Science.gov

Sample records for aerobic mesophilic bacteria

  1. Comparison of dry medium culture plates for mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.

    PubMed

    Park, Junghyun; Kim, Myunghee

    2013-12-01

    This study was performed to compare the performance of Sanita-Kun dry medium culture plate with those of traditional culture medium and Petrifilm dry medium culture plate for the enumeration of the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet. Mesophilic aerobic bacteria were comparatively evaluated in milk, ice cream, ham, and codfish fillet using Sanita-Kun aerobic count (SAC), Petrifilm aerobic count (PAC), and traditional plate count agar (PCA) media. According to the results, all methods showed high correlations of 0.989~1.000 and no significant differences were observed for enumerating the mesophilic aerobic bacteria in the tested food products. SAC method was easier to perform and count colonies efficiently as compared to the PCA and PAC methods. Therefore, we concluded that the SAC method offers an acceptable alternative to the PCA and PAC methods for counting the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products. PMID:24551829

  2. Comparison of dry medium culture plates for mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.

    PubMed

    Park, Junghyun; Kim, Myunghee

    2013-12-01

    This study was performed to compare the performance of Sanita-Kun dry medium culture plate with those of traditional culture medium and Petrifilm dry medium culture plate for the enumeration of the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet. Mesophilic aerobic bacteria were comparatively evaluated in milk, ice cream, ham, and codfish fillet using Sanita-Kun aerobic count (SAC), Petrifilm aerobic count (PAC), and traditional plate count agar (PCA) media. According to the results, all methods showed high correlations of 0.989~1.000 and no significant differences were observed for enumerating the mesophilic aerobic bacteria in the tested food products. SAC method was easier to perform and count colonies efficiently as compared to the PCA and PAC methods. Therefore, we concluded that the SAC method offers an acceptable alternative to the PCA and PAC methods for counting the mesophilic aerobic bacteria in milk, ice cream, ham, and codfish fillet products.

  3. Survival, injury and inactivation of Escherichia coli 0157:H7, salmonella and aerobic mesophilic bacteria in apple juice and cider amended with nisin-edta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For health reasons, people are consuming fresh juices or minimally processed fruit and vegetable juices, thereby, exposing themselves to the risk of foodborne illness if such juices are contaminated with bacteria pathogens. Behavior of aerobic mesophilic bacteria, Escherichia coli O157:H7 and Salmon...

  4. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway. PMID:26314017

  5. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.

  6. Microbiological Quality of Ready-to-Eat Vegetables Collected in Mexico City: Occurrence of Aerobic-Mesophilic Bacteria, Fecal Coliforms, and Potentially Pathogenic Nontuberculous Mycobacteria.

    PubMed

    Cerna-Cortes, Jorge Francisco; Leon-Montes, Nancy; Cortes-Cueto, Ana Laura; Salas-Rangel, Laura P; Helguera-Repetto, Addy Cecilia; Lopez-Hernandez, Daniel; Rivera-Gutierrez, Sandra; Fernandez-Rendon, Elizabeth; Gonzalez-y-Merchand, Jorge Alberto

    2015-01-01

    The aims of this study were to evaluate the microbiological quality and the occurrence of nontuberculous mycobacteria (NTM) in a variety of salads and sprouts from supermarkets and street vendors in Mexico City. Aerobic-mesophilic bacteria (AMB) were present in 100% of RTE-salads samples; 59% of samples were outside guidelines range (>5.17 log10 CFU per g). Although fecal coliforms (FC) were present in 32% of samples, only 8% of them exceeded the permissible limit (100 MPN/g). Regarding the 100 RTE-sprouts, all samples were also positive for AMB and total coliforms (TC) and 69% for FC. Seven NTM species were recovered from 7 salad samples; they included three M. fortuitum, two M. chelonae, one M. mucogenicum, and one M. sp. Twelve RTE-sprouts samples harbored NTM, which were identified as M. porcinum (five), M. abscessus (two), M. gordonae (two), M. mucogenicum (two), and M. avium complex (one). Most RTE-salads and RTE-sprouts had unsatisfactory microbiological quality and some harbored NTM associated with illness. No correlation between the presence of coliforms and NTM was found. Overall, these results suggest that RTE-salads and RTE-sprouts might function as vehicles for NTM transmission in humans; hence, proper handling and treatment before consumption of such products might be recommendable.

  7. Fate of mesophilic aerobic bacteria and Salmonella enterica on the surface of eggs as affected by chicken feces, storage temperature, and relative humidity.

    PubMed

    Park, Sunhyung; Choi, Seonyeong; Kim, Hoikyung; Kim, Yoonsook; Kim, Byeong-sam; Beuchat, Larry R; Ryu, Jee-Hoon

    2015-06-01

    We compared the microbiological quality of chicken eggshells obtained from a traditional wholesale market and a modern supermarket. We also determined the survival and growth characteristics of naturally occurring mesophilic aerobic bacteria (MAB) and artificially inoculated Salmonella enterica on eggshells under various environmental conditions (presence of chicken feces, temperature [4, 12, or 25 °C], and relative humidity [RH; 43 or 85%]). The populations of MAB, coliforms, and molds and yeasts on eggshells purchased from a traditional wholesale market were significantly (P ≤ 0.05) higher than those from a modern supermarket. In the second study, when we stored uninoculated eggs under various storage conditions, the population of MAB on eggshells (4.7-4.9 log CFU/egg) remained constant for 21 days, regardless of storage conditions. However, when eggshells were inoculated with S. enterica and stored under the same conditions, populations of the pathogen decreased significantly (P ≤ 0.05) under all tested conditions. Survival of S. enterica increased significantly (P ≤ 0.05) in the presence of feces, at low temperatures, and at low RH. These observations will be of value when predicting the behavior of microorganisms on eggshells and selecting storage conditions that reduce the populations of S. enterica on eggshells during distribution.

  8. Microbiological Quality of Ready-to-Eat Vegetables Collected in Mexico City: Occurrence of Aerobic-Mesophilic Bacteria, Fecal Coliforms, and Potentially Pathogenic Nontuberculous Mycobacteria

    PubMed Central

    Cerna-Cortes, Jorge Francisco; Leon-Montes, Nancy; Cortes-Cueto, Ana Laura; Salas-Rangel, Laura P.; Helguera-Repetto, Addy Cecilia; Lopez-Hernandez, Daniel; Rivera-Gutierrez, Sandra; Fernandez-Rendon, Elizabeth; Gonzalez-y-Merchand, Jorge Alberto

    2015-01-01

    The aims of this study were to evaluate the microbiological quality and the occurrence of nontuberculous mycobacteria (NTM) in a variety of salads and sprouts from supermarkets and street vendors in Mexico City. Aerobic-mesophilic bacteria (AMB) were present in 100% of RTE-salads samples; 59% of samples were outside guidelines range (>5.17 log10 CFU per g). Although fecal coliforms (FC) were present in 32% of samples, only 8% of them exceeded the permissible limit (100 MPN/g). Regarding the 100 RTE-sprouts, all samples were also positive for AMB and total coliforms (TC) and 69% for FC. Seven NTM species were recovered from 7 salad samples; they included three M. fortuitum, two M. chelonae, one M. mucogenicum, and one M. sp. Twelve RTE-sprouts samples harbored NTM, which were identified as M. porcinum (five), M. abscessus (two), M. gordonae (two), M. mucogenicum (two), and M. avium complex (one). Most RTE-salads and RTE-sprouts had unsatisfactory microbiological quality and some harbored NTM associated with illness. No correlation between the presence of coliforms and NTM was found. Overall, these results suggest that RTE-salads and RTE-sprouts might function as vehicles for NTM transmission in humans; hence, proper handling and treatment before consumption of such products might be recommendable. PMID:25918721

  9. Effect of hot water spray on broiler carcasses for reduction of loosely attached, intermediately attached, and tightly attached pathogenic (Salmonella and Campylobacter) and mesophilic aerobic bacteria.

    PubMed

    Zhang, L; Singh, P; Lee, H C; Kang, I

    2013-03-01

    Chickens are known to harbor many bacteria, including pathogenic microorganisms such as Salmonella and Campylobacter. The objective of this study was to evaluate the efficacy of hot water spray (HWS, 71°C for 1 min) in reducing bacterial contamination of prechilled broiler carcasses. For each of 4 replications, skin samples from 5 broilers were collected at 3 processing stages: after bleeding (feathers removed manually), after evisceration (with/without HWS), and after water chilling. Broiler skin was quantitatively assessed for loosely attached (by rinsing the skin), intermediately attached (by stomaching the rinsed skin), and tightly attached (by grinding the rinsed/stomached skin) mesophilic aerobic bacteria (MAB) and Campylobacter as well as for the prevalence of Salmonella and Campylobacter. Broiler skins possessed 6.4 to 6.6 log cfu/g, 3.8 to 4.1 log cfu/g, and 2.8 to 3.5 log cfu/g of MAB populations after bleeding, evisceration, and chilling, respectively. The HWS resulted in more than 1 log unit of reduction in MAB immediately after evisceration and immediately after chilling regardless of microbial sampling method. Compared with MAB, the contamination of Campylobacter was low (1.7 to 2.6 log cfu/g) after bleeding, but the level was not reduced throughout the processing steps regardless of HWS. The application of HWS reduced the prevalence of Salmonella after chilling, but not for Campylobacter except for loosely attached cells. After hot water exposure, a partially cooked appearance was seen on both broiler skin and skinless breast surface. More research is required to effectively eliminate pathogenic organisms during processing and suppress any recovery of bacteria regardless of attachment type after chilling.

  10. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation. PMID:24211486

  11. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process.

  12. The elimination of Salmonella typhimurium in sewage sludge by aerobic mesophilic stabilization and lime hydrated stabilization.

    PubMed

    Plachá, Iveta; Venglovský, Ján; Maková, Zuzana; Martinéz, José

    2008-07-01

    This study observed the effects of two methods, aerobic mesophilic stabilization and lime hydrated stabilization of sewage sludge upon the survival of Salmonella typhimurium. Raw (primary) sludges from the mechanical biological municipal sewage treatment plant were used. Aerobic stabilization and lime hydrated stabilization were carried out in a laboratory fermentor. Aerobic stabilization was carried out in the mesophilic temperature range (from 25.70+/-0.40 to 37.82+/-1.38 degrees C). Lime hydrated was used at an amount of 10 kg/m(3) for the stabilization. Sludge samples were inoculated with a broth culture of S. typhimurium. Quantitative and qualitative examinations of the presence of S. typhimurium were carried out. Aerobic mesophilic stabilization caused elimination S. typhimurium within 48 h. The T(90) value of S. typhimurium was 6.66+/-0.20 h. During the lime hydrated stabilization pH values significantly increased from 5.66+/-0.07 to 12.12+/-0.02 (P<0.01). S. typhimurium was inactivated within 1h and the T(90) value was 0.19+/-0.01 h. Our study confirmed that the treatment of sewage sludge with lime hydrated was significantly more effective than the aerobic mesophilic stabilization, (P<0.01). PMID:17931859

  13. Filamentous bacteria existence in aerobic granular reactors.

    PubMed

    Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-05-01

    Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

  14. Technical note: enumeration of mesophilic aerobes in milk: evaluation of standard official protocols and Petrifilm aerobic count plates.

    PubMed

    Freitas, R; Nero, L A; Carvalho, A F

    2009-07-01

    Enumeration of mesophilic aerobes (MA) is the main quality and hygiene parameter for raw and pasteurized milk. High levels of these microorganisms indicate poor conditions in production, storage, and processing of milk, and also the presence of pathogens. Fifteen raw and 15 pasteurized milk samples were submitted for MA enumeration by a conventional plating method (using plate count agar) and Petrifilm Aerobic Count plates (3M, St. Paul, MN), followed by incubation according to 3 official protocols: IDF/ISO (incubation at 30 degrees C for 72 h), American Public Health Association (32 degrees C for 48 h), and Brazilian Ministry of Agriculture (36 degrees C for 48 h). The results were compared by linear regression and ANOVA. Considering the results from conventional methodology, good correlation indices and absence of significant differences between mean counts were observed, independent of type of milk sample (raw or pasteurized) and incubation conditions (IDF/ISO, American Public Health Association, or Ministry of Agriculture). Considering the results from Petrifilm Aerobic Count plates, good correlation indices and absence of significant differences were only observed for raw milk samples. The microbiota of pasteurized milk interfered negatively with the performance of Petrifilm Aerobic Count plates, probably because of the presence of microorganisms that poorly reduce the dye indicator of this system.

  15. [The phylogenetic diversity of aerobic organotrophic bacteria from the Dagan high-temperature oil field].

    PubMed

    Nazina, T N; Sokolova, D Sh; Shestakova, N M; Grigor'ian, A A; Mikhaĭlova, E M; Babich, T L; Lysenko, A M; Turova, T P; Poltaraus, A B; Feng, Tsin'syan; Ni, Fangtian; Beliaev, S S

    2005-01-01

    The distribution and species diversity of aerobic organotrophic bacteria in the Dagan high-temperature oil field (China), which is exploited via flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and gamma and beta subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species "Geobacillus jurassicus." A number of novel thermophilic oil-oxidizing bacilli have been isolated.

  16. [The phylogenetic diversity of aerobic organotrophic bacteria from the Dagan high-temperature oil field].

    PubMed

    Nazina, T N; Sokolova, D Sh; Shestakova, N M; Grigor'ian, A A; Mikhaĭlova, E M; Babich, T L; Lysenko, A M; Turova, T P; Poltaraus, A B; Feng, Tsin'syan; Ni, Fangtian; Beliaev, S S

    2005-01-01

    The distribution and species diversity of aerobic organotrophic bacteria in the Dagan high-temperature oil field (China), which is exploited via flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and gamma and beta subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species "Geobacillus jurassicus." A number of novel thermophilic oil-oxidizing bacilli have been isolated. PMID:16119855

  17. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  18. Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria

    PubMed Central

    Caro-Quintero, Alejandro; Konstantinidis, Konstantinos T

    2015-01-01

    Genome sequencing has revealed that horizontal gene transfer (HGT) is a major evolutionary process in bacteria. Although it is generally assumed that closely related organisms engage in genetic exchange more frequently than distantly related ones, the frequency of HGT among distantly related organisms and the effect of ecological relatedness on the frequency has not been rigorously assessed. Here, we devised a novel bioinformatic pipeline, which minimized the effect of over-representation of specific taxa in the available databases and other limitations of homology-based approaches by analyzing genomes in standardized triplets, to quantify gene exchange between bacterial genomes representing different phyla. Our analysis revealed the existence of networks of genetic exchange between organisms with overlapping ecological niches, with mesophilic anaerobic organisms showing the highest frequency of exchange and engaging in HGT twice as frequently as their aerobic counterparts. Examination of individual cases suggested that inter-phylum HGT is more pronounced than previously thought, affecting up to ∼16% of the total genes and ∼35% of the metabolic genes in some genomes (conservative estimation). In contrast, ribosomal and other universal protein-coding genes were subjected to HGT at least 150 times less frequently than genes encoding the most promiscuous metabolic functions (for example, various dehydrogenases and ABC transport systems), suggesting that the species tree based on the former genes may be reliable. These results indicated that the metabolic diversity of microbial communities within most habitats has been largely assembled from preexisting genetic diversity through HGT and that HGT accounts for the functional redundancy among phyla. PMID:25314320

  19. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  20. Conversion of cellulose to ethanol by mesophilic bacteria. Progress report and third year budget

    SciTech Connect

    Canale-Parola, E.

    1982-11-24

    Much of our research has dealt with eight strains of obligately anaerobic bacteria that we isolated from various natural environments as described in last year's progress report. These eight strains (referred to as C strains) are strains of mesophilic, spore-forming, rod-shaped bacteria that ferment cellulose with production of ethanol. We determined quantitatively the fermentation products formed by C strains from cellulose and various other carbohydrates. In all cases ethanol was produced, as well as acetate, CO/sub 2/ and H/sub 2/. The C strains utilized, for ethanol production and growth, a variety of cellulosic substrates ranging from paper to alpha-cellulose. Enzymatic assays and growth studies showed that C strains possessed a celluloase system consisting of endoglucanase, exoglucanase, and cellobiase components. Studies indicated that growth substrates have a regulatory effect(s) on components of the cellulase system of the C strains. another experimental approach is aimed at cloning cellobiase, endoglucanase and exoglucanase genes from the C strains into a suitable vector plasmid and, eventually, at introducing the plasmid into cells of Zymomonas mobilis. The objective of this part of our research is to obtain a Z. mobilis strain capable of fermenting cellobiose and/or cellulose. Plasmids that contained DNA inserts were used to transform E. coli C600 recA. E. coli transformants that had acquired the cellobiase gene were obtained by this procedure. At present, we are attempting to introduce into Z. mobilis cells the vector plasmid purified from the E. coli transformants. In another series of experiments, we have used a new selective procedure to isolate four additional strains of mesophilic, obligately anaerobic, cellulolytic bacteria from natural environments.

  1. Isolation of butyrate-utilizing bacteria from thermophilic and mesophilic methane-producing ecosystems

    SciTech Connect

    Henson, J.M.

    1983-01-01

    The ability of various ecosystems to convert butyrate to methane was studied in order to isolate the bacteria responsible for the conversion. When thermophilic digester sludge was enriched with butyrate, methane was produced without a lag period. Marine sediments enriched with butyrate required a 2-week incubation period before methanogenesis began. A thermophilic digester was studied in more detail and found by most-probable-number enumeration to have ca. 5 x 10/sup 6/ butyrate-utilizing bactera/ml of sludge. A thermophilic butyrate-utilizing bacterium was isolated in coculture with Methanobacterium thermoautotrophicum and a Methanosarcina sp. This bacterium was a gram-negative, slightly curved rod that occurred singly, was nonmotile, and did not appear to produce spores. The thermophilic digester was infused with butyrate at the rate of 10 ..mu..moles/ml of sludge per day. Biogas production increased by 150%, with the percentage of methane increasing from 58% to 68%. Acetate, propionate, and butyrate did not accumulate. Butyrate-utilizing enrichments from mesophilic ecosystems were used in obtaining cocultures of butyrate-utilizing bacteria. These cocultures served as inocula for attempts to isolate pure cultures of butyrate-utilizing bacteria by use of hydrogenase-containing membrane fragments of Escherichia coli. After a 3-week incubation period, colonies appeared only in inoculated tubes that contained membrane fragments and butyrate.

  2. The aerobic activity of metronidazole against anaerobic bacteria.

    PubMed

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories.

  3. Conversion of cellulose to ethanol by mesophilic bacteria. Progress report and second year budget

    SciTech Connect

    Canale-Parola, E.

    1981-11-27

    Eight strains of anaerobic mesophilic cellulolytic bacteria were isolated from the mud of a freshwater pond and swamp. The isolation procedure involved serial dilution of the mud into cellulose-containing agar media. The isolates were rod-shaped and formed terminal, spherical to oval spores that swelled the sporangium. All strains fermented cellulose producing primarily ethanol, acetate, CO/sub 2/, and H/sub 2/. Growth and cellulose fermentation occurred between 22/sup 0/ and 40/sup 0/C, but not at 15/sup 0/ and 45/sup 0/C. The isolates differed from thermophilic cellulolytic clostridia not only in growth temperature range, but also because they fermented five-carbon products of plant polysaccharide hydrolysis, such as D-xylose and L-arabinose. Other fermentable substrates included xylan, D-glucose, cellobiose and, for three strains, D-galactose. None of the strains utilized maltose, sucrose, D-galacturonate, or amino acids as growth substrates. All isolates had a Gram-negative reaction and were motile by means of peritrichous flagella. The substrate utilization characteristics and the growth temperature range of the isolates indicate that these bacteria contribute to the anaerobic degradation of plant materials in the environments they inhabit. The isolates apparently represent a previously undescribed species of free-living cellulolytic clostridia.

  4. Semiquantitative determination of mesophilic, aerobic microorganisms in cocoa products using the Soleris NF-TVC method.

    PubMed

    Montei, Carolyn; McDougal, Susan; Mozola, Mark; Rice, Jennifer

    2014-01-01

    The Soleris Non-fermenting Total Viable Count method was previously validated for a wide variety of food products, including cocoa powder. A matrix extension study was conducted to validate the method for use with cocoa butter and cocoa liquor. Test samples included naturally contaminated cocoa liquor and cocoa butter inoculated with natural microbial flora derived from cocoa liquor. A probability of detection statistical model was used to compare Soleris results at multiple test thresholds (dilutions) with aerobic plate counts determined using the AOAC Official Method 966.23 dilution plating method. Results of the two methods were not statistically different at any dilution level in any of the three trials conducted. The Soleris method offers the advantage of results within 24 h, compared to the 48 h required by standard dilution plating methods.

  5. TEMPO TVC for the enumeration of aerobic mesophilic flora in foods: collaborative study.

    PubMed

    Crowley, Erin S; Bird, Patrick M; Torontali, Marianne K; Agin, James R; Goins, David G; Johnson, Ronald

    2009-01-01

    The automated system for enumeration of total viable count (TVC) in foods, TEMPO TVC, uses a dehydrated culture medium and an enumeration card containing 48 wells across 3 different dilutions for the automatic determination of the most probable number (MPN). The alternative method was compared in a multilaboratory collaborative study to AOAC Method 966.23 for determination of aerobic plate count for nondairy products and the Standard Methods for the Examination of Dairy Products (SMEDP) Standard Plate Count for dairy products. Five food types, raw ground beef, raw ground chicken, cooked whitefish fillets, bagged lettuce, and milk, were analyzed for TVC by 14 collaborating laboratories throughout the United States and Canada. Three lots of naturally contaminated food products representing a wide range of counts were tested for each of the 5 food types. The study demonstrated that the overall repeatability, reproducibility, and mean log counts of the TEMPO TVC method were statistically comparable to those of the 2 standard methods at the 5% level.

  6. Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions.

    PubMed

    Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E

    2010-07-01

    The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor.

  7. Temperature Sensitivity Conferred by ligA Alleles from Psychrophilic Bacteria upon Substitution in Mesophilic Bacteria and a Yeast Species

    PubMed Central

    Pankowski, Jarosław A.; Puckett, Stephanie M.

    2016-01-01

    We have assembled a collection of 13 psychrophilic ligA alleles that can serve as genetic elements for engineering mesophiles to a temperature-sensitive (TS) phenotype. When these ligA alleles were substituted into Francisella novicida, they conferred a TS phenotype with restrictive temperatures between 33 and 39°C. When the F. novicida ligA hybrid strains were plated above their restrictive temperatures, eight of them generated temperature-resistant variants. For two alleles, the mutations that led to temperature resistance clustered near the 5′ end of the gene, and the mutations increased the predicted strength of the ribosome binding site at least 3-fold. Four F. novicida ligA hybrid strains generated no temperature-resistant variants at a detectable level. These results suggest that multiple mutations are needed to create temperature-resistant variants of these ligA gene products. One ligA allele was isolated from a Colwellia species that has a maximal growth temperature of 12°C, and this allele supported growth of F. novicida only as a hybrid between the psychrophilic and the F. novicida ligA genes. However, the full psychrophilic gene alone supported the growth of Salmonella enterica, imparting a restrictive temperature of 27°C. We also tested two ligA alleles from two Pseudoalteromonas strains for their ability to support the viability of a Saccharomyces cerevisiae strain that lacked its essential gene, CDC9, encoding an ATP-dependent DNA ligase. In both cases, the psychrophilic bacterial alleles supported yeast viability and their expression generated TS phenotypes. This collection of ligA alleles should be useful in engineering bacteria, and possibly eukaryotic microbes, to predictable TS phenotypes. PMID:26773080

  8. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    PubMed

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-01

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  9. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    PubMed

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-01

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  10. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

    PubMed Central

    Takaya, Naoki; Catalan-Sakairi, Maria Antonina B.; Sakaguchi, Yasushi; Kato, Isao; Zhou, Zhemin; Shoun, Hirofumi

    2003-01-01

    Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3−) to N2 at rates of 0.9 and 0.03 μmol min−1 unit of optical density at 540 nm−1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 μmol liter−1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3− with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the β subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem. PMID:12788710

  11. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.

    PubMed

    Koch, Hanna; Galushko, Alexander; Albertsen, Mads; Schintlmeister, Arno; Gruber-Dorninger, Christiane; Lücker, Sebastian; Pelletier, Eric; Le Paslier, Denis; Spieck, Eva; Richter, Andreas; Nielsen, Per H; Wagner, Michael; Daims, Holger

    2014-08-29

    The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.

  12. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef.

    PubMed

    Ercolini, Danilo; Russo, Federica; Nasi, Antonella; Ferranti, Pasquale; Villani, Francesco

    2009-04-01

    Mesophilic and psychrotrophic populations from refrigerated meat were identified in this study, and the spoilage potential of microbial isolates in packaged beef was evaluated by analyzing the release of volatile organic compounds (VOC) by gas chromatography-mass spectrometry (GC/MS). Fifty mesophilic and twenty-nine psychrotrophic isolates were analyzed by random amplified polymorphic DNA-PCR, and representative strains were identified by 16S rRNA gene sequencing. Carnobacterium maltaromaticum and C. divergens were the species most frequently found in both mesophilic and psychrotrophic populations. Acinetobacter baumannii, Buttiauxella spp. and Serratia spp. were identified among the mesophilic isolates, while Pseudomonas spp. were commonly identified among the psychrotrophs. The isolates were further characterized for their growth at different temperatures and their proteolytic activity in vitro on meat proteins extracts at 7 degrees C. Selected proteolytic strains of Serratia proteamaculans, Pseudomonas fragi, and C. maltaromaticum were used to examine their spoilage potential in situ. Single strains of these species and mixtures of these strains were used to contaminate beef chops that were packed and stored at 7 degrees C. At time intervals up to 1 month, viable counts were determined, and VOC were identified by GC/MS. Generally, the VOC concentrations went to increase during the storage of the contaminated meats, and the profiles of the analyzed meat changed dramatically depending on the contaminating microbial species. About 100 volatiles were identified in the different contaminated samples. Among the detected volatiles, some specific molecules were identified only when the meat was contaminated by a specific microbial species. Compounds such as 2-ethyl-1-hexanol, 2-buten-1-ol, 2-hexyl-1-octanol, 2-nonanone, and 2-ethylhexanal were detectable only for C. maltaromaticum, which also produced the highest number of aldehydes, lactones, and sulfur compounds. The

  13. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria.

    PubMed

    Romano, P; Blázquez, M L; Alguacil, F J; Muñoz, J A; Ballester, A; González, F

    2001-03-01

    This study evaluates different bioleaching treatments of a molybdenite concentrate using mesophilic and thermophilic bacterial cultures. Further studies on the chemical leaching and the electrochemical behavior of the MoS(2) concentrate were carried out. Bioleaching tests showed a progressive removal of chalcopyrite from the molybdenite concentrate with an increase in temperature. Chemical leaching tests support the idea of an indirect attack of the concentrate. Electrochemical tests indicate that chalcopyrite dissolution is favored when molybdenite is present. Therefore, this type of bioleaching treatment could be applied to purify molybdenite flotation concentrates by selectively dissolving chalcopyrite. PMID:11257551

  14. Mesophilic and Psychrotrophic Bacteria from Meat and Their Spoilage Potential In Vitro and in Beef ▿

    PubMed Central

    Ercolini, Danilo; Russo, Federica; Nasi, Antonella; Ferranti, Pasquale; Villani, Francesco

    2009-01-01

    Mesophilic and psychrotrophic populations from refrigerated meat were identified in this study, and the spoilage potential of microbial isolates in packaged beef was evaluated by analyzing the release of volatile organic compounds (VOC) by gas chromatography-mass spectrometry (GC/MS). Fifty mesophilic and twenty-nine psychrotrophic isolates were analyzed by random amplified polymorphic DNA-PCR, and representative strains were identified by 16S rRNA gene sequencing. Carnobacterium maltaromaticum and C. divergens were the species most frequently found in both mesophilic and psychrotrophic populations. Acinetobacter baumannii, Buttiauxella spp. and Serratia spp. were identified among the mesophilic isolates, while Pseudomonas spp. were commonly identified among the psychrotrophs. The isolates were further characterized for their growth at different temperatures and their proteolytic activity in vitro on meat proteins extracts at 7°C. Selected proteolytic strains of Serratia proteamaculans, Pseudomonas fragi, and C. maltaromaticum were used to examine their spoilage potential in situ. Single strains of these species and mixtures of these strains were used to contaminate beef chops that were packed and stored at 7°C. At time intervals up to 1 month, viable counts were determined, and VOC were identified by GC/MS. Generally, the VOC concentrations went to increase during the storage of the contaminated meats, and the profiles of the analyzed meat changed dramatically depending on the contaminating microbial species. About 100 volatiles were identified in the different contaminated samples. Among the detected volatiles, some specific molecules were identified only when the meat was contaminated by a specific microbial species. Compounds such as 2-ethyl-1-hexanol, 2-buten-1-ol, 2-hexyl-1-octanol, 2-nonanone, and 2-ethylhexanal were detectable only for C. maltaromaticum, which also produced the highest number of aldehydes, lactones, and sulfur compounds. The highest

  15. Stability of the 'L12 stalk' in ribosomes from mesophilic and (hyper)thermophilic Archaea and Bacteria.

    PubMed

    Shcherbakov, D; Dontsova, M; Tribus, M; Garber, M; Piendl, W

    2006-01-01

    The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called 'L12 stalk' on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the 'L12 stalk'. The 'L12 stalk' plays a key role in the interaction of the ribosome with translation factors. In this study stalk complexes from mesophilic and (hyper)thermophilic species of the archaeal genus Methanococcus and from the Archaeon Sulfolobus solfataricus, as well as from the Bacteria Escherichia coli, Geobacillus stearothermophilus and Thermus thermophilus, were overproduced in E.coli and purified under non-denaturing conditions. Using filter-binding assays the affinities of the archaeal and bacterial complexes to their specific 23S rRNA target site were analyzed at different pH, ionic strength and temperature. Affinities of both archaeal and bacterial complexes for 23S rRNA vary by more than two orders of magnitude, correlating very well with the growth temperatures of the organisms. A cooperative effect of binding to 23S rRNA of protein L11 and the L10/L12(4) complex from mesophilic and thermophilic Archaea was shown to be temperature-dependent.

  16. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  17. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  18. Aerobic salivary bacteria in wild and captive Komodo dragons.

    PubMed

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals. PMID:12238371

  19. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.

    PubMed

    Hedrich, Sabrina; Johnson, D Barrie

    2013-12-01

    While many prokaryotic species are known to use hydrogen as an electron donor to support their growth, this trait has only previously been reported for two acidophilic bacteria, Hydrogenobaculum acidophilum (in the presence of reduced sulfur) and Acidithiobacillus (At.) ferrooxidans. To test the hypothesis that hydrogen may be utilized more widely by acidophilic bacteria, 38 strains of acidophilic bacteria, including representatives of 20 designated and four proposed species, were screened for their abilities to grow via the dissimilatory oxidation of hydrogen. Growth was demonstrated in several species of acidophiles that also use other inorganic electron donors (ferrous iron and sulfur) but in none of the obligately heterotrophic species tested. Strains of At. ferrooxidans, At. ferridurans and At. caldus, grew chemolithotrophically on hydrogen, though those of At. thiooxidans and At. ferrivorans did not. Growth was also observed with Sulfobacillus acidophilus, Sb. benefaciens and Sb. thermosulfidooxidans, though not with other iron-oxidizing Firmicutes. Similarly, Acidimicrobium ferrooxidans grew on hydrogen, closely related acidophilic actinobacteria did not. Growth yields of At. ferrooxidans and At. ferridurans grown aerobically on hydrogen (c. 10(10)  cells mL(-1) ) were far greater than typically obtained using other electron donors. Several species also grew anaerobically by coupling hydrogen oxidation to the reduction of ferric iron.

  20. Fluorescence In Situ Hybridization Using 16S rRNA-Targeted Oligonucleotides Reveals Localization of Methanogens and Selected Uncultured Bacteria in Mesophilic and Thermophilic Sludge Granules

    PubMed Central

    Sekiguchi, Yuji; Kamagata, Yoichi; Nakamura, Kazunori; Ohashi, Akiyoshi; Harada, Hideki

    1999-01-01

    16S rRNA-targeted in situ hybridization combined with confocal laser scanning microscopy was used to elucidate the spatial distribution of microbes within two types of methanogenic granular sludge, mesophilic (35°C) and thermophilic (55°C), in upflow anaerobic sludge blanket reactors fed with sucrose-, acetate-, and propionate-based artificial wastewater. The spatial organization of the microbes was visualized in thin sections of the granules by using fluorescent oligonucleotide probes specific to several phylogenetic groups of microbes. In situ hybridization with archaeal- and bacterial-domain probes within granule sections clearly showed that both mesophilic and thermophilic granules had layered structures and that the outer layer harbored mainly bacterial cells while the inner layer consisted mainly of archaeal cells. Methanosaeta-, Methanobacterium-, Methanospirillum-, and Methanosarcina-like cells were detected with oligonucleotide probes specific for the different groups of methanogens, and they were found to be localized inside the granules, in both types of which dominant methanogens were members of the genus Methanosaeta. For specific detection of bacteria which were previously detected by whole-microbial-community 16S ribosomal DNA (rDNA)-cloning analysis (Y. Sekiguchi, Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura, Microbiology 144:2655–2665, 1998) we designed probes specific for clonal 16S rDNAs related to unidentified green nonsulfur bacteria and clones related to Syntrophobacter species. The probe designed for the cluster closely related to Syntrophobacter species hybridized with coccoid cells in the inner layer of the mesophilic granule sections. The probe for the unidentified bacteria which were clustered with the green nonsulfur bacteria detected filamentous cells in the outermost layer of the thermophilic sludge granule sections. These results revealed the spatial organizations of methanogens and uncultivated bacteria and

  1. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota

    PubMed Central

    Stieglmeier, Michaela; Klingl, Andreas; Alves, Ricardo J. E.; Rittmann, Simon K.-M. R.; Melcher, Michael; Leisch, Nikolaus

    2014-01-01

    A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76T, was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6–0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76T had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76T had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76T is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85 % 16S rRNA gene sequence identity with the closest cultivated relative ‘Candidatus Nitrosopumilus maritimus’ SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81 % 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. ‘Korarchaeota’ and ‘Aigarchaeota’). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76T. The type strain of Nitrososphaera viennensis is strain EN76T ( = DSM 26422T = JMC 19564T). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov. PMID:24907263

  2. Evaluation of the petrifilm aerobic count plate for enumeration of aerobic marine bacteria from seawater and Caulerpa lentillifera.

    PubMed

    Kudaka, Jun; Horii, Toru; Tamanaha, Koji; Itokazu, Kiyomasa; Nakamura, Masaji; Taira, Katsuya; Nidaira, Minoru; Okano, Sho; Kitahara, Akio

    2010-08-01

    The enumeration and evaluation of the activity of marine bacteria are important in the food industry. However, detection of marine bacteria in seawater or seafood has not been easy. The Petrifilm aerobic count plate (ACP) is a ready-to-use alternative to the traditional enumeration media used for bacteria associated with food. The purpose of this study was to evaluate the usefulness of a simple detection and enumeration method utilizing the Petrifilm ACP for enumeration of aerobic marine bacteria from seawater and an edible seaweed, Caulerpa lentillifera. The efficiency of enumeration of total aerobic marine bacteria on Petrifilm ACP was compared with that using the spread plate method on marine agar with 80 seawater and 64 C. lentillifera samples. With sterile seawater as the diluent, a close correlation was observed between the method utilizing Petrifilm ACP and that utilizing the conventional marine agar (r=0.98 for seawater and 0.91 for C. lentillifera). The Petrifilm ACP method was simpler and less time-consuming than the conventional method. These results indicate that Petrifilm ACP is a suitable alternative to conventional marine agar for enumeration of marine microorganisms in seawater and C. lentillifera samples.

  3. Effect of different nitroheterocyclic compounds on aerobic, microaerophilic, and anaerobic bacteria.

    PubMed Central

    Hof, H; Ströder, J; Buisson, J P; Royer, R

    1986-01-01

    The antibacterial activities of different nitroheterocyclic compounds were assessed by an agar dilution method against aerobic, microaerophilic, and anaerobic bacteria. Nitronaphthofurans inhibited the multiplication of aerobic bacteria at low concentrations (MIC for 50% of strains tested [MIC50], 1 mg/liter). Under anaerobic growth conditions the MICs were found to be even lower. The rough, DNA repair-deficient mutants of Salmonella typhimurium were more susceptible, whereas nitroreductase-deficient strains were resistant. Microaerophilic campylobacter isolates could be divided into two groups, one of which was as susceptible as aerobic bacteria (MIC50, 1 mg/liter) and the other of which was more highly susceptible (MIC50, 0.015 mg/liter). All anaerobic bacteria tested were susceptible to nitronaphthofurans (MIC50, 0.125 mg/liter). Nitrothiazole exerted antibacterial activities similar to those of the nitronaphthofurans. Metronidazole, a nitroimidazole derivative, and nitrofurans were definitely less active. Nitrobenzofurans showed relatively high MICs. PMID:3800344

  4. Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Růziciková, H; Vránová, A

    2003-01-01

    The study is focused on the comparison of autothermal thermophilic aerobic digestion, thermophilic and mesophilic anaerobic digestion, based on long-term monitoring of all processes in full-scale wastewater treatment plants, with an emphasis on the efficiency in destroying pathogens. The hygienisation effect was evaluated as a removal of counts of indicator bacteria, thermotolerant coliforms and enterococci as CFU/g total sludge solids and a frequency of a positive Salmonella spp. detection. Both thermophilic technologies of municipal wastewater sludge stabilisation had the capability of producing sludge A biosolids suitable for agricultural land application when all operational parameters (mainly temperature, mixing and retention time) were stable and maintained at an appropriate level.

  5. Genes that move the window of viability of life: lessons from bacteria thriving at the cold extreme: mesophiles can be turned into extremophiles by substituting essential genes.

    PubMed

    de Lorenzo, Víctor

    2011-01-01

    Whether occurrence of life at the physicochemical extremes results from the entire adaptation of organisms to such settings or it originates from the action of a few genes has been debated for a long time. Recent evidence suggests that a limited number of functions suffice to change the predilection of microorganisms for radically different environmental scenarios. For instance, expression of a few genes from cold-loving bacteria in mesophilic hosts allows them to grow at much lower temperatures and become heat-sensitive. This has been exploited not only for constructing Escherichia coli strains able to grow at 5-10 °C (and thus optimised as hosts for heterologous gene expression) but also for designing vaccines based on temperature-sensitive pathogens. Occurrence of genes/functions that reframe the windows of viability may also ask for a revision of some concepts in microbial ecology and may provide new tools for engineering bacteria with a superior biotechnological performance.

  6. Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: influence of temperature and pH on the progress and efficiency of the process.

    PubMed

    Cibis, Edmund; Ryznar-Luty, Agnieszka; Krzywonos, Małgorzata; Lutosławski, Krzysztof; Miśkiewicz, Tadeusz

    2011-07-01

    The key issue in achieving a high extent of biodegradation of beet molasses vinasse is to establish the conditions for the assimilation of betaine, which is the main pollutant in this high-strength industrial effluent. In the present study, aerobic batch biodegradation was conducted over the temperature range of 27-63°C (step 9°C), at a pH of 6.5 and 8.0, using a mixed culture of bacteria of the genus Bacillus. Betaine was assimilated at 27-54°C and the pH of 8.0, as well as at 27-45°C and the pH of 6.5. The processes where betaine was assimilated produced a high BOD(5) removal, which exceeded 99.40% over the temperature range of 27-45°C at the pH of 8.0, as well as at 27°C and the pH of 6.5. Maximal COD removal (88.73%) was attained at 36°C and the pH of 6.5. The results indicate that the process can be applied on an industrial scale as the first step in the treatment of beet molasses vinasse. PMID:21367516

  7. Aerobic biodegradation of propylene glycol by soil bacteria.

    PubMed

    Toscano, Giuseppe; Cavalca, Lucia; Letizia Colarieti, M; Scelza, Rosalia; Scotti, Riccardo; Rao, Maria A; Andreoni, Vincenza; Ciccazzo, Sonia; Greco, Guido

    2013-09-01

    Propylene glycol (PG) is a main component of aircraft deicing fluids and its extensive use in Northern airports is a source of soil and groundwater contamination. Bacterial consortia able to grow on PG as sole carbon and energy source were selected from soil samples taken along the runways of Oslo Airport Gardermoen site (Norway). DGGE analysis of enrichment cultures showed that PG-degrading populations were mainly composed by Pseudomonas species, although Bacteroidetes were found, as well. Nineteen bacterial strains, able to grow on PG as sole carbon and energy source, were isolated and identified as different Pseudomonas species. Maximum specific growth rate of mixed cultures in the absence of nutrient limitation was 0.014 h(-1) at 4 °C. Substrate C:N:P molar ratios calculated on the basis of measured growth yields are in good agreement with the suggested values for biostimulation reported in literature. Therefore, the addition of nutrients is suggested as a suitable technique to sustain PG aerobic degradation at the maximum rate by autochthonous microorganisms of unsaturated soil profile.

  8. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary

    PubMed Central

    Stegman, Monica R; Cottrell, Matthew T; Kirchman, David L

    2014-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell 3H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect 3H-leucine incorporation in light–dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance. PMID:24824666

  9. Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes1.

    PubMed

    Olonitola, Olayeni Stephen; Fahrenfeld, Nicole; Pruden, Amy

    2015-05-01

    The effect of global antibiotic use practices in livestock on the emergence of antibiotic resistant pathogens is poorly understood. There is a paucity of data among African nations, which suffer from high rates of antibiotic resistant infections among the human population. Escherichia (29.5%), Staphylococcus (15.8%), and Proteus (15.79%) were the dominant bacterial genera isolated from chicken litter from four different farms in Zaria, Nigeria, all of which contain human pathogenic members. Escherichia isolates were uniformly susceptible to augmentin and cefuroxime, but resistant to sulfamethoxazole (54.5%), ampicillin (22.7%), ciprofloxacin (18.2%), cephalothin (13.6%) and gentamicin (13.6%). Staphylococcus isolates were susceptible to ciprofloxacin, gentamicin, and sulfamethoxazole, but resistant to tetracycline (86.7%), erythromycin (80%), clindamycin (60%), and penicillin (33.3%). Many of the isolates (65.4%) were resistant to multiple antibiotics, with a multiple antibiotic resistance index (MARI) ≥ 0.2. sul1, sul2, and vanA were the most commonly detected antibiotic resistance genes among the isolates. Chicken litter associated with antibiotic use and farming practices in Nigeria could be a public health concern given that the antibiotic resistant patterns among genera containing pathogens indicate the potential for antibiotic treatment failure. However, the MARI values were generally lower than reported for Escherichia coli from intensive poultry operations in industrial nations.

  10. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre.

    PubMed

    Cottrell, Matthew T; Mannino, Antonio; Kirchman, David L

    2006-01-01

    The abundance of aerobic anoxygenic phototrophic (AAP) bacteria, cyanobacteria, and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific Gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic Ocean but only 5% or less in the Pacific Ocean. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than that of Prochlorococcus spp. and 10-fold higher than that of Synechococcus spp. In contrast, Prochlorococcus spp. outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP bacterial genera (Erythrobacter and Roseobacter spp.). Concentrations of bacteriochlorophyll a (BChl a) were low ( approximately 1%) compared to those of chlorophyll a in the North Atlantic. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, the pigment content of AAP bacteria approached that of Prochlorococcus in shelf break water. Our results suggest that AAP bacteria can be quite abundant in some oceanic regimes and that their distribution in the water column is consistent with phototrophy.

  11. Aerobic Anoxygenic Phototrophic Bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Revised

    NASA Technical Reports Server (NTRS)

    Cottrell, Matthew T.; Mannino, Antonio; Kirchman, David L.

    2005-01-01

    The abundance of aerobic anoxygenic phototrophic (AM) bacteria, cyanobacteria and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic but only 5% or less in the Pacific. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than Prochlorococcus and 10-folder higher than Synechococcus. In contrast, Prochlorococcus outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. Concentrations of bacteriochlorophyll a (BChl a) were low (approx.1%) compared to chlorophyll a. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, in shelf break water the pigment content of AAP bacteria approached that of Prochlorococcus. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP genera (Erythrobacter and Roseobacter spp.). The distribution of AAP bacteria in the water column, which was similar in the Atlantic and the Pacific, was consistent with phototrophy.

  12. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection.

  13. Phylogenetically Diverse Aerobic Anoxygenic Phototrophic Bacteria Isolated from Epilithic Biofilms in Tama River, Japan

    PubMed Central

    Hirose, Setsuko; Matsuura, Katsumi; Haruta, Shin

    2016-01-01

    The diversity of aerobic anoxygenic phototrophic (AAP) bacteria in freshwater environments, particularly in rivers, has not been examined in as much detail as in ocean environments. In the present study, we investigated the phylogenetic and physiological diversities of AAP bacteria in biofilms that developed on submerged stones in a freshwater river using culture methods. The biofilms collected were homogenized and inoculated on solid media and incubated aerobically in the dark. Sixty-eight red-, pink-, yellow-, orange-, or brown-colored colonies were isolated, and, of these, 28 isolates contained the photosynthetic pigment, bacteriochlorophyll (BChl) a. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates were classified into 14 groups in 8 operational taxonomic units (OTUs) and distributed in the orders Rhodospirillales, Rhodobacterales, and Sphingomonadales of Alphaproteobacteria and in Betaproteobacteria. Physiological analyses confirmed that none of the representative isolates from any of the groups grew under anaerobic phototrophic conditions. Seven isolates in 4 OTUs showed a 16S rRNA gene sequence identity of 98.0% or less with any established species, suggesting the presence of previously undescribed species of AAP bacteria. Six isolates in 2 other OTUs had the closest relatives, which have not been reported to be AAP bacteria. Physiological comparisons among the isolates revealed differences in preferences for nutrient concentrations, BChl contents, and light-harvesting proteins. These results suggest that diverse and previously unknown AAP bacteria inhabit river biofilms. PMID:27453124

  14. High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean.

    PubMed

    Lami, Raphaël; Cottrell, Matthew T; Ras, Joséphine; Ulloa, Osvaldo; Obernosterer, Ingrid; Claustre, Hervé; Kirchman, David L; Lebaron, Philippe

    2007-07-01

    Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 x 10(5) cells ml(-1) and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 x 10(-3) microg liter(-1)) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.

  15. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria.

  16. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    PubMed

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria. PMID:26566932

  17. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    SciTech Connect

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  18. Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice.

    PubMed

    Panhwar, Q A; Radziah, O; Zaharah, A R; Sariah, M; Razi, I Mohd

    2011-09-01

    Use of phosphate-solubilizing bacteria (PSB) as inoculants has concurrently increased phosphorous uptake in plants and improved yields in several crop species. The ability of PSB to improve growth of aerobic rice (Oryza sativa L.) through enhanced phosphorus (P) uptake from Christmas island rock phosphate (RP) was studied in glasshouse experiments. Two isolated PSB strains; Bacillus spp. PSB9 and PSB16, were evaluated with RP treatments at 0, 30 and 60 kg ha(-1). Surface sterilized seeds of aerobic rice were planted in plastic pots containing 3 kg soil and the effect of treatments incorporated at planting were observed over 60 days of growth. The isolated PSB strains (PSB9 and PSB16) solubilized significantly high amounts of P (20.05-24.08 mg kg(-1)) compared to non-inoculated (19-23.10 mg kg(-1)) treatments. Significantly higher P solubilization (24.08 mg kg(-1)) and plant P uptake (5.31 mg plant(-1)) was observed with the PSB16 strain at the highest P level of 60 kg ha(-1). The higher amounts of soluble P in the soil solution increased P uptake in plants and resulted in higher plant biomass (21.48 g plant(-1)). PSB strains also increased plant height (80 cm) and improved root morphology in aerobic rice. The results showed that inoculation of aerobic rice with PSB improved phosphate solubilizing activity of incorporated RP.

  19. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application.

    PubMed

    Pepe, Olimpia; Ventorino, Valeria; Blaiotta, Giuseppe

    2013-07-01

    Although several reports are available concerning the composition and dynamics of the microflora during the composting of municipal solid wastes, little is known about the microbial diversity during the composting of agro-industrial refuse. For this reason, the first parts of this study included the quantification of microbial generic groups and of the main functional groups of C and N cycle during composting of agro-industrial refuse. After a generalized decrease observed during the initial phases, a new bacterial growth was observed in the final phase of the process. Ammonifiers and (N2)-fixing aerobic groups predominated outside of the piles whereas, nitrate-reducing group increased inside the piles during the first 23days of composting. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), showed an opposite trend of growth since ammonia oxidation decreased with the increase of the nitrite oxidation activity. Pectinolytics, amylolytics and aerobic cellulolytic were present in greater quantities and showed an upward trend in both the internal and external part of the heaps. Several free-living (N2)-fixing bacteria were molecularly identify as belonging especially to uncommon genera of nitrogen-fixing bacteria as Stenotrophomonas, Xanthomonas, Pseudomonas, Klebsiella, Alcaligenes, Achromobacter and Caulobacter. They were investigated for their ability to fix atmospheric nitrogen to employ as improvers of quality of compost. Some strains of Azotobacter chrococcum and Azotobacter salinestris were also tested. When different diazotrophic bacterial species were added in compost, the increase of total N ranged from 16% to 27% depending on the selected microbial strain being used. Such microorganisms may be used alone or in mixtures to provide an allocation of plant growth promoting rhizobacteria in soil.

  20. Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures.

    PubMed

    Østergaard, Nina Bjerre; Christiansen, Lasse Engbo; Dalgaard, Paw

    2015-07-01

    A stochastic model was developed for simultaneous growth of low numbers of Listeria monocytogenes and populations of lactic acid bacteria from the aroma producing cultures applied in cottage cheese. During more than two years, different batches of cottage cheese with aroma culture were analysed for pH, lactic acid concentration and initial concentration of lactic acid bacteria. These data and bootstrap sampling were used to represent product variability in the stochastic model. Lag time data were estimated from observed growth data (lactic acid bacteria) and from literature on L. monocytogenes single cells. These lag time data were expressed as relative lag times and included in growth models. A stochastic model was developed from an existing deterministic growth model including the effect of five environmental factors and inter-bacterial interaction [Østergaard, N.B, Eklöw, A and Dalgaard, P. 2014. Modelling the effect of lactic acid bacteria from starter- and aroma culture on growth of Listeria monocytogenes in cottage cheese. International Journal of Food Microbiology. 188, 15-25]. Growth of L. monocytogenes single cells, using lag time distributions corresponding to three different stress levels, was simulated. The simulated growth was subsequently compared to growth of low concentrations (0.4-1.0 CFU/g) of L. monocytogenes in cottage cheese, exposed to similar stresses, and in general a good agreement was observed. In addition, growth simulations were performed using population relative lag time distributions for L. monocytogenes as reported in literature. Comparably good predictions were obtained as for the simulations performed using lag time data for individual cells of L. monocytogenes. Therefore, when lag time data for individual cells are not available, it was suggested that relative lag time distributions for L. monocytogenes can be used as a qualified default assumption when simulating growth of low concentrations of L. monocytogenes. PMID:25847186

  1. Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T

    PubMed Central

    Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-01-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1′-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1′-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  2. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms.

