Science.gov

Sample records for aerobic oxidation reactions

  1. Highly diastereoselective and regioselective copper-catalyzed nitrosoformate dearomatization reaction under aerobic-oxidation conditions.

    PubMed

    Yang, Weibo; Huang, Long; Yu, Yang; Pflästerer, Daniel; Rominger, Frank; Hashmi, A Stephen K

    2014-04-01

    An unprecedented copper-catalyzed acylnitroso dearomatization reaction, which expands the traditional acylnitroso ene reaction and acylnitroso Diels-Alder reaction to a new type of transformation, has been developed under aerobic oxidation. Intermolecular and intra-/intermolecular reaction modes demonstrate an entirely different N- or O-acylnitroso selectivity. Hence, we can utilize this reaction as a highly diastereoselective access to a series of new pyrroloindoline derivatives, which are important structural motifs for natural-product synthesis.

  2. Reaction-driven surface restructuring and selectivity control in allylic alcohol catalytic aerobic oxidation over Pd.

    PubMed

    Lee, Adam F; Ellis, Christine V; Naughton, James N; Newton, Mark A; Parlett, Christopher M A; Wilson, Karen

    2011-04-20

    Synchronous, time-resolved DRIFTS/MS/XAS cycling studies of the vapor-phase selective aerobic oxidation of crotyl alcohol over nanoparticulate Pd have revealed surface oxide as the desired catalytically active phase, with dynamic, reaction-induced Pd redox processes controlling selective versus combustion pathways.

  3. Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions

    PubMed Central

    Zheng, Changwu; Wang, Dian; Stahl, Shannon S.

    2012-01-01

    Pd-catalyzed aerobic oxidative coupling of vinylboronic acids and electronically unbiased alkyl olefins provides regioselective access to 1,3-disubstituted conjugated dienes. Catalyst-controlled regioselectivity is achieved by using 2,9-dimethylphenanthroline as a ligand. The observed regioselectivity is opposite to that observed from a traditional (non-oxidative) Heck reaction between a vinyl bromide and an alkene. DFT computational studies reveal that steric effects of the 2,9-dimethylphenanthroline ligand promote C–C bond-formation at the internal position of the alkene. PMID:22998540

  4. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    PubMed Central

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  5. Oxidative Stickland reactions in an obligate aerobic organism - amino acid catabolism in the Crenarchaeon Sulfolobus solfataricus.

    PubMed

    Stark, Helge; Wolf, Jacqueline; Albersmeier, Andreas; Pham, Trong K; Hofmann, Julia D; Siebers, Bettina; Kalinowski, Jörn; Wright, Phillip C; Neumann-Schaal, Meina; Schomburg, Dietmar

    2017-07-01

    The thermoacidophilic Crenarchaeon Sulfolobus solfataricus is a model organism for archaeal adaptation to extreme environments and renowned for its ability to degrade a broad variety of substrates. It has been well characterised concerning the utilisation of numerous carbohydrates as carbon source. However, its amino acid metabolism, especially the degradation of single amino acids, is not as well understood. In this work, we performed metabolic modelling as well as metabolome, transcriptome and proteome analysis on cells grown on caseinhydrolysate as carbon source in order to draw a comprehensive picture of amino acid metabolism in S. solfataricus P2. We found that 10 out of 16 detectable amino acids are imported from the growth medium. Overall, uptake of glutamate, methionine, leucine, phenylalanine and isoleucine was the highest of all observed amino acids. Our simulations predict an incomplete degradation of leucine and tyrosine to organic acids, and in accordance with this, we detected the export of branched-chain and aromatic organic acids as well as amino acids, ammonium and trehalose into the culture supernatants. The branched-chain amino acids as well as phenylalanine and tyrosine are degraded to organic acids via oxidative Stickland reactions. Such reactions are known for prokaryotes capable of anaerobic growth, but so far have never been observed in an obligate aerobe. Also, 3-methyl-2-butenoate and 2-methyl-2-butenoate are for the first time found as products of modified Stickland reactions for the degradation of branched-chain amino acids. This work presents the first detailed description of branched-chain and aromatic amino acid catabolism in S. solfataricus. © 2017 Federation of European Biochemical Societies.

  6. Aerobic oxidation of methanol to formic acid on Au20-: a theoretical study on the reaction mechanism.

    PubMed

    Bobuatong, Karan; Karanjit, Sangita; Fukuda, Ryoichi; Ehara, Masahiro; Sakurai, Hidehiro

    2012-03-07

    The aerobic oxidation of methanol to formic acid catalyzed by Au(20)(-) has been investigated quantum chemically using density functional theory with the M06 functional. Possible reaction pathways are examined taking account of full structure relaxation of the Au(20)(-) cluster. The proposed reaction mechanism consists of three elementary steps: (1) formation of formaldehyde from methoxy species activated by a superoxo-like anion on the gold cluster; (2) nucleophilic addition by the hydroxyl group of a hydroperoxyl-like complex to formaldehyde resulting in a hemiacetal intermediate; and (3) formation of formic acid by hydrogen transfer from the hemiacetal intermediate to atomic oxygen attached to the gold cluster. A comparison of the computed energetics of various elementary steps indicates that C-H bond dissociation of the methoxy species leading to formation of formaldehyde is the rate-determining step. A possible reaction pathway involving single-step hydrogen abstraction, a concerted mechanism, is also discussed. The stabilities of reactants, intermediates and transition state structures are governed by the coordination number of the gold atoms, charge distribution, cooperative effect and structural distortion, which are the key parameters for understanding the relationship between the structure of the gold cluster and catalytic activity in the aerobic oxidation of alcohols.

  7. Metallic Sn spheres and SnO2@C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Won Joo; Lee, Sung Woo; Sohn, Youngku

    2015-08-01

    SnO2 has been studied intensely for applications to sensors, Li-ion batteries and solar cells. Despite this, comparatively little attention has been paid to the changes in morphology and crystal phase that occur on the metal oxide surface during chemical reactions. This paper reports anaerobic and aerobic ethanol and CO oxidation reactions over SnO2 nanoparticles (NPs), as well as the subsequent changes in the nature of the NPs. Uniform SnO2@C core-shells (10 nm) were formed by an aerobic ethanol oxidation reaction over SnO2 NPs. On the other hand, metallic Sn spheres were produced by an anaerobic ethanol oxidation reaction at 450 °C, which is significantly lower than that (1200 °C) used in industrial Sn production. Anaerobic and aerobic CO oxidation reactions were also examined. The novelty of the methods for the production of metallic Sn and SnO2@C core-shells including other anaerobic and aerobic reactions will contribute significantly to Sn and SnO2-based applications.

  8. Metallic Sn spheres and SnO2@C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles

    PubMed Central

    Kim, Won Joo; Lee, Sung Woo; Sohn, Youngku

    2015-01-01

    SnO2 has been studied intensely for applications to sensors, Li-ion batteries and solar cells. Despite this, comparatively little attention has been paid to the changes in morphology and crystal phase that occur on the metal oxide surface during chemical reactions. This paper reports anaerobic and aerobic ethanol and CO oxidation reactions over SnO2 nanoparticles (NPs), as well as the subsequent changes in the nature of the NPs. Uniform SnO2@C core-shells (10 nm) were formed by an aerobic ethanol oxidation reaction over SnO2 NPs. On the other hand, metallic Sn spheres were produced by an anaerobic ethanol oxidation reaction at 450 °C, which is significantly lower than that (1200 °C) used in industrial Sn production. Anaerobic and aerobic CO oxidation reactions were also examined. The novelty of the methods for the production of metallic Sn and SnO2@C core-shells including other anaerobic and aerobic reactions will contribute significantly to Sn and SnO2-based applications. PMID:26300041

  9. Metallic Sn spheres and SnO2@C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles.

    PubMed

    Kim, Won Joo; Lee, Sung Woo; Sohn, Youngku

    2015-08-24

    SnO2 has been studied intensely for applications to sensors, Li-ion batteries and solar cells. Despite this, comparatively little attention has been paid to the changes in morphology and crystal phase that occur on the metal oxide surface during chemical reactions. This paper reports anaerobic and aerobic ethanol and CO oxidation reactions over SnO2 nanoparticles (NPs), as well as the subsequent changes in the nature of the NPs. Uniform SnO2@C core-shells (10 nm) were formed by an aerobic ethanol oxidation reaction over SnO2 NPs. On the other hand, metallic Sn spheres were produced by an anaerobic ethanol oxidation reaction at 450 °C, which is significantly lower than that (1200 °C) used in industrial Sn production. Anaerobic and aerobic CO oxidation reactions were also examined. The novelty of the methods for the production of metallic Sn and SnO2@C core-shells including other anaerobic and aerobic reactions will contribute significantly to Sn and SnO2-based applications.

  10. A Facile FeCl3/I2-Catalyzed Aerobic Oxidative Coupling Reaction: Synthesis of Tetrasubstituted Imidazoles from Amidines and Chalcones.

    PubMed

    Zhu, Yuelu; Li, Cheng; Zhang, Jidong; She, Mengyao; Sun, Wei; Wan, Kerou; Wang, Yaqi; Yin, Bin; Liu, Ping; Li, Jianli

    2015-08-07

    A facile and efficient route for the synthesis of tetrasubstituted imidazoles from amidines and chalcones via FeCl3/I2-catalyzed aerobic oxidative coupling has been developed. This new strategy is featured by high regioselectivity and yields, good functional group tolerance, and mild reaction conditions.

  11. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes

    USGS Publications Warehouse

    Amos, R.T.; Bekins, B.A.; Delin, G.N.; Cozzarelli, I.M.; Blowes, D.W.; Kirshtein, J.D.

    2011-01-01

    High resolution direct-push profiling over short vertical distances was used to investigate CH4 attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH4 and CO2, and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in ??13CCH4 from an average of - 57.6??? (?? 1.7???) in the methanogenic zone to - 39.6??? (?? 8.7???) at 105 m downgradient, strongly suggest CH4 attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5 m below the water table suggesting that transport of O2 across the water table is leading to aerobic degradation of CH4 at this interface. Dissolved N2 concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O2 through aerobic degradation of CH4 or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O 2 rich recharge water were important O2 transport mechanisms. ?? 2011 Elsevier B.V. All rights reserved.

  12. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  13. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  14. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon.

    PubMed

    Iosub, Andrei V; Stahl, Shannon S

    2015-09-18

    Dehydrogenation of (partially) saturated heterocycles provides an important route to heteroaromatic compounds. A heterogeneous cobalt oxide catalyst, previously employed for aerobic oxidation of alcohols and amines, is shown to be effective for aerobic dehydrogenation of various 1,2,3,4-tetrahydroquinolines to the corresponding quinolines. The reactions proceed in good yields under mild conditions. Other N-heterocycles are also successfully oxidized to their aromatic counterparts.

  15. Click on silica: systematic immobilization of Co(II) Schiff bases to the mesoporous silica via click reaction and their catalytic activity for aerobic oxidation of alcohols.

    PubMed

    Rana, Bharat S; Jain, Suman L; Singh, Bhawan; Bhaumik, Asim; Sain, Bir; Sinha, Anil K

    2010-09-07

    The systematic immobilization of cobalt(II) Schiff base complexes on SBA-15 mesoporous silica via copper catalyzed [3 + 2] azide-alkyne cycloaddition (CuAAC) "click reaction" involving either step-wise synthesis of silica-bound Schiff base ligand followed by its subsequent complexation with cobalt ions, or by the direct immobilization of preformed Co(II) Schiff base complex to the silica support is described. The catalytic activity of the prepared complexes was studied for the oxidation of alcohols to carbonyl compounds using molecular oxygen as oxidant. The immobilized complexes were recycled for several runs without loss in catalytic activity and no leaching was observed during this course.

  16. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  17. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  18. Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis.

    PubMed

    Anson, Colin W; Ghosh, Soumya; Hammes-Schiffer, Sharon; Stahl, Shannon S

    2016-03-30

    Macrocyclic metal complexes and p-benzoquinones are commonly used as co-catalytic redox mediators in aerobic oxidation reactions. In an effort to gain insight into the mechanism and energetic efficiency of these reactions, we investigated Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone. Kinetic and spectroscopic data suggest that the catalyst resting-state consists of an equilibrium between a Co(II)(salophen) complex, a Co(III)-superoxide adduct, and a hydrogen-bonded adduct between the hydroquinone and the Co(III)-O2 species. The kinetic data, together with density functional theory computational results, reveal that the turnover-limiting step involves proton-coupled electron transfer from a semi-hydroquinone species and a Co(III)-hydroperoxide intermediate. Additional experimental and computational data suggest that a coordinated H2O2 intermediate oxidizes a second equivalent of hydroquinone. Collectively, the results show how Co(salophen) and p-hydroquinone operate synergistically to mediate O2 reduction and generate the reactive p-benzoquinone co-catalyst.

  19. Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis

    SciTech Connect

    Anson, Colin W.; Ghosh, Soumya; Hammes-Schiffer, Sharon; Stahl, Shannon S.

    2016-03-30

    Macrocyclic metal complexes and p-benzoquinones are commonly used as co-catalytic redox mediators in aerobic oxidation reactions. In an effort to gain insight into the mechanism and energetic efficiency of these reactions, we investigated Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone. Kinetic and spectroscopic data suggest that the catalyst resting-state consists of an equilibrium between a CoII(salophen) complex, a CoIII-superoxide adduct, and a hydrogen-bonded adduct between the hydroquinone and the CoIII–O2 species. The kinetic data, together with density functional theory data, suggest that the turnover-limiting step features proton-coupled electron transfer from a semi-hydroquinone species and a CoIII-hydroperoxide intermediate. Additional experimental and computational data suggest that a coordinated H2O2 intermediate oxidizes a second equivalent of hydroquinone. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The NSF provided partial support for the EPR instrumentation (NSF CHE-0741901).

  20. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.

    PubMed

    Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun

    2012-11-16

    An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.

  1. Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation.

    PubMed

    Hoover, Jessica M; Ryland, Bradford L; Stahl, Shannon S

    2013-02-13

    Homogeneous Cu/TEMPO catalyst systems (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) have emerged as some of the most versatile and practical catalysts for aerobic alcohol oxidation. Recently, we disclosed a (bpy)Cu(I)/TEMPO/NMI catalyst system (NMI = N-methylimidazole) that exhibits fast rates and high selectivities, even with unactivated aliphatic alcohols. Here, we present a mechanistic investigation of this catalyst system, in which we compare the reactivity of benzylic and aliphatic alcohols. This work includes analysis of catalytic rates by gas-uptake and in situ IR kinetic methods and characterization of the catalyst speciation during the reaction by EPR and UV-visible spectroscopic methods. The data support a two-stage catalytic mechanism consisting of (1) "catalyst oxidation" in which Cu(I) and TEMPO-H are oxidized by O(2) via a binuclear Cu(2)O(2) intermediate and (2) "substrate oxidation" mediated by Cu(II) and the nitroxyl radical of TEMPO via a Cu(II)-alkoxide intermediate. Catalytic rate laws, kinetic isotope effects, and spectroscopic data show that reactions of benzylic and aliphatic alcohols have different turnover-limiting steps. Catalyst oxidation by O(2) is turnover limiting with benzylic alcohols, while numerous steps contribute to the turnover rate in the oxidation of aliphatic alcohols.

