3 showed this activity only in respiratory condition. Respiratory condition improved their tolerance to oxidative compounds (hydrogen peroxide and ROS generators) and further they showed promising probiotic features. The exploration of respiratory competent phenotypes with probiotic features may be extremely useful for the development of competitive starter or probiotic cultures.

  3. State anxiety, psychological stress and positive well-being responses to yoga and aerobic exercise in people with schizophrenia: a pilot study.

    PubMed

    Vancampfort, Davy; De Hert, Marc; Knapen, Jan; Wampers, Martien; Demunter, Hella; Deckx, Seppe; Maurissen, Katrien; Probst, Michel

    2011-01-01

    Worsening of schizophrenia symptoms is related to stress and anxiety. People with schizophrenia often experience difficulties in coping with stress and possess a limited repertoire of coping strategies. A randomised comparative trial was undertaken in patients with schizophrenia to evaluate changes in state anxiety, psychological stress and subjective well-being after single sessions of yoga and aerobic exercise compared with a control condition. Forty participants performed a single 30-min yoga session, 20-min of aerobic exercise on a bicycle ergometre at self-selected intensity and a 20-min no exercise control condition in random order. After single sessions of yoga and aerobic exercise individuals with schizophrenia or schizoaffective disorder showed significantly decreased state anxiety (p < 0.0001), decreased psychological stress (p < 0.0001) and increased subjective well-being (p < 0.0001) compared to a no exercise control condition. Effect sizes ranged from 0.82 for psychological stress after aerobic exercise to 1.01 for state anxiety after yoga. The magnitude of the changes did not differ significantly between yoga and aerobic exercise. People with schizophrenia and physiotherapists can choose either yoga or aerobic exercise in reducing acute stress and anxiety taking into account the personal preference of each individual.

  4. 21 CFR 880.5410 - Neonatal transport incubator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neonatal transport incubator. 880.5410 Section 880... Devices § 880.5410 Neonatal transport incubator. (a) Identification. A neonatal transport incubator is a... kept in a controlled environment while being transported for medical care. The device may include...

  5. 21 CFR 880.5410 - Neonatal transport incubator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neonatal transport incubator. 880.5410 Section 880... Devices § 880.5410 Neonatal transport incubator. (a) Identification. A neonatal transport incubator is a... kept in a controlled environment while being transported for medical care. The device may include...

  6. Small Business Incubator Resource Kit.

    ERIC Educational Resources Information Center

    Small Business Administration, Washington, DC.

    This kit consists of a set of resources to assist those interested in the start-up and management (incubation) of a new business. A guide to starting and managing a small business incubator (SBI) is provided. Included in the guide are the following: a discussion of the role and characteristics of the SBI concept; guidelines for carrying out the…

  7. Sweat Rates During Continuous and Interval Aerobic Exercise: Implications for NASA Multipurpose Crew Vehicle (MPCV) Missions

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Scott, Jessica; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori L.

    2016-01-01

    Aerobic deconditioning is one of the effects spaceflight. Impaired crewmember performance due to loss of aerobic conditioning is one of the risks identified for mitigation by the NASA Human Research Program. Missions longer than 8 days will involve exercise countermeasures including those aimed at preventing the loss of aerobic capacity. The NASA Multipurpose Crew Vehicle (MPCV) will be NASA's centerpiece architecture for human space exploration beyond low Earth orbit. Aerobic exercise within the small habitable volume of the MPCV is expected to challenge the ability of the environmental control systems, especially in terms of moisture control. Exercising humans contribute moisture to the environment by increased respiratory rate (exhaling air at 100% humidity) and sweat. Current acceptable values are based on theoretical models that rely on an "average" crew member working continuously at 75% of their aerobic capacity (Human Systems Integration Requirements Document). Evidence suggests that high intensity interval exercise for much shorter durations are equally effective or better in building and maintaining aerobic capacity. This investigation will examine sweat and respiratory rates for operationally relevant continuous and interval aerobic exercise protocols using a variety of different individuals. The results will directly inform what types of aerobic exercise countermeasures will be feasible to prescribe for crewmembers aboard the MPCV.

  8. The impact of egg incubation temperature on the personality of oviparous reptiles.

    PubMed

    Siviter, Harry; Charles Deeming, D; Rosenberger, Joanna; Burman, Oliver H P; Moszuti, Sophie A; Wilkinson, Anna

    2017-01-01

    Personality traits, defined as differences in the behavior of individual animals of the same species that are consistent over time and context, such as 'boldness,' have been shown to be both heritable and be influenced by external factors, such as predation pressure. Currently, we know very little about the role that early environmental factors have upon personality. Thus, we investigated the impact of incubation temperature upon the boldness on an oviparous reptile, the bearded dragon (Pogona vitticeps). Eggs, from one clutch, were incubated at two different average temperatures within the normal range. After hatching the lizards were raised under the same environmental conditions. Novel object and novel environment tests were used to assess personality. Each test was repeated in both the short term and the long term. The results revealed that incubation temperature did impact upon 'boldness' but only in the short term and suggests that, rather than influencing personality, incubation temperature may have an effect on the development of behavioral of oviparous reptiles at different stages across ontogeny.

  9. Immediate and long-term transcriptional response of hind muscle tissue to transient variation of incubation temperature in broilers.

    PubMed

    Naraballobh, Watcharapong; Trakooljul, Nares; Muráni, Eduard; Brunner, Ronald; Krischek, Carsten; Janisch, Sabine; Wicke, Michael; Ponsuksili, Siriluck; Wimmers, Klaus

    2016-05-04

    In oviparous species accidental variation of incubation temperatures may occur under natural conditions and mechanisms may have evolved by natural selection that facilitate coping with these stressors. However, under controlled artificial incubation modification of egg incubation temperature has been shown to have a wide-ranging impact on post-hatch development in several poultry species. Because developmental changes initiated in-ovo can affect poultry production, understanding the molecular routes and epigenetic alterations induced by incubation temperature differences may allow targeted modification of phenotypes. In order to identify molecular pathways responsive to variable incubation temperature, broiler eggs were incubated at a lower or higher temperature (36.8 °C, 38.8 °C) relative to control (37.8 °C) over two developmental intervals, embryonic days (E) 7-10 and 10-13. Global gene expression of M. gastrocnemius was assayed at E10, E13, and slaughter age [post-hatch day (D) 35] (6 groups; 3 time points; 8 animals each) by microarray analysis and treated samples were compared to controls within each time point. Transcript abundance differed for between 113 and 738 genes, depending on treatment group, compared to the respective control. In particular, higher incubation temperature during E7-10 immediately affected pathways involved in energy and lipid metabolism, cell signaling, and muscle development more so than did other conditions. But lower incubation temperature during E10-13 affected pathways related to cellular function and growth, and development of organ, tissue, and muscle as well as nutrient metabolism pathways at D35. Shifts in incubation temperature provoke specific immediate and long-term transcriptional responses. Further, the transcriptional response to lower incubation temperature, which did not affect the phenotypes, mediates compensatory effects reflecting adaptability. In contrast, higher incubation temperature triggers gene

  10. A short report on the effect of decreased incubation time on the architectural profile of autologous conditioned serum (ACS).

    PubMed

    Barreto, Angelique

    2017-06-01

    If present in high enough concentrations, IL-1-Ra has the potential to inhibit Interleukin-1, the chief offender that promotes the pro-inflammatory cascade causing pain, swelling and joint dysfunction associated with osteoarthritis (OA). IL-1-Ra and growth factor levels were quantified from whole blood in this retrospective chart review investigation (n=20) using Zero and 15min incubation times respectively. The hypothesis that this process can significantly (p<0.0001) increase levels of IL-1-Ra was confirmed. Mean Arthrokinex™ induced IL-1-Ra levels reached a concentration of 13,288pg/mL and 12,809pg/mL compared to 518pg/mL at baseline, representing a 26-fold increase. Post conditioning levels of pro-inflammatories IL-1β, IL-6 and TNF α were not changed to any significant degree. The Arthrokinex™ blood conditioning process induces adequate levels of IL-1-Ra to alter the IL-1-Ra: IL-1β ratio and mitigate the inflammatory cascade, while increasing growth factors PDGF and TGF respectively. Copyright © 2017. Published by Elsevier Ltd.

  11. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892.

    PubMed

    Wannawilai, Siwaporn; Sirisansaneeyakul, Sarote; Chisti, Yusuf

    2015-01-20

    Production of the natural sweetener xylitol from xylose via the yeast Candida mogii TISTR 5892 was compared with and without the growth inhibitor sodium benzoate in the culture medium. Sodium benzoate proved to be an uncompetitive inhibitor in relatively poorly oxygenated shake flask aerobic cultures. In a better controlled aerobic environment of a bioreactor, the role of sodium benzoate could equally well be described as competitive, uncompetitive or noncompetitive inhibitor of growth. In intermittent fed-batch fermentations under highly aerobic conditions, the presence of sodium benzoate at 0.15gL(-1) clearly enhanced the xylitol titer relative to the control culture without the sodium benzoate. The final xylitol concentration and the average xylitol yield on xylose were nearly 50gL(-1) and 0.57gg(-1), respectively, in the presence of sodium benzoate. Both these values were substantially higher than reported for the same fermentation under microaerobic conditions. Therefore, a fed-batch aerobic fermentation in the presence of sodium benzoate is promising for xylitol production using C. mogii. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effects of Aerobic Exercise on Cognitive Performance Among Young Adults in a Higher Education Setting.

    PubMed

    Ludyga, Sebastian; Gerber, Markus; Brand, Serge; Pühse, Uwe; Colledge, Flora

    2018-06-01

    Acute benefits of aerobic exercise on executive functioning have been reported frequently under laboratory conditions. However, to date, a beneficial effect on long-term memory has been less well supported and no data are available regarding nonlaboratory conditions in young adults. The aim of the current study was to investigate acute effects of aerobic exercise on cognitive functioning in a university classroom setting. Using a cross-over design, 51 participants performed a bout of moderately intense running (RUN) and read an article while seated (CON). Afterwards, they completed free-recall tests, followed by a Flanker task and an n-back task. Participants in the RUN condition compared with those in the CON condition showed shorter reaction time on the inhibition task, F(1, 50) = 5.59, p = .022, η 2  = .101, and recalled more words in the immediate- and delayed-recall tests, F(1, 50) = 8.40, p = .006, η 2  = .144. The present findings suggest that a moderately intense bout of aerobic exercise benefits verbal short-term and long-term memory as well as inhibitory control among students in a classroom setting.

  13. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.

    PubMed

    Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A

    2015-06-02

    Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD.

  14. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  15. Accuracy of egg flotation throughout incubation to determine embryo age and incubation day in waterbird nests

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Floating bird eggs to estimate their age is a widely used technique, but few studies have examined its accuracy throughout incubation. We assessed egg flotation for estimating hatch date, day of incubation, and the embryo's developmental age in eggs of the American Avocet (Recurvirostra americana), Black-necked Stilt (Himantopus mexicanus), and Forster's Tern (Sterna forsteri). Predicted hatch dates based on egg flotation during our first visit to a nest were highly correlated with actual hatch dates (r = 0.99) and accurate within 2.3 ± 1.7 (SD) days. Age estimates based on flotation were correlated with both day of incubation (r = 0.96) and the embryo's developmental age (r = 0.86) and accurate within 1.3 ± 1.6 days and 1.9 ± 1.6 days, respectively. However, the technique's accuracy varied substantially throughout incubation. Flotation overestimated the embryo's developmental age between 3 and 9 days, underestimated age between 12 and 21 days, and was most accurate between 0 and 3 days and 9 and 12 days. Age estimates based on egg flotation were generally accurate within 3 days until day 15 but later in incubation were biased progressively lower. Egg flotation was inaccurate and overestimated embryo age in abandoned nests (mean error: 7.5 ± 6.0 days). The embryo's developmental age and day of incubation were highly correlated (r = 0.94), differed by 2.1 ± 1.6 days, and resulted in similar assessments of the egg-flotation technique. Floating every egg in the clutch and refloating eggs at subsequent visits to a nest can refine age estimates.

  16. Effect of aerobic vs combined aerobic-strength training on 1-year, post-cardiac rehabilitation outcomes in women after a cardiac event.

    PubMed

    Arthur, Heather M; Gunn, Elizabeth; Thorpe, Kevin E; Ginis, Kathleen Martin; Mataseje, Lin; McCartney, Neil; McKelvie, Robert S

    2007-11-01

    To compare the effect and sustainability of 6 months combined aerobic/strength training vs aerobic training alone on quality of life in women after coronary artery by-pass graft surgery or myocardial infarction. Prospective, 2-group, randomized controlled trial. Ninety-two women who were 8-10 weeks post-coronary artery by-pass graft surgery or myocardial infarction, able to attend supervised exercise, and fluent in English. The aerobic training alone group had supervised exercise twice a week for 6 months. The aerobic/strength training group received aerobic training plus upper and lower body resistance exercises. The amount of active exercise time was matched between groups. The primary outcome, quality of life, was measured by the MOS SF-36; secondary outcomes were self-efficacy, strength and exercise capacity. After 6 months of supervised exercise training both groups showed statistically significant improvements in physical quality of life (p = 0.0002), peak VO2 (19% in aerobic/strength training vs 22% in aerobic training alone), strength (p < 0.0001) and self-efficacy for stair climbing (p = 0.0024), lifting (p < 0.0001) and walking (p = 0.0012). However, by 1-year follow-up there was a statistically significant difference in physical quality of life in favor of the aerobic/strength training group (p = 0.05). Women with coronary artery disease stand to benefit from both aerobic training alone and aerobic/strength training. However, continued improvement in physical quality of life may be achieved through combined strength and aerobic training.

  17. What is the incubation period for listeriosis?

    PubMed

    Goulet, Véronique; King, Lisa A; Vaillant, Véronique; de Valk, Henriette

    2013-01-10

    Listeriosis is a foodborne infection with a low incidence but a high case fatality rate. Unlike common foodborne diseases, the incubation period can be long. The first incubation periods were documented during a large listeriosis outbreak published in 1987 by Linnan and al. in the New England Journal of Medicine (range: 3 days to 70 days). Data on the incubation period of listeriosis are scarce. Our study aim was to estimate precisely the incubation period of listeriosis using available data since 1987. We estimated the incubation period of listeriosis using available published data and data from outbreak investigations carried out by the French National Institute for Public Health Surveillance. We selected cases with an incubation period calculated when a patient had a single exposure to a confirmed food source contaminated by Listeria monocytogenes. We identified 37 cases of invasive listeriosis (10 cases with central nervous system involvement (CNS cases), 15 bacteraemia cases and 12 pregnancy-associated cases) and 9 outbreaks with gastroenteritis. The overall median incubation period of invasive listeriosis was 8 days (range: 1-67 days) and differed significantly by clinical form of the disease (p<0.0001). A longer incubation period was observed for pregnancy-associated cases (median: 27.5 days; range: 17-67 days) than for CNS cases (median: 9 days; range: 1-14 days) and for bacteraemia cases (median: 2 days; range: 1-12 days). For gastroenteritis cases, the median incubation period was 24 hours with variation from 6 to 240 hours. This information has implications for the investigation of food borne listeriosis outbreaks as the incubation period is used to determine the time period for which a food history is collected. We believe that, for listeriosis outbreaks, adapting the exposure window for documenting patients' food histories in accordance with the clinical form of infection will facilitate the identification of food products as the source of

  18. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment.

  19. Incubation of Methamphetamine and Palatable Food Craving after Punishment-Induced Abstinence

    PubMed Central

    Krasnova, Irina N; Marchant, Nathan J; Ladenheim, Bruce; McCoy, Michael T; Panlilio, Leigh V; Bossert, Jennifer M; Shaham, Yavin; Cadet, Jean L

    2014-01-01

    In a rat model of drug craving and relapse, cue-induced drug seeking progressively increases after withdrawal from methamphetamine and other drugs, a phenomenon termed ‘incubation of drug craving'. However, current experimental procedures used to study incubation of drug craving do not incorporate negative consequences of drug use, which is a common factor promoting abstinence in humans. Here, we studied whether incubation of methamphetamine craving is observed after suppression of drug seeking by adverse consequences (punishment). We trained rats to self-administer methamphetamine or palatable food for 9 h per day for 14 days; reward delivery was paired with a tone-light cue. Subsequently, for one group within each reward type, 50% of the lever-presses were punished by mild footshock for 9–10 days, whereas for the other group lever-presses were not punished. Shock intensity was gradually increased over time. Next, we assessed cue-induced reward seeking in 1-h extinction sessions on withdrawal days 2 and 21. Response-contingent punishment suppressed extended-access methamphetamine or food self-administration; surprisingly, food-trained rats showed greater resistance to punishment than methamphetamine-trained rats. During the relapse tests, both punished and unpunished methamphetamine- and food-trained rats showed significantly higher cue-induced reward seeking on withdrawal day 21 than on day 2. These results demonstrate that incubation of both methamphetamine and food craving occur after punishment-induced suppression of methamphetamine or palatable food self-administration. Our procedure can be used to investigate mechanisms of relapse to drug and palatable food seeking under conditions that more closely approximate the human condition. PMID:24584329

  20. Reducing time to identification of aerobic bacteria and fastidious micro-organisms in positive blood cultures.

    PubMed

    Intra, J; Sala, M R; Falbo, R; Cappellini, F; Brambilla, P

    2016-12-01

    Rapid and early identification of micro-organisms in blood has a key role in the diagnosis of a febrile patient, in particular, in guiding the clinician to define the correct antibiotic therapy. This study presents a simple and very fast method with high performances for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after only 4 h of incubation. We used early bacterial growth on PolyViteX chocolate agar plates inoculated with five drops of blood-broth medium deposited in the same point and spread with a sterile loop, followed by a direct transfer procedure on MALDI-TOF MS target slides without additional modification. Ninety-nine percentage of aerobic bacteria were correctly identified from 600 monomicrobial-positive blood cultures. This procedure allowed obtaining the correct identification of fastidious pathogens, such as Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae that need complex nutritional and environmental requirements in order to grow. Compared to the traditional pathogen identification from blood cultures that takes over 24 h, the reliability of results, rapid performance and suitability of this protocol allowed a more rapid administration of optimal antimicrobial treatment in the patients. Bloodstream infections are serious conditions with a high mortality and morbidity rate. Rapid identification of pathogens and appropriate antimicrobial therapy have a key role for successful patient outcome. In this work, we developed a rapid, simplified, accurate, and efficient method, reaching 99 % identification of aerobic bacteria from monomicrobial-positive blood cultures by using early growth on enriched medium, direct transfer to target plate without additional procedures, matrix-assisted laser desorption ionization-time of flight mass spectrometry and SARAMIS database. The application of this protocol allows to anticipate appropriate antibiotic therapy.

  1. Energetic domains and conformational analysis of human serum albumin upon co-incubation with sodium benzoate and glucose.

    PubMed

    Taghavi, F; Moosavi-Movahedi, A A; Bohlooli, M; Habibi-Rezaei, M; Hadi Alijanvand, H; Amanlou, M; Sheibani, N; Saboury, A A; Ahmad, F

    2014-01-01

    Sodium benzoate (SB), a powerful inhibitor of microbial growth, is one of the most commonly used food preservative. Here, we determined the effects of SB on human serum albumin (HSA) structure in the presence or absence of glucose after 35 days of incubation under physiological conditions. The biochemical, biophysical, and molecular approaches including free amine content assay (TNBSA assay), fluorescence, and circular dichroism spectroscopy (CD), differential scanning calorimetry (DSC), and molecular docking and LIGPLOT studies were utilized for structural studies. The TNBSA results indicated that SB has the ability to bind Lys residues in HSA through covalent bonds. The docking and LIGPLOT studies also determined another specific site via hydrophobic interactions. The CD results showed more structural helicity for HSA incubated with SB, while HSA incubated with glucose had the least, and HSA incubated with glucose + SB had medium helicity. Fluorescence spectrophotometry results demonstrated partial unfolding of HSA incubated with SB in the presence or absence of glucose, while maximum partial unfolding was observed in HSA incubated with glucose. These results were confirmed by DSC and its deconvoluted thermograms. The DSC results also showed significant changes in HSA energetic structural domains due to HSA incubation with SB in the presence or absence of glucose. Together, our studies showed the formation of three different intermediates and indicate that biomolecular investigation are effective in providing new insight into safety determinations especially in health-related conditions including diabetes.