  3. The effect of bacteria, enzymes and inulin on fermentation and aerobic stability of corn silage

    PubMed Central

    Peymanfar, S; Kermanshahi, RK

    2012-01-01

    Background and Objectives Ensiling is a conservation method for forage crops. It is based on the fact that anaerobe lactic acid bacteria (LAB) convert watersoluble carbohydrates into organic acids. Therefore, pH decreases and the forage is preserved. The aim of this study was to isolate special kinds of lactic acid bacteria from silage and to study the effect of bacteria, inulin and enzymes as silage additives on the fermentation and aerobic stability of the silage. Materials and Methods The heterofermentative LAB were isolated from corn silages in Broujerd, Iran and biochemically characterized. Acid tolerance was studied by exposure to acidic PBS and growth in bile salt was measured by the spectrophotometric method. Results The results of molecular analysis using 16SrDNA sequences showed that the isolates belonged to Lactobacillus and Enterococcus genera. To enhance stability in acidic environment and against bile salts, microencapsulation with Alginate and Chitosan was used. The Lactobacillus plantarum strains were used as control. The inoculants (1 × 107 cfu/g) alone or in combination with inulin or in combination with enzymes were added to chopped forages and ensiled in 1.5-L anaerobic jars. Conclusion Combination of the isolates Lactobacillus and Enterococcus with inulin and enzymes can improve the aerobic stability of corn silage. PMID:23205249

  4. Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites

    PubMed Central

    Coleman, Nicholas V.; Mattes, Timothy E.; Gossett, James M.; Spain, Jim C.

    2002-01-01

    Aerobic bacteria that grow on vinyl chloride (VC) have been isolated previously, but their diversity and distribution are largely unknown. It is also unclear whether such bacteria contribute to the natural attenuation of VC at chlorinated-ethene-contaminated sites. We detected aerobic VC biodegradation in 23 of 37 microcosms and enrichments inoculated with samples from various sites. Twelve different bacteria (11 Mycobacterium strains and 1 Nocardioides strain) capable of growth on VC as the sole carbon source were isolated, and 5 representative strains were examined further. All the isolates grew on ethene in addition to VC and contained VC-inducible ethene monooxygenase activity. The Mycobacterium strains (JS60, JS61, JS616, and JS617) all had similar growth yields (5.4 to 6.6 g of protein/mol), maximum specific growth rates (0.17 to 0.23 day−1), and maximum specific substrate utilization rates (9 to 16 nmol/min/mg of protein) with VC. The Nocardioides strain (JS614) had a higher growth yield (10.3 g of protein/mol), growth rate (0.71 day−1), and substrate utilization rate (43 nmol/min/mg of protein) with VC but was much more sensitive to VC starvation. Half-velocity constant (Ks) values for VC were between 0.5 and 3.2 μM, while Ks values for oxygen ranged from 0.03 to 0.3 mg/liter. Our results indicate that aerobic VC-degrading microorganisms (predominantly Mycobacterium strains) are widely distributed at sites contaminated with chlorinated solvents and are likely to be responsible for the natural attenuation of VC. PMID:12450841

  5. Evaluation of the 3M™ Petrifilm™ Rapid Aerobic Count Plate for the Enumeration of Aerobic Bacteria: Collaborative Study, First Action 2015.13.

    PubMed

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Jechorek, Robert

    2016-05-01

    The 3M™ Petrifilm™ Rapid Aerobic Count (RAC) Plate is a sample-ready culture medium system containing dual-sensor indicator technology for the rapid quantification of aerobic bacteria in food products. The 3M Petrifilm RAC Plate was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA BAM) Chapter 3 (Aerobic Plate Count) for the enumeration of aerobic bacteria in raw easy-peel shrimp and the Standard Methods for the Examination of Dairy Products (SMEDP) Chapter 6 (Standard Plate Count Method) for the enumeration of aerobic bacteria in pasteurized skim milk and instant nonfat dry milk (instant NFDM). The 3M Petrifilm RAC Plate was evaluated using a paired study design in a multilaboratory collaborative study following current AOAC validation guidelines. Three target contamination levels (low, 10-100 CFU/g; medium, 100-1000 CFU/g; and high 1000-10 000 CFU/g) were evaluated for naturally occurring aerobic microflora for each matrix. For raw easy-peel shrimp, duplicate 3M Petrifilm RAC Plates were enumerated after 24 ± 2 h incubation at both 32 and 35°C. Pasteurized skim milk 3M Petrifilm RAC Plates were enumerated after 24 ± 2 h incubation at 32°C, and instant NFDM 3M Petrifilm RAC Plates were enumerated after 48 ± 3 h incubation at 32°C. No statistical difference was observed between 3M Petrifilm RAC Plate and FDA BAM or SMEDP reference methods for each contamination level.

  6. Evaluation of the 3M™ Petrifilm™ Rapid Aerobic Count Plate for the Enumeration of Aerobic Bacteria: Collaborative Study, First Action 2015.13.

    PubMed

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Jechorek, Robert

    2016-05-01

    The 3M™ Petrifilm™ Rapid Aerobic Count (RAC) Plate is a sample-ready culture medium system containing dual-sensor indicator technology for the rapid quantification of aerobic bacteria in food products. The 3M Petrifilm RAC Plate was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA BAM) Chapter 3 (Aerobic Plate Count) for the enumeration of aerobic bacteria in raw easy-peel shrimp and the Standard Methods for the Examination of Dairy Products (SMEDP) Chapter 6 (Standard Plate Count Method) for the enumeration of aerobic bacteria in pasteurized skim milk and instant nonfat dry milk (instant NFDM). The 3M Petrifilm RAC Plate was evaluated using a paired study design in a multilaboratory collaborative study following current AOAC validation guidelines. Three target contamination levels (low, 10-100 CFU/g; medium, 100-1000 CFU/g; and high 1000-10 000 CFU/g) were evaluated for naturally occurring aerobic microflora for each matrix. For raw easy-peel shrimp, duplicate 3M Petrifilm RAC Plates were enumerated after 24 ± 2 h incubation at both 32 and 35°C. Pasteurized skim milk 3M Petrifilm RAC Plates were enumerated after 24 ± 2 h incubation at 32°C, and instant NFDM 3M Petrifilm RAC Plates were enumerated after 48 ± 3 h incubation at 32°C. No statistical difference was observed between 3M Petrifilm RAC Plate and FDA BAM or SMEDP reference methods for each contamination level. PMID:27297837

  7. Population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland and dryland rice

    SciTech Connect

    Barraquio, W.L.; De Guzman, M.R.; Barrion, M.; Watanahe, I.

    1982-01-01

    Nitrogen-fixing activity and populations of nitrogen-fixing bacteria associated with two varieties of rice grown in dryland and wetland conditions were measured at various growth stages during the dry season. Acetylene reduction activities were measured both in the field and for the hydroponically grown rice, which was transferred from the field to water culture 1 day before assay. The activities measured by both methods were higher in wetland than in dryland rice. The population of nitrogen-fixing heterotrophic bacteria associated with rhizosphere soil, root, and basal shoots was determined by the most probable number method with semisolid glucose-yeast extract and semisolid malate-yeast extract media. The number of nitrogen-fixing bacteria was higher in wetland conditions than in dryland conditions. The difference between two conditions was most pronounced in the population associated with the basal shoot. The glucose medium gave higher counts than did the malate medium. Colonies were picked from tryptic soy agar plates, and their nitrogen-fixing activity was tested on a semisolid glucose-yeast extract medium. The incidence of nitrogen-fixing bacteria among aerobic heterotrophic bacteria in association with rhizosphere soil, root, and basal shoots was much lower in dryland rice than in wetland rice. (Refs. 11).

  8. Role of ammonia-oxidizing bacteria in micropollutant removal from wastewater with aerobic granular sludge.

    PubMed

    Margot, Jonas; Lochmatter, Samuel; Barry, D A; Holliger, Christof

    2016-01-01

    Nitrifying wastewater treatment plants (WWTPs) are more efficient than non-nitrifying WWTPs to remove several micropollutants such as pharmaceuticals and pesticides. This may be related to the activity of nitrifying organisms, such as ammonia-oxidizing bacteria (AOBs), which could possibly co-metabolically oxidize micropollutants with their ammonia monooxygenase (AMO). The role of AOBs in micropollutant removal was investigated with aerobic granular sludge (AGS), a promising technology for municipal WWTPs. Two identical laboratory-scale AGS sequencing batch reactors (AGS-SBRs) were operated with or without nitrification (inhibition of AMOs) to assess their potential for micropollutant removal. Of the 36 micropollutants studied at 1 μg l(-1) in synthetic wastewater, nine were over 80% removed, but 17 were eliminated by less than 20%. Five substances (bisphenol A, naproxen, irgarol, terbutryn and iohexol) were removed better in the reactor with nitrification, probably due to co-oxidation catalysed by AMOs. However, for the removal of all other micropollutants, AOBs did not seem to play a significant role. Many compounds were better removed in aerobic condition, suggesting that aerobic heterotrophic organisms were involved in the degradation. As the AGS-SBRs did not favour the growth of such organisms, their potential for micropollutant removal appeared to be lower than that of conventional nitrifying WWTPs. PMID:26877039

  9. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa.

    PubMed

    Olaniran, Ademola O; Pillay, Dorsamy; Pillay, Balakrishna

    2008-08-01

    The widespread use of tetrachloroethene (PCE) and trichloroethene (TCE) as dry cleaning solvents and degreasing agents for military and industrial applications has resulted in significant environmental contamination worldwide. Anaerobic biotransformation of PCE and TCE through reductive dechlorination frequently lead to the accumulation of dichloroethenes (DCEs), thus limiting the use of reductive dechlorination for the biotransformation of the compounds. In this study, seven bacteria indigenous to contaminated sites in Africa were characterized for DCE degradation under aerobic conditions. The specific growth rate constants of the bacterial isolates ranged between 0.346-0.552 d(-1) and 0.461-0.667 d(-1) in cis-DCE and trans-DCE, respectively. Gas chromatographic analysis revealed that up to 75% of the compounds were degraded within seven days with the degradation rate constants ranging between 0.167 and 0.198 d(-1). The two compounds were also observed to be significantly degraded, simultaneously, rather than sequentially, when present as a mixture. Phylogenetic analysis of the 16S rRNA gene sequences of the bacterial isolates revealed their identity as well as their relation to other environmentally-important bacteria. The observed biodegradation of DCEs may contribute to PCE and TCE removal at the aerobic fringe of groundwater plumes undergoing reductive dechlorination in contaminated sites. PMID:18635246

  10. Bacteriuria screening and antimicrobial susceptibility testing of aerobic bacteria by an electrochemical method.

    PubMed

    Strassburger, J; Tiller, F W

    1984-04-01

    A method is described for detecting significant bacteriuria and determination of minimal inhibition concentrations (MIC's) of aerobically growing bacteria by using electrochemical electrodes to measure changes of oxygen tensions in liquid nutrient media resulting from bacterial growth. Urine specimens (n = 577) were screened electrochemically, parallel investigations were performed by standard culture methods and by photometrical measurements. All the specimens showing significant bacteriuria in standard culture were selected within 3.5 h by the electrochemical technique. An oxygen index OI was introduced which quantitatively reflects changes in oxygen tension of nutrient media during growth. OI shows good agreement with extinction and light scattering indices, respectively. On the basis of OI as a parameter of inhibited and uninhibited growth a correlation between OI and MIC's of aerobically growing bacteria was found. The electrochemical method provides an useful aid for rapid, preliminary antimicrobial susceptibility testing and definite bacteriuria screening. The application of this method in bacteriological urine diagnostics significantly reduces laboratory work and costs, and can be recommended for the screening of urine specimens to exclude negative specimens from further processing.

  11. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa.

    PubMed

    Olaniran, Ademola O; Pillay, Dorsamy; Pillay, Balakrishna

    2008-08-01

    The widespread use of tetrachloroethene (PCE) and trichloroethene (TCE) as dry cleaning solvents and degreasing agents for military and industrial applications has resulted in significant environmental contamination worldwide. Anaerobic biotransformation of PCE and TCE through reductive dechlorination frequently lead to the accumulation of dichloroethenes (DCEs), thus limiting the use of reductive dechlorination for the biotransformation of the compounds. In this study, seven bacteria indigenous to contaminated sites in Africa were characterized for DCE degradation under aerobic conditions. The specific growth rate constants of the bacterial isolates ranged between 0.346-0.552 d(-1) and 0.461-0.667 d(-1) in cis-DCE and trans-DCE, respectively. Gas chromatographic analysis revealed that up to 75% of the compounds were degraded within seven days with the degradation rate constants ranging between 0.167 and 0.198 d(-1). The two compounds were also observed to be significantly degraded, simultaneously, rather than sequentially, when present as a mixture. Phylogenetic analysis of the 16S rRNA gene sequences of the bacterial isolates revealed their identity as well as their relation to other environmentally-important bacteria. The observed biodegradation of DCEs may contribute to PCE and TCE removal at the aerobic fringe of groundwater plumes undergoing reductive dechlorination in contaminated sites.

  12. Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the pacific ocean.

    PubMed

    Ritchie, Anna E; Johnson, Zackary I

    2012-04-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities.

  13. Purple Sulfur Bacteria Control the Growth of Aerobic Heterotrophic Bacterioplankton in a Meromictic Salt Lake

    PubMed Central

    Overmann, J.; Beatty, J. T.; Hall, K. J.

    1996-01-01

    In meromictic Mahoney Lake, British Columbia, Canada, the heterotrophic bacterial production in the mixolimnion exceeded concomitant primary production by a factor of 7. Bacterial growth rates were correlated neither to primary production nor to the amount of chlorophyll a. Both results indicate an uncoupling of bacteria and phytoplankton. In the chemocline of the lake, an extremely dense population of the purple sulfur bacterium Amoebobacter purpureus is present year round. We investigated whether anoxygenic phototrophs are significant for the growth of aerobic bacterioplankton in the overlaying water. Bacterial growth rates in the mixolimnion were limited by inorganic phosphorus or nitrogen most of the time, and the biomass of heterotrophic bacteria did not increase until, in autumn, 86% of the cells of A. purpureus appeared in the mixolimnion because of their reduced buoyant density. The increase in heterotrophic bacterial biomass, soluble phosphorus concentrations below the detection limit, and an extraordinarily high activity of alkaline phosphatase in the mixolimnion indicate a rapid liberation of organically bound phosphorus from A. purpureus cells accompanied by a simultaneous incorporation into heterotrophic bacterioplankton. High concentrations of allochthonously derived dissolved organic carbon (mean, 60 mg of C(middot)liter(sup-1)) were measured in the lake water. In Mahoney Lake, liberation of phosphorus from upwelling purple sulfur bacteria and degradation of allochthonous dissolved organic carbon as an additional carbon source render heterotrophic bacterial production largely independent of the photosynthesis of phytoplankton. A recycling of inorganic nutrients via phototrophic bacteria also appears to be relevant in other lakes with anoxic bottom waters. PMID:16535399

  14. Affinity of ribosomal protein S8 from mesophilic and (hyper)thermophilic archaea and bacteria for 16S rRNA correlates with the growth temperatures of the organisms.

    PubMed

    Gruber, Thomas; Köhrer, Caroline; Lung, Birgit; Shcherbakov, Dmitri; Piendl, Wolfgang

    2003-08-14

    The ribosomal protein S8 plays a pivotal role in the assembly of the 30S ribosomal subunit. Using filter binding assays, S8 proteins from mesophilic, and (hyper)thermophilic species of the archaeal genus Methanococcus and from the bacteria Escherichia coli and Thermus thermophilus were tested for their affinity to their specific 16S rRNA target site. S8 proteins from hyperthermophiles exhibit a 100-fold and S8 from thermophiles exhibit a 10-fold higher affinity than their mesophilic counterparts. Thus, there is a striking correlation of affinity of S8 proteins for their specific RNA binding site and the optimal growth temperatures of the respective organisms. The stability of individual rRNA-protein complexes might modulate the stability of the ribosome, providing a maximum of thermostability and flexibility at the growth temperature of the organism.

  15. [Bioaugmentation for shortcut nitrification in SBR treating for sewage containing sea water by nitrification-aerobic denitrification bacteria].

    PubMed

    Qu, Yang; Zhang, Pei-Yu; Yu, De-Shuang; Guo, Sha-Sha; Yang, Rui-Xia

    2010-10-01

    The feasibility of heterotrophic nitrification-aerobic denitrification bacteria applied in shortcut nitrification system was studied. Four heterotrophic nitrification-aerobic denitrification strains mixed with halotolerant activated sludge was added into SBR in order to test their bioaugmentation ability for shortcut nitrification system, which was treating for sewage containing sea water, and the difference between bioaugmentation system and original system was compared. The results showed that the maximum accumulation of NO2(-) -N in bioaugmentation system was 34.92% lower than that in original system, and the time of maximum accumulation of NO2(-) -N was 2 hours earlier than that in original system. The TN and COD was continuously decreasing in the later phase of nitrification in bioaugmentation system, and finally the removal rate of TN and COD were 15.24% and 5.39% higher than that in original system respectively, as well as the removal rate of NH4(+) -N and the nitrosation rate were 6.85% and 14.47% higher than that in original system. And the pH was 0.46 higher than that in original system, whereas the ORP was 25.84 mV lower. It was considered that the function of heterotrophic nitrification-aerobic denitrification bacteria should strengthen the performance of bioaugmentation system. When the seawater content raised to 70%, the stability of bioaugmentation system was better than that in original system, and the current that transforming shortcut nitrification to complete nitrification was restrained by heterotrophic nitrification-aerobic denitrification bacteria effectively. The number of heterotrophic nitrification-aerobic denitrification bacteria was changed when bioaugmentation system and original system ran in different phase and the bacteria had a great loss with the discharge of activated sludge. These results may provide a theoretical reference about the feasibility that the heterotrophic nitrification-aerobic denitrification bacteria applied in

  16. In vitro susceptibility tests for cationic peptides: comparison of broth microdilution methods for bacteria that grow aerobically.

    PubMed

    Giacometti, A; Cirioni, O; Barchiesi, F; Del Prete, M S; Fortuna, M; Caselli, F; Scalise, G

    2000-06-01

    The in vitro susceptibilities of 90 clinical isolates of gram-positive and gram-negative aerobic bacteria to six cationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated by two broth microdilution methods. The first method was performed according to the procedures outlined by the National Committee for Clinical Laboratory Standards for bacteria that grow aerobically, while the second was performed according to the procedures recently proposed by the R. E. W. Hancock laboratory for testing antimicrobial peptides. Overall, the first method produced MICs two- and fourfold higher than the second method. PMID:10817731

  17. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    PubMed

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture.

  18. Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria.

    PubMed

    Reshetnikov, Alexander S; Khmelenina, Valentina N; Mustakhimov, Ildar I; Kalyuzhnaya, Marina; Lidstrom, Mary; Trotsenko, Yuri A

    2011-11-01

    The genes of ectoine biosynthesis pathway were identified in six species of aerobic, slightly halophilic bacteria utilizing methane, methanol or methylamine. Two types of ectoine gene cluster organization were revealed in the methylotrophs. The gene cluster ectABC coding for diaminobutyric acid (DABA) acetyltransferase (EctA), DABA aminotransferase (EctB) and ectoine synthase (EctC) was found in methanotrophs Methylobacter marinus 7C and Methylomicrobium kenyense AMO1(T). In methanotroph Methylomicrobium alcaliphilum ML1, methanol-utilizers Methylophaga thalassica 33146(T) , Methylophaga alcalica M8 and methylamine-utilizer Methylarcula marina h1(T), the genes forming the ectABC-ask operon are preceded by ectR, encoding a putative transcriptional regulatory protein EctR. Phylogenetic relationships of the Ect proteins do not correlate with phylogenetic affiliation of the strains, thus implying that the ability of methylotrophs to produce ectoine is most likely the result of a horizontal transfer event.

  19. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter.

    PubMed

    Li, Lili; Heidemann Olsen, Rikke; Ye, Lei; Yan, He; Nie, Qing; Meng, Hecheng; Shi, Lei

    2016-04-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies. PMID:27052863

  20. An initial investigation into the ecology of culturable aerobic postmortem bacteria.

    PubMed

    Chun, Lauren P; Miguel, Marcus J; Junkins, Emily N; Forbes, Shari L; Carter, David O

    2015-12-01

    Postmortem microorganisms are increasingly recognized for their potential to serve as physical evidence. Yet, we still understand little about the ecology of postmortem microbes, particularly those associated with the skin and larval masses. We conducted an experiment to characterize microbiological and chemical properties of decomposing swine (Sus scrofa domesticus) carcasses on the island of Oahu, Hawaii, USA, during June 2013. Bacteria were collected from the head, limb, and larval mass during the initial 145h of decomposition. We also measured the pH, temperature, and oxidation-reduction potential of larval masses in situ. Bacteria were cultured aerobically on Standard Nutrient Agar at 22°C and identified using protein or genetic signals. Carcass decomposition followed a typical sigmoidal pattern and associated bacterial communities differed by sampling location and time since death, although all communities were dominated by phyla Actinobacteria, Firmicutes, and Proteobacteria. Larval masses were reducing environments (~-200mV) of neutral pH (6.5-7.5) and high temperature (35°C-40°C). We recommend that culturable postmortem and larval mass microbiology and chemistry be investigated in more detail, as it has potential to complement culture-independent studies and serve as a rapid estimate of PMI. PMID:26654073

  1. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    PubMed

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  2. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria.

    PubMed

    Schmid, Markus C; Hooper, Alan B; Klotz, Martin G; Woebken, Dagmar; Lam, Phyllis; Kuypers, Marcel M M; Pommerening-Roeser, Andreas; Op den Camp, Huub J M; Jetten, Mike S M

    2008-11-01

    Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N(2). While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria.

  3. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  4. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker

    PubMed Central

    Knief, Claudia

    2015-01-01

    Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing “unknown methanotrophic bacteria.” This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities. PMID:26696968

  5. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  6. Isolation of Optically Targeted Single Bacteria by Application of Fluidic Force Microscopy to Aerobic Anoxygenic Phototrophs from the Phyllosphere

    PubMed Central

    Stiefel, Philipp; Zambelli, Tomaso

    2013-01-01

    In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources. PMID:23770907

  7. Organic Osmolytes in Aerobic Bacteria from Mono Lake, an Alkaline, Moderately Hypersaline Environment

    PubMed Central

    Ciulla, R. A.; Diaz, M. R.; Taylor, B. F.; Roberts, M. F.

    1997-01-01

    The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, Calif., an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress. PMID:16535487

  8. Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia.

    PubMed

    Liebner, Susanne; Rublack, Katja; Stuehrmann, Torben; Wagner, Dirk

    2009-01-01

    With this study, we present first data on the diversity of aerobic methanotrophic bacteria (MOB) in an Arctic permafrost active layer soil of the Lena Delta, Siberia. Applying denaturing gradient gel electrophoresis and cloning of 16S ribosomal ribonucleic acid (rRNA) and pmoA gene fragments of active layer samples, we found a general restriction of the methanotrophic diversity to sequences closely related to the genera Methylobacter and Methylosarcina, both type I MOB. In contrast, we revealed a distinct species-level diversity. Based on phylogenetic analysis of the 16S rRNA gene, two new clusters of MOB specific for the permafrost active layer soil of this study were found. In total, 8 out of 13 operational taxonomic units detected belong to these clusters. Members of these clusters were closely related to Methylobacter psychrophilus and Methylobacter tundripaludum, both isolated from Arctic environments. A dominance of MOB closely related to M. psychrophilus and M. tundripaludum was confirmed by an additional pmoA gene analysis. We used diversity indices such as the Shannon diversity index or the Chao1 richness estimator in order to compare the MOB community near the surface and near the permafrost table. We determined a similar diversity of the MOB community in both depths and suggest that it is not influenced by the extreme physical and geochemical gradients in the active layer. PMID:18592300

  9. Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma.

    PubMed

    Caton, T M; Witte, L R; Ngyuen, H D; Buchheim, J A; Buchheim, M A; Schneegurt, M A

    2004-11-01

    The Salt Plains National Wildlife Refuge (SPNWR) near Cherokee, Oklahoma, contains a barren salt flat where Permian brine rises to the surface and evaporates under dry conditions to leave a crust of white salt. Rainfall events dissolve the salt crust and create ephemeral streams and ponds. The rapidly changing salinity and high surface temperatures, salinity, and UV exposure make this an extreme environment. The Salt Plains Microbial Observatory (SPMO) examined the soil microbial community of this habitat using classic enrichment and isolation techniques and phylogenetic rDNA studies. Rich growth media have been emphasized that differ in total salt concentration and composition. Aerobic heterotrophic enrichments were performed under a variety of conditions. Heterotrophic enrichments and dilution plates have generated 105 bacterial isolates, representing 46 phylotypes. The bacterial isolates have been characterized phenotypically and subjected to rDNA sequencing and phylogenetic analyses. Fast-growing isolates obtained from enrichments with 10% salt are predominantly from the gamma subgroup of the Proteobacteria and from the low GC Gram-positive cluster. Several different areas on the salt flats have yielded a variety of isolates from the Gram-negative genera Halomonas, Idiomarina, Salinivibrio, and Bacteroidetes. Gram-positive bacteria are well represented in the culture collection including members of the Bacillus, Salibacillus, Oceanobacillus, and Halobacillus. PMID:15696379

  10. Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat.

    PubMed Central

    Nold, S C; Kopczynski, E D; Ward, D M

    1996-01-01

    The diversity of aerobic chemoorganotrophic bacteria inhabiting the Octopus Spring cyanobacterial mat community (Yellowstone National Park) was examined by using serial-dilution enrichment culture and a variety of enrichment conditions to cultivate the numerically significant microbial populations. The most abundant bacterial populations cultivated from dilutions to extinction were obtained from enrichment flasks which contained 9.0 x 10(2) primary producer (Synechococcus spp.) cells in the inoculum. Two isolates exhibited 16S rRNA nucleotide sequences typical of beta-proteobacteria. One of these isolates contained a 16S rRNA sequence identical to a sequence type previously observed in the mat by molecular retrieval techniques. Both are distantly related to a new sequence directly retrieved from the mat and contributed by a beta-proteobacterial community member. Phenotypically diverse gram-positive isolates genetically similar to Bacillus flavothermus were obtained from a variety of dilutions and enrichment types. These isolates exhibited identical 16S rRNA nucleotide sequences through a variable region of the molecule. Of the three unique sequences observed, only one had been previously retrieved from the mat, illustrating both the inability of the cultivation methods to describe the composition of a microbial community and the limitations of the ability of molecular retrieval techniques to describe populations which may be less abundant in microbial communities. PMID:8899976

  11. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. PMID:26601890

  12. Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma.

    PubMed

    Caton, T M; Witte, L R; Ngyuen, H D; Buchheim, J A; Buchheim, M A; Schneegurt, M A

    2004-11-01

    The Salt Plains National Wildlife Refuge (SPNWR) near Cherokee, Oklahoma, contains a barren salt flat where Permian brine rises to the surface and evaporates under dry conditions to leave a crust of white salt. Rainfall events dissolve the salt crust and create ephemeral streams and ponds. The rapidly changing salinity and high surface temperatures, salinity, and UV exposure make this an extreme environment. The Salt Plains Microbial Observatory (SPMO) examined the soil microbial community of this habitat using classic enrichment and isolation techniques and phylogenetic rDNA studies. Rich growth media have been emphasized that differ in total salt concentration and composition. Aerobic heterotrophic enrichments were performed under a variety of conditions. Heterotrophic enrichments and dilution plates have generated 105 bacterial isolates, representing 46 phylotypes. The bacterial isolates have been characterized phenotypically and subjected to rDNA sequencing and phylogenetic analyses. Fast-growing isolates obtained from enrichments with 10% salt are predominantly from the gamma subgroup of the Proteobacteria and from the low GC Gram-positive cluster. Several different areas on the salt flats have yielded a variety of isolates from the Gram-negative genera Halomonas, Idiomarina, Salinivibrio, and Bacteroidetes. Gram-positive bacteria are well represented in the culture collection including members of the Bacillus, Salibacillus, Oceanobacillus, and Halobacillus.

  13. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill.

  14. Detection of alternative nitrogenases in aerobic gram-negative nitrogen-fixing bacteria.

    PubMed Central

    Fallik, E; Chan, Y K; Robson, R L

    1991-01-01

    Strains of aerobic, microaerobic, nonsymbiotic, and symbiotic dinitrogen-fixing bacteria were screened for the presence of alternative nitrogenase (N2ase) genes by DNA hybridization between genomic DNA and DNA encoding structural genes for components 1 of three different enzymes. A nifDK gene probe was used as a control to test for the presence of the commonly occurring Mo-Fe N2ase, a vnfDGK gene probe was used to show the presence of V-Fe N2ase, and an anfDGK probe was used to detect Fe N2ase. Hitherto, all three enzymes have been identified in Azotobacter vinelandii OP, and all but the Fe N2ase are present in Azotobacter chroococcum ATCC 4412 (MCD1). Mo-Fe N2ase and V-Fe N2ase structural genes only were confirmed in this strain and in two other strains of A. chroococcum (ATCC 480 and ATCC 9043). A similar pattern was observed with Azotobacter beijerinckii ATCC 19360 and Azotobacter nigricans ATCC 35009. Genes for all three systems are apparently present in two strains of Azotobacter paspali (ATCC 23367 and ATCC 23833) and also in Azomonas agilis ATCC 7494. There was no good evidence for the existence of any genes other than Mo-Fe N2ase structural genes in several Rhizobium meliloti strains, cowpea Rhizobium strain 32H1, or Bradyrhizobium japonicum. Nitrogenase and nitrogenase genes in Azorhizobium caulinodans behaved in an intermediate fashion, showing (i) the formation of ethane from acetylene under Mo starvation, a characteristic of alternative nitrogenases, and (ii) a surprising degree of cross-hybridization to the vnfDGK, but not the anfDGK, probe. vnfDGK- and anfDGK-like sequences were not detected in two saccharolytic Pseudomonas species or Azospirillum brasilense Sp7. The occurrence of alternative N2ases seems restricted to members of the family Azotobacteraceae among the aerobic and microaerobic diazotrophs tested, suggesting that an ability to cope with O2 when fixing N2 may be an important factor influencing the distribution of alternative nitrogenases

  15. Functional Relationship Between Phytoplankton and Aerobic Anoxygenic Photosynthetic Bacteria: Modes of Coexistence

    NASA Astrophysics Data System (ADS)

    Kolber, Z. S.; Haffa, A.; Klimov, D.

    2006-12-01

    Aerobic Anoxygenic Photosynthetic Bacteria (AAPs) are ubiquitously distributed in the upper ocean. Although they contain bacteriochlorophyll a (BChla), the main absorption bands in the near UV (370 nm) and infrared (800-850 nm) make this pigment impractical in light harvesting below the first few meters of the water column. Instead, they utilize carotenoids as major light harvesting pigments. Since these carotenoids absorb in the 430-550 nm range, phytoplankton and AAPs utilize a similar portion of the available light spectrum. As AAPs cannot utilize water as the electron donor, they transfer electrons between a range of organic/inorganic electron donors and electron acceptors, thus significantly participating in the redox cycle in the upper ocean. We have measured the vertical distribution and photosynthetic properties of both phytoplankton and AAPs in a highly oligotrophic region 800 km SW of Monterey Bay (34N, 129W), and we have consistently observed the presence of a BChla maximum about 30 to 40 meters above the chlorophyll maximum, indicating that phytoplankton and AAPs occupy different ecological niches in the water column. However, the abundance of AAPs generally displayed a maximum at dawn and a minimum at the dusk, indicating a high level of mortality. This diel cycle was observed in 5 micron and 3 micron size fractions, indicating active grazing by small protists. Incubation experiments with natural, mixed population of AAPs and phytoplankton results in an unusually high accumulation of AAPs in DCMU-treated samples, indicating that pigmented protists do contribute significantly to AAP grazing in a tightly-controlled microbial loop. On the other hand, AAP incubations in pure cultures indicate that they biomineralize sulfur, thus affecting the sulfur cycle. All of these observations indicate that the role of AAPs in the upper ocean ecology is defined by their relationship with phototrophic and heterotrophic communities, rather than by their relative

  16. Isolation and preliminary characterization of aerobic heterotrophic bacteria isolated from sub-glacial Antarctic water samples

    NASA Astrophysics Data System (ADS)

    Palma-Alvarez, R.; Lanoil, B. D.

    2002-05-01

    Recently, evidence has been accumulating supporting the presence of biogeochemically active microbial communities in cold, dark, and isolated subglacial environments. These environments are important sites of rock weathering, provide insight into global biogeochemistry during glacial periods, and are potential analogues for ancient Snowball Earth events and the ice-covered oceans of the Jovian moon, Europa. However, the extent of microbial influence on subglacial geochemistry is unclear. As part of an ongoing project to address the extent of that influence, we isolated aerobic heterotrophic bacteria from sediment-laden water from beneath Ice Stream C, a fast moving region of the Western Antarctic Ice Sheet (WAIS). Plates of a standard environmental media (R2A) were prepared at three dilutions (1x, 0.1x, 0.01x) and inoculated in duplicate in a HEPA-filtered environment. One replicate was incubated at 4oC, the other at room temperature in the dark. All plates showed abundant growth, although colony size was positively correlated with media concentration. One-hundred eighty-one colonies total were picked, grown in liquid R2A (1x concentration) at the same initial temperature, and characterized for Gram character, cell shape, cell size, and production of a diffusible yellow pigment with similar chemical characteristics to the siderophore, pyoverdine. Based on these characters, a moderate level of diversity was observed in these isolates. A few types dominated the samples, with several others found only rarely. Further characterization of these isolates is ongoing, and results of these studies and their possible implications for sub-glacial biogeochemistry are discussed.

  17. Phylogenetic diversity and activity of aerobic heterotrophic bacteria from a hypersaline oil-polluted microbial mat.

    PubMed

    Abed, Raeid M M; Zein, Burhanuddin; Al-Thukair, Assad; de Beer, Dirk

    2007-06-01

    The diversity and function of aerobic heterotrophic bacteria (AHB) in cyanobacterial mats have been largely overlooked. We used culture-dependent and molecular techniques to explore the species diversity, degradative capacities and functional guilds of AHB in the photic layer (2mm) of an oil-polluted microbial mat from Saudi Arabia. Enrichment isolation was carried out at different salinities (5% and 12%) and temperatures (28 and 45 degrees C) and on various substrates (acetate, glycolate, Spirulina extract and crude oils). Counts of most probable number showed a numerical abundance of AHB in the range of 1.15-8.13x10(6) cellsg(-1) and suggested the presence of halotolerant and thermotolerant populations. Most of the 16S rRNA sequences of the obtained clones and isolates were phylogenetically affiliated to the groups Gammaproteobacteria, Bacteriodetes and Alphaproteobacteria. Groups like Deltaproteobacteria, Verrucomicrobia, Planctomycetes, Spirochaetes, Acidobacteria and Deinococcus-Thermus were only detected by cloning. The strains isolated on acetate and glycolate belonged to the genera Marinobacter, Halomonas, Roseobacter and Rhodobacter whereas the strains enriched on crude oil belonged to Marinobacter and Alcanivorax. Members of the Bacteriodetes group were only enriched on Spirulina extract indicating their specialization in the degradation of cyanobacterial dead cells. The substrate spectra of representative strains showed the ability of all AHB to metabolize cyanobacterial photosynthetic and fermentation products. However, the unique in situ conditions of the mat apparently favored the enrichment of versatile strains that grew on both the cyanobacterial exudates and the hydrocarbons. We conclude that AHB in cyanobacterial mats represent a diverse community that plays an important role in carbon-cycling within microbial mats. PMID:17056222

  18. Vertical distribution and characterization of aerobic phototrophic bacteria at the Juan de Fuca Ridge in the Pacific Ocean.

    PubMed

    Rathgeber, Christopher; Lince, Michael T; Alric, Jean; Lang, Andrew S; Humphrey, Elaine; Blankenship, Robert E; Verméglio, André; Plumley, F Gerald; Van Dover, Cindy L; Beatty, J Thomas; Yurkov, Vladimir

    2008-09-01

    The vertical distribution of culturable anoxygenic phototrophic bacteria was investigated at five sites at or near the Juan de Fuca Ridge in the Pacific Ocean. Twelve similar strains of obligately aerobic phototrophic bacteria were isolated in pure culture, from depths ranging from 500 to 2,379 m below the surface. These strains appear morphologically, physiologically, biochemically, and phylogenetically similar to Citromicrobium bathyomarinum strain JF-1, a bacterium previously isolated from hydrothermal vent plume waters. Only one aerobic phototrophic strain was isolated from surface waters. This strain is morphologically and physiologically distinct from the strains isolated at deeper sampling locations, and phylogenetic analysis indicates that it is most closely related to the genus Erythrobacter. Phototrophs were cultivated from three water casts taken above vents but not from two casts taken away from active vent sites. No culturable anaerobic anoxygenic phototrophs were detected. The photosynthetic apparatus was investigated in strain JF-1 and contains light-harvesting I and reaction center complexes, which are functional under aerobic conditions.

  19. Effectiveness of Active Packaging on Control of Escherichia Coli O157:H7 and Total Aerobic Bacteria on Iceberg Lettuce.

    PubMed

    Lu, Haixia; Zhu, Junli; Li, Jianrong; Chen, Jinru

    2015-06-01

    Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3-strain mixture of E. coli O157:H7 at 10(2) or 10(4) CFU/g. The contaminated lettuce and un-inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables.

  20. Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat.

    PubMed

    Jonkers, H M; Koh, I-O; Behrend, P; Muyzer, G; de Beer, D

    2005-02-01

    The sulfate-reducing bacterium strain SRB D2 isolated from the photic zone of a hypersaline microbial mat, from Lake Chiprana, NE Spain, respired pyruvate, alanine, and alpha-ketoglutarate but not formate, lactate, malate, succinate, and serine at significant rates under fully oxic conditions. Dehydrogenase enzymes of only the former substrates are likely oxygen-tolerant as all substrates supported anaerobic sulfate reduction. No indications were found, however, that aerobic respiration supported growth. Although strain SRB D2 appeared phylogenetically closely related to the oxygen-tolerant sulfate-reducing bacterium Desulfovibrio oxyclinae, substrate spectra were markedly different. Most-probable-number (MPN) estimates of sulfate-reducing bacteria and aerobic heterotrophic bacteria indicated that the latter were numerically dominant in both the photic and aphotic zones of the mat. Moreover, substrate spectra of representative isolates showed that the aerobic heterotrophic bacteria are metabolically more diverse. These findings indicate that sulfate-reducing bacteria in the fully oxic photic zone of mats have to compete with aerobic heterotrophic bacteria for organic substrates. Porewater analysis revealed that total carbohydrates and low-molecular-weight carbon compounds (LMWC) made up substantial fractions of the total dissolved organic carbon (DOC) pool and that nighttime degradation of the former was concomitant with increased concentration of the latter. Our findings indicate that aerobic respiration by sulfate-reducing bacteria contributes to organic carbon mineralization in the oxic zone of microbial mats as daytime porewater LMWC concentrations are above typical half-saturation constants.

  1. Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat.

    PubMed

    Jonkers, H M; Koh, I-O; Behrend, P; Muyzer, G; de Beer, D

    2005-02-01

    The sulfate-reducing bacterium strain SRB D2 isolated from the photic zone of a hypersaline microbial mat, from Lake Chiprana, NE Spain, respired pyruvate, alanine, and alpha-ketoglutarate but not formate, lactate, malate, succinate, and serine at significant rates under fully oxic conditions. Dehydrogenase enzymes of only the former substrates are likely oxygen-tolerant as all substrates supported anaerobic sulfate reduction. No indications were found, however, that aerobic respiration supported growth. Although strain SRB D2 appeared phylogenetically closely related to the oxygen-tolerant sulfate-reducing bacterium Desulfovibrio oxyclinae, substrate spectra were markedly different. Most-probable-number (MPN) estimates of sulfate-reducing bacteria and aerobic heterotrophic bacteria indicated that the latter were numerically dominant in both the photic and aphotic zones of the mat. Moreover, substrate spectra of representative isolates showed that the aerobic heterotrophic bacteria are metabolically more diverse. These findings indicate that sulfate-reducing bacteria in the fully oxic photic zone of mats have to compete with aerobic heterotrophic bacteria for organic substrates. Porewater analysis revealed that total carbohydrates and low-molecular-weight carbon compounds (LMWC) made up substantial fractions of the total dissolved organic carbon (DOC) pool and that nighttime degradation of the former was concomitant with increased concentration of the latter. Our findings indicate that aerobic respiration by sulfate-reducing bacteria contributes to organic carbon mineralization in the oxic zone of microbial mats as daytime porewater LMWC concentrations are above typical half-saturation constants. PMID:15965719

  2. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-05-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 52 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94%) was affiliated with the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  3. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Jeanthon, C.; Boeuf, D.; Dahan, O.; Le Gall, F.; Garczarek, L.; Bendif, E. M.; Lehours, A.-C.

    2011-07-01

    Aerobic anoxygenic phototrophic (AAP) bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a), the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 %) was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies between culture-based and molecular methods, this study highlights the existing gaps in the understanding

  4. Validation of the Peel Plate™ AC for Detection of Total Aerobic Bacteria in Dairy and Nondairy Products.

    PubMed

    Salter, Robert S; Durbin, Gregory W; Bird, Patrick; Fisher, Kiel; Crowley, Erin; Hammack, Thomas; Chen, Yi; Clark, Dorn; Ziemer, Wayne

    2016-01-01

    Peel Plate™ AC (aerobic count) is a low-profile plastic 47 mm culture dish with adhesive top that contains a dried standard plate count medium with oxidation/reduction indicator triphenyl tetrazolium chloride (TTC) that turns red with dehydrogenase enzyme activity of growing aerobic bacteria. The method provides a conventional quantitative count with simple rehydration and incubation for 48 ± 3 h at 35 ± 1°C for most food matrixes and 32 ± 1°C for 48 ± 3 h for dairy products. Dairy matrixes claimed and supported with total aerobic count data are whole milk, skim milk, chocolate milk (2% fat), light cream (20% fat), pasteurized whole goat milk, ultra-high temperature pasteurized milk, nonfat dried milk, lactose-reduced milk, strawberry milk, raw cow milk, raw goat milk, raw sheep milk, condensed skim milk, and vanilla ice cream. Food matrixes claimed for aerobic count detection are raw ground beef, environmental sponge of stainless steel, raw ground turkey, dry dog food, liquid whole pasteurized eggs, milk chocolate, poultry carcass rinse, and large animal carcass sponge. The method has been independently evaluated for aerobic count in dairy products: whole milk, skim milk, chocolate milk, and light cream. The method was also independently evaluated for aerobic count in food matrixes: ground beef and sponge rinse from stainless steel surfaces. In the matrix study, each matrix was assessed separately at each contamination level in comparison to an appropriate reference method. Colony counts were determined for each level and then log10-transformed. The transformed data were evaluated for repeatability, mean comparison between methods with 95% confidence interval (CI), and r(2). A CI range of (-0.5, 0.5) on the mean difference was used as the acceptance criterion to establish significant statistical differences between methods. The evaluations demonstrate that the Peel Plate AC provides no statistical differences across most of the matrixes with r(2) > 0

  5. Validation of the Peel Plate™ AC for Detection of Total Aerobic Bacteria in Dairy and Nondairy Products.

    PubMed

    Salter, Robert S; Durbin, Gregory W; Bird, Patrick; Fisher, Kiel; Crowley, Erin; Hammack, Thomas; Chen, Yi; Clark, Dorn; Ziemer, Wayne

    2016-01-01

    Peel Plate™ AC (aerobic count) is a low-profile plastic 47 mm culture dish with adhesive top that contains a dried standard plate count medium with oxidation/reduction indicator triphenyl tetrazolium chloride (TTC) that turns red with dehydrogenase enzyme activity of growing aerobic bacteria. The method provides a conventional quantitative count with simple rehydration and incubation for 48 ± 3 h at 35 ± 1°C for most food matrixes and 32 ± 1°C for 48 ± 3 h for dairy products. Dairy matrixes claimed and supported with total aerobic count data are whole milk, skim milk, chocolate milk (2% fat), light cream (20% fat), pasteurized whole goat milk, ultra-high temperature pasteurized milk, nonfat dried milk, lactose-reduced milk, strawberry milk, raw cow milk, raw goat milk, raw sheep milk, condensed skim milk, and vanilla ice cream. Food matrixes claimed for aerobic count detection are raw ground beef, environmental sponge of stainless steel, raw ground turkey, dry dog food, liquid whole pasteurized eggs, milk chocolate, poultry carcass rinse, and large animal carcass sponge. The method has been independently evaluated for aerobic count in dairy products: whole milk, skim milk, chocolate milk, and light cream. The method was also independently evaluated for aerobic count in food matrixes: ground beef and sponge rinse from stainless steel surfaces. In the matrix study, each matrix was assessed separately at each contamination level in comparison to an appropriate reference method. Colony counts were determined for each level and then log10-transformed. The transformed data were evaluated for repeatability, mean comparison between methods with 95% confidence interval (CI), and r(2). A CI range of (-0.5, 0.5) on the mean difference was used as the acceptance criterion to establish significant statistical differences between methods. The evaluations demonstrate that the Peel Plate AC provides no statistical differences across most of the matrixes with r(2) > 0

  6. [Microbiological characteristics and detection of capsular forms of bacteria of the intestinal group in confectionery produced at the candy-chocolate factories].

    PubMed

    Kuvaeva, I B; Troshina, M Iu

    1988-01-01

    Five types of confectionery and its semifinished products were investigated for contamination with Klebsiella, mesophilic aerobic and elective anaerobic, coliform bacteria, E. coli, etc. after a long-term storage. E. coli and St. aureus were not detected after inoculation on 1 g of the product; mold fungi were identified only in singular samples, their level did not exceed 20 CFU/g; the level of mesophilic aerobic and elective anaerobic bacteria varied from several hundreds to 3000-5500 CFU/g; coliform bacteria were identified in the amounts from 11 to 100 CFU/g. The identification of coliform bacteria has evidenced the presence of Enterobacter aerogenes and Kl. pneumoniae in the products investigated. Klebsiella were detected in 28-30% of the samples analyzed, their level did not exceed 100 CFU/g. The authors have proved the necessity of microbiological control of starting material, semifinished and finished confectionery products for the above bacteria.

  7. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea

    PubMed Central

    Chistoserdova, Ludmila; Vorholt, Julia A; Lidstrom, Mary E

    2005-01-01

    Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis. PMID:15693955

  8. Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria

    PubMed Central

    Payne, Rayford B.; Fagervold, Sonja K.; May, Harold D.; Sowers, Kevin R.

    2013-01-01

    Bioremediation of sediments contaminated with commercial PCBs is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring “Dehalobium chlorocoercia” DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with GAC as a delivery system was determined in 2-liter laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 mg/kg to less than 2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, non-bioaugmented controls containing filtered culture supernatant showed only 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia, or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both non-indigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective, environmentally sustainable strategy to reduce PCBs levels in contaminated sediment. PMID:23463900

  9. Isolation of culturable aerobic bacteria and evidence of Kerstersia gyiorum from the blowhole of captive Yangtze finless porpoises.

    PubMed

    Wan, Xiaoling; McLaughlin, Richard William; Zhou, Junying; Hao, Yujiang; Zheng, Jinsong; Wang, Ding

    2016-08-01

    Bacterial respiratory illnesses are problematic in aquatic mammals such as the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP), which is now at a critically endangered status. Yet little is known about the bacteria inhabiting the respiratory tract of YFPs. In this study, we preliminarily characterized the culturable aerobic bacteria from blow samples of captive YFPs. The bacterial diversity was assessed through cultivation by direct exhalation onto Columbia blood agar plates and identification of representative isolates through 16S rRNA gene sequence analysis. In total, eleven bacterial species belonging to four phyla Proteobacteria (71 %), Firmicutes (25 %), Bacteroidetes (3 %) and Actinobacteria (1 %) were identified. Most of these isolates were opportunistic pathogens found in respiratory illnesses in humans and animals. We also reported the first case of Kerstersia gyiorum isolated from an animal. This work provides a preliminary assessment of the bacteria present in the respiratory tract of captive YFPs, which will be an important first step in elucidating the roles of normal microbiota in maintaining respiratory health of YFPs. This study also points out the necessity of future long-term monitoring of blowhole microorganisms in the YFPs and making emergency preparedness plans for respiratory tract infections. These measures can aid in assessing the pathogenic risk of the critically endangered YFP populations. PMID:27251558

  10. Effects of maturity stage and lactic acid bacteria on the fermentation quality and aerobic stability of Siberian wildrye silage.

    PubMed

    Li, Ping; Bai, Shiqie; You, Minghong; Shen, Yixin

    2016-09-01

    It is difficult to make good quality of silage from alpine gramineous from the Qinghai Tibetan plateau. The effects of lactic acid bacteria (LAB) on the fermentation quality and aerobic stability of Siberian wildrye silage were studied in southeast of the Qinghai Tibetan plateau. Siberian wildrye materials were freshly cut at the sprouting stage, flowering stage, and milky stage. Silage was prepared by using a small-scale silage fermentation system (bag silos). Lactobacillus plantarum (LP, 5 × 10(8) cfu/kg FM), Lactobacillus buchneri (LB, 5 × 10(8) cfu/kg FM) and their mixture (LP+LB, 5 × 10(8) cfu/kg FM) as silage additives were separately added to ensiled forages, and no additive served as control (CK). These bag silos were kept at room temperature (<15°C), and the silage qualities were analyzed after 60 days of ensiling. The number of indigenous LAB on fresh materials was less than that of yeasts and molds, and LAB species showed specification adapted to low temperature. LAB inoculated silages had lower (P < 0.05) pH value, NH 3-N/TN and butyric acid content compared with control silage. Silage treated with LB had higher contents of acetic acid, propionic acid, WSC and CP. However, the aerobic stability of silages inoculated with LAB did not differ significantly between stages (P > 0.05). When fermentation characteristics, chemical composition, and aerobic stability were considered, treatment with L. plantarum resulted in high quality of Siberian wildrye silage harvested at the flowering stage in the alpine region. PMID:27625768

  11. Effects of maturity stage and lactic acid bacteria on the fermentation quality and aerobic stability of Siberian wildrye silage.

    PubMed

    Li, Ping; Bai, Shiqie; You, Minghong; Shen, Yixin

    2016-09-01

    It is difficult to make good quality of silage from alpine gramineous from the Qinghai Tibetan plateau. The effects of lactic acid bacteria (LAB) on the fermentation quality and aerobic stability of Siberian wildrye silage were studied in southeast of the Qinghai Tibetan plateau. Siberian wildrye materials were freshly cut at the sprouting stage, flowering stage, and milky stage. Silage was prepared by using a small-scale silage fermentation system (bag silos). Lactobacillus plantarum (LP, 5 × 10(8) cfu/kg FM), Lactobacillus buchneri (LB, 5 × 10(8) cfu/kg FM) and their mixture (LP+LB, 5 × 10(8) cfu/kg FM) as silage additives were separately added to ensiled forages, and no additive served as control (CK). These bag silos were kept at room temperature (<15°C), and the silage qualities were analyzed after 60 days of ensiling. The number of indigenous LAB on fresh materials was less than that of yeasts and molds, and LAB species showed specification adapted to low temperature. LAB inoculated silages had lower (P < 0.05) pH value, NH 3-N/TN and butyric acid content compared with control silage. Silage treated with LB had higher contents of acetic acid, propionic acid, WSC and CP. However, the aerobic stability of silages inoculated with LAB did not differ significantly between stages (P > 0.05). When fermentation characteristics, chemical composition, and aerobic stability were considered, treatment with L. plantarum resulted in high quality of Siberian wildrye silage harvested at the flowering stage in the alpine region.