  2. A mild oxidative aryl radical addition into alkenes by aerobic oxidation of arylhydrazines.

    PubMed

    Taniguchi, Tsuyoshi; Zaimoku, Hisaaki; Ishibashi, Hiroyuki

    2011-04-04

    A mild and practical oxyarylation of alkenes by oxidative radical addition has been developed by using aerobic oxidation of hydrazine compounds. The use of a catalytic amount of potassium ferrocyanide trihydrate (K(4)[Fe(CN)(6)]⋅3H(2)O) and water accelerated this radical reaction to give peroxides or alcohols from simple alkenes in good yields. The environmentally friendly and economical radical reactions were achieved at room temperature in the presence of iron catalyst, oxygen gas, and water. A method involving aniline as a radical precursor is also described.

  3. Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions†

    PubMed Central

    Ye, Xuan; Diao, Tianning

    2010-01-01

    Summary The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O2 in N2) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis. PMID:20694169

  4. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  5. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  6. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.

    PubMed

    Koch, Hanna; Galushko, Alexander; Albertsen, Mads; Schintlmeister, Arno; Gruber-Dorninger, Christiane; Lücker, Sebastian; Pelletier, Eric; Le Paslier, Denis; Spieck, Eva; Richter, Andreas; Nielsen, Per H; Wagner, Michael; Daims, Holger

    2014-08-29

    The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.

  7. Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation

    PubMed Central

    Hoover, Jessica M.; Ryland, Bradford L.; Stahl, Shannon S.

    2013-01-01

    Homogeneous Cu/TEMPO catalyst systems (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) have emerged as some of the most versatile and practical catalysts for aerobic alcohol oxidation. Recently, we disclosed a (bpy)CuI/TEMPO/NMI catalyst system (NMI = N-methylimidazole) that exhibits fast rates and high selectivities, even with unactivated aliphatic alcohols. Here, we present a mechanistic investigation of this catalyst system, in which we compare the reactivity of benzylic and aliphatic alcohols. This work includes analysis of catalytic rates by gas-uptake and in situ IR kinetic methods and characterization of the catalyst speciation during the reaction by EPR and UV–visible spectroscopic methods. The data support a two-stage catalytic mechanism consisting of (1) “catalyst oxidation” in which CuI and TEMPO–H are oxidized by O2 via a binuclear Cu2O2 intermediate and (2) “substrate oxidation” mediated by CuII and the nitroxyl radical of TEMPO via a CuII-alkoxide intermediate. Catalytic rate laws, kinetic isotope effects, and spectroscopic data show that reactions of benzylic and aliphatic alcohols have different turnover-limiting steps. Catalyst oxidation by O2 is turnover limiting with benzylic alcohols, while numerous steps contribute to the turnover rate in the oxidation of aliphatic alcohols. PMID:23317450

  8. Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Cu/TEMPO and Related Catalyst Systems

    PubMed Central

    Ryland, Bradford L.; Stahl, Shannon S.

    2014-01-01

    Alcohol and amine oxidations are common reactions in laboratory and industrial synthesis of organic molecules. Aerobic oxidation methods have long been sought for these transformations, but few practical methods exist that offer advantages over traditional oxidation methods. Recently developed homogeneous Cu/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) and related catalyst systems appear to fill this void. The reactions exhibit high levels of chemoselectivity and broad functional-group tolerance, and they often operate efficiently at room temperature with ambient air as the oxidant. These advances, together with their historical context and recent applications, are highlighted in this minireview. PMID:25044821

  9. Challenges in polyoxometalate-mediated aerobic oxidation catalysis: catalyst development meets reactor design.

    PubMed

    Lechner, Manuel; Güttel, Robert; Streb, Carsten

    2016-11-14

    Selective catalytic oxidation is one of the most widely used chemical processes. Ideally, highly active and selective catalysts are used in combination with molecular oxygen as oxidant, leading to clean, environmentally friendly process conditions. For homogeneous oxidation catalysis, molecular metal oxide anions, so-called polyoxometalates (POMs) are ideal prototypes which combine high reactivity and stability with chemical tunability on the molecular level. Typically, POM-mediated aerobic oxidations are biphasic, using gaseous O2 and liquid reaction mixtures. Therefore, the overall efficiency of the reaction is not only dependent on the chemical components, but requires chemical engineering insight to design reactors with optimized productivity. This Perspective shows that POM-mediated aerobic liquid-phase oxidations are ideal reactions to be carried out in microstructured flow reactors as they enable facile mass and energy transfer, provide large gas-liquid interfaces and can be easily upscaled. Recent advances in POM-mediated aerobic catalytic oxidations are therefore summarized with a focus on technological importance and mechanistic insight. The principles of reactor design are discussed from a chemical engineering point of view with a focus on homogeneous oxidation catalysis using O2 in microfluidic systems. Further, current limitations to catalytic activity are identified and future directions based on combined chemistry and chemical engineering approaches are discussed to show that this approach could lead to sustainable production methods in industrial chemistry based on alternative energy sources and chemical feedstocks.

  10. Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine

    PubMed Central

    Wu, Kun; Huang, Zhiliang; Qi, Xiaotian; Li, Yingzi; Zhang, Guanghui; Liu, Chao; Yi, Hong; Meng, Lingkui; Bunel, Emilio E.; Miller, Jeffrey T.; Pao, Chih-Wen; Lee, Jyh-Fu; Lan, Yu; Lei, Aiwen

    2015-01-01

    Copper-catalyzed aerobic oxidative C–H/N–H coupling between simple ketones and diamines was developed toward the synthesis of a variety of pyrazines. Various substituted ketones were compatible for this transformation. Preliminary mechanistic investigations indicated that radical species were involved. X-ray absorption fine structure experiments elucidated that the Cu(II) species 5 coordinated by two N atoms at a distance of 2.04 Å and two O atoms at a shorter distance of 1.98 Å was a reactive one for this aerobic oxidative coupling reaction. Density functional theory calculations suggested that the intramolecular coupling of cationic radicals was favorable in this transformation. PMID:26601302

  11. Reactions Catalysed by a Binuclear Copper Complex: Relay Aerobic Oxidation of N-Aryl Tetrahydroisoquinolines to Dihydroisoquinolones with a Vitamin B1 Analogue.

    PubMed

    Liu, Yuxia; Wang, Chao; Xue, Dong; Xiao, Miao; Liu, Jiao; Li, Chaoqun; Xiao, Jianliang

    2017-03-02

    N-Aryl tetrahydroisoquinolines were oxidised to dihydroisoquinolones through the relay catalysis of a binuclear paddle-wheel copper complex and a vitamin B1 analogue with oxygen as oxidant. Mechanistic studies revealed that the copper catalyst oxidises amines to the corresponding iminium salts, which are then oxygenated to lactam products by catalysis of the vitamin B1 analogue.

  12. A Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols

    PubMed Central

    Hoover, Jessica M.; Stahl, Shannon S.

    2011-01-01

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488

  13. Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols.

    PubMed

    Hoover, Jessica M; Stahl, Shannon S

    2011-10-26

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O(2) as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)Cu(I)/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic, and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups.

  14. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  15. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    PubMed Central

    Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.

    2016-01-01

    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal. PMID:27687877

  16. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    NASA Astrophysics Data System (ADS)

    Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.

    2016-09-01

    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.

  17. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.

    PubMed

    McCann, Scott D; Stahl, Shannon S

    2016-01-13

    Cooperative catalysis between Cu(II) and redox-active organic cocatalysts is a key feature of important chemical and enzymatic aerobic oxidation reactions, such as alcohol oxidation mediated by Cu/TEMPO and galactose oxidase. Nearly 20 years ago, Markó and co-workers reported that azodicarboxylates, such as di-tert-butyl azodicarboxylate (DBAD), are effective redox-active cocatalysts in Cu-catalyzed aerobic alcohol oxidation reactions [Markó, I. E., et al. Science 1996, 274, 2044], but the nature of the cooperativity between Cu and azodicarboxylates is not well understood. Here, we report a mechanistic study of Cu/DBAD-catalyzed aerobic alcohol oxidation. In situ infrared spectroscopic studies reveal a burst of product formation prior to steady-state catalysis, and gas-uptake measurements show that no O2 is consumed during the burst. Kinetic studies reveal that the anaerobic burst and steady-state turnover have different rate laws. The steady-state rate does not depend on [O2] or [DBAD]. These results, together with other EPR and in situ IR spectroscopic and kinetic isotope effect studies, reveal that the steady-state mechanism consists of two interdependent catalytic cycles that operate in sequence: a fast Cu(II)/DBAD pathway, in which DBAD serves as the oxidant, and a slow Cu(II)-only pathway, in which Cu(II) is the oxidant. This study provides significant insight into the redox cooperativity, or lack thereof, between Cu and redox-active organic cocatalysts in aerobic oxidation reactions.

  18. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    SciTech Connect

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  19. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    PubMed

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes.

  20. Revealing the halide effect on the kinetics of the aerobic oxidation of Cu(I) to Cu(II)

    SciTech Connect

    Deng, Yi; Zhang, Guanghui; Qi, Xiaotian; Liu, Chao; Miller, Jeffrey T.; Kropf, A. Jeremy; Bunel, Emilio E.; Lan, Yu; Lei, Aiwen

    2015-01-01

    In situ infrared (IR) and X-ray absorption near-edge structure (XANES) spectroscopic investigations reveal that different halide ligands have distinct effects on the aerobic oxidation of Cu(I) to Cu(II) in the presence of TMEDA (tetramethylethylenediamine). The iodide ligand gives the lowest rate and thus leads to the lowest catalytic reaction rate of aerobic oxidation of hydroquinone to benzoquinone. Further DFT calculations suggest that oxidation of CuI–TMEDA involves a side-on transition state, while oxidation of CuCl–TMEDA involves an end-on transition state which has a lower activation energy.

  1. Remarkable biomimetic chemoselective aerobic oxidation of flavano-ellagitannins found in oak-aged wine.

    PubMed

    Petit, Emilie; Lefeuvre, Dorothée; Jacquet, Rémi; Pouységu, Laurent; Deffieux, Denis; Quideau, Stéphane

    2013-10-25

    Under the auspices of Bacchus! Acutissimins, natural flavano-ellagitannins, occur in oak-aged wine as a result of a diastereoselective condensation reaction of the flavan-3-ol catechin, a component of grapes, with the C-glucosidic ellagitannin vescalagin, found in oak. The acutissimins are further converted into natural mongolicains and analogues of camelliatannin G in a remarkably chemoselective fashion by simple aerobic oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

    PubMed Central

    Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.

    2012-01-01

    This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108

  3. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons

    PubMed Central

    Takahashi, Masaki; Koizumi, Hiromu; Chun, Wang-Jae; Kori, Makoto; Imaoka, Takane; Yamamoto, Kimihisa

    2017-01-01

    The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on the metal-metal interface of alloy nanoparticles. Therefore, multimetallic nanoclusters (MNCs) around 1 nm in diameter have potential as catalysts for oxidation reactions. However, there have been few reports describing the preparation of uniform alloy nanoclusters. We report the synthesis of finely controlled MNCs (around 1 nm) using a macromolecular template with coordination sites arranged in a gradient of basicity. We reveal that Cu-Pt-Au MNCs supported on graphitized mesoporous carbon show catalytic activity that is 24 times greater than that of a commercially available Pt catalyst for aerobic oxidation of hydrocarbons. In addition, solvent-free aerobic oxidation of hydrocarbons to ketones at room temperature, using small amounts of a radical initiator, was achieved as a heterogeneous catalytic reaction for the first time. PMID:28782020

  4. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass.

    PubMed

    Mora, Mabel; López, Luis R; Lafuente, Javier; Pérez, Julio; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Gamisans, Xavier; Gabriel, David

    2016-02-01

    Respirometry was used to reveal the mechanisms involved in aerobic biological sulfide oxidation and to characterize the kinetics and stoichiometry of a microbial culture obtained from a desulfurizing biotrickling filter. Physical-chemical processes such as stripping and chemical oxidation of hydrogen sulfide were characterized since they contributed significantly to the conversions observed in respirometric tests. Mass transfer coefficient for hydrogen sulfide and the kinetic parameters for chemical oxidation of sulfide with oxygen were estimated. The stoichiometry of the process was determined and the different steps in the sulfide oxidation process were identified. The conversion scheme proposed includes intermediate production of elemental sulfur and thiosulfate and the subsequent oxidation of both compounds to sulfate. A kinetic model describing each of the reactions observed during sulfide oxidation was calibrated and validated. The product selectivity was found to be independent of the dissolved oxygen to hydrogen sulfide concentration ratio in the medium at sulfide concentrations ranging from 3 to 30 mg S L(-1). Sulfide was preferentially consumed (SOURmax = 49.2 mg DO g(-1) VSS min(-1)) and oxidized to elemental sulfur at dissolved oxygen concentrations above 0.8 mg DO L(-1). Substrate inhibition of sulfide oxidation was observed (K(i,S(2-))= 42.4 mg S L(-1)). Intracellular sulfur accumulation also affected negatively the sulfide oxidation rate. The maximum fraction of elemental sulfur accumulated inside cells was estimated (25.6% w/w) and a shrinking particle equation was included in the kinetic model to describe elemental sulfur oxidation. The microbial diversity obtained through pyrosequencing analysis revealed that Thiothrix sp. was the main species present in the culture (>95%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Aerobic Methane Oxidation in Alaskan Lakes Along a Latitudinal Transect

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K. C.; Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Anthony, P.; Thalasso, F.

    2013-12-01

    Karla Martinez-Cruz* **, Armando Sepulveda-Jauregui*, Katey M. Walter Anthony*, Peter Anthony*, and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Methane (CH4) is the third most important greenhouse gas in the atmosphere, after carbon dioxide and water vapor. Boreal lakes play an important role in the current global warming by contributing as much as 6% of global atmospheric CH4 sources annually. On the other hand, aerobic methane oxidation (methanotrophy) in lake water is a fundamental process in global methane cycling that reduces the amount of CH4 emissions to the atmosphere. Several environmental factors affect aerobic methane oxidation in the water column both directly and indirectly, including concentration of CH4 and O2, temperature and carbon budgets of lakes. We analyzed the potential of aerobic methane oxidation (PMO) rates in incubations of water collected from 30 Alaskan lakes along a north-south transect during winter and summer 2011. Our findings showed an effect of CH4 and O2 concentrations, temperature and yedoma thawing permafrost on PMO activity in the lake water. The highest PMO rates were observed in summer by lakes situated on thawing yedoma permafrost, most of them located in the interior of Alaska. We also estimated that 60-80% of all CH4 produced in Alaskan lakes could be taken up by methanotrophs in the lake water column, showing the significant influence of aerobic methane oxidation of boreal lakes to the global CH4 budget.

  6. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems.

    PubMed

    Ryland, Bradford L; Stahl, Shannon S

    2014-08-18

    Oxidations of alcohols and amines are common reactions in the synthesis of organic molecules in the laboratory and industry. Aerobic oxidation methods have long been sought for these transformations, but few practical methods exist that offer advantages over traditional oxidation methods. Recently developed homogeneous Cu/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) and related catalyst systems appear to fill this void. The reactions exhibit high levels of chemoselectivity and broad functional-group tolerance, and they often operate efficiently at room temperature with ambient air as the oxidant. These advances, together with their historical context and recent applications, are highlighted in this Minireview. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Palladium nanoparticles in ionic liquids: reusable catalysts for aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Mondal, Arijit; Das, Amit; Adhikary, Bibhutosh; Mukherjee, Deb Kumar

    2014-04-01

    The search for more efficient catalytic systems that might combine the advantages of both homogenous (catalyst modulation) and heterogenous catalysis (catalyst recycling) is still the challenge of modern chemistry. With the advent of nanochemistry, it has been possible to prepare soluble analogues of heterogenous catalysts. These nanoparticles are generally stabilized against aggregation into larger less active particles by electrostatic or steric protection. In the present case, we demonstrate the use of room temperature ionic liquids (ILs) as effective agents of dispersion of palladium nanoparticles (prepared from palladium chloride with 5 ± 0.5 nm size distribution) that are recyclable catalysts for aerobic oxidation of alcohols under mild conditions. The particles suspended in ILs show no metal agglomeration or loss of catalytic activity even on prolonged use. An attempt has been made to elucidate the reaction mechanism of aerobic alcohol oxidation using a soluble palladium catalyst.