  2. An Investigative Study into Perspectives and Experiences of Incubates at the Chandaria Business Innovation and Incubation Centre at the Kenyatta University

    ERIC Educational Resources Information Center

    Munyanyiwa, Takaruza; Mutsau, Morgen; Rudhumbu, Norman; Svotwa, Douglas

    2016-01-01

    The study presents results from an investigative study undertaken at the Kenyatta University (KU) Chandaria Business Innovation and Incubation Centre. A total of 10 incubates representing 10 projects were engaged in face to face interviews. The incubates were appreciative of the value that incubation centre such as the one at KU contributed to…

  3. Effects of aerobic training on exercise-related oxidative stress in mitochondrial myopathies.

    PubMed

    Siciliano, Gabriele; Simoncini, Costanza; Lo Gerfo, Annalisa; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo

    2012-12-01

    In mitochondrial myopathies with respiratory chain deficiency impairment of energy cell production may lead to in excess reactive oxygen species generation with consequent oxidative stress and cell damage. Aerobic training has been showed to increase muscle performance in patients with mitochondrial myopathies. Aim of this study has been to evaluate, in 7 patients (6 F e 1M, mean age 44.9 ± 12.1 years) affected by mitochondrial disease, concomitantly to lactate exercise curve, the occurrence of oxidative stress, as indicated by circulating levels of lipoperoxides, in rest condition and as effect of exercise, and also, to verify if an aerobic training program is able to modify, in these patients, ox-redox balance efficiency. At rest and before training blood level of lipoperoxides was 382.4 ± 37.8 AU, compared to controls (318.7 ± 63.8; P<0.05), this corresponding to a moderate oxidative stress degree according to the adopted scale. During incremental exercise blood level of lipoperoxides did not increase, but maintained significantly higher compared to controls. After an aerobic training of 10 weeks the blood level of lipoperoxides decreased by 13.7% at rest (P<0.01) and 10.4%, 8.6% and 8.5% respectively at the corresponding times during the exercise test (P=0.06). These data indicate that, in mitochondrial patients, oxidative stress occurs and that an aerobic training is useful in partially reverting this condition. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Pre-incubation in soil improves the nitrogen fertiliser value of hair waste.

    PubMed

    Malepfane, N M; Muchaonyerwa, P

    2018-01-25

    Global generation of human hair waste and its disposal at landfills could contribute to the leaching of nitrates into ground water. High concentrations of nitrogen (N) and other elements suggest that the waste could be a source of plant nutrients and differences in ethnic hair types could affect nutrient release and fertiliser value. The objective of this study was to determine the effects of hair type, as an N source, and pre-incubation time on dry-matter yield, nutrient uptake by spinach (Spinacia oleracea L.) and residual soil nutrients. Salons in Pietermaritzburg provided bulk African and Caucasian hair waste, without distinguishing age, sex, health status or livelihood of the individuals. The hair waste was analysed for elemental composition. A pot experiment was set up under glasshouse conditions. The hair waste was incorporated (400 kg N ha -1 ) into a loamy oxisol and pre-incubated for 0, 28, 56 and 84 days before planting spinach. Potassium (K) and phosphorus (P) were corrected to the same level for all treatments. Spinach seedlings were then cultivated for 6 weeks. Shoot dry-matter and the uptake of all nutrients, except P, were increased by the pre-incubation of hair. African hair pre-incubated for 28 days resulted in greater dry-matter, N, K, Mn and S uptake than Caucasian hair. Increasing pre-incubation resulted in a decline in the residual soil pH and exchangeable K. The findings suggested that pre-incubation improves the N fertiliser value of hair and that African hair has greater value than Caucasian hair when pre-incubated for a short period.

  5. Optimization of an incubation step to maximize sulforaphane content in pre-processed broccoli.

    PubMed

    Mahn, Andrea; Pérez, Carmen

    2016-11-01

    Sulforaphane is a powerful anticancer compound, found naturally in food, which comes from the hydrolysis of glucoraphanin, the main glucosinolate of broccoli. The aim of this work was to maximize sulforaphane content in broccoli by designing an incubation step after subjecting broccoli pieces to an optimized blanching step. Incubation was optimized through a Box-Behnken design using ascorbic acid concentration, incubation temperature and incubation time as factors. The optimal incubation conditions were 38 °C for 3 h and 0.22 mg ascorbic acid per g fresh broccoli. The maximum sulforaphane concentration predicted by the model was 8.0 µmol g -1 , which was confirmed experimentally yielding a value of 8.1 ± 0.3 µmol g -1 . This represents a 585% increase with respect to fresh broccoli and a 119% increase in relation to blanched broccoli, equivalent to a conversion of 94% of glucoraphanin. The process proposed here allows maximizing sulforaphane content, thus avoiding artificial chemical synthesis. The compound could probably be isolated from broccoli, and may find application as nutraceutical or functional ingredient.

  6. Resistance training and aerobic training improve muscle strength and aerobic capacity in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Markvardsen, Lars H; Overgaard, Kristian; Heje, Karen; Sindrup, Søren H; Christiansen, Ingelise; Vissing, John; Andersen, Henning

    2018-01-01

    We investigated the effects of aerobic and resistance exercise in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Eighteen CIDP patients treated with subcutaneous immunoglobulin performed 12 weeks of aerobic exercise and 12 weeks of resistance exercise after a run-in period of 12 weeks without exercise. Three times weekly the participants performed aerobic exercise on an ergometer bike or resistance exercise with unilateral training of knee and elbow flexion/extension. Primary outcomes were maximal oxygen consumption velocity (VO 2 -max) and maximal combined isokinetic muscle strength (cIKS) of knee and elbow flexion/extension. VO 2 -max and muscle strength were unchanged during run-in (-4.9% ± 10.3%, P = 0.80 and -3.7% ± 10.1%, P = 0.17, respectively). Aerobic exercise increased VO 2 -max by 11.0% ± 14.7% (P = 0.02). Resistance exercise resulted in an increase of 13.8% ± 16.0% (P = 0.0004) in cIKS. Aerobic exercise training and resistance exercise training improve fitness and strength in CIDP patients. Muscle Nerve 57: 70-76, 2018. © 2017 Wiley Periodicals, Inc.

  7. Laying sequence interacts with incubation temperature to influence rate of embryonic development and hatching synchrony in a precocial bird.

    PubMed

    Hepp, Gary R; Kennamer, Robert A

    2018-01-01

    Incubation starts during egg laying for many bird species and causes developmental asynchrony within clutches. Faster development of late-laid eggs can help reduce developmental differences and synchronize hatching, which is important for precocial species whose young must leave the nest soon after hatching. In this study, we examined the effect of egg laying sequence on length of the incubation period in Wood Ducks (Aix sponsa). Because incubation temperature strongly influences embryonic development rates, we tested the interactive effects of laying sequence and incubation temperature on the ability of late-laid eggs to accelerate development and synchronize hatching. We also examined the potential cost of faster development on duckling body condition. Fresh eggs were collected and incubated at three biologically relevant temperatures (Low: 34.9°C, Medium: 35.8°C, and High: 37.6°C), and egg laying sequences from 1 to 12 were used. Length of the incubation period declined linearly as laying sequence advanced, but the relationship was strongest at medium temperatures followed by low temperatures and high temperatures. There was little support for including fresh egg mass in models of incubation period. Estimated differences in length of the incubation period between eggs 1 and 12 were 2.7 d, 1.2 d, and 0.7 d at medium, low and high temperatures, respectively. Only at intermediate incubation temperatures did development rates of late-laid eggs increase sufficiently to completely compensate for natural levels of developmental asynchrony that have been reported in Wood Duck clutches at the start of full incubation. Body condition of ducklings was strongly affected by fresh egg mass and incubation temperature but declined only slightly as laying sequence progressed. Our findings show that laying sequence and incubation temperature play important roles in helping to shape embryo development and hatching synchrony in a precocial bird.

  8. Laying sequence interacts with incubation temperature to influence rate of embryonic development and hatching synchrony in a precocial bird

    PubMed Central

    Kennamer, Robert A.

    2018-01-01

    Incubation starts during egg laying for many bird species and causes developmental asynchrony within clutches. Faster development of late-laid eggs can help reduce developmental differences and synchronize hatching, which is important for precocial species whose young must leave the nest soon after hatching. In this study, we examined the effect of egg laying sequence on length of the incubation period in Wood Ducks (Aix sponsa). Because incubation temperature strongly influences embryonic development rates, we tested the interactive effects of laying sequence and incubation temperature on the ability of late-laid eggs to accelerate development and synchronize hatching. We also examined the potential cost of faster development on duckling body condition. Fresh eggs were collected and incubated at three biologically relevant temperatures (Low: 34.9°C, Medium: 35.8°C, and High: 37.6°C), and egg laying sequences from 1 to 12 were used. Length of the incubation period declined linearly as laying sequence advanced, but the relationship was strongest at medium temperatures followed by low temperatures and high temperatures. There was little support for including fresh egg mass in models of incubation period. Estimated differences in length of the incubation period between eggs 1 and 12 were 2.7 d, 1.2 d, and 0.7 d at medium, low and high temperatures, respectively. Only at intermediate incubation temperatures did development rates of late-laid eggs increase sufficiently to completely compensate for natural levels of developmental asynchrony that have been reported in Wood Duck clutches at the start of full incubation. Body condition of ducklings was strongly affected by fresh egg mass and incubation temperature but declined only slightly as laying sequence progressed. Our findings show that laying sequence and incubation temperature play important roles in helping to shape embryo development and hatching synchrony in a precocial bird. PMID:29373593

  9. Comparison of the compact dry TC method with the standard method ISO 21149:2006 for determining aerobic colony counts in cosmetic emulsion.

    PubMed

    De Vaugelade, S; Aime, M; Farcette, N; Maurel, E; Lacour, T; Thomas, C; Bouchonnet, S; Pirnay, S

    2017-02-01

    Compact Dry TC, a rapid method kit for determining aerobic colony counts, has been developed by Nissui Pharmaceutical Co. for food application. These plates are pre-sterilized and contain culture medium, a cold-soluble gelling agent and a colour redox indicator for rapid enumeration. In this study, the alternative method is compared with the standard method ISO 21149:2006 - Cosmetic - Microbiology - Enumeration and detection of aerobic mesophilic bacteria, for cosmetic emulsions application. An oil-in-water (o/w) cosmetic emulsion was contaminated with a pool of bacterial strains (Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 9027). One millilitre of samples was spread on agar as described in ISO 21149. The colonies were enumerated after 3 days of incubation. At the same time, 1.2 mL samples were spread on Compact Dry TC kits. The kit was incubated at 35°C ± 1°C for 48 h, and the colonies were enumerated. Accuracy determination was carried out using six replicates at four levels of concentrations (10, 50, 100 and 250 CFU mL -1 ). The repeatability study was carried out using 12 replicates at four levels of concentrations (10, 50, 100 and 250 CFU mL -1 ). Variations relative to the analyst and to the batch of emulsion have been investigated. The linear correlation coefficients of Compact Dry TC Kit enumeration with standard method ISO 21149:2006 was 0.9999. In comparison study, no apparent differences were noted between the Compact Dry TC kit and the reference method ISO 21149, for the detection level of aerobic microorganisms. Relative accuracy, repeatability and intermediate precision studies were acceptable. In the repeatability study, the Shapiro-Wilk test has confirmed the normally distribution of the twelve assays. No significant variations in Compact Dry TC count results were observed with different analysts and different batches of emulsion. The results showed that the two compared methods 'Compact Dry TC' vs

  10. More than just one Methane Paradox? - Methane Production in Oxic Waters and Aerobic Methane Oxidation under Oxygen-Depleted Conditions

    NASA Astrophysics Data System (ADS)

    Lehmann, M. F.; Niemann, H.; Bartosiewicz, M.; Blees, J.; Steinle, L.; Su, G.; Zopfi, J.

    2016-12-01

    The standing paradigm is that methane (CH4) production through methanogenesis occurs exclusively under anoxic conditions and that at least in freshwater environments most of the biogenic CH4 is oxidized by aerobic methanotrophic bacteria (MOB) under oxic conditions. However, subsurface CH4 accumulation in oxic waters, a phenomenon referred to as the "CH4 paradox", has been observed both in the ocean and in lakes, and suggests in-situ CH4 production or a remarkable tolerance of at least some methanogens to O2. Analogously, MOB seem to thrive also under micro-oxic conditions, i.e., they may be responsible for significant CH4 turnover at extremely low O2 concentrations. O2 availability particularly within the sub-micromolar range is likely one of the key factors controlling the balance between CH4 production and consumption in redox-transition zones of aquatic environments, yet threshold O2 concentrations are poorly constrained. Here we provide multiple lines of evidence for apparent "methanogenesis" in well-oxygenated waters and discuss the potential mechanisms that lead to CH4 accumulation in the oxic epilimnia of two south-alpine lakes. On the other end, we present data from a deep meromictic lake, which indicate aerobic CH4 oxidation (MOx) at O2 concentrations below the detection limit of common O2 sensors. A strong MOx potential throughout the anoxic hyplimnion of the studied lake implies that the MOB community is able to survive prolonged periods of O2 starvation and is capable to rapidly resume microaerobic MOx upon introduction of low levels of O2. This conclusion is qualitatively consistent with field data from a coastal shelf environment in the Baltic Sea, where we observed maximum MOx rates during the summer stratification period when O2 concentrations were lowest, implying that in both environments MOx bacteria are adapted to trace levels of O2. Indeed, laboratory experiments at different manipulated O2 concentration levels suggest a nanomolar O2 optimum

  11. Validity of Monod kinetics at different sludge ages--peptone biodegradation under aerobic conditions.

    PubMed

    Orhon, Derin; Cokgor, Emine Ubay; Insel, Guclu; Karahan, Ozlem; Katipoglu, Tugce

    2009-12-01

    The study presented an evaluation of the effect of culture history (sludge age) on the growth kinetics of a mixed culture grown under aerobic conditions. It involved an experimental setup where a lab-scale sequencing batch reactor was operated at steady-state at two different sludge ages (theta(X)) of 2 and 10 days. The system sustained a mixed culture fed with a synthetic substrate mainly consisting of peptone. The initial concentration of substrate COD was selected around 500 mg COD/L. Polyhydroxyalkanoate (PHA) storage occurred to a limited extent, around 30 mg COD/L for theta(X)=10 days and 15 mg COD/L for theta(X)=2 days. Evaluation of the experimental data based on calibration of two different models provided consistent and reliable evidence for a variable Monod kinetics where the maximum specific growth rate, was assessed as 6.1/day for theta(X)=2 days and 4.1/day for theta(X)=10 days. A similar variability was also applicable for the hydrolysis and storage kinetics. The rate of storage was significantly lower than the levels reported in the literature, exhibiting the ability of the microorganisms to regulate their metabolic mechanisms for adjusting the rate of microbial growth and storage competing for the same substrate. This adjustment evidently resulted in case-specific, variable kinetics both for microbial growth and substrate storage.

  12. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  13. Catalytic epoxidation activity of keplerate polyoxomolybdate nanoball toward aqueous suspension of olefins under mild aerobic conditions.

    PubMed

    Rezaeifard, Abdolreza; Haddad, Reza; Jafarpour, Maasoumeh; Hakimi, Mohammad

    2013-07-10

    Catalytic efficiency of a sphere-shaped nanosized polyoxomolybdate {Mo132} in the aerobic epoxidation of olefins in water at ambient temperature and pressure in the absence of reducing agent is exploited which resulted good-to-high yields and desired selectivity.

  14. Marketing Plan for the National Security Technology Incubator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This marketing plan was developed as part of the National Security Preparedness Project by the Arrowhead Center of New Mexico State University. The vision of the National Security Technology Incubator program is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The plan defines important aspects of developing the incubator, such as defining the target market, marketing goals, and creating strategies to reach the target market while meeting those goals. The three main marketing goals of the incubator are: 1) developing marketing materials for the incubatormore » program; 2) attracting businesses to become incubator participants; and 3) increasing name recognition of the incubator program on a national level.« less

  15. Regulation of Methane Oxidation in a Freshwater Wetland by Water Table Changes and Anoxia

    NASA Technical Reports Server (NTRS)

    Roslev, Peter; King, Gary M.

    1996-01-01

    The effects of water table fluctuations and anoxia on methane emission and methane oxidation were studied in a freshwater marsh. Seasonal aerobic methane oxidation rates varied between 15% and 76% of the potential diffusive methane flux (diffusive flux in the absence of aerobic oxidation). On an annual basis, approximately 43% of the methane diffusing into the oxic zone was oxidized before reaching the atmosphere. The highest methane oxidation was observed when the water table was below the peat surface. This was confirmed in laboratory experiments where short-term decreases in water table levels increased methane oxidation but also net methane emission. Although methane emission was generally not observed during the winter, stems of soft rush (Juncus effusus) emitted methane when the marsh was ice covered. Indigenous methanotrophic bacteria from the wetiand studied were relatively anoxia tolerant. Surface peat incubated under anoxic conditions maintained 30% of the initial methane oxidation capacity after 32 days of anoxia. Methanotrophs from anoxic peat initiated aerobic methane oxidation relatively quickly after oxygen addition (1-7 hours). These results were supported by culture experiments with the methanotroph Methylosinus trichosporium OB3b. This organism maintained a greater capacity for aerobic methane oxidation when starved under anoxic compared to oxic conditions. Anoxic incubation of M. trichosporium OB3b in the presence of sulfide (2 mM) and a low redox potential (-110 mV) did not decrease the capacity for methane oxidation relative to anoxic cultures incubated without sulfide. The results suggest that aerobic methane oxidation was a major regulator of seasonal methane emission front the investigated wetland. The observed water table fluctuations affected net methane oxidation presumably due to associated changes in oxygen gradients. However, changes from oxic to anoxic conditions in situ had relatively little effect on survival of the methanotrophic

  16. Active noise control for infant incubators.

    PubMed

    Yu, Xun; Gujjula, Shruthi; Kuo, Sen M

    2009-01-01

    This paper presents an active noise control system for infant incubators. Experimental results show that global noise reduction can be achieved for infant incubator ANC systems. An audio-integration algorithm is presented to introduce a healthy audio (intrauterine) sound with the ANC system to mask the residual noise and soothe the infant. Carbon nanotube based transparent thin film speaker is also introduced in this paper as the actuator for the ANC system to generate the destructive secondary sound, which can significantly save the congested incubator space and without blocking the view of doctors and nurses.

  17. Recent advances on biosorption by aerobic granular sludge.

    PubMed

    Wang, Li; Liu, Xiang; Lee, Duu-Jong; Tay, Joo-Hwa; Zhang, Yi; Wan, Chun-Li; Chen, Xiao-Feng

    2018-06-04

    Aerobic granular sludge is a form of microbial auto-aggregation, and a promising biotechnology for wastewater treatment. This review aims at providing the first comprehensive, systematic, and in-depth overview on the application of aerobic granules as biosorbents. The target pollutants encompass heavy metals (both cationic and oxyanionic), nuclides, dyes, and inorganic non-metal substances. Different granule types are discussed, i.e. intact and fragmented, compact and fluffy, original and modified, and the effects of granule surface modification are introduced. A detailed comparison is conducted on the characteristics of granular biomass, the conditions of the adsorption tests, and the resultant performance towards various sorbates. Analytical and mathematical tools typically employed are presented, and possible interactions between the pollutants and granules are theorized, leading to an analysis on the mechanisms of the adsorption processes. Original granules appear highly effective towards cationic metals, while surface modification by organic and inorganic agents can expand their applicability to other pollutants. Combined with their advantages of high mechanical strength, density, and settling speed, aerobic granules possess exceptional potential in real wastewater treatment as biosorbents. Possible future research, both fundamental and practical, is suggested to gain more insights into the mechanism of their function, and to advance their industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Incorporation of Glucose under Anoxic Conditions by Bacterioplankton from Coastal North Sea Surface Waters

    PubMed Central

    Alonso, Cecilia; Pernthaler, Jakob

    2005-01-01

    It has been hypothesized that the potential for anaerobic metabolism might be a common feature of bacteria in coastal marine waters (L. Riemann and F. Azam, Appl. Environ. Microbiol. 68: 5554-5562, 2002). Therefore, we investigated whether different phylogenetic groups of heterotrophic picoplankton from the coastal North Sea were able to take up a simple carbon source under anoxic conditions. Oxic and anoxic incubations (4 h) or enrichments (24 h) of seawater with radiolabeled glucose were performed in July and August 2003. Bacteria with incorporated substrate were identified by using a novel protocol in which we combined fluorescence in situ hybridization and microautoradiography of cells on membrane filters. Incorporation of glucose under oxic and anoxic conditions was found in α-Proteobacteria, γ-Proteobacteria, and the Cytophaga-Flavobacterium cluster of the Bacteroidetes at both times, but not in marine Euryarchaeota. In July, the majority of cells belonging to the α-proteobacterial Roseobacter clade showed tracer incorporation both in oxic incubations and in oxic and anoxic enrichments. In August, only a minority of the Roseobacter cells, but most bacteria affiliated with Vibrio spp., were able to incorporate the tracer under either condition. A preference for glucose uptake under anoxic conditions was observed for bacteria related to Alteromonas and the Pseudoalteromonas-Colwellia group. These genera are commonly considered to be strictly aerobic, but facultatively fermentative strains have been described. Our findings suggest that the ability to incorporate substrates anaerobically is widespread in pelagic marine bacteria belonging to different phylogenetic groups. Such bacteria may be abundant in fully aerated coastal marine surface waters. PMID:15811993

  19. 21 CFR 610.30 - Test for Mycoplasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... in an environment of 5-10 percent CO2 in N2. Aerobic incubation shall be for a period of no less than... additional plates and incubated aerobically. Anaerobic incubation shall be for no less than 14 days and the...