  12. Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant.

    PubMed

    Li, Lili; Ye, Lei; Zhang, Sen; Meng, Hecheng

    2016-06-01

    Microbial contamination in food-processing plants can play a fundamental role in food quality and safety. The purpose of this study was to investigate aerobic bacteria carrying tetracycline and sulfonamide resistance genes from a meat processing plant as possible sources of meat contamination. One hundred swab samples from surfaces of conveyor belts, meat slicers, meat knives, benches, plastic trays, gloves, and aprons were analyzed. A total of 168 isolates belonging to 10 genera were obtained, including Pseudomonas sp. (n = 35), Acinetobacter sp. (n = 30), Aeromonas sp. (n = 20), Myroides sp. (n = 15), Serratia sp. (n = 15), Staphylococcus sp. (n = 14), Enterobacter sp. (n = 11), Escherichia coli (n = 10), Lactococcus sp. (n = 10), and Klebsiella sp. (n = 8). Of the 168 isolates investigated, 60.7% showed resistance to tetracycline and 57.7% to trimethoprim/sulfamethoxazole. The tetracycline resistance genes tetL, tetA, tetB, tetC, tetE, tetM, tetS, tetK, and tetX were found in the frequency of 7.7%, 6.0%, 4.8%, 4.8%, 3.6%, 3.6%, 3.6%, 1.2%, and 0.6%, respectively. Sulfonamide resistance genes sul1 and sul2 were observed in the frequency of 17.9% and 38.1%, respectively. The tetracycline resistance genes tetX was first found in Myroides sp. This investigation demonstrated that food contact surfaces in a meat processing plant may be sources of contamination of aerobic bacteria carrying tetracycline and sulfonamide antibiotic resistance genes. PMID:27100915

  13. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  14. Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-03-01

    In the sewage or wastewater treatment plant, biological sulphate reduction can occur spontaneously or be applied beneficially for its treatment. The results of this study can be applied to control SRB in the sewage and WWTP. Therefore, population diversity analyses of SRB for nine activated sludge wastewater treatment plants (WWTP) in the Netherlands and the effect of long-term (months) oxygen exposures on the SRB activity were carried out. T-RFLP and clone sequencing analyses of winter and summer samples revealed that (1) all WWTP have a similar SRB population, (2) there is no seasonal impact (10-20 °C) on the SRB population present in the WWTP and (3) Desulfobacter postgatei, Desulfovibrio desulfuricans and Desulfovibrio intestinalis were the most common and dominant SRB species observed in these samples, and origin from the sewage. Short term activity tests demonstrated that SRB were not active in the aerobic WWTP, but while flushed with N2-gas SRB became slightly active after 3 h. In a laboratory reactor at a dissolved oxygen concentration of <2 %, sulphate reduction occurred and 89 % COD removal was achieved. SRB grew in granules, in order to protect themselves for oxygen exposures. SRB are naturally present in aerobic WWTP, which is due to the formation of granules. PMID:25649202

  15. Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the juan de fuca ridge in the pacific ocean.

    PubMed

    Yurkov, V; Beatty, J T

    1998-01-01

    A strain of the aerobic anoxygenic photosynthetic bacteria was isolated from a deep-ocean hydrothermal vent plume environment. The in vivo absorption spectra of cells indicate the presence of bacteriochlorophyll a incorporated into light-harvesting complex I and a reaction center. The general morphological and physiological characteristics of this new isolate are described.

  16. Isolation of Aerobic Anoxygenic Photosynthetic Bacteria from Black Smoker Plume Waters of the Juan de Fuca Ridge in the Pacific Ocean

    PubMed Central

    Yurkov, Vladimir; Beatty, J. Thomas

    1998-01-01

    A strain of the aerobic anoxygenic photosynthetic bacteria was isolated from a deep-ocean hydrothermal vent plume environment. The in vivo absorption spectra of cells indicate the presence of bacteriochlorophyll a incorporated into light-harvesting complex I and a reaction center. The general morphological and physiological characteristics of this new isolate are described. PMID:16349490

  17. Colonization by aerobic bacteria in karst: laboratory and in situ experiments.

    PubMed

    Personné, J C; Poty, F; Mahler, B J; Drogue, C

    2004-01-01

    Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton.

  18. Colonization by aerobic bacteria in karst: Laboratory and in situ experiments

    USGS Publications Warehouse

    Personne, J.-C.; Poty, F.; Mahler, B.J.; Drogue, C.

    2004-01-01

    Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton.

  19. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory.

    PubMed

    Shabuer, Gulimila; Ishida, Keishi; Pidot, Sacha J; Roth, Martin; Dahse, Hans-Martin; Hertweck, Christian

    2015-11-01

    Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. PMID:26542569

  20. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat.

    PubMed Central

    Santegoeds, C M; Nold, S C; Ward, D M

    1996-01-01

    Previous studies investigating microbial diversity in the Octopus Spring cyanobacterial mat community (Yellowstone National Park) have shown a discrepancy between bacterial populations observed by molecular retrieval and cultivation techniques. To investigate how selective enrichment culture techniques affect species composition, we used denaturing gradient gel electrophoresis (DGGE) separation of PCR-amplified 16S rRNA gene fragments to monitor the populations contained within enrichment cultures of aerobic chemoorganotrophic bacteria from the ca. 50 degrees C region of the mat community. By varying the degree of dilution of the inoculum, medium composition, and enrichment conditions and duration and by analyzing the cultures by DGGE, we detected 14 unique 16S rRNA sequence types. These corresponded to alpha-, beta-, gamma-, and delta-proteobacteria, Thermus relatives, and gram-positive bacteria with high G + C ratio and, at the highest inoculum dilutions, Chloroflexus aurantiacus relatives, which were estimated to still be approximately 300 times less abundant than cells of the mat primary producer, Synechococcus spp. Only three of these populations were previously cultivated on solidified medium after similar enrichment. Only two of these population have 16S rRNA sequences which were previously cloned directly from the mat. These results reveal a diversity of bacterial populations in enrichment culture which were not detected by either molecular retrieval or strain purification techniques. PMID:8899977

  1. Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive Komodo dragons (Varanus komodoensis): new implications for the "bacteria as venom" model.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M; Cox, Cathleen R; Recchio, Ian M; Okimoto, Ben; Bryja, Judith; Fry, Bryan G

    2013-06-01

    It has been speculated that the oral flora of the Komodo dragon (Varanus komodoensis) exerts a lethal effect on its prey; yet, scant information about their specific oral flora bacteriology, especially anaerobes, exists. Consequently, the aerobic and anaerobic oral bacteriology of 16 captive Komodo dragons (10 adults and six neonates), aged 2-17 yr for adults and 7-10 days for neonates, from three U.S. zoos were studied. Saliva and gingival samples were collected by zoo personnel, inoculated into anaerobic transport media, and delivered by courier to a reference laboratory. Samples were cultured for aerobes and anaerobes. Strains were identified by standard methods and 16S rRNA gene sequencing when required. The oral flora consisted of 39 aerobic and 21 anaerobic species, with some variation by zoo. Adult dragons grew 128 isolates, including 37 aerobic gram-negative rods (one to eight per specimen), especially Enterobacteriaceae; 50 aerobic gram-positive bacteria (two to nine per specimen), especially Staphylococcus sciuri and Enterococcusfaecalis, present in eight of 10 and nine of 10 dragons, respectively; and 41 anaerobes (one to six per specimen), especially clostridia. All hatchlings grew aerobes but none grew anaerobes. No virulent species were isolated. As with other carnivores, captive Komodo oral flora is simply reflective of the gut and skin flora of their recent meals and environment and is unlikely to cause rapid fatal infection.

  2. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.

    PubMed

    Zhang, Jie; Guo, Gang; Chen, Lei; Li, Junfeng; Yuan, Xianjun; Yu, Chengqun; Shimojo, Masataka; Shao, Tao

    2015-06-01

    The objective of this study was to evaluate effects of lactic acid bacteria and propionic acid on the fermentation quality and aerobic stability of oats-common vetch mixed silage by using a small-scale fermentation system on the Tibetan plateau. (i) An inoculant (Lactobacillus plantarum) (L) or (ii) propionic acid (P) or (iii) inoculant + propionic acid (PL) were used as additives. After fermenting for 60 days, silos were opened and the aerobic stability was tested for the following 15 days. The results showed that all silages were well preserved with low pH and NH3 -N, and high lactic acid content and V-scores. L and PL silages showed higher (P < 0.05) lactic acid and crude protein content than the control silage. P silage inhibited lactic acid production. Under aerobic conditions, L silage had similar yeast counts as the control silage (> 10(5) cfu/g fresh matter (FM)); however, it numerically reduced aerobic stability for 6 h. P and PL silages showed fewer yeasts (< 10(5) cfu/g FM) (P < 0.05) and markedly improved the aerobic stability (> 360 h). The result suggested that PL is the best additive as it could not only improved fermentation quality, but also aerobic stability of oats-common vetch mixed silage on the Tibetan plateau.

  3. Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive Komodo dragons (Varanus komodoensis): new implications for the "bacteria as venom" model.

    PubMed

    Goldstein, Ellie J C; Tyrrell, Kerin L; Citron, Diane M; Cox, Cathleen R; Recchio, Ian M; Okimoto, Ben; Bryja, Judith; Fry, Bryan G

    2013-06-01

    It has been speculated that the oral flora of the Komodo dragon (Varanus komodoensis) exerts a lethal effect on its prey; yet, scant information about their specific oral flora bacteriology, especially anaerobes, exists. Consequently, the aerobic and anaerobic oral bacteriology of 16 captive Komodo dragons (10 adults and six neonates), aged 2-17 yr for adults and 7-10 days for neonates, from three U.S. zoos were studied. Saliva and gingival samples were collected by zoo personnel, inoculated into anaerobic transport media, and delivered by courier to a reference laboratory. Samples were cultured for aerobes and anaerobes. Strains were identified by standard methods and 16S rRNA gene sequencing when required. The oral flora consisted of 39 aerobic and 21 anaerobic species, with some variation by zoo. Adult dragons grew 128 isolates, including 37 aerobic gram-negative rods (one to eight per specimen), especially Enterobacteriaceae; 50 aerobic gram-positive bacteria (two to nine per specimen), especially Staphylococcus sciuri and Enterococcusfaecalis, present in eight of 10 and nine of 10 dragons, respectively; and 41 anaerobes (one to six per specimen), especially clostridia. All hatchlings grew aerobes but none grew anaerobes. No virulent species were isolated. As with other carnivores, captive Komodo oral flora is simply reflective of the gut and skin flora of their recent meals and environment and is unlikely to cause rapid fatal infection. PMID:23805543

  4. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes

    PubMed Central

    Fauteux, Lisa; Cottrell, Matthew T.; Kirchman, David L.; Borrego, Carles M.; Garcia-Chaves, Maria Carolina; del Giorgio, Paul A.

    2015-01-01

    There is now evidence that aerobic anoxygenic phototrophic (AAP) bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively). AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla) concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC), whereas cell-specific BChla content was negatively related to chlorophyll a (Chla). As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex. PMID:25927833

  5. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.

    PubMed

    Senan, Resmi C; Shaffiqu, T S; Roy, J Jegan; Abraham, T Emilia

    2003-01-01

    A microbial consortium capable of aerobic degradation of a mixture of azo dyes consisting of two isolated strains (RRL,TVM) and one known strain of Pseudomonas putida (MTCC 1194) was immobilized on laterite stones. The amount of bacterial biomass attached to the laterite stones was 8.64 g per 100 g of the stone on a dry weight basis. The packed bed reactor was filled with these stones and had a total capacity of 850 mL and a void volume of 210 mL. The feed consisted of an equal mixture of seven azo dyes both in water as well as in a simulated textile effluent, at a pH of 9.0 and a salinity of 900 mg/L. The dye concentrations of influent were 25, 50, and 100 microg/mL. The residence time was varied between 0.78 and 6.23 h. It was found that at the lowest residence time 23.55, 45.73, and 79.95 microg of dye was degraded per hour at an initial dye concentration of 25, 50, and 100 microg, respectively. The pH was reduced from 9.0 to 7.0. Simulated textile effluent containing 50 microg/mL dye was degraded by 61.7%. Analysis of degradation products by TLC and HPLC showed that the dye mixture was degraded to nontoxic smaller molecules. The bacteria-coated pebbles were stable, there was no washout even after 2 months, and the reactor was found to be suitable for the aerobic degradation of azo dyes. PMID:12675610

  6. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles.

    PubMed

    Senan, Resmi C; Shaffiqu, T S; Roy, J Jegan; Abraham, T Emilia

    2003-01-01

    A microbial consortium capable of aerobic degradation of a mixture of azo dyes consisting of two isolated strains (RRL,TVM) and one known strain of Pseudomonas putida (MTCC 1194) was immobilized on laterite stones. The amount of bacterial biomass attached to the laterite stones was 8.64 g per 100 g of the stone on a dry weight basis. The packed bed reactor was filled with these stones and had a total capacity of 850 mL and a void volume of 210 mL. The feed consisted of an equal mixture of seven azo dyes both in water as well as in a simulated textile effluent, at a pH of 9.0 and a salinity of 900 mg/L. The dye concentrations of influent were 25, 50, and 100 microg/mL. The residence time was varied between 0.78 and 6.23 h. It was found that at the lowest residence time 23.55, 45.73, and 79.95 microg of dye was degraded per hour at an initial dye concentration of 25, 50, and 100 microg, respectively. The pH was reduced from 9.0 to 7.0. Simulated textile effluent containing 50 microg/mL dye was degraded by 61.7%. Analysis of degradation products by TLC and HPLC showed that the dye mixture was degraded to nontoxic smaller molecules. The bacteria-coated pebbles were stable, there was no washout even after 2 months, and the reactor was found to be suitable for the aerobic degradation of azo dyes.

  7. Comprehensive analysis of aerobic and anaerobic bacteria found on dental bib clips.

    PubMed

    Alt-Holland, Addy; Murphy, Christina M; Powers, Anne; Kublin, Claire L; Jeong, Youjin Natalie; DiMattia, Michelle; Pham, Linh; Park, Angel; Finkelman, Matthew; Lombard, Maureen; Hanley, James B; Paster, Bruce J; Kugel, Gerard

    2013-04-01

    Multiple-use dental bib clips are considered to present relatively low risks for transmitting infections and, thus, are thought to only require disinfection between patient visits. This study was designed to: 1) determine the presence and composition of bacterial contaminants on reusable rubber-faced metal bib clips after dental treatment at the hygiene clinic at Tufts University School of Dental Medicine and 2) evaluate the effectiveness of the disinfection for this clip type. Aerobic and anaerobic bacterial contaminant loads on the surfaces of the clips were investigated immediately after hygiene treatments were rendered and again after clips were disinfected. The species and strains of bacterial isolates were identified using 16S rDNA sequencing and Human Oral Microbe Identification Microarray analyses. The results demonstrated that although the use of disinfection proved to be significantly effective, some clips retained at least one bacterium on their surfaces after disinfection. Although the bacterial species present on disinfected clips were typical skin or environmental isolates, some were oral in origin. In the study's settings, bacterial presence on the clips did not indicate an infectious disease problem. The different bacterial loads on clips suggest that cross-contamination risks may not be the same for all clinics, and that this difference may be related to the type of treatments and services performed.

  8. Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09

    SciTech Connect

    Boden, Rich; Cunliffe, Michael; Scanlan, Julie; Moussard, Helene; Kits, K. Dimitri; Klotz, Martin G; Jetten, MSM; Vuilleumier, Stephane; Han, James; Peters, Lin; Mikhailova, Natalia; Teshima, Hazuki; Tapia, Roxanne; Kyrpides, Nikos C; Ivanova, N; Pagani, Ioanna; Cheng, Jan-Fang; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Pitluck, Sam; Woyke, Tanja; Stein, Lisa Y.; Murrell, Collin

    2011-01-01

    Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.

  9. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota.

    PubMed

    Kozlowski, Jessica A; Stieglmeier, Michaela; Schleper, Christa; Klotz, Martin G; Stein, Lisa Y

    2016-08-01

    Chemolithotrophic ammonia-oxidizing bacteria and Thaumarchaeota are central players in the global nitrogen cycle. Obligate ammonia chemolithotrophy has been characterized for bacteria; however, large gaps remain in the Thaumarchaeotal pathway. Using batch growth experiments and instantaneous microrespirometry measurements of resting biomass, we show that the terrestrial Thaumarchaeon Nitrososphaera viennensis EN76(T) exhibits tight control over production and consumption of nitric oxide (NO) during ammonia catabolism, unlike the ammonia-oxidizing bacterium Nitrosospira multiformis ATCC 25196(T). In particular, pulses of hydroxylamine into a microelectrode chamber as the sole substrate for N. viennensis resulted in iterative production and consumption of NO followed by conversion of hydroxylamine to nitrite. In support of these observations, oxidation of ammonia in growing cultures of N. viennensis, but not of N. multiformis, was inhibited by the NO-scavenger PTIO. When based on the marginal nitrous oxide (N2O) levels detected in cell-free media controls, the higher levels produced by N. multiformis were explained by enzyme activity, whereas N2O in N. viennensis cultures was attributed to abiotic reactions of released N-oxide intermediates with media components. Our results are conceptualized in a pathway for ammonia-dependent chemolithotrophy in Thaumarchaea, which identifies NO as an essential intermediate in the pathway and implements known biochemistry to be executed by a proposed but still elusive copper enzyme. Taken together, this work identifies differences in ammonia-dependent chemolithotrophy between bacteria and the Thaumarchaeota, advances a central catabolic role of NO only in the Thaumarchaeotal pathway and reveals stark differences in how the two microbial cohorts contribute to N2O emissions.

  10. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology.

    PubMed

    Pedersen, Martin B; Gaudu, Philippe; Lechardeur, Delphine; Petit, Marie-Agnès; Gruss, Alexandra

    2012-01-01

    The lactic acid bacteria (LAB) are essential for food fermentations and their impact on gut physiology and health is under active exploration. In addition to their well-studied fermentation metabolism, many species belonging to this heterogeneous group are genetically equipped for respiration metabolism. In LAB, respiration is activated by exogenous heme, and for some species, heme and menaquinone. Respiration metabolism increases growth yield and improves fitness. In this review, we aim to present the basics of respiration metabolism in LAB, its genetic requirements, and the dramatic physiological changes it engenders. We address the question of how LAB acquired the genetic equipment for respiration. We present at length how respiration can be used advantageously in an industrial setting, both in the context of food-related technologies and in novel potential applications.

  11. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds.

    PubMed

    Melendez, J H; Frankel, Y M; An, A T; Williams, L; Price, L B; Wang, N-Y; Lazarus, G S; Zenilman, J M

    2010-12-01

    Chronic wounds cause substantial morbidity and disability. Infection in chronic wounds is clinically defined by routine culture methods that can take several days to obtain a final result, and may not fully describe the community of organisms or biome within these wounds. Molecular diagnostic approaches offer promise for a more rapid and complete assessment. We report the development of a suite of real-time PCR assays for rapid identification of bacteria directly from tissue samples. The panel of assays targets 14 common, clinically relevant, aerobic pathogens and demonstrates a high degree of sensitivity and specificity using a panel of organisms commonly associated with chronic wound infection. Thirty-nine tissue samples from 29 chronic wounds were evaluated and the results compared with those obtained by culture. As revealed by culture and PCR, the most common organisms were methicillin-resistant Staphylococcus aureus (MRSA) followed by Streptococcus agalactiae (Group B streptococcus) and Pseudomonas aeruginosa. The sensitivities of the PCR assays were 100% and 90% when quantitative and qualitative culture results were used as the reference standard, respectively. The assays allowed the identification of bacterial DNA from ten additional organisms that were not revealed by quantitative or qualitative cultures. Under optimal conditions, the turnaround time for PCR results is as short as 4-6 h. Real-time PCR is a rapid and inexpensive approach that can be easily introduced into clinical practice for detection of organisms directly from tissue samples. Characterization of the anaerobic microflora by real-time PCR of chronic wounds is warranted.

  12. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica

    PubMed Central

    Pinheiro, Guilherme L.; Correa, Raquel F.; Cunha, Raquel S.; Cardoso, Alexander M.; Chaia, Catia; Clementino, Maysa M.; Garcia, Eloi S.; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes. PMID:26347735

  13. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica.

    PubMed

    Pinheiro, Guilherme L; Correa, Raquel F; Cunha, Raquel S; Cardoso, Alexander M; Chaia, Catia; Clementino, Maysa M; Garcia, Eloi S; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes.

  14. Production of autoinducer-2 by aerobic endospore-forming bacteria isolated from the West African fermented foods.

    PubMed

    Qian, Yang; Kando, Christine Kere; Thorsen, Line; Larsen, Nadja; Jespersen, Lene

    2015-11-01

    Autoinducer-2 (AI-2) is a quorum-sensing (QS) molecule which mediates interspecies signaling and affects various bacterial behaviors in food fermentation. Biosynthesis of AI-2 is controlled by S-ribosylhomocysteine lyase encoded by the luxS gene. The objective of this study was to investigate production of AI-2 by aerobic endospore-forming bacteria (AEB) isolated from the West African alkaline fermented seed products Mantchoua and Maari. The study included 13 AEB strains of Bacillus subtilis, B. cereus, B. altitudinis, B. amyloliquefaciens, B. licheniformis, B. aryabhattai, B. safensis, Lysinibacillus macroides and Paenibacillus polymyxa. All the tested strains harbored the luxS gene and all strains except for P. polymyxa B314 were able to produce AI-2 during incubation in laboratory medium. Production of AI-2 by AEB was growth phase dependent, showing maximum activity at the late exponential phase. AI-2 was depleted from the culture medium at the beginning of the stationary growth phase, indicating that the tested AEB possess a functional AI-2 receptor that internalizes AI-2. This study provides the evidences of QS system in Bacillus spp. and L. macroides and new knowledge of AI-2 production by AEB. This knowledge contributes to the development of QS-based strategies for better control of alkaline fermentation. PMID:26449556

  15. Production of autoinducer-2 by aerobic endospore-forming bacteria isolated from the West African fermented foods.

    PubMed

    Qian, Yang; Kando, Christine Kere; Thorsen, Line; Larsen, Nadja; Jespersen, Lene

    2015-11-01

    Autoinducer-2 (AI-2) is a quorum-sensing (QS) molecule which mediates interspecies signaling and affects various bacterial behaviors in food fermentation. Biosynthesis of AI-2 is controlled by S-ribosylhomocysteine lyase encoded by the luxS gene. The objective of this study was to investigate production of AI-2 by aerobic endospore-forming bacteria (AEB) isolated from the West African alkaline fermented seed products Mantchoua and Maari. The study included 13 AEB strains of Bacillus subtilis, B. cereus, B. altitudinis, B. amyloliquefaciens, B. licheniformis, B. aryabhattai, B. safensis, Lysinibacillus macroides and Paenibacillus polymyxa. All the tested strains harbored the luxS gene and all strains except for P. polymyxa B314 were able to produce AI-2 during incubation in laboratory medium. Production of AI-2 by AEB was growth phase dependent, showing maximum activity at the late exponential phase. AI-2 was depleted from the culture medium at the beginning of the stationary growth phase, indicating that the tested AEB possess a functional AI-2 receptor that internalizes AI-2. This study provides the evidences of QS system in Bacillus spp. and L. macroides and new knowledge of AI-2 production by AEB. This knowledge contributes to the development of QS-based strategies for better control of alkaline fermentation.

  16. Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils.

    PubMed

    Martinez, Robert J; Beazley, Melanie J; Taillefert, Martial; Arakaki, Adrian K; Skolnick, Jeffrey; Sobecky, Patricia A

    2007-12-01

    In this study, the immobilization of toxic uranium [U(VI)] mediated by the intrinsic phosphatase activities of naturally occurring bacteria isolated from contaminated subsurface soils was examined. The phosphatase phenotypes of strains belonging to the genera, Arthrobacter, Bacillus and Rahnella, previously isolated from subsurface soils at the US Department of Energy's (DOE) Oak Ridge Field Research Center (ORFRC), were determined. The ORFRC represents a unique, extreme environment consisting of highly acidic soils with co-occurring heavy metals, radionuclides and high nitrate concentrations. Isolates exhibiting phosphatase-positive phenotypes indicative of constitutive phosphatase activity were subsequently tested in U(VI) bioprecipitation assays. When aerobically grown in synthetic groundwater (pH 5.5) amended with 10 mM glycerol-3-phosphate (G3P), phosphatase-positive Bacillus and Rahnella spp. strains Y9-2 and Y9602 liberated sufficient phosphate to precipitate 73% and 95% of total soluble U added as 200 microM uranyl acetate respectively. In contrast, an Arthrobacter sp. X34 exhibiting a phosphatase-negative phenotype did not liberate phosphate from G3P or promote U(VI) precipitation. This study provides the first evidence of U(VI) precipitation via the phosphatase activity of naturally occurring Bacillus and Rahnella spp. isolated from the acidic subsurface at the DOE ORFRC.

  17. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica.

    PubMed

    Pinheiro, Guilherme L; Correa, Raquel F; Cunha, Raquel S; Cardoso, Alexander M; Chaia, Catia; Clementino, Maysa M; Garcia, Eloi S; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes. PMID:26347735

  18. Aminopeptidase activity by spoilage bacteria and its relationship to microbial load and sensory attributes of poultry legs during aerobic cold storage.

    PubMed

    Guevara-Franco, José Alfredo; Alonso-Calleja, Carlos; Capita, Rosa

    2010-02-01

    The shelf life of poultry legs stored aerobically and the possible role of the aminopeptidase activity of gram-negative bacteria (p-nitroaniline test) as a predictor of poultry spoilage were evaluated on the basis of microbiological and sensory parameters. Chicken legs (n = 30) obtained immediately after evisceration in a local poultry processing plant were kept under aerobic refrigeration (4 +/- 1 degrees C) for 7 days. Microbiological (counts of aerobic bacteria and psychrotrophs) and sensory (odor, color, and general acceptability on a hedonic scale of 1 to 9) parameters and aminopeptidase activity (absorbance at 390 nm [A(390)]) determinations were performed after 0, 1, 3, 5, and 7 days of storage. Aerobic plate counts of 7 log CFU/g and a score of 6 for general acceptability were used as indicators of the end point of shelf life. Strong correlations (r > or = 0.76; P < 0.001) were obtained between bacterial counts, hedonic scores, and A(390) values. Samples were judged as unacceptable (shelf-life end point) after 2 and 4 days on the basis of sensory and microbiological analyses, respectively. A(390) values of 0.52 and 0.89 (corresponding to p-nitroaniline concentrations of 6.25 and 10.7 microg/ml, respectively) are proposed as the upper limits for acceptability on the basis of sensory and microbiological determinations, respectively. However, these recommendations are based on a small set of samples, and their general application is yet to be verified.

  19. Bacterial gene import and mesophilic adaptation in archaea.

    PubMed

    López-García, Purificación; Zivanovic, Yvan; Deschamps, Philippe; Moreira, David

    2015-07-01

    It is widely believed that the archaeal ancestor was hyperthermophilic, but during archaeal evolution, several lineages - including haloarchaea and their sister methanogens, the Thaumarchaeota, and the uncultured Marine Group II and Marine Group III Euryarchaeota (MGII/III) - independently adapted to lower temperatures. Recent phylogenomic studies suggest that the ancestors of these lineages were recipients of massive horizontal gene transfer from bacteria. Many of the acquired genes, which are often involved in metabolism and cell envelope biogenesis, were convergently acquired by distant mesophilic archaea. In this Opinion article, we explore the intriguing hypothesis that the import of these bacterial genes was crucial for the adaptation of archaea to mesophilic lifestyles.

  20. [The study of mycolytic properties of aerobic spore-forming bacteria producing extracellular chitinases].

    PubMed

    Aktuganov, G E; Melent'ev, A I; Galimzianova, N F; Shirokov, A V

    2008-01-01

    The mycolytic activity of 27 strains of antagonistic bacilli belonging to two taxonomic groups (18 strains of Bacillus subtilis and 9 strains of Paenibacillus ehimensis) capable of induced synthesis of chitinolytic enzymes was studied. Most of the B. subtilis strains neither displayed visible mycolytic effects on the phytopathogenic fungus Bipolaris sorokiniana in vitro, nor produced chitinases in the presence of an auto-claved mycelium. On the contrary, P. ehimensis strains grown under conditions favorable for induction of chitinases and other hydrolases exhibited a pronounced lytic effect on B. sorokiniana and actively grew by utilizing mycelium as the sole source of carbon and nitrogen. Comparison of the mycolytic activities of extracellular hydrolases in the studied strains demonstrated low correlation between chitinase production and the ability of the strains to degrade the cell walls of B. sorokiniana. Characterization of enzyme profiles in the studied strains revealed that beta-1,3-glucanase was a more significant factor than chitinase for determining the mycolytic potential of bacteria and their ability to utilize the mycelium of phytopathogenic fungi as a growth substrate.

  1. A Reference Broth Microdilution Method for Dalbavancin In Vitro Susceptibility Testing of Bacteria that Grow Aerobically.

    PubMed

    Koeth, Laura M; DiFranco-Fisher, Jeanna M; McCurdy, Sandra

    2015-09-09

    Antimicrobial susceptibility testing (AST) is performed to assess the in vitro activity of antimicrobial agents against various bacteria. The AST results, which are expressed as minimum inhibitory concentrations (MICs) are used in research for antimicrobial development and monitoring of resistance development and in the clinical setting for antimicrobial therapy guidance. Dalbavancin is a semi-synthetic lipoglycopeptide antimicrobial agent that was approved in May 2014 by the Food and Drug Administration (FDA) for the treatment of acute bacterial skin and skin structure infections caused by Gram-positive organisms. The advantage of dalbavancin over current anti-staphylococcal therapies is its long half-life, which allows for once-weekly dosing. Dalbavancin has activity against Staphylococcus aureus (including both methicillin-susceptible S. aureus [MSSA] and methicillin-resistant S. aureus [MRSA]), coagulase-negative staphylococci, Streptococcus pneumoniae, Streptococcus anginosus group, β-hemolytic streptococci and vancomycin susceptible enterococci. Similar to other recent lipoglycopeptide agents, optimization of CLSI and ISO broth susceptibility test methods includes the use of dimethyl sulfoxide (DMSO) as a solvent when preparing stock solutions and polysorbate 80 (P80) to alleviate adherence of the agent to plastic. Prior to the clinical studies and during the initial development of dalbavancin, susceptibility studies were not performed with the use of P-80 and MIC results tended to be 2-4 fold higher and similarly higher MIC results were obtained with the agar dilution susceptibility method. Dalbavancin was first included in CLSI broth microdilution methodology tables in 2005 and amended in 2006 to clarify use of DMSO and P-80. The broth microdilution (BMD) procedure shown here is specific to dalbavancin and is in accordance with the CLSI and ISO methods, with step-by-step detail and focus on the critical steps added for clarity.

  2. A Reference Broth Microdilution Method for Dalbavancin In Vitro Susceptibility Testing of Bacteria that Grow Aerobically.

    PubMed

    Koeth, Laura M; DiFranco-Fisher, Jeanna M; McCurdy, Sandra

    2015-01-01

    Antimicrobial susceptibility testing (AST) is performed to assess the in vitro activity of antimicrobial agents against various bacteria. The AST results, which are expressed as minimum inhibitory concentrations (MICs) are used in research for antimicrobial development and monitoring of resistance development and in the clinical setting for antimicrobial therapy guidance. Dalbavancin is a semi-synthetic lipoglycopeptide antimicrobial agent that was approved in May 2014 by the Food and Drug Administration (FDA) for the treatment of acute bacterial skin and skin structure infections caused by Gram-positive organisms. The advantage of dalbavancin over current anti-staphylococcal therapies is its long half-life, which allows for once-weekly dosing. Dalbavancin has activity against Staphylococcus aureus (including both methicillin-susceptible S. aureus [MSSA] and methicillin-resistant S. aureus [MRSA]), coagulase-negative staphylococci, Streptococcus pneumoniae, Streptococcus anginosus group, β-hemolytic streptococci and vancomycin susceptible enterococci. Similar to other recent lipoglycopeptide agents, optimization of CLSI and ISO broth susceptibility test methods includes the use of dimethyl sulfoxide (DMSO) as a solvent when preparing stock solutions and polysorbate 80 (P80) to alleviate adherence of the agent to plastic. Prior to the clinical studies and during the initial development of dalbavancin, susceptibility studies were not performed with the use of P-80 and MIC results tended to be 2-4 fold higher and similarly higher MIC results were obtained with the agar dilution susceptibility method. Dalbavancin was first included in CLSI broth microdilution methodology tables in 2005 and amended in 2006 to clarify use of DMSO and P-80. The broth microdilution (BMD) procedure shown here is specific to dalbavancin and is in accordance with the CLSI and ISO methods, with step-by-step detail and focus on the critical steps added for clarity. PMID:26381422

  3. The determination of the real nano-scale sizes of bacteria in chernozem during microbial succession by means of hatching of a soil in aerobic and anaerobic conditions

    NASA Astrophysics Data System (ADS)

    Gorbacheva, M.

    2012-04-01

    M.A. Gorbacheva,L.M. Polyanskaya The Faculty of Soil Science, Moscow State University, Leninskie Gory, GSP-1, Moscow,119991,Russia In recent years there's been particular attention paid to the smallest life's forms- bacteria which size can be measured in nanometer. These are the forms of bacteria with diameter of 5-200 nm. Theoretical calculations based on the content of the minimum number of DNA, enzyme, lipids in and ribosome in cells indicates impossibility of existence of a living cells within diameter less than 300 nm. It is theoretically possible for a living cell to exist within possible diameter of approximately 140 nm. Using a fluorescence microscope there's been indicated in a number of samples from lakes, rivers, soil, snow and rain water that 200 nm is the smallest diameter of a living cell. Supposingly, such a small size of bacteria in soil is determined by natural conditions which limit their development by nutritious substances and stress-factors. Rejuvenescence of nanobacteria under unfavourable natural conditions and stress-factors is studied in laboratory environment. The object of the current study has become the samples of typical arable chernozem of the Central Chernozem State Biosphere Reserve in Kursk. The detailed morphological description of the soil profile and its basic analytical characteristics are widely represented in scientific publications. The soil is characterized by a high carbon content which makes up 3,96% ,3,8% , and 2,9% for the upper layers of the A horizon, and 0,79% for the layer of the B horizon. A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in upper A horizons and B horizon of a chernozem. The final aim is to identify the cells size of bacteria in aerobic and anaerobic soil conditions in chernozem during the microbial succession, by dampening and application of chitin by means of «cascade filtration» method. The study of the microcosms is important for

  4. Small-molecule inhibition of choline catabolism in Pseudomonas aeruginosa and other aerobic choline-catabolizing bacteria.

    PubMed

    Fitzsimmons, Liam F; Flemer, Stevenson; Wurthmann, A Sandy; Deker, P Bruce; Sarkar, Indra Neil; Wargo, Matthew J

    2011-07-01

    Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ.

  5. Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration

    PubMed Central

    Li, Y.; Wang, F.; Nishino, N.

    2016-01-01

    We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56-day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents. PMID:26949952

  6. Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration.

    PubMed

    Li, Y; Wang, F; Nishino, N

    2016-04-01

    We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56-day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents.

  7. Extracellular Electron Transfer from Aerobic Bacteria to Au-Loaded TiO2 Semiconductor without Light: A New Bacteria-Killing Mechanism Other than Localized Surface Plasmon Resonance or Microbial Fuel Cells.

    PubMed

    Wang, Guomin; Feng, Hongqing; Gao, Ang; Hao, Qi; Jin, Weihong; Peng, Xiang; Li, Wan; Wu, Guosong; Chu, Paul K

    2016-09-21

    Titania loaded with noble metal nanoparticles exhibits enhanced photocatalytic killing of bacteria under light illumination due to the localized surface plasmon resonance (LSPR) property. It has been shown recently that loading with Au or Ag can also endow TiO2 with the antibacterial ability in the absence of light. In this work, the antibacterial mechanism of Au-loaded TiO2 nanotubes (Au@TiO2-NT) in the dark environment is studied, and a novel type of extracellular electron transfer (EET) between the bacteria and the surface of the materials is observed to cause bacteria death. Although the EET-induced bacteria current is similar to the LSPR-related photocurrent, the former takes place without light, and no reactive oxygen species (ROS) are produced during the process. The EET is also different from that commonly attributed to microbial fuel cells (MFC) because it is dominated mainly by the materials' surface, but not the bacteria, and the environment is aerobic. EET on the Au@TiO2-NT surface kills Staphylococcus aureus, but if it is combined with special MFC bacteria, the efficiency of MFC may be improved significantly. PMID:27580379

  8. Extracellular Electron Transfer from Aerobic Bacteria to Au-Loaded TiO2 Semiconductor without Light: A New Bacteria-Killing Mechanism Other than Localized Surface Plasmon Resonance or Microbial Fuel Cells.

    PubMed

    Wang, Guomin; Feng, Hongqing; Gao, Ang; Hao, Qi; Jin, Weihong; Peng, Xiang; Li, Wan; Wu, Guosong; Chu, Paul K

    2016-09-21

    Titania loaded with noble metal nanoparticles exhibits enhanced photocatalytic killing of bacteria under light illumination due to the localized surface plasmon resonance (LSPR) property. It has been shown recently that loading with Au or Ag can also endow TiO2 with the antibacterial ability in the absence of light. In this work, the antibacterial mechanism of Au-loaded TiO2 nanotubes (Au@TiO2-NT) in the dark environment is studied, and a novel type of extracellular electron transfer (EET) between the bacteria and the surface of the materials is observed to cause bacteria death. Although the EET-induced bacteria current is similar to the LSPR-related photocurrent, the former takes place without light, and no reactive oxygen species (ROS) are produced during the process. The EET is also different from that commonly attributed to microbial fuel cells (MFC) because it is dominated mainly by the materials' surface, but not the bacteria, and the environment is aerobic. EET on the Au@TiO2-NT surface kills Staphylococcus aureus, but if it is combined with special MFC bacteria, the efficiency of MFC may be improved significantly.

  9. [Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)].

    PubMed

    Kalashnikov, A M; Gaĭsin, V A; Sukhacheva, M V; Namsaraeva, B B; Panteleeva, A N; Nuianzina-Boldareva, E N; Kuznetsov, B B; Gorlenko, V M

    2014-01-01

    Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54 degrees C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected irn the samples from both the thermophilic and mesophilic mats. Cultures ofnonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolatd from the mats developing at high (50.6-49.4 degrees C) and low temperatures (45-20 degrees C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealedin low-temperature mats. Truly thermophilic purple and gree sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfuret communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophylla-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20 degrees C) mat is of interest.

  10. Bacterial gene import and mesophilic adaptation in archaea

    PubMed Central

    López-García, Purificación; Zivanovic, Yvan; Deschamps, Philippe; Moreira, David

    2015-01-01

    It is widely believed that the archaeal ancestor was hyperthermophilic, but during archaeal evolution, several lineages — including haloarchaea and their sister methanogens, the Thaumarchaeota, and the uncultured Marine Group II and Marine Group III Euryarchaeota (MGII/III) — independently adapted to lower temperatures. Recent phylogenomic studies suggest that the ancestors of these lineages were recipients of massive horizontal gene transfer from bacteria. Many of the acquired genes, which are often involved in metabolism and cell envelope biogenesis, were convergently acquired by distant mesophilic archaea. In this Opinion article, we explore the intriguing hypothesis that the import of these bacterial genes was crucial for the adaptation of archaea to mesophilic lifestyles. PMID:26075362

  11. The hydrological context determines the beta-diversity of aerobic anoxygenic phototrophic bacteria in European Arctic seas but does not favor endemism

    PubMed Central

    Lehours, Anne-Catherine; Jeanthon, Christian

    2015-01-01

    Despite an increasing number of studies over the last 15 years, aerobic anoxygenic photoheterotrophic (AAP) bacteria remain a puzzling functional group in terms of physiology, metabolism, and ecology. To contribute to a better knowledge of their environmental distribution, the present study aims at analyzing their diversity and structure at the boundary between the Norwegian, Greenland, and Barents Seas. The polymorphism of a marker gene encoding a sub-unit of the photosynthetic apparatus (pufM gene) was analyzed and attempted to be related to environmental parameters. The Atlantic or Arctic origin of water masses had a strong impact on the AAP bacterial community structure whose populations mostly belonged to the Alpha- and Gammaproteobacteria. A majority (>60%) of pufM sequences were affiliated to the Gammaproteobacteria reasserting that this class often represents the major component of the AAP bacterial community in oceanic regions. Two alphaproteobacterial groups dominate locally suggesting that they can constitute key players in this marine system transiently. We found that temperature is a major determinant of alpha diversity of AAP bacteria in this marine biome with specific clades emerging locally according to the partitioning of water masses. Whereas we expected specific AAP bacterial populations in this peculiar and newly explored ecosystem, most pufM sequences were highly related to sequences retrieved elsewhere. This observation highlights that the studied area does not favor AAP bacteria endemism but also opens new questions about the truthfulness of biogeographical patterns and on the extent of AAP bacterial diversity. PMID:26191046

  12. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    PubMed Central

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  13. Iodide accumulation by aerobic bacteria isolated from subsurface sediments of a 129I-contaminated aquifer at the Savannah River site, South Carolina.

    PubMed

    Li, Hsiu-Ping; Brinkmeyer, Robin; Jones, Whitney L; Zhang, Saijin; Xu, Chen; Schwehr, Kathy A; Santschi, Peter H; Kaplan, Daniel I; Yeager, Chris M

    2011-03-01

    (129)I is of major concern because of its mobility in the environment, excessive inventory, toxicity (it accumulates in the thyroid), and long half-life (∼16 million years). The aim of this study was to determine if bacteria from a (129)I-contaminated oxic aquifer at the F area of the U.S. Department of Energy's Savannah River Site, SC, could accumulate iodide at environmentally relevant concentrations (0.1 μM I(-)). Iodide accumulation capability was found in 3 out of 136 aerobic bacterial strains isolated from the F area that were closely related to Streptomyces/Kitasatospora spp., Bacillus mycoides, and Ralstonia/Cupriavidus spp. Two previously described iodide-accumulating marine strains, a Flexibacter aggregans strain and an Arenibacter troitsensis strain, accumulated 2 to 50% total iodide (0.1 μM), whereas the F-area strains accumulated just 0.2 to 2.0%. Iodide accumulation by FA-30 was stimulated by the addition of H(2)O(2), was not inhibited by chloride ions (27 mM), did not exhibit substrate saturation kinetics with regard to I(-) concentration (up to 10 μM I(-)), and increased at pH values of <6. Overall, the data indicate that I(-) accumulation likely results from electrophilic substitution of cellular organic molecules. This study demonstrates that readily culturable, aerobic bacteria of the F-area aquifer do not accumulate significant amounts of iodide; however, this mechanism may contribute to the long-term fate and transport of (129)I and to the biogeochemical cycling of iodine over geologic time.

  14. Genome Sequence of Virgibacillus pantothenticus DSM 26T (ATCC 14576), a Mesophilic and Halotolerant Bacterium Isolated from Soil

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Chen, De-ju; Zhu, Yu-jing; Chen, Zheng; Che, Jian-mei

    2015-01-01

    Virgibacillus pantothenticus DSM 26T is a Gram-positive, spore-forming, aerobic, mesophilic, and halotolerant bacterium. Here, we report its 4.76-Mb draft genome sequence, which is the first genome information of V. pantothenticus and will promote biological research and biotechnological application for the species. PMID:26383648

  15. Genome Sequence of Virgibacillus pantothenticus DSM 26T (ATCC 14576), a Mesophilic and Halotolerant Bacterium Isolated from Soil.

    PubMed

    Wang, Jie-Ping; Liu, Bo; Liu, Guo-Hong; Chen, De-Ju; Zhu, Yu-Jing; Chen, Zheng; Che, Jian-Mei

    2015-01-01

    Virgibacillus pantothenticus DSM 26(T) is a Gram-positive, spore-forming, aerobic, mesophilic, and halotolerant bacterium. Here, we report its 4.76-Mb draft genome sequence, which is the first genome information of V. pantothenticus and will promote biological research and biotechnological application for the species. PMID:26383648

  16. Dai nippon printing co., ltd, Medi-Ca AC for enumeration of aerobic bacteria. Performance tested method 041302.

    PubMed

    Okochi, Norihiko; Yamazaki, Mamoru; Kiso, Shoichi; Kinoshita, Mai; Okita, Yurie; Kazama, Keisuke; Saito, Rui

    2014-01-01

    A ready-made dry medium method for aerobic count, the MediCa AC method, was compared to the AOAC Official Method 966.23, Microbiological Methods, for seven different heat-processed meat matrixes: cooked roast beef, Chinese barbecued pork (barbecued pork seasoned with honey-based sauce), bacon, cooked ham, frankfurter (made from beef and pork), and boiled and cooked pork sausage. The 95% confidence interval for the mean difference between the two methods at each contamination level for each matrix fell within the range of -0.50 to 0.50, and no statistical difference was observed at all three contamination levels for five matrixes. These results demonstrate that the Medi-Ca AC method is a reasonable alternative to the AOAC 966.23 method for cooked meat products.

  17. Novel pod for chlorine dioxide generation and delivery to control aerobic bacteria on the inner surface of floor drains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Floor drains in poultry processing and further processing plants are a harborage site for bacteria both free swimming and in biofilms. This population can include Listeria monocytogenes which has been shown to have potential for airborne spreading from mishandled open drains. Chlorine dioxide (ClO...

  18. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo—Brazil)

    PubMed Central

    Cuadrat, Rafael R. C.; Ferrera, Isabel; Grossart, Hans-Peter; Dávila, Alberto M. R.

    2016-01-01

    Abstract Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean. PMID:26871866

  19. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo--Brazil).

    PubMed

    Cuadrat, Rafael R C; Ferrera, Isabel; Grossart, Hans-Peter; Dávila, Alberto M R

    2016-02-01

    Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean. PMID:26871866

  20. Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal.

    PubMed

    Shakya, S; Pradhan, B; Smith, L; Shrestha, J; Tuladhar, S

    2012-03-01

    Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater from Rautahat District of Nepal were randomly isolated by standard plate count method on the basis of viable growth on plate count agar amended with arsenate ranging from 0, 0.5, 10, 40, 80 to 160 milligram per liter (mg/l). With respect to the morphological and biochemical tests, nine morphologically distinct potent arsenate tolerant bacteria showed relatedness with Micrococcus varians, Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus smithii 1 and Bacillus smithii 2. The isolates were capable of tolerating more than 1000 mg/l of arsenate and 749 mg/l of arsenite. Likewise, bioaccumulation capability was highest with M. roseus (85.61%) and the least with B. smithii (47.88%) indicating the potential of the organisms in arsenic resistance and most probably in bioremediation.

  1. Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal.

    PubMed

    Shakya, S; Pradhan, B; Smith, L; Shrestha, J; Tuladhar, S

    2012-03-01

    Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater from Rautahat District of Nepal were randomly isolated by standard plate count method on the basis of viable growth on plate count agar amended with arsenate ranging from 0, 0.5, 10, 40, 80 to 160 milligram per liter (mg/l). With respect to the morphological and biochemical tests, nine morphologically distinct potent arsenate tolerant bacteria showed relatedness with Micrococcus varians, Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus smithii 1 and Bacillus smithii 2. The isolates were capable of tolerating more than 1000 mg/l of arsenate and 749 mg/l of arsenite. Likewise, bioaccumulation capability was highest with M. roseus (85.61%) and the least with B. smithii (47.88%) indicating the potential of the organisms in arsenic resistance and most probably in bioremediation. PMID:21868146

  2. Central Role of Dynamic Tidal Biofilms Dominated by Aerobic Hydrocarbonoclastic Bacteria and Diatoms in the Biodegradation of Hydrocarbons in Coastal Mudflats

    PubMed Central

    Coulon, Frédéric; Chronopoulou, Panagiota-Myrsini; Fahy, Anne; Païssé, Sandrine; Goñi-Urriza, Marisol; Peperzak, Louis; Acuña Alvarez, Laura; McKew, Boyd A.; Brussaard, Corina P. D.; Underwood, Graham J. C.; Timmis, Kenneth N.; Duran, Robert

    2012-01-01

    Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity. PMID:22407688

  3. Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Bartlett, John; Pembroke, Tony J.

    2010-01-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

  4. Evaluation of the removal of indicator bacteria from domestic sludge processed by Autothermal Thermophilic Aerobic Digestion (ATAD).

    PubMed

    Piterina, Anna V; Bartlett, John; Pembroke, Tony J

    2010-09-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing.

  5. Matrix Extension Study: Validation of the Compact Dry TC Method for Enumeration of Total Aerobic Bacteria in Selected Foods.

    PubMed

    Mizuochi, Shingo; Nelson, Maria; Baylis, Chris; Jewell, Keith; Green, Becky; Limbum, Rob; Fernandez, Maria Cristina; Salfinger, Yvonne; Chen, Yi

    2016-01-01

    A validation study was conducted to extend the matrix claim for the Nissui Compact Dry Total Count (TC), Performance Tested Method(s)(SM) (PTM) Certification No. 010404, to cooked chicken, lettuce, frozen fish, milk powder, and pasteurized whole milk. The method was originally certified by the AOAC Research Institute Performance Tested Method(s)(SM) Program for raw meat products. The Compact Dry TC is a ready-to-use dry media sheet that is rehydrated by adding 1 mL of diluted sample. A total aerobic colony count can be determined in the sample following 48 h of incubation. Matrix extension studies were conducted by Campden BRI (formerly Campden and Chorleywood Food Research Association Technology Limited), Chipping Campden, UK. Single-laboratory data were collected for cooked chicken, lettuce, frozen fish, and milk powder, whereas a multilaboratory study was conducted on pasteurized milk. Fourteen laboratories participated in the collaborative study. The Compact Dry TC was tested at two time points, 48 ± 3 h and 72 ± 3 h and compared with the current International Organization for Standardization (ISO) method at the time of the study, ISO 4833:2003 (this standard is withdrawn and has been replaced by: ISO 4833-1:2013 and ISO 4833-2:2013), Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of microorganisms-Colony-count technique at 30°C. The data were logarithmically transformed and evaluated for repeatability (plus reproducibility for pasteurized milk), RSD of repeatability (plus RSD of reproducibility for milk), r(2), and mean difference between methods with 95% confidence interval (CI). A CI outside of (-0.5 to 0.5) on the log10 mean difference was used as the criterion to establish significant statistical difference between methods. No significant differences were found between the Compact Dry TC 48 and 72 h time points, with the exception of one contamination level of cooked chicken and one contamination level of dry milk

  6. Matrix Extension Study: Validation of the Compact Dry TC Method for Enumeration of Total Aerobic Bacteria in Selected Foods.