  8. Copper(II)-Catalyzed Benzylic C(sp(3))-H Aerobic Oxidation of (Hetero)Aryl Acetimidates: Synthesis of Aryl-α-ketoesters.

    PubMed

    Kumar, Yogesh; Jaiswal, Yogesh; Kumar, Amit

    2016-12-16

    A straightforward method is developed in this paper for the synthesis of α-ketoesters through copper-catalyzed aerobic oxidation of (hetero)aryl acetimidates using molecular oxygen as a sustainable oxidant. The reaction represents the first example of the direct synthesis of aryl-α-ketoesters from arylacetimidates through the aerobic oxidation of a benzylic C(sp3)-H (C═O) bond in moderate to good yield. This transformation occurs under mild reaction conditions with a wide range of substrates and utilizes a readily available oxidant and catalyst. The synthetic utility of this transformation is demonstrated through scaled-up synthesis. A plausible reaction mechanism is also proposed.

  9. Approach to construct polysubstituted 1,2-dihydronaphtho[2,1-b]furans and their aerobic oxidative aromatization.

    PubMed

    Huo, Congde; Xu, Xiaolan; An, Jinzhu; Jia, Xiaodong; Wang, Xicun; Wang, Cheng

    2012-09-21

    Triarylaminium salt was disclosed as an efficient initiator for the novel Friedel-Crafts alkylation/annulation cascade reaction between chalcone epoxides and 2-naphthols to construct polysubstituted 1,2-dihydronaphtho[2,1-b]furans. The DDQ/NaNO(2)/O(2) catalytic system was first applied to the aerobic oxidative aromatization of heterocycles, and a simple and efficient one-pot tandem FC alkylation/annulation/aerobic oxidative aromatization procedure was also developed for the synthesis of complex naphtho[2,1-b]furans.

  10. Cu-catalyzed aerobic oxidative three-component coupling route to N-sulfonyl amidines via an ynamine intermediate.

    PubMed

    Kim, Jinho; Stahl, Shannon S

    2015-02-20

    Cu-catalyzed aerobic oxidative three-component coupling of a terminal alkyne, secondary amine, and sulfonamide enables efficient synthesis of amidines. The use of Cu(OTf)2 (5 mol %) produces amidines selectively without Glaser-Hay alkyne homocoupling products. Preliminary studies suggest that the reaction pathway involves initial oxidative coupling of the terminal alkyne with the secondary amine, followed by hydroamidation of the ynamine intermediate with the sulfonamide.

  11. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    PubMed

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO.

  12. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  13. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms

    PubMed Central

    Kühl, Michael; Jørgensen, Bo Barker

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO42- reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 μm) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO42- or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively. PMID:16348687

  14. Silver(I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water—“silver mirror”: From stoichiometric to catalytic

    PubMed Central

    Liu, Mingxin; Wang, Haining; Zeng, Huiying; Li, Chao-Jun

    2015-01-01

    The first example of a homogeneous silver(I)-catalyzed aerobic oxidation of aldehydes in water is reported. More than 50 examples of different aliphatic and aromatic aldehydes, including natural products, were tested, and all of them successfully underwent aerobic oxidation to give the corresponding carboxylic acids in extremely high yields. The reaction conditions are very mild and greener, requiring only a very low silver(I) catalyst loading, using atmospheric oxygen as the oxidant and water as the solvent, and allowing gram-scale oxidation with only 2 mg of our catalyst. Chromatography is completely unnecessary for purification in most cases. PMID:26601150

  15. Visible Light-Mediated Aerobic Oxidation of N-Alkylpyridinium Salts under Organic Photocatalysis.

    PubMed

    Jin, Yunhe; Ou, Lunyu; Yang, Haijun; Fu, Hua

    2017-09-22

    Quinolones and isoquinolones exhibit diverse biological and pharmaceutical activities, and their synthesis is highly desirable under mild conditions. Here, a highly efficient and environmentally friendly visible light-mediated aerobic oxidation of readily available N-alkylpyridinium salts has been developed with Eosin Y as the organic photocatalyst and air as the terminal oxidant, and the reaction provided quinolones and isoquinolones in good yields. The method shows numerous advantages including mild and environmentally friendly conditions, high efficiency, tolerance of wide functional groups and low cost. Furthermore, 4-desoxylonimide with important pharmaceutical activities was effectively prepared by using our method. Therefore, the present method should provide a novel and useful strategy for synthesis and modification of N-heterocycles.

  16. Copper-catalyzed aerobic oxidative C-C bond cleavage for C-N bond formation: from ketones to amides.

    PubMed

    Tang, Conghui; Jiao, Ning

    2014-06-16

    A novel copper-catalyzed aerobic oxidative C(CO)-C(alkyl) bond cleavage reaction of aryl alkyl ketones for C-N bond formation is described. A series of acetophenone derivatives as well as more challenging aryl ketones with long-chain alkyl substituents could be selectively cleaved and converted into the corresponding amides, which are frequently found in biologically active compounds and pharmaceuticals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Copper(I)/ABNO-catalyzed aerobic alcohol oxidation: alleviating steric and electronic constraints of Cu/TEMPO catalyst systems.

    PubMed

    Steves, Janelle E; Stahl, Shannon S

    2013-10-23

    Cu/TEMPO catalyst systems promote efficient aerobic oxidation of sterically unhindered primary alcohols and electronically activated substrates, but they show reduced reactivity with aliphatic and secondary alcohols. Here, we report a catalyst system, consisting of ((MeO)bpy)Cu(I)(OTf) and ABNO ((MeO)bpy = 4,4'-dimethoxy-2,2'-bipyridine; ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl), that mediates aerobic oxidation of all classes of alcohols, including primary and secondary allylic, benzylic, and aliphatic alcohols with nearly equal efficiency. The catalyst exhibits broad functional group compatibility, and most reactions are complete within 1 h at room temperature using ambient air as the source of oxidant.

  18. Environmental control on aerobic methane oxidation in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  19. Selective aerobic oxidation mediated by TiO(2) photocatalysis.

    PubMed

    Lang, Xianjun; Ma, Wanhong; Chen, Chuncheng; Ji, Hongwei; Zhao, Jincai

    2014-02-18

    TiO2 is one of the most studied metal oxide photocatalysts and has unparal-leled efficiency and stability. This cheap, abundant, and non-toxic material has the potential to address future environmental and energy concerns. Understanding about the photoinduced interfacial redox events on TiO2 could have profound effect on the degradation of organic pollutants, splitting of H2O into H2 and O2, and selective redox organic transformations. Scientists traditionally accept that for a semiconductor photocatalyst such as TiO2 under the illumination of light with energy larger than its band gap, two photocarriers will be created to carry out their independent reduction and oxidation processes. However, our recent discoveries indicate that it is the concerted rather than independent effect of both photocarriers of valence band hole (hvb(+)) and conduction band electron (ecb(-)) that dictate the product formation during interfacial oxidation event mediated by TiO2 photocatalysis. In this Account, we describe our recent findings on the selective oxidation of organic substrates with O2 mediated by TiO2 photocatalysis. The transfer of O-atoms from O2 to the corresponding products dominates the selective oxidation of alcohols, amines, and alkanes mediated by TiO2 photocatalysis. We ascribe this to the concerted effect of both hvb(+) and ecb(-) of TiO2 in contribution to the oxidation products. These findings imply that O2 plays a unique role in its transfer into the products rather than independent role of ecb(-) scavenger. More importantly, ecb(-) plays a crucial role to ensure the high selectivity for the oxygenation of organic substrates. We can also use the half reactions such as those of the conduction band electron of TiO2 for efficient oxidation reactions with O2. To this end, efficient selective oxidation of organic substrates such as alcohols, amines, and aromatic alkanes with O2 mediated by TiO2 photocatalysis under visible light irradiation has been achieved. In

  20. High catalytic activity of palladium(II)-exchanged mesoporous sodalite and NaA zeolite for bulky aryl coupling reactions: reusability under aerobic conditions.

    PubMed

    Choi, Minkee; Lee, Dong-Hwan; Na, Kyungsu; Yu, Byung-Woo; Ryoo, Ryong

    2009-01-01

    Exchange for the better: Mesoporous sodalite and NaA zeolite exchanged with Pd(2+) exhibit remarkably high activity and reusability in C-C coupling reactions under aerobic atmosphere. It is proposed that the catalytic reactions are mediated by a molecular Pd(0) species generated in situ within the pores (see picture), which is oxidized back to Pd(2+) by O(2), preventing the formation of catalytically inactive Pd(0) agglomerates.

  1. Flavin-catalyzed aerobic oxidation of sulfides and thiols with formic acid/triethylamine.

    PubMed

    Murahashi, Shun-Ichi; Zhang, Dazhi; Iida, Hiroki; Miyawaki, Toshio; Uenaka, Masaaki; Murano, Kenji; Meguro, Kanji

    2014-09-14

    An efficient and practical catalytic method for the aerobic oxidative transformation of sulfides into sulfoxides, and thiols into disulfides with formic acid/TEA in the presence of a new, readily available, and stable flavin catalyst 5d is described.

  2. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    PubMed Central

    2015-01-01

    Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. PMID:27162977

  3. Aerobic Fitness and Intraindividual Reaction Time Variability in Middle and Old Age.

    PubMed

    Bauermeister, Sarah; Bunce, David

    2016-05-01

    To examine whether aerobic fitness moderated age differences in within-person reaction time variability (WP RT variability) and given conceptual linkage involving the frontal cortex, whether effects were mediated by executive function. Aerobic fitness (estimated VO2max) and WP RT variability were investigated in 225 healthy, community-dwelling adults aged 50-90 years (M = 63.83) across 4 cognitive domains; psychomotor performance, executive function, visual search, and recognition. Significant Age × Aerobic fitness interactions were found in relation to WP variability in 3 cognitive domains: psychomotor performance (4-choice RT), executive function (Flanker and Stroop arrows), and immediate recognition. Lower aerobic fitness was associated with greater RT variability, and this effect increased with age. Additionally, some of these effects were mediated by executive function. The findings suggest that aerobic fitness moderated the association between age and intraindividual RT variability, and that executive function selectively mediated that association. It is possible that aerobic fitness helps attenuate the neurobiological decline that contributes to cognitive deficits in old age and that WP variability is a measure that may be particularly sensitive to this effect. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms

    SciTech Connect

    Kuehl, M.; Joergensen, B.B. )

    1992-04-01

    The microzonation of O{sub 2} respiration, H{sub 2}S oxidation, and SO{sub 4}{sup 2{minus}} reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 {mu}m) with microsensors for O{sub 2}, S{sup 2{minus}}, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H{sub 2}S produced from sulfate reduction was reoxidized by O{sub 2} in a narrow reaction zone, and no H{sub 2}S escaped to the overlying water. Turnover times of H{sub 2}S and O{sub 2} in the reaction zone were only a few seconds owing to rapid bacterial H{sub 2}S oxidation. Anaerobic H{sub 2}S oxidation with NO{sub 3}{sup {minus}} could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO{sub 4}{sup 2{minus}} or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively.

  5. Unexpected ring-opening reactions of aziridines with aldehydes catalyzed by nucleophilic carbenes under aerobic conditions.

    PubMed

    Liu, Yan-Kai; Li, Rui; Yue, Lei; Li, Bang-Jing; Chen, Ying-Chun; Wu, Yong; Ding, Li-Sheng

    2006-04-13

    [reaction: see text] The chemoselective ring opening of N-tosyl aziridines with aldehydes catalyzed by an N-heterocyclic carbene was investigated under aerobic conditions. Unexpected carboxylates of 1,2-amino alcohols from the corresponding aldehydes, rather than the acyl anion ring-opened beta-amino ketones, were exclusively obtained. A plausible mechanism for this unprecedented carbene-mediated reaction was also proposed.

  6. Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene

    PubMed Central

    Vorbeck, Claudia; Lenke, Hiltrud; Fischer, Peter; Spain, Jim C.; Knackmuss, Hans-Joachim

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H−-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H−-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT−), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur. PMID:16349484

  7. Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene.

    PubMed

    Vorbeck, C; Lenke, H; Fischer, P; Spain, J C; Knackmuss, H J

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur.

  8. Photopromoted Ru-catalyzed asymmetric aerobic sulfide oxidation and epoxidation using water as a proton transfer mediator.

    PubMed

    Tanaka, Haruna; Nishikawa, Hiroaki; Uchida, Tatsuya; Katsuki, Tsutomu

    2010-09-01

    Ru(NO)-salen complexes were found to catalyze asymmetric aerobic oxygen atom transfer reactions such as sulfide oxidation and epoxidation in the presence of water under visible light irradiation at room temperature. Oxidation of sulfides including alkyl aryl sulfides and 2-substituted 1,3-dithianes using complex 2 as the catalyst proceeded with moderate to high enantioselectivity of up to 98% ee, and epoxidation of conjugated olefins using complex 3 as the catalyst proceeded with good to high enantioselectivity of 76-92% ee. Unlike biological oxygen atom transfer reactions that need a proton and electron transfer system, this aerobic oxygen atom transfer reaction requires neither such a system nor a sacrificial reductant. Although the mechanism of this oxidation has not been completely clarified, some experimental results support the notion that an aqua ligand coordinated with the ruthenium ion serves as a proton transfer agent for the oxygen activation process, and it is recycled and used as the proton transfer mediator during the process. Thus, we have achieved catalytic asymmetric oxygen atom transfer reaction using molecular oxygen that can be carried out under ambient conditions.

  9. Stereoselective Synthesis of cis-2,5-Disubstituted Pyrrolidines via Wacker-Type Aerobic Oxidative Cyclization of Alkenes with tBu-Sulfinamide Nucleophiles

    PubMed Central

    Redford, Joanne E.; McDonald, Richard I.; Rigsby, Matthew L.; Wiensch, Joshua D.

    2012-01-01

    Palladium(II)-catalyzed aerobic oxidative cyclization of alkenes with tethered tert-butanesulfinamides furnishes enantiopure 2,5-disubstituted pyrrolidines, originating from readily available and easily diversified starting materials. These reactions are the first reported examples of metal-catalyzed addition of sulfinamide nucleophiles to alkenes. PMID:22352383

  10. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst.

    PubMed

    McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S

    2017-04-26

    A homogeneous Cu-based catalyst system consisting of [Cu(MeCN)4]PF6, N,N'-di-tert-butylethylenediamine (DBED), and p-(N,N-dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.

  11. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst

    PubMed Central

    2017-01-01

    A homogeneous Cu-based catalyst system consisting of [Cu(MeCN)4]PF6, N,N′-di-tert-butylethylenediamine (DBED), and p-(N,N-dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the “oxygenase”-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts. PMID:28470049

  12. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.