  20. 21 CFR 610.30 - Test for Mycoplasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... in an environment of 5-10 percent CO2 in N2. Aerobic incubation shall be for a period of no less than... additional plates and incubated aerobically. Anaerobic incubation shall be for no less than 14 days and the...

  1. 21 CFR 610.30 - Test for Mycoplasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... in an environment of 5-10 percent CO2 in N2. Aerobic incubation shall be for a period of no less than... additional plates and incubated aerobically. Anaerobic incubation shall be for no less than 14 days and the...

  2. [Audit "Toys and incubators in neonatology"].

    PubMed

    Raginel, T; Bigoin-Dupont, M; Aguelon, V; Fines-Guyon, M; Guillemin, M G

    2009-08-01

    Owing to an increase in nosocomial septicaemias in the Neonatalogy department, we've judged it necessary to consider the role of items not linked to the nursing procedures, and nevertheless present in the incubators, as well as the hygiene techniques applied to them. In November 2007, we've made a longitudinal prospective study consisting in an observation audit during 3 successive days, observing every single incubator with a newborn baby. In each incubator, we've checked whether there were or not items that weren't required by the nursing activities, along with their characteristics and the hygiene procedures applied to them. We've inquired as well whether the parents and the nursing staff knew and applied the required hygiene procedures. In 13 among the 17 incubators under survey, at least one item not strictly required by the nursing procedures could be found. The number of toys in each incubator varied from seven to one. Among the 33 toys surveyed, 24 (73%) of them showed a score of maximum fluffiness (4 out of 4), and only 10 wore labels giving cleansing advice from the manufacturers. Without any record about the cleaning/disinfecting of the toys brought in hospital, we have observed that the parents were given varied advice about how to clean the toys at home before putting them in the incubators (only four parents had washed the toys in their washing machines at more than 30 degrees C). From the six samples under scrutiny, all the culture results were tested positive. In particular two of the soft toys sampled were found infected by a Pseudomonas oryzihabitans. These particular toys belonged to a baby who had been diagnosed with a septicaemia characterized by hemocultures positive to a P. oryzihabitans of a different strain. Our audit has been an efficient reminder that any item put in an incubator is a potential vector and reservoir of pathogen organisms. After a general feedback towards the department staff, the medical staff then prescribed to

  3. Weight monitoring system for newborn incubator application

    NASA Astrophysics Data System (ADS)

    Widianto, Arif; Nurfitri, Intan; Mahatidana, Pradipta; Abuzairi, Tomy; Poespawati, N. R.; Purnamaningsih., Retno W.

    2018-02-01

    We proposed weight monitoring system using load cell sensor for newborn incubator application. The weight sensing system consists of a load cell, conditioning signal circuit, and microcontroller Arduino Uno R3. The performance of the sensor was investigated by using the various weight from 0 up to 3000 g. Experiment results showed that this system has a small error of 4.313% and 12.5 g of threshold and resolution value. Compared to the typical baby scale available in local market, the proposed system has a lower error value and hysteresis.

  4. What is the incubation period for listeriosis?

    PubMed Central

    2013-01-01

    Background Listeriosis is a foodborne infection with a low incidence but a high case fatality rate. Unlike common foodborne diseases, the incubation period can be long. The first incubation periods were documented during a large listeriosis outbreak published in 1987 by Linnan and al. in the New England Journal of Medicine (range: 3 days to 70 days). Data on the incubation period of listeriosis are scarce. Our study aim was to estimate precisely the incubation period of listeriosis using available data since 1987. Methods We estimated the incubation period of listeriosis using available published data and data from outbreak investigations carried out by the French National Institute for Public Health Surveillance. We selected cases with an incubation period calculated when a patient had a single exposure to a confirmed food source contaminated by Listeria monocytogenes. Results We identified 37 cases of invasive listeriosis (10 cases with central nervous system involvement (CNS cases), 15 bacteraemia cases and 12 pregnancy-associated cases) and 9 outbreaks with gastroenteritis. The overall median incubation period of invasive listeriosis was 8 days (range: 1–67 days) and differed significantly by clinical form of the disease (p<0.0001). A longer incubation period was observed for pregnancy-associated cases (median: 27.5 days; range: 17–67 days) than for CNS cases (median: 9 days; range: 1–14 days) and for bacteraemia cases (median: 2 days; range: 1–12 days). For gastroenteritis cases, the median incubation period was 24 hours with variation from 6 to 240 hours. Conclusions This information has implications for the investigation of food borne listeriosis outbreaks as the incubation period is used to determine the time period for which a food history is collected. We believe that, for listeriosis outbreaks, adapting the exposure window for documenting patients’ food histories in accordance with the clinical form of infection will facilitate the

  5. Physical origin of the incubation time of self-induced GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consonni, V.; Trampert, A.; Geelhaar, L.

    2011-07-18

    The nucleation process of self-induced GaN nanowires grown by molecular beam epitaxy has been investigated by reflection high-energy electron diffraction measurements. It is found that stable nuclei in the form of spherical cap-shaped islands develop only after an incubation time that is strongly dependent upon the growth conditions. Its evolution with the growth temperature and gallium rate has been described within standard island nucleation theory, revealing a nucleation energy of 4.9 {+-} 0.1 eV and a very small nucleus critical size. The consideration of the incubation time is critical for the control of the nanowire morphology.

  6. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors.

    PubMed

    Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun

    2010-09-01

    The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    PubMed Central

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and

  8. [Moderately haloalkaliphilic aerobic methylobacteria].

    PubMed

    Trotsenko, Iu A; Doronina, N V; Li, Ts D; Reshetnikov, A S

    2007-01-01

    Aerobic methylobacteria utilizing oxidized and substituted methane derivatives as carbon and energy sources are widespread in nature and involved in the global carbon cycle, being a unique biofilter on the path of these C1 compounds from different ecosystems to the atmosphere. New data on the biological features of moderately halophilic, neutrophilic, and alkaliphilic methylobacteria isolated from biotopes with higher osmolarity (seas, saline and soda lakes, saline soils, and deteriorating marble) are reviewed. Particular attention is paid to the latest advances in the study of the mechanisms of osmoadaptation of aerobic moderately haloalkaliphilic methylobacteria: formation of osmolytes, in particular, molecular and genetic aspects of biosynthesis of the universal bioprotectant ectoine. The prospects for further studies of the physiological and biochemical principles of haloalkalophily and for the application of haloalkaliphilic aerobic methylobacteria in biosynthesis and biodegradation are discussed.

  9. Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned.

    PubMed

    Brondani, Gilvano E; Oliveira, Leandro S DE; Konzen, Enéas R; Silva, André L L DA; Costa, Jefferson L

    2017-10-16

    We addressed a major challenge in the in vitro clonal propagation of Corymbia citriodora, Eucalyptus urophylla and E. benthamii by using an ex vitro adventitious rooting strategy in a mini-incubator. Mini-incubators were placed in four environments for rooting. A shade house with no fogging system and a greenhouse with no ventilation but with a fogging environment had the best performance in terms of rooting, root growth and survival of microcuttings. Daily recording of the temperature within each mini-incubator in each environment allowed the verification of negative correlations between the maximum average temperature and the survival, adventitious rooting and root growth. The ideal maximum air temperature for the efficient production of clonal plants was 28.4°C (± 5.5°C), and the minimum was 20.3°C (± 6.2°C). E. benthamii was more sensitive to higher temperatures than C. citriodora and E. urophylla. Nevertheless, placing mini-incubators in the shade house with no fogging system resulted in a stable and uniform performance among the three species, with 100.0% survival and 81.4% rooting. Histological sections of the adventitious roots revealed connection with the stem vascular cambium. Therefore, our experimental system demonstrated the potential of mini-incubators coupled with the proper environment to optimize the adventitious rooting performance of microcuttings.

  10. Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions

    USGS Publications Warehouse

    Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.

    1999-01-01

    Aerobic biodegradation and volatilization near the water table constitute a coupled pathway that contributes significantly to the natural attenuation of hydrocarbons at gasoline spill sites. Rates of hydrocarbon biodegradation and volatilization were quantified by analyzing vapor transport in the unsaturated zone at a gasoline spill site in Beaufort, South Carolina. Aerobic biodgradation rates decreased with distance above the water table, ranging from 0.20 to 1.5 g m−3 d−1 for toluene, from 0.24 to 0.38 g m−3 d−1for xylene, from 0.09 to 0.24 g m−3 d−1 for cyclohexene, from 0.05 to 0.22 g m−3 d−1 for ethylbenzene, and from 0.02 to 0.08 g m−3 d−1 for benzene. Rates were highest in the capillary zone, where 68% of the total hydrocarbon mass that volatilized from the water table was estimated to have been biodegraded. Hydrocarbons were nearly completely degraded within 1m above the water table. This large loss underscores the importance of aerobic biodradation in limiting the transport of hydrocarbon vapors in the unsaturated zone and implies that vapor‐plume migration to basements and other points of contact may only be significant if a source of free product is present. Furthermore, because transport of the hydrocarbon in the unsaturated zone can be limited relative to that of oxygen and carbon dioxide, soil‐gas surveys conducted at hydrocarbon‐spill sites would benefit by the inclusion of oxygen‐ and carbon‐dioxide‐gas concentration measurements. Aerobic degradation kinetics in the unsaturated zone were approximately first‐order. First‐order rate constants near the water table were highest for cyclohexene (0.21–0.65 d−1) and nearly equivalent for ethylbenzene (0.11–0.31 d−1), xylenes (0.10–0.31 d−1), toluene (0.09–0.30 d−1), and benzene (0.07–0.31 d−1). Hydrocarbon mass loss rates at the water table resulting from the coupled aerobic biodgradation and volatilization process were determined by

  11. Modeling the incubation period of inhalational anthrax.

    PubMed

    Wilkening, Dean A

    2008-01-01

    Ever since the pioneering work of Philip Sartwell, the incubation period distribution for infectious diseases is most often modeled using a lognormal distribution. Theoretical models based on underlying disease mechanisms in the host are less well developed. This article modifies a theoretical model originally developed by Brookmeyer and others for the inhalational anthrax incubation period distribution in humans by using a more accurate distribution to represent the in vivo bacterial growth phase and by extending the model to represent the time from exposure to death, thereby allowing the model to be fit to nonhuman primate time-to-death data. The resulting incubation period distribution and the dose dependence of the median incubation period are in good agreement with human data from the 1979 accidental atmospheric anthrax release in Sverdlovsk, Russia, and limited nonhuman primate data. The median incubation period for the Sverdlovsk victims is 9.05 (95% confidence interval = 8.0-10.3) days, shorter than previous estimates, and it is predicted to drop to less than 2.5 days at doses above 10(6) spores. The incubation period distribution is important because the left tail determines the time at which clinical diagnosis or syndromic surveillance systems might first detect an anthrax outbreak based on early symptomatic cases, the entire distribution determines the efficacy of medical intervention-which is determined by the speed of the prophylaxis campaign relative to the incubation period-and the right tail of the distribution influences the recommended duration for antibiotic treatment.

  12. Multi-layer thermoelectric-temperature-mapping microbial incubator designed for geo-biochemistry applications.

    PubMed

    Wu, Jin-Gen; Liu, Man-Chi; Tsai, Ming-Fei; Yu, Wei-Shun; Chen, Jian-Zhang; Cheng, I-Chun; Lin, Pei-Chun

    2012-04-01

    We demonstrate a novel, vertical temperature-mapping incubator utilizing eight layers of thermoelectric (TE) modules mounted around a test tube. The temperature at each layer of the TE module is individually controlled to simulate the vertical temperature profile of geo-temperature variations with depth. Owing to the constraint of non-intrusion to the filled geo-samples, the temperature on the tube wall is adopted for measurement feedback. The design considerations for the incubator include spatial arrangement of the energy transfer mechanism, heating capacity of the TE modules, minimum required sample amount for follow-up instrumental or chemical analysis, and the constraint of non-intrusion to the geo-samples during incubation. The performance of the incubator is experimentally evaluated with two tube conditions and under four preset temperature profiles. Test tubes are either empty or filled with quartz sand, which has comparable thermal properties to the materials in the geo-environment. The applied temperature profiles include uniform, constant temperature gradient, monotonic-increasing parabolic, and parabolic. The temperature on the tube wall can be controlled between 20 °C and 90 °C with an averaged root mean squared error of 1 °C. © 2012 American Institute of Physics

  13. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton.

    PubMed

    Bruns, Alke; Nübel, Ulrich; Cypionka, Heribert; Overmann, Jörg

    2003-04-01

    The effect of signal compounds and of different incubation conditions on the culturability (i.e., the fraction of all cells capable of growth) of natural bacterioplankton from the eutrophic lake Zwischenahner Meer was investigated over a period of 20 months. Numbers of growing cells were determined by the most-probable-number technique in liquid media containing low concentrations (10 micro M) of the signal compounds N-(oxohexanoyl)-DL-homoserine lactone, N-(butyryl)-DL-homoserine lactone, cyclic AMP (cAMP), or ATP. cAMP was the most effective signal compound, leading to significantly increased cultivation efficiencies of up to 10% of the total bacterial counts. Microautoradiography with [2,8-(3)H]cAMP, combined with fluorescence in situ hybridization, demonstrated that cAMP was taken up by 18% of all cells. The bacterial cAMP uptake systems had a very low K(m) value of

  14. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations.

    PubMed

    Clark, Timothy D; Sandblom, Erik; Jutfelt, Fredrik

    2013-08-01

    Measurements of aerobic scope [the difference between minimum and maximum oxygen consumption rate ( and , respectively)] are increasing in prevalence as a tool to address questions relating to fish ecology and the effects of climate change. However, there are underlying issues regarding the array of methods used to measure aerobic scope across studies and species. In an attempt to enhance quality control before the diversity of issues becomes too great to remedy, this paper outlines common techniques and pitfalls associated with measurements of , and aerobic scope across species and under different experimental conditions. Additionally, we provide a brief critique of the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis, a concept that is intricately dependent on aerobic scope measurements and is spreading wildly throughout the literature despite little evidence for its general applicability. It is the intention of this paper to encourage transparency and accuracy in future studies that measure the aerobic metabolism of fishes, and to highlight the fundamental issues with assuming broad relevance of the OCLTT hypothesis.

  15. AMPA Receptor Plasticity in Accumbens Core Contributes to Incubation of Methamphetamine Craving.

    PubMed

    Scheyer, Andrew F; Loweth, Jessica A; Christian, Daniel T; Uejima, Jamie; Rabei, Rana; Le, Tuan; Dolubizno, Hubert; Stefanik, Michael T; Murray, Conor H; Sakas, Courtney; Wolf, Marina E

    2016-11-01

    The incubation of cue-induced drug craving in rodents provides a model of persistent vulnerability to craving and relapse in human addicts. After prolonged withdrawal, incubated cocaine craving depends on strengthening of nucleus accumbens (NAc) core synapses through incorporation of Ca 2+ -permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (CP-AMPARs). Through metabotropic glutamate receptor 1 (mGluR1)-mediated synaptic depression, mGluR1 positive allosteric modulators remove CP-AMPARs from these synapses and thereby reduce cocaine craving. This study aimed to determine if similar plasticity accompanies incubation of methamphetamine craving. Rats self-administered saline or methamphetamine under extended-access conditions. Cue-induced seeking tests demonstrated incubation of methamphetamine craving. After withdrawal periods ranging from 1 to >40 days, rats underwent one of the following procedures: 1) whole-cell patch clamp recordings to characterize AMPAR transmission, 2) intra-NAc core injection of the CP-AMPAR antagonist 1-naphthyl acetyl spermine followed by a seeking test, or 3) systemic administration of a mGluR1 positive allosteric modulator followed by a seeking test. Incubation of methamphetamine craving was associated with CP-AMPAR accumulation in NAc core, and both effects were maximal after ~1 week of withdrawal. Expression of incubated craving was decreased by intra-NAc core 1-naphthyl acetyl spermine injection or systemic mGluR1 positive allosteric modulator administration. These results are the first to demonstrate a role for the NAc in the incubation of methamphetamine craving and describe adaptations in synaptic transmission associated with this model. They establish that incubation of craving and associated CP-AMPAR plasticity occur much more rapidly during withdrawal from methamphetamine compared with cocaine. However, a common mGluR1-based therapeutic strategy may be helpful for recovering cocaine and methamphetamine

  16. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation.

    PubMed

    González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: 'closed' beakers and 'open' microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies.

  17. Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation

    PubMed Central

    Studer, Mirjam S.; Hagedorn, Frank; Niklaus, Pascal A.; Abiven, Samuel

    2017-01-01

    Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (Nmin) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: ‘closed’ beakers and ‘open’ microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more Nmin in beakers (5.12 g kg-1 OC) than in microlysimeters (3.00 g kg-1 OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, Nmin did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies. PMID:28380005

  18. Accuracy of egg flotation throughout incubation to determine embryo age and incubation day in water bird nests

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Floating bird eggs to estimate their age is a widely used technique, but few studies have examined its accuracy throughout incubation. We assessed egg flotation for estimating hatch date, day of incubation, and the embryo's developmental age in eggs of the American Avocet (Recurvirostra americana), Black-necked Stilt (Himantopus mexicanus), and Forster's Tern (Sterna forsteri). Predicted hatch dates based on egg flotation during our first visit to a nest were highly correlated with actual hatch dates (r = 0.99) and accurate within 2.3 ?? 1.7 (SD) days. Age estimates based on flotation were correlated with both day of incubation (r = 0.96) and the embryo's developmental age (r = 0.86) and accurate within 1.3 ?? 1.6 days and 1.9 ?? 1.6 days, respectively. However, the technique's accuracy varied substantially throughout incubation. Flotation overestimated the embryo's developmental age between 3 and 9 days, underestimated age between 12 and 21 days, and was most accurate between 0 and 3 days and 9 and 12 days. Age estimates based on egg flotation were generally accurate within 3 days until day 15 but later in incubation were biased progressively lower. Egg flotation was inaccurate and overestimated embryo age in abandoned nests (mean error: 7.5 ?? 6.0 days). The embryo's developmental age and day of incubation were highly correlated (r = 0.94), differed by 2.1 ?? 1.6 days, and resulted in similar assessments of the egg-flotation technique. Floating every egg in the clutch and refloating eggs at subsequent visits to a nest can refine age estimates. ?? The Cooper Ornithological Society 2010.

  19. Air temperature recordings in infant incubators.

    PubMed Central

    Aynsley-Green, A; Roberton, N R; Rolfe, P

    1975-01-01

    Air temperatures were continuously recorded inside four incubators with proportional heating control and six incubators with on/off heating cycles, during routine use. The air temperatures in the former were constant throughout, with a gradient between the roof and above-mattress air temperature not exceeding 1 degree C. In contrast, the recordings from the latter models showed a regular cyclical oscillation, the duration of the cycle varying from 14 to 44 minutes. Each incubator had a characteristic profile. The roof air temperature could vary by as much as 7-1 degrees C and the above-mattress air temperature by as much as 2-6 degrees C during the cycle. The oscillation persisted in the air temperatures recorded inside an open-ended hemicylindrical heat shield when used inside these incubators, but was markedly reduced inside a closed-ended heat shield, Carbon dioxide concentration did not increase significantly inside the latter. Images FIG. 1 FIG. 2 PMID:1147654

  20. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  1. A prototype infant incubator for heliox therapy.

    PubMed

    Singhaus, Clifford J; Touch, Suzanne M; Greenspan, Jay S; Wolfson, Marla R; Shaffer, Thomas H

    2006-01-01

    Heliox (Hx) gas has been shown to improve pulmonary function in infants, but methods for its delivery are invasive and problematic. To this end, we modified an Isolette (Hill-Rom Air-Shields) infant incubator (Hxl) to deliver Hx respiratory gas mixtures noninvasively while providing thermal stability for neonatal care in the Neonatal Intensive Care Unit (NICU). In vitro tests and in vivo animal studies were performed to compare the original design specifications and established baseline performance criteria for the Hxl design. The experimental environments at 50% and 80% relative humidity (RH) consisted of helium (He) with 21% and 50% O2 and control (C) of 21% and 50% O2 with the balance nitrogen (N). Elapsed times to steady state (SS) and recovery time back to SS (OCDss) due to opening and closing the door were recorded for each variable. All rabbits survived and appeared comfortable during all experimental conditions. These data show that the newly designed Isolette provides similar thermal, O2, CO2, and RH responses as the control incubator. Based on these positive safety/efficacy studies, study of the therapeutic impact of Hxl care on neonatal growth and development is in progress.