    PubMed

    Mizuochi, Shingo; Nelson, Maria; Baylis, Chris; Jewell, Keith; Green, Becky; Limbum, Rob; Fernandez, Maria Cristina; Salfinger, Yvonne; Chen, Yi

    2016-01-01

    A validation study was conducted to extend the matrix claim for the Nissui Compact Dry Total Count (TC), Performance Tested Method(s)(SM) (PTM) Certification No. 010404, to cooked chicken, lettuce, frozen fish, milk powder, and pasteurized whole milk. The method was originally certified by the AOAC Research Institute Performance Tested Method(s)(SM) Program for raw meat products. The Compact Dry TC is a ready-to-use dry media sheet that is rehydrated by adding 1 mL of diluted sample. A total aerobic colony count can be determined in the sample following 48 h of incubation. Matrix extension studies were conducted by Campden BRI (formerly Campden and Chorleywood Food Research Association Technology Limited), Chipping Campden, UK. Single-laboratory data were collected for cooked chicken, lettuce, frozen fish, and milk powder, whereas a multilaboratory study was conducted on pasteurized milk. Fourteen laboratories participated in the collaborative study. The Compact Dry TC was tested at two time points, 48 ± 3 h and 72 ± 3 h and compared with the current International Organization for Standardization (ISO) method at the time of the study, ISO 4833:2003 (this standard is withdrawn and has been replaced by: ISO 4833-1:2013 and ISO 4833-2:2013), Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of microorganisms-Colony-count technique at 30°C. The data were logarithmically transformed and evaluated for repeatability (plus reproducibility for pasteurized milk), RSD of repeatability (plus RSD of reproducibility for milk), r(2), and mean difference between methods with 95% confidence interval (CI). A CI outside of (-0.5 to 0.5) on the log10 mean difference was used as the criterion to establish significant statistical difference between methods. No significant differences were found between the Compact Dry TC 48 and 72 h time points, with the exception of one contamination level of cooked chicken and one contamination level of dry milk

  7. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters.

    PubMed

    Burtscher, Carola; Wuertz, Stefan

    2003-08-01

    A PCR-based method and a reverse transcriptase PCR (RT-PCR)-based method were developed for the detection of pathogenic bacteria in organic waste, using Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Staphylococcus aureus as model organisms. In seeded organic waste samples, detection limits of less than 10 cells per g of organic waste were achieved after one-step enrichment of bacteria, isolation, and purification of DNA or RNA before PCR or RT-PCR amplification. To test the reproducibility and reliability of the newly developed methods, 46 unseeded samples were collected from diverse aerobic (composting) facilities and anaerobic digestors and analyzed by both culture-based classical and newly developed PCR-based procedures. No false-positive but some false-negative results were generated by the PCR- or RT-PCR-based methods after one-step enrichment when compared to the classical detection methods. The results indicated that the level of activity of the tested bacteria in unseeded samples was very low compared to that of freshly inoculated cells, preventing samples from reaching the cell density required for PCR-based detection after one-step enrichment. However, for Salmonella spp., a distinct PCR product could be obtained for all 22 nonamended samples that tested positive for Salmonella spp. by the classical detection procedure when a selective two-step enrichment (20 h in peptone water at 37 degrees C and 24 h in Rappaport Vassiliadis medium at 43 degrees C) was performed prior to nucleic acid extraction and PCR. Hence, the classical procedure was shortened, since cell plating and further differentiation of isolated colonies can be omitted, substituted for by highly sensitive and reliable detection based on nucleic acid extraction and PCR. Similarly, 2 of the 22 samples in which Salmonella spp. were detected also tested positive for Listeria monocytogenes according to a two-step enrichment procedure followed by PCR, compared to 3 samples

  8. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    PubMed

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency.

  9. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions.

    PubMed

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2016-08-01

    The growth of epiphytic bacteria (aerobic mesophilic bacteria or Pseudomonas spp.) on kale was modeled isothermally and validated under dynamic storage temperatures. Each bacterial count on kale stored at isothermal conditions (4 to 25 °C) was recorded. The results show that maximum growth rate (μmax ) of both epiphytic bacteria increased and lag time (λ) decreased with increasing temperature (P < 0.05). The maximum population density (Nmax ) of Pseudomonas spp. was significantly greater than that of aerobic mesophilic bacteria, particularly in treated samples and/or at 4 and 10 °C (P < 0.05). The relationship between μmax of both epiphytic bacteria and temperature was linear (R(2) > 0.97), whereas lower R(2) > 0.86 and R(2) > 0.87 was observed for the λ and Nmax , respectively. The overall predictions of both epiphytic bacterial growths under nonisothermal conditions with temperature abuse of 15 °C agreed with the observed data, whereas those with temperature abuse of 25 °C were greatly overestimated. The appropriate parameter q0 (physiological state of cells), therefore, was adjusted by a trial and error to fit the model. This study demonstrates that the developed model was able to predict accurately epiphytic bacterial growth on kale stored under nonisothermal conditions particularly those with low temperature abuse of 15 °C.

  10. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions.

    PubMed

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2016-08-01

    The growth of epiphytic bacteria (aerobic mesophilic bacteria or Pseudomonas spp.) on kale was modeled isothermally and validated under dynamic storage temperatures. Each bacterial count on kale stored at isothermal conditions (4 to 25 °C) was recorded. The results show that maximum growth rate (μmax ) of both epiphytic bacteria increased and lag time (λ) decreased with increasing temperature (P < 0.05). The maximum population density (Nmax ) of Pseudomonas spp. was significantly greater than that of aerobic mesophilic bacteria, particularly in treated samples and/or at 4 and 10 °C (P < 0.05). The relationship between μmax of both epiphytic bacteria and temperature was linear (R(2) > 0.97), whereas lower R(2) > 0.86 and R(2) > 0.87 was observed for the λ and Nmax , respectively. The overall predictions of both epiphytic bacterial growths under nonisothermal conditions with temperature abuse of 15 °C agreed with the observed data, whereas those with temperature abuse of 25 °C were greatly overestimated. The appropriate parameter q0 (physiological state of cells), therefore, was adjusted by a trial and error to fit the model. This study demonstrates that the developed model was able to predict accurately epiphytic bacterial growth on kale stored under nonisothermal conditions particularly those with low temperature abuse of 15 °C. PMID:27387251

  11. Adequacy of Petrifilm™ Aerobic Count plates supplemented with de Man, Rogosa & Sharpe broth and chlorophenol red for enumeration of lactic acid bacteria in salami.

    PubMed

    de Castilho, Natália Parma Augusto; Okamura, Vivian Tiemi; Camargo, Anderson Carlos; Pieri, Fábio Alessandro; Nero, Luís Augusto

    2015-12-01

    The present study aimed to assess the performance of alternative protocols to enumerate lactic acid bacteria (LAB) in salami. Fourteen cultures and two mixed starter cultures were plated using six protocols: 1) Petrifilm™ Aerobic Count (AC) with MRS broth and chlorophenol red (CR), incubated under aerobiosis or 2) under anaerobiosis, 3) MRS agar with CR, 4) MRS agar with bromocresol purple, 5) MRS agar at pH5.7, and 6) All Purpose Tween agar. Samples of salami were obtained and the LAB microbiota was enumerated by plating according protocols 1, 2, 3 and 5. Regression analysis showed a significant correlation between the tested protocols, based on culture counts (p<0.05). Similar results were observed for salami, and no significant differences of mean LAB counts between selected protocols (ANOVA, p>0.05). Colonies were confirmed as LAB, indicating proper selectivity of the protocols. The results showed the adequacy of Petrifilm™ AC supplemented with CR for the enumeration of LAB in salami. PMID:26291606

  12. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates.

    PubMed

    Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N

    2011-03-01

    In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline.

  13. Susceptibility to antibiotics of aerobic bacteria isolated from community acquired secondary peritonitis in children: therapeutic guidelines might not always fit with and everyday experience.

    PubMed

    Castagnola, Elio; Bandettini, Roberto; Ginocchio, Francesca; Perotti, Maddalena; Masa, Daniela La; Ciucci, Antonella; Loy, Anna; Caviglia, Ilaria; Haupt, Riccardo; Guida, Edoardo; Pini Prato, Alessio; Mattioli, Girolamo; Buffa, Piero

    2013-08-01

    Appendicitis is a frequent clinical condition in normal children that may be complicated by community-acquired secondary peritonitis (CASP). We evaluated the potential efficacy of different drugs for initial treatment of this condition, as recommended by recent Consensus Conference and Guidelines for paediatric patients. Susceptibility to ampicillin-sulbactam, ertapenem, gentamycin, piperacillin, piperacillin-tazobactam, vancomycin, and teicoplanin was evaluated according to EUCST 2012 recommendations in aerobic bacteria isolated from peritoneal fluid in CASP diagnosed from 2005 to 2011 at 'Istituto Giannina Gaslini', Genoa, Italy. A total of 114 strains were analysed: 83 E. coli, 15 P. aeruginosa, 6 Enterococci, and 10 other Gram-negatives. Resistance to ampicillin-sulbactam was detected in 37% of strains, while ertapenem showed a potential resistance of 13% (all P. aeruginosa strains). However, the combination of these drugs with gentamicin would have been increased the efficacy of the treatment to 99 and 100%, respectively. Resistance to piperacillin-tazobactam was 3%, while no strain was resistant to meropenem. Our data suggest that monotherapy with ampicillin-sulbactam or ertapenem for community-acquired secondary peritonitis would present a non-negligible rate of failure, but the addition of gentamycin to these drugs could reset to zero this risk. On the contrary, monotherapy with piperacillin-tazobactam or meropenem is highly effective.

  14. Adequacy of Petrifilm™ Aerobic Count plates supplemented with de Man, Rogosa & Sharpe broth and chlorophenol red for enumeration of lactic acid bacteria in salami.

    PubMed

    de Castilho, Natália Parma Augusto; Okamura, Vivian Tiemi; Camargo, Anderson Carlos; Pieri, Fábio Alessandro; Nero, Luís Augusto

    2015-12-01

    The present study aimed to assess the performance of alternative protocols to enumerate lactic acid bacteria (LAB) in salami. Fourteen cultures and two mixed starter cultures were plated using six protocols: 1) Petrifilm™ Aerobic Count (AC) with MRS broth and chlorophenol red (CR), incubated under aerobiosis or 2) under anaerobiosis, 3) MRS agar with CR, 4) MRS agar with bromocresol purple, 5) MRS agar at pH5.7, and 6) All Purpose Tween agar. Samples of salami were obtained and the LAB microbiota was enumerated by plating according protocols 1, 2, 3 and 5. Regression analysis showed a significant correlation between the tested protocols, based on culture counts (p<0.05). Similar results were observed for salami, and no significant differences of mean LAB counts between selected protocols (ANOVA, p>0.05). Colonies were confirmed as LAB, indicating proper selectivity of the protocols. The results showed the adequacy of Petrifilm™ AC supplemented with CR for the enumeration of LAB in salami.

  15. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene.

    PubMed

    Ferrera, Isabel; Borrego, Carles M; Salazar, Guillem; Gasol, Josep M

    2014-09-01

    The abundance and diversity of aerobic anoxygenic phototrophs (AAPs) were studied for a year cycle at the Blanes Bay Microbial Observatory (NW Mediterranean) and their potential links to an array of environmental variables were explored. Cell numbers were low in winter and peaked in summer, showing a marked seasonality that positively correlated with day length and light at the surface. Bacteriochlorophyll a concentration, their light-harvesting pigment, was only detected between April and October, and pigment cell quota showed large variations during this period. Pyrosequencing analysis of the pufM gene revealed that the most abundant operational taxonomic units (OTUs) were affiliated to phylogroup K (Gammaproteobacteria) and uncultured phylogroup C, although they were outnumbered by alphaproteobacterial OTUs in spring. Overall, richness was higher in winter than in summer, showing an opposite trend to abundance and day length. Clustering of samples by multivariate analyses showed a clear seasonality that suggests a succession of different AAP subpopulations over time. Temperature, chlorophyll a and day length were the environmental drivers that best explained the distribution of AAP assemblages. These results indicate that AAP bacteria are highly dynamic and undergo seasonal variations in diversity and abundance mostly dictated by environmental conditions as exemplified by light availability.

  16. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates.

    PubMed

    Hariharan, Harry; Matthew, Vanessa; Fountain, Jacqueline; Snell, Alicia; Doherty, Devin; King, Brittany; Shemer, Eran; Oliveira, Simone; Sharma, Ravindra N

    2011-03-01

    In a 2-year period 54 feral cats were captured in Grenada, West Indies, and a total of 383 samples consisting of swabs from rectum, vagina, ears, eyes, mouth, nose and wounds/abscesses, were cultured for aerobic bacteria and campylobacters. A total of 251 bacterial isolates were obtained, of which 205 were identified to species level and 46 to genus level. A commercial bacterial identification system (API/Biomerieux), was used for this purpose. The most common species was Escherichia coli (N=60), followed by Staphylococcus felis/simulans (40), S. hominis (16), S. haemolyticus (12), Streptococcus canis (9), Proteus mirabilis (8), Pasteurella multocida (7), Streptococcus mitis (7), Staphylococcus xylosus (7), S. capitis (6), S. chromogenes (4), S. sciuri (3), S. auricularis (2), S. lentus (2), S. hyicus (2), Streptococcus suis (2) and Pseudomonas argentinensis (2). Sixteen other isolates were identified to species level. A molecular method using 16S rRNA sequencing was used to confirm/identify 22 isolates. Salmonella or campylobacters were not isolated from rectal swabs. E. coli and S. felis/simulans together constituted 50% of isolates from vagina. S. felis/simulans was the most common species from culture positive ear and eye samples. P. multocida was isolated from 15% of mouth samples. Coagulase-negative staphylococci were the most common isolates from nose and wound swabs. Staphylococcus aureus, or S. intemedius/S. pseudintermedius were not isolated from any sample. Antimicrobial drug resistance was minimal, most isolates being susceptible to all drugs tested against, including tetracycline. PMID:20627391

  17. Guidelines for interpretation of 16S rRNA gene sequence-based results for identification of medically important aerobic Gram-positive bacteria.

    PubMed

    Woo, Patrick C Y; Teng, Jade L L; Wu, Jeff K L; Leung, Fion P S; Tse, Herman; Fung, Ami M Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2009-08-01

    This study is believed to be the first to provide guidelines for facilitating interpretation of results based on full and 527 bp 16S rRNA gene sequencing and MicroSeq databases used for identifying medically important aerobic Gram-positive bacteria. Overall, full and 527 bp 16S rRNA gene sequencing can identify 24 and 40 % of medically important Gram-positive cocci (GPC), and 21 and 34 % of medically important Gram-positive rods (GPR) confidently to the species level, whereas the full-MicroSeq and 500-MicroSeq databases can identify 15 and 34 % of medically important GPC and 14 and 25 % of medically important GPR confidently to the species level. Among staphylococci, streptococci, enterococci, mycobacteria, corynebacteria, nocardia and members of Bacillus and related taxa (Paenibacillus, Brevibacillus, Geobacillus and Virgibacillus), the methods and databases are least useful for identification of staphylococci and nocardia. Only 0-2 and 2-13 % of staphylococci, and 0 and 0-10 % of nocardia, can be confidently and doubtfully identified, respectively. However, these methods and databases are most useful for identification of Bacillus and related taxa, with 36-56 and 11-14 % of Bacillus and related taxa confidently and doubtfully identified, respectively. A total of 15 medically important GPC and 18 medically important GPR that should be confidently identified by full 16S rRNA gene sequencing are not included in the full-MicroSeq database. A total of 9 medically important GPC and 21 medically important GPR that should be confidently identified by 527 bp 16S rRNA gene sequencing are not included in the 500-MicroSeq database. 16S rRNA gene sequence results of Gram-positive bacteria should be interpreted with basic phenotypic tests results. Additional biochemical tests or sequencing of additional gene loci are often required for definitive identification. To improve the usefulness of the MicroSeq databases, bacterial species that can be confidently identified by 16S r

  18. A RAPD based study revealing a previously unreported wide range of mesophilic and thermophilic spore formers associated with milk powders in China.

    PubMed

    Sadiq, Faizan A; Li, Yun; Liu, TongJie; Flint, Steve; Zhang, Guohua; He, GuoQing

    2016-01-18

    Aerobic spore forming bacteria are potential milk powder contaminants and are viewed as indicators of poor quality. A total of 738 bacteria, including both mesophilic and thermophilic, isolated from twenty-five powdered milk samples representative of three types of milk powders in China were analyzed based on the random amplified polymorphic DNA (RAPD) protocol to provide insight into species diversity. Bacillus licheniformis was found to be the most prevalent bacterium with greatest diversity (~43% of the total isolates) followed by Geobacillus stearothermophilus (~21% of the total isolates). Anoxybacillus flavithermus represented only 8.5% of the total profiles. Interestingly, actinomycetes represented a major group of the isolates with the predominance of Laceyella sacchari followed by Thermoactinomyces vulgaris, altogether comprising of 7.3% of the total isolates. Out of the nineteen separate bacterial species (except five unidentified groups) recovered and identified from milk powders, twelve proved to belong to novel or previously unreported species in milk powders. Assessment and characterization of the harmful effects caused by this particular micro-flora on the quality and safety of milk powders will be worth doing in the future. PMID:26555161

  19. (Per)Chlorate-Reducing Bacteria Can Utilize Aerobic and Anaerobic Pathways of Aromatic Degradation with (Per)Chlorate as an Electron Acceptor

    PubMed Central

    Carlström, Charlotte I.; Loutey, Dana; Bauer, Stefan; Clark, Iain C.; Rohde, Robert A.; Iavarone, Anthony T.; Lucas, Lauren

    2015-01-01

    ABSTRACT The pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2−), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms. PMID:25805732

  20. Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors.

    PubMed

    Mohammad, Balsam T; Veiga, María C; Kennes, Christian

    2007-08-15

    This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop.

  1. Lab scale experiments using a submerged MBR under thermophilic aerobic conditions for the treatment of paper mill deinking wastewater.

    PubMed

    Simstich, Benjamin; Beimfohr, Claudia; Horn, Harald

    2012-10-01

    This paper describes the results of laboratory experiments using a thermophilic aerobic MBR (TMBR) at 50 °C. An innovative use of submerged flat-sheet MBR modules to treat circuit wastewater from the paper industry was studied. Two experiments were conducted with a flux of 8-13 L/m(2)/h without chemical membrane cleaning. COD and BOD(5) elimination rates were 83% and 99%, respectively. Calcium was reduced from 110 to 180 mg/L in the inflow to 35-60 mg/L in the permeate. However, only negligible membrane scaling occurred. The observed sludge yield was very low and amounted to 0.07-0.29 g MLSS/g COD(eliminated). Consequently, the nutrient supply of ammonia and phosphate can be lower compared to a mesophilic process. Molecular-biological FISH analysis revealed a likewise high diversity of microorganisms in the TMBR compared to the mesophilic sludge used for start-up. Furthermore, ammonia-oxidising bacteria were detected at thermophilic operation. PMID:22595101

  2. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  3. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    SciTech Connect

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  4. Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample.

    PubMed

    Marhual, N P; Pradhan, N; Kar, R N; Sukla, L B; Mishra, B K

    2008-11-01

    Three acidophilic enrichment consortium were developed from mine water sample of copper mine site at Khetri, India were compared for their copper leaching efficiency. Out of these one was mesophilic (35 degrees C) and two were moderately thermophilic (50 degrees C). Consortia were named as mesophilic acidophilic chemolithotrophic consortia (MACC), thermophilic acidophilic chemolithotrophic consortia (TACC), and Sulfobacillus acidophilic consortia (SAC). Copper extraction ability of both the thermophilic consortia (77-78% extraction) was almost double to that of mesophilic consortia (40% extraction) at 10% pulp density after 55 days. Both the thermophilic consortia were equally effective in leaching of other metals like Ni, Co, Zn, Mn. After 55 days, the percentage of extractions of copper by TACC was 76, 74, 67, 48 and 45 at 5%, 10%, 15%, 20% and 30% pulp density, respectively. Total number of bacteria was maximum at 5% pulp density which decreases with increase in pulp density. Sulfobacillus-like bacteria were seen in the Sulfobacillus enrichment cultures. Moderately thermophilic consortia proved to be better in leaching performance than the mesophilic counterpart.

  5. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience.

    PubMed

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-01

    While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000mg/L with free ammonia (FA) 2000mg/L compared to 16,000mg/L (FA1500mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gVSin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages. PMID:26054964

  6. Isolation and characterization of heterotrophic bacteria able to grow aerobically with quaternary ammonium alcohols as sole source of carbon and nitrogen.

    PubMed

    Kaech, Andres; Vallotton, Nathalie; Egli, Thomas

    2005-04-01

    The quaternary ammonium alcohols (QAAs) 2,3-dihydroxypropyl-trimethyl-ammonium (TM), dimethyl-diethanol-ammonium (DM) and methyl-triethanol-ammonium (MM) are hydrolysis products of their parent esterquat surfactants, which are widely used as softeners in fabric care. We isolated several bacteria growing with QAAs as the sole source of carbon and nitrogen. The strains were compared with a previously isolated TM-degrading bacterium, which was identified as a representative of the species Pseudomonas putida (Syst. Appl. Microbiol. 24 (2001) 252). Two bacteria were isolated with DM, referred to as strains DM 1 and DM 2, respectively. Based on 16S-rDNA analysis, they provided 97% (DM 1) and 98% (DM 2) identities to the closest related strain Zoogloea ramigera Itzigsohn 1868AL. Both strains were long, slim, motile rods but only DM 1 showed the floc forming activity, which is typical for representatives of the genus Zoogloea. Using MM we isolated a Gram-negative, non-motile rod referred to as strain MM 1. The 16S-rDNA sequence of the isolated bacterium revealed 94% identities (best match) to Rhodobacter sphaeroides only. The strains MM 1 and DM 1 exclusively grew with the QAA which was used for their isolation. DM 2 was also utilizing TM as sole source of carbon and nitrogen. However, all of the isolated bacteria were growing with the natural and structurally related compound choline. PMID:15900970

  7. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    PubMed

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions.

  8. Evaluation of analytical methods for determining the distribution of biofilm and active bacteria in a commercial heating system.

    PubMed

    Kjellerup, B V; Gudmonsson, G; Sowers, K; Nielsen, P H

    2006-01-01

    Danish district heating systems have good water quality, but continue to suffer from biofouling and biocorrosion. Localisation analyses of bacteria using microautoradiography were performed for one system in order to obtain detailed information for solving these problems. A mass balance showed that 77% of the bacteria were located at surfaces, with 23% in the bulk water, and 9% of the total carbon originated from biomass, while 91% was dissolved in the bulk water. The presence of active bacteria was determined with microautoradiography which showed that biofilms contained 99% and 1% were in the bulk water. A high bacterial functional diversity was observed, with active mesophilic and thermophilic bacteria under aerobic and anaerobic conditions and with potentially corrosive biofilm bacteria present. The study reveals that by applying the activity based approach, the ratio of living and dead bacteria in the biofilm and bulk water in this type of system could be accurately determined. Also, the results emphasise that to minimise biofilm growth and biocorrosion, monitoring should be established focusing on the surfaces, since bulk water parameters do not reflect bacterial activity.

  9. Trends of Antibiotic Resistance in Mesophilic and Psychrotrophic Bacterial Populations during Cold Storage of Raw Milk

    PubMed Central

    Munsch-Alatossava, Patricia; Gauchi, Jean-Pierre; Chamlagain, Bhawani; Alatossava, Tapani

    2012-01-01

    Psychrotrophic bacteria in raw milk are most well known for their spoilage potential and cause significant economic losses in the dairy industry. Despite their ability to produce several exoenzyme types at low temperatures, psychrotrophs that dominate the microflora at the time of spoilage are generally considered benign bacteria. It was recently reported that raw milk-spoiling Gram-negative-psychrotrophs frequently carried antibiotic resistance (AR) features. The present study evaluated AR to four antibiotics (ABs) (gentamicin, ceftazidime, levofloxacin, and trimethoprim-sulfamethoxazole) in mesophilic and psychrotrophic bacterial populations recovered from 18 raw milk samples, after four days storage at 4°C or 6°C. Robust analysis of variance and non parametric statistics (e.g., REGW and NPS) revealed that AR prevalence among psychrotrophs, for milk samples stored at 4°C, often equalled the initial levels and equalled or increased during the cold storage at 6°C, depending on the AB. The study performed at 4°C with an intermediate sampling point at day 2 suggested that (1) different psychrotrophic communities with varying AR levels dominate over time and (2) that AR (determined from relative amounts) was most prevalent, transiently, after 2-day storage in psychrotrophic or mesophilic populations, most importantly at a stage where total counts were below or around 105 CFU/mL, at levels at which the milk is acceptable for industrial dairy industrial processes. PMID:23724333

  10. Sequencing mesophilic and thermophilic anaerobic digesters. Final report

    SciTech Connect

    Not Available

    1982-12-01

    This project employed two laboratory bench scale, complete-mix anaerobic sludge digesters arranged in a series configuration. The first digester was operated at 35/sup 0/C (mesophilic) and the second at 50/sup 0/C (thermophilic). A portion of the thermophilic sludge was recycled through an aeration basin. As a comparison to the mesophilic-thermophilic sequencing, a mesophilic-mesophilic digester sequence, without sludge recycle to the aeration basin, was operated in parallel to the test units and loaded at an equivalent rate. Conclusions of this study are as follows: in establishing a thermophilic anaerobic digester, a slow-start procedure, in which the temperature is increased at a rate of 0.6/sup 0/C per day with loading, appears to produce a more stable thermophilic digester in a shorter period of time than a quick-start procedure, in which the temperature is increased rapidly with no loading. Even after a year, the slow-start thermophilic digester proved to be unstable once sequencing began. A greater volatile solids, COD, BOD, and grease reduction with a higher gas production was achieved using a mesophilic-mesophilic sequence, probably, in part, due to the instability (volatile acids in the effluent) of the thermophilic digester in the mesophilic-thermophilic sequence. A greater total kjeldahl N (TKN) and total coliform destruction was achieved in the thermophilic digester, however, poor dewatering characteristics, as indicated by the capillary suction time (CST), and an obnoxious odor were also evident. Other than an increase in effluent suspended solids, the recycle of thermophilic sludge to an aeration basin produced no discernable effect. 9 figs., 3 tabs.

  11. Isolation, Characterization, and Polyaromatic Hydrocarbon Degradation Potential of Aerobic Bacteria from Marine Macrofaunal Burrow Sediments and Description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov.†

    PubMed Central

    Chung, W. K.; King, G. M.

    2001-01-01

    Two new polyaromatic hydrocarbon-degrading marine bacteria have been isolated from burrow wall sediments of benthic macrofauna by using enrichments on phenanthrene. Strain LC8 (from a polychaete) and strain M4-6 (from a mollusc) are aerobic and gram negative and require sodium chloride (>1%) for growth. Both strains can use 2- and 3-ring polycyclic aromatic hydrocarbons as their sole carbon and energy sources, but they are nutritionally versatile. Physiological and phylogenetic analyses based on 16S ribosomal DNA sequences suggest that strain M4-6 belongs to the genus Cycloclasticus and represents a new species, Cycloclasticus spirillensus sp. nov. Strain LC8 appears to represent a new genus and species, Lutibacterium anuloederans gen. nov., sp. nov., within the Sphingomonadaceae. However, when inoculated into sediment slurries with or without exogenous phenanthrene, only L. anuloederans appeared to sustain a significant phenanthrene uptake potential throughout a 35-day incubation. In addition, only L. anuloederans appeared to enhance phenanthrene degradation in heavily contaminated sediment from Little Mystic Cove, Boston Harbor, Boston, Mass. PMID:11722910

  12. Prevalence of bacteria and absence of anisakid parasites in raw and prepared fish and seafood dishes in Spanish restaurants.

    PubMed

    Sospedra, I; Rubert, J; Soriano, J M; Mañes, J; Fuentes, M V

    2015-03-01

    This study evaluated the presence of bacteria and anisakid parasites in 45 samples of raw anchovies in vinegar, a dish widely eaten in Spain, and in 227 samples of cooked fish and cephalopods served in Spanish food service establishments. Our analysis showed that, according to European and Spanish regulation, 14 to 30% of the prepared fish and cephalopod dishes exceeded the maximum allowable level for mesophilic aerobic counts, and 10 to 40% of these samples exceeded the allowable levels for Enterobacteriaceae. None of the studied samples showed evidence of anisakid parasites, Escherichia coli, Staphylococcus aureus, Salmonella, or Listeria monocytogenes. These results indicate that application of hazard analysis and critical control points, food safety training courses, and routine inspections in compliance with current European and Spanish legislation help protect consumer health. PMID:25719890

  13. Influence of an aerobic fungus grown on solid culture on ruminal degradability and on a mixture culture of anaerobic cellulolytic bacteria.

    PubMed

    Hernández-Díaz, R; Pimentel-González, D J; Figueira, A C; Viniegra-González, G; Campos-Montiel, R G

    2010-06-01

    In this work, the effect of a solid fungal culture of Aspergillus niger (An) grown on coffee pulp on the in situ ruminal degradability (RD) of corn stover was evaluated. In addition, the effect of its extracts on the in vitro dry matter disappearance (IVDMD) and on a mixed culture of anaerobic cellulolytic bacteria (MCACB) was also investigated. The solid ferment was a crude culture of An, grown on coffee pulp. Regarding in situ RD, a significant difference (p < 0.05) was found between treatment with 200 g/day of the solid culture and control (no solid culture added) on dry matter, crude protein and neutral detergent fibre on RD. All the water extracts (pH 4, 7 and 10) enhanced IVDMD and stimulated the cellulolytic activity on a MCACB. Ultrafiltration results showed that active compounds with a molecular weight lower than 30 kDa were responsible for the effect on MCACB. Such results suggest that the effects of the solid An culture in RD are related to the presence of water soluble compounds having a molecular weight lower than 30 kDa.

  14. [Comparative characteristics of free-living ultramicroscopical bacteria obtained from extremal biotopes].

    PubMed

    Suzina, N E; Esikova, T Z; Oleinikov, R R; Gafarov, B; Shorokhov, A P; Polivtseva, V N; Ross, D V; Abashina, T N; Duda, V I; Boronin, A M

    2015-01-01

    We isolated 50 strains of free-living ultrasmall bacteria with a cell volume that varies from 0.02 to 1.3 microm3 from a range of extremal natural biotopes, namely permafrost soils, oil slime, soils, lake silt, thermal swamp moss, and the skin integuments of the clawed frog, Xenopus laevis. Of them, 15 isolates, characterized by a cell size of less than 0.1 microm3 and a genome size from 1.5 to 2.4 Mb, were subsumed to ultramicrobacteria belonging to different philogenetic groups (Alphaproteobacteria, Bacteroidetes, Actinobacteria) and genera (Kaistia, Chryseobacterium, Microbacterium, Leucobacter, Leifsonia, and Agrococcus) of the Bacteria domain. They are free-living mesophilic heterotrophic aerobic bacteria. The representatives of Kaistia and Chryseobacterium genera were capable of facultative parasitism on other species of chemo-organotrophic bacteria and cyanobacteria. The ultramicrobacteria differed in their morpholgy, cell ultrastructural organization, and physiological and biochemical features. According to the fine structure of their cell walls, the isolates were subdivided into two groups, namely Gram-positive and Gram-negative forms. PMID:26027350

  15. Gene cloning and protein expression of γ-glutamyltranspeptidases from Thermus thermophilus and Deinococcus radiodurans: comparison of molecular and structural properties with mesophilic counterparts.

    PubMed

    Castellano, Immacolata; Di Salle, Anna; Merlino, Antonello; Rossi, Mosè; La Cara, Francesco

    2011-03-01

    γ-Glutamyltranspeptidase (γ-GT) is an ubiquitous enzyme that catalyzes the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. γ-GTs from extremophiles, bacteria adapted to live in hostile environments, were selected as model systems to study the molecular underpinnings of their adaptation to extreme conditions and to find out special properties of potential biotechnological interest. Here, we report the cloning, expression and purification of two members of γ-GT family from two different extremophilic species, Thermus thermophilus (TtGT) and Deinococcus radiodurans (DrGT); the first is an aerobic eubacterium, growing at high temperatures (50-82°C), the second is a polyextremophile, as it tolerates radiations, cold, dehydration, vacuum, and acid. TtGT and DrGT were both synthesized as precursor proteins of 59-60 kDa, undergoing an intramolecular auto-cleavage to yield two subunits of 40 and 19-20 kDa, respectively. However, like the γ-GT from Geobacillus thermodenitrificans, but differently from the other characterized bacterial and eukaryotic γ-GTs, the two new extremophilic enzymes displayed γ-glutamyl hydrolase, but not transpeptidase activity in the 37-50°C temperature range, pH 8.0. The comparison of sequences and structural models of these two proteins with experimental-determined structures of other known mesophilic γ-GTs suggests that the extremophilic members of this protein family have found a common strategy to adapt to different hostile environments. Moreover, a phylogenetic analysis suggests that γ-GTs displaying only γ-glutamyl hydrolase activity could represent the progenitors of the bacterial and eukaryotic counterparts.

  16. Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields.

    PubMed

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V

    2015-04-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the "Rapid Annotation using the Subsystems Technology" server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836

  17. Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields

    PubMed Central

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren

    2015-01-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the “Rapid Annotation using the Subsystems Technology” server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836

  18. Diversity and variability of methanogens during the shift from mesophilic to thermohilic conditions while biogas production.

    PubMed

    Ziembińska-Buczyńska, A; Banach, A; Bacza, T; Pieczykolan, M

    2014-12-01

    Anaerobic digestion (AD) is the most popular path of organic waste disposal. It is often used in wastewater treatment plants for excessive sludge removal. Methanogenic fermentation had usually been performed under mesophilic conditions, but in the past few years the thermophilic processes have become more popular due to economics and sludge sanitation. Methanogens, the group of microorganisms responsible for methane production, are thought to be sensitive to temperature change and it has already been proven that the communities performing methanogenesis under mesophilic and thermophilic conditions differ. But in most cases the research performed on methanogen diversity and changeability was undertaken in two separate anaerobic chambers for meso- and thermophilic conditions. It is also known that there is a group of microorganisms performing AD which are insensitive to temperature. Also the linkage between digester performance and its microbial content and community changeability is still not fully understood. That is why in this experiment we analyzed the bacterial community performing methanogenesis in a pilot scale anaerobic chamber during the shift from mesophilic to thermophilic conditions to point at the group of temperature tolerant microorganisms and their performance. The research was performed with PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). It occurred that the community biodiversity decreased together with a temperature increase. The changes were coherent for both the total bacteria community and methanogens. These bacterial shifts were also convergent with biogas production-it decreased in the beginning of the thermophilic phase with the bacterial biodiversity decrease and increased when the community seemed to be restored. DGGE results suggest that among a wide variety of microorganisms involved in AD there is a GC-rich group relatively insensitive towards temperature change, able to adapt quickly to shifts in

  19. Anaerobic bacteria in otitis media.

    PubMed

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  20. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    SciTech Connect

    Coyne, P.; Smith, G.

    1995-08-15

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments.

  1. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  2. Monitoring of thermophilic adaptation of mesophilic anaerobe fermentation of sugar beet pressed pulp.

    PubMed

    Tukacs-Hájos, Annamária; Pap, Bernadett; Maróti, Gergely; Szendefy, Judit; Szabó, Piroska; Rétfalvi, Tamás

    2014-08-01

    Anaerobe fermentation of sugar beet pressed pulp was investigated in pilot-scale digesters. Thermophilic adaptation of mesophilic culture was monitored using chemical analysis and metagenomic characterization of the sludge. Temperature adaptation was achieved by increasing the temperature gradually (2 °C day(-1)) and by greatly decreasing the OLR. During stable run, the OLR was increased gradually to 11.29 kg VS m(-3)d(-1) and biogas yield was 5% higher in the thermophilic reactor. VFA levels increased in the thermophilic reactor with increased OLR (acetic acid 646 mg L(-1), propionic acid 596 mg L(-1)), then VFA decreased and the operation was manageable beside the relative high tVFA (1300-2000 mg L(-1)). The effect of thermophilic adaptation on the microbial communities was studied using a sequencing-based metagenomic approach. Connections between physico-chemical parameters and populations of bacteria and methanogen archaea were revealed.

  3. Isolation and characterization of bacteriocinogenic lactic bacteria from M-Tuba and Tepache, two traditional fermented beverages in México.

    PubMed

    de la Fuente-Salcido, Norma M; Castañeda-Ramírez, José Cristobal; García-Almendárez, Blanca E; Bideshi, Dennis K; Salcedo-Hernández, Rubén; Barboza-Corona, José E

    2015-09-01

    Mexican Tuba (M-Tuba) and Tepache are Mexican fermented beverages prepared mainly with pineapple pulp and coconut palm, respectively. At present, reports on the microbiota and nutritional effects of both beverages are lacking. The purpose of this study was to determine whether M-Tuba and Tepache contain cultivable lactic acid bacteria (LAB) capable of producing bacteriocins. Tepache and M-Tuba contain mesophilic aerobic bacteria, LAB, and yeast. Bacillus subtilis, Listeria monocytogenes, Listeria innocua, Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, and Salmonella spp, were the microorganisms most susceptible to metabolites produced by bacterial isolates. M-Tuba and Tepache contain bacteria that harbor genes coding for nisin and enterocin, but not pediocin. The presence of Lactococcus lactis and E. faecium in M-Tuba and Tepache, was identified by 16S rDNA. These bacteria produced bacteriocins of ∼3.5 kDa and 4.0-4.5 kDa, respectively. Partial purified bacteriocins showed inhibitory effect against Micrococcus luteus, L. monocytogenes, L. innocua, Str. agalactiae, S. aureus, Bacillus cereus, B. subtilis, E. faecalis, and K. pneumoniae. We characterized, for the first time, cultivable microbiota of M-Tuba and Tepache, and specifically, identified candidate lactic bacteria (LAB) present in these beverages that were capable of synthesizing antimicrobial peptides, which collectively could provide food preservative functions.

  4. Isolation and characterization of bacteriocinogenic lactic bacteria from M-Tuba and Tepache, two traditional fermented beverages in México.

    PubMed

    de la Fuente-Salcido, Norma M; Castañeda-Ramírez, José Cristobal; García-Almendárez, Blanca E; Bideshi, Dennis K; Salcedo-Hernández, Rubén; Barboza-Corona, José E

    2015-09-01

    Mexican Tuba (M-Tuba) and Tepache are Mexican fermented beverages prepared mainly with pineapple pulp and coconut palm, respectively. At present, reports on the microbiota and nutritional effects of both beverages are lacking. The purpose of this study was to determine whether M-Tuba and Tepache contain cultivable lactic acid bacteria (LAB) capable of producing bacteriocins. Tepache and M-Tuba contain mesophilic aerobic bacteria, LAB, and yeast. Bacillus subtilis, Listeria monocytogenes, Listeria innocua, Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, and Salmonella spp, were the microorganisms most susceptible to metabolites produced by bacterial isolates. M-Tuba and Tepache contain bacteria that harbor genes coding for nisin and enterocin, but not pediocin. The presence of Lactococcus lactis and E. faecium in M-Tuba and Tepache, was identified by 16S rDNA. These bacteria produced bacteriocins of ∼3.5 kDa and 4.0-4.5 kDa, respectively. Partial purified bacteriocins showed inhibitory effect against Micrococcus luteus, L. monocytogenes, L. innocua, Str. agalactiae, S. aureus, Bacillus cereus, B. subtilis, E. faecalis, and K. pneumoniae. We characterized, for the first time, cultivable microbiota of M-Tuba and Tepache, and specifically, identified candidate lactic bacteria (LAB) present in these beverages that were capable of synthesizing antimicrobial peptides, which collectively could provide food preservative functions. PMID:26405529

  5. Isolation and characterization of bacteriocinogenic lactic bacteria from M-Tuba and Tepache, two traditional fermented beverages in México

    PubMed Central

    de la Fuente-Salcido, Norma M; Castañeda-Ramírez, José Cristobal; García-Almendárez, Blanca E; Bideshi, Dennis K; Salcedo-Hernández, Rubén; Barboza-Corona, José E

    2015-01-01

    Mexican Tuba (M-Tuba) and Tepache are Mexican fermented beverages prepared mainly with pineapple pulp and coconut palm, respectively. At present, reports on the microbiota and nutritional effects of both beverages are lacking. The purpose of this study was to determine whether M-Tuba and Tepache contain cultivable lactic acid bacteria (LAB) capable of producing bacteriocins. Tepache and M-Tuba contain mesophilic aerobic bacteria, LAB, and yeast. Bacillus subtilis, Listeria monocytogenes, Listeria innocua, Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, and Salmonella spp, were the microorganisms most susceptible to metabolites produced by bacterial isolates. M-Tuba and Tepache contain bacteria that harbor genes coding for nisin and enterocin, but not pediocin. The presence of Lactococcus lactis and E. faecium in M-Tuba and Tepache, was identified by 16S rDNA. These bacteria produced bacteriocins of ∼3.5 kDa and 4.0–4.5 kDa, respectively. Partial purified bacteriocins showed inhibitory effect against Micrococcus luteus, L. monocytogenes, L. innocua, Str. agalactiae, S. aureus, Bacillus cereus, B. subtilis, E. faecalis, and K. pneumoniae. We characterized, for the first time, cultivable microbiota of M-Tuba and Tepache, and specifically, identified candidate lactic bacteria (LAB) present in these beverages that were capable of synthesizing antimicrobial peptides, which collectively could provide food preservative functions. PMID:26405529

  6. Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures.

    PubMed

    Li, Yueh-Fen; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2015-01-01

    The microbiomes involved in liquid anaerobic digestion process have been investigated extensively, but the microbiomes underpinning solid-state anaerobic digestion (SS-AD) are poorly understood. In this study, microbiome composition and temporal succession in batch SS-AD reactors, operated at mesophilic or thermophilic temperatures, were investigated using Illumina sequencing of 16S rRNA gene amplicons. A greater microbial richness and evenness were found in the mesophilic than in the thermophilic SS-AD reactors. Firmicutes accounted for 60 and 82 % of the total Bacteria in the mesophilic and in the thermophilic SS-AD reactors, respectively. The genus Methanothermobacter dominated the Archaea in the thermophilic SS-AD reactors, while Methanoculleus predominated in the mesophilic SS-AD reactors. Interestingly, the data suggest syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis as an important pathway for biogas production during the thermophilic SS-AD. Canonical correspondence analysis (CCA) showed that temperature was the most influential factor in shaping the microbiomes in the SS-AD reactors. Thermotogae showed strong positive correlation with operation temperature, while Fibrobacteres, Lentisphaerae, Spirochaetes, and Tenericutes were positively correlated with daily biogas yield. This study provided new insight into the microbiome that drives SS-AD process, and the findings may help advance understanding of the microbiome in SS-AD reactors and the design and operation of SS-AD systems.

  7. Thermal stability of cytochrome c' from mesophilic Shewanella amazonensis.

    PubMed

    Kato, Yuki; Fujii, Sotaro; Kuribayashi, Taka-aki; Masanari, Misa; Sambongi, Yoshihiro

    2015-01-01

    Cytochrome c' (SACP) from mesophilic Shewanella amazonensis, growing optimally at 37 °C, was thermally more stable than cytochrome c' (AVCP) from mesophilic Allochromatium vinosum, growing optimally at 25 °C. In contrast, SACP was less stable than cytochrome c' (PHCP) from thermophilic Hydrogenophilus thermoluteolus, growing optimally at 52 °C. Although only 28% of the SACP amino acid sequence was identical to those of AVCP and PHCP, the latter two being 55% identical, the overall main chain structures of the three cytochromes c' were similar, and SACP exhibited thermal stability intermediate between those of AVCP and PHCP. For these three proteins, the higher the stability is, the lesser the number of Gly residues in the putative α-helical regions is. Cytochromes c' including the present three are suitable for examining the protein stabilization mechanisms, because they are structurally similar and available from environments with a wide range of temperatures.

  8. Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae.

    PubMed

    Nedashkovskaya, Olga I; Kim, Seung Bum; Lysenko, Anatoly M; Kalinovskaya, Nataliya I; Mikhailov, Valery V; Kim, In Seop; Bae, Kyung Sook

    2005-12-01

    A novel heterotrophic, yellow pigmented, aerobic, Gram-negative, nonmotile, oxidase- and catalase-positive bacterium KMM 3,938(T) was isolated from sea water collected in the Sea of Japan, Russia. The strain grew at mesophilic temperature range, and required the presence of NaCl for growth. 16S rRNA gene sequence analysis revealed that strain KMM 3,938(T) is a member of the family Flavobacteriaceae. The predominant fatty acids were C13:0 iso, C14:0 iso, C15:0 iso, C15:0, C15:1Delta6, 3OH-C15:0:3 iso, and 3OH-C15:0. The G + C content of the DNA of KMM 3938(T) was 32.4 mol%. On the basis of phenotypic, chemotaxonomic, genotypic, and phylogenetic characteristics, the novel bacterium was assigned to the genus Polaribacter as Polaribacter butkevichii sp. nov. The type strain is KMM 3938(T )(= KCTC 12100(T) = CCUG 48005(T)).

  9. Identification of hopanoid, sterol, and tetrahymanol production in the aerobic methanotroph Methylomicrobium alcaliphilum 20Z

    NASA Astrophysics Data System (ADS)

    Welander, P. V.; Summons, R. E.

    2013-12-01

    Correlating the occurrence of molecular biosignatures preserved in the rock record with specific microbial taxa is a compelling strategy for studying microbial life in the context of the Earth's distant past. Polycyclic triterpenoids, including the hopanes and steranes, comprise classes of biomarkers that are readily detected in a variety of ancient sediments and are clearly recognized as the diagenetic products of modern day bacterial hopanoids and eukaryotic sterols. Thus, based on the distribution of these lipids in extant microbes, the occurrence of their diagenetic products in the rock record is often utilized as evidence for the existence of specific bacterial and eukaryotic taxa in ancient ecosystems. However, questions have arisen about our understanding of the taxonomic distribution of many of these molecular biomarkers in extant microbes. This is prompting reassessments of the use of polycyclic triterpenoids as geological proxies for microbial taxa, especially in the light of the poorly defined issue of microbial diversity. Recently, significant effort has been put forth to better understand the biosynthesis, function, and regulation of these lipid molecules in a variety of modern organisms so that a more informed interpretation of their occurrence in the rock record can be reached. Here we report the unprecedented production of three different classes of polycyclic triterpenoid biomarker lipids in one bacterium. Methylomicrobium alcaliphilum 20Z, a member of the Gammaproteobacteria, is a halotolerant alkaliphilic aerobic methanotroph previously isolated from a moderately saline soda lake in Tuva (Central Asia). In this study, M. alcaliphilum is shown to produce C-3 methylated and unmethylated aminohopanoids commonly associated with other mesophilic aerobic methanotrophs. In addition, this organism is also able to produce 4,4-dimethyl sterols and surprisingly, the gammacerane triterpenoid tetrahymanol. Previously, tetrahymanol production has only been

  10. Mutagenicity of anaerobic fenitrothion metabolites after aerobic biodegradation.

    PubMed

    Matsushita, Taku; Matsui, Yoshihiko; Saeki, Ryo; Inoue, Takanobu

    2005-12-01

    Previous studies have revealed that the mutagenicity of fenitrothion increases during anaerobic biodegradation, suggesting that this insecticide's mutagenicity could effectively increase after it pollutes anaerobic environments such as lake sediments. To investigate possible changes to the mutagenicity of fenitrothion under aerobic conditions after it had already been increased by anaerobic biodegradation, batch incubation cultures were maintained under aerobic conditions. The mutagenicity, which had increased during anaerobic biodegradation, decreased under aerobic conditions with aerobic or facultative bacteria, but did not disappear completely in 22 days. In contrast, it did not change under aerobic conditions without bacteria or under continued anaerobic conditions. These observations suggest that the mutagenicity of anaerobically metabolized fenitrothion would not necessarily decrease after it arrives in an aerobic environment: this would depend on the presence of suitable bacteria. Therefore, fenitrothion-derived mutagenic compounds may pollute the water environment, including our drinking water sources, after accidental pollution of aerobic waters. Although amino-fenitrothion generated during anaerobic biodegradation of fenitrothion was the principal mutagen, non-trivial contributions of other, unidentified metabolites to the mutagenicity were also observed. PMID:16263383

  11. Essential oils against foodborne pathogens and spoilage bacteria in minced meat.

    PubMed

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella; Fernandes, Ary

    2009-01-01

    The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC(90%) values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC(90%) values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC(90%) assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms.

  12. Effect of high pressure on mesophilic lactic fermentation streptococci

    NASA Astrophysics Data System (ADS)

    Reps, A.; Kuźmicka, M.; Wiśniewska, K.

    2008-07-01

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  13. Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers.

    PubMed

    Courtens, Emilie N P; Vandekerckhove, Tom; Prat, Delphine; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Meerbergen, Ken; Lievens, Bart; Boon, Nico; Vlaeminck, Siegfried E

    2016-04-01

    Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L(-1) d(-1) after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d(-1)) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d(-1)) and the moving bed biofilm reactor (0.08 °C d(-1)) could not reach nitrification at temperatures higher than 46 °C. However, nitrification rates up to 800 mg N L(-1) d(-1) and 150 mg N g(-1) volatile suspended solids d(-1) were achieved at a temperature as high as 49 °C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49 °C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process. PMID:26841233

  14. Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers.

    PubMed

    Courtens, Emilie N P; Vandekerckhove, Tom; Prat, Delphine; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Meerbergen, Ken; Lievens, Bart; Boon, Nico; Vlaeminck, Siegfried E

    2016-04-01

    Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L(-1) d(-1) after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d(-1)) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d(-1)) and the moving bed biofilm reactor (0.08 °C d(-1)) could not reach nitrification at temperatures higher than 46 °C. However, nitrification rates up to 800 mg N L(-1) d(-1) and 150 mg N g(-1) volatile suspended solids d(-1) were achieved at a temperature as high as 49 °C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49 °C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process.

  15. Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes.

    PubMed

    Campos, Joana; Mourão, Joana; Pestana, Nazaré; Peixe, Luísa; Novais, Carla; Antunes, Patrícia

    2013-09-16

    The increase demand for fresh vegetables is causing an expansion of the market for minimally processed vegetables along with new recognized food safety problems. To gain further insight on this topic we analyzed the microbiological quality of Portuguese ready-to-eat salads (RTS) and their role in the spread of bacteria carrying acquired antibiotic resistance genes, food products scarcely considered in surveillance studies. A total of 50 RTS (7 brands; split or mixed leaves, carrot, corn) were collected in 5 national supermarket chains in Porto region (2010). They were tested for aerobic mesophilic counts, coliforms and Escherichia coli counts as well as for the presence of Salmonella and Listeria monocytogenes. Samples were also plated in different selective media with/without antibiotics before and after enrichment. The E. coli, other coliforms and Enterococcus recovered were characterized for antibiotic resistance profiles and clonality with phenotypic and genetic approaches. A high number of RTS presented poor microbiological quality (86%--aerobic mesophilic counts, 74%--coliforms, 4%--E. coli), despite the absence of screened pathogens. In addition, a high diversity of bacteria (species and clones) and antibiotic resistance backgrounds (phenotypes and genotypes) were observed, mostly with enrichment and antibiotic selective media. E. coli was detected in 13 samples (n=78; all types and 4 brands; phylogenetic groups A, B1 and D; none STEC) with resistance to tetracycline [72%; tet(A) and/or tet(B)], streptomycin (58%; aadA and/or strA-strB), sulfamethoxazole (50%; sul1 and/or sul2), trimethoprim (50%; dfrA1 or dfrA12), ampicillin (49%; blaTEM), nalidixic acid (36%), ciprofloxacin (5%) or chloramphenicol (3%; catA). E. coli clones, including the widespread group D/ST69, were detected in different samples from the same brand or different brands pointing out to a potential cross-contamination. Other clinically relevant resistance genes were detected in 2 Raoultella

  16. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  17. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1.

    PubMed

    Ehlers, Claudia; Veit, Katharina; Gottschalk, Gerhard; Schmitz, Ruth A

    2002-09-01

    The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2) as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif) gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2) located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon.

  18. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).