    PubMed

    McCann, Scott D; Stahl, Shannon S

    2015-06-16

    Selective oxidation reactions have extraordinary value in organic chemistry, ranging from the conversion of petrochemical feedstocks into industrial chemicals and polymer precursors to the introduction of heteroatom functional groups into pharmaceutical and agrochemical intermediates. Molecular oxygen (O2) would be the ideal oxidant for these transformations. Whereas many commodity-scale oxidations of simple hydrocarbon feedstocks employ O2 as an oxidant, methods for selective oxidation of more complex molecules bearing diverse functional groups are often incompatible with existing aerobic oxidation methods. The latter limitation provides the basis for our interest in the development of new catalytic transformations and the elucidation of mechanistic principles that underlie selective aerobic oxidation reactions. One challenge inherent in such methods is the incommensurate redox stoichiometry associated with the use of O2, a four-electron oxidant, in reactions that achieve two-electron oxidation of organic molecules. This issue is further complicated by the use of first-row transition-metal catalysts, which tend to undergo facile one-electron redox steps. In recent years, we have been investigating Cu-catalyzed aerobic oxidation reactions wherein the complexities just noted are clearly evident. This Account surveys our work in this area, which has emphasized three general classes of reactions: (1) single-electron-transfer reactions for oxidative functionalization of electron-rich substrates, such as arenes and heterocycles; (2) oxidative carbon-heteroatom bond-forming reactions, including C-H oxidations, that proceed via organocopper(III) intermediates; and (3) methods for aerobic oxidation of alcohols and amines that use Cu(II) in combination with an organic redox-active cocatalyst to dehydrogenate the carbon-heteroatom bond. These reaction classes demonstrate three different pathways to achieve two-electron oxidation of organic molecules via the cooperative

  13. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2014-01-01

    Although it is known that a part of lactic acid bacteria can produce carotenoid, little is known about the regulation of carotenoid production. The objective of this study was to determine whether aerobic growth condition influences carotenoid production in carotenoid-producing Enterococcus gilvus. Enterococcus gilvus was grown under aerobic and anaerobic conditions. Its growth was slower under aerobic than under anaerobic conditions. The decrease in pH levels and production of lactic acid were also lower under aerobic than under anaerobic conditions. In contrast, the amount of carotenoid pigments produced by E. gilvus was significantly higher under aerobic than under anaerobic conditions. Further, real-time quantitative reverse transcription PCR revealed that the expression level of carotenoid biosynthesis genes crtN and crtM when E. gilvus was grown under aerobic conditions was 2.55-5.86-fold higher than when it was grown under anaerobic conditions. Moreover, after exposure to 16- and 32-mM H2O2, the survival rate of E. gilvus grown under aerobic conditions was 61.5- and 72.5-fold higher, respectively, than when it was grown under anaerobic conditions. Aerobic growth conditions significantly induced carotenoid production and the expression of carotenoid biosynthesis genes in E. gilvus, resulting in increased oxidative stress tolerance.

  14. Aerobic organocatalytic oxidation of aryl aldehydes: flavin catalyst turnover by Hantzsch's ester.

    PubMed

    Chen, Shuai; Foss, Frank W

    2012-10-05

    The first Dakin oxidation fueled by molecular oxygen as the terminal oxidant is reported. Flavin and NAD(P)H coenzymes, from natural enzymatic redox systems, inspired the use of flavin organocatalysts and a Hantzsch ester to perform transition-metal-free, aerobic oxidations. Catechols and electron-rich phenols are achieved with as low as a 0.1 mol % catalyst loading, 1 equiv of Hantzsch ester, and O(2) or air as the stoichiometric oxidant source.

  15. Environmental Controls on Aerobic Methane Oxidation in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Steinle, L.; Maltby, J.; Engbersen, N.; Zopfi, J.; Bange, H. W.; Elvert, M.; Hinrichs, K. U.; Kock, A.; Lehmann, M. F.; Treude, T.; Niemann, H.

    2015-12-01

    Large quantities of the greenhouse gas CH4 are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, and later into the atmosphere. Indeed, coastal seas account for more than 75% of global oceanic CH4 emissions. Yet, aerobic CH4 oxidizing bacteria (MOB) consume an important part of CH4 in the water column, thus mitigating CH4 release to the atmosphere. Coastal oceans are highly dynamic systems, in particular with regard to the variability of temperature, salinity and oxygen concentrations, all of which are potential key environmental factors controlling MOx. To determine the most important controlling factors, we conducted a two-year time-series study with measurements of CH4, MOx, the composition of the MOB community, and physicochemical water column parameters in a coastal inlet in the Baltic Sea (Eckernförde(E-) Bay, Boknis Eck Time Series Station). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, seasonal stratification leads to hypoxia in bottom waters towards the end of the stratification period. Methane is produced year-round in the sediments, resulting in accumulation of methane in bottom waters, and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were a) perturbations of the water column caused by storm events, currents or seasonal mixing, b) temperature and c) oxygen concentration. a) Perturbations of the water column led to a sharp decrease in MOx within hours, probably caused by replacement of 'old' water with a high standing stock of MOB by 'new' waters with a lower abundance of MOB. b) An increase in temperature generally led to higher MOx rates. c) Even though CH4 was abundant at all depths, MOx was highest in bottom waters (1-5 nM/d), which usually contain the lowest O2 concentrations. Lab-based experiments with adjusted O2

  16. Mechanistic Studies of Wacker-Type Intramolecular Aerobic Oxidative Amination of Alkenes Catalyzed by Pd(OAc)2/Pyridine

    PubMed Central

    Ye, Xuan; Liu, Guosheng; Popp, Brian V.; Stahl, Shannon S.

    2011-01-01

    Wacker-type oxidative cyclization reactions have been the subject of extensive research for several decades, but few systematic mechanistic studies of these reactions have been reported. The present study features experimental and DFT computational studies of Pd(OAc)2/pyridine-catalyzed intramolecular aerobic oxidative amination of alkenes. The data support a stepwise catalytic mechanism that consists of (1) steady-state formation of a PdII-amidate-alkene chelate with release of one equivalent of pyridine and AcOH from the catalyst center, (2) alkene insertion into a Pd–N bond, (3) reversible β-hydride elimination, (4) irreversible reductive elimination of AcOH, and (5) aerobic oxidation of palladium(0) to regenerate the active trans-Pd(OAc)2(py)2 catalyst. Evidence is obtained for two energetically viable pathways for the key C–N bond-forming step, featuring a pyridine-ligated and a pyridine-dissociated PdII species. Analysis of natural charges and bond lengths of the alkene-insertion transition state suggest that this reaction is best described as an intramolecular nucleophilic attack of the amidate ligand on the coordinated alkene. PMID:21250706

  17. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light.

    PubMed

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-14

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%.

  18. Analysis of Reaction Times and Aerobic Capacities of Soccer Players According to Their Playing Positions

    ERIC Educational Resources Information Center

    Taskin, Cengiz; Karakoc, Onder; Taskin, Mine; Dural, Murat

    2016-01-01

    70 soccer players in Gaziantep amateur league voluntarily participated in this study, (average of their ages 19,17±1,34years, average of their heights 181,28±5,06 cm, average of their body weights 76,75±4,43 kg and average of their sports experiences 3,78±0,95 years) to analyze visual and auditory reaction times and aerobic capacities of amateur…

  19. Aerobic oxidative coupling of resveratrol and its analogues by visible light using mesoporous graphitic carbon nitride (mpg-C(3)N(4)) as a bioinspired catalyst.

    PubMed

    Song, Tao; Zhou, Bo; Peng, Guang-Wei; Zhang, Qing-Bao; Wu, Li-Zhu; Liu, Qiang; Wang, Yong

    2014-01-13

    The first aerobic oxidative coupling of resveratrol and its analogues by mesoporous graphitic carbon nitride as a bioinspired catalyst with visible light has been developed. With this method, δ-viniferin and its analogues were synthesized in moderate to high yield. The metal-free conditions, visible-light irradiation, and the ideal oxidant, molecular oxygen, make this coupling reaction environmental friendly and practical. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    SciTech Connect

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  1. Modular Synthesis of 1,2-Diamine Derivatives via Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides**

    PubMed Central

    McDonald, Richard I.

    2010-01-01

    Allylic sulfamides undergo efficient aerobic oxidative cyclization at room temperature, mediated by a new Pd catalyst system consisting of 5% Pd(TFA)2/10% DMSO in THF. The synthetic utility of these reactions is enhanced by several features: (1) the sulfamide substrates are accessible in multi-gram scale from the corresponding allylic and primary amines, (2) the cyclic sulfamide products are readily converted to the corresponding 1,2-diamines upon treatment with LiAlH4, and (3) substrates derived from chiral allylic amines cyclize with very high levels of diastereoselectivity. PMID:21132102

  2. Modular Synthesis of 1,2-Diamine Derivatives via Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides**

    PubMed Central

    McDonald, Richard I.

    2012-01-01

    Allylic sulfamides undergo efficient aerobic oxidative cyclization at room temperature, mediated by a new Pd catalyst system consisting of 5% Pd(TFA)2/10% DMSO in THF. The synthetic utility of these reactions is enhanced by several features: (1) the sulfamide substrates are accessible in multi-gram scale from the corresponding allylic and primary amines, (2) the cyclic sulfamide products are readily converted to the corresponding 1,2-diamines upon treatment with LiAlH4, and (3) substrates derived from chiral allylic amines cyclize with very high levels of diastereoselectivity. PMID:20583013

  3. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    PubMed Central

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2014-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functional microorganisms. Real-time quantitative polymerase chain reaction results showed high numbers of methanotrophs and denitrifiers in the enriched consortium. The 16S rRNA gene clone library revealed that Methylococcaceae and Methylophilaceae were the dominant populations in the MOD ecosystem. Phylogenetic analyses of pmoA gene clone libraries indicated that all methanotrophs belonged to Methylococcaceae, a type I methanotroph employing the ribulose monophosphate pathway for methane oxidation. Methylotrophic denitrifiers of the Methylophilaceae that can utilize organic intermediates (i.e. formaldehyde, citrate and acetate) released from the methanotrophs played a vital role in aerobic denitrification. This study is the first report to confirm micro-aerobic denitrification and to make phylogenetic and functional assignments for some members of the microbial assemblages involved in MOD. PMID:24245852

  4. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway.

    PubMed

    Gulevich, Andrey Yu; Skorokhodova, Alexandra Yu; Sukhozhenko, Alexey V; Shakulov, Rustem S; Debabov, Vladimir G

    2012-03-01

    The basic reactions of the clostridial 1-butanol biosynthesis pathway can be regarded to be the inverted reactions of the fatty acid β-oxidation pathway. A pathway for the biosynthesis of fuels and chemicals was recently engineered by combining enzymes from both aerobic and anaerobic fatty acid β-oxidation as well as enzymes from other metabolic pathways. In the current study, we demonstrate the inversion of the entire aerobic fatty acid β-oxidation cycle for 1-butanol biosynthesis. The constructed markerless and plasmidless Escherichia coli strain BOX-3 (MG1655 lacI(Q) attB-P(trc-ideal-4)-SD(φ10)-adhE(Glu568Lys) attB-P(trc-ideal-4)-SD(φ10)-atoB attB-P(trc-ideal-4)-SD(φ10)-fadB attB-P(trc-ideal-4)-SD(φ10)-fadE) synthesises 0.3-1 mg 1-butanol/l in the presence of the specific inducer. No 1-butanol production was detected in the absence of the inducer.

  5. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    SciTech Connect

    Yamada, Y.; Kawase, Y. . E-mail: bckawase@mail.eng.toyo.ac.jp

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.

  6. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment.

    PubMed

    Sangave, Preeti C; Gogate, Parag R; Pandit, Aniruddha B

    2007-05-01

    Laboratory-scale experiments were conducted in order to investigate the effect of ozone as pre-aerobic treatment and post-aerobic treatment for the treatment of the distillery wastewater. The degradation of the pollutants present in distillery spent wash was carried out by ozonation, aerobic biological degradation processes alone and by using the combinations of these two processes to investigate the synergism between the two modes of wastewater treatment and with the aim of reducing the overall treatment costs. Pollutant removal efficiency was followed by means of global parameters directly related to the concentration of organic compounds in those effluents: chemical oxygen demand (COD) and the color removal efficiency in terms of absorbance of the sample at 254 nm. Ozone was found to be effective in bringing down the COD (up to 27%) during the pretreatment step itself. In the combined process, pretreatment of the effluent led to enhanced rates of subsequent biological oxidation step, almost 2.5 times increase in the initial oxidation rate has been observed. Post-aerobic treatment with ozone led to further removal of COD along with the complete discoloration of the effluent. The integrated process (ozone-aerobic oxidation-ozone) achieved approximately 79% COD reduction along with discoloration of the effluent sample as compared to 34.9% COD reduction for non-ozonated sample, over a similar treatment period.

  7. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade.

    PubMed

    Marshall, Katharine T; Morris, Robert M

    2013-02-01

    Bacteria from the uncultured SUP05/Arctic96BD-19 clade of gamma proteobacterial sulfur oxidizers (GSOs) have the genetic potential to oxidize reduced sulfur and fix carbon in the tissues of clams and mussels, in oxygen minimum zones and throughout the deep ocean (>200 m). Here, we report isolation of the first cultured representative from this GSO clade. Closely related cultures were obtained from surface waters in Puget Sound and from the deep chlorophyll maximum in the North Pacific gyre. Pure cultures grow aerobically on natural seawater media, oxidize sulfur, and reach higher final cell densities when glucose and thiosulfate are added to the media. This suggests that aerobic sulfur oxidation enhances organic carbon utilization in the oceans. The first isolate from the SUP05/Arctic96BD-19 clade was given the provisional taxonomic assignment 'Candidatus: Thioglobus singularis', alluding to the clade's known role in sulfur oxidation and the isolate's planktonic lifestyle.

  8. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    PubMed

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols.

  9. Pd-catalyzed aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones: A direct approach to acridines

    NASA Astrophysics Data System (ADS)

    Mu, Wanlu; Li, Xiaowei; Wang, Longfei; Chen, Yong; Wu, Yanchao

    2017-08-01

    An efficient aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones approach to substituted acridines, a structural motif for a large number of pharmaceuticals and functional materials is described. The key feature of this method is the use of oxygen as the sole oxidant and Pd catalyst, which resulting in the high regioselectivity with unsymmetrical meta-substituted cyclohexanones. The electron gap of the global redox condensation process is filled and the reaction efficiency is significantly promoted by O2 as a redox moderator. This protocol possesses many advantages such as using O2 as a cheap and nonhazardous oxidant, high regioselectivity and water as the only by-product, which meet the principle of green chemistry.

  10. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light

    NASA Astrophysics Data System (ADS)

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-01

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%.As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%. Electronic supplementary information (ESI) available: Experimental procedure, XRD patterns, TEM and HRTEM images, energy-dispersive X-ray spectra, UV-vis spectra, X-ray photoelectron spectroscopy (XPS), and EDS. See DOI: 10.1039/c6nr02949c

  11. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  12. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.