  2. The incubation period of cholera: a systematic review.

    PubMed

    Azman, Andrew S; Rudolph, Kara E; Cummings, Derek A T; Lessler, Justin

    2013-05-01

    Recent large cholera outbreaks highlight the need for improved understanding of the pathogenesis and epidemiology of cholera. The incubation period of cholera has important implications for clinical and public health decision-making, yet statements of the incubation period of cholera are often imprecise. Here we characterize the distribution of cholera's incubation period. We conducted a systematic review of the literature for statements of the incubation period of cholera and data that might aid in its estimation. We extracted individual-level data, parametrically estimated the distribution of toxigenic cholera's incubation period, and evaluated evidence for differences between strains. The incubation period did not differ by a clinically significant margin between strains (except O1 El Tor Ogawa). We estimate the median incubation period of toxigenic cholera to be 1.4 days (95% CI, 1.3-1.6). Five percent of cholera cases will develop symptoms by 0.5 days (95% CI 0.4-0.5), and 95% by 4.4 days (95% CI 3.9-5.0) after infection. We recommend that cholera investigations use a recall period of at least five days to capture relevant exposures; significantly longer than recent risk factor studies from the Haitian epidemic. This characterization of cholera's incubation period can help improve clinical and public health practice and advance epidemiologic research. Copyright © 2012 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  3. Improved TNT detoxification by starch addition in a nitrogen-fixing Methylophilus-dominant aerobic microbial consortium.

    PubMed

    Khan, Muhammad Imran; Lee, Jaejin; Yoo, Keunje; Kim, Seonghoon; Park, Joonhong

    2015-12-30

    In this study, a novel aerobic microbial consortium for the complete detoxification of 2,4,6-trinitrotoluene (TNT) was developed using starch as a slow-releasing carbon source under nitrogen-fixing conditions. Aerobic TNT biodegradation coupled with microbial growth was effectively stimulated by the co-addition of starch and TNT under nitrogen-fixing conditions. The addition of starch with TNT led to TNT mineralization via ring cleavage without accumulation of any toxic by-products, indicating improved TNT detoxification by the co-addition of starch and TNT. Pyrosequencing targeting the bacterial 16S rRNA gene suggested that Methylophilus and Pseudoxanthomonas population were significantly stimulated by the co-addition of starch and TNT and that the Methylophilus population became predominant in the consortium. Together with our previous study regarding starch-stimulated RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) degradation (Khan et al., J. Hazard. Mater. 287 (2015) 243-251), this work suggests that the co-addition of starch with a target explosive is an effective way to stimulate aerobic explosive degradation under nitrogen-fixing conditions for enhancing explosive detoxification. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Business Incubator Development in Rural Areas.

    ERIC Educational Resources Information Center

    Weinberg, Mark

    One viable economic development option for rural areas is the creation of business incubators--facilities that aid in the early stages of growth of an enterprise by providing rental space, services, and business assistance. Business incubators promote community development by diversifying the economic base, enhancing the community's image as a…

  5. Aerobic exercise training for adults with fibromyalgia.

    PubMed

    Bidonde, Julia; Busch, Angela J; Schachter, Candice L; Overend, Tom J; Kim, Soo Y; Góes, Suelen M; Boden, Catherine; Foulds, Heather Ja

    2017-06-21

    Exercise training is commonly recommended for individuals with fibromyalgia. This review is one of a series of reviews about exercise training for people with fibromyalgia that will replace the "Exercise for treating fibromyalgia syndrome" review first published in 2002. • To evaluate the benefits and harms of aerobic exercise training for adults with fibromyalgia• To assess the following specific comparisons ० Aerobic versus control conditions (eg, treatment as usual, wait list control, physical activity as usual) ० Aerobic versus aerobic interventions (eg, running vs brisk walking) ० Aerobic versus non-exercise interventions (eg, medications, education) We did not assess specific comparisons involving aerobic exercise versus other exercise interventions (eg, resistance exercise, aquatic exercise, flexibility exercise, mixed exercise). Other systematic reviews have examined or will examine these comparisons (Bidonde 2014; Busch 2013). We searched the Cochrane Library, MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Physiotherapy Evidence Database (PEDro), Thesis and Dissertation Abstracts, the Allied and Complementary Medicine Database (AMED), the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), and the ClinicalTrials.gov registry up to June 2016, unrestricted by language, and we reviewed the reference lists of retrieved trials to identify potentially relevant trials. We included randomized controlled trials (RCTs) in adults with a diagnosis of fibromyalgia that compared aerobic training interventions (dynamic physical activity that increases breathing and heart rate to submaximal levels for a prolonged period) versus no exercise or another intervention. Major outcomes were health-related quality of life (HRQL), pain intensity, stiffness, fatigue, physical function, withdrawals, and adverse events. Two review authors independently selected trials for inclusion, extracted

  6. Skin temperature modifies the impact of hypohydration on aerobic performance.

    PubMed

    Kenefick, R W; Cheuvront, S N; Palombo, L J; Ely, B R; Sawka, M N

    2010-07-01

    This study determined the effects of hypohydration on aerobic performance in compensable [evaporative cooling requirement (E(req)) < maximal evaporative cooling (E(max))] conditions of 10 degrees C [7 degrees C wet bulb globe temperature (WBGT)], 20 degrees C (16 degrees C WBGT), 30 degrees C (22 degrees C WBGT), and 40 degrees C (27 degrees C WBGT) ambient temperature (T(a)). Our hypothesis was that 4% hypohydration would impair aerobic performance to a greater extent with increasing heat stress. Thirty-two men [22 +/- 4 yr old, 45 +/- 8 ml.kg(-1).min(-1) peak O(2) uptake (Vo(2 peak))] were divided into four matched cohorts (n = 8) and tested at one of four T(a) in euhydrated (EU) and hypohydrated (HYPO, -4% body mass) conditions. Subjects completed 30 min of preload exercise (cycle ergometer, 50% Vo(2 peak)) followed by a 15 min self-paced time trial. Time-trial performance (total work, change from EU) was -3% (P = 0.1), -5% (P = 0.06), -12% (P < 0.05), and -23% (P < 0.05) in 10 degrees C, 20 degrees C, 30 degrees C, and 40 degrees C T(a), respectively. During preload exercise, skin temperature (T(sk)) increased by approximately 4 degrees C per 10 degrees C T(a), while core (rectal) temperature (T(re)) values were similar within EU and HYPO conditions across all T(a). A significant relationship (P < 0.05, r = 0.61) was found between T(sk) and the percent decrement in time-trial performance. During preload exercise, hypohydration generally blunted the increases in cardiac output and blood pressure while reducing blood volume over time in 30 degrees C and 40 degrees C T(a). Our conclusions are as follows: 1) hypohydration degrades aerobic performance to a greater extent with increasing heat stress; 2) when T(sk) is >29 degrees C, 4% hypohydration degrades aerobic performance by approximately 1.6% for each additional 1 degrees C T(sk); and 3) cardiovascular strain from high skin blood flow requirements combined with blood volume reductions induced by hypohydration

  7. National Security Technology Incubator Business Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This document contains a business plan for the National Security Technology Incubator (NSTI), developed as part of the National Security Preparedness Project (NSPP) and performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This business plan describes key features of the NSTI, including the vision and mission, organizational structure and staffing, services, evaluation criteria, marketing strategies, client processes, a budget, incubator evaluation criteria, and a development schedule. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with nationalmore » security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland. The NSTI is operated and managed by the Arrowhead Center, responsible for leading the economic development mission of New Mexico State University (NMSU). The Arrowhead Center will recruit business with applications for national security technologies recruited for the NSTI program. The Arrowhead Center and its strategic partners will provide business incubation services, including hands-on mentoring in general business matters, marketing, proposal writing, management, accounting, and finance. Additionally, networking opportunities and technology development assistance will be provided.« less

  8. Double wall versus single wall incubator for reducing heat loss in very low birth weight infants in incubators.

    PubMed

    Laroia, N; Phelps, D L; Roy, J

    2007-04-18

    Studies have shown improved survival of newborn infants maintained in the thermoneutral range. The concept of an incubator with additional insulation, a double plexiglass wall, is appealing for very low birth weight infants as it may help to provide a thermoneutral environment. To assess the effects of double walled incubator versus a single wall incubator on insensible water loss, rate of oxygen consumption, episodes of hypothermia, time to regain birth weight, duration of hospitalization and infant mortality in premature infants. The standard search strategy of the Cochrane Neonatal Review Group was used. This included searches of electronic databases: Oxford Database of Perinatal Trials, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2006), MEDLINE (1966 - 2006), EMBASE, previous reviews including cross references, abstracts, conference and symposia proceedings, expert informants in all published languages, and CINAHL (1982 - 2006). Only studies using random or quasi-random methods of allocation were considered for this review. Eligible studies assessed at least one of the outcome variables identified as important to this topic. Independent data extraction and quality assessment of included trials was conducted by the review authors. Data were analyzed using generic inverse variance methodology and weighted mean difference (WMD). Results are presented with 95% confidence intervals. Meta-analysis was undertaken using a fixed effect model. Three studies met the criteria. Four other studies were excluded, as they did not compare double versus single wall incubators (details of the studies are given in the included and excluded studies section). Double wall incubators have the advantage of decreasing heat loss, decreasing heat production and decreasing radiant heat loss when compared to single wall incubators. There is also the advantage of reduced oxygen consumption. A minimal increase in conductive heat loss was noted when

  9. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens.

    PubMed

    Loyau, T; Collin, A; Yenisey, C; Crochet, S; Siegel, P B; Akşit, M; Yalçin, S

    2014-08-01

    Cyclically cold incubation temperatures have been suggested as a means to improve resistance of broiler chickens to ascites; however, the underlying mechanisms are not known. Nine hundred eggs obtained from 48 wk Ross broiler breeders were randomly assigned to 2 incubation treatments: control I eggs were incubated at 37.6°C throughout, whereas for cold I eggs the incubation temperature was reduced by 1°C for 6 h daily from 10 to 18 d of incubation. Thereafter, chickens were reared at standard temperatures or under cold exposure that was associated or not with a postnatal cold acclimation at d 5 posthatch. At hatch, hepatic catalase activity and malondialdehyde content were measured. Serum thyroid hormone and triglyceride concentrations, and muscle expression of several genes involved in the regulation of energy metabolism and oxidative stress were also measured at hatch and 5 and 25 d posthatch. Cold incubation induced modifications in antioxidant pathways with higher catalase activity, but lower expression of avian uncoupling protein 3 at hatch. However, long-term enhancement in the expression of avian uncoupling protein 3 was observed, probably caused by an increase in the expression of the transcription factor peroxisome proliferator activated receptor-γ coactivator-1α. These effects were not systematically associated with an increase in serum triiodothyronine concentrations that were observed only in chickens exposed to both cold incubation and later acclimation at 5 d with cold rearing. Our results suggest that these conditions of cyclically cold incubation resulted in the long-term in changes in antioxidant pathways and energy metabolism, which could enhance the health of chickens reared under cold conditions. © Poultry Science Association Inc.

  10. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  11. Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development.

    PubMed

    Erickson, Gregory M; Zelenitsky, Darla K; Kay, David Ian; Norell, Mark A

    2017-01-17

    Birds stand out from other egg-laying amniotes by producing relatively small numbers of large eggs with very short incubation periods (average 11-85 d). This aspect promotes high survivorship by limiting exposure to predation and environmental perturbation, allows for larger more fit young, and facilitates rapid attainment of adult size. Birds are living dinosaurs; their rapid development has been considered to reflect the primitive dinosaurian condition. Here, nonavian dinosaurian incubation periods in both small and large ornithischian taxa are empirically determined through growth-line counts in embryonic teeth. Our results show unexpectedly slow incubation (2.8 and 5.8 mo) like those of outgroup reptiles. Developmental and physiological constraints would have rendered tooth formation and incubation inherently slow in other dinosaur lineages and basal birds. The capacity to determine incubation periods in extinct egg-laying amniotes has implications for dinosaurian embryology, life history strategies, and survivorship across the Cretaceous-Paleogene mass extinction event.

  12. Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development

    PubMed Central

    Erickson, Gregory M.; Zelenitsky, Darla K.; Kay, David Ian; Norell, Mark A.

    2017-01-01

    Birds stand out from other egg-laying amniotes by producing relatively small numbers of large eggs with very short incubation periods (average 11–85 d). This aspect promotes high survivorship by limiting exposure to predation and environmental perturbation, allows for larger more fit young, and facilitates rapid attainment of adult size. Birds are living dinosaurs; their rapid development has been considered to reflect the primitive dinosaurian condition. Here, nonavian dinosaurian incubation periods in both small and large ornithischian taxa are empirically determined through growth-line counts in embryonic teeth. Our results show unexpectedly slow incubation (2.8 and 5.8 mo) like those of outgroup reptiles. Developmental and physiological constraints would have rendered tooth formation and incubation inherently slow in other dinosaur lineages and basal birds. The capacity to determine incubation periods in extinct egg-laying amniotes has implications for dinosaurian embryology, life history strategies, and survivorship across the Cretaceous–Paleogene mass extinction event. PMID:28049837

  13. Curriculum R&D: Incubating Change in Higher Education

    ERIC Educational Resources Information Center

    Sunderman, Judith Ann

    2011-01-01

    This mixed methods study examined incubation as a strategy for curricular change. The purpose was to examine the characteristics and effectiveness of curriculum incubation from a faculty perspective. The conceptual frame for this study proposed combining a grounded theory of incubation with concepts from organizational creativity to explain…

  14. Short communication: Use of a mixture of sodium nitrite, sodium benzoate, and potassium sorbate in aerobically challenged silages.

    PubMed

    Knicky, Martin; Spörndly, Rolf

    2015-08-01

    Aerobic instability is still a common problem with many types of silages, particularly well-fermented silages. This study evaluated the effect of adding an additive mixture based on sodium nitrite, sodium benzoate, and potassium sorbate to a variety of crop materials on fermentation quality and aerobic stability of silages. Ensiling conditions were challenged by using a low packing density (104±4.3kg of dry matter/m(3)) of forage and allowing air ingression into silos (at 14 and 7 d before the end of the storage, for 8 h per event). Additive-treated silages were found to have significantly lower pH and reduced formation of ammonia-N, 2.3-butanediol, and ethanol compared with untreated control silages. Yeast growth was significantly reduced by additive treatment in comparison with untreated control silage. Consequently, additive-treated silages were considerably more aerobically stable (6.7 d) than untreated control silages (0.5 d). Overall, adding 5mL/kg of fresh crop of the additive based on sodium nitrite, sodium benzoate, and potassium sorbate reduced undesirable microorganisms in silages and thereby provided suitable ensiling conditions and prolonged aerobic stability, even under air-challenged laboratory ensiling conditions. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Aerobic exercise deconditioning and countermeasures during bed rest.

    PubMed

    Lee, Stuart M C; Moore, Alan D; Everett, Meghan E; Stenger, Michael B; Platts, Steven H

    2010-01-01

    Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space.

  16. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  17. Factors related to the artificial incubation of wild bird eggs

    USGS Publications Warehouse

    Klimstra, Jon D.; Stebbins, Katherine R.; Heinz, Gary H.; Hoffman, David J.; Kondrad, Shannon R.

    2009-01-01

    Attempts to artificially incubate the eggs of wild birds have failed in many respects in duplicating the success of natural incubation. As part of a larger study we had the opportunity to artificially incubate the eggs of 22 species of birds (three domestic and 19 wild species). We report the successes and failures associated with artificial incubation of these eggs. Moisture loss varied widely, not only for Orders of birds but for similar species within an Order. Overall hatching success and success through to 90% of incubation varied for different Orders and for similar species. Humidity and temperature are critical elements in the artificial incubation of wild bird eggs and must be closely monitored throughout incubation to ensure the best possible chance of hatching. Even when these elements are addressed, artificial incubation still can not duplicate the success of incubation by the parent.

  18. Neutral temperature range in incubators: performance of equipment in current use and new developments.

    PubMed

    Libert, J P; Bach, V; Farges, G

    1997-01-01

    Low-birth-weight neonates should be nursed at thermoneutrality inside incubators. Thermoneutrality control is essential to enhance body growth and to reduce neonatal illnesses and mortality. Guidelines have been published to provide the thermoneutral range, but the recommendations did not always take into account all ambient and physiological parameters influencing thermoneutrality. In most marketed incubators, the heat supply is controlled through convective air flow (closed incubators) or through radiant power density (radiant warmer beds). The heating unit (on/off cycling or adjustable proportional control) is activated by an error signal calculated from the difference between a controlled temperature and a reference value preset by the clinician. The controlled variable can be either the incubator air or the skin temperature of the anterior abdominal region of the neonate. The neonate's size, thermal properties of the mattress and of incubator walls, air temperature and humidity, air velocity, incubator wall temperatures all influence the heat exchanges between the neonate and the surroundings, and, consequently, modify the obtention of thermoneutrality. Moreover, studies of the physiological mechanisms by which the neonate regulates body heat storage suggest that metabolic rate, behavior, vigilance level, nursing care, and heater control processes should also be taken into account. Little attention has been paid to these factors, and incubator performances are often disappointing. This article reviews the different factors that modify thermoneutral condition. An attempt is made to suggest new ways to design equipment incorporating these factors in algorithms controlling heater processes in order to reach the optimal thermal environment in which the neonate should be nursed.

  19. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  20. Effect of aerobic exercise intervention on DDT degradation and oxidative stress in rats.

    PubMed

    Li, Kefeng; Zhu, Xiaohua; Wang, Yuzhan; Zheng, Shuqian; Dong, Guijun

    2017-03-01

    Dichlorodiphenyltrichloroethane (DDT) reportedly causes extensively acute or chronic effects to human health. Exercise can generate positive stress. We evaluated the effect of aerobic exercise on DDT degradation and oxidative stress. Male Wistar rats were randomly assigned into control (C), DDT without exercise training (D), and DDT plus exercise training (DE) groups. The rats were treated as follows: DDT exposure to D and DE groups at the first 2 weeks; aerobic exercise treatment only to the DE group from the 1st day until the rats are killed. DDT levels in excrements, muscle, liver, serum, and hearts were analyzed. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Aerobic exercise accelerated the degradation of DDT primarily to DDE due to better oxygen availability and aerobic condition and promoted the degradation of DDT. Cumulative oxidative damage of DDT and exercise led to significant decrease of SOD level. Exercise resulted in consistent increase in SOD activity. Aerobic exercise enhanced activities of CAT and GSH-Px and promoted MDA scavenging. Results suggested that exercise can accelerate adaptive responses to oxidative stress and activate antioxidant enzymes activities. Exercise can also facilitate the reduction of DDT-induced oxidative damage and promoted DDT degradation. This study strongly implicated the positive effect of exercise training on DDT-induced liver oxidative stress.

  1. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer

    NASA Astrophysics Data System (ADS)

    Patterson, B. M.; Shackleton, M.; Furness, A. J.; Bekele, E.; Pearce, J.; Linge, K. L.; Busetti, F.; Spadek, T.; Toze, S.

    2011-03-01

    The fate of nine trace organic compounds was evaluated during a 12 month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life < 1 day). Lag-times for the start of degradation of these compounds ranged from < 15 to 30 days. While iodipamide was persistent under aerobic conditions, artificial reductive geochemical conditions promoted via the addition of ethanol, resulted in rapid degradation (half life < 1 days). Pharmaceuticals (carbamazepine and oxazepam) and disinfection by-products (NDMA and NMOR) did not degrade under either aerobic or anaerobic aquifer geochemical conditions (half life > 50 days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required.

  2. Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator

    NASA Astrophysics Data System (ADS)

    Shafiudin, S.; Kholis, N.

    2018-04-01

    Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).

  3. Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge.

    PubMed

    Mihciokur, Hamdi; Oguz, Merve

    2016-09-01

    This study investigates biosorption of Oxytetracycline, a broad-spectrum antibiotic, using aerobic granular sludge as an adsorbent in aqueous solutions. A sequencing batch reactor fed by a synthetic wastewater was operated to create aerobic granular sludge. Primarily, the pore structure and surface area of granular sludge, the chemical structure and the molecular sizes of the pharmaceutical, operating conditions, such as pH, stirring rate, initial concentration of Oxytetracycline, during adsorption process was verified. Subsequently, thermodynamic and kinetic aspects of the adsorption were examined and adsorption isotherm studies were carried out. It was shown that the aerobic granular sludge was a good alternative for biosorption of this pharmaceutical. The pharmaceutical was adsorbed better at pH values of 6-8. The adsorption efficiency increased with rising ionic strength. Also, it was seen that the adsorption process was an exothermic process in terms of thermodynamics. The adsorption can be well explained by Langmuir isotherm model. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Membrane thickening aerobic digestion processes.

    PubMed

    Woo, Bryen

    2014-01-01

    Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.