    PubMed

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2014-07-14

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

  19. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology.

    PubMed

    Moset, Veronica; Poulsen, Morten; Wahid, Radziah; Højberg, Ole; Møller, Henrik Bjarne

    2015-09-01

    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m(3) and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH₄) yield, as well as better percentage of ultimate CH₄ yield retrieved and lower residual CH₄ emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability.

  20. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1

    PubMed Central

    Ehlers, Claudia; Veit, Katharina; Gottschalk, Gerhard; Schmitz, Ruth A.

    2002-01-01

    The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2) as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif) gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2) located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon. PMID:15803652

  1. The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction

    USGS Publications Warehouse

    Jaisi, D.P.; Eberl, D.D.; Dong, H.; Kim, J.

    2011-01-01

    The formation of illite through the smectite-to-illite (S-I) reaction is considered to be one of the most important mineral reactions occurring during diagenesis. In biologically catalyzed systems, however, this transformation has been suggested to be rapid and to bypass the high temperature and long time requirements. To understand the factors that promote the S-I reaction, the present study focused on the effects of pH, temperature, solution chemistry, and aging on the S-I reaction in microbially mediated systems. Fe(III)-reduction experiments were performed in both growth and non-growth media with two types of bacteria: mesophilic (Shewanella putrefaciens CN32) and thermophilic (Thermus scotoductus SA-01). Reductive dissolution of NAu-2 was observed and the formation of illite in treatment with thermophilic SA-01 was indicated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A basic pH (8.4) and high temperature (65??C) were the most favorable conditions forthe formation of illite. A long incubation time was also found to enhance the formation of illite. K-nontronite (non-permanent fixation of K) was also detected and differentiated from the discrete illite in the XRD profiles. These results collectively suggested that the formation of illite associated with the biologically catalyzed smectite-to-illite reaction pathway may bypass the prolonged time and high temperature required for the S-I reaction in the absence of microbial activity.

  2. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology

    PubMed Central

    Moset, Veronica; Poulsen, Morten; Wahid, Radziah; Højberg, Ole; Møller, Henrik Bjarne

    2015-01-01

    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m3 and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH4) yield, as well as better percentage of ultimate CH4 yield retrieved and lower residual CH4 emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability. PMID:25737010

  3. Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena.

    PubMed

    Santiago-Hernández, Alejandro; Vega-Estrada, Jesús; del Carmen Montes-Horcasitas, María; Hidalgo-Lara, María Eugenia

    2007-04-01

    We report the purification and characterization of two thermophilic xylanases from the mesophilic bacteria Cellulomonas flavigena grown on sugarcane bagasse (SCB) as the only carbon source. Extracellular xylanase activity produced by C. flavigena was found both free in the culture supernatant and associated with residual SCB. To identify some of the molecules responsible for the xylanase activity in the substrate-bound fraction, residual SCB was treated with 3 M guanidine hydrochloride and then with 6 M urea. Further analysis of the eluted material led to the identification of two xylanases Xyl36 (36 kDa) and Xyl53 (53 kDa). The pI for Xyl36 was 5.0, while the pI for Xyl53 was 4.5. Xyl36 had a Km value of 1.95 mg/ml, while Xyl53 had a Km value of 0.78 mg/ml. In addition to SCB, Xyl36 and Xyl53 were also able to bind to insoluble oat spelt xylan and Avicel, as shown by substrate-binding assays. Xyl36 and Xyl53 showed optimal activity at pH 6.5, and at optimal temperature 65 and 55 degrees C, respectively. Xyl36 and Xyl53 retained 24 and 35%, respectively, of their original activity after 8 h of incubation at their optimal temperature. As far as we know, this is the first study on the thermostability properties of purified xylanases from microorganisms belonging to the genus Cellulomonas.

  4. Psychrophilic and mesophilic fungi in frozen food products.

    PubMed

    KUEHN, H H; GUNDERSON, M F

    1963-07-01

    The mold flora of certain frozen pastries and chicken pies was investigated. Molds were determined qualitatively or quantitatively, or both, by preparing pour plates of the blended product and incubating the plates at various temperatures. The mesophilic fungal flora developed on plates incubated at 10 and 20 C, whereas psychrophilic fungi were obtained on plates incubated at 0 and 5 C. About 2,000 cultures of fungi, representing about 100 different species, were isolated from various products. Four different brands of blueberry, two brands of cherry pastries, two brands of apple, and one brand of raspberry pastries were examined. In addition, two brands of chicken pies were studied. Blueberry pastries had a much higher total fungal population than the other products, although different brands of blueberry pastries varied considerably. Blueberry pastries had from 347 to 1,586 psychrophilic fungi per g. Cherry pastries had about 70 to 110 psychrophiles per g, and apple pastries had 19 to 92 psychrophiles per g. Chicken pies contained very few psychrophilic fungi, about 15 per g. Aureobasidium pullulans was recovered most frequently. About 90% of the psychrophilic fungi found in blueberry products was A. pullulans. Depending upon the brand of cherry pastry, either Phoma spp. or A. pullulans was the most common fungus present. Apple pastries also displayed brand variation, but were unique in having many mesophilic aspergilli. This genus was generally absent from other products. The Penicillium content of apple pastries was also rather high; 50% of the psychrophilic flora was represented by this genus. The psychrophilic fungal flora of chicken pies was composed primarily of penicillia (50%) and Chrysosporium pannorum (46%). PMID:13927344

  5. Evaluation of E. coli biofilm as a protective barrier against microbiologically influenced deterioration of concrete (MICD) under mesophilic temperatures.

    PubMed

    Soleimani, S; Ormeci, B; Isgor, O B

    2013-01-01

    In this study, Escherichia coli DH5α biofilm was evaluated for its potential to control and minimize microbiologically influenced concrete deterioration (MICD) under mesophilic temperatures (37 °C). Escherichia coli DH5α biofilm was first grown on Portland cement mortar disks for 8 days. Mortar disks were then exposed to two different types of sulfur oxidizing bacteria (SOB) (Thiobacillus neapolitanus and Thiobacillus thiooxidans), which use sulfur compounds as substrate and oxidize them to sulfate and sulfuric acid. The effectiveness of the biofilm against MICD was evaluated by measuring pH, sulfate, calcium concentrations in the reactors and surface analysis of the mortar samples using X-ray diffraction and visual inspection. Overall, the results indicate that the E. coli DH5α biofilm showed good protection against MICD induced by SOB at 37 °C. PMID:23863421

  6. Evaluation of E. coli biofilm as a protective barrier against microbiologically influenced deterioration of concrete (MICD) under mesophilic temperatures.

    PubMed

    Soleimani, S; Ormeci, B; Isgor, O B

    2013-01-01

    In this study, Escherichia coli DH5α biofilm was evaluated for its potential to control and minimize microbiologically influenced concrete deterioration (MICD) under mesophilic temperatures (37 °C). Escherichia coli DH5α biofilm was first grown on Portland cement mortar disks for 8 days. Mortar disks were then exposed to two different types of sulfur oxidizing bacteria (SOB) (Thiobacillus neapolitanus and Thiobacillus thiooxidans), which use sulfur compounds as substrate and oxidize them to sulfate and sulfuric acid. The effectiveness of the biofilm against MICD was evaluated by measuring pH, sulfate, calcium concentrations in the reactors and surface analysis of the mortar samples using X-ray diffraction and visual inspection. Overall, the results indicate that the E. coli DH5α biofilm showed good protection against MICD induced by SOB at 37 °C.

  7. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings.

    PubMed

    Guo, Xiaohui; Wang, Cheng; Sun, Faqian; Zhu, Weijing; Wu, Weixiang

    2014-01-01

    Thermophilic and mesophilic anaerobic digestion reactors (TR and MR) using food waste as substrate were compared with emphasis on microbial responses to increasing organic loading rate (OLR). At OLR ranging from 1.0 to 2.5 g VS L(-1) d(-1), MR exhibited more stable performance compared to TR in terms of methane yield. Amplicons pyrosequencing results revealed the distinct microbial dynamics in the two reactors. Primarily, MR had greater richness and evenness of bacteria species. With OLR elevated, larger shifts of bacterial phylogeny were observed in MR; Methanosaeta dominated in archaeal community in MR while Methanothermobacter and Methanoculleus were favored in TR. The high functional redundancy in bacterial community integrated with acetoclastic methanogenesis in MR resulted in its better performance; whereas delicate interactions between hydrogen-producer and hydrogenotrophic methanogens in TR were much more prone to disruption. These results are conductive to understanding the microbial mechanisms of low methane yield during food waste anaerobic digestion.

  8. Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion.

    PubMed

    Stiborova, Hana; Wolfram, Jan; Demnerova, Katerina; Macek, Tomas; Uhlik, Ondrej

    2015-11-01

    Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus. PMID:25921720

  9. Enhanced aerobic nitrifying granulation by static magnetic field.

    PubMed

    Wang, Xin-Hua; Diao, Mu-He; Yang, Ying; Shi, Yi-Jing; Gao, Ming-Ming; Wang, Shu-Guang

    2012-04-01

    One of the main challenging issues for aerobic nitrifying granules in treating high strength ammonia wastewater is the long granulation time required for activated sludge to transform into aerobic granules. The present study provides a novel strategy for enhancing aerobic nitrifying granulation by applying an intensity of 48.0mT static magnetic field. The element analysis showed that the applied magnetic field could promote the accumulation of iron compounds in the sludge. And then the aggregation of iron decreased the full granulation time from 41 to 25days by enhancing the setting properties of granules and stimulating the secretion of extracellular polymeric substances (EPS). Long-term, cycle experiments and fluorescence in-situ hybridization (FISH) analysis proved that an intensity of 48.0mT magnetic field could enhance the activities and growth of nitrite-oxidizing bacteria (NOB). These findings suggest that magnetic field is helpful and reliable for accelerating the aerobic nitrifying granulation.

  10. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  11. Acetic Acid Increases Stability of Silage under Aerobic Conditions

    PubMed Central

    Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R.

    2003-01-01

    The effects of various compounds on the aerobic stability of silages were evaluated. It has been observed that inoculation of whole-crop maize with homofermentative lactic acid bacteria leads to silages which have low stability against aerobic deterioration, while inoculation with heterofermentative lactic acid bacteria, such as Lactobacillus brevis or Lactobacillus buchneri, increases stability. Acetic acid has been proven to be the sole substance responsible for the increased aerobic stability, and this acid acts as an inhibitor of spoilage organisms. Therefore, stability increases exponentially with acetic acid concentration. Only butyric acid has a similar effect. Other compounds, like lactic acid, 1,2-propanediol, and 1-propanol, have been shown to have no effect, while fructose and mannitol reduce stability. PMID:12514042

  12. Growth of Campylobacter Incubated Aerobically in Media Supplemented with Peptones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of Campylobacter cultures incubated aerobically in media supplemented with peptones was studied, and additional experiments were conducted to compare growth of the bacteria in media supplemented with peptones to growth in media supplemented with fumarate-pyruvate-minerals-vitamins (FPMV). A b...

  13. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  14. Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering

    PubMed Central

    Frappier, Vincent; Najmanovich, Rafael

    2015-01-01

    We recently introduced ENCoM, an elastic network atomic contact model, as the first coarse-grained normal mode analysis method that accounts for the nature of amino acids and can predict the effect of mutations on thermostability based on changes vibrational entropy. In this proof-of-concept article, we use pairs of mesophile and thermophile homolog proteins with identical structures to determine if a measure of vibrational entropy based on normal mode analysis can discriminate thermophile from mesophile proteins. We observe that in around 60% of cases, thermophile proteins are more rigid at equivalent temperatures than their mesophile counterpart and this difference can guide the design of proteins to increase their thermostability through series of mutations. We observe that mutations separating thermophile proteins from their mesophile orthologs contribute independently to a decrease in vibrational entropy and discuss the application and implications of this methodology to protein engineering. PMID:25367089

  15. Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering.

    PubMed

    Frappier, Vincent; Najmanovich, Rafael

    2015-04-01

    We recently introduced ENCoM, an elastic network atomic contact model, as the first coarse-grained normal mode analysis method that accounts for the nature of amino acids and can predict the effect of mutations on thermostability based on changes vibrational entropy. In this proof-of-concept article, we use pairs of mesophile and thermophile homolog proteins with identical structures to determine if a measure of vibrational entropy based on normal mode analysis can discriminate thermophile from mesophile proteins. We observe that in around 60% of cases, thermophile proteins are more rigid at equivalent temperatures than their mesophile counterpart and this difference can guide the design of proteins to increase their thermostability through series of mutations. We observe that mutations separating thermophile proteins from their mesophile orthologs contribute independently to a decrease in vibrational entropy and discuss the application and implications of this methodology to protein engineering.

  16. Metagenome approaches revealed a biological prospect for improvement on mesophilic cellulose degradation.

    PubMed

    Wang, Yubo; Xia, Yu; Ju, Feng; Zhang, Tong

    2015-12-01

    Improvement on the bioconversion of cellulosic biomass depends much on the expanded knowledge on the underlying microbial structure and the relevant genetic information. In this study, metagenomic analysis was applied to characterize an enriched mesophilic cellulose-converting consortium, to explore its cellulose-hydrolyzing genes, and to discern genes involved in methanogenesis. Cellulose conversion efficiency of the mesophilic consortium enriched in this study was around 70 %. Apart from methane, acetate was the major fermentation product in the liquid phase, while propionate and butyrate were also detected at relatively high concentrations. With the intention to uncover the biological factors that might shape the varying cellulose conversion efficiency at different temperatures, results of this mesophilic consortium were then compared with that of a previously reported thermophilic cellulose-converting consortium. It was found that the mesophilic consortium harbored a larger pool of putative carbohydrate-active genes, with 813 of them in 54 GH modules and 607 genes in 13 CBM modules. Methanobacteriaceae and Methanosaetaceae were the two methanogen families identified, with a preponderance of the hydrogenotrophic Methanobacteriaceae. In contrast to its relatively high diversity and high abundance of carbohydrate-active genes, the abundance of genes involved in the methane metabolism was comparatively lower in the mesophilic consortium. A biological enhancement on the methanogenic process might serve as an effective option for the improvement of the cellulose bioconversion at mesophilic temperature. PMID:26359182

  17. Metagenome approaches revealed a biological prospect for improvement on mesophilic cellulose degradation.

    PubMed

    Wang, Yubo; Xia, Yu; Ju, Feng; Zhang, Tong

    2015-12-01

    Improvement on the bioconversion of cellulosic biomass depends much on the expanded knowledge on the underlying microbial structure and the relevant genetic information. In this study, metagenomic analysis was applied to characterize an enriched mesophilic cellulose-converting consortium, to explore its cellulose-hydrolyzing genes, and to discern genes involved in methanogenesis. Cellulose conversion efficiency of the mesophilic consortium enriched in this study was around 70 %. Apart from methane, acetate was the major fermentation product in the liquid phase, while propionate and butyrate were also detected at relatively high concentrations. With the intention to uncover the biological factors that might shape the varying cellulose conversion efficiency at different temperatures, results of this mesophilic consortium were then compared with that of a previously reported thermophilic cellulose-converting consortium. It was found that the mesophilic consortium harbored a larger pool of putative carbohydrate-active genes, with 813 of them in 54 GH modules and 607 genes in 13 CBM modules. Methanobacteriaceae and Methanosaetaceae were the two methanogen families identified, with a preponderance of the hydrogenotrophic Methanobacteriaceae. In contrast to its relatively high diversity and high abundance of carbohydrate-active genes, the abundance of genes involved in the methane metabolism was comparatively lower in the mesophilic consortium. A biological enhancement on the methanogenic process might serve as an effective option for the improvement of the cellulose bioconversion at mesophilic temperature.

  18. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

    PubMed

    Koblížek, Michal

    2015-11-01

    Recognition of the environmental role of photoheterotrophic bacteria has been one of the main themes of aquatic microbiology over the last 15 years. Aside from cyanobacteria and proteorhodopsin-containing bacteria, aerobic anoxygenic phototrophic (AAP) bacteria are the third most numerous group of phototrophic prokaryotes in the ocean. This functional group represents a diverse assembly of species which taxonomically belong to various subgroups of Alpha-, Beta- and Gammaproteobacteria. AAP bacteria are facultative photoheterotrophs which use bacteriochlorophyll-containing reaction centers to harvest light energy. The light-derived energy increases their bacterial growth efficiency, which provides a competitive advantage over heterotrophic species. Thanks to their enzymatic machinery AAP bacteria are active, rapidly growing organisms which contribute significantly to the recycling of organic matter. This chapter summarizes the current knowledge of the ecology of AAP bacteria in aquatic environments, implying their specific role in the microbial loop.

  19. Performance of mesophilic anaerobic granules for removal of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from aqueous solution.

    PubMed

    An, Chun-jiang; He, Yan-ling; Huang, Guo-he; Liu, Yong-hong

    2010-07-15

    The performance of mesophilic anaerobic granules to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was investigated under various conditions. The results of batch experiments showed that anaerobic granules were capable of removing HMX from aqueous solution with high efficiency. Both biotic and abiotic mechanisms contributed to the removal of HMX by anaerobic granules under mesophilic conditions. Adsorption appeared to play a significant role in the abiotic process. Furthermore, HMX could be biodegraded by anaerobic granules as the sole substrate. After 16 days of incubation, 99.04% and 96.42% of total HMX could be removed by 1g VSS/L acclimated and unacclimated granules, respectively. Vancomycin, an inhibitor of acetogenic bacteria, caused a significant inhibition of HMX biotransformation, while 2-bromoethanesulfonic acid, an inhibitor of methanogenic bacteria, only resulted in a slight decrease of metabolic activity. The presence of the glucose, as a suitable electron donor and carbon source, was found to enhance the degradation of HMX by anaerobic granules. Our study showed that sulfate had little adverse effects on biotransformation of HMX by anaerobic granules. However, nitrate had significant inhibitory effect on the extent of HMX removal especially in the initial period. This study offered good prospects of using high-rate anaerobic technology in the treatment of munition wastewater.

  20. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    PubMed

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production.

  1. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution.

    PubMed

    Mattes, Timothy E; Alexander, Anne K; Coleman, Nicholas V

    2010-07-01

    Extensive use and inadequate disposal of chloroethenes have led to prevalent groundwater contamination worldwide. The occurrence of the lesser chlorinated ethenes [i.e. vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE)] in groundwater is primarily a consequence of incomplete anaerobic reductive dechlorination of the more highly chlorinated ethenes (tetrachloroethene and trichloroethene). VC and cDCE are toxic and VC is a known human carcinogen. Therefore, their presence in groundwater is undesirable. In situ cleanup of VC- and cDCE-contaminated groundwater via oxidation by aerobic microorganisms is an attractive and potentially cost-effective alternative to physical and chemical approaches. Of particular interest are aerobic bacteria that use VC or cDCE as growth substrates (known as the VC- and cDCE-assimilating bacteria). Bacteria that grow on VC are readily isolated from contaminated and uncontaminated environments, suggesting that they are widespread and influential in aerobic natural attenuation of VC. In contrast, only one cDCE-assimilating strain has been isolated, suggesting that their environmental occurrence is rare. In this review, we will summarize the current knowledge of the physiology, biodegradation pathways, genetics, ecology, and evolution of VC- and cDCE-assimilating bacteria. Techniques (e.g. PCR, proteomics, and compound-specific isotope analysis) that aim to determine the presence, numbers, and activity of these bacteria in the environment will also be discussed.

  2. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.

  3. Treatment of packaging board whitewater in anaerobic/aerobic biokidney.

    PubMed

    Alexandersson, T; Malmqvist, A

    2005-01-01

    Whitewater from production of packaging board was treated in a combined anaerobic/aerobic biokidney, both in laboratory scale and pilot plant experiments. Both the laboratory experiments and the pilot plant trial demonstrate that a combined anaerobic/aerobic process is suitable for treating whitewater from a packaging mill. It is also possible to operate the process at the prevailing whitewater temperature. In the laboratory under mesophilic conditions the maximal organic load was 12 kg COD/m3*d on the anaerobic reactor and 6.7 kg COD/m3*d on the aerobic reactor. This gave a hydraulic retention time, HRT, in the anaerobic reactor of 10 hours and 2 hours in the aerobic reactor. The reduction of COD was between 85 and 90% after the first stage and the total reduction was between 88 to 93%. Under thermophilic conditions in the laboratory the organic load was slightly lower than 9.6 COD/m3*d and between 10 and 16 COD/m3*d, respectively. The HRT was 16.5 and 3.4 hours and the removal was around 75% after the anaerobic reactor and 87% after the total process. For the pilot plant experiment at a mill the HRT in the anaerobic step varied between 3 and 17 hours and the corresponding organic load between 4 and 44 kg COD/m3*d. The HRT in the aerobic step varied between 1 and 6 hours and the organic load between 1.5 and 26 kg COD/m3*d. The removal of soluble organic matter was 78% in the anaerobic step and 86% after the combined treatment at the lowest loading level. The removal efficiency at the highest loading level was about 65% in the anaerobic step and 77% after the aerobic step. In the pilot plant trial the removal efficiency was not markedly affected by the variations in whitewater composition that were caused by change of production. The variations, however, made the manual control of the nutrient dosage inadequate and resulted in large variations in effluent nutrient concentration. This demonstrates the need for an automatic nutrient dosage system. The first step

  4. Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants.

    PubMed

    Bauer, H; Fuerhacker, M; Zibuschka, F; Schmid, H; Puxbaum, H

    2002-09-01

    Raw wastewater is a potential carrier of pathogenic microorganisms and may pose a health risk when pathogenic microorganisms become aerosolized during aeration. Two different types of wastewater treatment plants were investigated, and the amounts of cultivable bacteria and fungi were measured in the emitted aerosols. Average concentrations of 17,000 CFU m(-3) of mesophilic, 2,100 CFU m(-3) of TSA-SB bacteria (bacteria associated with certain waterborne virulence factors), 1700 CFU m(-3) of mesophilic and 45 CFU m(-3) of thermotolerant fungi, were found in the aerosol emitted by the aeration tank of the activated sludge plant. In the aerosol of the fixed-film reactor 3000 CFU m(-3) mesophilic and 730CFUm(-3) TSA-SB bacteria, and 180 CFUm(-3) mesophilic and 14 CFU m(-3) thermotolerant fungi were measured. The specific emissions per population equivalent between the two types of treatment plants differed by two orders of magnitude. The microbial flux based on the open water surface area of the two treatment plants was similar. The aerosolization ratios of cultivable bacteria (expressed as CFU m(-3) aerosol/m(-3) wastewater) ranged between 8.4 x 10(-11) and 4.9 x 10(-9). The aerosolization ratio of fungi was one to three orders of magnitude higher and a significant difference between the two types of treatment plants could be observed.

  5. Aerobic and Anaerobic Bacteriology of Hidradenitis Suppurativa: A Study of 22 Cases

    PubMed Central

    Katoulis, Alexandros C.; Koumaki, Dimitra; Liakou, Aikaterini I.; Vrioni, Georgia; Koumaki, Vasiliki; Kontogiorgi, Dimitra; Tzima, Korina; Tsakris, Athanasios; Rigopoulos, Dimitris

    2015-01-01

    Introduction Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease of unclear etiology. The role of bacteria in the pathogenesis of disease remains controversial. Materials and Methods Specimens were obtained from 22 HS patients by direct percutaneous needle aspiration. The collected material was cultured in aerobic and anaerobic conditions, and sensitivity tests were performed. Results Of the 22 patients, 32% were culture negative and 68% were culture positive. A total of 16 isolates was obtained, 14 aerobic and 2 anaerobic. Aerobic bacteria were present in 86% of the specimens, whereas only anaerobic bacteria were isolated in 7%. The predominant aerobic species were Proteus mirabilis, Staphylococcus haemolyticus and Staphylococcus lugdunensis. The isolated anaerobic bacteria were Dermacoccus nishinomiyaensis and Propionibacterium granulosum. Conclusion A variety of aerobic and anaerobic bacteria was isolated from the HS lesions of our patients. In contrast to previous studies, fewer patients were found to be culture positive, and Staphylococcus aureus was isolated in only 1 of them. More studies are necessary to elucidate the controversial role of bacteria in the pathogenesis of HS. PMID:27170935

  6. Ribosomes, Polyribosomes, and Deoxyribonucleic Acid from Thermophilic, Mesophilic, and Psychrophilic Clostridia

    PubMed Central

    Irwin, Carol C.; Akagi, James M.; Himes, Richard H.

    1973-01-01

    Analysis of deoxyribonucleic acid (DNA) from four species of Clostridium, including two thermophiles, a mesophile, and a psychrophile, revealed no obvious relationship between growth temperature and DNA base composition. The melting temperatures (Tm) of the DNA from the four species varied no more among the thermophilic, mesophilic, and psychrophilic species than among many related mesophilic species. Characterization of ribosomes from the clostridia by means of optical rotatory dispersion yielded similar spectra in common with other unrelated organisms. Only small differences were noted in the base composition of ribosomal ribonucleic acid (RNA) and in the amino acid composition of ribosomal proteins, including half-cystine content, as determined by cysteic acid analysis, and accessible sulfhydryl groups, as determined by titration with dithiobis (2-nitrobenzoic acid). Except for the two thermophiles, the ribosomal protein electrophoretic patterns were dissimilar. No unusual thermal stability was manifested in the Tm values of thermophile ribosomal RNA. However, thermophile ribosome Tm values (69 C) were higher than were mesophile and psychrophile Tm values (64 C). Ribosomes from the four clostridial species were also examined in regard to the effect of heat on their functional integrity, measured by their activity in poly U-directed 14C-phenylaline incorporation, and their gross physical integrity, measured by sucrose gradient analysis. The Td, 5 values (temperature which produces 50% inactivation after 5 min) was found to be 70 and 72 C for the two thermophiles C. tartarivorum and C. thermosaccharolyticum, respectively; 57 C for a mesophile, C. pasteurianum; and 53 C for a psychrophile, Clostridium sp. strain 69. At 55 C, little effect was seen on the thermophile ribosomes, but the mesophile ribosomes lost 90% of their activity in 1 hr, and psychrophile ribosomes lost 100% of their activity within 10 min. According to sucrose gradient profiles, heating at 55 C

  7. An ancient divergence among the bacteria. [methanogenic phylogeny

    NASA Technical Reports Server (NTRS)

    Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.

    1977-01-01

    The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

  8. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  9. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  10. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  11. Low-Impact Aerobics: Better than Traditional Aerobic Dance?

    ERIC Educational Resources Information Center

    Koszuta, Laurie Einstein

    1986-01-01

    A form of dance exercise called low-impact aerobics is being touted as a misery-free form of aerobic dance. Because this activity is relatively new, the exact kinds and frequencies of injuries are not known and the fitness benefits have not been examined. (MT)

  12. Comparison of mesophilic and thermophilic anaerobic digestion of sugar beet pulp: performance, dewaterability and foam control.

    PubMed

    Suhartini, Sri; Heaven, Sonia; Banks, Charles J

    2014-01-01

    Digestion of sugar beet pulp was assessed in relation to biogas and methane production, foaming potential, and digestate dewaterability. Four 4-litre working volume digesters were operated mesophilically (37±0.5 °C) and four thermophilically (55±0.5 °C) over three hydraulic retention times. Digesters were operated in duplicate at organic loading rates (OLR) of 4 and 5 g volatile solids l(-1) day(-1) without water addition. Thermophilic digestion gave higher biogas and methane productivity than mesophilic and was able to operate at the higher OLR, where mesophilic digestion showed signs of instability. Digestate dewaterability was assessed using capillary suction time and frozen image centrifugation. The occurrence of, or potential for, stable foam formation was assessed using a foaming potential test. Thermophilic operation allowed higher loadings to be applied without loss of performance, and gave a digestate with superior dewatering characteristics and very little foaming potential.

  13. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  14. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  15. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  16. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  17. What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli?

    PubMed

    Qin, Mengnan; Lin, Zhifen; Wang, Dali; Long, Xi; Zheng, Min; Qiu, Yanling

    2016-01-01

    Bacteria in the environment face the threat of antibiotics. However, most studies investigating the toxicity and toxicity mechanisms of antibiotics have been conducted on microorganisms in aerobic conditions, while studies examining the anaerobic toxicity and toxicity mechanisms of antibiotics are still limited. In this study, we determined the aerobic and anaerobic toxicities of sulfonamides (SAs) on Escherichia coli. Next, a comparison of the aerobic and anaerobic toxicities indicated that the SAs could be divided into three groups: Group I: log(1/EC50-anaerobic)>log(1/EC50-aerobic) (EC50-anaerobic/EC50-aerobic, the median effective concentration under anaerobic/aerobic conditions), Group II: log(1/EC50-anaerobic)≈log(1/EC50-aerobic), and Group III: log(1/EC50-anaerobic)aerobic). Furthermore, this division was not based on the reactive oxygen species (ROS) level or the interaction energy (Ebinding) value, which represents the affinity between SAs and dihydropteroate synthase (dhps) but rather on the total binding energy. Furthermore, SAs with greatly similar structures were categorized into different groups. This deep insight into the difference between aerobic and anaerobic toxicities will benefit environmental science, and the results of this study will serve as a reference for the risk assessment of chemicals in the environment.

  18. The Twin Arginine Translocation System Is Essential for Aerobic Growth and Full Virulence of Burkholderia thailandensis

    PubMed Central

    Wagley, Sariqa; Hemsley, Claudia; Thomas, Rachael; Moule, Madeleine G.; Vanaporn, Muthita; Andreae, Clio; Robinson, Matthew; Goldman, Stan; Wren, Brendan W.; Butler, Clive S.

    2014-01-01

    The twin arginine translocation (Tat) system in bacteria is responsible for transporting folded proteins across the cytoplasmic membrane, and in some bacteria, Tat-exported substrates have been linked to virulence. We report here that the Tat machinery is present in Burkholderia pseudomallei, B. mallei, and B. thailandensis, and we show that the system is essential for aerobic but not anaerobic growth. Switching off of the Tat system in B. thailandensis grown anaerobically resulted in filamentous bacteria, and bacteria showed increased sensitivity to some β-lactam antibiotics. In Galleria mellonella and zebrafish infection models, the Tat conditional mutant was attenuated. The aerobic growth-restricted phenotype indicates that Tat substrates may play a functional role in oxygen-dependent energy conservation. In other bacteria, aerobic growth restriction in Tat mutants has been attributed to the inability to translocate PetA, the Rieske iron-sulfur protein which forms part of the quinol-cytochrome c oxidoreductase complex. Here, we show that PetA is not responsible for aerobic growth restriction in B. thailandensis. However, we have identified an operon encoding 2 proteins of unknown function (BTH_I2176 and BTH_I2175) that play a role in aerobic growth restriction, and we present evidence that BTH_I2176 is Tat translocated. PMID:24214943

  19. Differentiation of Methanosaeta concilii and Methanosarcina barkeri in Anaerobic Mesophilic Granular Sludge by Fluorescent In Situ Hybridization and Confocal Scanning Laser Microscopy†

    PubMed Central

    Rocheleau, Sylvie; Greer, Charles W.; Lawrence, John R.; Cantin, Christiane; Laramée, Louise; Guiot, Serge R.

    1999-01-01

    Oligonucleotide probes, designed from genes coding for 16S rRNA, were developed to differentiate Methanosaeta concilii, Methanosarcina barkeri, and mesophilic methanogens. All M. concilii oligonucleotide probes (designated MS1, MS2, and MS5) hybridized specifically with the target DNA, but MS5 was the most specific M. concilii oligonucleotide probe. Methanosarcina barkeri oligonucleotide probes (designated MB1, MB3, and MB4) hybridized with different Methanosarcina species. The MB4 probe specifically detected Methanosarcina barkeri, and the MB3 probe detected the presence of all mesophilic Methanosarcina species. These new oligonucleotide probes facilitated the identification, localization, and quantification of the specific relative abundance of M. concilii and Methanosarcina barkeri, which play important roles in methanogenesis. The combined use of fluorescent in situ hybridization with confocal scanning laser microscopy demonstrated that anaerobic granule topography depends on granule origin and feeding. Protein-fed granules showed no layered structure with a random distribution of M. concilii. In contrast, a layered structure developed in methanol-enriched granules, where M. barkeri growth was induced in an outer layer. This outer layer was followed by a layer composed of M. concilii, with an inner core of M. concilii and other bacteria. PMID:10224023

  20. Differentiation of Methanosaeta concilii and Methanocarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy

    SciTech Connect

    Rocheleau, S.; Greer, C.W.; Cantin, C.; Laramee, L.; Guiot, S.R.; Lawrence, J.R.

    1999-05-01

    Oligonucleotide probes, designed from genes coding for 16S rRNA, were developed to differentiate Methanosaeta concilii, Methanosarcina barkeri, and mesophilic methanogens. All M. concilii oligonucleotide probes (designated MS1, MS2, and MS5) hybridized specifically with the target DNA, but MS5 was the most specific M. concilii oligonucleotide probe. Methanosarcina barkeri oligonucleotide probes (designated MB1, MB3, and MB4) hybridized with different Methanosarcina species. The MB4 probe specifically detected Methanosarcina barkeri, and the MB3 probe detected the presence of al mesophilic Methanosarcina species. These new oligonucleotide probes facilitated the identification, localization, and quantification of the specific relative abundance of M. concilii and Methanosarcina barkeri, which play important roles in methanogenesis. The combined use of fluorescent in situ hybridization with confocal scanning laser microscopy demonstrated that anaerobic granule topography depends on granule origin and feeding. Protein-fed granules showed no layered structure with a random distribution of M. concilii. In contrast, a layered structure developed in methanol-enriched granules, where M. barkeri growth was induced in an outer layer. This outer layer was followed by a layer composed of M. concilii, with an inner core of M. concilii and other bacteria.

  1. Heteropolysaccharides from lactic acid bacteria.

    PubMed

    De Vuyst, L; Degeest, B

    1999-04-01

    Microbial exopolysaccharides are biothickeners that can be added to a wide variety of food products, where they serve as viscosifying, stabilizing, emulsifying or gelling agents. Numerous exopolysaccharides with different composition, size and structure are synthesized by lactic acid bacteria. The heteropolysaccharides from both mesophilic and thermophilic lactic acid bacteria have received renewed interest recently. Structural analysis combined with rheological studies revealed that there is considerable variation among the different exopolysaccharides; some of them exhibit remarkable thickening and shear-thinning properties and display high intrinsic viscosities. Hence, several slime-producing lactic acid bacterium strains and their biopolymers have interesting functional and technological properties, which may be exploited towards different products, in particular, natural fermented milks. However, information on the biosynthesis, molecular organization and fermentation conditions is rather scarce, and the kinetics of exopolysaccharide formation are poorly described. Moreover, the production of exopolysaccharides is low and often unstable, and their downstream processing is difficult. This review particularly deals with microbiological, biochemical and technological aspects of heteropolysaccharides from, and their production by, lactic acid bacteria. The chemical composition and structure, the biosynthesis, genetics and molecular organization, the nutritional and physiological aspects, the process technology, and both food additive and in situ applications (in particular in yogurt) of heterotype exopolysaccharides from lactic acid bacteria are described. Where appropriate, suggestions are made for strain improvement, enhanced productivities and advanced modification and production processes (involving enzyme and/or fermentation technology) that may contribute to the economic soundness of applications with this promising group of biomolecules.

  2. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria

    PubMed Central

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K.; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J.; Misra, Anup K.; Chakraborty, Ranadhir; Nanda, Ashish K.; Mukhopadhyay, Subhra K.; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0–8.5 pH) mid-temperature (55–85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml−1 vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D

  3. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria.

    PubMed

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J; Misra, Anup K; Chakraborty, Ranadhir; Nanda, Ashish K; Mukhopadhyay, Subhra K; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0-8.5 pH) mid-temperature (55-85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml(-1) vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D-ala-D-ala bonding

  4. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    SciTech Connect

    Knoblauch, C.; Joergensen, B.B.; Harder, J.

    1999-09-01

    The numbers of sulfate reducers in two Arctic sediments with in situ temperatures of 2.6 and {minus}1.7C were determined. Most-probable-number counts were higher at 10 C than at 20 C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than their mesophilic counterparts at similarly low temperatures.

  5. Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system.

    PubMed

    Dalkılıc, Kenan; Ugurlu, Aysenur

    2015-09-01

    This study investigates the biogas production from chicken manure at different organic loading rates (OLRs), in a mesophilic-thermophilic two stage anaerobic system. The system was operated on semi continuous mode under different OLRs [1.9 g volatile solids (VS)/L·d - 4.7 g VS/L·d] and total solid (TS) contents (3.0-8.25%). It was observed that the anaerobic bacteria acclimatized to high total ammonia nitrogen concentration (>3000 mg/L) originated as a result of the degradation of chicken manure. High volatile fatty acid concentrations were tolerated by the system due to high pH in the reactors. The maximum average biogas production rate was found as 554 mL/g VSfeed while feeding 2.2 g VS/L-d (2.3% VS - 3.8% TS) to the system. Average methane content of produced biogas was 74% during the study.

  6. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    PubMed

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  7. Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters.

    PubMed

    Kirkegaard, Rasmus Hansen; Dueholm, Morten Simonsen; McIlroy, Simon Jon; Nierychlo, Marta; Karst, Søren Michael; Albertsen, Mads; Nielsen, Per Halkjær

    2016-10-01

    Members of the candidate phylum Hyd24-12 are globally distributed, but no genomic information or knowledge about their morphology, physiology or ecology is available. In this study, members of the Hyd24-12 lineage were shown to be present and abundant in full-scale mesophilic anaerobic digesters at Danish wastewater treatment facilities. In some samples, a member of the Hyd24-12 lineage was one of the most abundant genus-level bacterial taxa, accounting for up to 8% of the bacterial biomass. Three closely related and near-complete genomes were retrieved using metagenome sequencing of full-scale anaerobic digesters. Genome annotation and metabolic reconstruction showed that they are Gram-negative bacteria likely involved in acidogenesis, producing acetate and hydrogen from fermentation of sugars, and may play a role in the cycling of sulphur in the digesters. Fluorescence in situ hybridization revealed single rod-shaped cells dispersed within the flocs. The genomic information forms a foundation for a more detailed understanding of their role in anaerobic digestion and provides the first insight into a hitherto undescribed branch in the tree of life.

  8. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions.

    PubMed

    Martinez-Sosa, David; Helmreich, Brigitte; Netter, Thomas; Paris, Stefania; Bischof, Franz; Horn, Harald

    2011-11-01

    A pilot scale anaerobic submerged membrane bioreactor (AnSMBR) with an external filtration unit for municipal wastewater treatment was operated for 100 days. Besides gas sparging, additional shear was created by circulating sludge to control membrane fouling. During the first 69 days, the reactor was operated under mesophilic temperature conditions. Afterwards, the temperature was gradually reduced to 20 °C. A slow and linear increase in the filtration resistance was observed under critical flux conditions (7 L/(m2 h)) at 35 °C. However, an increase in the fouling rate probably linked to an accumulation of solids, a higher viscosity and soluble COD concentrations in the reactor was observed at 20 °C. The COD removal efficiency was close to 90% under both temperature ranges. Effluent COD and BOD5 concentrations were lower than 80 and 25 mg/L, respectively. Pathogen indicator microorganisms (fecal coliforms bacteria) were reduced by log(10)5. Hence, the effluent could be used for irrigation purposes in agriculture.

  9. Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters

    PubMed Central

    Kirkegaard, Rasmus Hansen; Dueholm, Morten Simonsen; McIlroy, Simon Jon; Nierychlo, Marta; Karst, Søren Michael; Albertsen, Mads; Nielsen, Per Halkjær

    2016-01-01

    Members of the candidate phylum Hyd24-12 are globally distributed, but no genomic information or knowledge about their morphology, physiology or ecology is available. In this study, members of the Hyd24-12 lineage were shown to be present and abundant in full-scale mesophilic anaerobic digesters at Danish wastewater treatment facilities. In some samples, a member of the Hyd24-12 lineage was one of the most abundant genus-level bacterial taxa, accounting for up to 8% of the bacterial biomass. Three closely related and near-complete genomes were retrieved using metagenome sequencing of full-scale anaerobic digesters. Genome annotation and metabolic reconstruction showed that they are Gram-negative bacteria likely involved in acidogenesis, producing acetate and hydrogen from fermentation of sugars, and may play a role in the cycling of sulphur in the digesters. Fluorescence in situ hybridization revealed single rod-shaped cells dispersed within the flocs. The genomic information forms a foundation for a more detailed understanding of their role in anaerobic digestion and provides the first insight into a hitherto undescribed branch in the tree of life. PMID:27058503

  10. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    PubMed Central

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  11. Correlation between antibiotic and biocide resistance in mesophilic and psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production.

    PubMed

    Lavilla Lerma, Leyre; Benomar, Nabil; Casado Muñoz, María del Carmen; Gálvez, Antonio; Abriouel, Hikmate

    2015-10-01

    The aim of this study was to evaluate biocide susceptibility in mesophilic and psychrotrophic pseudomonads isolated from surfaces of a goat and lamb slaughterhouse, which was representative of the region. To determine biocide resistance in pseudomonads, we determined for the first time the epidemiological cut-off values (ECOFFs) of benzalkonium, cetrimide, chlorhexidine, hexachlorophene, P3 oxonia, polyhexamethylene guanidine hydrochloride (PHMG), topax 66 and triclosan being generally very similar in different Pseudomonas spp. with some exceptions. Thus, resistance of pseudomonads was mainly shown to triclosan, and in lesser extent to cetrimide and benzalkonium chloride depending on the species, however they were highly susceptible to industrial formulations of biocides. By means of statistical analysis, positive correlations between antibiotics, biocides and both antimicrobials in pseudomonads were detected suggesting a co- or cross resistance between different antimicrobials in goat and lamb slaughterhouse environment. Cross-resistance between biocides and antibiotics in pseudomonads were especially detected between PHMG or triclosan and different antibiotics depending on the biocide and the population type. Thus, the use of those biocides as disinfectant in slaughterhouse zones must be carefully evaluated because of the selection pressure effect of antimicrobials on the emergence of resistant bacteria which could be spread to the consumer. It is noteworthy that specific industrial formulations such as topax 66 and oxonia P3 showed few correlations with antibiotics (none or 1-2 antibiotics) which should be taken into consideration for disinfection practices in goat and lamb slaughterhouse. PMID:26187825

  12. Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters.

    PubMed

    Kirkegaard, Rasmus Hansen; Dueholm, Morten Simonsen; McIlroy, Simon Jon; Nierychlo, Marta; Karst, Søren Michael; Albertsen, Mads; Nielsen, Per Halkjær

    2016-10-01

    Members of the candidate phylum Hyd24-12 are globally distributed, but no genomic information or knowledge about their morphology, physiology or ecology is available. In this study, members of the Hyd24-12 lineage were shown to be present and abundant in full-scale mesophilic anaerobic digesters at Danish wastewater treatment facilities. In some samples, a member of the Hyd24-12 lineage was one of the most abundant genus-level bacterial taxa, accounting for up to 8% of the bacterial biomass. Three closely related and near-complete genomes were retrieved using metagenome sequencing of full-scale anaerobic digesters. Genome annotation and metabolic reconstruction showed that they are Gram-negative bacteria likely involved in acidogenesis, producing acetate and hydrogen from fermentation of sugars, and may play a role in the cycling of sulphur in the digesters. Fluorescence in situ hybridization revealed single rod-shaped cells dispersed within the flocs. The genomic information forms a foundation for a more detailed understanding of their role in anaerobic digestion and provides the first insight into a hitherto undescribed branch in the tree of life. PMID:27058503

  13. Anaerobic digestion in mesophilic and room temperature conditions: Digestion performance and soil-borne pathogen survival.

    PubMed

    Chen, Le; Jian, Shanshan; Bi, Jinhua; Li, Yunlong; Chang, Zhizhou; He, Jian; Ye, Xiaomei

    2016-05-01

    Tomato plant waste (TPW) was used as the feedstock of a batch anaerobic reactor to evaluate the effect of anaerobic digestion on Ralstonia solanacearum and Phytophthora capsici survival. Batch experiments were carried out for TS (total solid) concentrations of 2%, 4% and 6% respectively, at mesophilic (37±1°C) and room (20-25°C) temperatures. Results showed that higher digestion performance was achieved under mesophilic digestion temperature and lower TS concentration conditions. The biogas production ranged from 71 to 416L/kg VS (volatile solids). The inactivation of anaerobic digestion tended to increase as digestion performance improved. The maximum log copies reduction of R. solanacearum and P. capsici detected by quantitative PCR (polymerase chain reaction) were 3.80 and 4.08 respectively in reactors with 4% TS concentration at mesophilic temperatures. However, both in mesophilic and room temperature conditions, the lowest reduction of R. solanacearum was found in the reactors with 6% TS concentration, which possessed the highest VFA (volatile fatty acid) concentration. These findings indicated that simple accumulation of VFAs failed to restrain R. solanacearum effectively, although the VFAs were considered poisonous. P. capsici was nearly completely dead under all conditions. Based on the digestion performance and the pathogen survival rate, a model was established to evaluate the digestate biosafety. PMID:27155428

  14. Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw.

    PubMed

    Li, Dong; Wang, Qingjing; Li, Jiang; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Mei, Zili; Liu, Xiaofeng

    2016-02-01

    Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment.

  15. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms

    PubMed Central

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions. PMID:26741367

  16. Comparing residue clusters from thermophilic and mesophilic enzymes reveals adaptive mechanisms

    DOE PAGES

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-07

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research.more » Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. As a result, the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.« less

  17. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  18. [The aerobic air microflora in airplanes on various international routes].

    PubMed

    Năstoiu, I; Răduică, C; Soitu, V; Gavrilă, I

    1989-01-01

    Aerobic microflora (bacteria, fungi), in the cock pits of the TAROM company (Boeing 707 and Il 62 M) airships flying on various international routes and airports was studied during November 1988-January 1989. 157-8,800 bacteria and 78-1,336 fungi per m3 air were recorded. Except for Staphylococcus aureus (hemolytic and non hemolytic) the greatest part of the isolated microorganisms was nonpathogenic for man: Bacillus, Corynebacterium, Neisseria, Staphylococcus epidermidis, Sarcina, Aspergillus, Penicillium etc. Several airships on the Asian airports contained a higher amount of bacteria and fungi but not higher than in the living rooms. Likewise, in high altitude flights, the microorganism amount was less than on the ground. The taxonomic spectrum of the bacteria and fungi isolated was almost identical on all the 9 international airports, thus suggesting the homogeneous and international character of saprophyte and pathogenic air microflora by means of the passenger and goods air flights.

  19. Clinical microbiology of coryneform bacteria.

    PubMed Central

    Funke, G; von Graevenitz, A; Clarridge, J E; Bernard, K A

    1997-01-01

    Coryneform bacteria are aerobically growing, asporogenous, non-partially-acid-fast, gram-positive rods of irregular morphology. Within the last few years, there has been a massive increase in the number of publications related to all aspects of their clinical microbiology. Clinical microbiologists are often confronted with making identifications within this heterogeneous group as well as with considerations of the clinical significance of such isolates. This review provides comprehensive information on the identification of coryneform bacteria and outlines recent changes in taxonomy. The following genera are covered: Corynebacterium, Turicella, Arthrobacter, Brevibacterium, Dermabacter. Propionibacterium, Rothia, Exiguobacterium, Oerskovia, Cellulomonas, Sanguibacter, Microbacterium, Aureobacterium, "Corynebacterium aquaticum," Arcanobacterium, and Actinomyces. Case reports claiming disease associations of coryneform bacteria are critically reviewed. Minimal microbiological requirements for publications on disease associations of coryneform bacteria are proposed. PMID:8993861

  20. Use of mild irradiation doses to control pathogenic bacteria on meat trimmings for production of patties aiming at provoking minimal changes in quality attributes.

    PubMed

    Xavier, Ma de la Paz; Dauber, Cecilia; Mussio, Paula; Delgado, Enrique; Maquieira, Ana; Soria, Alejandra; Curuchet, Ana; Márquez, Rosa; Méndez, Carlos; López, Tomás

    2014-11-01

    The objectives of the present work were to assess the use of moderate doses of gamma irradiation (2 to 5 kGy) and to reduce the risk of pathogen presence without altering the quality attributes of bovine trimmings and of patties made of irradiated trimmings. Microbiological indicators (coliforms, Pseudomonas spp and mesophilic aerobic counts), physicochemical indicators (pH, color and tiobarbituric acid) and sensory changes were evaluated during storage. 5 kGy irradiation doses slightly increased off flavors in patties. Two pathogenic markers (Listeria monocytogenes and Escherichia coli O157:H7) were inoculated at high or low loads to trimming samples which were subsequently irradiated and lethality curves were obtained. Provided that using irradiation doses ≤2.5 kGy are used, reductions of 2 log CFU/g of L. monocytogenes and 5 log CFU/g of E. coli O157:H7 are expected. It seems reasonable to suppose that irradiation can be successfully employed to improve the safety of frozen trimmings when initial pathogenic bacteria burdens are not extremely high. PMID:25042241

  1. Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling.

    PubMed

    Yazdani, Ramin; Mostafid, M Erfan; Han, Byunghyun; Imhoff, Paul T; Chiu, Pei; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2010-08-15

    A bioreactor landfill cell at Yolo County, California was operated aerobically for six months to quantify the extent of aerobic degradation and mechanisms limiting aerobic activity during air injection and liquid addition. The portion of the solid waste degraded anaerobically was estimated and tracked through time. From an analysis of in situ aerobic respiration and gas tracer data, it was found that a large fraction of the gas-filled pore space was in immobile zones where it was difficult to maintain aerobic conditions, even at relatively moderate landfill cell-average moisture contents of 33-36%. Even with the intentional injection of air, anaerobic activity was never less than 13%, and sometimes exceeded 65%. Analyses of gas tracer and respiration data were used to quantify rates of respiration and rates of mass transfer to immobile gas zones. The similarity of these rates indicated that waste degradation was influenced significantly by rates of oxygen transfer to immobile gas zones, which comprised 32-92% of the gas-filled pore space. Gas tracer tests might be useful for estimating the size of the mobile/immobile gas zones, rates of mass transfer between these regions, and the difficulty of degrading waste aerobically in particular waste bodies. PMID:20704218

  2. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    NASA Astrophysics Data System (ADS)

    Fallah, Aziz A.; Siavash Saei-Dehkordi, S.; Rahnama, Mohammad

    2010-10-01

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  3. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p < 0.05) at the conditions of C/N ratio 26:1, moisture content 80 %, and natural initial pH. Although high concentrations of ammonia-nitrogen (NH4-N, 1500 mg/kg wet weight) were formed during thermophilic digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions.

  4. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  5. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Astrophysics Data System (ADS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-03-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  6. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  7. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new. PMID:27415771

  8. Petrifilm plates for enumeration of bacteria counts in goat milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PetrifilmTM Aerobic Count (AC) and Coliform Count (CC) plates were validated against standard methods for enumeration of coliforms, total bacteria, and psychrotrophic bacteria in raw (n = 39) and pasteurized goat milk (n = 17) samples. All microbiological data were transformed into log form and sta...

  9. Reassessment of the Enteropathogenicity of Mesophilic Aeromonas Species

    PubMed Central

    Teunis, Peter; Figueras, Maria J.