    PubMed

    Ramteke, Lokeshkumar P; Gogate, Parag R

    2016-05-01

    Fenton oxidation and ultrasound-based pretreatment have been applied to improve the treatment of real industrial wastewater based on the use of biological oxidation. The effect of operating parameters such as Fe(2+) loading, contact time, initial pH, and hydrogen peroxide loading on the extent of chemical oxygen demand (COD) reduction and change in biochemical oxygen demand (BOD5)/COD ratio has been investigated. The optimum operating conditions established for the pretreatment were initial pH of 3.0, Fe(2+) loading of 2.0, and 2.5 g L(-1) for the US/Fenton/stirring and Fenton approach, respectively, and temperature of 25 °C with initial H2O2 loading of 1.5 g L(-1). The use of pretreatment resulted in a significant increase in the BOD5/COD ratio confirming the production of easily digestible intermediates. The effect of the type of sludge in the aerobic biodegradation was also investigated based on the use of primary activated sludge (PAS), modified activated sludge (MAS), and activated sludge (AS). Enhanced removal of the pollutants as well as higher biomass yield was observed for MAS as compared to PAS and AS. The use of US/Fenton/stirring pretreatment under the optimized conditions followed by biological oxidation using MAS resulted in maximum COD removal at 97.9 %. The required hydraulic retention time for the combined oxidation system was also significantly lower as compared to only biological oxidation operation. Kinetic studies revealed that the reduction in the COD followed a first-order kinetic model for advanced oxidation and pseudo first-order model for biodegradation. The study clearly established the utility of the combined technology for the effective treatment of real industrial wastewater.

  13. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  14. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    PubMed

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts.

  15. Aerobic C-H Oxidation of Arenes Using a Recyclable, Heterogeneous Rhodium Catalyst.

    PubMed

    Matsumoto, Kenji; Tachikawa, Shohei; Hashimoto, Noriko; Nakano, Rina; Yoshida, Masahiro; Shindo, Mitsuru

    2017-04-21

    A novel, practical protocol for the aerobic direct C-H acetoxylation of arenes, employing a recyclable heterogeneous rhodium catalyst, is reported herein. The trifluoroacetoxylation of 2-amido-substituted anthracenes proceeded at the 9-position with exclusive regioselectivity. The oxidation of variously substituted anthracenes and other polycyclic aromatics with molecular oxygen as a terminal oxidant proceeded under mild conditions, providing products in good to excellent yields.

  16. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster

    EPA Pesticide Factsheets

    The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light.This dataset is associated with the following publication:Varma, R., M. Nadagouda, S. Verma, and R.B.N. Baig. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster. TETRAHEDRON. Elsevier Science Ltd, New York, NY, USA, (2016).

  17. The nitric oxide producing reactions of hydroxyurea.

    PubMed

    King, S Bruce

    2003-03-01

    Hydroxyurea is used to treat a variety of cancers and sickle cell disease. Despite this widespread use, a complete mechanistic understanding of the beneficial actions of this compound remains to be understood. Hydroxyurea inhibits ribonucleotide reductase and increases the levels of fetal hemoglobin, which explains a portion of the effects of this drug. Administration of hydroxyurea to patients results in a significant increase in levels of iron nitrosyl hemoglobin, nitrite and nitrate suggesting the in vivo metabolism of hydroxyurea to nitric oxide. Formation of nitric oxide from hydroxyurea may explain a portion of the observed effects of hydroxyurea treatment. At the present, the mechanism or mechanisms of nitric oxide release, the identity of the in vivo oxidant and the site of metabolism remain to be identified. Chemical oxidation of hydroxyurea produces nitric oxide and nitroxyl, the one-electron reduced form of nitric oxide. These oxidative pathways generally proceed through the nitroxide radical (2) or C-nitrosoformamide (3). Biological oxidants, including both iron and copper containing enzymes and proteins, also convert hydroxyurea to nitric oxide or its decomposition products in vitro and these reactions also occur through these intermediates. A number of other reactions of hydroxyurea including the reaction with ribonucleotide reductase and irradiation demonstrate the potential to release nitric oxide and should be further investigated. Gaining an understanding of the metabolism of hydroxyurea to nitric oxide will provide valuable information towards the treatment of these disorders and may lead to the development of better therapeutic agents.

  18. Reactions of nitrogen oxides with polymers

    NASA Astrophysics Data System (ADS)

    Pariiskii, Georgii B.; Gaponova, I. S.; Davydov, Evgenii Ya

    2000-11-01

    The mechanisms of the reactions of nitrogen oxides and different classes of solid polymers are considered. Particular emphasis is given to the analysis of the mechanisms of the formation of stable nitroxyl radicals. Double bonds and amide groups of macromolecules, as well as hydroperoxides and peroxide macroradicals are shown to be involved in the reactions with nitrogen oxides. The application of nitrogen oxides for the preparation of spin-labelled polymers and the use of the ESR imaging technique (ESR tomography) for the investigation of the structure of the reaction front during nitration of solid polymers are considered. The bibliography includes 111 references.

  19. Controllable Chemoselectivity in Visible-Light Photoredox Catalysis: Four Diverse Aerobic Radical Cascade Reactions.

    PubMed

    Liu, Xinfei; Ye, Xinyi; Bureš, Filip; Liu, Hongjun; Jiang, Zhiyong

    2015-09-21

    Reported is the controllable selectivity syntheses of four distinct products from the same starting materials by visible-light photoredox catalysis. By employing a dicyanopyrazine-derived chromophore (DPZ) as photoredox catalyst, an aerobic radical mechanism has been developed, and allows the reactions of N-tetrahydroisoquinolines (THIQs) with N-itaconimides to through four different pathways, including addition-cyclization, addition-elimination, addition-coupling, and addition-protonation, with satisfactory chemoselectivity. The current strategy provide straightforward access to four different but valuable N-heterocyclic adducts in moderate to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols.

    PubMed

    Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning

    2015-05-13

    An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.

  1. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  2. Nanoscaled copper metal-organic framework (MOF) based on carboxylate ligands as an efficient heterogeneous catalyst for aerobic epoxidation of olefins and oxidation of benzylic and allylic alcohols.

    PubMed

    Qi, Yue; Luan, Yi; Yu, Jie; Peng, Xiong; Wang, Ge

    2015-01-19

    Aerobic epoxidation of olefins at a mild reaction temperature has been carried out by using nanomorphology of [Cu3(BTC)2] (BTC = 1,3,5-benzenetricarboxylate) as a high-performance catalyst through a simple synthetic strategy. An aromatic carboxylate ligand was employed to furnish a heterogeneous copper catalyst and also serves as the ligand for enhanced catalytic activities in the catalytic reaction. The utilization of a copper metal-organic framework catalyst was further extended to the aerobic oxidation of aromatic alcohols. The shape and size selectivity of the catalyst in olefin epoxidation and alcohol oxidation was investigated. Furthermore, the as-synthesized copper catalyst can be easily recovered and reused several times without leaching of active species or significant loss of activity.

  3. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.

    PubMed

    Percak-Dennett, E; He, S; Converse, B; Konishi, H; Xu, H; Corcoran, A; Noguera, D; Chan, C; Bhattacharyya, A; Borch, T; Boyd, E; Roden, E E

    2017-09-01

    Pyrite (FeS2 ) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro-organisms in pyrite oxidation under acidic-pH conditions is well known, to date there is very little known about the capacity for aerobic micro-organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite-bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin-Benson-Bassham CO2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30-50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X-ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro-organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral-pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite-associated metals

  4. Surface-active ionic liquids in catalysis: Impact of structure and concentration on the aerobic oxidation of octanol in water.

    PubMed

    Cognigni, Alice; Kampichler, Sebastian; Bica, Katharina

    2017-04-15

    We present design and synthesis of surface-active ionic liquids for the application in micellar catalysis. A series of 1-methyl-3-dodecylimidazolium based ionic liquids with variable core structures including dicationic and zwitterionic ones was synthesized and characterized. These surface-active ionic liquids where applied in the aerobic oxidation of aliphatic alcohols to carbonyl compounds. A strong dependence on the ionic liquid concentration and structure was identified, which is in accordance with the concepts of micellar catalysis. Optimum conditions for the oxidation of 1-octanol could be identified, and the use of surface-active ionic liquids strongly improved the reaction performance compared to pure water. Under optimized conditions, it was possible to isolate up to 75% of octanoic acid using only small amounts of surface-active ionic liquid in a 0.05mM solution in water without further ligands.

  5. Dissimilatory perchlorate reduction linked to aerobic methane oxidation via chlorite dismutase

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    accumulation of chloride ions either in spent media or in slurries prepared from Searsville Lake soil, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soils enriched in methanotrophs. This result leads us to surmise that the release of O2 during enzymatic perchlorate reduction was low, and that the oxygen produced was unavailable to the aerobic methanotrophs. This was borne out by patterns of O2 and CO2 production during experiments with lake soil, growth media, and pure cultures of dissimilatory perchlorate reducing bacteria. We observed that O2 release during incubation of D. agitata CKB with 10 mM ClO4- or ClO3- was decoupled from metabolism. More O2 was released during incubations without added acetate than with 10 mM acetate and an even greater amount of O2 was released during incubation with heat-killed cells. This suggests a chemical mechanism of O2 production during reaction with ClO4- and ClO3-. Hence, perchlorate reducing bacteria need not be present to facilitate O2 release from the surface of Mars, in support of recent interpretations of Viking LR and GEx experiments.

  6. Discovery of Multicomponent Heterogeneous Catalysts via Admixture Screening: PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary Alcohols.

    PubMed

    Mannel, David S; Ahmed, Maaz S; Root, Thatcher W; Stahl, Shannon S

    2017-02-01

    In the present study, we demonstrate the utility of "admixture screening" for the discovery of new multicomponent heterogeneous Pd catalyst compositions that are highly effective for aerobic oxidative methyl esterification of primary alcohols. The identification of possible catalysts for this reaction was initiated by the screening of simple binary and ternary admixtures of Pd/charcoal in combination with one or two metal and/or metalloid components as the catalyst. This approach permitted rapid evaluation of over 400 admixture combinations for the oxidative methyl esterification of 1-octanol at 60 °C in methanol. Product yields from these reactions varied widely, ranging from 2% to 88%. The highest yields were observed with Bi-, Te-, and Pb-based additives, and particularly from those containing both Bi and Te. Validation of the results was achieved by preparing specific PdBiTe catalyst formulations via a wet-impregnation method, followed by application of response surface methodology to identify the optimal Pd-Bi-Te catalyst stoichiometry. This approach revealed two very effective catalyst compositions: PdBi0.47Te0.09/C (PBT-1) and PdBi0.35Te0.23/C (PBT-2). The former catalyst was used in batch aerobic oxidation reactions with different primary alcohols and shown to be compatible with substrates bearing heterocycle and halide substituents. The methyl ester products were obtained in >90% yield in nearly all cases. Implementation of the PBT-2 catalyst in a continuous-flow packed-bed reactor achieved nearly 60 000 turnovers with no apparent loss of catalytic activity.

  7. Combination of aerobic and vacuum packaging to control lipid oxidation and off-odor volatiles of irradiated raw turkey breast.

    PubMed

    Nam, K C; Ahn, D U

    2003-03-01

    Effects of the combination of aerobic and anaerobic packaging on color, lipid oxidation, and volatile production were determined to establish a modified packaging method to control quality changes in irradiated raw turkey meat. Lipid oxidation was the major problem with aerobically packaged irradiated turkey breast, while retaining characteristic irradiation off-odor volatiles such as dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide was the concern for vacuum-packaged breast during the 10-day refrigerated storage. Vacuum packaging of aerobically packaged irradiated turkey breast meat at 1 or 3 days of storage lowered the amounts of S-volatiles and lipid oxidation products compared with vacuum- and aerobically packaged meats, respectively. Irradiation increased the a-value of raw turkey breast, but exposing the irradiated meat to aerobic conditions alleviated the intensity of redness.

  8. Oxidative Reactions with Nonaqueous Enzymes

    SciTech Connect

    Jonathan S. Dordick; Douglas Clark; Brian H Davison; Alexander Klibanov

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with less waste.

  9. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions.

    PubMed Central

    Otte, S; Grobben, N G; Robertson, L A; Jetten, M S; Kuenen, J G

    1996-01-01

    Nitrous oxide can be a harmful by-product in nitrogen removal from wastewater. Since wastewater treatment systems operate under different aeration regimens, the influence of different oxygen concentrations and oxygen fluctuations on denitrification was studied. Continuous cultures of Alcaligenes faecalis TUD produced N2O under anaerobic as well as aerobic conditions. Below a dissolved oxygen concentration of 5% air saturation, the relatively highest N2O production was observed. Under these conditions, significant activities of nitrite reductase could be measured. After transition from aerobic to anaerobic conditions, there was insufficient nitrite reductase present to sustain growth and the culture began to wash out. After 20 h, nitrite reductase became detectable and the culture started to recover. Nitrous oxide reductase became measurable only after 27 h, suggesting sequential induction of the denitrification reductases, causing the transient accumulation of N2O. After transition from anaerobic conditions to aerobic conditions, nitrite reduction continued (at a lower rate) for several hours. N2O reduction appeared to stop immediately after the switch, indicating inhibition of nitrous oxide reductase, resulting in high N2O emissions (maximum, 1.4 mmol liter-1 h-1). The nitrite reductase was not inactivated by oxygen, but its synthesis was repressed. A half-life of 16 to 22 h for nitrite reductase under these conditions was calculated. In a dynamic aerobic-anaerobic culture of A. faecalis, a semisteady state in which most of the N2O production took place after the transition from anaerobic to aerobic conditions was obtained. The nitrite consumption rate in this culture was equal to that in an anaerobic culture (0.95 and 0.92 mmol liter-1 h-1, respectively), but the production of N2O was higher in the dynamic culture (28 and 26% of nitrite consumption, respectively). PMID:8779582

  10. [Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils].

    PubMed

    Zheng, Yan; Jia, Zhongjun

    2013-02-04

    This study is aimed to establish an unbiased profiling strategy for investigating the microorganisms responsible for aerobic methane oxidation by pyrosequencing the total soil microbial communities at DNA and RNA levels, and to link aerobic methane oxidation activity with taxonomic identity of active microorganisms by DNA/RNA SIP in red paddy soils. Three red paddy soils derived from quaternary red clay were collected from Gushi and Taoyuan cities of Hunan province and Leizhou city of Guangdong province, were incubated with the labeled 13CH4 or 12CH4 for determination of aerobic methane oxidation kinetics. Pyrosequencing of the 16S rRNA andl6S rRNA gene at the whole microbial community levels were performed over the course of aerobic methane oxidation in soil microcosms. 13C-DNA and 13C-RNA were obtained through ultracentrifugation of the total soil DNA and RNA extracts, respectively. Clone library of pmoA genes in 13C-DNA and 16S rRNA genes in 13C-RNA were constructed. Pyrosequencing of the total microbial communities revealed significant increase in the relative abundance of aerobic methanotrophs in soil microcosms upon the completion of aerobic methane consumption. The proportional increase of aerobic methanotrophs was significantly higher at RNA than DNA levels. Type I and II aerobic methanotrophs significantly increased in Gushi soil, while the significant increase of type II aerobic methanotrophs was observed in Taoyuan soil. In the meantime, type I aerobic methanotrophs appeared to be stimulated exclusively in Leizhou soil. Sequencing analysis of the 13C-labeled pmoA genes and 16S rRNA further demonstrate that phylogenetically distinct methanotrophs dominated aerobic methane oxidation activity in paddy soils of Gushi (Type I and II), Taoyuan (Type II) and Leizhou (Type I). High-throughput pyrosequencing at the whole community level of 16S rRNA genes provides an almost unbiased profiling stragety for measuring characteristic changes in relative proportions of

  11. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation

    USGS Publications Warehouse

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ~100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor.