  5. Occurrence and Fate of Trace Contaminants during Aerobic and Anaerobic Sludge Digestion and Dewatering.

    PubMed

    Guerra, Paula; Kleywegt, Sonya; Payne, Michael; Svoboda, M Lewina; Lee, Hing-Biu; Reiner, Eric; Kolic, Terry; Metcalfe, Chris; Smyth, Shirley Anne

    2015-07-01

    Digestion of municipal wastewater biosolids is a necessary prerequisite to their beneficial use in land application, in order to protect public health and the receiving environment. In this study, 13 pharmaceuticals and personal care products (PPCPs), 11 musks, and 17 polybrominated diphenyl ethers were analyzed in 84 samples including primary sludge, waste activated sludge, digested biosolids, dewatered biosolids, and dewatering centrate or filtrate collected from five wastewater treatment plants with aerobic or anaerobic digestion. Aerobic digestion processes were sampled during both warm and cold temperatures to analyze seasonal differences. Among the studied compounds, triclosan, triclocarban, galaxolide, and BDE-209 were the substances most frequently detected under different treatment processes at levels up to 30,000 ng/g dry weight. Comparing aerobic and anaerobic digestion, it was observed that the levels of certain PPCPs and musks were significantly higher in anaerobically digested biosolids, relative to the residues from aerobic digestion. Therefore, aerobic digestion has the potential advantage of reducing levels of PPCPs and musks. On the other hand, anaerobic digestion has the advantage of recovering energy from the biosolids in the form of combustible gases while retaining the nutrient and soil conditioning value of this resource. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Humidity control of an incubator using the microcontroller-based active humidifier system employing an ultrasonic nebulizer.

    PubMed

    Güler, I; Burunkaya, M

    2002-01-01

    Relative humidity levels of an incubator were measured and controlled. An ultrasonic nebulizer system as an active humidifier was used to humidify the incubator environment. An integrated circuit-type humidity sensor was used to measure the humidity level of the incubator environment. Measurement and control processes were achieved by a PIC microcontroller. The high-performance and high-speed PIC provided the flexibility of the system. The developed system can be used effectively for the intensive care of newborns and/or premature babies. Since the humidifier generates an aerosol in ambient conditions, it is possible to provide the high relative humidity level for therapeutic and diagnostic purposes in medicine.

  7. Association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults.

    PubMed

    Hwang, Jungyun; Kim, Kiyoung; Brothers, R Matthew; Castelli, Darla M; Gonzalez-Lima, F

    2018-05-01

    Studies of the effects of physical activity on cognition suggest that aerobic fitness can improve cognitive abilities. However, the physiological mechanisms for the cognitive benefit of aerobic fitness are less well understood. We examined the association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults. Participants aged 18-29 years underwent measurements of cerebral vasomotor reactivity (CVMR) in response to rebreathing-induced hypercapnia, maximal oxygen uptake (VO 2 max) during cycle ergometry to voluntary exhaustion, and simple- and complex-neurocognitive assessments at rest. Ten subjects were identified as having low-aerobic fitness (LF < 15th fitness percentile), and twelve subjects were identified as having high-aerobic fitness (HF > 80th fitness percentile). There were no LF versus HF group differences in cerebrovascular hemodynamics during the baseline condition. Changes in middle cerebral artery blood velocity and CVMR during hypercapnia were elevated more in the HF than the LF group. Compared to the LF, the HF performed better on a complex-cognitive task assessing fluid reasoning, but not on simple attentional abilities. Statistical modeling showed that measures of VO 2 max, CVMR, and fluid reasoning were positively inter-correlated. The relationship between VO 2 max and fluid reasoning, however, did not appear to be reliably mediated by CVMR. In conclusion, a high capacity for maximal oxygen uptake among healthy, young adults was associated with greater CVMR and better fluid reasoning, implying that high-aerobic fitness may promote cerebrovascular and cognitive functioning abilities.

  8. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes

    PubMed Central

    Sheng, Shixiong; Liu, Bo; Hou, Xiangyu; Wu, Bing; Yao, Fang; Ding, Xinchun; Huang, Lin

    2017-01-01

    This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7) to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH3-N, SO42− together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater. PMID:29278390

  9. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes.

    PubMed

    Sheng, Shixiong; Liu, Bo; Hou, Xiangyu; Wu, Bing; Yao, Fang; Ding, Xinchun; Huang, Lin

    2017-12-26

    This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7) to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH₃-N, SO₄ 2- together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater.

  10. Optimal culture incubation time in orthopedic device-associated infections: a retrospective analysis of prolonged 14-day incubation.

    PubMed

    Schwotzer, Nora; Wahl, Peter; Fracheboud, Dominique; Gautier, Emanuel; Chuard, Christian

    2014-01-01

    Accurate diagnosis of orthopedic device-associated infections can be challenging. Culture of tissue biopsy specimens is often considered the gold standard; however, there is currently no consensus on the ideal incubation time for specimens. The aim of our study was to assess the yield of a 14-day incubation protocol for tissue biopsy specimens from revision surgery (joint replacements and internal fixation devices) in a general orthopedic and trauma surgery setting. Medical records were reviewed retrospectively in order to identify cases of infection according to predefined diagnostic criteria. From August 2009 to March 2012, 499 tissue biopsy specimens were sampled from 117 cases. In 70 cases (59.8%), at least one sample showed microbiological growth. Among them, 58 cases (82.9%) were considered infections and 12 cases (17.1%) were classified as contaminations. The median time to positivity in the cases of infection was 1 day (range, 1 to 10 days), compared to 6 days (range, 1 to 11 days) in the cases of contamination (P < 0.001). Fifty-six (96.6%) of the infection cases were diagnosed within 7 days of incubation. In conclusion, the results of our study show that the incubation of tissue biopsy specimens beyond 7 days is not productive in a general orthopedic and trauma surgery setting. Prolonged 14-day incubation might be of interest in particular situations, however, in which the prevalence of slow-growing microorganisms and anaerobes is higher.

  11. Comparison of Leachate Quality from Aerobic and Anaerobic Municipal Solid Waste Bioreactors

    NASA Astrophysics Data System (ADS)

    Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.

    2002-12-01

    Municipal solid waste landfills are becoming a drain on the resources of local municipalities as the requirements for stabilization and containment become increasingly stringent. Current regulations limit the moisture in the landfill to minimize leachate production and lower the potential for release of leachate to the environment. Recent research has shown that addition and recycling of moisture in the waste optimizes the biodegradation of stabilization and also provides a means for leachate treatment. This study compares the characteristics of leachate produced from aerobic and anaerobic laboratory bioreactors, and leachate collected from a full-scale anaerobic bioreactor. The laboratory reactors consisted of 200-liter tanks filled with fresh waste materials with the following conditions: (a) aerobic (air injection with leachate recirculation), (b) anaerobic (leachate recirculation). The leachate from the reactors was monitored for metals, nutrients, organic carbon, and microbiological activity for up to 500 days. Leachate from the aerobic tank had significantly lower concentrations of all potential contaminants, both organic and metal, after only a few weeks of operation. Metals leaching was low throughout the test period for the aerobic tanks, and decreased over time for the anaerobic tanks. Organic carbon as measured by BOD, COD, TOC, and COD were an order of magnitude higher in the leachate from the anaerobic system. Microbiological assessment by lipid analysis, enzyme activity assays, and cell counts showed high biomass and diversity in both the aerobic and anaerobic bioreactors, with higher activity in the anaerobic leachate. Results from the full-scale anaerobic bioreactor were not significantly different from those of the laboratory anaerobic bioreactor. The reduction in noxious odors was a significant advantage of the aerobic system. These results suggest that aerobic management of landfills could reduce or eliminate the need for leachate treatment

  12. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.

    PubMed

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R; Cook, Gregory M

    2014-08-05

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments.

  13. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval, and…

  14. Effect of post-thaw incubation on sperm kinematics and acrosomal integrity of ram spermatozoa cryopreserved in medium-sized French straws.

    PubMed

    Bag, Sadhan; Joshi, Anil; Naqvi, S M K; Mittal, J P

    2004-08-01

    The objectives were to assess the effect of post-thaw in vitro incubation on motion characteristics and acrosomal integrity of ram spermatozoa of native Malpura and Bharat Merino breeds maintained under a semi-arid tropical environment. Good quality semen samples of both breeds were diluted, packaged in medium-sized straws, and frozen under controlled conditions. Straws were thawed at 60 degrees C for 10s and thawed samples were incubated at 37 degrees C for 4h. Post-thaw motion characteristics and acrosomal integrity of incubated spermatozoa were assessed (by computer-aided semen analysis and Giemsa staining, respectively) just prior to incubation and at hourly intervals thereafter. There was a significant effect of incubation time on motility characteristics and the proportion of spermatozoa with normal acrosomes; 81.4% (arcsin transformed value, 65.2) of spermatozoa were motile at the start of incubation, with 47.9% (arcsin transformed value, 44.4) motile after 4h. At the corresponding times, there were normal acrosomes in 65.8 (arcsin transformed value, 54.8) and 55.7% (arcsin transformed value, 48.9) of spermatozoa, respectively. The percentage straightness of spermatozoa varied during incubation (P < 0.01). However, there was no significant change in percentage linearity, curvilinear velocity, average path velocity, straight line velocity, lateral head displacement, and beat cross frequency of spermatozoa during incubation. There were no breed variations in any motility parameters during incubation, except percentage straightness (P < 0.05), lateral head displacement (P < 0.05) and beat cross frequency (P < 0.01). That sperm motility and acrosomal morphology were very acceptable immediately post-thaw and after 4h of incubation indicated the efficacy of cryopreserving ram spermatozoa under controlled conditions in medium-sized straws.

  15. Patients' perspectives on aerobic exercise early after stroke.

    PubMed

    Prout, Erik C; Mansfield, Avril; McIlroy, William E; Brooks, Dina

    2017-04-01

    To describe patient perspectives of aerobic exercise during inpatient stroke rehabilitation, including their self-efficacy and beliefs towards exercise, as well as their perceptions of barriers. A survey was conducted at three Canadian rehabilitation centres to evaluate individuals' (N = 33) self-efficacy and outcome expectations for exercise. In addition, patient perceptions of other people recovering from stroke, social support, and aerobic exercise as part of rehabilitation were assessed. Thirty-two people completed the survey. Of these, 97% were willing to participate in aerobic exercise 5.9 ± 8.8 days after admission to inpatient rehabilitation. While outcome expectations for exercise were high, participants reported lower self-efficacy for exercise. Patients reported barriers related to the ability to perform exercise (other health problems (i.e., arthritis), not being able to follow instructions and physical impairments) more often than safety concerns (fear of falling). The lack of support from a spouse and family were commonly identified, as was a lack of information on how to perform aerobic exercise. Patients with stroke are willing to participate in aerobic exercise within a week after admission to inpatient rehabilitation. However, they perceive a lack of ability to perform aerobic exercise, social support from family and information as barriers. Implications for rehabilitation Aerobic exercise is recognized as part of comprehensive stroke rehabilitation. There is a need to better understand patient perspectives to develop and implement more effective interventions early after stroke. Patients lack confidence in their ability to overcome barriers early after stroke. Patients are concerned with their ability to perform exercise, fall risk, lack of support from a spouse and family, and limited information on aerobic exercise. There is a need to reinforce education with practical experience in structured aerobic exercise programs that show

  16. Influence of thermal stimulation during the late phase of incubation on hatching results and post-hatch broiler performance under commercial conditions.

    PubMed

    Elmehdawi, A S; Hall, M A; Skewes, P A; Wicker, D L; Maurice, D V

    2016-12-01

    Two experiments, which differed in breeder age, strain and season, were conducted to study the influence of low-intensity, short-duration thermal stimuli during the late phase of incubation on hatchability and performance. The first experiment conducted in April-June used eggs from Cobb × Ross broiler breeders at 35-41 weeks of age and the second experiment performed in February-April used eggs from Hubbard × Cobb broiler breeders at 49-53 weeks of age. Eggs in the test group had the same physical environment as eggs in the control group except that incubation temperature was increased by 1˚C for 2 h/d above the control group from 18 to 20 d of incubation (DI). The results demonstrated that thermal stimulation of 1˚C for 2 h/d above control incubation temperature during 18-21DI did not have any adverse effects on hatch and post-hatch performance of broilers. In both experiments, treatment did not significantly alter the secondary sex ratio in hatched chickens, but hatch residue showed that the proportion of unhatched male embryos was significantly lower in the test groups than in the control groups. In the first experiment, thermal stimulation improved feed conversion by 1.82% compared with the control.

  17. Childhood leukemia and magnetic fields in infant incubators.

    PubMed

    Söderberg, Karin C; Naumburg, Estelle; Anger, Gert; Cnattingius, Sven; Ekbom, Anders; Feychting, Maria

    2002-01-01

    In studies of magnetic field exposure and childhood leukemia, power lines and other electrical installations close to the children's homes constitute the most extensively studied source of exposure. We conducted a study to assess whether exposure to magnetic fields in infant incubators is associated with an increased leukemia risk. We identified all children with leukemia born in Sweden between 1973 and 1989 from the national Cancer Registry and selected at random one control per case, individually matched by sex and time of birth, from the study base. We retrieved information about treatment in infant incubators from medical records. We made measurements of the magnetic fields inside the incubators for each incubator model kept by the hospitals. Exposure assessment was based on measurements of the magnetic field level inside the incubator, as well as on the length of treatment. For acute lymphoblastic leukemia, the risk estimates were close to unity for all exposure definitions. For acute myeloid leukemia, we found a slightly elevated risk, but with wide confidence intervals and with no indication of dose response. Overall, our results give little evidence that exposure to magnetic fields inside infant incubators is associated with an increased risk of childhood leukemia.

  18. Neonatal incubators: a toxic sound environment for the preterm infant?*.

    PubMed

    Marik, Paul E; Fuller, Christopher; Levitov, Alexander; Moll, Elizabeth

    2012-11-01

    High sound pressure levels may be harmful to the maturing newborn. Current guidelines suggest that the sound pressure levels within a neonatal intensive care unit should not exceed 45 dB(A). It is likely that environmental noise as well as the noise generated by the incubator fan and respiratory equipment may contribute to the total sound pressure levels. Knowledge of the contribution of each component and source is important to develop effective strategies to reduce noise within the incubator. The objectives of this study were to determine the sound levels, sound spectra, and major sources of sound within a modern neonatal incubator (Giraffe Omnibed; GE Healthcare, Helsinki, Finland) using a sound simulation study to replicate the conditions of a preterm infant undergoing high-frequency jet ventilation (Life Pulse, Bunnell, UT). Using advanced sound data acquisition and signal processing equipment, we measured and analyzed the sound level at a dummy infant's ear and at the head level outside the enclosure. The sound data time histories were digitally acquired and processed using a digital Fast Fourier Transform algorithm to provide spectra of the sound and cumulative sound pressure levels (dBA). The simulation was done with the incubator cooling fan and ventilator switched on or off. In addition, tests were carried out with the enclosure sides closed and hood down and then with the enclosure sides open and the hood up to determine the importance of interior incubator reverberance on the interior sound levels With all the equipment off and the hood down, the sound pressure levels were 53 dB(A) inside the incubator. The sound pressure levels increased to 68 dB(A) with all equipment switched on (approximately 10 times louder than recommended). The sound intensity was 6.0 × 10(-8) watts/m(2); this sound level is roughly comparable with that generated by a kitchen exhaust fan on high. Turning the ventilator off reduced the overall sound pressure levels to 64 dB(A) and

  19. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.

    PubMed

    Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun

    2012-11-16

    An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.

  20. Performance of Healthy Braced Participants During Aerobic and Anaerobic Capacity Tasks

    PubMed Central

    Rishiraj, Neetu; Taunton, Jack E.; Niven, Brian; Lloyd-Smith, Robert; Regan, William; Woollard, Robert

    2011-01-01

    Context: Knee braces were introduced in sports approximately 30 years ago. However, the effects of a functional knee brace (FKB) on aerobic and anaerobic performance after fatigue are unknown. Objective: To investigate whether FKB use in noninjured participants hindered performance during aerobic (Léger beep test) and anaerobic (repeated high-intensity shuttle test [RHIST]) tasks. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty-seven healthy male provincial and national basketball and field hockey athletes (age = 19.4 ± 3.0 years, range, 17–26 years; height = 182.6 ± 6.8 cm, range, 168–196 cm; mass = 80.0 ± 9.1 kg, range, 66–108 kg). Interventions : Each participant was provided a custom-fitted FKB and performed 5 nonbraced (NBR) testing sessions over 3 days, followed by 5 braced (BR) testing sessions over 3 days, for a total of 17.5 hours of testing per condition. During each testing session, participants performed 1 trial of the Léger beep test and 1 trial of the RHIST in each condition. Main Outcome Measure(s): Predicted maximal oxygen consumption (V˙o2max) and time performance measures were recorded for each NBR and BR trial. Results: Initial performance levels were lower for BR than NBR for both the Léger beep test (BR = 44.3 mL/kg/min, NBR = 47.3 mL/kg/min; F1,26 = 8.726; P = .007) and the RHIST (BR = 16.5 seconds, NBR = 16.2 seconds; F1,26 = 13.98, P = .001). However, with continued FKB use, the aerobic performance measure remained higher for only the first 2 BR testing sessions (NBR = 46.9 mL/kg/min, BR = 42.4 mL/kg/min; F3.0,79.8 = 4.95, P = .003). For the anaerobic test, no performance difference was noted between the testing conditions (NBR = 16.2 seconds, BR = 16.4 seconds; P = .7), whereas fatigue levels were lower during BR testing sessions (NBR = 33%, BR = 31%). After 14.0 hours of FKB use, performance levels were almost equal between the testing conditions (NBR = 47.6 mL/kg/min, BR = 46.1 m

  1. A portable freshwater closed-system fish egg incubation system

    USGS Publications Warehouse

    Sutherland, Jenny L.; Manny, Bruce A.; Kennedy, Gregory W.; Roseman, Edward F.; Allen, Jeffrey D.; Black, M. Glen

    2014-01-01

    To identify fish eggs collected in the field to species, a portable closed-system fish egg incubation system was designed and used to incubate and hatch the eggs in the laboratory. The system is portable, small in scale (2.54 × 1.52 × 2.03 m), and affordable, with the approximate cost of the system being US$8,300 (2012). The main tank is 678 L and holds a battery of up to 21 (egg) incubation jars. The system includes three independent water pumping systems to (1) provide aerated water to hatching jars, (2) filter and sterilize incubation water, and (3) provide temperature-controlled water in the main tank bath and the incubation jars. The system was successfully used to incubate freshwater fish eggs to raise resulting larvae to the post-yolk-sac stage for three seasons (spring 2012, spring 2013, and fall 2013) over two consecutive years, at two different locations, enabling us to identify fish eggs to species by providing identifiable fish larvae from incubated fish eggs.

  2. Food Supplementation Fails to Reveal a Trade-Off between Incubation and Self-Maintenance in Female House Wrens

    PubMed Central

    Lothery, Cassie J.; Thompson, Charles F.; Lawler, Megan L.; Sakaluk, Scott K.

    2014-01-01

    Incubating birds must allocate their time and energy between maintaining egg temperature and obtaining enough food to meet their own metabolic demands. We tested the hypothesis that female house wrens (Troglodytes aedon) face a trade-off between incubation and self-maintenance by providing females with supplemental food during incubation. We predicted that food supplementation would increase the amount of time females devoted to incubating their eggs, lower their baseline plasma corticosterone levels (a measure of chronic stress), and increase their body mass, haematocrit (a measure of anaemia), and reproductive success relative to control females. As predicted, food-supplemented females spent a greater proportion of time incubating their eggs than control females. Contrary to expectation, however, there was no evidence that food supplementation significantly influenced female baseline plasma corticosterone levels, body mass, haematocrit, or reproductive success. However, females with high levels of corticosterone at the beginning of incubation were more likely to abandon their nesting attempt after capture than females with low levels. Corticosterone significantly increased between the early incubation and early nestling stages of the breeding cycle in all females. These results suggest that although food supplementation results in a modest increase in incubation effort, it does not lead to significantly lower levels of chronic stress as reflected in lower baseline corticosterone levels. We conclude that female house wrens that begin the incubation period with low levels of plasma corticosterone can easily meet their own nutritional needs while incubating their eggs, and that any trade-off between incubation and self-feeding does not influence female reproductive success under the conditions at the time of our study. PMID:25184281

  3. Aerobic Exercise Improves Mood, Cognition, and Language Function in Parkinson's Disease: Results of a Controlled Study.

    PubMed

    Altmann, Lori J P; Stegemöller, Elizabeth; Hazamy, Audrey A; Wilson, Jonathan P; Bowers, Dawn; Okun, Michael S; Hass, Chris J

    2016-10-01

    Parkinson's disease (PD) results in a range of non-motor deficits that can affect mood, cognition, and language, and many of these issues are unresponsive to pharmacological intervention. Aerobic exercise can improve mood and cognition in healthy older adults, although only a few studies have examined exercise effects on these domains in PD. The current study assesses the effects of aerobic exercise on aspects of cognition, mood, and language production in people with PD. This study compares the effects of aerobic exercise to stretch-balance training and a no-contact control group in participants with idiopathic PD. The aerobic and stretch-balance groups trained three times a week for 16 weeks, while controls continued normal activities. Outcome measures included disease severity, mood, cognition (speed of processing, memory, and executive function), and language production (picture descriptions). Cognition and language were assessed in single and dual task conditions. Depressive symptoms increased only in the control group (p<.02). Executive function improved in the aerobic exercise group only in the single task (p=.007) and declined in controls in the dual task. Completeness of picture descriptions improved significantly more in the aerobic group than in the stretch-balance group (p<.02). Aerobic exercise is a viable intervention for PD that can be protective against increased depressive symptoms, and can improve several non-motor domains, including executive dysfunction and related aspects of language production. (JINS, 2016, 22, 878-889).