    2016-01-01

    Cases of Aeromonas diarrhea have been described all over the world. The genus Aeromonas includes ca. 30 species, of which 10 have been isolated in association with gastroenteritis. The dominating species that account for ca. 96% of the identified strains are Aeromonas caviae, A. veronii, A. dhakensis, and A. hydrophila. However, the role of Aeromonas as a true enteropathogen has been questioned on the basis of the lack of outbreaks, the non-fulfillment of Koch’s postulates and the low numbers of acute illnesses in the only existing human challenge study. In the present study we reassess the enteropathogenicity of Aeromonas using dose response models for microbial infection and acute illness. The analysis uses the data from the human challenge study and additional data from selected outbreak investigations where the numbers exposed and the dose were reported, allowing their inclusion as “natural experiments”. In the challenge study several cases of asymptomatic shedding were found (26.3%, 15/57), however, only 3.5% (2/57) of those challenged with Aeromonas developed acute enteric symptoms (i.e., diarrhea). The “natural experiments” showed a much higher risk of illness associated with exposure to Aeromonas, even at moderate to low doses. The median dose required for 1% illness risk, was ~1.4 × 104 times higher in the challenge study (1.24 × 104 cfu) compared to natural exposure events (0.9 cfu). The dose response assessment presented in this study shows that the combined challenge and outbreak data are consistent with high infectivity of Aeromonas, and a wide range of susceptibility to acute enteric illness. To illustrate the outcomes, we simulate the risk associated with concentrations of Aeromonas found in different water and food matrices, indicating the disease burden potentially associated with these bacteria. In conclusion this study showed that Aeromonas is highly infectious, and that human susceptibility to illness may be high, similar to

  10. Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge.

    PubMed

    Hidaka, Taira; Wang, Feng; Togari, Taketo; Uchida, Tsutomu; Suzuki, Yutaka

    2013-12-01

    In local cities, many small sewage and waste treatment facilities are operated independently. To encourage processing by anaerobic digestion at a centralized sewage treatment plant (STP), high-solid sewage sludge is helpful because it reduces the energy and cost required for transporting the sludge from other STPs. Mesophilic and thermophilic anaerobic digestion of sewage sludge at total solids concentrations (TS) of 7.5% and 10% were evaluated using laboratory-scale continuous reactors. Under the mesophilic condition, sewage sludge of 10% TS was successfully treated. Under the thermophilic condition, sewage sludge of 7.5% TS was not successfully treated when the total ammonia concentration was over 2000 mg N/L. Batch experiments showed that it takes a few weeks for the methane fermentation activity to recover after being inhibited. The effectiveness of adding easily biodegradable organic matter was confirmed. These results show that high-solid sewage sludge is suitable for small facilities by controlling the operating conditions.

  11. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

    PubMed Central

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  12. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn.

    PubMed

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  13. Mesophilic fermentation of renewable biomass: does hydraulic retention time regulate methanogen diversity?

    PubMed

    Krakat, Niclas; Schmidt, Stefan; Scherer, Paul

    2010-09-01

    The present long-term study (about 1,100 days) monitored the diversity of methanogens during the mesophilic, anaerobic digestion of beet silage. Six fermentor samples were analyzed by ribosomal RNA gene restriction analysis, fluorescence in situ hybridization, and fluorescence microscopy. Hydrogenotrophic methanogens dominated within the population in all samples analyzed. Multidimensional scaling revealed that a rapid decrease in hydraulic retention time resulted in increased species richness, which in turn led to slightly higher CH(4) yields. PMID:20675458

  14. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?

    PubMed

    Collivignarelli, Maria Cristina; Abbà, Alessandro; Bertanza, Giorgio

    2015-01-01

    This paper describes the advantages of thermophilic aerobic membrane reactor (TAMR) for the treatment of high strength wastewaters. The results were obtained from the monitoring of an industrial and a pilot scale plant. The average chemical oxygen demand (COD) removal yield was equal to 78% with an organic loading rate (OLR) up to 8-10 kgCOD m(-3) d(-1) despite significant scattering of the influent wastewater composition. Total phosphorus (TP) was removed with a rate of 90%, the most important removal mechanism being chemical precipitation (as hydroxyapatite, especially), which is improved by the continuous aeration that promotes phosphorus crystallization. Moreover, surfactants were removed with efficiency between 93% and 97%. Finally, the experimental work showed that thermophilic processes (TPPs) are complementary with respect to mesophilic treatments.

  15. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    SciTech Connect

    Zaccardi, Margot J.; Mannweiler, Olga; Boehr, David D.

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Catalytic mechanisms of thermophilic-mesophilic enzymes may differ. Black-Right-Pointing-Pointer Product release is rate-determining for thermophilic IGPS at low temperatures. Black-Right-Pointing-Pointer But at higher temperatures, proton transfer from the general acid is rate-limiting. Black-Right-Pointing-Pointer Rate-determining step is different still for mesophilic IGPS. Black-Right-Pointing-Pointer Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 Degree-Sign C for thermophilic IGPS, near its adaptive temperature (75 Degree-Sign C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO{sub 2} release, and the thermophilic IGPS

  16. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment.

    PubMed

    Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin

    2016-05-01

    Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg.

  17. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species

    NASA Technical Reports Server (NTRS)

    Haney, P. J.; Badger, J. H.; Buldak, G. L.; Reich, C. I.; Woese, C. R.; Olsen, G. J.

    1999-01-01

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50 degrees C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83-92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

  18. A single aromatic core mutation converts a designed "primitive" protein from halophile to mesophile folding.

    PubMed

    Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael

    2015-01-01

    The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate "cradle" for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original "prebiotic" set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a "primitive" designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)-having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a "primitive" polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation-identifying a selective advantage for the incorporation of aromatic amino acids into the codon table.

  19. Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.

    PubMed

    Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

    2014-08-01

    The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions. PMID:24797939

  20. Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.

    PubMed

    Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

    2014-08-01

    The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions.

  1. Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates.

    PubMed

    Topakas, Evangelos; Christakopoulos, Paul; Faulds, Craig B

    2005-02-23

    The active sites of feruloyl esterases from mesophilic and thermophilic sources were probed using methyl esters of phenylalkanoic acids. Only 13 out of 26 substrates tested were significant substrates for all the enzymes. Lengthening or shortening the aliphatic side chain while maintaining the same aromatic substitutions completely abolished activity for both enzymes, which demonstrates the importance of the correct distance between the aromatic group and the ester bond. Maintaining the phenylpropanoate structure but altering the substitutions of the aromatic ring demonstrated that the type-A esterase from the mesophilic fungus Fusarium oxysporum (FoFaeA) showed a preference for methoxylated substrates, in contrast to the type-B esterase from the same source (FoFaeB) and the thermophilic type-B (StFaeB) and type-C (StFaeC) from Sporotrichum thermophile, which preferred hydroxylated substrates. All four esterases hydrolyzed short chain aliphatic acid (C2-C4) esters of p-nitrophenol, but not the C12 ester of laurate. All the feruloyl esterases were able to release ferulic acid from the plant cell wall material in conjunction with a xylanase, but only the type-A esterase FoFaeA was effective in releasing the 5,5' form of diferulic acid. The thermophilic type-B esterase had a lower catalytic efficiency than its mesophilic counterpart, but released more ferulic acid from plant cell walls.

  2. Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion.

    PubMed

    Gunnigle, Eoin; Nielsen, Jeppe L; Fuszard, Matthew; Botting, Catherine H; Sheahan, Jerome; O'Flaherty, Vincent; Abram, Florence

    2015-12-01

    Psychrophilic (<20°C) anaerobic digestion (AD) represents an attractive alternative to mesophilic wastewater treatment. In order to investigate the AD microbiome response to temperature change, with particular emphasis on methanogenic archaea, duplicate laboratory-scale AD bioreactors were operated at 37°C followed by a temperature drop to 15°C. A volatile fatty acid-based wastewater (composed of propionic acid, butyric acid, acetic acid and ethanol) was used to provide substrates representing the later stages of AD. Community structure was monitored using 16S rRNA gene clone libraries, as well as DNA and cDNA-based DGGE analysis, while the abundance of relevant methanogens was followed using qPCR. In addition, metaproteomics, microautoradiography-fluorescence in situ hybridization, and methanogenic activity measurements were employed to investigate microbial activities and functions. Methanomicrobiales abundance increased at low temperature, which correlated with an increased contribution of CH4 production from hydrogenotrophic methanogenesis at 15°C. Methanosarcinales utilized acetate and H2/CO2 as CH4 precursors at both temperatures and a partial shift from acetoclastic to hydrogenotrophic methanogenesis was observed for this archaeal population at 15°C. An upregulation of protein expression was reported at low temperature as well as the detection of chaperones indicating that mesophilic communities experienced stress during long-term exposure to 15°C. Overall, changes in microbial community structure and function were found to underpin the adaptation of mesophilic sludge to psychrophilic AD.

  3. Functional responses and adaptation of mesophilic microbial communities to psychrophilic anaerobic digestion.

    PubMed

    Gunnigle, Eoin; Nielsen, Jeppe L; Fuszard, Matthew; Botting, Catherine H; Sheahan, Jerome; O'Flaherty, Vincent; Abram, Florence

    2015-12-01

    Psychrophilic (<20°C) anaerobic digestion (AD) represents an attractive alternative to mesophilic wastewater treatment. In order to investigate the AD microbiome response to temperature change, with particular emphasis on methanogenic archaea, duplicate laboratory-scale AD bioreactors were operated at 37°C followed by a temperature drop to 15°C. A volatile fatty acid-based wastewater (composed of propionic acid, butyric acid, acetic acid and ethanol) was used to provide substrates representing the later stages of AD. Community structure was monitored using 16S rRNA gene clone libraries, as well as DNA and cDNA-based DGGE analysis, while the abundance of relevant methanogens was followed using qPCR. In addition, metaproteomics, microautoradiography-fluorescence in situ hybridization, and methanogenic activity measurements were employed to investigate microbial activities and functions. Methanomicrobiales abundance increased at low temperature, which correlated with an increased contribution of CH4 production from hydrogenotrophic methanogenesis at 15°C. Methanosarcinales utilized acetate and H2/CO2 as CH4 precursors at both temperatures and a partial shift from acetoclastic to hydrogenotrophic methanogenesis was observed for this archaeal population at 15°C. An upregulation of protein expression was reported at low temperature as well as the detection of chaperones indicating that mesophilic communities experienced stress during long-term exposure to 15°C. Overall, changes in microbial community structure and function were found to underpin the adaptation of mesophilic sludge to psychrophilic AD. PMID:26507125

  4. Mesophilic, Circumneutral Anaerobic Iron Oxidation as a Remediation Mechanism for Radionuclides, Nitrate and Perchlorate

    NASA Astrophysics Data System (ADS)

    Bose, S.; Thrash, J. C.; Coates, J. D.

    2008-12-01

    Iron oxidation is a novel anaerobic metabolism where microorganisms obtain reducing equivalents from the oxidization of Fe(II) and assimilate carbon from organic carbon compounds or CO2. Recent evidence indicates that in combination with the activity of dissimilatory Fe(III)-reducing bacteria, anaerobic microbial Fe(II) oxidation can also contribute to the global iron redox cycle. Studies have also proved that Fe(II)- oxidation is ubiquitous in diverse environments and produce a broad range of insoluble iron forms as end products. These biogenic Fe(III)-oxides and mixed valence Fe minerals have a very high adsorption capacity of heavy metals and radionuclides. Adsorption and immobilization by these biogenic Fe phases produced at circumneutral pH, is now considered a very effective mode of remediation of radionuclides like Uranium, especially under variable redox conditions. By coupling soluble and insoluble Fe(II) oxidation with nitrate and perchlorate as terminal electron acceptors in-situ, anaerobic Fe-oxidation can also be used for environmental cleanup of Fe through Fe-mineral precipitation, as well as nitrate and perchlorate through reduction. Coupling of Fe as the sole electron and energy source to the reduction of perchlorate or nitrate boosts the metabolism without building up biomass hence also taking care of biofouling. To understand the mechanisms by which microorganisms can grow at circumneutral pH by mesophilic, anaerobic iron oxidation and the ability of microorganisms to reduce nitrate and perchlorate coupled to iron oxidation recent work in our lab involved the physiological characterization of Dechlorospirillum strain VDY which was capable of anaerobic iron-oxidation with either nitrate or perchlorate serving as terminal electron acceptor. Under non-growth conditions, VDY oxidized 3mM Fe(II) coupled to nitrate reduction, and 2mM Fe(II) coupled to perchlorate reduction, in 24 hours. It contained a copy of the RuBisCO cbbM subunit gene which was

  5. Die aerobe Glykolyse der Tumorzelle

    NASA Astrophysics Data System (ADS)

    Schneider, Friedhelm

    1981-01-01

    A high aerobic glycolysis (aerobic lactate production) is the most significant feature of the energy metabolism of rapidly growing tumor cells. Several mechanisms, which may be different in different cell lines, seem to be involved in this characteristic of energy metabolism of the tumor cell. Changes in the cell membrane leading to increased uptake and utilization of glucose, a high level of fetal types of isoenzymes, a decreased number of mitochondria and a reduced capacity to metabolize pyruvate are some factors which must be taken into consideration. It is not possible to favour one of them at the present time.

  6. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2015-06-01

    Some lactic acid bacteria that harbour carotenoid biosynthesis genes (crtNM) can produce carotenoids. Although aerobic conditions can increase carotenoid production and crtNM expression levels, their effects on the pathways that synthesize carotenoid precursors such as mevalonate and isoprene are not completely understood. In this study, we investigated whether aerobic conditions affected gene expression levels involved in the isoprenoid biosynthesis pathway that includes the mevalonate and isoprene biosynthesis pathways in Enterococcus gilvus using real-time quantitative reverse transcription PCR. NADH oxidase (nox) and superoxide dismutase (sod) gene expression levels were investigated as controls for aerobic conditions. The expression levels of nox and sod under aerobic conditions were 7.2- and 8.0-fold higher, respectively, than those under anaerobic conditions. Aerobic conditions concomitantly increased the expression levels of crtNM carotenoid biosynthesis genes. HMG-CoA synthase gene expression levels in the mevalonate pathway were only slightly increased under aerobic conditions, whereas the expression levels of HMG-CoA reductase and five other genes in the isoprene biosynthesis pathways were 1.2-2.3-fold higher than those under anaerobic conditions. These results demonstrated that aerobic conditions could increase the expression levels of genes involved in the isoprenoid biosynthesis pathway via mevalonate in E. gilvus.

  7. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  8. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  9. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions

    SciTech Connect

    Guo, Jianbin; Dong, Renjie; Clemens, Joachim; Wang, Wei

    2013-11-15

    Highlights: • The biogas process can run stably at 20 °C at extremely low OLR after long-term acclimation of bacteria. • A biogas plant running at 28 °C seems as efficient as that operated at 38 °C at low OLR of 1.3 g ODM L{sup −1} d{sup −1}. • Lower temperature operation is inadvisable for the commercial biogas plant running at rather high OLR. • The estimated sludge yield at 28 °C is higher than that at 38 °C. - Abstract: Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L{sup −1} d{sup −1}, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L{sup −1} d{sup −1}), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g{sup −1} COD{sub removed,} which was higher than that at 38 °C (0.016 g VSS g{sup −1} COD{sub removed})

  10. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  11. Membrane thickening aerobic digestion processes.

    PubMed

    Woo, Bryen

    2014-01-01

    Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.

  12. Molecular characterization of bacterial community in aerobic granular sludge stressed by pentachlorophenol.

    PubMed

    Liu, He; Li, Guangwei; Li, Xiufen; Chen, Jian

    2008-01-01

    To characterize the effects of pentachlorophenol (PCP) on the performance and microbial community of aerobic granular sludge in sequencing batch reactor (SBR), the web-based terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT-PCR) techniques were used to explore the bacterial community structure. When PCP increased from 0 to 50 mg/L, the COD removal rate changed little, while the ammonia removal rate dropped from 100% to 64.9%. The results of molecular characterization showed that the quantity of ammonia oxidizing bacteria (AOB) kept constantly, although the number of bacteria species decreased with the increase of PCP concentration. Significant shift in bacterial community structure at different PCP stresses was observed within aerobic granular sludge. When the PCP was absent, there are 69 strains in aerobic granular sludge detected by T-RFLP method. With the increase of PCP, most of bacteria disappeared and only 19 bacteria existed at all five PCP concentrations. These results contributed to comprehensive understanding of the microbial community structure under the PCP stress and its relationship with the performance for wastewater treatment by aerobic granular sludge.

  13. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  14. Developmental intestinal aerobic microflora in the kori bustard (Ardeotis kori).

    PubMed

    Naldo, J L; Silvanose, C D; Samour, J H; Bailey, T A

    1998-01-01

    A study was carried out to investigate the normal aerobic bacterial flora of developing kori bustard (Ardeotis kori) chicks, captive bred at the National Avian Research Center, Abu Dhabi, United Arab Emirates. Faecal samples were collected from 14 birds at different ages from the first day of hatching until 99 days old and were cultured for aerobic bacteria. Several bacterial species were isolated from the cultures, they included Escherichia coli, Streptococcus viridians, Enterococcus faecalis, Klebsiella oxytoca, Proteus spp., Enterobacter, spp. and Serratia marcescens. Gram-negative bacilli were isolated from all but one of the faecal samples collected. They were also the predominant bacteria, accounting for between 55.6 and 73.4% of the mean colony count of faecal cultures from all age groups. E. coli was the most frequently isolated bacteria, the frequency and mean colony count increased as the birds grew older. Gram-positive cocci were isolated from between 50 and 100% of the faecal samples from all age groups, and they accounted for between 26.6 and 44.4% of the mean colony count. Results from this study indicated that Gram-negative bacilli and Gram-positive cocci can be isolated frequently from the faeces of developing, clinically normal, captive bred kori bustard chicks. PMID:18484014

  15. Developmental intestinal aerobic microflora in the kori bustard (Ardeotis kori).

    PubMed

    Naldo, J L; Silvanose, C D; Samour, J H; Bailey, T A

    1998-01-01

    A study was carried out to investigate the normal aerobic bacterial flora of developing kori bustard (Ardeotis kori) chicks, captive bred at the National Avian Research Center, Abu Dhabi, United Arab Emirates. Faecal samples were collected from 14 birds at different ages from the first day of hatching until 99 days old and were cultured for aerobic bacteria. Several bacterial species were isolated from the cultures, they included Escherichia coli, Streptococcus viridians, Enterococcus faecalis, Klebsiella oxytoca, Proteus spp., Enterobacter, spp. and Serratia marcescens. Gram-negative bacilli were isolated from all but one of the faecal samples collected. They were also the predominant bacteria, accounting for between 55.6 and 73.4% of the mean colony count of faecal cultures from all age groups. E. coli was the most frequently isolated bacteria, the frequency and mean colony count increased as the birds grew older. Gram-positive cocci were isolated from between 50 and 100% of the faecal samples from all age groups, and they accounted for between 26.6 and 44.4% of the mean colony count. Results from this study indicated that Gram-negative bacilli and Gram-positive cocci can be isolated frequently from the faeces of developing, clinically normal, captive bred kori bustard chicks.

  16. [Oropharyngeal aerobic flora in patients hospitalized in an ORL department].

    PubMed

    Dumont, Y; Borderon, E; Farcy, M C; Penot, J C

    1986-01-01

    As patients with E.N.T. carcinoma have relative frequent infectious complications of E.N.T. area, we have carried out a study or oropharyngeal colonization by aerobic bacteria and fungi in 84 hospitalized patients. The results of the tests are analysed according to different parameters, essentially the presence or the absence of neoplasia and antibiotherapy. The presence of one of these two factors does not substantially modify oropharyngeal flora of patients. However their association coincides with a height percentage of colonies of enterobacteriaceae, of pseudomonas and of fungi.

  17. Aerobic bacterial flora of addled raptor eggs in Saskatchewan.

    PubMed

    Houston, C S; Saunders, J R; Crawford, R D

    1997-04-01

    In south-central Saskatchewan, Canada, in 1986, 1987 and 1989, the aerobic bacterial flora was evaluated from 75 unhatched raptor eggs of three species: 42 of the Swainson's hawk (Buteo Swainsoni), 21 of the ferruginous hawk (Buteo regalis), and 12 of the great horned owl (Bubo virginianus). In addled Swainson's hawk eggs, the most common bacterial genera were Enterobacter (18 eggs), Escherichia (12), and Streptococcus (10). Seven great horned owl eggs and six ferruginous hawk eggs also contained Escherichia coli. Salmonella spp. were not isolated. These bacteria were interpreted as secondary contaminants and not the primary cause of reproductive failure. PMID:9131569

  18. Quantification of loosely associated and tightly associated bacteria on broiler carcass skin using swabbing, stomaching, and grinding methods.

    PubMed

    Singh, P; Lee, H C; Chin, K B; Ha, S D; Kang, I

    2015-12-01

    This research was conducted to quantify bacterial populations after swabbing or stomaching, followed by grinding the swabbed or stomached broiler skins. For each of 3 replications, 3 eviscerated broilers were randomly taken from a processing line in a local broiler processing plant. Ten swabs and 10 stomachs per bird were conducted on the left- and the right-side skins (10×7 cm), respectively, which were then finally ground. Results indicated that mesophilic aerobic bacteria (MAB) in the first swabbed sample were significantly lower than those in the first stomached sample (P<0.05), with no difference seen for the remaining sampling times (P>0.05). During 10 swabbings followed by final grinding, 8, 9, and 83% of MAB were detected after the first swabbing, after the second through 10th swabbings, and after final grinding of the skin, respectively. During 10 stomachings followed by the final grinding, 17, 18, and 65% of MAB were detected after the first stomaching, after the second through 10th stomachings, and after final grinding of the skin, respectively. Escherichia coli (E. coli) and coliforms were significantly higher in the first stomaching than those in the first swabbing (P<0.05), with no difference seen between the 2 sampling methods for the rest sampling times (P>0.05). Populations of E. coli and coliforms decreased step-wisely from the highest after grinding to the intermediate after first and second sampling, and to the least after 10th sampling (P<0.05), regardless of swabbing or grinding. In this study, less than 35% of MAB seemed loosely associated in the skin of eviscerated broiler, whereas more than 65% of MAB looked tightly associated, which were not recovered by stomaching or swabbing even 10 times but were recovered by grinding the skin. PMID:26467007

  19. Novel mineral-oxidizing bacteria from Montserrat (W.I.): physiological and phylogenetic characteristics

    SciTech Connect

    A. Yahya; F. F. Roberto; D. B. Johnson

    1999-06-01

    Four mesophilic acidophilic bacteria isolated from the Caribbean island of Montserrat have been studied to establish their taxonomic relationship to other metal-metabolizing bacteria and to analyze their potential role in mineral processing. Two of the isolates have some physiological and morphological traits in common with Thiobacillus ferrooxidans (Gram negative, iron-oxidizing mesophilic rods) but differed from T. ferrooxidans in displaying chemolitho-heterotrophic growth in ferrous iron/yeast extract medium and greater sensitivity to some metals. Isolates RIV-14 and L-15 were, in contrast, Gram positive, spore-forming rods that displayed considerable metabolic flexibility, and resembled moderately thermophilic Sulfobacillus spp. All the Montserrat isolates were able to oxidize pyrite in pure culture.

  20. Mesophilic Lactic Acid Bacteria Diversity Encountered in Brazilian Farms Producing Milk with Particular Interest in Lactococcus lactis Strains.

    PubMed

    Luiz, L M P; Chuat, V; Madec, M N; Araújo, E A; de Carvalho, A F; Valence, F

    2016-10-01

    The milk produced in regions with different traditions in Brazil is used for artisanal product production, which is characterized by different sensorial characteristics. This study aimed to identify the bacterial ecosystem of farms located in a traditional dairy region in the state of Minas Gerais and to characterize Lactococcus lactis strains, the species of interest in this study, using a multilocus sequence typing (MLST) protocol and pulsed-field gel electrophoresis (PFGE) technique. Samples were collected from raw milk and dairy environment from six farms. A total of 50 isolates were analyzed using 16S rRNA sequencing and species-specific PCR. Five genera were identified: Lactobacillus, Leuconostoc, Lactococcus, Enterococcus, and Staphylococcus, from ten different species. MLST (with six housekeeping genes) and PFGE (with SmaI endonuclease) were used for the characterization of 20 isolates of Lactococcus lactis from a dairy collection in this study. Both methods revealed a high clonal diversity of strains with a higher discriminatory level for PFGE (15 pulsotypes), compared to MLST (12 ST). This study contributes to the preservation of the Brazilian dairy heritage and provides insights into a part of the LAB population found in raw milk and dairy environment.

  1. Mesophilic Lactic Acid Bacteria Diversity Encountered in Brazilian Farms Producing Milk with Particular Interest in Lactococcus lactis Strains.

    PubMed

    Luiz, L M P; Chuat, V; Madec, M N; Araújo, E A; de Carvalho, A F; Valence, F

    2016-10-01

    The milk produced in regions with different traditions in Brazil is used for artisanal product production, which is characterized by different sensorial characteristics. This study aimed to identify the bacterial ecosystem of farms located in a traditional dairy region in the state of Minas Gerais and to characterize Lactococcus lactis strains, the species of interest in this study, using a multilocus sequence typing (MLST) protocol and pulsed-field gel electrophoresis (PFGE) technique. Samples were collected from raw milk and dairy environment from six farms. A total of 50 isolates were analyzed using 16S rRNA sequencing and species-specific PCR. Five genera were identified: Lactobacillus, Leuconostoc, Lactococcus, Enterococcus, and Staphylococcus, from ten different species. MLST (with six housekeeping genes) and PFGE (with SmaI endonuclease) were used for the characterization of 20 isolates of Lactococcus lactis from a dairy collection in this study. Both methods revealed a high clonal diversity of strains with a higher discriminatory level for PFGE (15 pulsotypes), compared to MLST (12 ST). This study contributes to the preservation of the Brazilian dairy heritage and provides insights into a part of the LAB population found in raw milk and dairy environment. PMID:27356514

  2. Scouring Potential of Mesophile Acidic Proteases of Pseudomonas aeruginosa for Grey Cotton Fabrics

    NASA Astrophysics Data System (ADS)

    Saravanan, D.

    2013-04-01

    Mesophile, acidic proteases were produced using the microbial source, Pseudomonas aeruginosa, with wider thermal tolerances. Process conditions of scouring treatment were optimized using Taguchi method for optimum temperature, time, pH and concentration of protease. Treatment with the protease lower weight loss values compared to the alkali scouring, however, significant improvement in the absorbency compared to the grey samples was observed. Large amounts of pectin left out in the samples resulted in higher extractable impurities, substantiated by the FTIR results. Relatively, lower reduction in the tear strengths was observed in both warp and weft directions after protease treatment of the cotton fabrics.

  3. Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills.

    PubMed

    Zhang, Wei; Yue, Bo; Wang, Qi; Huang, Zechun; Huang, Qifei; Zhang, Zengqiang

    2011-01-01

    The abundance and phylogenetic composition of bacterial community in leachate of semi-aerobic and anaerobic landfill were compared through real-time polymerase chain reaction and denaturing gradient gel electrophoresis. In semi-aerobic landfill scenario, the bacterial 16S rRNA copy numbers in leachate had no significant reduction from initial stage to stable period. In the scenario of anaerobic landfill, the largest bacterial 16S rRNA gene copy number was found in leachate at initial stage, but it reduced significantly at stable period. Moreover, methane-oxidizing bacteria population in stable period was lower than that in initial period in both two landfill processes. However, semi-aerobic landfill leachate had more methanotrophic bacteria populations than that in the anaerobic one. Furthermore, according to the sequences and phylogenetic analysis, obvious difference could be detected in bacterial community composition in different scenarios. Proteobacteria and bacteroidetes took up a dominantly higher proportion in semi-aerobic landfill leachate. To summarize up, different landfill methods and its landfill ages had crucial impacts on bacterial abundance and composition in leachate of semi-aerobic and anaerobic landfills.

  4. Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time.

    PubMed

    Ercolani, G L

    1991-12-01

    Mesophilic heterotrophic, aerobic or facultatively anaerobic bacteria that grow on yeast tryptone glucose extract agar were isolated from the surface of olive leaves of 3 or 4 different ages in January, April, July, and October from 1984 to 1989. Unweighted average linkage cluster analysis on either the Jaccard coefficient or the simple matching coefficient recovered 1,701 representative strains in 32 phena defined at the 70% and 80% similarity level, respectively. Of these, 25 were identified to genus or lower level. From the identity of the representative strains, the frequency of occurrence among the phylloplane bacteria over the 6-year period was estimated at 51% forPseudomonas syringae, followed byXanthomonas campestris (6.7%),Erwinia herbicola (6%),Acetobacter aceti (4.7%),Gluconobacter oxydans (4.3%),Pseudomonas fluorescens (3.9%),Bacillus megaterium (3.8%),Leuconostoc mesenteroides subsp.dextranicum (3.1%),Lactobacillus plantarum (2.8%),Curtobacterium plantarum (2.2%),Micrococcus luteus (2.2%),Arthrobacter globiformis (1.4%),Klebsiella planticola (1.2%),Streptococcus faecium (1.2%),Clavibacter sp. (0.98%),Micrococcus sp. (0.82%),Serratia marcescens (0.81%),Bacillus subtilis (0.57%),Cellulomonas flavigena (0.4%),Erwinia sp. (0.37%),Zymomonas mobilis (0.3%),Bacillus sp. (0.29%),Alcaligenes faecalis (0.27%),Erwinia carotovora (0.08%), andPseudomonas aeruginosa (0.04%). Bacterial communities on leaves of a given age at a given time during any one year displayed a very similar structure but differed significantly from those on the leaves of the same age at a different time or on the leaves of a different age at any time during any one year. Communities on the leaves of a given age at a given time of the year were invariably dominated by one or another of only 9 taxa, which accounted for 22 to 98.5% of the isolates from those leaves. The communities on 10- and 13-month-old leaves were invariably made up of fewer taxa than those on younger leaves at the same time

  5. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.

    PubMed

    Bamforth, C W; Quayle, J R

    1978-10-01

    1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate. 2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme. 3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions. 4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured. 5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase. PMID:718372

  6. Reductive Precipitation of Gold by Dissimilatory Fe(III)-Reducing Bacteria and Archaea

    PubMed Central

    Kashefi, Kazem; Tor, Jason M.; Nevin, Kelly P.; Lovley, Derek R.

    2001-01-01

    Studies with a diversity of hyperthermophilic and mesophilic dissimilatory Fe(III)-reducing Bacteria and Archaea demonstrated that some of these organisms are capable of precipitating gold by reducing Au(III) to Au(0) with hydrogen as the electron donor. These studies suggest that models for the formation of gold deposits in both hydrothermal and cooler environments should consider the possibility that dissimilatory metal-reducing microorganisms can reductively precipitate gold from solution. PMID:11425752

  7. Magnetic Bacteria.

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  8. Swimming bacteria power microscopic gears

    SciTech Connect

    Sokolov, Andrey; Apodaca, Mario M.; Grzybowski, Bartosz A.; Aranson, Igor S.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be “rectified” under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears’ angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  9. Swimming bacteria power microscopic gears.

    SciTech Connect

    Sokolov, A.; Apodaca, M. M.; Grzybowski, B. A.; Aranson, I. S.; Materials Science Division; Princeton Univ.; Northwestern Univ.

    2010-01-19

    Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be 'rectified' under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms.

  10. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions.

    PubMed

    Jahren, Sigrun J; Rintala, Jukka A; Odegaard, Hallvard

    2002-02-01

    The continuously operated laboratory scale Kaldnes moving bed biofilm reactor (MBBR) was used for thermophilic (55 degrees C) aerobic treatment of TMP whitewater. In the MBBR, the biomass is grown on carrier elements that move along with the water in the reactor. Inoculation with mesophilic activated sludge gave 60-65% SCOD removal from the first day onwards. During the 107 days of experiment, the 60-65% SCOD removals were achieved at organic loading rates of 2.5-3.5 kg SCODm(-3) d(-1), the highest loading rates applied during the run and HRT of 13-22h. Carbohydrates, which contributed to 50-60% of the influent SCOD. were removed by 90-95%, while less than 15% of the lignin-like material (30-35% of SCODin) was removed. The sludge yield was 0.23g VSSg SCOD(-1)removed. The results show that the aerobic biofilm process can be successfully operated under thermophilic conditions. PMID:11848344

  11. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  12. Bacteria in Crude Oil Survived Autoclaving and Stimulated Differentially by Exogenous Bacteria

    PubMed Central

    Guo, Peng; Chi, Chang-Qiao; Chen, Jian; Wang, Xing-Biao; Tang, Yue-Qin; Wu, Xiao-Lei; Liu, Chun-Zhong

    2012-01-01

    Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if “endogenous” bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the “exogenous” bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain). The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil. PMID:23028421

  13. Elimination of bacteria from dogs with antibiotics*

    PubMed Central

    Hayes, Norman R.; van der Waaij, D.; Cohen, Bennett J.

    1974-01-01

    The effect of oral administration of neomycin cephalothin or kanamycin cephalothin on the aerobic intestinal bacterial flora, was studied in dogs maintained under isolation conditions in a conventional animal room. The dogs were successfully freed of aerobic bacteria with both combinations within two to seven days after the start of antibiotic treatment, and were maintained bacteria free for up to 21 days. Decontamination was attained more rapidly in dogs that were bathed in hexachlorophene surgical soap before and during the first and third days of antibiotic treatment. There was no evidence of toxicity from either of the antibiotic combinations. These results indicate that, as with mice and monkeys, decontamination of dogs with oral antibiotics is feasible. The technique is of potential value in preventing endogenous bacterial infections in canine experimental studies involving use of immunosuppressive agents. PMID:4529233

  14. Study of the cellulases produced by three mesophilic actinomycetes grown on bagasse as substrate

    SciTech Connect

    Van Zyl, W.H.

    1985-09-01

    The cellulases that strains of Streptomyces albogrisolus, S. nitrosporeus, and Micromonospora melanosporea produce when grown on untreated ballmilled bagasse were investigated. Optimum conditions for extracellular cellulase production and activity were determined to be growth at pH 6.7-7.4 and 25-35 degrees C for 4-5 days and assay at pH 5.0-6.0 and 45-55 degrees C, respectively. The endoglucanases were thermally stable at 50 degrees C, but the Avicelases had a half-life of approximately 24 hours at this temperature. Nearly half of the endoglucanases and almost all of the Avicelases were absorbed on ballmilled bagasse after 15 minutes incubation at 50 degrees C. The ..beta..-glucosidases were found to be mainly intracellular or cell wall bound. These mesophilic actinomycetes concomitantly produced xylanases and ..beta..-xylosidases with cellulases that, apart from cellobiose and glucose, also release xylose from bagasse. This feature may be advantageous in the commercial application of the enzymes of mesophilic actinomycetes for the saccharification of natural cellulosic substrates.

  15. Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge.

    PubMed

    Bousková, A; Dohányos, M; Schmidt, J E; Angelidaki, I

    2005-04-01

    Thermophilic anaerobic digestion presents an advantageous way for stabilization of sludge from wastewater treatment plants. Two different strategies for changing operational process temperature from mesophilic (37 degrees C) to thermophilic (55 degrees C) were tested using two continuous flow stirred tank reactors operated at constant organic loading rate of 1.38 g VS/l reactor/day and hydraulic retention time of 20 days. In reactor A, the temperature was increased step-wise: 37 degrees C-->42 degrees C-->47 degrees C-->51 degrees C-->55 degrees C. While in reactor B, the temperature was changed in one-step, from 37 degrees C to the desired temperature of 55 degrees C, The results showed that the overall adaptation of the process for the step-wise temperature increment took 70 days in total and a new change was applied when the process was stabilized as indicated by stable methane production and low volatile fatty acids concentrations. Although the one-step temperature increase caused a severe disturbance in all the process parameters, the system reached a new stable operation after only 30 days indicating that this strategy is the best in changing from mesophilic to thermophilic operation in anaerobic digestion plants.

  16. Double Mutation in Photosystem II Reaction Centers and Elevated CO2 Grant Thermotolerance to Mesophilic Cyanobacterium

    PubMed Central

    Dinamarca, Jorge; Shlyk-Kerner, Oksana; Kaftan, David; Goldberg, Eran; Dulebo, Alexander; Gidekel, Manuel; Gutierrez, Ana; Scherz, Avigdor

    2011-01-01

    Photosynthetic biomass production rapidly declines in mesophilic cyanobacteria grown above their physiological temperatures largely due to the imbalance between degradation and repair of the D1 protein subunit of the heat susceptible Photosystem II reaction centers (PSIIRC). Here we show that simultaneous replacement of two conserved residues in the D1 protein of the mesophilic Synechocystis sp. PCC 6803, by the analogue residues present in the thermophilic Thermosynechococcus elongatus, enables photosynthetic growth, extensive biomass production and markedly enhanced stability and repair rate of PSIIRC for seven days even at 43°C but only at elevated CO2 (1%). Under the same conditions, the Synechocystis control strain initially presented very slow growth followed by a decline after 3 days. Change in the thylakoid membrane lipids, namely the saturation of the fatty acids is observed upon incubation for the different strains, but only the double mutant shows a concomitant major change of the enthalpy and entropy for the light activated QA−→QB electron transfer, rendering them similar to those of the thermophilic strain. Following these findings, computational chemistry and protein dynamics simulations we propose that the D1 double mutation increases the folding stability of the PSIIRC at elevated temperatures. This, together with the decreased impairment of D1 protein repair under increased CO2 concentrations result in the observed photothermal tolerance of the photosynthetic machinery in the double mutant PMID:22216094

  17. Clostridium bornimense sp. nov., isolated from a mesophilic, two-phase, laboratory-scale biogas reactor.

    PubMed

    Hahnke, Sarah; Striesow, Jutta; Elvert, Marcus; Mollar, Xavier Prieto; Klocke, Michael

    2014-08-01

    A novel anaerobic, mesophilic, hydrogen-producing bacterium, designated strain M2/40(T), was isolated from a mesophilic, two-phase, laboratory-scale biogas reactor fed continuously with maize silage supplemented with 5% wheat straw. 16S rRNA gene sequence comparison revealed an affiliation to the genus Clostridium sensu stricto (cluster I of the clostridia), with Clostridium cellulovorans as the closest characterized species, showing 93.8% sequence similarity to the type strain. Cells of strain M2/40(T) were rods to elongated filamentous rods that showed variable Gram staining. Optimal growth occurred at 35 °C and at pH 7. Grown on glucose, the main fermentation products were H2, CO2, formate, lactate and propionate. The DNA G+C content was 29.6 mol%. The major fatty acids (>10 %) were C(16 : 0), summed feature 10 (C(18 : 1)ω11c/ω9t/ω6t and/or unknown ECL 17.834) and C(18 : 1)ω11c dimethylacetal. Based on phenotypic, chemotaxonomic and phylogenetic differences, strain M2/40(T) represents a novel species within the genus Clostridium, for which we propose the name Clostridium bornimense sp. nov. The type strain is M2/40(T) ( = DSM 25664(T) = CECT 8097(T)).

  18. Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases.

    PubMed

    Chiuri, R; Maiorano, G; Rizzello, A; del Mercato, L L; Cingolani, R; Rinaldi, R; Maffia, M; Pompa, P P

    2009-02-18

    Molecular flexibility and rigidity are required to determine the function and specificity of protein molecules. Some psychrophilic enzymes demonstrate a higher catalytic efficiency at low temperatures, compared to the efficiency demonstrated by their meso/thermophilic homologous. The emerging picture suggests that such enzymes have an improved flexibility of the structural catalytic components, whereas other protein regions far from functional sites may be even more rigid than those of their mesophilic counterparts. To gain a deeper insight in the analysis of the activity-flexibility/rigidity relationship in protein structure, psychrophilic carbonic anhydrase of the Antarctic teleost Chionodraco hamatus has been compared with carbonic anhydrase II of Bos taurus through fluorescence studies, three-dimensional modeling, and activity analyses. Data demonstrated that the cold-adapted enzyme exhibits an increased catalytic efficiency at low and moderate temperatures and, more interestingly, a local flexibility in the region that controls the correct folding of the catalytic architecture, as well as a rigidity in the hydrophobic core. The opposite result was observed in the mesophilic counterpart. These results suggest a clear relationship between the activity and the presence of flexible and rigid protein substructures that may be useful in rational molecular and drug design of a class of enzymes playing a key role in pathologic processes.

  19. An analysis of temperature adaptation in cold active, mesophilic and thermophilic Bacillus α-amylases.

    PubMed

    Mahdavi, Atiyeh; Sajedi, Reza H; Asghari, S Mohsen; Taghdir, Majid; Rassa, Mehdi

    2011-12-01

    A comparative biochemical and structural study was performed on a cold active α-amylase from Bacillus cereus (BCA) and two well-known homologous mesophilic and thermophilic α-amylases from Bacillus amyloliquefaciens (BAA) and Bacillus licheniformis (BLA). In spite of a high degree of sequence and structural similarity, drastic variations were found for T(opt) as 50, 70 and 90°C for BCA, BAA and BLA, respectively. The half-lives of thermoinactivation were 1 and 9 min for BCA and BAA at 80°C respectively, whilst there was no inactivation for BLA at this temperature. Thermodynamic studies on inactivation process suggested that lower thermostability of BCA is due to lower inactivation slope of the Arrhenius plots and subsequently, lower E(a) and ΔH(#). Increased K(m) and accessible surface area for catalytic residues along with a decreased number of internal interactions in this region in BCA compared to BLA suggest that BCA substrate-binding site might be temperature sensitive and is probably more flexible. On the other hand, fewer ion pairs, destructive substitutions and disruption of aromatic interaction networks in structurally critical regions of Bacillus α-amylases result in a severe decrease in BCA thermostability compared to its mesophilic and thermophilic homologues.

  20. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  1. Improvement of activated sludge bacteria growth by low intensity ultrasound

    NASA Astrophysics Data System (ADS)

    Yan, Y. X.; Ding, J. Y.; Gao, J. L.

    2016-08-01

    Influence of low intensity ultrasound (US) on growth rate of bacteria separated from aerobic activated sludge was studied. In order to reveal the optimal ultrasonic conditions,specific oxygen uptake rate (SOUR) of activated sludge was first detected and results showed that the maximum SOUR was obtained (increased by 40%) at US intensity of 3 Wcm-2 and irradiation time of 10min. Under the optimal conditions, 2 species of bacteria isolated from activated sludge were sonicated and then cultivated for 36h, and increment of 6% and 10% of growth rate were detected for the 2 species of bacteria, respectively, indicating US irradiation of suitable parameters effectively improved activated sludge bacteria growth.

  2. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  3. Lower limb loading in step aerobic dance.

    PubMed

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  4. Acidophilic, heterotrophic bacteria of acidic mine waters

    SciTech Connect

    Wichlacz, P.L.; Unz, R.F.

    1981-05-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium.

  5. Methanotrophic bacteria.

    PubMed Central

    Hanson, R S; Hanson, T E

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene. PMID:8801441

  6. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  7. Simulation of wastewater treatment by aerobic granules in a sequencing batch reactor based on cellular automata.

    PubMed

    Benzhai, Hai; Lei, Liu; Ge, Qin; Yuwan, Peng; Ping, Li; Qingxiang, Yang; Hailei, Wang

    2014-10-01

    In the present paper, aerobic granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater, and 81 % of granular rate was obtained after 15-day cultivation. Aerobic granules have a 96 % BOD removal to the wastewater, and the reactor harbors a mount of biomass including bacteria, fungi and protozoa. In view of the complexity of kinetic behaviors of sludge and biological mechanisms of the granular SBR, a cellular automata model was established to simulate the process of wastewater treatment. The results indicate that the model not only visualized the complex adsorption and degradation process of aerobic granules, but also well described the BOD removal of wastewater and microbial growth in the reactor. Thus, CA model is suitable for simulation of synthetic wastewater treatment. This is the first report about dynamical and visual simulation of treatment process of synthetic wastewater in a granular SBR.

  8. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    PubMed Central

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  9. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    PubMed

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  10. Determination of the fractions of syntrophically oxidized acetate in a mesophilic methanogenic reactor through an (12)C and (13)C isotope-based kinetic model.

    PubMed

    Gehring, Tito; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Wichern, Marc; Lübken, Manfred

    2016-10-01

    In order to accurately describe the carbon flow in anaerobic digestion processes, this work investigates the acetate degradation pathways through the use of stable carbon isotope analysis and a mathematical model. Batch assays using labeled (13)C acetate were employed to distinguish the acetate consumption through methanogenic Archaea and acetate-oxidizing Bacteria. Suspended and sessile biomass, with over 400 days of retention time, from a mesophilic (36.5 °C) upflow anaerobic filter was used as inocula in these assays. A three-process model for acetoclastic methanogenesis and syntrophic acetate oxidation (SAO) was developed to allow for a precise quantification of the SAO contribution. The model distinguishes carbon atoms in light and heavy isotopes, (12)C and (13)C, respectively, which permitted the simulation of the isotope ratios variation in addition to gas production, gas composition and acetate concentrations. The model indicated oxidized fractions of acetate between 7 and 18%. Due to the low free ammonia inhibition potential for the acetoclastic methanogens in these assays these findings point to the biomass retention times as a driven factor for the SAO pathway. The isotope-based kinetic model developed here also describes the δ(13)C variations in unlabeled assays accurately and has the potential to determine biological (13)C fractionation factors.

  11. Determination of the fractions of syntrophically oxidized acetate in a mesophilic methanogenic reactor through an (12)C and (13)C isotope-based kinetic model.

    PubMed

    Gehring, Tito; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Wichern, Marc; Lübken, Manfred

    2016-10-01

    In order to accurately describe the carbon flow in anaerobic digestion processes, this work investigates the acetate degradation pathways through the use of stable carbon isotope analysis and a mathematical model. Batch assays using labeled (13)C acetate were employed to distinguish the acetate consumption through methanogenic Archaea and acetate-oxidizing Bacteria. Suspended and sessile biomass, with over 400 days of retention time, from a mesophilic (36.5 °C) upflow anaerobic filter was used as inocula in these assays. A three-process model for acetoclastic methanogenesis and syntrophic acetate oxidation (SAO) was developed to allow for a precise quantification of the SAO contribution. The model distinguishes carbon atoms in light and heavy isotopes, (12)C and (13)C, respectively, which permitted the simulation of the isotope ratios variation in addition to gas production, gas composition and acetate concentrations. The model indicated oxidized fractions of acetate between 7 and 18%. Due to the low free ammonia inhibition potential for the acetoclastic methanogens in these assays these findings point to the biomass retention times as a driven factor for the SAO pathway. The isotope-based kinetic model developed here also describes the δ(13)C variations in unlabeled assays accurately and has the potential to determine biological (13)C fractionation factors. PMID:27390036

  12. Digestion of cattle manure under mesophilic and thermophilic conditions: characterization of organic matter applying thermal analysis and 1H NMR.

    PubMed

    Gómez, X; Blanco, D; Lobato, A; Calleja, A; Martínez-Núñez, F; Martin-Villacorta, J

    2011-06-01

    Digestion of cattle manure collected from a livestock farm together with bedding material (straw) has been studied under mesophilic and thermophilic conditions in batch reactors. The digestion was carried out for a prolonged period with the aim of evaluating the changes undergone by the organic matter. The mesophilic digestion carried out revealed a greater capacity to produce gas and transform organic matter, while a higher conversion rate, but a lower gas yield, was obtained under thermophilic conditions. Degradation of the organic matter was evaluated by means of thermal analysis and (1)H NMR. Stabilisation through anaerobic digestion (either mesophilic or thermophilic) resulted in an increase in the quality of the organic matter, as characterised by an enrichment in thermostable compounds, and an accumulation of long chain aliphatic materials. The experiments performed demonstrated the transformation of organic matter into complex materials under anaerobic conditions with an accumulation of aliphatic components under both types of conditions tested. Degradation through mesophilic digestion, in comparison to the thermophilic process, resulted in a greater destruction of straw particles.

  13. Digestion of cattle manure under mesophilic and thermophilic conditions: characterization of organic matter applying thermal analysis and 1H NMR.

    PubMed

    Gómez, X; Blanco, D; Lobato, A; Calleja, A; Martínez-Núñez, F; Martin-Villacorta, J

    2011-06-01

    Digestion of cattle manure collected from a livestock farm together with bedding material (straw) has been studied under mesophilic and thermophilic conditions in batch reactors. The digestion was carried out for a prolonged period with the aim of evaluating the changes undergone by the organic matter. The mesophilic digestion carried out revealed a greater capacity to produce gas and transform organic matter, while a higher conversion rate, but a lower gas yield, was obtained under thermophilic conditions. Degradation of the organic matter was evaluated by means of thermal analysis and (1)H NMR. Stabilisation through anaerobic digestion (either mesophilic or thermophilic) resulted in an increase in the quality of the organic matter, as characterised by an enrichment in thermostable compounds, and an accumulation of long chain aliphatic materials. The experiments performed demonstrated the transformation of organic matter into complex materials under anaerobic conditions with an accumulation of aliphatic components under both types of conditions tested. Degradation through mesophilic digestion, in comparison to the thermophilic process, resulted in a greater destruction of straw particles. PMID:21082330

  14. Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis.

    PubMed

    Cho, Si-Kyung; Im, Wan-Taek; Kim, Dong-Hoon; Kim, Moon-Hwan; Shin, Hang-Sik; Oh, Sae-Eun

    2013-03-01

    The performance of dry anaerobic digestion (AD) of food waste was investigated under mesophilic conditions and the methanogenic community was investigated using 454 pyrosequencing. Stable dry AD was achieved by hydraulic retention time (HRT) control without the addition of alkali agents. The average CH4 production rate, CH4 content, and volatile solid reduction rate were 2.51±0.17m(3)/m(3)/d, 66±2.1%, and 65.8±1.22%, respectively, at an HRT of 40d. The methanogenic community of the seed sludge experienced a significant reduction in genus diversity from 18 to 4 and a dominant methanogenic shift from hydrogenotrophic to acetoclastic groups after the acclimation under dry condition. Almost all sequences of the dry anaerobic digester were closely related with those of Methanosarcina thermophila with similarity of 96.4-99.1%. The experimental results would serve as useful information to understand the dry AD system.

  15. High resolution structure of the large ribosomal subunit from a Mesophilic Eubacterium

    SciTech Connect

    Harms, Joerg; Schluenzen, Frank; Zarivach, Raz; Bashan, Anat; Gat, Sharon; Agmon, Ilana; Bartels, Heike; Franceschi, Francois; Yonath, Ada

    2009-10-07

    We describe the high resolution structure of the large ribosomal subunit from Deinococcus radiodurans (D50S), a gram-positive mesophile suitable for binding of antibiotics and functionally relevant ligands. The over-all structure of D50S is similar to that from the archae bacterium Haloarcula marismortui (H50S); however, a detailed comparison revealed significant differences, for example, in the orientation of nucleotides in peptidyl transferase center and in the structures of many ribosomal proteins. Analysis of ribosomal features involved in dynamic aspects of protein biosynthesis that are partially or fully disordered in H50S revealed the conformations of intersubunit bridges in unbound subunits, suggesting how they may change upon subunit association and how movements of the L1-stalk may facilitate the exit of tRNA.

  16. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium.

    PubMed

    Qiu, Guanzhou; Li, Qian; Yu, Runlan; Sun, Zhanxue; Liu, Yajie; Chen, Miao; Yin, Huaqun; Zhang, Yage; Liang, Yili; Xu, Lingling; Sun, Limin; Liu, Xueduan

    2011-04-01

    A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface.

  17. Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste.