  12. SBA-15-functionalized 3-oxo-ABNO as recyclable catalyst for aerobic oxidation of alcohols under metal-free conditions.

    PubMed

    Karimi, Babak; Farhangi, Elham; Vali, Hojatollah; Vahdati, Saleh

    2014-09-01

    The nitroxyl radical 3-oxo-9-azabicyclo [3.3.1]nonane-N-oxyl (3-oxo-ABNO) has been prepared using a simple protocol. This organocatalyst is found to be an efficient catalyst for the aerobic oxidation of a wide variety of alcohols under metal-free conditions. In addition, the preparation and characterization of a supported version of 3-oxo-ABNO on ordered mesoporous silica SBA-15 (SABNO) is described for the first time. The catalyst has been characterized using several techniques including simultaneous thermal analysis (STA), transmission electron microscopy (TEM), and nitrogen sorption analysis. This catalyst exhibits catalytic performance comparable to its homogeneous analogue and much superior catalytic activity in comparison with (2,2,6,6-tetramethylpiperidin-1-yl)oxy (TEMPO) for the aerobic oxidation of almost the same range of alcohols under identical reaction conditions. It is also found that SABNO can be conveniently recovered and reused at least 12 times without significant effect on its catalytic efficiency.

  13. Interface-confined oxide nanostructures for catalytic oxidation reactions.

    PubMed

    Fu, Qiang; Yang, Fan; Bao, Xinhe

    2013-08-20

    Heterogeneous catalysts, often consisting of metal nanoparticles supported on high-surface-area oxide solids, are common in industrial chemical reactions. Researchers have increasingly recognized the importance of oxides in heterogeneous catalysts: that they are not just a support to help the dispersion of supported metal nanoparticles, but rather interact with supported metal nanoparticles and affect the catalysis. The critical role of oxides in catalytic reactions can become very prominent when oxides cover metal surfaces forming the inverse catalysts. The source of the catalytic activity in homogeneous catalysts and metalloenzymes is often coordinatively unsaturated (CUS) transition metal (TM) cations, which can undergo facile electron transfer and promote catalytic reactions. Organic ligands and proteins confine these CUS cations, making them highly active and stable. In heterogeneous catalysis, however, confining these highly active CUS centers on an inorganic solid so that they are robust enough to endure the reaction environment while staying flexible enough to perform their catalysis remains a challenge. In this Account, we describe a strategy to confine the active CUS centers on the solid surface at the interface between a TM oxide (TMO) and a noble metal (NM). Among metals, NMs have high electron negativity and low oxygen affinity. This means that TM cations of the oxide bind strongly to NM atoms at the interface, forming oxygen-terminated-bilayer TMO nanostructures. The resulting CUS sites at the edges of the TMO nanostructure are highly active for catalytic oxidation reactions. Meanwhile, the strong interactions between TMOs and NMs prevent further oxidation of the bilayer TMO phases, which would otherwise result in the saturation of oxygen coordination and the deactivation of the CUS cations. We report that we can also tune the oxide-metal interactions to modulate the bonding of reactants with CUS centers, optimizing their catalytic performance. We

  14. An insight into the mechanism of the aerobic oxidation of aldehydes catalyzed by N-heterocyclic carbenes.

    PubMed

    Bortolini, O; Chiappe, C; Fogagnolo, M; Giovannini, P P; Massi, A; Pomelli, C S; Ragno, D

    2014-02-25

    N-Heterocyclic carbene catalysis for the aerobic oxidation and esterification of aromatic aldehydes was monitored by ESI-MS (MS/MS) and the key intermediates were intercepted and characterized using the charge-tag strategy.

  15. Supplementation with vitamin A enhances oxidative stress in the lungs of rats submitted to aerobic exercise.

    PubMed

    Gasparotto, Juciano; Petiz, Lyvia Lintzmaier; Girardi, Carolina Saibro; Bortolin, Rafael Calixto; de Vargas, Amanda Rodrigues; Henkin, Bernardo Saldanha; Chaves, Paloma Rodrigues; Roncato, Sabrina; Matté, Cristiane; Zanotto-Filho, Alfeu; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-12-01

    Exercise training induces reactive oxygen species production and low levels of oxidative damage, which are required for induction of antioxidant defenses and tissue adaptation. This process is physiological and essential to improve physical conditioning and performance. During exercise, endogenous antioxidants are recruited to prevent excessive oxidative stress, demanding appropriate intake of antioxidants from diet or supplements; in this context, the search for vitamin supplements that enhance the antioxidant defenses and improve exercise performance has been continuously increasing. On the other hand, excess of antioxidants may hinder the pro-oxidant signals necessary for this process of adaptation. The aim of this study was to investigate the effects of vitamin A supplementation (2000 IU/kg, oral) upon oxidative stress and parameters of pro-inflammatory signaling in lungs of rats submitted to aerobic exercise (swimming protocol). When combined with exercise, vitamin A inhibited biochemical parameters of adaptation/conditioning by attenuating exercise-induced antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreasing the content of the receptor for advanced glycation end-products. Increased oxidative damage to proteins (carbonylation) and lipids (lipoperoxidation) was also observed in these animals. In sedentary animals, vitamin A decreased superoxide dismutase and increased lipoperoxidation. Vitamin A also enhanced the levels of tumor necrosis factor alpha and decreased interleukin-10, effects partially reversed by aerobic training. Taken together, the results presented herein point to negative effects associated with vitamin A supplementation at the specific dose here used upon oxidative stress and pro-inflammatory cytokines in lung tissues of rats submitted to aerobic exercise.

  16. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  17. Production of pesticide metabolites by oxidative reactions.

    PubMed

    Hodgson, E

    1982-08-01

    The cytochrome P-450-dependent monooxygenase system catalyzes a wide variety of oxidations of pesticide chemicals and related compounds. These reactions include epoxidation and aromatic hydroxylation, aliphatic hydroxylation, O-, N- and S-dealkylation, N-oxidation, oxidative deamination, S-oxidation, P-oxidation, desulfuration and ester cleavage and may result in either detoxication or activation of the pesticide. The current status of such reactions, relative to the production, in vivo, of biologically active intermediates in pesticide metabolism is summarized. More recently we have shown that the FAD-containing monooxygenase of mammalian liver (E.C.1.14.13.8), a xenobiotic metabolizing enzyme of broad specificity formerly known as an amine oxidase, is involved in a variety of pesticide oxidations. These include sulfoxidation of organophosphorus insecticides such as phorate and disulfoton, oxidative desulfuration of phosphonate insecticides such as fonofos and oxidation at the phosphorus atom in such compounds as the cotton defoliant, folex. The relative importance of the FAD-containing monooxygenase vis-a-vis the cytochrome P-450-dependent monooxygenase system is discussed, based on in vitro studies on purified enzymes.

  18. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.

    PubMed

    Wu, Ming L; Ettwig, Katharina F; Jetten, Mike S M; Strous, Marc; Keltjens, Jan T; van Niftrik, Laura

    2011-01-01

    Biological methane oxidation proceeds either through aerobic or anaerobic pathways. The newly discovered bacterium Candidatus 'Methylomirabilis oxyfera' challenges this dichotomy. This bacterium performs anaerobic methane oxidation coupled to denitrification, but does so in a peculiar way. Instead of scavenging oxygen from the environment, like the aerobic methanotrophs, or driving methane oxidation by reverse methanogenesis, like the methanogenic archaea in sulfate-reducing systems, it produces its own supply of oxygen by metabolizing nitrite via nitric oxide into oxygen and dinitrogen gas. The intracellularly produced oxygen is then used for the oxidation of methane by the classical aerobic methane oxidation pathway involving methane mono-oxygenase. The present mini-review summarizes the current knowledge about this process and the micro-organism responsible for it.

  19. Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Wrede, C.; Brady, S.; Rockstroh, S.; Dreier, A.; Kokoschka, S.; Heinzelmann, S. M.; Heller, C.; Reitner, J.; Taviani, M.; Daniel, R.; Hoppert, M.

    2012-07-01

    Methane oxidizing prokaryotes are ubiquitous in oxic and anoxic habitats wherever C1-compounds are present. Thus, methane saturated mud volcano fluids should be a preferred habitat of methane consuming prokaryotes, using the readily available electron donors. In order to understand the relevance of methane as a carbon and energy source in mud volcano communities, we investigate the diversity of prokaryotic organisms involved in oxidation of methane in fluid samples from the Salse di Nirano mud volcano field situated in the Northern Apennines. Cell counts were at approximately 0.7 × 106 microbial cells/ml. A fraction of the microbial biomass was identified as ANME (anaerobic methanotroph) archaea by fluorescence in situ hybridization (FISH) analysis. They are associated in densely colonized flakes, of some tens of μm in diameter, embedded in a hyaline matrix. Diversity analysis based on the 16S rDNA genes, retrieved from amplified and cloned environmental DNA, revealed a high proportion of archaea, involved in anaerobic oxidation of methane (AOM). Aerobic methane-oxidizing proteobacteria could be highly enriched from mud volcano fluids, indicating the presence of aerobic methanotrophic bacteria, which may contribute to methane oxidation, whenever oxygen is readily available. The results imply that biofilms, dominated by ANME archaea, colonize parts of the mud volcano venting system.

  20. Nickel-Catalyzed Aerobic Oxidative Isocyanide Insertion: Access to Benzimidazoquinazoline Derivatives via a Sequential Double Annulation Cascade (SDAC) Strategy.

    PubMed

    Shinde, Anand H; Arepally, Sagar; Baravkar, Mayur D; Sharada, Duddu S

    2017-01-06

    An efficient protocol for the synthesis of quinazoline derivatives through nickel-catalyzed ligand-/base-free oxidative isocyanide insertion under aerobic conditions with intramolecular bis-amine nucleophiles has been developed. A one-pot sequential double annulation cascade (SDAC) strategy involving an opening of isatoic anhydride and annulation to benzimidazole and further nickel-catalyzed intramolecular isocyanide insertion has also been demonstrated. The method is operationally simple to implement with a wide variety of substrates and represents a new approach for multiple C-N bond formations. The methodology has been successfully applied to the syntheses of hitherto unreported imidazo-fused benzimidazoquinazolines via a deprotection-GBB reaction sequence. Further, a florescence study reveals the potential of the present strategy for the discovery of highly fluorescent probes.

  1. Treatment of high strength distillery wastewater (cherry stillage) by integrated aerobic biological oxidation and ozonation.

    PubMed

    Beltrán, F J; Alvarez, P M; Rodríguez, E M; García-Araya, J F; Rivas, J

    2001-01-01

    The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.

  2. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules.

    PubMed

    Xu, Guangjing; Xu, Xiaochen; Yang, Fenglin; Liu, Sitong

    2011-01-15

    Partial nitrification was successfully achieved with addition of 5mM KClO(3) in the aerobic granules system. Batch tests demonstrated that KClO(3) selectively inhibited nitrite-oxidizing bacteria (NOB) but not ammonia-oxidizing bacteria (AOB). During stable partial nitrification, the influent pH was kept at 7.8-8.2, while the DO and temperature were not controlled in the SBR. When the NH(4)-N and COD levels were kept at 100mg/l and 400mg/l in the influent, the NH(4)-N and COD removal efficiencies reached 98.93% and 78.65%, respectively. The NO(2)-N accounted for 92.95% of the NO(χ)-N (NO(2)-N+NO(3)-N) in the effluent. Furthermore, about 90% of the chlorate was reduced to nontoxic chloride, thus it would not cause environmental problem. SEM showed that the main composition of the aerobic granules was bacilli and coccus bacteria. FISH analysis revealed that AOB became the dominant nitrifying bacteria, whereas NOB were detected only in low abundance. Chlorate could be used to control the development and maintenance of aerobic granules sludge for partial nitrification.

  3. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    PubMed Central

    Ebner, David C.; Bagdanoff, Jeffrey T.; Ferreira, Eric M.; McFadden, Ryan M.; Caspi, Daniel D.; Trend, Raissa M.

    2010-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (−)-sparteine as chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of base and hydrogen bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 °C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good to excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones. PMID:19904777

  4. Visible-light-induced aerobic dearomative reaction of indole derivatives: access to heterocycle fused or spirocyclo indolones.

    PubMed

    Zhang, Muliang; Duan, Yingqian; Li, Weipeng; Cheng, Yixiang; Zhu, Chengjian

    2016-04-04

    Oxazolo[3,2-a]indolone and spiro[furan-2,2'-indolin]one are synthesized by the visible-light-induced aerobic dearomative reaction of indoles. The common indole tethered alcohol at the N1 or C2 position reacts in a cascade fashion, providing facile access to diverse indolone scaffolds.

  5. Modified WO3 nanorod with Pt nanoparticle as retrievable materials in catalytic and photocatalytic aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Hosseini, Farnaz; Safaei, Elham; Mohebbi, Sajjad

    2017-07-01

    This study has focused on catalytic and photocatalytic oxidation of aromatic alcohols using WO3 nanorod and a series of Pt/WO3 nanocomposite Pt nanoparticles was loaded on WO3 nanorod with several mass ratios 0.1, 0.2, and 0.3 via a photoreduction process (PRP) and characterized by TEM, FE-SEM imaging, EDAX, XRD, DRS, ICP, and XPS. WO3 nanorods were obtained monodispersed with average 40-nm diameter and square cross section without significant size change by the loading of platinum nanoparticles on it. Progress of oxidation reaction was monitored by GC and the yield of aerobic photocatalytic oxidation of alcohols reached up to 98% for Pt/WO3 and 69% for WO3 while, no oxidation was detected in the absence of light. The highest photocatalytic performance was obtained for mass ratio 0.2 with the selectivity >99%. So, this nanocomposite has potentials to be used as high-performance heterogeneous catalyst and photocatalyst under visible light irradiation with advantages of high activity, high selectivity, and reusability.

  6. Bodipy derivatives as organic triplet photosensitizers for aerobic photoorganocatalytic oxidative coupling of amines and photooxidation of dihydroxylnaphthalenes.

    PubMed

    Huang, Ling; Zhao, Jianzhang; Guo, Song; Zhang, Caishun; Ma, Jie

    2013-06-07

    We used iodo-Bodipy derivatives that show strong absorption of visible light and long-lived triplet excited states as organic catalysts for photoredox catalytic organic reactions. Conventionally most of the photocatalysts are based on the off-the-shelf compounds, usually showing weak absorption in the visible region and short triplet excited state lifetimes. Herein, the organic catalysts are used for two photocatalyzed reactions mediated by singlet oxygen ((1)O2), that is, the aerobic oxidative coupling of amines and the photooxidation of dihydroxylnaphthalenes, which is coupled to the subsequent addition of amines to the naphthoquinones, via C-H functionalization of 1,4-naphthoquinone, to produce N-aryl-2-amino-1,4-naphthoquinones (one-pot reaction), which are anticancer and antibiotic reagents. The photoreactions were substantially accelerated with these new iodo-Bodipy organic photocatalysts compared to that catalyzed with the conventional Ru(II)/Ir(III) complexes, which show weak absorption in the visible region and short-lived triplet excited states. Our results will inspire the design and application of new organic triplet photosensitizers that show strong absorption of visible light and long-lived triplet excited state and the application of these catalysts in photoredox catalytic organic reactions.