  4. Studies on the intracellular Ca2+ concentration of thawed dog spermatozoa: influence of Equex from different sources, two thawing diluents and post-thaw incubation in capacitating conditions.

    PubMed

    Peña, A I; López-Lugilde, L; Barrio, M; Becerra, J J; Quintela, L A; Herradón, P G

    2003-02-01

    The addition of 0.5% (v/v) of Equex STM Paste (Nova Chemical Sales, Scituate Inc., MA, USA), whose active ingredient is sodium dodecyl sulphate (SDS), to a Tris-egg yolk extender was demonstrated to improve the longevity of frozen-thawed dog spermatozoa during in vitro incubation at 38 degrees C. The aim of the first experiment was to compare the effects of two SDS-containing compounds, Equex STM Paste and Equex Pasta (Minitüb, Tiefenbach, Germany), when added to a Tris-egg yolk based extender, on the post-thaw longevity of dog spermatozoa, as well as on the intracellular Ca2+ concentration of spermatozoa, during post-thaw incubation at 38 degrees C. The post-thaw sperm survival and longevity, as well as the quality of the sperm movement, were significantly better when using Equex STM Paste. Such prolonged sperm longevity, however, was associated to a higher intracellular Ca2+ concentration in a large subpopulation of the live spermatozoa. A second experiment was aimed to evaluate the effects of sperm dilution immediately post-thaw with a Tris buffer containing glucose or fructose. The two Tris buffers were no different for any of the sperm parameters studied. The aim of a third experiment was to evaluate the sperm longevity, motility patterns and intracellular Ca2+ concentration of cryopreserved dog spermatozoa during post-thaw incubation in capacitating conditions [canine capacitating medium (CCM) with or without 5 microg/ml of heparin]. Heparin had no significant effects on any of the sperm parameters evaluated. During the first 8 h of incubation, the majority of the live spermatozoa had a high intracellular Ca2+ content. However, after 8-10 h of incubation, it had significantly declined. The highest proportion of fast motile sperm, and the highest curvilinear velocity, average path velocity and amplitude of lateral head displacement for the total motile sperm were observed during the 2-4-h incubation period. It was concluded that: (a) the addition of 0.5% (v

  5. Responses of indigenous microorganisms to soil incubation as viewed by transmission electron microscopy of cell thin sections.

    NASA Technical Reports Server (NTRS)

    Bae, h. C.; Casida, L. E., Jr.

    1973-01-01

    Indigenous soil microorganisms were cultivated in their soil habitat with 50% moisture capacity at 30 C for two weeks. Changes in microorganism cells were studied by electron microscopy during incubation, with particular attention to the dormant cell growth and to the ability of cystlike cells to germinate and reencyst. The responses of various cell species to incubation conditions are described and illustrated by photomicrographs.

  6. Utilizing pretreatment and fungal incubation to enhance the nutritional value of canola meal

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the optimal pretreatment and fungal strain to reduce glucosinolates (GLS), fiber, and residual sugars while increasing the nutritional value of canola meal. Submerged incubation conditions were used to evaluate four pretreatment methods (extrusion, hot wa...

  7. Creativity-the unconscious foundations of the incubation period.

    PubMed

    Ritter, Simone M; Dijksterhuis, Ap

    2014-01-01

    Creativity is one of the most important assets we have to navigate through the fast changing world of the 21st century. Anecdotal accounts of creative individuals suggest that oftentimes, creative discoveries result from a process whereby initial conscious thought is followed by a period during which one refrains from task-related conscious thought. For example, one may spend an embarrassing amount of time thinking about a problem when the solution suddenly pops into consciousness while taking a shower. Not only creative individuals but also traditional theories of creativity have put a lot of emphasis on this incubation stage in creative thinking. The aim of the present article is twofold. First, an overview of the domain of incubation and creativity is provided by reviewing and discussing studies on incubation, mind-wandering, and sleep. Second, the causes of incubation effects are discussed. Previously, little attention has been paid to the causes of incubation effects and most findings do not really speak to whether the effects should be explained by unconscious processes or merely by consequences of a period of distraction. In the latter case, there is no need to assume active unconscious processes. The findings discussed in the current article support the idea that it is not merely the absence of conscious thought that drives incubation effects, but that during an incubation period unconscious processes contribute to creative thinking. Finally, practical implications and directions for future research will be discussed.

  8. Creativity—the unconscious foundations of the incubation period

    PubMed Central

    Ritter, Simone M.; Dijksterhuis, Ap

    2014-01-01

    Creativity is one of the most important assets we have to navigate through the fast changing world of the 21st century. Anecdotal accounts of creative individuals suggest that oftentimes, creative discoveries result from a process whereby initial conscious thought is followed by a period during which one refrains from task-related conscious thought. For example, one may spend an embarrassing amount of time thinking about a problem when the solution suddenly pops into consciousness while taking a shower. Not only creative individuals but also traditional theories of creativity have put a lot of emphasis on this incubation stage in creative thinking. The aim of the present article is twofold. First, an overview of the domain of incubation and creativity is provided by reviewing and discussing studies on incubation, mind-wandering, and sleep. Second, the causes of incubation effects are discussed. Previously, little attention has been paid to the causes of incubation effects and most findings do not really speak to whether the effects should be explained by unconscious processes or merely by consequences of a period of distraction. In the latter case, there is no need to assume active unconscious processes. The findings discussed in the current article support the idea that it is not merely the absence of conscious thought that drives incubation effects, but that during an incubation period unconscious processes contribute to creative thinking. Finally, practical implications and directions for future research will be discussed. PMID:24782742

  9. Aligning business strategy of incubator center and tenants

    NASA Astrophysics Data System (ADS)

    Prasetyawan, Yudha; Agustiani, Elly; Jumayla, Sari

    2017-06-01

    Incubator center is developed to help a particular group of small business players to achieve the expected business growth. In this center, business players often called as tenants will get assistances in pertaining with space, professional network, marketing, investment or funding, and training to improve their business capability. There are three types of incubator center, namely universities that help their alumni or business people in their surrounded area, company that supports small business as the corporate social responsibility, and independent organizations that have specialties in the business development. Some might success in increasing the capacity of the tenants, while other can have difficulties to increase the simplest business capability, e.g., to define the production cost to measure the profit. This study was intended to propose a model to align the business strategy between incubator center and its tenants. The sales and profit growth are the main priorities for the tenants together with their business capability and sustainability. The proposed alignment model provides measurement tools that link the motivation of tenants for joining the incubation process with the mission of incubator center. The linkage covered the key performance indicators (KPI), steps to achieve the target and evaluation tools to improve the current handicaps. An experiment on 4 (four) diverse business fields of the tenants of an incubator center was performed to test the model. As a result, the increase of KPI of incubator center will simultaneously yield a higher value of the tenants' sales.

  10. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.

    PubMed

    Reddy, M Venkateswar; Mohan, S Venkata

    2012-01-01

    The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    PubMed

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P < 0.05) total aerobic count in biosurfactant treated samples, as compared to untreated samples on each day (0, 1, 2, 3) of storage. For biosurfactant treated samples the greatest increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage. Copyright © 2011 Elsevier Ltd. All rights

  13. Role of Dorsomedial Striatum Neuronal Ensembles in Incubation of Methamphetamine Craving after Voluntary Abstinence.

    PubMed

    Caprioli, Daniele; Venniro, Marco; Zhang, Michelle; Bossert, Jennifer M; Warren, Brandon L; Hope, Bruce T; Shaham, Yavin

    2017-01-25

    We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral striatum (DLS) and dorsomedial striatum (DMS) in this incubation. We trained rats to self-administer palatable food pellets (6 d, 6 h/d) and methamphetamine (12 d, 6 h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/d) for 19 d. We used in situ hybridization to measure the colabeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization colabeling results, we tested the causal role of DMS D 1 and D 2 family receptors, and DMS neuronal ensembles in "incubated" methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively. Methamphetamine seeking was higher after 21 d of voluntary abstinence than after 1 d (incubation of methamphetamine craving). The incubated response was associated with increased Fos expression in DMS but not in DLS; Fos was colabeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21. Results demonstrate a role of DMS dopamine D 1 and D 2 receptors in the incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation. In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine

  14. Lignin decomposition and microbial community in paddy soils: effects of alternating redox conditions

    NASA Astrophysics Data System (ADS)

    Cerli, Chiara; Liu, Qin; Hanke, Alexander; Kaiser, Klaus; Kalbitz, Karsten

    2013-04-01

    Paddy soils are characterised by interchanging cycles of anaerobic and aerobic conditions. Such fluctuations cause continuous changes in soil solution chemistry as well as in the composition and physiological responses of the microbial community. Temporary deficiency in oxygen creates conditions favourable to facultative or obligates anaerobic bacteria, while aerobic communities can thrive in the period of water absence. These alterations can strongly affect soil processes, in particular organic matter (OM) accumulation and mineralization. In submerged soils, lignin generally constitutes a major portion of the total OM because of hampered degradation under anoxic conditions. The alternating redox cycles resulting from paddy soil management might promote both degradation and preservation of lignin, affecting the overall composition and reactivity of total and dissolved OM. We sampled soils subjected to cycles of anoxic (rice growing period) and oxic (harvest and growth of other crops) conditions since 700 and 2000 years. We incubated suspended Ap material, sampled from the two paddy plus two corresponding non-paddy control soils under oxic and anoxic condition, for 3 months, interrupted by a short period of three weeks (from day 21 to day 43) with reversed redox conditions. At each sampling time (day 2, 21, 42, 63, 84), we determined lignin-derived phenols (by CuO oxidation) as well as phospholipids fatty acids contents and composition. We aimed to highlight changes in lignin decomposition as related to the potential rapid changes in microbial community composition. Since the studied paddy soils had a long history of wet rice cultivation, the microbial community should be well adapted to interchanging oxic and anoxic cycles, therefore fully expressing its activity at both conditions. In non-paddy soil changes in redox conditions caused modification of quantity and composition of the microbial community. On the contrary, in well-established paddy soils the microbial

  15. The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems.

    PubMed

    Quezada, Maribel; Buitrón, Germán; Moreno-Andrade, Iván; Moreno, Gloria; López-Marín, Luz M

    2007-01-01

    The use of fatty acid methyl esters (FAME) as biomarkers to identify groups of microorganisms was studied. A database was constructed using previously published results that identify FAME biomarkers for aerobic, anaerobic and facultatively aerobic bacteria. FAME profiles obtained from pure cultures were utilized to confirm the predicted presence of biomarkers. Principal component analysis demonstrated that the FAME profiles can be used to determine the incidence of these bacterial groups. The presence of aerobic, anaerobic and facultatively aerobic bacteria in the communities, in four bioreactors being used to treat different wastewaters, was investigated by applying FAME biomarkers.

  16. Evaluation of incubation time for dermatophytes cultures.

    PubMed

    Rezusta, Antonio; de la Fuente, Sonia; Gilaberte, Yolanda; Vidal-García, Matxalen; Alcalá, Leticia; López-Calleja, Ana; Ruiz, Maria Angeles; Revillo, Maria José

    2016-07-01

    In general, it is recommended to incubate dermatophytes cultures for a minimum of 4 weeks. Several aspects of routine fungal cultures should be evaluated in order to implement appropriate and necessary changes. The aim of this study was to determine the optimum incubation time for routine dermatophytes cultures, analysing the time to find first fungal growth by visual observation. We recorded the time when the initial growth was detected for all dermatophyte isolates during a 4-year period. A total of 5459 dermatophyte cultures were submitted to our laboratory. From the total cultures, only 16 (1.42%) isolates were recovered over/after 17 days of incubation and only three dermatophyte species were recovered over 17 days. Fourteen isolates belong to Trichophyton rubrum, one isolate to Trichophyton mentagrophytes complex and one isolate to Epidermophyton floccosum. We concluded that an incubation period of 17 days is enough to establish a microbiological diagnosis of dermatophytosis. © 2016 Blackwell Verlag GmbH.

  17. Correlation analysis for the incubation period of prion disease.

    PubMed

    Bae, Se-Eun; Jung, Sunghoon; Kim, Ha-Yeon; Son, Hyeon S

    2012-07-01

    Previous studies have shown that genetic quantitative trait loci (QTL), strain barriers, inoculation dose and inoculation method modulate the incubation period of prion diseases. We examined the relationship between a diverse set of physical, genetic and immunological characteristics and the incubation period of prion disease using correlation analyses. We found that incubation period was highly correlated with brain weight. In addition, mean corpuscular volume and cell size were strongly correlated with incubation period, indicating that the physical magnitude of prion-infected organs or individual cells may be important in determining the incubation period. Given the same prion inoculation dose, animals with a lower brain weight, mean corpuscular volume or cell size may experience more virulent disease, as the effective concentration of abnormal prion, which might regulate the attachment rate of prions to aggregates, is increased with smaller capacity of brains and cells. This is partly consistent with previous theoretical modeling. The strong correlations between incubation period and physical properties of the brain and cells in this study suggest that the mechanism underlying prion disease pathology may be physical, indicating that the incubation process is governed by simple chemical stoichiometry.

  18. Correlation analysis for the incubation period of prion disease

    PubMed Central

    Bae, Se-Eun; Jung, Sunghoon; Kim, Ha-Yeon; Son, Hyeon S.

    2012-01-01

    Previous studies have shown that genetic quantitative trait loci (QTL), strain barriers, inoculation dose and inoculation method modulate the incubation period of prion diseases. We examined the relationship between a diverse set of physical, genetic and immunological characteristics and the incubation period of prion disease using correlation analyses. We found that incubation period was highly correlated with brain weight. In addition, mean corpuscular volume and cell size were strongly correlated with incubation period, indicating that the physical magnitude of prion-infected organs or individual cells may be important in determining the incubation period. Given the same prion inoculation dose, animals with a lower brain weight, mean corpuscular volume or cell size may experience more virulent disease, as the effective concentration of abnormal prion, which might regulate the attachment rate of prions to aggregates, is increased with smaller capacity of brains and cells. This is partly consistent with previous theoretical modeling. The strong correlations between incubation period and physical properties of the brain and cells in this study suggest that the mechanism underlying prion disease pathology may be physical, indicating that the incubation process is governed by simple chemical stoichiometry. PMID:22561168

  19. Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry (FTICR-MS).

    PubMed

    Valle, Juliana; Gonsior, Michael; Harir, Mourad; Enrich-Prast, Alex; Schmitt-Kopplin, Philippe; Bastviken, David; Conrad, Ralf; Hertkorn, Norbert

    2018-02-01

    Dissolved organic matter (DOM) contained in lake sediments is a carbon source for many microbial degradation processes, including aerobic and anaerobic mineralization. During anaerobic degradation, DOM is partially consumed and transformed into new molecules while the greenhouse gases methane (CH 4 ) and carbon dioxide (CO 2 ) are produced. In this study, we used ultrahigh resolution mass spectrometry to trace differences in the composition of solid-phase extractable (PPL resin) pore water DOM (SPE-DOM) isolated from surface sediments of three boreal lakes before and after 40 days of anoxic incubation, with concomitant determination of CH 4 and CO 2 evolution. CH 4 and CO 2 production detected by gas chromatography varied considerably among replicates and accounted for fractions of ∼2-4 × 10 -4 of sedimentary organic carbon for CO 2 and ∼0.8-2.4 × 10 -5 for CH 4 . In contrast, the relative changes of key bulk parameters during incubation, such as relative proportions of molecular series, elemental ratios, average mass and unsaturation, were regularly in the percent range (1-3% for compounds decreasing and 4-10% for compounds increasing), i.e. several orders of magnitude higher than mineralization alone. Computation of the average carbon oxidation state in CHO molecules of lake pore water DOM revealed rather non-selective large scale transformations of organic matter during incubation, with depletion of highly oxidized and highly reduced CHO molecules, and formation of rather non-labile fulvic acid type molecules. In general, proportions of CHO compounds slightly decreased. Nearly saturated CHO and CHOS lipid-like substances declined during incubation: these rather commonplace molecules were less specific indicators of lake sediment alteration than the particular compounds, such as certain oxygenated aromatics and carboxyl-rich alicyclic acids (CRAM) found more abundant after incubation. There was a remarkable general increase in many CHNO compounds during

  20. Estimating the Delay between Host Infection and Disease (Incubation Period) and Assessing Its Significance to the Epidemiology of Plant Diseases

    PubMed Central

    Leclerc, Melen; Doré, Thierry; Gilligan, Christopher A.; Lucas, Philippe; Filipe, João A. N.

    2014-01-01

    Knowledge of the incubation period of infectious diseases (time between host infection and expression of disease symptoms) is crucial to our epidemiological understanding and the design of appropriate prevention and control policies. Plant diseases cause substantial damage to agricultural and arboricultural systems, but there is still very little information about how the incubation period varies within host populations. In this paper, we focus on the incubation period of soilborne plant pathogens, which are difficult to detect as they spread and infect the hosts underground and above-ground symptoms occur considerably later. We conducted experiments on Rhizoctonia solani in sugar beet, as an example patho-system, and used modelling approaches to estimate the incubation period distribution and demonstrate the impact of differing estimations on our epidemiological understanding of plant diseases. We present measurements of the incubation period obtained in field conditions, fit alternative probability models to the data, and show that the incubation period distribution changes with host age. By simulating spatially-explicit epidemiological models with different incubation-period distributions, we study the conditions for a significant time lag between epidemics of cryptic infection and the associated epidemics of symptomatic disease. We examine the sensitivity of this lag to differing distributional assumptions about the incubation period (i.e. exponential versus Gamma). We demonstrate that accurate information about the incubation period distribution of a pathosystem can be critical in assessing the true scale of pathogen invasion behind early disease symptoms in the field; likewise, it can be central to model-based prediction of epidemic risk and evaluation of disease management strategies. Our results highlight that reliance on observation of disease symptoms can cause significant delay in detection of soil-borne pathogen epidemics and mislead practitioners and

  1. Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases.

    PubMed

    Leclerc, Melen; Doré, Thierry; Gilligan, Christopher A; Lucas, Philippe; Filipe, João A N

    2014-01-01

    Knowledge of the incubation period of infectious diseases (time between host infection and expression of disease symptoms) is crucial to our epidemiological understanding and the design of appropriate prevention and control policies. Plant diseases cause substantial damage to agricultural and arboricultural systems, but there is still very little information about how the incubation period varies within host populations. In this paper, we focus on the incubation period of soilborne plant pathogens, which are difficult to detect as they spread and infect the hosts underground and above-ground symptoms occur considerably later. We conducted experiments on Rhizoctonia solani in sugar beet, as an example patho-system, and used modelling approaches to estimate the incubation period distribution and demonstrate the impact of differing estimations on our epidemiological understanding of plant diseases. We present measurements of the incubation period obtained in field conditions, fit alternative probability models to the data, and show that the incubation period distribution changes with host age. By simulating spatially-explicit epidemiological models with different incubation-period distributions, we study the conditions for a significant time lag between epidemics of cryptic infection and the associated epidemics of symptomatic disease. We examine the sensitivity of this lag to differing distributional assumptions about the incubation period (i.e. exponential versus Gamma). We demonstrate that accurate information about the incubation period distribution of a pathosystem can be critical in assessing the true scale of pathogen invasion behind early disease symptoms in the field; likewise, it can be central to model-based prediction of epidemic risk and evaluation of disease management strategies. Our results highlight that reliance on observation of disease symptoms can cause significant delay in detection of soil-borne pathogen epidemics and mislead practitioners and

  2. Aerobic and anaerobic decomposition of Pistia stratiotes leachates from a tropical eutrophic reservoir (Barra Bonita, SP, Brazil).