    PubMed

    Serrano, Antonio; Siles López, José Angel; Chica, Arturo Francisco; Martín, M Angeles; Karouach, Fadoua; Mesfioui, Abdelaziz; El Bari, Hassan

    2014-01-01

    Mesophilic anaerobic digestion is a treatment that is widely applied for sewage sludge management but has several disadvantages such as low methane yield, poor biodegradability and nutrient imbalance. In this paper, we propose orange peel waste as an easily biodegradable co-substrate to improve the viability of the process. Sewage sludge and orange peel waste were mixed at a proportion of 70:30 (wet weight), respectively. The stability was maintained within correct parameters throughout the process, while the methane yield coefficient and biodegradability were 165 L/kg volatile solids (VS) (0 degrees C, 1 atm) and 76% (VS), respectively. The organic loading rate (OLR) increased from 0.4 to 1.6kg VS/m3 d. Nevertheless, the OLR and methane production rate decreased at the highest loads, suggesting the occurrence of an inhibition phenomenon. PMID:24645472

  18. Methane production in an UASB reactor operated under periodic mesophilic-thermophilic conditions.

    PubMed

    Bourque, J-S; Guiot, S R; Tartakovsky, B

    2008-08-15

    Methane production was studied in a laboratory-scale 10 L anaerobic upflow sludge bed (UASB) reactor with periodic variations of the reactor temperature. On a daily basis the temperature was varied between 35 and 45 degrees C or 35 and 55 degrees C with a heating period of 6 h. Each temperature increase was accompanied by an increase in methane production and a decrease in the concentration of soluble organic matter in the effluent. In comparison to a reactor operated at 35 degrees C, a net increase in methane production of up to 22% was observed. Batch activity tests demonstrated a tolerance of mesophilic methanogenic populations to short-term, 2-6 h, temperature increases, although activity of acetoclastic methanogens decreased after 6 h exposure to a temperature of 55 degrees C. 16S sequencing of DGGE bands revealed proliferation of temperature-tolerant Methanospirillum hungatii sp. in the reactor.

  19. Aspergillus fumigatus and mesophilic moulds in air in the surrounding environment downwind of non-hazardous waste landfill sites.

    PubMed

    Schlosser, Olivier; Robert, Samuel; Debeaupuis, Catherine

    2016-05-01

    Non-hazardous waste landfilling has the potential to release biological agents into the air, notably mould spores. Some species, such as Aspergillus fumigatus, may be a cause of concern for at-risk nearby residents. However, air concentration in the surrounding environment of non-hazardous waste landfill sites is poorly documented. An extensive sampling programme was designed to investigate the relationship between culturable mesophilic moulds and A. fumigatus concentrations in air and distance downwind of non-hazardous waste landfill sites. On-site and off-site repeated measurements were performed at four landfill sites during cold and warm seasons. A high-flow air-sampler device was selected so as to allow peak concentration measurement. Linear mixed-effects models were used to explain variability in the concentrations in air over time and across sites, seasons, instantaneous meteorological conditions and discharged waste tonnage. Concentrations of mesophilic moulds and A. fumigatus at off-site upwind sampling locations were compared with concentrations at each of the downwind sampling locations. At the tipping face location, peak concentration reached 480,000CFUm(-3) for mesophilic moulds and 9300CFUm(-3) for A. fumigatus. Compared with upwind background levels, these concentrations were, on average, approximately 20 and 40 times higher respectively. A steep decline in the concentration of both mesophilic moulds and A. fumigatus was observed between the tipping face location and the downwind property boundary (reduction by 77% and 84% respectively), followed by a low decline leading to a 90% and 94% reduction in concentration at 200m from the property boundary and beyond. With the 200m and 500m downwind sampling point values added together, the 97.5th percentile of concentration was 6013CFUm(-3) and 87CFUm(-3) for mesophilic moulds and A. fumigatus, respectively. Other determining factors were the discharged waste tonnage, the season, instantaneous temperature

  20. Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA.

    PubMed

    Kavitha, S; Adish Kumar, S; Yogalakshmi, K N; Kaliappan, S; Rajesh Banu, J

    2013-12-01

    In this study, the effect of Ethylene diamine tetra acetic acid (EDTA) on Extracellular polymeric substance (EPS) removal tailed with bacterial enzymatic pretreatment on aerobic digestion of activated sludge was studied. In order to enhance the accessibility of sludge to the enzyme secreting bacteria; the extracellular polymeric substances were removed using EDTA. EDTA efficiently removed the EPS with limited cell lysis and enhanced the sludge enzyme activity at its lower concentration of 0.2 g/g SS. The sludge was then subjected to bacterial pretreatment to enhance the aerobic digestion. In aerobic digestion the best results in terms of Suspended solids (SS) reduction (48.5%) and COD (Chemical oxygen demand) solubilization (47.3%) was obtained in experimental reactor than in control. These results imply that aerobic digestion can be enhanced efficiently through bacterial pretreatment of EPS removed sludge.

  1. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  2. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  3. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  4. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures

    PubMed Central

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  5. Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment.

    PubMed

    Garcia, Marcelo L; Angenent, Largus T

    2009-05-01

    Four anaerobic sequencing batch reactors (ASBRs) were operated during a period of 988 days to evaluate the effect of temperature, ammonia, and their interconnectivity on the methane yield of anaerobic processes for animal waste treatment. During period 1 (day 0-378), the methane yield was 0.31 L CH(4)/g volatile solids (VS) for all digesters (with no statistical differences among them) at a temperature and total ammonium-N levels of 25 degrees C and approximately 1200 mg NH(4)(+)-N/L, respectively. During period 2 (day 379-745), the methane yield at 25 degrees C decreased by 45% when total ammonium-N and ammonia-N were increased in two of the four ASBRs to levels >4000 mg NH(4)(+)-N/L and >80 mg NH(3)-N/L, respectively. During period 3 (day 746-988), this relative inhibition was reduced from 45% to 13% compared to the low-ammonia control reactors when the operating temperature was increased from 25 degrees C to 35 degrees C (while the free ammonia levels increased from approximately 100 to approximately 250 mg NH(3)-N/L). The 10 degrees C increase in temperature doubled the rate constant for methanogenesis, which overwhelmed the elevated toxicity effects caused by the increasing concentration of free ammonia. Thus, the farmer/operator may alleviate ammonia toxicity by increasing the operating temperature within the mesophilic range. We extrapolated our data to correlate temperature, ammonia, and methane yield and to hypothesize that the difference between high- and low-ammonia reactors is negligible at the optimum mesophilic temperature of 38 degrees C.

  6. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function.

    PubMed

    Wells, Stephen A; Crennell, Susan J; Danson, Michael J

    2014-10-01

    Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative.

  7. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures.

    PubMed

    Pandey, Pramod K; Soupir, Michelle L

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  8. Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers.

    PubMed

    Cimdins, Annika; Klinkert, Birgit; Aschke-Sonnenborn, Ursula; Kaiser, Friederike M; Kortmann, Jens; Narberhaus, Franz

    2014-01-01

    Cyanobacteria constitute a heterogeneous phylum of oxygen-producing, photosynthetic prokaryotes. They are susceptible to various stress conditions like heat, salt, or light stress, all inducing the cyanobacterial heat shock response (HSR). Cyanobacterial small heat shock proteins (sHsps) are known to preserve thylakoid membrane integrity under stress conditions, thereby protecting the photosynthesis machinery. In Synechocystis sp PCC 6803, synthesis of the sHsp Hsp17 is regulated by an RNA thermometer (RNAT) in the 5'-untranslated region (5'-UTR) of the hsp17 mRNA. RNATs are direct temperature sensors that control expression of many bacterial heat shock and virulence genes. They hinder translation at low temperatures by base pairing, thus blocking ribosome access to the mRNA.   To explore the temperature range in which RNATs act, we studied various RNAT candidates upstream of sHsp genes from mesophilic and thermophilic cyanobacteria. The mesophilic cyanobacteria Anabaena variabilis and Nostoc sp chromosomally encode two sHsps each. Reporter gene studies suggested RNAT-mediated post-transcriptional regulation of shsp expression in both organisms. Detailed structural analysis of the two A. variabilis candidates revealed two novel RNAT types. The first, avashort, regulates translation primarily by masking of the AUG translational start codon. The second, featuring an extended initial hairpin, thus named avalong, presumably makes use of complex tertiary interaction. The 5'-UTR of the small heat shock gene hspA in the thermophile Thermosynechococcus elongatus is predicted to adopt an extended secondary structure. Structure probing revealed that the ribosome binding site was blocked at temperatures below 55 °C. The results of this study demonstrate that cyanobacteria commonly use RNATs to control expression of their small heat shock genes.

  9. Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov., two non-pigmented halotolerant obligately methylotrophic bacteria isolated from the Ural saline environments.

    PubMed

    Doronina, Nina V; Poroshina, Maria N; Kaparullina, Elena N; Ezhov, Vladimir A; Trotsenko, Yuri A

    2013-05-01

    Two newly isolated halotolerant obligately methylotrophic bacteria (strains C2(T) and SK12(T)) with the serine pathway of C1 assimilation are described. The isolates are strictly aerobic, Gram negative, asporogenous, non-motile rods, forming rosettes, multiplying by binary fission. Mesophilic and neutrophilic, accumulate intracellularly compatible solute ectoine and poly-β-hydroxybutyrate. The novel strains are able to grow at 0 up to 16% NaCl (w/v), optimally at 3-5% NaCl. The major cellular fatty acids are C18:1ω7c and C19:0cyc and the prevailing quinone is Q-10. The predominant phospholipids are phosphatidylcholine, phosphatidylglycerol, phosphatidyldimethylethanolamine and phosphatidylethanolamine. Assimilate NH4(+) by glutamate dehydrogenase and via the glutamate cycle (glutamine synthetase and glutamate synthase). The DNA G+C contents of strains C2(T) and SK12(T) are 60.9 and 60.5 mol% (Tm), respectively. 16S rRNA gene sequence similarity between the two new isolates are 99% but below 94% with other members of the Alphaproteobacteria thus indicating that they can be assigned to a novel genus Methyloligella. Rather low level of DNA-DNA relatedness (53%) between the strains C2(T) and SK12(T) indicates that they represent two separate species of the new genus, for which the names Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov. are proposed. The type strain of Methyloligella halotolerans is C2(T) (=VKM B-2706(T)=CCUG 61687(T)=DSM 25045(T)) and the type strain of Methyloligella solikamskensis is SK12(T) (=VKM B-2707(T)=CCUG 61697(T)=DSM 25212(T)). PMID:23351489

  10. Draft Genome Sequence of Leptolinea tardivitalis YMTK-2, a Mesophilic Anaerobe from the Chloroflexi Class Anaerolineae.

    PubMed

    Ward, Lewis M; Hemp, James; Pace, Laura A; Fischer, Woodward W

    2015-01-01

    We present the draft genome sequence of Leptolinea tardivitalis YMTK-2, a member of the Chloroflexi phylum. This organism was initially characterized as a strictly anaerobic nonmotile fermenter; however, genome analysis demonstrates that it encodes for a flagella and might be capable of aerobic respiration. PMID:26586893

  11. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions.

    PubMed

    Obulisamy, Parthiba Karthikeyan; Chakraborty, Debkumar; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-12-01

    Anaerobic co-digestion of food waste with primary sewage sludge is beneficial for urban centers, while the optimized conditions reported in the literature are not locally suitable for Hong Kong. Therefore, the present study was aimed to develop an optimized mixing ratio of food waste to chemically enhanced primary-treated sewer sludge (CEPT) for co-digestion using batch tests under mesophilic (37°C) and thermophilic (55°C) conditions. The mixing ratios of 1:1, 1:2, 1:3, 2:1 and 3:1 (v v(-1)) of food waste to CEPT sludge was tested under the following conditions: temperature - 35°C and 55°C; pH - not regulated; agitation - 150 rpm and time - 20 days. The thermophilic incubations led a good hydrolysis rate and 2-12-fold higher enzyme activities than in mesophilic incubations for different mixing ratios. While the acidogenesis were found retarded that leading to 'sour and stuck' digestion for all mixing ratio of food waste to CEPT sludge from thermophilic incubations. The measured zeta potential was most favourable (-5 to -16.8 mV) for methane production under thermophilic incubations; however the CH4 recovery was less than that in mesophilic incubations. The results suggested that the quick hydrolysis and subsequent acid accumulation under thermophilic incubation lead to inhibited methanogenesis at the early stage than in mesophilic systems. It is concluded that buffer addition is therefore required for any mixing ratio of food waste to CEPT sludge for improved CH4 recovery for both mesophilic and thermophilic operations.

  12. A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste.

    PubMed

    Ventura, Jey-R Sabado; Lee, Jehoon; Jahng, Deokjin

    2014-06-01

    An alternating mesophilic and thermophilic two stage anaerobic digestion (AD) process was conducted. The temperature of the acidogenic (A) and methanogenic (M) reactors was controlled as follows: System 1 (S1) mesophilic A-mesophilic M; (S2) mesophilic A-thermophilic M; and (S3) thermophilic A-mesophilic M. Initially, the AD reactor was acclimatized and inoculated with digester sludge. Food waste was added with the soluble chemical oxygen demand (SCOD) concentrations of 41.4-47.0 g/L and volatile fatty acids of 2.0-3.2 g/L. Based on the results, the highest total chemical oxygen demand removal (86.6%) was recorded in S2 while S3 exhibited the highest SCOD removal (96.6%). Comparing S1 with S2, total solids removal increased by 0.5%; S3 on the other hand decreased by 0.1 % as compared to S1. However, volatile solids (VS) removal in S1, S2, and S3 was 78.5%, 81.7%, and 79.2%, respectively. S2 also exhibited the highest CH4 content, yield, and production rate of 70.7%, 0.44 L CH4/g VSadded, and 1.23 L CH4/(L·day), respectively. Bacterial community structure revealed that the richness, diversity, evenness, and dominance of S2 were high except for the archaeal community. The terminal restriction fragments dendrogram also revealed that the microbial community of the acidogenic and methanogenic reactors in S2 was distinct. Therefore, S2 was the best among the systems for the operation of two-stage AD of food waste in terms of CH4 production, nutrient removal, and microbial community structure. PMID:25079836

  13. Hot Stuff: Lability of Forest Floor DOM to Aerobic Degradation

    NASA Astrophysics Data System (ADS)

    Bourbonniere, R. A.; Creed, I. F.; Kapila, R.; Collins, J.

    2004-05-01

    The hypothesis that the lability of DOM to aerobic microbial degradation to CO2 is related to its age and character is tested in an incubation study conducted using an assemblage of soil bacteria in their natural state. Extracts (WF) of leaf and forest floor material characterized by different degrees of degradation: green leaves, fresh fallen leaves, litter (one year weathering), fibric matter, hemic matter and peat were used in this study. The working hypothesis is that these extracts represent a chronosequence of degradation and DOM extracted from them might also represent a similar lability sequence. As well aliquots of the WF extracts were processed to remove DOM fractions. Thus a fulvic acid (FA) fraction was made by precipitating and removing humic acid, and a hydrophilic fraction (HPI) by removing hydrophobics from the FA using XAD-8 resin. Incubations were carried out on all three DOM solutions from each extract to determine if there were differences in lability among the fractions. When comparing the WF solutions for CO2 production, the green leaves, litter, fibric and hemic extracts showed approximately the same CO2 yield, on an equal C basis, and the fresh fallen leaves and peat produced less. For five of the six extracts the respective WF and HPI solutions yielded nearly the same quantity of CO2 per mg C suggesting that the HPI component contributes almost all the lability. Furthermore the magnitudes of the C-normalized CO2 yield for these solutions are similar to that for glucose, which fractionates as HPI. For the same five extracts the FA solution yielded lower quantities of CO2, on an equal C basis, than WF and HPI suggesting that the hydrophobic content of the extracts may inhibit aerobic degradation. The peat extract solutions yielded a different CO2 production distribution with the HPI only slightly higher than the FA which in turn was much greater than WF. The material from which this extract was made is much older and contains significant HA

  14. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    PubMed

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter (< 1 x 10(3)) percentage was increased from 59.5% to 82.1% and the high molecular organic matter ( > 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment.

  15. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  16. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed

    da Cruz, Georgiana F; de Vasconcellos, Suzan P; Angolini, Célio Ff; Dellagnezze, Bruna M; Garcia, Isabel Ns; de Oliveira, Valéria M; Dos Santos Neto, Eugenio V; Marsaioli, Anita J

    2011-12-23

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses.

  17. The effects of wilting and storage temperatures on the fermentation quality and aerobic stability of stylo silage.

    PubMed

    Liu, Qinghua; Zhang, Jianguo; Shi, Shangli; Sun, Qizhong

    2011-08-01

    In order to clarify the ensiling characteristics of stylo (Stylosanthes guianensis Swartz), the effects of wilting (no wilting, light wilting and heavy wilting) and storage temperatures (10°C, 20°C, 30°C and 40°C) on the fermentation quality and aerobic stability of stylo silage were investigated. Wilting had no significant influence on the contents of crude protein, ether extract and acid detergent fiber, and numbers of lactic acid bacteria, aerobic bacteria, yeasts and mold (P > 0.05). Heavy wilted material, wilted for 12 h, had higher neutral detergent fiber content and lower water-soluble carbohydrate content than unwilted and light wilted materials (P < 0.05). Wilting and storage temperatures had significant effects on pH value, acetic acid, butyric acid and NH(3) -N contents of stylo silage (P < 0.01 or P < 0.05). Wilting tended to reduce acetic acid and NH(3) -N contents and improve the fermentation quality of stylo silage. In all the silages, no wilting silage ensiled at 30°C had the highest butyric acid content (P < 0.05). High temperature of 40°C markedly restricted the growth of lactic acid bacteria and aerobic bacteria in silage, irrespective of wilting. The wilted silage or silage stored at low temperature had poor aerobic stability. PMID:21794013

  18. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  19. Bacteria Counter

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Science Applications, Inc.'s ATP Photometer makes a rapid and accurate count of the bacteria in a body fluid sample. Instrument provides information on the presence and quantity of bacteria by measuring the amount of light emitted by the reaction between two substances. Substances are ATP adenosine triphosphate and luciferase. The reactants are applied to a human body sample and the ATP Photometer observes the intensity of the light emitted displaying its findings in a numerical output. Total time lapse is usually less than 10 minutes, which represents a significant time savings in comparison of other techniques. Other applications are measuring organisms in fresh and ocean waters, determining bacterial contamination of foodstuffs, biological process control in the beverage industry, and in assay of activated sewage sludge.

  20. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment.

    PubMed

    Liu, Yali; Kang, Xiaorong; Li, Xin; Yuan, Yixing

    2015-08-01

    Lab-scale experiment was conducted to investigate the formation and characteristics of aerobic granular sludge for biological nutrient removal of slaughterhouse wastewater. Experimental results showed that removal performances of chemical oxygen demand (COD), ammonia and phosphate were enhanced with sludge granulation, and their removal efficiencies reached 95.1%, 99.3% and 83.5%, respectively. The aerobic granular sludge was matured after 90days cultivation, and protein-like substances were the main components. Simultaneously, the mass ratio of proteins and polysaccharides (PN/PS) was enhanced to 2.5 from 1.7. The granules with particle sizes of 0.6-1.2 and 1.2-1.8mm, accounting for 69.6%, were benefit for the growth of ammonia oxidizing bacteria (AOB) and nitrate oxidizing bacteria (NOB), and corresponding specific oxygen demand rates (SOUR) of AOB and NOB were 31.4 and 23.3mgO2/gMLSSh, respectively.

  1. Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common

    PubMed Central

    2013-01-01

    Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes. PMID:23889694

  2. Trans unsaturated fatty acids in bacteria.

    PubMed

    Keweloh, H; Heipieper, H J

    1996-02-01

    The occurrence of trans unsaturated fatty acids as by-products of fatty acid transformations carried out by the obligate anaerobic ruminal microflora has been well known for a long time. In recent years, fatty acids with trans configurations also have been detected in the membrane lipids of various aerobic bacteria. Besides several psychrophilic organisms, bacteria-degrading pollutants, such as Pseudomonas putida, are able to synthesize these compounds de novo. In contrast to the trans fatty acids formed by rumen bacteria, the membrane constituents of aerobic bacteria are synthesized by a direct isomerization of the complementary cis configuration of the double bond without a shift of the position. This system of isomerization is located in the cytoplasmic membrane. The conversion of cis unsaturated fatty acids to trans changes the membrane fluidity in response to environmental stimuli, particularly where growth is inhibited due to the presence of high concentrations of toxic substances. Under these conditions, lipid synthesis also stops so that the cells are not able to modify their membrane fluidity by any other mechanism.

  3. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments.

    PubMed

    Konings, Wil N; Albers, Sonja-Verena; Koning, Sonja; Driessen, Arnold J M

    2002-08-01

    The cytoplasmic membrane of bacteria and archaea determine to a large extent the composition of the cytoplasm. Since the ion and in particular the proton and/or the sodium ion electrochemical gradients across the membranes are crucial for the bioenergetic conditions of these microorganisms, strategies are needed to restrict the permeation of these ions across their cytoplasmic membrane. The proton and sodium permeabilities of all biological membranes increase with the temperature. Psychrophilic and mesophilic bacteria, and mesophilic, (hyper)thermophilic and halophilic archaea are capable of adjusting the lipid composition of their membranes in such a way that the proton permeability at the respective growth temperature remains low and constant (homeo-proton permeability). Thermophilic bacteria, however, have more difficulties to restrict the proton permeation across their membrane at high temperatures and these organisms have to rely on the less permeable sodium ions for maintaining a high sodium-motive force for driving their energy requiring membrane-bound processes. Transport of solutes across the bacterial and archaeal membrane is mainly catalyzed by primary ATP driven transport systems or by proton or sodium motive force driven secondary transport systems. Unlike most bacteria, hyperthermophilic bacteria and archaea prefer primary ATP-driven uptake systems for their carbon and energy sources. Several high-affinity ABC transporters for sugars from hyperthermophiles have been identified and characterized. The activities of these ABC transporters allow these organisms to thrive in their nutrient-poor environments.

  4. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  5. Aerobic microorganisms associated with alfalfa leafcutter bees (megachile rotundata).

    PubMed

    Inglis, G D; Sigler, L; Goette, M S

    1993-09-01

    Characterization of microorganisms associated with alfalfa leaf-cutter bee (Megachile rotundata) nectar, pollen, provisions, larval guts, and frass (excreta) in Alberta demonstrated a varied aerobic microflora. Yeasts were isolated frequently from nectar, pollen, and provisions but rarely from guts or frass. The most prevalent yeast taxa were: Candida bombicola, Cryptococcus albidus, Metschnikowia reukaufii, and Rhodotorula glutinis. Although few filamentous fungi were found in nectar, they were frequently isolated from pollen and provisions; the predominant taxa were Alternaria alternata, Cladosporium cladosporioides, C. herbarum, Epicoccum nigrum, and Penicillium chrysogenum. Bacteria, including species of Bacillus, Corynebacterium, Micrococcus, and the actinomycete Streptomyces, also were prevalent in provisions and/or on pollen. In general, the diversity of microorganisms isolated from alimentary canals and frass was lower than from nectar, pollen, and provisions. Bacillus firmus, B. licheniformis, B. megaterium, B. pumilus, and Streptomyces spp. were the most frequently isolated bacteria, whereas Trichosporonoides megachiliensis was the most common filamentous fungus isolated from larval guts and/or frass. These taxa may be part of the resident microflora of the alimentary canal. Populations of bacteria and filamentous fungi, but not yeasts, were larger from Ascosphaera aggregata-infected larvae than from healthy larvae. However, with the exception of Aspergillus niger and T. megachiliensis in frass from healthy larvae, no taxon of filamentous fungi was conspicuously present or absent in infected larvae, healthy larvae, or their frass. PMID:24190009

  6. Phototrophic bacteria and their role in the biogeochemical sulfur cycle

    NASA Technical Reports Server (NTRS)

    Trueper, H. G.

    1985-01-01

    An essential step that cannot be bypassed in the biogeochemical cycle of sulfur today is dissimilatory sulfate reduction by anaerobic bacteria. The enormous amounts of sulfides produced by these are oxidized again either anaerobically by phototrophic bacteria or aerobically by thiobacilli and large chemotrophic bacteria (Beggiatoa, Thiovulum, etc.). Phototrophic bacteria use sulfide, sulfur, thiosulfate, and sulfite as electron donors for photosynthesis. The most obvious intermediate in their oxidative sulfur metabolism is a long chain polysulfide that appears as so called sulfur globules either inside (Chromatiaceae) or outside (Ectothiorhodospiraceae, Chlorobiaceae, and some of the Rhodospirillaceae) the cells. The assimilation of sulfur compounds in phototrophic bacteria is in principle identical with that of nonphototrophic bacteria. However, the Chlorobiaceae and some of the Chromatiaceae and Rhodospirillaceae, unable to reduce sulfate, rely upon reduced sulfur for biosynthetic purposes.

  7. Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna

    2015-01-01

    We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health.

  8. Aerobic bacterial microbiota isolated from the cloaca of the European pond turtle (Emys orbicularis) in Poland.

    PubMed

    Nowakiewicz, Aneta; Ziółkowska, Grażyna; Zięba, Przemysław; Dziedzic, Barbara Majer; Gnat, Sebastian; Wójcik, Mariusz; Dziedzic, Roman; Kostruba, Anna

    2015-01-01

    We conducted a comparative analysis of the aerobic cloacal bacteria of European pond turtles (Emys orbicularis) living in their natural environment and juvenile turtles reared under controlled conditions in a breeding center. We included 130 turtles in the study. The aerobic bacteria isolated from the cloaca of the juvenile turtles were less diverse and more prevalent than the bacteria isolated from free-living adults. We isolated 17 bacterial species from juvenile captive turtles, among which the dominant species were Cellulomonas flavigena (77/96), Enterococcus faecalis (96/96), Escherichia coli (58/96), and Proteus mirabilis (41/96). From the adult, free-living turtles, we isolated 36 bacterial species, some of which are a potential threat to public health (e.g., Salmonella enterica serovars Newport, Daytona, and Braenderup; Listeria monocytogenes; Yersinia enterocolitica; Yersinia ruckeri; Klebsiella pneumoniae; Vibrio fluvialis; and Serratia marcescens), and pathogens that are etiologic agents of diseases of ectothermic animals (e.g., Aeromonas sobria, Aeromonas caviae, Hafnia alvei, Edwardsiella tarda, and Citrobacter braakii; the last two species were isolated from both groups of animals). The cloacal bacterial biota of the European pond turtle was characterized by numerous species of bacteria, and its composition varied with turtle age and environmental conditions. The small number of isolated bacteria that are potential human pathogens may indicate that the European pond turtle is of relatively minor importance as a threat to public health. PMID:25380369

  9. Copper tolerance and virulence in bacteria.

    PubMed

    Ladomersky, Erik; Petris, Michael J

    2015-06-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host.

  10. Copper tolerance and virulence in bacteria

    PubMed Central

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  11. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates.

    PubMed

    Robrock, Kristin R; Coelhan, Mehmet; Sedlak, David L; Alvarez-Cohent, Lisa

    2009-08-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of the related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di-BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta,- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation.

  12. Comparison of sidestream treatment technologies: post aerobic digestion and Anammox.

    PubMed

    Bauer, Heidi; Johnson, Thomas D; Johnson, Bruce R; Oerke, David; Graziano, Steven

    2016-01-01

    Post aerobic digestion (PAD) and anaerobic ammonium oxidation (Anammox) are sidestream treatment technologies which are both excellent options for the reduction of nitrogen recycled back to the liquid stream without the need for supplemental carbon or alkalinity. However, the achievement of this goal is where the similarities between the two technologies end. PAD is an advanced digestion process where aerobic digestion is designed to follow anaerobic digestion. Other benefits of PAD include volatile solids reduction, odor reduction, and struvite formation reduction. Anammox harnesses a specific species of autotrophic bacteria that can help achieve partial nitritation/deammonification. Other benefits of Anammox include lower energy consumption due to requiring less oxygen compared with conventional nitrification. This manuscript describes the unique benefits and challenges of each technology. Example installations are presented with a narrative of how and why the technology was selected. A whole plant simulator is used to compare and contrast the mass balances and net present value costs on an 'apples to apples' basis. The discussion includes descriptions of conditions under which each technology would potentially be the most beneficial and cost-effective against a baseline facility without sidestream treatment. PMID:27232417

  13. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates

    PubMed Central

    Robrock, Kristin R.; Coelhan, Mehmet; Sedlak, David; Alvarez-Cohen, Lisa

    2009-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Burkholderia xenovorans LB400 to transform mono- through hexa-BDEs at ppb levels. We also tested the PBDE transforming abilities of related strain Rhodococcus sp. RR1 and the ether-degrading Pseudonocardia dioxanivorans CB1190. The two PCB-degrading strains transformed all of the mono- through penta-BDEs and strain LB400 transformed one of the hexa-BDEs. The extent of transformation was inversely proportional to the degree of bromination. Strains RR1 and CB1190 were only able to transform the less brominated mono- and di- BDE congeners. RHA1 released stoichiometric quantities of bromide while transforming mono- and tetra-BDE congeners. LB400 instead converted most of a mono-BDE to a hydroxylated mono-BDE. This is the first report of aerobic transformation of tetra-, penta- and hexa-BDEs as well as the first report of stoichiometric release of bromide during PBDE transformation. PMID:19731666

  14. Comparison of sidestream treatment technologies: post aerobic digestion and Anammox.

    PubMed

    Bauer, Heidi; Johnson, Thomas D; Johnson, Bruce R; Oerke, David; Graziano, Steven

    2016-01-01

    Post aerobic digestion (PAD) and anaerobic ammonium oxidation (Anammox) are sidestream treatment technologies which are both excellent options for the reduction of nitrogen recycled back to the liquid stream without the need for supplemental carbon or alkalinity. However, the achievement of this goal is where the similarities between the two technologies end. PAD is an advanced digestion process where aerobic digestion is designed to follow anaerobic digestion. Other benefits of PAD include volatile solids reduction, odor reduction, and struvite formation reduction. Anammox harnesses a specific species of autotrophic bacteria that can help achieve partial nitritation/deammonification. Other benefits of Anammox include lower energy consumption due to requiring less oxygen compared with conventional nitrification. This manuscript describes the unique benefits and challenges of each technology. Example installations are presented with a narrative of how and why the technology was selected. A whole plant simulator is used to compare and contrast the mass balances and net present value costs on an 'apples to apples' basis. The discussion includes descriptions of conditions under which each technology would potentially be the most beneficial and cost-effective against a baseline facility without sidestream treatment.

  15. Aerobic and anaerobic PCB biodegradation in the environment

    SciTech Connect

    Abramowicz, D.A.

    1995-06-01

    Studies have identified two distinct biological processes capable of biotransforming polychlorinated biphenyls (PCBs): aerobic oxidative processes and anaerobic reductive processes. It is now known that these two complementary activities are occurring naturally in the environment. Anaerobic PCB dechlorination, responsible for the conversion of highly chlorinated PCBs to lightly chlorinated ortho-enriched congeners, has been documented extensively in the Hudson River and has been observed at many other sites throughout the world. The products from this anaerobic process are readily degradable by a wide range of aerobic bacteria, and it has now been shown that this process is occurring in surficial sediments in the Hudson River. The widespread anaerobic dechlorination of PCBs that has been observed in many river and marine sediments results in reduction of both the potential risk from and potential exposure to PCBs. The reductions in potential risk include reduced dioxin like toxicity and reduced carcinogenicity. The reduced PCB exposure realized upon dechlorination is manifested by reduced bioaccumulation in the food chain and by the increased anaerobic degradability of these products. 27 refs., 1 fig., 1 tab.

  16. [Aerobic methanotrophic communities in the bottom sediments of Lake Baikal].

    PubMed

    Gaĭnutdinova, E A; Eshinimaev, B Ts; Tsyrenzhapova, I S; Dagurova, O P; Suzina, N E; Khmelenina, V N; Namsaraev, B B; Trotsenko, Iu A

    2005-01-01

    The results of the first methodical investigation into the aerobic methanotrophic communities inhabiting the bottom sediments of Lake Baikal are reported. Use of the radioisotopic method revealed methane consumption in 12 10- to 50-cm-long sediment cores. The maximum methane consumption rates (495-737 microl/(dm3 day) were recorded in sediments in the regions of hydrothermal vents and oil and gas occurrence. Methane consumption was most active in the surface layers of the sediments (0-4 cm); it decreased with the sediment depth and became negligible or absent at depths below 20 cm. The number of methanotrophic bacteria usually ranged from 100 to 1000 cells/cm3 of sediment and reached 1 million cells/cm3 in the regions of oil and gas occurrence. The 17 enrichment cultures obtained were represented mainly by morphotype II methanotrophs. Phylogenetic analysis of the enrichment cultures in terms of the amino acid sequence of the alpha subunit of the membrane-bound methane monooxygenase revealed the predominance of methanotrophs of the genus Methylocystis. The results obtained suggest the presence of an active aerobic methanotrophic community in Lake Baikal. PMID:16211862

  17. Enzymes and genes involved in aerobic alkane degradation

    PubMed Central

    Wang, Wanpeng; Shao, Zongze

    2013-01-01

    Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes, transport across cell membrane of alkanes, the regulation of alkane degradation gene and initial oxidation. PMID:23755043

  18. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  19. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  20. Neuromodulation of Aerobic Exercise-A Review.

    PubMed

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S

    2015-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  1. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  2. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  3. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions.

    PubMed

    DeMars, Zachary; Biswas, Silpak; Amachawadi, Raghavendra G; Renter, David G; Volkova, Victoriya V

    2016-01-01

    Antimicrobial treatments result in the host's enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  4. Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin

    2013-08-15

    Effects of single and dual stage (acidogenic-methanogenic) mesophilic anaerobic digestion (AD) of kitchen waste (KW) was evaluated at hydraulic retention times (HRTs) of 20, 15, 12 and 9 d with and without thermal microwave (MW) pretreatment (145 °C). Anaerobic acidification in terms of acid accumulation was superior compared to microaerophilic acidification. Maximum anaerobic acidification of KW was determined to occur with an HRT of 2 d which was then selected for the acidification stage. The dual stage AD system fed with untreated KW produced the maximum biogas and volatile solids (VS) stabilization efficiencies at the shortest HRT of 9 d. Conversely, for free liquid resulting from MW pretreatment of KW the two stage reactor at 20 d HRT produced three fold more methane compared with the untreated free liquid control. However, MW pretreatment and AD of the free liquid fraction only, was not a sustainable treatment option. For KW, staging of the AD process had a greater positive impact on waste stabilization and methane yield compared to single stage reactors or MW pretreatment. KW can be characterized as being a readily biodegradable solid waste; concomitantly it is recommended that digester staging without MW pretreatment be employed to maximize methane yield and production.

  5. Financial appraisal of wet mesophilic AD technology as a renewable energy and waste management technology.

    PubMed

    Dolan, T; Cook, M B; Angus, A J

    2011-06-01

    Anaerobic digestion (AD) has the potential to support diversion of organic waste from landfill and increase renewable energy production. However, diffusion of this technology has been uneven, with countries such as Germany and Sweden taking the lead, but limited diffusion in other countries such as the UK. In this context, this study explores the financial viability of AD in the UK to offer reasons why it has not been more widely used. This paper presents a model that calculates the Internal Rate of Return (IRR) on a twenty year investment in a 30,000 tonnes per annum wet mesophilic AD plant in the UK for the treatment of source separated organic waste, which is judged to be a suitable technology for the UK climate. The model evaluates the financial significance of the different alternative energy outputs from this AD plant and the resulting economic subsidies paid for renewable energy. Results show that renewable electricity and renewable heat sales supported by renewable electricity and renewable heat tariffs generates the greatest IRR (31.26%). All other uses of biogas generate an IRR in excess of 15%, and are judged to be a financially viable investment. Sensitivity analysis highlights the financial significance of: economic incentive payments and a waste management gate fee; and demonstrates that the fate of the digestate by-product is a source of financial uncertainty for AD investors.

  6. Accelerated Biodegradation of Agriculture Film Based on Aromatic-Aliphatic Copolyester in Soil under Mesophilic Conditions.

    PubMed

    Šerá, Jana; Stloukal, Petr; Jančová, Petra; Verney, Vincent; Pekařová, Silvie; Koutný, Marek

    2016-07-20

    A study was conducted on the biodegradation of aromatic-aliphatic copolyester-based agricultural film in soil at 25 °C. The polymer is known to be biodegradable under composting conditions although rather recalcitrant under mesophilic conditions. The material investigated comprised of the copolyester filled with approximately 25% of starch containing biodegradable plasticizers, and its behavior was compared to the corresponding material without the filler. Mineralization followed by CO2 production merely reached the point of about 6% after 100 days of incubation in the pure copolyester film, whereas the value of around 53% was recorded for the filled copolyester film, which exceeded the readily biodegradable starch filler content in the material by more than 20% and could be accounted for biodegradation of the copolyester. It was suggested that the accelerated copolyester biodegradation in the starch-filled material was most likely explained by the increase in the active surface area of the material available for the microbial attack after biodegradation of the filler. The results were supported by changes in molecular weight distributions of the copolyester and observations made by several microscopic techniques. These findings encourage further development of biodegradable agricultural films based on this material. PMID:27367168

  7. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    SciTech Connect

    Mendes, Carlos Esquerre, Karla Matos Queiroz, Luciano

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  8. Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium.

    PubMed

    Evvyernie, D; Yamazaki, S; Morimoto, K; Karita, S; Kimura, T; Sakka, K; Ohmiya, K

    2000-01-01

    A strictly anaerobic, mesophilic and chitinolytic bacterial strain, M-21, was isolated from a soil sample collected from Mie University campus and identified as Clostridium paraputrificum based on morphological and physiological characteristics, and 16S rRNA sequence analysis. C. paraputrificum M-21 utilized chitin and N-acetyl-D-glucosamine (GlcNAc), a constituent monosaccharide of chitin, to produce a large amount of gas along with acetic acid and propionic acid as major fermentation products. Hydrogen and carbon dioxide accounted for 65% and 35% of the gas evolved, respectively. The conditions for 1 l batch culture of C. paraputrificum, including pH of the medium, incubation temperature and agitation speed, were optimized for hydrogen production with GlcNAc as the carbon source. The bacterium grew rapidly on GlcNAc with a doubling time of around 30 min, and produced hydrogen gas with a yield of 1.9 mol H2/mol GlcNAc under the following cultivation conditions: initial medium pH of 6.5, incubation temperature of 45 degrees C, agitation speed of 250 rpm, and working volume of 50% of the fermentor. The dry cell weight harvested from this culture was 2.0 g/l.

  9. Comparison of microbial communities during the anaerobic digestion of Gracilaria under mesophilic and thermophilic conditions.

    PubMed

    Azizi, Aqil; Kim, Wonduck; Lee, Jung Hyun

    2016-10-01

    Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities. PMID:27562592

  10. Isolation and Characterization of Methanomicrobium paynteri sp. nov., a Mesophilic Methanogen Isolated from Marine Sediments †

    PubMed Central

    Rivard, Christopher J.; Henson, J. Michael; Thomas, Michael V.; Smith, Paul H.

    1983-01-01

    A new mesophilic methanogenic bacterial species isolated from marine sediments collected in the Cayman Islands is described. Cells are small rods occuring singly without filaments, are not motile, and do not possess flagella. Colonies are semitransparent and off-white in color. After 2 weeks of incubation at 37°C colonies are 1 to 2 mm in size, circular, and have entire edges. Only hydrogen-carbon dioxide is a substrate for growth and methane formation. Cells can tolerate a variety of organic secondary buffers (bicarbonate-CO2 being the primary buffer). Cells do not require yeast extract or Trypticase, but do require acetate, for growth. The optimum growth temperature is 40°C. The optimum sodium concentration is 0.15 M. The optimum pH for growth is 7.0. The minimum generation time is 4.8 h. The DNA base composition is 44.9 mol% guanine plus cytosine. The name Methanomicrobium paynteri is proposed in honor of M. J. B. Paynter. The type strain is G-2000 (=ATCC 33997, =DSM 2545). Images PMID:16346371

  11. Anaerobic mesophilic treatment of cattle manure in an upflow anaerobic sludge blanket reactor with prior pasteurization.

    PubMed

    Marañón, Elena; Castrillón, Leonor; Fernández, Juan José; Fernández, Yolanda; Peláez, Ana Isabel; Sánchez, Jesús

    2006-02-01

    Different autonomous communities located in northern Spain have large populations of dairy cattle. In the case of Asturias, the greatest concentration of dairy farms is found in the areas near the coast, where the elimination of cattle manure by means of its use as a fertilizer may lead to environmental problems. The aim of the present research work was to study the anaerobic treatment of the liquid fraction of cattle manure at mesophilic temperature using an upflow anaerobic sludge blanket (UASB) reactor combined with a settler after a pasteurization process at 70 degrees C for 2 hr. The manure used in this study came from two different farms, with 40 and 200 cows, respectively. The manure from the smaller farm was pretreated in the laboratory by filtration through a 1-mm mesh, and the manure from the other farm was pretreated on the farm by filtration through a separator screw press (0.5-mm mesh). The pasteurization process removed the pathogenic microorganisms lacking spores, such as Enterococcus, Yersinia, Pseudomonas, and coliforms, but bacterial spores are only reduced by this treatment, not removed. The combination of a UASB reactor and a settler proved to be effective for the treatment of cattle manure. In spite of the variation in the organic loading rate and total solids in the influent during the experiment, the chemical oxygen demand (COD) of the effluent from the settler remained relatively constant, obtaining reductions in the COD of approximately 85%.

  12. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review.

    PubMed

    Reynaud, N; Buckley, C A

    2016-01-01

    A review concerning the anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions is presented. Existing studies indicate strong resilience of the reactor towards loading variations and shock-loads. The compartmentalisation of the ABR is a strongly stabilising factor with feed fluctuations being evened out across reactor chambers. Significant chemical oxygen demand (COD) reduction occurs almost exclusively in the first three chambers. The hydraulic rather than the organic loading rate is treatment limiting. Laboratory-scale studies show high treatment efficiencies of above 80% COD removal. It was found that most laboratory-scale studies do not factor in important aspects of field operation, such as diurnal fluctuations of feed characteristics, adequate start-up periods and periods of constant loading and optimised chamber outlet design, and never studied the effect of loading on sludge digestion. Performance data on full-scale ABR implementations, however, are extremely scarce, and existing studies are without exception affected by site-specific treatment-limiting factors hindering the extrapolation of generally valid conclusions. In view of a large-scale roll-out, communal ABRs are not sufficiently understood. Current challenges concerning the optimisation of reactor design require numerous well-monitored long-term full-scale reactor investigations. Existing ABR investigations yield encouraging results, supporting that the ABR may be one of the solutions answering the global call for low-maintenance, robust treatment systems.

  13. An integrated approach for thermal stabilization of a mesophilic adenylate kinase.

    PubMed

    Moon, Sojin; Jung, Du-kyo; Phillips, George N; Bae, Euiyoung

    2014-09-01

    Thermally stable proteins are desirable for research and industrial purposes, but redesigning proteins for higher thermal stability can be challenging. A number of different techniques have been used to improve the thermal stability of proteins, but the extents of stability enhancement were sometimes unpredictable and not significant. Here, we systematically tested the effects of multiple stabilization techniques including a bioinformatic method and structure-guided mutagenesis on a single protein, thereby providing an integrated approach to protein thermal stabilization. Using a mesophilic adenylate kinase (AK) as a model, we identified stabilizing mutations based on various stabilization techniques, and generated a series of AK variants by introducing mutations both individually and collectively. The redesigned proteins displayed a range of increased thermal stabilities, the most stable of which was comparable to a naturally evolved thermophilic homologue with more than a 25° increase in its thermal denaturation midpoint. We also solved crystal structures of three representative variants including the most stable variant, to confirm the structural basis for their increased stabilities. These results provide a unique opportunity for systematically analyzing the effectiveness and additivity of various stabilization mechanisms, and they represent a useful approach for improving protein stability by integrating the reduction of local structural entropy and the optimization of global noncovalent interactions such as hydrophobic contact and ion pairs.

  14. A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes.

    PubMed

    Mazola, Yuliet; Guirola, Osmany; Palomares, Sucel; Chinea, Glay; Menéndez, Carmen; Hernández, Lázaro; Musacchio, Alexis

    2015-09-01

    Arabidopsis thaliana cell wall invertase 1 (AtcwINV1) and Thermotoga maritima β-fructosidase (BfrA) are among the best structurally studied members of the glycoside hydrolase family 32. Both enzymes hydrolyze sucrose as the main substrate but differ strongly in their thermal stability. Mesophilic AtcwINV1 and thermophilic BfrA have divergent sequence similarities in the N-terminal five bladed β-propeller catalytic domain (31 %) and the C-terminal β-sandwich domain (15 %) of unknown function. The two enzymes were subjected to 200 ns molecular dynamics simulations at 300 K (27 °C) and 353 K (80 °C). Regular secondary structure regions, but not loops, in AtcwINV1 and BfrA showed no significant fluctuation differences at both temperatures. BfrA was more rigid than AtcwINV1 at 300 K. The simulation at 353 K did not alter the structural stability of BfrA, but did increase the overall flexibility of AtcwINV1 exhibiting the most fluctuating regions in the β-propeller domain. The simulated heat treatment also increased the gyration radius and hydrophobic solvent accessible surface area of the plant enzyme, consistent with the initial steps of an unfolding process. The preservation of the conformational rigidity of BfrA at 353 K is linked to the shorter size of the protein loops. Shortening of BfrA loops appears to be a key mechanism for thermostability. PMID:26267297

  15. Importance of storage time in mesophilic anaerobic digestion of food waste.

    PubMed

    Lü, Fan; Xu, Xian; Shao, Liming; He, Pinjing

    2016-07-01

    Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1, 2, 3, 4, 5, 7, and 12days, and then fed into a methanogenic reactor for a biochemical methane potential (BMP) test lasting up to 60days. Relative to the methane production of food waste stored for 0-1day (285-308mL/g-added volatile solids (VSadded)), that after 2-4days and after 5-12days of storage increased to 418-530 and 618-696mL/g-VSadded, respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5-7days of storage of food waste in anaerobic digestion treatment plants.

  16. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating.

    PubMed

    Ariunbaatar, Javkhlan; Panico, Antonio; Yeh, Daniel H; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2015-12-01

    Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (<12h) had a positive effect on the AD process. The highest enhancement of the biomethane production with an increase by 44-46% was achieved with a thermophilic pretreatment at 50°C for 6-12h or a thermal pretreatment at 80°C for 1.5h. Thermophilic pretreatments at higher temperatures (>55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment.

  17. Cultivation of Mesophilic Soil Crenarchaeotes in Enrichment Cultures from Plant Roots

    PubMed Central

    Simon, Holly M.; Jahn, Courtney E.; Bergerud, Luke T.; Sliwinski, Marek K.; Weimer, Paul J.; Willis, David K.; Goodman, Robert M.

    2005-01-01

    Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture. PMID:16085872

  18. Enrichment and acclimation of an anaerobic mesophilic microorganism's inoculum for standardization of BMP assays.

    PubMed

    Steinmetz, Ricardo Luis Radis; Mezzari, Melissa Paola; da Silva, Marcio Luis Busi; Kunz, Airton; do Amaral, André Cestonaro; Tápparo, Deisi Cristina; Soares, Hugo Moreira

    2016-11-01

    Appropriate enrichment of anaerobic microorganism's consortium is crucial for accurate biochemical methane potential (BMP) assays. An alternative method to produce and maintain a mesophilic methanogenic inoculum was demonstrated. Three sources of inoculum were mixed and acclimated for 857days in order to reach steady conditions (pH=7.90±0.46; VS/TS>50%; VFA/alkalinity=0.16±0.04gAcetic Acid/ [Formula: see text] ). Biogas yield >80% was obtained after 70days of inoculum acclimation in comparison to standard cellulose (>600mLN/gVS). Methanogen community analysis based on 16S rDNA of the inoculum revealed Archaea concentration of 3×10(12) gene copies/g (Methanobacteriales 8×10(10); Methanomicrobiales 8×10(10); and Methanosarcinales 4×10(11) gene copies/g). The proposed method for development and maintenance of microorganism enrichment inoculum demonstrates consistent BMP data which is a requirement for dependable prediction of biogas production at field scale operations. PMID:27474854

  19. Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance.

    PubMed

    Böske, Janina; Wirth, Benjamin; Garlipp, Felix; Mumme, Jan; Van den Weghe, Herman

    2015-01-01

    Energetic use of complex lignocellulosic wastes has gained global interest. Thermophilic digestion of horse manure based on straw was investigated using the upflow anaerobic solid-state (UASS) process. Increasing the organic loading rate from 2.5 to 5.5gvsL(-)(1)d(-)(1) enhanced the average methane production rate from 0.387 to 0.687LCH4L(-)(1)d(-)(1), whereas the yield decreased from 154.8 to 124.8LCH4kgvs(-)(1). A single-stage and two-stage process design showed almost the same performance. Compared to prior experiments at mesophilic conditions, thermophilic conditions showed a significantly higher efficiency with an increase of 59.8% in methane yield and 58.1% in methane production rate. Additional biochemical methane potential (BMP) tests with two types of horse manure and four different bedding materials showed that wheat straw obtained the highest BMP. The results show that the thermophilic UASS process can be the key to an efficient energy recovery from straw-based manures.

  20. Producing high-strength liquor from mesophilic batch acidification of chicken manure.

    PubMed

    Abendroth, Christian; Wünsche, Erik; Luschnig, Olaf; Bürger, Christoph; Günther, Thomas

    2015-03-01

    This report describes the results from anaerobic batch acidification of chicken manure as a mono-substrate studied under mesophilic conditions. The manure was diluted with tap water to prevent methane formation during acidification and to improve mixing conditions by reducing fluid viscosity; no anaerobic digester sludge has been added as an inoculum. Highest acidification rates were measured at concentrations of 10 gVS L⁻¹ and 20 gVS L⁻¹; the pH value remained high (pH 6.9-7.9) throughout the test duration and unexpected fast methane formation was observed in every single batch. At substrate concentrations of 10 gVS L⁻¹ there was a remarkable methane formation representing a value of 82% of the respective biochemical methane potential of chicken manure. Increasing substrate concentrations did not supress methane formation but impaired acid production. Consequently, the liquor cannot be stored over longer periods but should immediately be used in a digestion process. PMID:25672618

  1. Effect of initial pH on mesophilic hydrolysis and acidification of swine manure.

    PubMed

    Lin, Lin; Wan, Chunli; Liu, Xiang; Lee, Duu-Jong; Lei, Zhongfang; Zhang, Yi; Tay, Joo Hwa

    2013-05-01

    Effects of initial pH (3-12) on mesophilic hydrolysis and acidification reactions of swine manure was studied. The initial pH changed the microbial community in the suspension so as to affect hydrolysis and acidification reactions on swine manure. At pH 10-12 the Clostridium alkalicellum and/or Corynebacterium humireducens were enriched and the soluble chemical oxygen demand (SCOD), total volatile fatty acids (VFAs), proteins and carbohydrates from manure were increased in quantities. In particular, at pH 10 the VFA concentration peaked at 13,600 mg-COD/L, with acetate and propionate accounting for 71.8% of the total VFAs. Acidic environment facilitates release of ammonium from manure. The Butyricimonas sp. was found existing at initial pH 5 which led to accumulated quantities of butyrate. Initial pH adjustment was revealed to be an effective way to manipulate rates and end products of hydrolysis and acidification of swine manure. PMID:23567695

  2. Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment.