  7. Induction of E. coli oh8Gua endonuclease by oxidative stress: its significance in aerobic life.

    PubMed

    Kim, H S; Park, Y W; Kasai, H; Nishimura, S; Park, C W; Choi, K H; Chung, M H

    1996-06-12

    The induction of 8-hydroxyguanine (oh8Gua) endonuclease, a DNA repair enzyme for an oxidatively modified guanine, oh8Gua was studied in various growth conditions in Escherichia coli (AB1157). Anaerobically grown E. coli were found to have a very low activity of this enzyme while aerobically grown cells showed activity about 20 times that of the anaerobic level. Under the same condition, superoxide dismutase (SOD) showed about 6-fold increase in activity. A shift in growth conditions from anaerobic to aerobic resulted in rapid induction of this enzyme, and this induction was blocked (but not completely) by chloramphenicol. It is indicated that molecular oxygen is an effective stimulator to the induction of this enzyme and its induction depends partly on protein synthesis. Superoxide-producing compounds such as paraquat and menadione also increased the activity of endonuclease as well as SOD, but H2O2 showed no effect. Thus, superoxides are also implied as a stimulator. In contrast, hyperoxia induced only SOD not the endonuclease. This induction of the endonuclease by hyperoxia was only observed in a SOD-deficient strain (QC774). The aerobic activity of the endonuclease in QC774 was the same as that of wild types (AB1157, GC4468). It is implied that the responsiveness of oh8Gua endonuclease to superoxides is less sensitive than that of SOD. The endonuclease was also induced by a temperature shift from 30 to 43 degrees C and treatment with nalidixic acid. Among the stimuli used, molecular oxygen seems to be most effective for its induction. The inducible nature of this enzyme will serve as an important mechanism for the protection of oxidative DNA damage in the aerobic environment.

  8. Nitrous oxide emissions from an aerobic granular sludge system treating low-strength ammonium wastewater.

    PubMed

    Gao, Mingming; Yang, Sen; Wang, Mingyu; Wang, Xin-Hua

    2016-11-01

    Aerobic granular sludge is a promising technology in wastewater treatment process. Its special microorganism structure could make the emissions of greenhouse gas nitrous oxide (N2O) more complicated. This study investigated the N2O emissions from a batch-fed aerobic granular sludge system during nitrification of low-strength synthetic ammonium wastewater. The N2O emission was 2.72 ± 0.52% of the oxidized ammonium during the whole anoxic-oxic sequencing batch reactor (SBR) cycle. Under nitrification batch test with sole ammonium substrate (50 mg N/L), N2O emission factor was 1.82% (N2ON/NH4(+)-Nox) and ammonia-oxidizing bacteria (AOB) was the responsible microorganism. The presence of high ammonium concentration (or high ammonium oxidation rate (AOR)) and accumulation of nitrite would lead to significant N2O emissions. AOB denitrification pathway was speculated to contribute more to the N2O emissions under nitrification conditions. While under simultaneous nitrification and denitrification condition with carbon source of 500 mg COD/L, the N2O emission factor increased to 2.76%. Both AOB and heterotrophic denitrifiers were responsible for N2O emission and heterotrophic denitrification enhances N2O emission. Step feeding of organic carbon source declined N2O emission factor to 1.60%, which underlined the role of storage substance consumption in N2O generation during denitrification.

  9. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress.

    PubMed

    Bloomer, Richard J; Goldfarb, Allan H; Wideman, Laurie; McKenzie, Michael J; Consitt, Leslie A

    2005-05-01

    The purpose of this study was to compare oxidative modification of blood proteins, lipids, DNA, and glutathione in the 24 hours following aerobic and anaerobic exercise using similar muscle groups. Ten cross-trained men (24.3 +/- 3.8 years, [mean +/- SEM]) performed in random order 30 minutes of continuous cycling at 70% of Vo(2)max and intermittent dumbbell squatting at 70% of 1 repetition maximum (1RM), separated by 1-2 weeks, in a crossover design. Blood samples taken before, and immediately, 1, 6, and 24 hours postexercise were analyzed for plasma protein carbonyls (PC), plasma malondialdehyde (MDA), and whole-blood total (TGSH), oxidized (GSSG), and reduced (GSH) glutathione. Blood samples taken before and 24 hours postexercise were analyzed for serum 8-hydroxy-2'-deoxyguanosine (8-OHdG). PC values were greater at 6 and 24 hours postexercise compared with pre-exercise for squatting, with greater PC values at 24 hours postexercise for squatting compared with cycling (0.634 +/- 0.053 vs. 0.359 +/- 0.018 nM.mg protein(-1)). There was no significant interaction or main effects for MDA or 8-OHdG. GSSG experienced a short-lived increase and GSH a transient decrease immediately following both exercise modes. These data suggest that 30 minutes of aerobic and anaerobic exercise performed by young, cross-trained men (a) can increase certain biomarkers of oxidative stress in blood, (b) differentially affect oxidative stress biomarkers, and (c) result in a different magnitude of oxidation based on the macromolecule studied. Practical applications: While protein and glutathione oxidation was increased following acute exercise as performed in this study, future research may investigate methods of reducing macromolecule oxidation, possibly through the use of antioxidant therapy.

  10. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Long, Xiaoyong; Ji, Junfeng; Barrón, Vidal; Torrent, José

    2016-10-01

    Iron oxides are widely distributed across the surface of the Earth as a result of the aerobic weathering of primary Fe-bearing minerals. Pedogenic iron oxides which consist mainly of hematite (Hm), goethite (Gt), maghemite (Mgh), are often concentrated synchronously in aerobic soils under low to moderate rainfall regimes. Magnetic susceptibility (χ) and redness, which respectively reflect the content of Mgh and Hm in soils, are considered reasonable pedogenic and climatic indicators in soil taxonomy and paleorainfall reconstruction. However, under high rainfall regimes, the grain growth of Mgh and transformation to Hm, combined with the prior formation of Gt under conditions of high relative humidity (RH), can result in magnetic reduction and dramatic yellowing of soils and sediments, which explains the existence of rainfall thresholds for Mgh and Hm at a large scale even before the pedogenic environment turns anaerobic. In order to capture the rainfall thresholds for Mgh and Hm occurring under aerobic conditions, we explored a tropical transect across a granitic region where the soil color turned from red to yellow under a wide rainfall range of 900-2200 mm/yr and a corresponding mean annual RH range of 77%-85%. We observed a lower rainfall threshold of ∼1500 mm/yr and a corresponding RH ∼80% for Mgh and Hm along this transect, as well as a higher rainfall threshold of ∼1700 mm/yr and a corresponding RH of ∼81% for Gt and total pedogenic iron oxides (citrate/bicarbonate/dithionite-extractable Fe, Fed). Cross-referencing with comparable studies in temperate and subtropical regions, we noted that the rainfall or RH thresholds for Fed and Hm or Mgh likewise increase with temperature. Moreover, the different thresholds for total and individual iron oxide phase indicates that a negative correlation between chemical weathering intensity and redness or χ in sediment sequences can occur under the prevalent climate regime just between their thresholds. Finally

  11. Oxidation state of BZ reaction mixtures.

    PubMed

    Sobel, Sabrina G; Hastings, Harold M; Field, Richard J

    2006-01-12

    The unstirred, ferroin (Fe(phen)(3)2+)-catalyzed Belousov-Zhabotinsky (BZ) reaction1-4 is the prototype oscillatory chemical system. After an induction period of several minutes, one sees "spontaneous" formation of "pacemaker" sites, which oscillate between a blue, oxidized state (high [Fe(phen)3(3+)]) and a red, reduced state (low [Fe(phen)(3)3+]). The reaction medium appears red (reduced) during the induction phase, and the pacemaker sites generate target patterns of concentric, outwardly moving waves of oxidation (blue). Auto-oscillatory behavior is also seen in the Oregonator model of Field, Korös, and Noyes (FKN), a robust, reduced model which captures qualitative BZ kinetics in the auto-oscillatory regime. However, the Oregonator model predicts a blue (oxidized) induction phase. Here, we show that including reaction R8 of the FKN mechanism, not incorporated in the original Oregonator, accounts for bromide release during the induction phase, thus producing the observed red oxidation state.

  12. Tannin oxidation: intra- versus intermolecular reactions.

    PubMed

    Poncet-Legrand, Céline; Cabane, Bernard; Bautista-Ortín, Ana-Belén; Carrillo, Stéphanie; Fulcrand, Hélène; Pérez, Javier; Vernhet, Aude

    2010-09-13

    Grape and apple condensed tannin fractions were autoxidized at high concentrations (5 g/L) in aqueous solutions and analyzed by thiolysis (depolymerization followed by HPLC analysis) and small angle X-ray scattering (SAXS). Structural parameters of native (unoxidized) tannin polymers were derived from SAXS according to the wormlike chain model: the length per monomer is 15 A, the length of the statistical segment 17 A, and the cross section of the macromolecule has a radius within the range 3-4.5 A. The rather short length of the statistical segment is an effect of the different location of interflavanol linkages, which cause a loss of orientational correlation between successive monomers. Oxidation created new bonds that were resistant to thiolysis, and, according to thiolysis, some of these new bonds were intramolecular. However, according to SAXS, oxidation at high tannin concentration caused the weight average degree of polymerization to increase, indicating that intermolecular reactions took place as well, creating larger macromolecules. In the case of the smaller grape seed tannins, these intermolecular reactions took place "end to end" leading to the formation of longer linear macromolecules, at least in the earlier stages of oxidation. In the case of the larger apple tannins, the SAXS patterns were characteristic of larger branched macromolecules. Accordingly, the intermolecular reactions were mainly "end to middle". This is in agreement with the higher probabilities of "end to middle" reactions arising from a higher ratio extension unit/terminal unit in the latter case.

  13. Heterogeneous natural selection on oxidative phosphorylation genes among fishes with extreme high and low aerobic performance.

    PubMed

    Zhang, Feifei; Broughton, Richard E

    2015-08-26

    Oxidative phosphorylation (OXPHOS) is the primary source of ATP in eukaryotes and serves as a mechanistic link between variation in genotypes and energetic phenotypes. While several physiological and anatomical factors may lead to increased aerobic capacity, variation in OXPHOS proteins may influence OXPHOS efficiency and facilitate adaptation in organisms with varied energy demands. Although there is evidence that natural selection acts on OXPHOS genes, the focus has been on detection of directional (positive) selection on specific phylogenetic branches where traits that increase energetic demands appear to have evolved. We examined patterns of selection in a broader evolutionary context, i.e., on multiple lineages of fishes with extreme high and low aerobic performance. We found that patterns of natural selection on mitochondrial OXPHOS genes are complex among fishes with different swimming performance. Positive selection is not consistently associated with high performance taxa and appears to be strongest on lineages containing low performance taxa. In contrast, within high performance lineages, purifying (negative) selection appears to predominate. We provide evidence that selection on OXPHOS varies in both form and intensity within and among lineages through evolutionary time. These results provide evidence for fluctuating selection on OXPHOS associated with divergence in aerobic performance. However, in contrast to previous studies, positive selection was strongest on low performance taxa suggesting that adaptation of OXPHOS involves many factors beyond enhancing ATP production in high performance taxa. The broader pattern indicates a complex interplay between organismal adaptations, ATP demand, and OXPHOS function.

  14. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K.; Sepulveda-Jauregui, A.; Anthony, K. Walter; Thalasso, F.

    2015-08-01

    Methanotrophic bacteria play an important role oxidizing a significant fraction of methane (CH4) produced in lakes. Aerobic CH4 oxidation depends mainly on lake CH4 and oxygen (O2) concentrations, in such a manner that higher MO rates are usually found at the oxic/anoxic interface, where both molecules are present. MO also depends on temperature, and via methanogenesis, on organic carbon input to lakes, including from thawing permafrost in thermokarst (thaw)-affected lakes. Given the large variability in these environmental factors, CH4 oxidation is expected to be subject to large seasonal and geographic variations, which have been scarcely reported in the literature. In the present study, we measured CH4 oxidation rates in 30 Alaskan lakes along a north-south latitudinal transect during winter and summer with a new field laser spectroscopy method. Additionally, we measured dissolved CH4 and O2 concentrations. We found that in the winter, aerobic CH4 oxidation was mainly controlled by the dissolved O2 concentration, while in the summer it was controlled primarily by the CH4 concentration, which was scarce compared to dissolved O2. The permafrost environment of the lakes was identified as another key factor. Thermokarst (thaw) lakes formed in yedoma-type permafrost had significantly higher CH4 oxidation rates compared to other thermokarst and non-thermokarst lakes formed in non-yedoma permafrost environments. As thermokarst lakes formed in yedoma-type permafrost have been identified to receive large quantities of terrestrial organic carbon from thaw and subsidence of the surrounding landscape into the lake, confirming the strong coupling between terrestrial and aquatic habitats and its influence on CH4 cycling.

  15. Effect of selected monoterpenes on methane oxidation, denitrification, and aerobic metabolism by bacteria in pure culture.

    PubMed

    Amaral, J A; Ekins, A; Richards, S R; Knowles, R

    1998-02-01

    Selected monoterpenes inhibited methane oxidation by methanotrophs (Methylosinus trichosporium OB3b, Methylobacter luteus), denitrification by environmental isolates, and aerobic metabolism by several heterotrophic pure cultures. Inhibition occurred to various extents and was transient. Complete inhibition of methane oxidation by Methylosinus trichosporium OB3b with 1.1 mM (-)-alpha-pinene lasted for more than 2 days with a culture of optical density of 0.05 before activity resumed. Inhibition was greater under conditions under which particulate methane monooxygenase was expressed. No apparent consumption or conversion of monoterpenes by methanotrophs was detected by gas chromatography, and the reason that transient inhibition occurs is not clear. Aerobic metabolism by several heterotrophs was much less sensitive than methanotrophy was; Escherichia coli (optical density, 0.01), for example, was not affected by up to 7.3 mM (-)-alpha-pinene. The degree of inhibition was monoterpene and species dependent. Denitrification by isolates from a polluted sediment was not inhibited by 3.7 mM (-)-alpha-pinene, gamma-terpinene, or beta-myrcene, whereas 50 to 100% inhibition was observed for isolates from a temperate swamp soil. The inhibitory effect of monoterpenes on methane oxidation was greatest with unsaturated, cyclic hydrocarbon forms [e.g., (-)-alpha-pinene, (S)-(-)-limonene, (R)-(+)-limonene, and gamma-terpinene]. Lower levels of inhibition occurred with oxide and alcohol derivatives [(R)-(+)-limonene oxide, alpha-pinene oxide, linalool, alpha-terpineol] and a noncyclic hydrocarbon (beta-myrcene). Isomers of pinene inhibited activity to different extents. Given their natural sources, monoterpenes may be significant factors affecting bacterial activities in nature.

  16. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation

    NASA Astrophysics Data System (ADS)

    Daines, Stuart J.; Lenton, Timothy M.