    PubMed

    Bianchini, I; Silva, R H; Cunha-Santino, M B; Panhota, R S

    2010-08-01

    The present study discussed the kinetic aspects of leachate decomposition from an aquatic macrophyte, Pistia stratiotes L (water lettuce). This species was collected from Barra Bonita Reservoir located in the State of São Paulo (Brazil). Decomposition chambers were prepared with high molecular weight (HMW), low molecular weight (LMW) and integral (INT = HMW + LMW) dissolved organic matter (DOM) diluted with reservoir water. The samples were incubated at 20 degrees C, in darkness and under aerobic or anaerobic conditions. For 79 days, the concentrations of dissolved oxygen (DO) and organic carbon (OC) were measured. For calculating the deoxygenation coefficients (k d) and maximum oxygen consumption (COmax) the concentration of DO was integrated and fitted to a first-order kinetics model, which also applied to the depletion of OC concentrations. The COmax of INT incubations were 4% higher than the sum of HMW and LMW fractions. The deoxygenation coefficients, k d, had the same order of magnitude for all treatments. In relation to carbon decay, regardless of the availability of oxygen, the INT DOM also showed higher mineralisation. These results suggest that the leachate mineralisations are short-term processes; when the fractionation of the leachates occurs, the LMW had organic compounds with more accessibility for heterotrophic metabolism. On the other hand, when compared to INT DOM, the HMW and LMW were less consumed suggesting an interaction of the reactivity of the leachate. Our data suggest that in the Barra Bonita Reservoir the mineralisation of P. stratiotes leachates occurs through two competitive pathways (i.e. mineralisation of the labile compounds and formation of recalcitrant organic resources and their mineralisation) in which the oxygen availability and the molecular mass of DOM can interfere in the rates of reactions.

  3. GENESA as an Aid to Incubation/Imagery.

    ERIC Educational Resources Information Center

    Bruch, Catherine; And Others

    1979-01-01

    The article focuses on the applications of the GENESA model (a life sized model of the geometry of a biological cell) in the enhancement of the creative processes during the stages of incubation, illumination, and verification, with emphasis primarily on the phase of incubation/imagery through potential illumination. (SBH)

  4. High Skin Temperature and Hypohydration Impair Aerobic Performance

    DTIC Science & Technology

    2012-01-01

    hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is...the aerobic performance impairment (-1.5% for each l°C skin temperature). We conclude that hot skin ( high skin blood flow requirements from narrow...associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic

  5. Acute exercise and aerobic fitness influence selective attention during visual search.

    PubMed

    Bullock, Tom; Giesbrecht, Barry

    2014-01-01

    Successful goal directed behavior relies on a human attention system that is flexible and able to adapt to different conditions of physiological stress. However, the effects of physical activity on multiple aspects of selective attention and whether these effects are mediated by aerobic capacity, remains unclear. The aim of the present study was to investigate the effects of a prolonged bout of physical activity on visual search performance and perceptual distraction. Two groups of participants completed a hybrid visual search flanker/response competition task in an initial baseline session and then at 17-min intervals over a 2 h 16 min test period. Participants assigned to the exercise group engaged in steady-state aerobic exercise between completing blocks of the visual task, whereas participants assigned to the control group rested in between blocks. The key result was a correlation between individual differences in aerobic capacity and visual search performance, such that those individuals that were more fit performed the search task more quickly. Critically, this relationship only emerged in the exercise group after the physical activity had begun. The relationship was not present in either group at baseline and never emerged in the control group during the test period, suggesting that under these task demands, aerobic capacity may be an important determinant of visual search performance under physical stress. The results enhance current understanding about the relationship between exercise and cognition, and also inform current models of selective attention.

  6. Acute exercise and aerobic fitness influence selective attention during visual search

    PubMed Central

    Bullock, Tom; Giesbrecht, Barry

    2014-01-01

    Successful goal directed behavior relies on a human attention system that is flexible and able to adapt to different conditions of physiological stress. However, the effects of physical activity on multiple aspects of selective attention and whether these effects are mediated by aerobic capacity, remains unclear. The aim of the present study was to investigate the effects of a prolonged bout of physical activity on visual search performance and perceptual distraction. Two groups of participants completed a hybrid visual search flanker/response competition task in an initial baseline session and then at 17-min intervals over a 2 h 16 min test period. Participants assigned to the exercise group engaged in steady-state aerobic exercise between completing blocks of the visual task, whereas participants assigned to the control group rested in between blocks. The key result was a correlation between individual differences in aerobic capacity and visual search performance, such that those individuals that were more fit performed the search task more quickly. Critically, this relationship only emerged in the exercise group after the physical activity had begun. The relationship was not present in either group at baseline and never emerged in the control group during the test period, suggesting that under these task demands, aerobic capacity may be an important determinant of visual search performance under physical stress. The results enhance current understanding about the relationship between exercise and cognition, and also inform current models of selective attention. PMID:25426094

  7. Aerobic Capacity is Related to Repeated Sprint Ability with Sprint Distances Less Than 40 Meters

    PubMed Central

    SANDERS, GABRIEL J.; TURNER, ZACHARY; BOOS, BRIAN; PEACOCK, COREY A.; PEVELER, WILLARD; LIPPING, ALAR

    2017-01-01

    Research is inconclusive regarding the association between aerobic fitness (objectively measured VO2max) and repeated sprint performance when the sprints are less than 40 meters. Soccer athletes must be able to repeat sprints without significant decreases in speed and strength and conditioning coaches need to better understand if aerobic fitness is related to repeated sprint ability (RSA). Twenty (10 male, 10 female) Division I soccer athletes first completed a graded maximal treadmill test to measure VO2max. Then on a separate day, athletes completed the RSA test. The RSA test consisted of 10, 30-meter sprints which athletes repeated every 30 seconds. There were significant negative correlations (r ≤ −0.69, P < 0.001) between VO2max and all 10-sprint times and average sprint time. More aerobically fit Division I soccer athletes were faster at all time points during the RSA test. Aerobic fitness is associated with faster sprint times during a more anaerobic RSA test when sprint distances are less than 40 meters. PMID:28344734

  8. Multiple Contact Dates and SARS Incubation Periods

    PubMed Central

    2004-01-01

    Many severe acute respiratory syndrome (SARS) patients have multiple possible incubation periods due to multiple contact dates. Multiple contact dates cannot be used in standard statistical analytic techniques, however. I present a simple spreadsheet-based method that uses multiple contact dates to calculate the possible incubation periods of SARS. PMID:15030684

  9. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs.

    PubMed

    Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria

    2017-07-01

    Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.

  10. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.

    PubMed

    Curiel, José Antonio; Salvadó, Zoel; Tronchoni, Jordi; Morales, Pilar; Rodrigues, Alda Joao; Quirós, Manuel; Gonzalez, Ramón

    2016-09-15

    Aerobic fermentation of grape must, leading to respiro-fermentative metabolism of sugars, has been proposed as way of reducing alcohol content in wines. Two factors limit the usefulness of Saccharomyces cerevisiae for this application, the Crabtree effect, and excess volatile acidity under aerobic conditions. This work aimed to explore the impact on ethanol acetate production of different S. cerevisiae strains deleted for genes previously related with the Crabtree phenotype. Recombinant strains were constructed on a wine industrial genetic background, FX10. All yeast strains, including FX10, showed respiro-fermentative metabolism in natural grape must under aerobic conditions, as well as a concomitant reduction in ethanol yield. This indicates that the Crabtree effect is not a major constrain for reaching relevant respiration levels in grape must. Indeed, only minor differences in ethanol yield were observed between the original and some of the recombinant strains. In contrast, some yeast strains showed a relevant reduction of acetic acid production. This was identified as a positive feature for the feasibility of alcohol level reduction by respiration. Reduced acetic acid production was confirmed by a thorough analysis of these and some additional deletion strains (involving genes HXK2, PYK1, REG1, PDE2 and PDC1). Some recombinant yeasts showed altered production of glycerol and pyruvate derived metabolites. REG1 and PDC1 deletion strains showed a strong reduction of acetic acid yield in aerobic fermentations. Since REG1 defective strains may be obtained by non-GMO approaches, these gene modifications show good promise to help reducing ethanol content in wines.

  11. Clinical and neurobiological effects of aerobic exercise in dental phobia: A randomized controlled trial.

    PubMed

    Lindenberger, Brigitt L; Plag, Jens; Schumacher, Sarah; Gaudlitz, Katharina; Bischoff, Sophie; Bobbert, Thomas; Dimeo, Fernando; Petzold, Moritz B; Kirschbaum, Clemens; Dudás, Zsuzsa; Ströhle, Andreas

    2017-11-01

    Physical activity has shown to be effective in anxiety disorders. For specific phobia, no studies are available that systematically examined the effects of an aerobic exercise intervention on phobic fear within a randomized-controlled design. Therefore, we investigated the acute effect of a standardized aerobic training on clinical symptoms of dental phobia as well as on stress-related neurobiological markers. Within a crossover design, 30 patients with dental phobia (mean age: 34.1 years; mean score of the Dental Anxiety Scale: 18.8) underwent two minor dental interventions separated by 7 days. Dental treatment was performed after 30 min of physical activity at either 20% VO 2 max (control) or 70% VO 2 max (intervention), respectively. To control for habituation, patients were randomly assigned to one of the two conditions prior to the first intervention. Moreover, saliva samples were collected at five times in order to determine changes in salivary cortisol (sC) and alpha-amylase (sAA) due to treatment. In comparison to baseline, aerobic exercise within 70% VO 2 max significantly reduced clinical anxiety and sC concentrations before, during, and after the dental treatment. In contrast, the control condition led to decreased sAA levels at different time points of measurement. Habituation occurred at the second study day, independent of the order. Our study provides evidence for an effect of moderate-intense exercise on clinical symptoms and sC in patients with dental phobia. Therefore, acute aerobic exercise might be a simple and low-cost intervention to reduce disorder-specific phobic fear. © 2017 Wiley Periodicals, Inc.

  12. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.

    PubMed

    Powell, C L; Nogaro, G; Agrawal, A

    2011-06-01

    The degradation potential of trichloroethene by the aerobic methane- and ammonia-oxidizing microorganisms naturally associated with wetland plant (Carex comosa) roots was examined in this study. In bench-scale microcosm experiments with washed (soil free) Carex comosa roots, the activity of root-associated methane- and ammonia-oxidizing microorganisms, which were naturally present on the root surface and/or embedded within the roots, was investigated. Significant methane and ammonia oxidation were observed reproducibly in batch reactors with washed roots incubated in growth media, where methane oxidation developed faster (2 weeks) compared to ammonia oxidation (4 weeks) in live microcosms. After enrichment, the methane oxidizers demonstrated their ability to degrade 150 μg l(-1) TCE effectively at 1.9 mg l(-1) of aqueous CH(4). In contrast, ammonia oxidizers showed a rapid and complete inhibition of ammonia oxidation with 150 μg l(-1) TCE at 20 mg l(-1) of NH(4)(+)-N, which may be attributed to greater sensitivity of ammonia oxidizers to TCE or its degradation product. No such inhibitory effect of TCE degradation was detected on methane oxidation at the above experimental conditions. The results presented here suggest that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments.

  13. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia

    PubMed Central

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R.; Cook, Gregory M.

    2014-01-01

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD+/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411

  14. Sorption and biodegradation of six pharmaceutically active compounds under four different redox conditions.

    PubMed

    de Wilt, Arnoud; He, Yujie; Sutton, Nora; Langenhoff, Alette; Rijnaarts, Huub

    2018-02-01

    This study explored the removal of six pharmaceutically active compounds (PhACs) in lab-scale experiments with sediments under four redox conditions, namely aerobic, nitrate reducing, sulfate reducing, and methanogenic conditions using batch and column set-ups. Redox conditions were found to influence PhAC removal by sorption and biodegradation. The most optimal PhAC removal was observed at the outer ranges of the redox spectrum, i.e. either aerobic or deep anaerobic (sulfate reducing and methanogenic conditions), whereas nitrate reducing conditions were found least effective for PhACs biodegradation and sorption. For instance, sorption coefficient K d values for metoprolol in column experiments were 90, 65, 42 and 11 L/kg for sulfate reducing, methanogenic, aerobic and nitrate reducing conditions, respectively. For the same conditions K d values for propranolol were 101, 94, 55 and 55 L/kg, respectively. As expected, biodegradation efficiencies were highest under aerobic conditions, showing >99% removal of caffeine and naproxen, but no removal for propranolol and carbamazepine. The adaptive capacity of sediment was demonstrated by pre-exposure to PhACs leading to improved PhAC biodegradation. The results of this study indicate the necessity to combine diverse redox conditions, including aerobic conditions, for maximizing PhAC removal by sorption and biodegradation. Furthermore, our findings stress the need for additional treatment measures as recalcitrant PhACs are not effectively removed under any redox condition. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. NREL Advances Wells Fargo Innovation Incubator Projects | Energy Systems

    Science.gov Websites

    Integration Facility | NREL NREL Advances Wells Fargo Innovation Incubator Projects NREL Advances Wells Fargo Innovation Incubator Projects NREL has provided technical support and validation testing at the ESIF to help advance Wells Fargo Innovation Incubator (IN2) projects. The IN2 program helps

  16. Diagnostic and therapeutic advancements for aerobic vaginitis.

    PubMed

    Han, Cha; Wu, Wenjuan; Fan, Aiping; Wang, Yingmei; Zhang, Huiying; Chu, Zanjun; Wang, Chen; Xue, Fengxia

    2015-02-01

    Aerobic vaginitis (AV) is a newly defined clinical entity that is distinct from candidiasis, trichomoniasis and bacterial vaginosis (BV). Because of the poor recognition of AV, this condition can lead to treatment failures and is associated with severe complications, such as pelvic inflammatory disease, infertility, preterm birth and foetal infections. This review describes the diagnosis and treatment of AV and the relationship between AV and pregnancy. The characteristics of AV include severely depressed levels of lactobacilli, increased levels of aerobic bacteria and an inflamed vagina. The diagnosis is made by microscopy on wet mounts of fresh vaginal fluid, and some distinct clinical features are recognized. Vaginal suppositories that contain kanamycin or clindamycin have shown curative effects in nonpregnant women. Additionally, the application of topical probiotics can restore the vaginal flora and reduce the recurrence of AV. Clindamycin vaginal suppositories and probiotics may be a better choice for gravida with AV than metronidazole. AV requires prompt attention, and the early diagnosis and treatment of AV during pregnancy significantly improves perinatal outcomes. Further research is needed to define the pathogenesis, diagnostic criteria and standard treatment guidelines for AV.

  17. An analysis of nitrification during the aerobic digestion of secondary sludges.

    PubMed

    Bhargava, D S; Datar, M T

    1989-01-01

    Investigations were undertaken to study the occurrence and progress of nitrification during aerobic digestion of activated sludge in a wide range of initial concentrations of total solids (1000 to 80 000 mg litre(-1), initial pH range of 4.5 to 10.4 and digestion temperature range of 5 degrees to 60 degrees C. Batch aerobic digestion studies on activated sludge grown on wastewater (enriched with organic solids from human excretal material) indicate that almost complete elimination of the 'biodegradable' matter of the activated sludge was one of the essential prerequisites to initiate nitrification. Favourable ranges of temperature and pH for nitrification were observed to be 25 degrees to 30 degrees C and 6.0 to 8.3, respectively. With all favourable conditions, a minimum period of about 2 days was necessary for population build-up of genera Nitrosomonas and Nitrobacter, and to initiate nitrification. Nitrate formation invariably lagged behind nitrite formation, but under certain conditions both phases of nitrification were observed to progress hand in hand.

  18. Aerobic fitness and performance in elite female futsal players

    PubMed Central

    Subiela, JV; Granda-Vera, J; Castagna, C; Gómez, M; Del Coso, J

    2015-01-01

    Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO2, post-exercise blood lactate concentrations ([La]b) and running speeds (km · h-1). During the treadmill test, VO2max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg-1 · min-1, 12.5±1.77 km · h-1, 197±8 beats · min-1 and 11.3±1.4 mmol · l-1, respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h-1, 199±8 beats · min-1 and 12.5±2.2 mmol · l-1, respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO2max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players. PMID:28479664

  19. Aerobic fitness and performance in elite female futsal players.

    PubMed

    Barbero-Alvarez, J C; Subiela, J V; Granda-Vera, J; Castagna, C; Gómez, M; Del Coso, J

    2015-12-01

    Despite its growing popularity, few studies have investigated specific physiological demands for elite female futsal. The aim of this study was to determine aerobic fitness in elite female futsal players using laboratory and field testing. Fourteen female futsal players from the Venezuelan National team (age =21.2±4.0 years; body mass =58.6±5.6 kg; height =161±5.0 cm) performed a progressive maximal treadmill test under laboratory conditions. Players also performed a progressive intermittent futsal-specific field test for endurance, the Futsal Intermittent Endurance Test (FIET), until volitional fatigue. Outcome variables were exercise heart rate (HR), VO 2 , post-exercise blood lactate concentrations ([La]b) and running speeds (km · h -1 ). During the treadmill test, VO 2 max, maximal aerobic speed (MAS), HR and peak [La]b were 45.3±5.6 ml · kg -1 · min -1 , 12.5±1.77 km · h -1 , 197±8 beats · min -1 and 11.3±1.4 mmol · l -1 , respectively. The FIET total distance, peak running velocity, peak HR and [La]b were 1125.0±121.0 m, 15.2±0.5 km · h -1 , 199±8 beats · min -1 and 12.5±2.2 mmol · l -1 , respectively. The FIET distance and peak speed were strongly associated (r= 0.85-87, p < 0.0001) with VO 2 max and MAS, respectively. Peak HR and [La]b were not significantly different between tests. Elite female futsal players possess moderate aerobic fitness. Furthermore, the FIET can be considered as a valid field test to determine aerobic fitness in elite level female futsal players.

  20. Effect of contaminant concentration on aerobic microbial mineralization of DCE and VC in stream-bed sediments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1998-01-01

    Discharge of DCE and VC to an aerobic surface water system simultaneously represents a significant environmental concern and, potentially, a non-engineered opportunity for efficient contaminant bioremediation. The potential for bioremediation, however, depends on the ability of the stream-bed microbial community to efficiently and completely degrade DCE and VC over a range of contaminant concentrations. The purposes of the studies reported here were to assess the potential for aerobic DCE and VC mineralization by stream-bed microorganisms and to evaluate the effects of DCE and VC concentrations on the apparent rates of aerobic mineralization. Bed-sediment microorganisms indigenous to a creek, where DCE-contaminated groundwater continuously discharges, demonstrated rapid mineralization of DCE and VC under aerobic conditions. Over 8 days, the recovery of [1,2-14C]DCE radioactivity as 14CO2 ranged from 17% to 100%, and the recovery of [1,2- 14C]VC radioactivity as 14CO2 ranged from 45% to 100%. Rates of DCE and VC mineralization increased significantly with increasing contaminant concentration, and the response of apparent mineralization rates to changes in DCE and VC concentrations was adequately described by Michaelis-Menten kinetics.Discharge of DCE and VC to an aerobic surface water system simultaneously represents a significant environmental concern and, potentially, a non-engineered opportunity for efficient contaminant bioremediation. The potential for bioremediation, however, depends on the ability of the stream-bed microbial community to efficiently and completely degrade DCE and VC over a range of contaminant concentrations. The purposes of the studies reported here were to assess the potential for aerobic DCE and VC mineralization by stream-bed microorganisms and to evaluate the effects of DCE and VC concentrations on the apparent rates of aerobic mineralization. Bed-sediment microorganisms indigenous to a creek, where DCE-contaminated groundwater

  1. Positional Role Differences in the Aerobic and Anaerobic Power of Elite Basketball Players.

    PubMed

    Pojskić, Haris; Šeparović, Vlatko; Užičanin, Edin; Muratović, Melika; Mačković, Samir

    2015-12-22

    The aim of the present study was to compare the aerobic and anaerobic power and capacity of elite male basketball players who played multiple positions. Fifty-five healthy players were divided into the following three different subsamples according to their positional role: guards (n = 22), forwards (n = 19) and centers (n = 14). The following three tests were applied to estimate their aerobic and anaerobic power and capacities: the countermovement jump (CMJ), a multistage shuttle run test and the Running-based Anaerobic Sprint Test (RAST). The obtained data were used to calculate the players' aerobic and anaerobic power and capacities. To determine the possible differences between the subjects considering their different positions on the court, one-way analysis of variance (ANOVA) with the Bonferroni post-hoc test for multiple comparisons was used. The results showed that there was a significant difference between the different groups of players in eleven out of sixteen measured variables. Guards and forwards exhibited greater aerobic and relative values of anaerobic power, allowing shorter recovery times and the ability to repeat high intensity, basketball-specific activities. Centers presented greater values of absolute anaerobic power and capacities, permitting greater force production during discrete tasks. Coaches can use these data to create more individualized strength and conditioning programs for different positional roles.

  2. Toward a fuzzy logic control of the infant incubator.

    PubMed

    Reddy, Narender P; Mathur, Garima; Hariharan, S I

    2009-10-01

    Premature birth is a world wide problem. Thermo regulation is a major problem in premature infants. Premature infants are often kept in infant incubators providing convective heating. Currently either the incubator air temperature is sensed and used to control the heat flow, or infant's skin temperature is sensed and used in the close loop control. Skin control often leads to large fluctuations in the incubator air temperature. Air control also leads to skin temperature fluctuations. The question remains if both the infant's skin temperature and the incubator air temperature can be simultaneously used in the control. The purpose of the present study was to address this question by developing a fuzzy logic control which incorporates both incubator air temperature and infant's skin temperature to control the heating. The control was evaluated using a lumped parameter mathematical model of infant-incubator system (Simon, B. N., N. P. Reddy, and A. Kantak, J. Biomech. Eng. 116:263-266, 1994). Simulation results confirmed previous experimental results that the on-off skin control could lead to fluctuations in the incubator air temperature, and the air control could lead to too slow rise time in the core temperature. The fuzzy logic provides a smooth control with the desired rise time.