    PubMed

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin

    2013-08-15

    Effects of single and dual stage (acidogenic-methanogenic) mesophilic anaerobic digestion (AD) of kitchen waste (KW) was evaluated at hydraulic retention times (HRTs) of 20, 15, 12 and 9 d with and without thermal microwave (MW) pretreatment (145 °C). Anaerobic acidification in terms of acid accumulation was superior compared to microaerophilic acidification. Maximum anaerobic acidification of KW was determined to occur with an HRT of 2 d which was then selected for the acidification stage. The dual stage AD system fed with untreated KW produced the maximum biogas and volatile solids (VS) stabilization efficiencies at the shortest HRT of 9 d. Conversely, for free liquid resulting from MW pretreatment of KW the two stage reactor at 20 d HRT produced three fold more methane compared with the untreated free liquid control. However, MW pretreatment and AD of the free liquid fraction only, was not a sustainable treatment option. For KW, staging of the AD process had a greater positive impact on waste stabilization and methane yield compared to single stage reactors or MW pretreatment. KW can be characterized as being a readily biodegradable solid waste; concomitantly it is recommended that digester staging without MW pretreatment be employed to maximize methane yield and production. PMID:23648266

  3. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating.

    PubMed

    Ariunbaatar, Javkhlan; Panico, Antonio; Yeh, Daniel H; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2015-12-01

    Food waste (FW) represents a source of high potential renewable energy if properly treated with anaerobic digestion (AD). Pretreating the substrates could yield a higher biomethane production in a shorter time. In this study, the effects of thermal (heating the FW in a separate chamber) and thermophilic (heating the full reactor content containing both FW and inoculum) pretreatments at 50, 60, 70 and 80°C prior to mesophilic AD were studied through a series of batch experiments. Pretreatments at a lower temperature (50°C) and a shorter time (<12h) had a positive effect on the AD process. The highest enhancement of the biomethane production with an increase by 44-46% was achieved with a thermophilic pretreatment at 50°C for 6-12h or a thermal pretreatment at 80°C for 1.5h. Thermophilic pretreatments at higher temperatures (>55°C) and longer operating times (>12h) yielded higher soluble chemical oxygen demand (CODs), but had a negative effect on the methanogenic activity. The thermal pretreatments at the same conditions resulted in a lower solubilization of COD. Based on net energy calculations, the enhanced biomethane production is sufficient to heat up the FW for the thermal, but not for the thermophilic pretreatment. PMID:26272711

  4. Comparison of microbial communities during the anaerobic digestion of Gracilaria under mesophilic and thermophilic conditions.

    PubMed

    Azizi, Aqil; Kim, Wonduck; Lee, Jung Hyun

    2016-10-01

    Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities.

  5. Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development

    PubMed Central

    2013-01-01

    Background Plant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development. Results Here, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content. Conclusion We were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants. PMID:23587418

  6. Mesophilic Actinomycetes in the natural and reconstructed sand dune vegetation zones of Fraser Island, Australia.

    PubMed

    Kurtböke, D I; Neller, R J; Bellgard, S E

    2007-08-01

    The natural coastal habitat of Fraser Island located in the State of Queensland, Australia, has been disturbed in the past for mining of the mineral sand ilmenite. Currently, there is no information available on whether these past mining disturbances have affected the distribution, diversity, and survival of beneficial soil microorganisms in the sand dunes of the island. This in turn could deleteriously affect the success of the natural regeneration, plant growth, and establishment on the sand dunes. To support ongoing restoration efforts at sites like these mesophilic actinomycetes were isolated using conventional techniques, with particular emphasis on the taxa previously reported to produce plant-growth-promoting substances and providing support to mycorrhizal fungi, were studied at disturbed sites and compared with natural sites. In the natural sites, foredunes contained higher densities of micromonosporae replaced by increasing numbers of streptomycete species in the successional dune and finally leading to complex actinomycete communities in the mature hind dunes. Whereas in the disturbed zones affected by previous mining activities, which are currently being rehabilitated, no culturable actinomycete communities were detected. These findings suggest that the paucity of beneficial microflora in the rehabilitated sand dunes may be limiting the successful colonization by pioneer plant species. Failure to establish a cover of plant species would result in the mature hind dune plants being exposed to harsh salt and climatic conditions. This could exacerbate the incidence of wind erosion, resulting in the destabilization of well-defined and vegetated successional dunal zones.

  7. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature.

    PubMed

    Schnürer, A; Nordberg, A

    2008-01-01

    In biogas processes, methane production from acetate proceeds by either aceticlastic methanogenesis or through syntrophic acetate oxidation (SAO). In the present study, the pathway for methane production from acetate was analysed; i) during a gradual increase of the ammonia concentration (final concentration 7 g NH(4)(+) -N/L) in a semi-continuous lab-scale anaerobic digester (4.3 L), operating at mesophilic temperature (37 degrees C) or ii) in diluted enrichment cultures (100 ml) experiencing a gradual increase in ammonia, sodium, potassium and propionic acid. The pathway for methane formation was determined by calculating the (14)CO(2)/(14)CH(4) ratio after incubating samples with (14)C-2-acetate. In the anaerobic digester, as well as in the enrichment cultures, the (14)CO(2)/(14)CH4 ratio clearly increased with increasing ammonium-nitrogen concentration, i.e. as the ammonia concentration increased, a shift from the aceticlastic mechanism to the syntrophic pathway occurred. The shift was very distinct and occurred as the NH(4)(+) -N concentration rose above 3 g/l. No shift in pathway was seen during increasing concentrations of sodium, potassium or propionic acid. The shift to SAO in the biogas digester resulted in a twofold decrease in the specific gas and methane yield.

  8. Importance of storage time in mesophilic anaerobic digestion of food waste.

    PubMed

    Lü, Fan; Xu, Xian; Shao, Liming; He, Pinjing

    2016-07-01

    Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1, 2, 3, 4, 5, 7, and 12days, and then fed into a methanogenic reactor for a biochemical methane potential (BMP) test lasting up to 60days. Relative to the methane production of food waste stored for 0-1day (285-308mL/g-added volatile solids (VSadded)), that after 2-4days and after 5-12days of storage increased to 418-530 and 618-696mL/g-VSadded, respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5-7days of storage of food waste in anaerobic digestion treatment plants. PMID:27372120

  9. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases.

    PubMed

    Moon, Sojin; Bannen, Ryan M; Rutkoski, Thomas J; Phillips, George N; Bae, Euiyoung

    2014-10-01

    Local structural entropy (LSE) is a descriptor for the extent of conformational heterogeneity in short protein sequences that is computed from structural information derived from the Protein Data Bank. Reducing the LSE of a protein sequence by introducing amino acid mutations can result in fewer conformational states and thus a more stable structure, indicating that LSE optimization can be used as a protein stabilization method. Here, we describe a series of LSE optimization experiments designed to stabilize mesophilic and thermophilic adenylate kinases (AKs) and report crystal structures of LSE-optimized AK variants. In the mesophilic AK, thermal stabilization by LSE reduction was effective but limited. Structural analyses of the LSE-optimized mesophilic AK variants revealed a strong correlation between LSE and the apolar buried surface area. Additional mutations designed to introduce noncovalent interactions between distant regions of the polypeptide resulted in further stabilization. Unexpectedly, optimizing the LSE of the thermophilic AK resulted in a decrease in thermal stability. This destabilization was reduced when charged residues were excluded from the possible substitutions during LSE optimization. These observations suggest that stabilization by LSE reduction may result from the optimization of local hydrophobic contacts. The limitations of this process are likely due to ignorance of other interactions that bridge distant regions in a given amino acid sequence. Our results illustrate the effectiveness and limitations of LSE optimization as a protein stabilization strategy and highlight the importance and complementarity of local conformational stability and global interactions in protein thermal stability.

  10. Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge.

    PubMed

    Samaras, Vasilios G; Stasinakis, Athanasios S; Thomaidis, Nikolaos S; Mamais, Daniel; Lekkas, Themistokles D

    2014-06-01

    The removal of endocrine disrupting compounds (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) was studied in three lab-scale anaerobic digestion (AD) systems; a single-stage mesophilic, a single-stage thermophilic and a two-stage thermophilic/mesophilic. All micropollutants underwent microbial degradation. High removal efficiency (>80%) was calculated for diclofenac, ibuprofen, naproxen and ketoprofen; whereas triclosan, bisphenol A and the sum of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate were moderately removed (40-80%). NSAIDs removal was not affected by the type of AD system used; whereas slightly higher EDCs removal was observed in two-stage system. In this system, most microcontaminants were removed in thermophilic digester. Biotransformation of NP1EO and NP was affected by the temperature applied to bioreactors. Under mesophilic conditions, higher removal of NP1EO and accumulation of NP was noticed; whereas the opposite was observed under thermophilic conditions. For most analytes, higher specific removal rates were calculated under thermophilic conditions and 20 days SRT. PMID:24768891

  11. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases.

    PubMed

    Moon, Sojin; Bannen, Ryan M; Rutkoski, Thomas J; Phillips, George N; Bae, Euiyoung

    2014-10-01

    Local structural entropy (LSE) is a descriptor for the extent of conformational heterogeneity in short protein sequences that is computed from structural information derived from the Protein Data Bank. Reducing the LSE of a protein sequence by introducing amino acid mutations can result in fewer conformational states and thus a more stable structure, indicating that LSE optimization can be used as a protein stabilization method. Here, we describe a series of LSE optimization experiments designed to stabilize mesophilic and thermophilic adenylate kinases (AKs) and report crystal structures of LSE-optimized AK variants. In the mesophilic AK, thermal stabilization by LSE reduction was effective but limited. Structural analyses of the LSE-optimized mesophilic AK variants revealed a strong correlation between LSE and the apolar buried surface area. Additional mutations designed to introduce noncovalent interactions between distant regions of the polypeptide resulted in further stabilization. Unexpectedly, optimizing the LSE of the thermophilic AK resulted in a decrease in thermal stability. This destabilization was reduced when charged residues were excluded from the possible substitutions during LSE optimization. These observations suggest that stabilization by LSE reduction may result from the optimization of local hydrophobic contacts. The limitations of this process are likely due to ignorance of other interactions that bridge distant regions in a given amino acid sequence. Our results illustrate the effectiveness and limitations of LSE optimization as a protein stabilization strategy and highlight the importance and complementarity of local conformational stability and global interactions in protein thermal stability. PMID:24931334

  12. Mathematical models and bacterial communities for ammonia toxicity in mesophilic anaerobes not acclimated to high concentrations of ammonia.

    PubMed

    Park, Seyong; Cui, Fenghao; Mo, Kyung; Kim, Moonil

    2016-01-01

    In this study, we evaluated ammonia toxicity in mesophilic anaerobic digestion at various pH values and total ammonia nitrogen (TAN) concentrations. We performed anaerobic toxicity assays (ATAs) to evaluate the toxicity effects of TAN and pH on mesophilic anaerobic digestion. Modeling based on the results of the ATAs indicated that the specific methanogenic activity (SMA) decreased by 30% at a TAN concentration higher than 3.0 g/L compared to a TAN concentration of 0 g/L. In addition, the highest SMA for a given TAN level (0.5-10.0 g/L) was observed at a pH of around 7.6. The results of bacterial community analyses showed that the diversity and richness of microorganisms with increasing TAN concentration were decreased. Chloroflexi and Synergistetes were the dominant phyla at TAN concentrations less than 3.0 g/L, and Firmicutes was the dominant phylum at TAN concentrations higher than 3.0 g/L, implying that the ammonia toxicity concentration may influence the kind of dominant species. In conclusion, to start a stable mesophilic anaerobic digestion concerning ammonia toxicity, a TAN concentration less than 3.0 g/L is preferable. PMID:27533868

  13. Modelling of the acid base properties of two thermophilic bacteria at different growth times

    NASA Astrophysics Data System (ADS)

    Heinrich, Hannah T. M.; Bremer, Phil J.; McQuillan, A. James; Daughney, Christopher J.

    2008-09-01

    Acid-base titrations and electrophoretic mobility measurements were conducted on the thermophilic bacteria Anoxybacillus flavithermus and Geobacillus stearothermophilus at two different growth times corresponding to exponential and stationary/death phase. The data showed significant differences between the two investigated growth times for both bacterial species. In stationary/death phase samples, cells were disrupted and their buffering capacity was lower than that of exponential phase cells. For G. stearothermophilus the electrophoretic mobility profiles changed dramatically. Chemical equilibrium models were developed to simultaneously describe the data from the titrations and the electrophoretic mobility measurements. A simple approach was developed to determine confidence intervals for the overall variance between the model and the experimental data, in order to identify statistically significant changes in model fit and thereby select the simplest model that was able to adequately describe each data set. Exponential phase cells of the investigated thermophiles had a higher total site concentration than the average found for mesophilic bacteria (based on a previously published generalised model for the acid-base behaviour of mesophiles), whereas the opposite was true for cells in stationary/death phase. The results of this study indicate that growth phase is an important parameter that can affect ion binding by bacteria, that growth phase should be considered when developing or employing chemical models for bacteria-bearing systems.

  14. Effects of mesophilic and thermophilic composts on suppression of Fusarium root and stem rot of greenhouse cucumber.

    PubMed

    Kannangara, T; Utkhede, R S; Paul, J W; Punja, Z K

    2000-11-01

    Three composts were tested for their ability to suppress root and stem rot caused by the soil borne fungal pathogen Fusarium oxysporum f. sp. radicis-cucumerinum (FORC) on cucumber. Two of the composts were prepared from separated dairy solids either by windrow (WDS) or vermicomposting (VMC) while the third, obtained from International Bio-Recovery (IBR), was prepared from vegetable refuse using aerobic digestion. Three sets of potting mixes were prepared by mixing the composts with sawdust at varying ratios, and seeded with cucumber cv. Corona. After 14 days of growth in the greenhouse, inoculum of FORC (20 mL of 5 x 10(6) micro-conidia per mL) was applied to each pot at three different times (14, 21, and 35 days). In unamended inoculated pots, the pathogen caused stunted growth and reduced flowers. Amendment of WDS in the potting mix suppressed these symptoms, while VMC and IBR had no effect. All three composts reduced the FORC colony forming units (cfu) at the end of the experiment (10 weeks). There was a large increase of fluorescent bacteria near the vicinity of roots particularly in WDS amended potting mixes. When water extracts of the composts were plated onto acidified potato dextrose agar (APDA), only IBR contained a potent thermostable inhibitor to FORC. This inhibitor was removed by activated charcoal but was not partitioned into petroleum ether at acid, basic, or neutral pH. Inhibition of FORC by IBR was not due to electrical conductivity or trace elements in the compost. Contrasting effectiveness of the WDS and VMC made from the same waste suggests that composting method can influence the disease suppression properties of the finished compost. PMID:11109490

  15. Enteric bacteria: friend or foe?

    PubMed

    Batt, R M; Rutgers, H C; Sancak, A A

    1996-06-01

    The normal gastrointestinal tract contains an enormous number of aerobic and anaerobic bacteria which normally enjoy a symbiotic relationship with the host but can have adverse effects with local and systemic consequences. The small intestine constitutes a zone of transition between the sparsely populated stomach and the luxuriant bacterial flora of the colon. Regulation of the intestinal flora depends on complex interactions between many factors including secretion of gastric acid, intestinal motility, biliary and pancreatic secretions, local immunity, the surface glycocalyx and mucus layer, and diet. Microbial interactions are also important, and can involve alterations in redox potential, substrate depletion and production of substances such as bacteriocins that inhibit bacterial growth. The beneficial effect of the normal enteric flora include the competitive exclusion of potentially pathogenic organisms, and the production of nutrients such as short-chain fatty acids (which represent an important energy source for the colonic mucosa) and vitamins. Detrimental effects of the enteric flora include competition for calories and essential nutrients, particularly by bacteria located in the small intestine, and a capacity to damage the mucosa, in some circumstances causing or contributing to inflammatory bowel disease. These problems can be accentuated by interference with the physiological regulation of intraluminal bacteria allowing overgrowth by a normal resident, or colonisation by transient pathogens. The pathophysiological consequences may involve direct damage to the intestinal mucosa, and bacterial metabolism of intraluminal constituents, for example forming deconjugated bile acids and hydroxylated fatty acids which stimulate fluid secretion. Additional problems arise if there is interference with the mucosal barrier since this can result in increased passage of bacteria and bacterial products stimulating mucosal inflammation, while bacterial translocation

  16. Interactive effects of hypobaria, low temperature, and CO 2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated martian conditions

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Nicholson, Wayne L.

    2006-11-01

    Robotic spacecraft are launched with finite levels of terrestrial microorganisms that are similar to the microbial communities within facilities in which spacecraft are assembled. In particular, spores of mesophilic aerobic Bacillus species are common spacecraft contaminants considered most likely to survive interplanetary transfer to Mars. During the cruise phase to Mars, and then again during surface operations, microbial bioloads are exposed to a diversity of biocidal factors that are likely to render the microbial species either dead or significantly inhibited from active metabolic activity and replication. We report here, for the first time, that interactive effects of low pressure, low temperature, and high CO 2 atmospheres approaching conditions likely to be encountered on the martian surface strongly inhibit the growth and replication of seven common Bacillus spp. isolated from spacecraft. Tests were conducted within a small glass bell-jar system maintained in a low-temperature microbial incubator. Atmospheric pressures were controlled at 1013 (Earth-normal), 100, 50, 35, 25, or 15 mb, and temperatures were maintained at 30, 20, 15, 10, or 5 °C. Experiments were carried out for 48 h or 7 days under either Earth-normal O 2/N 2 or pure CO 2 atmospheres. Results indicated that low pressure, low temperature, and high CO 2 atmospheres, applied separately or in combination, were capable of inhibiting the growth and replication of B. pumilus SAFR-032, B. pumilus FO-36B, B. subtilis HA-101, B. subtilis 42HS-1, B. megaterium KL-197, B. licheniformis KL-196, and B. nealsonii FO-092 under simulated martian conditions. Endospores of all seven Bacillus spp. strains failed to germinate and grow at 25 mb at 30 °C. Although, vegetative cells of these strains exhibited a slightly greater ability to replicate at lower pressures than did endospores, vegetative cells of these species failed to grow at pressures below 25 mb. Interactive effects of these environmental

  17. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  18. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    PubMed

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms. PMID:20922382

  19. Spore test parameters matter: Mesophilic and thermophilic spore counts detected in raw milk and dairy powders differ significantly by test method.

    PubMed

    Kent, D J; Chauhan, K; Boor, K J; Wiedmann, M; Martin, N H

    2016-07-01

    United States dairy industry exports have steadily risen in importance over the last 10yr, with dairy powders playing a particularly critical role. Currently, approximately half of US-produced nonfat dry milk and skim milk powder is exported. Reaching new and expanding existing export markets relies in part on the control of endospore-forming bacteria in dairy powders. This study reports baseline mesophilic and thermophilic spore counts and spore populations from 55 raw material samples (primarily raw milk) and 33 dairy powder samples from dairy powder processors across the United States. Samples were evaluated using various spore testing methodologies and included initial heat treatments of (1) 80°C for 12 min; (2) 100°C for 30 min; and (3) 106°C for 30 min. Results indicate that significant differences in both the level and population of spores were found for both raw milk and dairy powders with the various testing methods. Additionally, on average, spore counts were not found to increase significantly from the beginning to the end of dairy powder processing, most likely related to the absence of biofilm formation by processing plant-associated sporeformers (e.g., Anoxybacillus sp.) in the facilities sampled. Finally, in agreement with other studies, Bacillus licheniformis was found to be the most prevalent sporeformer in both raw materials and dairy powders, highlighting the importance of this organism in developing strategies for control and reduction of spore counts in dairy powders. Overall, this study emphasizes the need for standardization of spore enumeration methodologies in the dairy powder industry.

  20. Spore test parameters matter: Mesophilic and thermophilic spore counts detected in raw milk and dairy powders differ significantly by test method.

    PubMed

    Kent, D J; Chauhan, K; Boor, K J; Wiedmann, M; Martin, N H

    2016-07-01

    United States dairy industry exports have steadily risen in importance over the last 10yr, with dairy powders playing a particularly critical role. Currently, approximately half of US-produced nonfat dry milk and skim milk powder is exported. Reaching new and expanding existing export markets relies in part on the control of endospore-forming bacteria in dairy powders. This study reports baseline mesophilic and thermophilic spore counts and spore populations from 55 raw material samples (primarily raw milk) and 33 dairy powder samples from dairy powder processors across the United States. Samples were evaluated using various spore testing methodologies and included initial heat treatments of (1) 80°C for 12 min; (2) 100°C for 30 min; and (3) 106°C for 30 min. Results indicate that significant differences in both the level and population of spores were found for both raw milk and dairy powders with the various testing methods. Additionally, on average, spore counts were not found to increase significantly from the beginning to the end of dairy powder processing, most likely related to the absence of biofilm formation by processing plant-associated sporeformers (e.g., Anoxybacillus sp.) in the facilities sampled. Finally, in agreement with other studies, Bacillus licheniformis was found to be the most prevalent sporeformer in both raw materials and dairy powders, highlighting the importance of this organism in developing strategies for control and reduction of spore counts in dairy powders. Overall, this study emphasizes the need for standardization of spore enumeration methodologies in the dairy powder industry. PMID:27085396

  1. Distribution and identification of luminous bacteria from the sargasso sea.

    PubMed

    Orndorff, S A; Colwell, R R

    1980-05-01

    Vibrio fischeri and Lucibacterium harveyi constituted 75 of the 83 luminous bacteria isolated from Sargasso Sea surface waters. Photobacterium leiognathi and Photobacterium phosphoreum constituted the remainder of the isolates. Luminescent bacteria were recovered at concentrations of 1 to 63 cells per 100 ml from water samples collected at depths of 160 to 320 m. Two water samples collected at the thermocline yielded larger numbers of viable, aerobic heterotrophic and luminous bacteria. Luminescent bacteria were not recovered from surface microlayer samples. The species distribution of the luminous bacteria reflected previously recognized growth patterns; i.e., L. harveyi and V. fischeri were predominant in the upper, warm waters (only one isolate of P. phosphoreum was obtained from surface tropical waters).

  2. Kinetics of the biodegradation pathway of endosulfan in the aerobic and anaerobic environments.

    PubMed

    Tiwari, Manoj K; Guha, Saumyen

    2013-09-01

    The enriched mixed culture aerobic and anaerobic bacteria from agricultural soils were used to study the degradation of endosulfan (ES) in aqueous and soil slurry environments. The extent of biodegradation was ∼95% in aqueous and ∼65% in soil slurry during 15 d in aerobic studies and, ∼80% in aqueous and ∼60% in soil slurry during 60 d in anaerobic studies. The pathways of aerobic and anaerobic degradation of ES were modeled using combination of Monod no growth model and first order kinetics. The rate of biodegradation of β-isomer was faster compared to α-isomer. Conversion of ES to endosulfan sulfate (ESS) and endosulfan diol (ESD) were the rate limiting steps in aerobic medium and, the hydrolysis of ES to ESD was the rate limiting step in anaerobic medium. The mass balance indicated further degradation of endosulfan ether (ESE) and endosulfan lactone (ESL), but no end-products were identified. In the soil slurries, the rates of degradation of sorbed contaminants were slower. As a result, net rate of degradation reduced, increasing the persistence of the compounds. The soil phase degradation rate of β-isomer was slowed down more compared with α-isomer, which was attributed to its higher partition coefficient on the soil.

  3. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir.

    PubMed

    Grabowski, Agnès; Tindall, Brian J; Bardin, Véronique; Blanchet, Denis; Jeanthon, Christian

    2005-05-01

    A mesophilic, anaerobic, fermentative bacterium, strain BN3(T), was isolated from a producing well of a biodegraded oil reservoir in Canada. Cells were Gram-negative, non-motile rods that did not form spores. The temperature range for growth was 15-40 degrees C, with optimum growth at 37-40 degrees C. The strain grew with up 4 % NaCl, with optimum growth in the absence of NaCl. Tryptone was required for growth. Yeast extract and elemental sulfur stimulated growth. Growth was also enhanced during fermentation of glucose, arabinose, galactose, maltose, mannose, rhamnose, lactose, ribose, fructose, sucrose, cellobiose, lactate, mannitol and glycerol. Acetate, hydrogen and CO(2) were produced during glucose fermentation. Elemental sulfur and nitrate were used as electron acceptors and were reduced to sulfide and ammonium, respectively. The G + C content of the genomic DNA was 40.8 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the strain was a member of the phylum 'Bacteroidetes', distantly related to the genera Bacteroides and Tannerella (similarity values of less than 90 %). The chemotaxonomic data (fatty acids, polar lipids and quinones composition) also indicated that strain BN3(T) could be clearly distinguished from its closest cultivated relatives. This novel organism possesses phenotypic, chemotaxonomic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, it is proposed that this isolate should be described as a member of a novel species of a new genus, Petrimonas gen. nov., of which Petrimonas sulfuriphila sp. nov. is the type species. The type strain is BN3(T) (= DSM 16547(T) = JCM 12565(T)). PMID:15879242

  4. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan.

    PubMed

    Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J

    2012-12-01

    Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment.

  5. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan.

    PubMed

    Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J

    2012-12-01

    Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment. PMID:23116231

  6. Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation.

    PubMed

    Venkatakrishnan, Harish; Tan, Youming; Majid, Maszenan Bin Abdul; Pathak, Santosh; Sendjaja, Antonius Yudi; Li, Dongzhe; Liu, Jerry Jian Lin; Zhou, Yan; Ng, Wun Jern

    2014-04-01

    A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial community dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while Methanosarcinaceae in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens.

  7. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions.

    PubMed

    Kim, Dong-Hoon; Oh, Sae-Eun

    2011-01-01

    With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO(2) emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH(4) production yield (MPY) and VS reduction achieved in this condition were 5.0m(3)/m(3)/d, 0.25 m(3) CH(4)/g COD(added), and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m(3)/m(3)/d, MPY of 0.26 m(3) CH(4)/g COD(added), and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.

  8. Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation.

    PubMed

    Venkatakrishnan, Harish; Tan, Youming; Majid, Maszenan Bin Abdul; Pathak, Santosh; Sendjaja, Antonius Yudi; Li, Dongzhe; Liu, Jerry Jian Lin; Zhou, Yan; Ng, Wun Jern

    2014-04-01

    A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial community dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while Methanosarcinaceae in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens. PMID:25079418

  9. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors.

    PubMed

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-08-01

    Micropowder (20-250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  10. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back.

    PubMed

    Melo, Ana M P; Teixeira, Miguel

    2016-03-01

    Aerobic respiratory chains from all life kingdoms are composed by several complexes that have been deeply characterized in their isolated form. These membranous complexes link the oxidation of reducing substrates to the reduction of molecular oxygen, in a process that conserves energy by ion translocation between both sides of the mitochondrial or prokaryotic cytoplasmatic membranes. In recent years there has been increasing evidence that those complexes are organized as supramolecular structures, the so-called supercomplexes and respirasomes, being available for eukaryotes strong data namely obtained by electron microscopy and single particle analysis. A parallel study has been developed for prokaryotes, based on blue native gels and mass spectrometry analysis, showing that in these more simple unicellular organisms such supercomplexes also exist, involving not only typical aerobic-respiration associated complexes, but also anaerobic-linked enzymes. After a short overview of the data on eukaryotic supercomplexes, we will analyse comprehensively the different types of prokaryotic aerobic respiratory supercomplexes that have been thus far suggested, in both bacteria and archaea. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. PMID:26546715

  11. New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: Model building and experimental verification.

    PubMed

    de Gracia, M; Grau, P; Huete, E; Gómez, J; García-Heras, J L; Ayesa, E

    2009-10-01

    This paper presents a new mathematical model developed to reproduce the performance of a generic sludge digester working either under aerobic or anaerobic operational conditions. The digester has been modelled as two completely mixed tanks associated with gaseous and liquid volumes. The conversion model has been developed based on a plant wide modelling methodology (PWM) and comprises biochemical transformations, physicochemical reactions and thermodynamic considerations. The model predicts the reactor temperature and the temporary evolution of an extensive vector of model components which are completely defined in terms of elemental mass fractions (C, H, O, N and P) and charge density. Thus, the comprehensive definition of the model components guarantees the continuity of elemental mass and charge in all the model transformations and between any two systems defined by the model. The aim of the generic digester model is to overcome the problems that arise when trying to connect aerobic and anaerobic digestion processes working in series or to connect water and sludge lines in a WWTP. The modelling methodology used has allowed the systematic construction of the biochemical model which acts as an initial illustrative example of an application that has been experimentally verified. The variation of the temperature is also predicted based on a thermal dynamic model. Real data from four different facilities and a straightforward calibration have been used to successfully verify the model predictions in the cases of mesophilic and thermophilic anaerobic digestion as well as autothermal thermophilic aerobic digestion (ATAD). The large amount of data from the full scale ATAD and the anaerobic digestion pilot plants, all of them working under different conditions, has allowed the validation of the model for that case study. PMID:19720390

  12. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis.

    PubMed

    O'Neill, Katherine; Bradley, Judy M; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli; Elborn, J Stuart; Tunney, Michael M

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung.

  13. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  14. Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria : a review.

    SciTech Connect

    Boopathy, R.; Kulpa, C. F.; Manning, J.; Environmental Research; Univ. of Notre Dame

    1998-01-01

    In recent years, research on microbial degradation of explosives and nitroaromatic compounds has increased. Most studies of the microbial metabolism of nitroaromatic compounds have used aerobic microorganisms. Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Few review papers exist, and those deal mainly with aerobic bacterial degradation of explosives; none deals with anaerobic bacteria. In this paper, we review the anaerobic metabolic processes in the degradation of explosives and nitroaromatic compounds under sulfate-reducing and methanogenic conditions.

  15. Controlling the catalytic aerobic oxidation of phenols.

    PubMed

    Esguerra, Kenneth Virgel N; Fall, Yacoub; Petitjean, Laurène; Lumb, Jean-Philip

    2014-05-28

    The oxidation of phenols is the subject of extensive investigation, but there are few catalytic aerobic examples that are chemo- and regioselective. Here we describe conditions for the ortho-oxygenation or oxidative coupling of phenols under copper (Cu)-catalyzed aerobic conditions that give rise to ortho-quinones, biphenols or benzoxepines. We demonstrate that each product class can be accessed selectively by the appropriate choice of Cu(I) salt, amine ligand, desiccant and reaction temperature. In addition, we evaluate the effects of substituents on the phenol and demonstrate their influence on selectivity between ortho-oxygenation and oxidative coupling pathways. These results create an important precedent of catalyst control in the catalytic aerobic oxidation of phenols and set the stage for future development of catalytic systems and mechanistic investigations. PMID:24784319

  16. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  17. Full-scale mesophilic biogas plants using manure as C-source: bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements.

    PubMed

    Wolters, Birgit; Ding, Guo-Chun; Kreuzig, Robert; Smalla, Kornelia

    2016-02-01

    The application of manure, typically harboring bacteria carrying resistance genes (RGs) and mobile genetic elements (MGEs), as co-substrate in biogas plants (BGPs) might be critical when digestates are used as fertilizers. In the present study, the relative abundance of RGs and MGEs in total community (TC-) DNA from manure, fermenters and digestate samples taken at eight full-scale BGPs co-fermenting manure were determined by real-time PCR. In addition, the bacterial community composition of all digestates as well as manure and fermenter material from one BGP (BGP3) was characterized by 454-pyrosequencing of 16S rRNA amplicons from TC-DNA. Compared to respective input manures, relative abundances determined for sul1, sul2, tet(M), tet(Q), intI1, qacEΔ1, korB and traN were significantly lower in fermenters, whereas relative abundances of tet(W) were often higher in fermenters. The bacterial communities in all digestates were dominated by Firmicutes and Bacteroidetes while Proteobacteria were low in abundance and no Enterobacteriaceae were detected. High-throughput sequencing revealed shifts in bacterial communities during treatment for BGP3. Although in comparison to manure, digestate bacteria had lower relative abundances of RGs and MGEs except for tet(W), mesophilic BGPs seem not to be effective for prevention of the spread of RGs and MGEs via digestates into arable soils.

  18. Archaeal-like chaperonins in bacteria

    PubMed Central

    Techtmann, Stephen M.; Robb, Frank T.

    2010-01-01

    Chaperonins (CPN) are ubiquitous oligomeric protein machines that mediate the ATP-dependent folding of polypeptide chains. These chaperones have not only been assigned stress response and normal housekeeping functions but also have a role in certain human disease states. A longstanding convention divides CPNs into two groups that share many conserved sequence motifs but differ in both structure and distribution. Group I complexes are the well known GroEL/ES heat-shock proteins in bacteria, that also occur in some species of mesophilic archaea and in the endosymbiotic organelles of eukaryotes. Group II CPNs are found only in the cytosol of archaea and eukaryotes. Here we report a third, divergent group of CPNs found in several species of bacteria. We propose to name these Group III CPNs because of their distant relatedness to both Group I and II CPNs as well as their unique genomic context, within the hsp70 operon. The prototype Group III CPN, Carboxydothermus hydrogenoformans chaperonin (Ch-CPN), is able to refold denatured proteins in an ATP-dependent manner and is structurally similar to the Group II CPNs, forming a 16-mer with each subunit contributing to a flexible lid domain. The Group III CPN represent a divergent group of bacterial CPNs distinct from the GroEL/ES CPN found in all bacteria. The Group III lineage may represent an ancient horizontal gene transfer from an archaeon into an early Firmicute lineage. An analysis of their functional and structural characteristics may provide important insights into the early history of this ubiquitous family of proteins. PMID:21057109

  19. Archaeal-like chaperonins in bacteria.

    PubMed

    Techtmann, Stephen M; Robb, Frank T

    2010-11-23

    Chaperonins (CPN) are ubiquitous oligomeric protein machines that mediate the ATP-dependent folding of polypeptide chains. These chaperones have not only been assigned stress response and normal housekeeping functions but also have a role in certain human disease states. A longstanding convention divides CPNs into two groups that share many conserved sequence motifs but differ in both structure and distribution. Group I complexes are the well known GroEL/ES heat-shock proteins in bacteria, that also occur in some species of mesophilic archaea and in the endosymbiotic organelles of eukaryotes. Group II CPNs are found only in the cytosol of archaea and eukaryotes. Here we report a third, divergent group of CPNs found in several species of bacteria. We propose to name these Group III CPNs because of their distant relatedness to both Group I and II CPNs as well as their unique genomic context, within the hsp70 operon. The prototype Group III CPN, Carboxydothermus hydrogenoformans chaperonin (Ch-CPN), is able to refold denatured proteins in an ATP-dependent manner and is structurally similar to the Group II CPNs, forming a 16-mer with each subunit contributing to a flexible lid domain. The Group III CPN represent a divergent group of bacterial CPNs distinct from the GroEL/ES CPN found in all bacteria. The Group III lineage may represent an ancient horizontal gene transfer from an archaeon into an early Firmicute lineage. An analysis of their functional and structural characteristics may provide important insights into the early history of this ubiquitous family of proteins. PMID:21057109

  20. Magnetic bacteria against MIC

    SciTech Connect

    Javaherdashti, R.

    1997-12-01

    In this article, it is suggested to use the sensitivity of magnetotactic bacteria to changes of magnetic field direction and the natural ability of this bacteria in rapid growth during relatively short time intervals against corrosion-enhancing bacteria and especially sulfate-reducing bacteria. If colonies of sulfate-reducing bacteria could be packed among magnetotactic bacteria, then, by applying sufficiently powerful magnetic field (about 0.5 gauss), all of these bacteria (magnetic and non-magnetic) will be oriented towards an Anti-bacteria agent (oxygen or biocide). So, Microbiologically-Influenced Corrosion in the system would be controlled to a large extent.

  1. Back To Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  2. Denitrification and nitric oxide reduction in an aerobic toluene-treating biofilter

    SciTech Connect

    Plessis, C.A. du; Kinney, K.A.; Schroeder, E.D.; Chang, D.P.Y.; Scow, K.M.

    1998-05-20

    The presence of significant denitrification activity in an aerobic toluene-treating biofilter was demonstrated under batch and flow-through conditions. N{sub 2}O concentrations of 9.2 ppm{sub v} were produced by denitrifying bacteria in the presence of 15% acetylene, in a flow-through system with a bulk gas phase O{sub 2} concentration of >17%. The carbon source for denitrification was not toluene but a byproduct or metabolite of toluene catabolism. Denitrification conditions were successfully used for the reduction of 60 ppm{sub v} nitric oxide to 15 ppm{sub v} at a flow rate of 3 L/min (EBRT of 3 min) in a fully aerated, 17%/v/v O{sub 2} (superficially aerobic) biofilter. Higher NO removal efficiency (97%) was obtained by increasing the toluene supply to the biofilter.

  3. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade.

    PubMed

    Marshall, Katharine T; Morris, Robert M

    2013-02-01

    Bacteria from the uncultured SUP05/Arctic96BD-19 clade of gamma proteobacterial sulfur oxidizers (GSOs) have the genetic potential to oxidize reduced sulfur and fix carbon in the tissues of clams and mussels, in oxygen minimum zones and throughout the deep ocean (>200 m). Here, we report isolation of the first cultured representative from this GSO clade. Closely related cultures were obtained from surface waters in Puget Sound and from the deep chlorophyll maximum in the North Pacific gyre. Pure cultures grow aerobically on natural seawater media, oxidize sulfur, and reach higher final cell densities when glucose and thiosulfate are added to the media. This suggests that aerobic sulfur oxidation enhances organic carbon utilization in the oceans. The first isolate from the SUP05/Arctic96BD-19 clade was given the provisional taxonomic assignment 'Candidatus: Thioglobus singularis', alluding to the clade's known role in sulfur oxidation and the isolate's planktonic lifestyle. PMID:22875135

  4. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  5. Mesophilic and Thermophilic Conditions Select for Unique but Highly Parallel Microbial Communities to Perform Carboxylate Platform Biomass Conversion

    PubMed Central

    Hollister, Emily B.; Forrest, Andrea K.; Wilkinson, Heather H.; Ebbole, Daniel J.; Tringe, Susannah G.; Malfatti, Stephanie A.; Holtzapple, Mark T.; Gentry, Terry J.

    2012-01-01

    The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40°C; thermophilic 55°C), but utilizing the same inoculum and lignocellulosic feedstock. Community composition segregated by temperature. The thermophilic community harbored genes affiliated with Clostridia, Bacilli, and a Thermoanaerobacterium sp, whereas the mesophilic community metagenome was composed of genes affiliated with other Clostridia and Bacilli, Bacteriodia, γ-Proteobacteria, and Actinobacteria. Although both communities were able to metabolize cellulosic materials and shared many core functions, significant differences were detected with respect to the abundances of multiple Pfams, COGs, and enzyme families. The mesophilic metagenome was enriched in genes related to the degradation of arabinose and other hemicellulose-derived oligosaccharides, and the production of valerate and caproate. In contrast, the thermophilic community was enriched in genes related to the uptake of cellobiose and the transfer of genetic material. Functions assigned to taxonomic bins indicated that multiple community members at either temperature had the potential to degrade cellulose, cellobiose, or xylose and produce acetate, ethanol, and propionate. The results of this study suggest that both metabolic flexibility and functional redundancy contribute to the platform's ability to process lignocellulosic substrates and are likely to provide a degree of stability to the platform's fermentation processes. PMID:22761870

  6. Mesophilic and thermophilic conditions select for unique but highly parallel microbial communities to perform carboxylate platform biomass conversion.

    PubMed

    Hollister, Emily B; Forrest, Andrea K; Wilkinson, Heather H; Ebbole, Daniel J; Tringe, Susannah G; Malfatti, Stephanie A; Holtzapple, Mark T; Gentry, Terry J

    2012-01-01

    The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities incubated under contrasting temperature conditions (mesophilic 40°C; thermophilic 55 °C), but utilizing the same inoculum and lignocellulosic feedstock. Community composition segregated by temperature. The thermophilic community harbored genes affiliated with Clostridia, Bacilli, and a Thermoanaerobacterium sp, whereas the mesophilic community metagenome was composed of genes affiliated with other Clostridia and Bacilli, Bacteriodia, γ-Proteobacteria, and Actinobacteria. Although both communities were able to metabolize cellulosic materials and shared many core functions, significant differences were detected with respect to the abundances of multiple Pfams, COGs, and enzyme families. The mesophilic metagenome was enriched in genes related to the degradation of arabinose and other hemicellulose-derived oligosaccharides, and the production of valerate and caproate. In contrast, the thermophilic community was enriched in genes related to the uptake of cellobiose and the transfer of genetic material. Functions assigned to taxonomic bins indicated that multiple community members at either temperature had the potential to degrade cellulose, cellobiose, or xylose and produce acetate, ethanol, and propionate. The results of this study suggest that both metabolic flexibility and functional redundancy contribute to the platform's ability to process lignocellulosic substrates and are likely to provide a degree of stability to the platform's fermentation processes. PMID:22761870

  7. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.

    PubMed

    Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique

    2015-03-15

    Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03].

  8. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  9. Parallel pathways of ethoxylated alcohol biodegradation under aerobic conditions.

    PubMed

    Zembrzuska, Joanna; Budnik, Irena; Lukaszewski, Zenon

    2016-07-01

    Non-ionic surfactants (NS) are a major component of the surfactant flux discharged into surface water, and alcohol ethoxylates (AE) are the major component of this flux. Therefore, biodegradation pathways of AE deserve more thorough investigation. The aim of this work was to investigate the stages of biodegradation of homogeneous oxyethylated dodecanol C12E9 having 9 oxyethylene subunits, under aerobic conditions. Enterobacter strain Z3 bacteria were chosen as biodegrading organisms under conditions with C12E9 as the sole source of organic carbon. Bacterial consortia of river water were used in a parallel test as an inoculum for comparison. The LC-MS technique was used to identify the products of biodegradation. Liquid-liquid extraction with ethyl acetate was selected for the isolation of C12E9 and metabolites from the biodegradation broth. The LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode was used for quantitative determination of C12E9, C12E8, C12E7 and C12E6. Apart from the substrate, the homologues C12E8, C12E7 and C12E6, being metabolites of C12E9 biodegradation by shortening of the oxyethylene chain, as well as intermediate metabolites having a carboxyl end group in the oxyethylene chain (C12E8COOH, C12E7COOH, C12E6COOH and C12E5COOH), were identified. Poly(ethylene glycols) (E) having 9, 8 and 7 oxyethylene subunits were also identified, indicating parallel central fission of C12E9 and its metabolites. Similar results were obtained with river water as inoculum. It is concluded that AE, under aerobic conditions, are biodegraded via two parallel pathways: by central fission with the formation of PEG, and by Ω-oxidation of the oxyethylene chain with the formation of carboxylated AE and subsequent shortening of the oxyethylene chain by a single unit. PMID:27037882

  10. Aerobic degradation of sulfanilic acid using activated sludge.

    PubMed

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  11. Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions.

    PubMed

    Li, An-jie; Zhang, Tong; Li, Xiao-yan

    2010-01-01

    Aerobic sludge granulation is an attractive new technology for biological wastewater treatment. However, the instability of aerobic granules caused by fungal growth is still one of the main problems encountered in granular bioreactors. In this study, laboratory experiments were conducted to investigate the fate and transformation of aerobic granules under different organic loading conditions. Bacterial granules (2-3mm) in a poor condition with fungi-like black filamentous growth were seeded into two 1L batch reactors. After more than 100d of cultivation, the small seed granules in the two reactors had grown into two different types of large granules (>20mm) with different and unique morphological features. In reactor R1 with a high organic loading rate of 2.0g COD L(-1)d(-1), the black filaments mostly disappeared from the granules, and the dominance of rod-shaped bacteria was recovered. In contrast, at a low loading of 0.5g COD L(-1)d(-1) in reactor R2, the filaments eventually became dominant in the black fungal granules. The bacteria in R1 granules had a unique web-like structure with large pores of a few hundred microm in size, which would allow for effective substrate and oxygen transport into the interior of the granules. DNA-based molecular analysis indicated the evolution of the bacterial population in R1 and that of the eukaryal community in R2. The experimental results suggest that a high loading rate can be an effective means of helping to control fungal bloom, recover bacterial domination and restore the stability of aerobic granules that suffer from fungal contamination.

  12. Intrinsic contributions of polar amino acid residues toward thermal stability of an ABC–ATPase of mesophilic origin

    PubMed Central

    Sarin, Jyoti; Raghava, Gajendra P.S.; Chakraborti, Pradip K.

    2003-01-01

    The nucleotide-binding subunit of phosphate-specific transporter (PstB) from mesophilic bacterium, Mycobacterium tuberculosis, is a unique ATP-binding cassette (ABC) ATPase because of its unusual ability to hydrolyze ATP at high temperature. In an attempt to define the basis of thermostability, we took a theoretical approach and compared amino acid composition of this protein to that of other PstBs from available bacterial genomes. Interestingly, based on the content of polar amino acids, this protein clustered with the thermophiles. PMID:12931011

  13. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    SciTech Connect

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile

  14. Local entropy difference upon a substrate binding of a psychrophilic α-amylase and a mesophilic homologue

    NASA Astrophysics Data System (ADS)

    Kosugi, Takahiro; Hayashi, Shigehiko

    2011-01-01

    Psychrophilic α-amylase from the antarctic bacterium pseudoalteromonashaloplanktis (AHA) and its mesophilic homologue, porcine pancreatic α-amylase (PPA) are theoretically investigated with molecular dynamics (MD) simulations. We carried out 240-ns MD simulations for four systems, AHA and PPA with/without the bound substrate, and examined protein conformational entropy changes upon the substrate binding. We developed an analysis that decomposes the entropy changes into contributions of individual amino acids, and successfully identified protein regions responsible for the entropy changes. The results provide a molecular insight into the structural flexibilities of those enzymes related to the temperature dependences of the enzymatic activity.

  15. In silico analysis of the thermodynamic stability changes of psychrophilic and mesophilic alpha-amylases upon exhaustive single-site mutations.

    PubMed

    Gilis, Dimitri

    2006-01-01

    Identifying sequence modifications that distinguish psychrophilic from mesophilic proteins is important for designing enzymes with different thermodynamic stabilities and to understand the underlying mechanisms. The PoPMuSiC algorithm is used to introduce, in silico, all the single-site mutations in four mesophilic and one psychrophilic chloride-dependent alpha-amylases and to evaluate the changes in thermodynamic stability. The analysis of the distribution of the sequence positions that could be stabilized upon mutation shows a clear difference between the three domains of psychrophilic and mesophilic alpha-amylases. Most of the mutations stabilizing the psychrophilic enzyme are found in domains B and C, contrary to the mesophilic proteins where they are preferentially situated in the catalytic domain A. Moreover, the calculations show that the environment of some residues responsible for the activity of the psychrophilic protein has evolved to reinforce favorable interactions with these residues. In the second part, these results are exploited to propose rationally designed mutations that are predicted to confer to the psychrophilic enzyme mesophilic-like thermodynamic properties. Interestingly, most of the mutations found in domain C strengthen the interactions with domain A, in agreement with suggestions made on the basis of structural analyses. Although this study focuses on single-site mutations, the thermodynamic effects of the recommended mutations should be additive if the mutated residues are not close in space.

  16. The Lomagundi Event Marks Post-Pasteur Point Evolution of Aerobic Respiration: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Kirschvink, J. L.; Nash, C. Z.; Raub, T. M.; Kopp, R. E.; Hilburn, I. A.

    2009-05-01

    All published early Earth carbon cycle models assume that aerobic respiration is as ancient as oxygenic photosynthesis. However, aerobic respiration shuts down at oxygen concentrations below the Pasteur Point, (.01 of the present atmospheric level, PAL). As geochemical processes are unable to produce even local oxygen concentrations above .001 PAL, it follows that aerobic respiration could only have evolved after oxygenic photosynthesis, implying a time gap. The evolution of oxygen reductase-utilizing metabolisms presumably would have occupied this interval. During this time the PS-II-generated free oxygen would have been largely unavailable for remineralization of dissolved organic carbon and so would have profoundly shifted the burial ratio of organic/inorganic carbon. We argue that the sequential geological record of the Makganyene (Snowball?) glaciation (2.3-2.22), the exessively aerobic Hekpoort and coeval paleosols, the Lomagundi-Jatuli carbon isotopic excursion (ending 2.056 Ga), and the deposition of concentrated, sedimentary organic carbon (shungite) mark this period of a profoundly unbalanced global carbon cycle. The Kopp et al. (2005) model for oxyatmoversion agrees with phylogenetic evidence for the radiation of cyanobacteria followed closely by the radiation of gram-negative lineages containing magnetotactic bacteria, which depend upon vertical oxygen gradients. These organisms include delta-Proteobacteria from which the mitochondrial ancestor originated. The Precambrian carbon cycle was rebalanced after a series of biological innovations allowed utilization of the high redox potential of free oxygen. Aerobic respiration in mitochondria required the evolution of a unique family of Fe-Cu oxidases, one of many factors contributing to the >210 Myr delay between the Makganyene deglaciation and the end of the Lomagundi-Jatuli event. We speculate that metalliferious fluids associated with the eruption of the Bushveld complex facilitated evolution of these

  17. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions

    SciTech Connect

    Kim, Dong-Hoon; Oh, Sae-Eun

    2011-09-15

    Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60

  18. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis.

    PubMed

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng; Angelidaki, Irini; Luo, Gang

    2016-10-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased from 19.2 mL H2/gVSS at 37 °C and pH 10-80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and pH 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable to that obtained from batch experiments at 55 °C and pH 10, and homoacetogenesis was still inhibited. However, the steady-state hydrogen yield of WAS (6.5 mL H2/gVSS) was much lower than that (19.2 mL H2/gVSS) obtained from batch experiments at 37 °C and pH 10 due to the gradual enrichment of homoacetogens as demonstrated by qPCR analysis. The high-throughput sequencing analysis of 16S rRNA genes showed that the abundance of genus Clostridium, containing several homoacetogens, was 5 times higher at 37 °C and pH 10 than 55 °C and pH 10. PMID:27420808

  19. [Aerobic bacterial flora from the digestive tract of the common vampire bat, Desmodus rotundus (Chiroptera: Phyllostomidae)].

    PubMed

    Chaverri, Gloriana

    2006-09-01

    This study addresses the composition of microbial flora in the vampire bat (Desmodus rotundus) primarily because all available data are outdated, and because of the economical significance of this bat species. Twenty-one bats were collected and their aerobic bacteria documented separately for stomach and intestine. Bacteria were identified through the Analytical Profile Index (API), and results analyzed with the APILAB software. A total of thirty bacterial species were isolated from sixteen females and five males. The most common species were Escherichia coli and Staphylococcus aureus, although other bacteria, such as Acinetobacterjohnsonii, Enterobacter sakazakii, Staphylococcus chromogenes, S. hyicus and S. xylosus were also common. The number of species found in the stomach and intestine was significantly different, and the intestine presented a higher diversity compared to the stomach. This has previously been found in other mammals and it is attributed to a reduction of acidity. Most of the species found in this study are considered normal components of the digestive tract of mammals, although other bacteria common in the skin of mammals and from aquatic environments were found. Bacteria from the skin may invade the vampire's stomach and/or intestine when the bat has contact with its prey, and may suggest that the vampire's feeding habit facilitates the invasion of other microbes not common in its digestive tract. The fact that bacteria from aquatic environments were also found suggests that D. rotundus, as previously found by other researchers, drinks free water when available, and water may be another source of microbial invasion.

  20. Peroxide-Sensing Transcriptional Regulators in Bacteria

    PubMed Central

    Mongkolsuk, Skorn

    2012-01-01

    The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H2O2, while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H2O2 via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins. PMID:22797754

  1. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  2. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667