  3. Impact of aerobic exercise intensity on craving and reactivity to smoking cues.

    PubMed

    Janse Van Rensburg, Kate; Elibero, Andrea; Kilpatrick, Marcus; Drobes, David J

    2013-06-01

    Aerobic exercise can acutely reduce cigarette cravings during periods of nicotine deprivation. The primary aim of this study was to assess the differential effects of light and vigorous intensity aerobic exercise on cigarette cravings, subjective and physiological reactivity to smoking cues, and affect after overnight nicotine deprivation. A secondary aim was to examine cortisol change as a mediator of the effects of exercise on smoking motivation. 162 (55 female, 107 male) overnight nicotine-deprived smokers were randomized to one of three exercise conditions: light intensity, vigorous intensity, or a passive control condition. After each condition, participants engaged in a standardized cue reactivity assessment. Self-reported urges to smoke, affect, and salivary cortisol were assessed at baseline (i.e., before each condition), immediately after each condition, and after the cue reactivity assessment. Light and vigorous exercise significantly decreased urges to smoke and increased positive affect, relative to the control condition. In addition, those in the vigorous exercise condition demonstrated suppressed appetitive reactivity to smoking cues, as indexed by the startle eyeblink reflex. Although exercise intensity was associated with expected changes in cortisol concentration, these effects were not related to changes in craving or cue reactivity. Both light and vigorous exercise can reduce general cravings to smoke, whereas vigorous exercise appears especially well-suited for reducing appetitive reactions to cues that may precede smoking. Results did not support exercise-induced cortisol release as a mechanism for these effects. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. The Incubation Periods of Dengue Viruses

    PubMed Central

    Chan, Miranda; Johansson, Michael A.

    2012-01-01

    Dengue viruses are major contributors to illness and death globally. Here we analyze the extrinsic and intrinsic incubation periods (EIP and IIP), in the mosquito and human, respectively. We identified 146 EIP observations from 8 studies and 204 IIP observations from 35 studies. These data were fitted with censored Bayesian time-to-event models. The best-fitting temperature-dependent EIP model estimated that 95% of EIPs are between 5 and 33 days at 25°C, and 2 and 15 days at 30°C, with means of 15 and 6.5 days, respectively. The mean IIP estimate was 5.9 days, with 95% expected between days 3 and 10. Differences between serotypes were not identified for either incubation period. These incubation period models should be useful in clinical diagnosis, outbreak investigation, prevention and control efforts, and mathematical modeling of dengue virus transmission. PMID:23226436

  5. Facilitating aerobic exercise training in older adults with Alzheimer's disease.

    PubMed

    Yu, Fang; Kolanowski, Ann

    2009-01-01

    Emerging science suggests that aerobic exercise might modify the pathophysiology of Alzheimer's disease (AD) and improve cognition. However, there are no clinical practice guidelines for aerobic exercise prescription and training in older adults with AD. A few existing studies showed that older adults with AD can participate in aerobic exercise and improve dementia symptoms, but lack adequate descriptions of their aerobic exercise training programs and their clinical applicability. In this paper, we summarize current knowledge about the potential benefits of aerobic exercise in older adults with AD. We then describe the development of a moderate-intensity aerobic exercise program for this population and report results from its initial testing in a feasibility trial completed by two persons with AD. Two older adults with AD completed the aerobic exercise program. Barriers to the program's implementation are described, and methods to improve more wide-spread adoption of such programs and the design of future studies that test them are suggested.

  6. Effect of low incubation temperature and low ambient temperature until 21 days of age on performance and body temperature in fast-growing chickens.

    PubMed

    Nyuiadzi, D; Travel, A; Méda, B; Berri, C; Guilloteau, L A; Coustham, V; Wang, Y; Tona, J K; Collin, A

    2017-12-01

    Thermal manipulation during embryogenesis was previously reported to decrease the occurrence of ascites and to potentially improve cold tolerance of broilers. The objective of our study was to explore the effects of the interaction of cold incubation temperatures and cool ambient temperatures until 21 d of age on performance and body temperature. Ross 308 eggs were incubated either under control conditions I0 (37.6°C) or with cyclic cold stimulations I1 (6 h/d at 36.6°C from d 10 to 18 of incubation) or with 2 cold stimulations I2 (30 min at 15°C) at d 18 and 19 of incubation. These treatments were followed by individual rearing and postnatal exposure to either standard rearing temperature T0 (from 33°C at hatching to 21°C at d 21) or continuously lower temperature T2 (from 28°C at hatching to 21°C at d 21) or exposure to cyclically lower temperature T1 (with circadian temperature oscillations). Treatments I1 and I2 did not significantly alter hatchability compared to control incubation (with 94.8, 95.1, and 92.3%, respectively), or hatching BW and overall chick quality. Hatching body temperature (Tb) was 0.5 and 0.3°C higher in I1 than in I0 and I2 groups, respectively (P = 0.007). A doubled occurrence of health problems was observed with T2 condition, regardless of incubation or sex. At d 3, BW was 2% lower with treatment I1 than with I0 and I2 and was 3% higher in T1 and T2 groups than in T0, but these effects disappeared with age. Group T2 presented a 5% higher feed intake than the control group T0 between 3 and 21 d of age (P = 0.025). Feed conversion ratio (FCR) was affected by experimental conditions (P < 0.001), with low FCR values obtained with I2 incubation in control or cyclically cold postnatal conditions. Maximal FCR values were observed in the continuously cold postnatal conditions, in males submitted to control incubation and in females submitted to I1 incubation, revealing sex-dependent effects of the treatments on performance. © The

  7. Effect of low incubation temperature and low ambient temperature until 21 days of age on performance and body temperature in fast-growing chickens

    PubMed Central

    Nyuiadzi, D; Travel, A; Méda, B; Berri, C; Guilloteau, L A; Coustham, V; Wang, Y; Tona, J K; Collin, A

    2017-01-01

    Abstract Thermal manipulation during embryogenesis was previously reported to decrease the occurrence of ascites and to potentially improve cold tolerance of broilers. The objective of our study was to explore the effects of the interaction of cold incubation temperatures and cool ambient temperatures until 21 d of age on performance and body temperature. Ross 308 eggs were incubated either under control conditions I0 (37.6°C) or with cyclic cold stimulations I1 (6 h/d at 36.6°C from d 10 to 18 of incubation) or with 2 cold stimulations I2 (30 min at 15°C) at d 18 and 19 of incubation. These treatments were followed by individual rearing and postnatal exposure to either standard rearing temperature T0 (from 33°C at hatching to 21°C at d 21) or continuously lower temperature T2 (from 28°C at hatching to 21°C at d 21) or exposure to cyclically lower temperature T1 (with circadian temperature oscillations). Treatments I1 and I2 did not significantly alter hatchability compared to control incubation (with 94.8, 95.1, and 92.3%, respectively), or hatching BW and overall chick quality. Hatching body temperature (Tb) was 0.5 and 0.3°C higher in I1 than in I0 and I2 groups, respectively (P = 0.007). A doubled occurrence of health problems was observed with T2 condition, regardless of incubation or sex. At d 3, BW was 2% lower with treatment I1 than with I0 and I2 and was 3% higher in T1 and T2 groups than in T0, but these effects disappeared with age. Group T2 presented a 5% higher feed intake than the control group T0 between 3 and 21 d of age (P = 0.025). Feed conversion ratio (FCR) was affected by experimental conditions (P < 0.001), with low FCR values obtained with I2 incubation in control or cyclically cold postnatal conditions. Maximal FCR values were observed in the continuously cold postnatal conditions, in males submitted to control incubation and in females submitted to I1 incubation, revealing sex-dependent effects of the treatments on performance

  8. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    PubMed

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.

  9. Estimated Incubation Period for Zika Virus Disease.

    PubMed

    Krow-Lucal, Elisabeth R; Biggerstaff, Brad J; Staples, J Erin

    2017-05-01

    Information about the Zika virus disease incubation period can help identify risk periods and local virus transmission. In 2015-2016, data from 197 symptomatic travelers with recent Zika virus infection indicated an estimated incubation period of 3-14 days. For symptomatic persons with symptoms >2 weeks after travel, transmission might be not travel associated.

  10. Noise at the neonatal intensive care unit and inside the incubator.

    PubMed

    Pinheiro, Eliana Moreira; Guinsburg, Ruth; Nabuco, Marco Antonio de Araujo; Kakehashi, Tereza Yoshiko

    2011-01-01

    The goal was to identify sound pressure level (SPL) at the neonatal intensive care unit (NICU) and inside the incubator of a teaching hospital of a public university from São Paulo - SP, Brazil. SPL inside the NICU and the incubator were measured using four dosimeters in January/2010. SPL at the NICU varied from 52.6 dBA to 80.4 dBA and inside the incubator, from 45.4 dBA to 79.1 dBA. SPL both at the NICU and inside the incubator are above the recommended values, but levels were higher at the NICU than inside the incubator. Although there are some specific factors related to SPL inside the incubator, the NICU and incubator acoustic features present a system: an increase/decrease in SPL at the NICU usually tends to increase/decrease SPL inside the incubator. The study points to the need for simultaneous monitoring of SPL at the NICU and inside the incubator.

  11. Role of Dorsomedial Striatum Neuronal Ensembles in Incubation of Methamphetamine Craving after Voluntary Abstinence

    PubMed Central

    Venniro, Marco; Zhang, Michelle; Bossert, Jennifer M.; Warren, Brandon L.; Hope, Bruce T.

    2017-01-01

    We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral striatum (DLS) and dorsomedial striatum (DMS) in this incubation. We trained rats to self-administer palatable food pellets (6 d, 6 h/d) and methamphetamine (12 d, 6 h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/d) for 19 d. We used in situ hybridization to measure the colabeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization colabeling results, we tested the causal role of DMS D1 and D2 family receptors, and DMS neuronal ensembles in “incubated” methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively. Methamphetamine seeking was higher after 21 d of voluntary abstinence than after 1 d (incubation of methamphetamine craving). The incubated response was associated with increased Fos expression in DMS but not in DLS; Fos was colabeled with both Drd1 and Drd2. DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21. Results demonstrate a role of DMS dopamine D1 and D2 receptors in the incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation. SIGNIFICANCE STATEMENT In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation

  12. Incubation behavior of Spectacled Eiders on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Flint, Paul L.; Grand, J.B.

    1999-01-01

    We studied incubation behavior of Spectacled Eiders (Somateria fischeri) on the Yukon-Kuskokwim Delta in 1996. We trapped 19 females on their nests and weighed them in early incubation and again at hatch. Average daily weight loss for incubating females was 16.6 ?? 1.0 g day-1, which resulted in a cumulative loss of 26% of body weight throughout incubation. Nest attendance was monitored for a portion of the incubation period using temperature sensing artificial eggs. Incubation constancy averaged 90 ?? 1%. Average recess length was 37.1 ?? 0.9 min, and nests cooled an average of 4.2 ?? 0.1??C during recesses. Recess frequency averaged 2.5 ?? 0.1 recesses day-1, and most recesses (70%) occurred between 10:00 and 22: 00. Incubation constancy varied among females, but was not related to changes in body weight or incubation period. There was no influence of ambient temperature on incubation recess length, however most recesses were taken during the warmest part of the day. We found considerable variation among females in patterns of daily incubation constancy, nest cooling, recess frequency, and recess length. It is not clear from our results what factors constrain incubation behavior of Spectacled Eiders, but we suggest that individual females respond to a complex suite of variables.

  13. Designing a Low-Cost Multifunctional Infant Incubator.

    PubMed

    Tran, Kevin; Gibson, Aaron; Wong, Don; Tilahun, Dagmawi; Selock, Nicholas; Good, Theresa; Ram, Geetha; Tolosa, Leah; Tolosa, Michael; Kostov, Yordan; Woo, Hyung Chul; Frizzell, Michael; Fulda, Victor; Gopinath, Ramya; Prasad, J Shashidhara; Sudarshan, Hanumappa; Venkatesan, Arunkumar; Kumar, V Sashi; Shylaja, N; Rao, Govind

    2014-06-01

    Every year, an unacceptably large number of infant deaths occur in developing nations, with premature birth and asphyxia being two of the leading causes. A well-regulated thermal environment is critical for neonatal survival. Advanced incubators currently exist, but they are far too expensive to meet the needs of developing nations. We are developing a thermodynamically advanced low-cost incubator suitable for operation in a low-resource environment. Our design features three innovations: (1) a disposable baby chamber to reduce infant mortality due to nosocomial infections, (2) a passive cooling mechanism using low-cost heat pipes and evaporative cooling from locally found clay pots, and (3) insulated panels and a thermal bank consisting of water that effectively preserve and store heat. We developed a prototype incubator and visited and presented our design to our partnership hospital site in Mysore, India. After obtaining feedback, we have determined realistic, nontrivial design requirements and constraints in order to develop a new prototype incubator for clinical trials in hospitals in India. © 2014 Society for Laboratory Automation and Screening.

  14. Relationship between aerobic bacteria, salmonellae and Campylobacter on broiler carcasses.

    PubMed

    Cason, J A; Bailey, J S; Stern, N J; Whittemore, A D; Cox, N A

    1997-07-01

    Broiler carcasses were removed from commercial processing lines immediately after defeathering, before chilling, and after chilling to determine whether any relationship exists between aerobic bacteria and the human enteropathogens salmonellae and Campylobacter. In two experiments, a whole carcass rinse procedure was used to sample 30 carcasses after defeathering, 90 carcasses before chilling, and 90 carcasses after chilling, for a total of 210 different carcasses. Aerobic bacteria and Campylobacter spp. were enumerated and the incidence of salmonellae was determined. Salmonellae and Campylobacter incidences were 20 and 94%, respectively, for all carcasses sampled. After picking, neither salmonellae-positive nor Campylobacter-positive carcasses had mean aerobic most probable number (MPN) values that were different from carcasses negative for those organisms. Immediately before chilling, aerobic and Campylobacter counts were 7.12 and 5.33 log10 cfu per carcass, respectively. Immersion chilling reduced aerobic counts by approximately 1.8 log and Campylobacter by 1.5 log, with no change in salmonellae-positive carcasses. There was no difference in aerobic or Campylobacter counts between carcasses that were positive or negative for salmonellae at any of the sampling locations, nor was any correlation found between levels of aerobic organisms and Campylobacter. Carcasses with aerobic counts above the mean or more than one standard deviation above the mean also failed to show any correlation. Discriminant analysis indicated error rates as high as 50% when numbers of aerobic bacteria were used to predict incidence of salmonellae or Campylobacter on individual carcasses. Aerobic bacteria are not suitable as index organisms for salmonellae or Campylobacter on broiler carcasses.

  15. Automatic Incubator-type Temperature Control System for Brain Hypothermia Treatment

    NASA Astrophysics Data System (ADS)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    An automatic air-cooling incubator is proposed to replace the manual water-cooling blanket to control the brain tissue temperature for brain hypothermia treatment. Its feasibility is theoretically discussed as follows: First, an adult patient with the cooling incubator is modeled as a linear dynamical patient-incubator biothermal system. The patient is represented by an 18-compartment structure and described by its state equations. The air-cooling incubator provides almost same cooling effect as the water-cooling blanket, if a light breeze of speed around 3 m/s is circulated in the incubator. Then, in order to control the brain temperature automatically, an adaptive-optimal control algorithm is adopted, while the patient-blanket therapeutic system is considered as a reference model. Finally, the brain temperature of the patient-incubator biothermal system is controlled to follow up the given reference temperature course, in which an adaptive algorithm is confirmed useful for unknown environmental change and/or metabolic rate change of the patient in the incubating system. Thus, the present work ensures the development of the automatic air-cooling incubator for a better temperature regulation of the brain hypothermia treatment in ICU.

  16. Development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions.

    PubMed

    Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E

    2016-05-01

    The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (μmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the μmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken. Copyright © 2015

  17. Hydrocarbon Degradation Pathways used by Coastal Sediment Microbial Communities exposed to Crude Oil

    NASA Astrophysics Data System (ADS)

    Spaulding-Astudillo, F.; Sharrar, A.; Orcutt, B.

    2016-02-01

    The site-specific microbial community response to crude oil exposure in marine environments is not well described. Moreover, the abundance of genes implicated in long-chain alkane (LCA) and polycyclic aromatic hydrocarbon (PAH) degradation are not well understood. Coastal sediments from the Beaufort Sea, Gulf of Alaska, and Portland Harbor were treated with crude oil and incubated aerobically. Deep-sea sediments from the Gulf of Mexico were treated with the same crude oil and anaerobically incubated in situ for five months before recovery. Cycloclasticus, a known hydrocarbon-degrader, was abundant in all oiled, aerobic samples regardless of temperature, demonstrating a generalist oil-response strategy. Other hydrocarbon degrading bacteria showed differential response to either site or temperature. Primers for alkB, assA, bssA, and ncr, catabolic gene markers for aerobic LCA degradation, anaerobic LCA degradation, anaerobic LCA & PAH degradation, and anaerobic PAH degradation, respectively, were found in literature and tested on DNA extracts in a QPCR-based assay. Gene abundance was site and condition variable.

  18. Enhanced aerobic exercise performance in women by a combination of three mineral Chelates plus two conditionally essential nutrients.

    PubMed

    DiSilvestro, Robert A; Hart, Staci; Marshall, Trisha; Joseph, Elizabeth; Reau, Alyssa; Swain, Carmen B; Diehl, Jason

    2017-01-01

    Certain essential and conditionally essential nutrients (CENs) perform functions involved in aerobic exercise performance. However, increased intake of such nutrient combinations has not actually been shown to improve such performance. For 1 mo, aerobically fit, young adult women took either a combination of 3 mineral glycinate complexes (daily dose: 36 mg iron, 15 mg zinc, and 2 mg copper) + 2 CENs (daily dose: 2 g carnitine and 400 mg phosphatidylserine), or the same combination with generic mineral complexes, or placebo ( n  = 14/group). In Trial 1, before and after 1 mo, subjects were tested for 3 mile run time (primary outcome), followed by distance covered in 25 min on a stationary bike (secondary outcome), followed by a 90 s step test (secondary outcome). To test reproducibility of the run results, and to examine a lower dose of carnitine, a second trial was done. New subjects took either mineral glycinates + CENs (1 g carnitine) or placebo ( n  = 17/group); subjects were tested for pre- and post-treatment 3 mile run time (primary outcome). In Trial 1, the mineral glycinates + CENs decreased 3 mile run time (25.6 ± 2.4 vs 26.5 ± 2.3 min, p  < 0.05, paired t-test) increased stationary bike distance after 25 min (6.5 ± 0.6 vs 6.0 ± 0.8 miles, p  < 0.05, paired t-test), and increased steps in the step test (43.8 ± 4.8 vs 40.3 ± 6.4 steps, p < 0.05, paired t-test). The placebo significantly affected only the biking distance, but it was less than for the glycinates-CENs treatment (0.2 ± 0.4. vs 0.5 ± 0.1 miles, p < 0.05, ANOVA + Tukey). The generic minerals + CENs only significantly affected the step test (44.1 ± 5.2 vs 41.0 ± 5.9 steps, p < 0.05, paired t-test) In Trial 2, 3 mile run time was decreased for the mineral glycinates + CENs (23.9 ± 3.1 vs 24.7 ± 2.5, p  < 0.005, paired t-test), but not by the placebo. All changes for Test Formula II or III were

  19. Incubator Display Software Cost Reduction Toolset Software Requirements Specification

    NASA Technical Reports Server (NTRS)

    Moran, Susanne; Jeffords, Ralph

    2005-01-01

    The Incubator Display Software Requirements Specification was initially developed by Intrinsyx Technologies Corporation (Intrinsyx) under subcontract to Lockheed Martin, Contract Number NAS2-02090, for the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) Space Station Biological Research Project (SSBRP). The Incubator Display is a User Payload Application (UPA) used to control an Incubator subrack payload for the SSBRP. The Incubator Display functions on-orbit as part of the subrack payload laptop, on the ground as part of the Communication and Data System (CDS) ground control system, and also as part of the crew training environment.

  20. Effects of Aerobic Exercise on Cognitive Performance among Young Adults in a Higher Education Setting

    ERIC Educational Resources Information Center

    Ludyga, Sebastian; Gerber, Markus; Brand, Serge; Pühse, Uwe; Colledge, Flora

    2018-01-01

    Purpose: Acute benefits of aerobic exercise on executive functioning have been reported frequently under laboratory conditions. However, to date, a beneficial effect on long-term memory has been less well supported and no data are available regarding nonlaboratory conditions in young adults. The aim of the current study was to investigate acute…