    2016-01-01

    The balance of evidence suggests that oxygenic photosynthesis had evolved by 3.0-2.7 Ga, several hundred million years prior to the Great Oxidation ≈2.4 Ga. Previous work has shown that if oxygenic photosynthesis spread globally prior to the Great Oxidation, this could have supported widespread aerobic ecosystems in the surface ocean, without oxidising the atmosphere. Here we use a suite of models to explore the implications for carbon cycling and the Great Oxidation. We find that recycling of oxygen and carbon within early aerobic marine ecosystems would have restricted the balanced fluxes of methane and oxygen escaping from the ocean, lowering the atmospheric concentration of methane in the Great Oxidation transition and its aftermath. This in turn would have minimised any bi-stability of atmospheric oxygen, by weakening a stabilising feedback on oxygen from hydrogen escape to space. The result would have been a more reversible and probably episodic rise of oxygen at the Great Oxidation transition, consistent with existing geochemical evidence. The resulting drop in methane levels to ≈10 ppm is consistent with climate cooling at the time but adds to the puzzle of what kept the rest of the Proterozoic warm. A key test of the scenario of abundant methanotrophy in oxygen oases before the Great Oxidation is its predicted effects on the organic carbon isotope (δ13Corg) record. Our open ocean general circulation model predicts δC13org ≈ - 30 to -45‰ consistent with most data from 2.65 to 2.45 Ga. However, values of δC13org ≈ - 50 ‰ require an extreme scenario such as concentrated methanotroph production where shelf-slope upwelling of methane-rich water met oxic shelf water.

  17. Atmospheric-pressure, liquid-phase, selective aerobic oxidation of alkanes catalysed by metal-organic frameworks.

    PubMed

    Dhakshinamoorthy, Amarajothi; Alvaro, Mercedes; Garcia, Hermenegildo

    2011-05-23

    Aerobic oxidation of cyclooctane to its corresponding ol/one mixture at atmospheric pressure and in the liquid phase is efficiently promoted by an Fe(BTC) (BTC=1,3,5-benzenetricarboxylate) metal-organic framework, incorporating N-hydroxyphthalimide and in several cases reaches a selectivity over 90% at 28% conversion. This catalytic system is further extended to other hydrocarbons, such as ethylbenzene and 1,2,3,4-tetrahydronaphthalene (tetralin), with high selectivity (>85%). This high selectivity in the product distribution arises from a radical reaction mechanism that occurs inside a hydrophobic cavity that preferentially adsorbs hydrocarbons over their corresponding alcohols. The system can be reused although there is a gradual decrease in turnover frequency, caused by minor changes in the crystal structure due to the formation of iron oxide nanoparticles. Given the sustainable nature of the oxidant and the mild conditions used, this discovery could serve to develop a new catalyst generation for the oxyfunctionalisation of hydrocarbon feedstocks with the real possibility of finding industrial application. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Copper(II) complexes as catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine.

    PubMed

    Khattar, Raghvi; Yadav, Anjana; Mathur, Pavan

    2015-05-05

    Two new mononuclear copper(II) complexes [Cu (L) (NO3)2] (1) and [Cu (L) Br2] (2) where (L=bis(1-(pyridin-2-ylmethyl)-benzimidazol-2-ylmethyl)ether) are synthesized and characterized by single-crystal X-ray diffraction analysis, elemental analysis, UV-Visible, IR spectroscopy, EPR and cyclic voltammetry. The complexes exhibit different coordination structures; the E1/2 value of the complex (1) is found to be relatively more cathodic than that of complex (2). X-band EPR spectra at low temperature in DMF supports a tetragonally distorted complex (1) while complex (2) shows three different g values suggesting a rhombic geometry. These complexes were utilized as a catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine assisted by molecular oxygen. The initial rate of reaction is dependent on the concentration of Cu(II) complex as well as substrate, and was found to be higher for the nitrate bound complex, while presence of acetate anion acts as a mild inhibitor of the reaction, as it is likely to pick up protons generated during the course of reaction. The inhibition suggests that the generated protons are further required in another important catalytic step.

  19. Copper(II) complexes as catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine

    NASA Astrophysics Data System (ADS)

    Khattar, Raghvi; Yadav, Anjana; Mathur, Pavan

    2015-05-01

    Two new mononuclear copper(II) complexes [Cu (L) (NO3)2] (1) and [Cu (L) Br2] (2) where (L = bis(1-(pyridin-2-ylmethyl)-benzimidazol-2-ylmethyl)ether) are synthesized and characterized by single-crystal X-ray diffraction analysis, elemental analysis, UV-Visible, IR spectroscopy, EPR and cyclic voltammetry. The complexes exhibit different coordination structures; the E1/2 value of the complex (1) is found to be relatively more cathodic than that of complex (2). X-band EPR spectra at low temperature in DMF supports a tetragonally distorted complex (1) while complex (2) shows three different g values suggesting a rhombic geometry. These complexes were utilized as a catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine assisted by molecular oxygen. The initial rate of reaction is dependent on the concentration of Cu(II) complex as well as substrate, and was found to be higher for the nitrate bound complex, while presence of acetate anion acts as a mild inhibitor of the reaction, as it is likely to pick up protons generated during the course of reaction. The inhibition suggests that the generated protons are further required in another important catalytic step.

  20. Free radicals: how do we stand them? Anaerobic and aerobic free radical (chain) reactions involved in the use of fluorogenic probes and in biological systems.

    PubMed

    Liochev, Stefan I

    2014-01-01

    Biologically significant conclusions have been based on the use of fluorogenic and luminogenic probes for the detection of reactive species. The basic mechanisms of the processes involved have not been satisfactorily elucidated. In the present work, the mechanism of the enzyme and photosensitized oxidation of NAD(P)H by resorufin is analyzed and appears to involve both aerobic and anaerobic free radical chain reactions. There are two major fallouts of this analysis. Many of the conclusions about the participation of radicals based on the use of probes such as resorufin and Amplex red need reevaluation. It is also concluded that anaerobic free radical reactions may be biologically significant, and the possible existence of enzymatic systems to eliminate certain free radicals is discussed.

  1. Modeling of simultaneous denitrification--anaerobic digestion--organic matter aerobic oxidation and nitrification in an anoxic-anaerobic-aerobic compact filter reactor.

    PubMed

    Moya, Jaime; Huiliñir, César; Peredo, Karol; Aspé, Estrella; Roeckel, Marlene

    2012-08-31

    A mathematical model was developed for a compact anoxic-anaerobic-aerobic filter reactor with liquid recirculation for the treatment of fishing effluents. The model includes denitrification, anaerobic digestion, aerobic carbon oxidation and nitrification steps, as well as an evaluation of the liquid gas mass transfer and pH. The model was calibrated using one experimental condition at a recycling ratio (R)=10, and was validated with R equal to 2 and 0, with an organic concentration of 554±24 mg TOCL(-1), salinity of 24 g L(-1) and hydraulic retention time (HRT) of 2 d. Carbon total removal is higher than 98%, while maximum nitrogen removal is 62% using total nitrification in the aerobic zone, due to a higher quantity of NO(x) produced which were recirculated to the anoxic zone. In the aerobic zone, simultaneous nitrification and denitrification processes occur, because the diffusion limitations cause a low oxygen penetration in the biofilm. In the anoxic-anaerobic zone, denitrification or methanogenesis inhibition by DO (caused by the recycled oxygen) is not observed.

  2. Chiral tetranuclear and dinuclear copper(ii) complexes for TEMPO-mediated aerobic oxidation of alcohols: are four metal centres better than two?

    PubMed

    Zhang, Guoqi; Proni, Gloria; Zhao, Sherry; Constable, Edwin C; Housecroft, Catherine E; Neuburger, Markus; Zampese, Jennifer A

    2014-08-28

    The one-pot reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde, (R)-2-aminoglycinol and Cu(OAc)2·2H2O in a 1 : 1 : 1 ratio in the presence of triethylamine led to the isolation of X-ray quality crystals of the chiral complex (R)- in high yield. The single crystal structure of (R)- reveals a tetranuclear copper(ii) complex that contains a {Cu4(μ-O)2(μ3-O)2N4O4} core. A reaction using (1S,2R)-2-amino-1,2-diphenylethanol as precursor under the same conditions generated the chiral complex (S,R)-; its structure was determined by single crystal X-ray crystallography and was found to contain a {Cu2(μ-O)2N2O2} core. Both (R)- and (S,R)- have been used for catalytic aerobic oxidation of benzylic alcohols in combination with the TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) radical. (R)- selectively catalyses the conversion of various aromatic primary alcohols to the corresponding aldehydes with high yields (99%) and TONs (770) in the air, while (S,R)- exhibits less promising catalytic performance under the same reaction conditions. The role of the cluster structures in (R)- and (S,R)- in controlling the reactivity towards aerobic oxidation reactions is discussed.

  3. Evaluation of Methyl Fluoride and Dimethyl Ether as Inhibitors of Aerobic Methane Oxidation

    PubMed Central

    Oremland, Ronald S.; Culbertson, Charles W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ∼100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor. PMID:16348771

  4. Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA).

    PubMed

    Carini, Stephen; Bano, Nasreen; LeCleir, Gary; Joye, Samantha B

    2005-08-01

    Patterns of aerobic methane (CH4) oxidation and associated methanotroph community composition were investigated during the development of seasonal stratification in Mono Lake, California (USA). CH4 oxidation rates were measured using a tritiated CH4 radiotracer technique. Fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequence analysis were used to characterize methanotroph community composition. A temporally shifting zone of elevated CH4 oxidation (59-123 nM day(-1)) was consistently associated with a suboxycline, microaerophilic zone that migrated upwards in the water column as stratification progressed. FISH analysis revealed stable numbers of type I (4.1-9.3 x 10(5) cells ml(-1)) and type II (1.4-3.4 x 10(5) cells ml(-1)) methanotrophs over depth and over time. Denaturing gradient gel electrophoresis and sequence analysis indicated slight shifts in methanotroph community composition despite stable absolute cell numbers. Variable CH4 oxidation rates in the presence of a relatively stable methanotroph population suggested that zones of high CH4 oxidation resulted from an increase in activity of a subset of the existing methanotroph population. These results challenge existing paradigms suggesting that zones of elevated CH4 oxidation activity result from the accumulation of methanotrophic biomass and illustrate that type II methanotrophs may be an important component of the methanotroph population in saline and/or alkaline pelagic environments.

  5. Cobalt nanoparticles as recyclable catalyst for aerobic oxidation of alcohols in liquid phase

    NASA Astrophysics Data System (ADS)

    Mondal, Arijit; Mukherjee, Debkumar; Adhikary, Bibhutosh; Ahmed, Md Azharuddin

    2016-05-01

    Cobalt nanoparticles prepared at room temperature from cobalt sulphate and tetrabutyl ammonium bromide as surfactant have been found to be effective oxidation catalysts. Palladium and platinum nanoparticles (average size 4-6 nm) can also be prepared from PdCl2 and K2PtCl4, respectively, using the same surfactant but require high temperature ( 120 °C) and much longer preparation time. Agglomeration of nanoparticles prepared from metals like palladium and platinum in common solvents, however, restricts their use as catalysts. It is therefore our endeavour to find the right combination of catalyst and solvent that will be beneficial from industrial point of view. Magnetic property measurement of cobalt nanoclusters was made using SQUID to identify their reusability nature. Herein, we report the use of cobalt nanoparticles (average size 90-95 nm) in dichloromethane solvent as effective reusable catalysts for aerobic oxidation of a variety of alcohols.

  6. Gas-phase reactions of nickel and nickel oxide clusters with nitrogen oxides. 3. Reactions of cations with nitric oxide

    SciTech Connect

    Vann, W.D.; Bell, R.C.; Castleman, A.W. Jr.

    1999-12-16

    A fast flow reactor-quadrupole mass spectrometer system coupled with a laser vaporization source is used to study the gas-phase reactions of nickel and nickel oxide cluster cations with nitric oxide. Pseudo-first-order bimolecular rate constants are reported for the reactions of NO with nickel and nickel oxide cluster cations and O{sub 2} reactions with nickel cluster cations. The product distributions indicate that several different reaction mechanisms occur between NO and NI{sub x}{sup +} and Ni{sub x}O{sub y}{sup +}. Competing processes such as oxidation, NO addition, and replacement of oxygen with nitric oxide are observed to occur. Also, the presence of magic peaks in the distributions indicates unusually stable product cluster species.

  7. Effect of Eight Weekly Aerobic Training Program on Auditory Reaction Time and MaxVO[subscript 2] in Visual Impairments

    ERIC Educational Resources Information Center

    Taskin, Cengiz

    2016-01-01

    The aim of study was to examine the effect of eight weekly aerobic exercises on auditory reaction time and MaxVO[subscript 2] in visual impairments. Forty visual impairment children that have blind 3 classification from the Turkey, experimental group; (age = 15.60 ± 1.10 years; height = 164.15 ± 4.88 cm; weight = 66.60 ± 4.77 kg) for twenty…

  8. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  9. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate.

    PubMed

    Wang, Xiao-Jun; Song, Yang; Mai, Jun-Sheng

    2008-12-30

    The present study is to investigate the treatment of a surfactant wastewater containing abundant sulfate by Fenton oxidation and aerobic biological processes. The operating conditions have been optimized. Working at an initial pH value of 8, a Fe2+ dosage of 600mgL(-1) and a H2O2 dosage of 120mgL(-1), the chemical oxidation demand (COD) and linear alkylbenzene sulfonate (LAS) were decreased from 1500 and 490mgL(-1) to 230 and 23mgL(-1) after 40min of Fenton oxidation, respectively. Advanced oxidation pretreatment using Fenton reagent was very effective at enhancing the biodegradability of this kind of wastewater. The wastewater was further treated by a bio-chemical treatment process based on an immobilized biomass reactor with a hydraulic detention time (HRT) of 20h after Fenton oxidation pretreatment under the optimal operating conditions. It was found that the COD and LAS of the final effluent were less than 100 and 5mgL(-1), corresponding to a removal efficiencies of over 94% and 99%, respectively.

  10. Antibacterial Action of Nitric Oxide-Releasing Chitosan Oligosaccharides against Pseudomonas aeruginosa under Aerobic and Anaerobic Conditions

    PubMed Central

    Reighard, Katelyn P.

    2015-01-01

    Chitosan oligosaccharides were modified with N-diazeniumdiolates to yield biocompatible nitric oxide (NO) donor scaffolds. The minimum bactericidal concentrations and MICs of the NO donors against Pseudomonas aeruginosa were compared under aerobic and anaerobic conditions. Differential antibacterial activities were primarily the result of NO scavenging by oxygen under aerobic environments and not changes in bacterial physiology. Bacterial killing was also tested against nonmucoid and mucoid biofilms and compared to that of tobramycin. Smaller NO payloads were required to eradicate P. aeruginosa biofilms under anaerobic versus aerobic conditions. Under oxygen-free environments, the NO treatment was 10-fold more effective at killing biofilms than tobramycin. These results demonstrate the potential utility of NO-releasing chitosan oligosaccharides under both aerobic and anaerobic environments. PMID:26239983

  11. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  12. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters.

    PubMed

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the "structure-activity" relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au(3+) ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  13. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  14. Influence of Polyoxometalate Protecting Ligands on Catalytic Aerobic Oxidation at the Surfaces of Gold Nanoparticles in Water.

    PubMed

    Zhang, Mingfu; Hao, Jingcheng; Neyman, Alevtina; Wang, Yifeng; Weinstock, Ira A

    2017-03-06

    Metal oxide cluster-anion (polyoxometalate, or POM) protecting ligands, [α-PW11O39](7-) (1), modify the rates at which 14 nm gold nanoparticles (Au NPs) catalyze an important model reaction, the aerobic (O2) oxidation of CO to CO2 in water. At 20 °C and pH 6.2, the following stoichiometry was observed: CO + O2 + H2O = CO2 + H2O2. After control experiments verified that the H2O2 product was sufficiently stable and did not react with 1 under turnover conditions, quantitative analysis of H2O2 was used to monitor the rates of CO oxidation, which increased linearly with the percent coverage of the Au NPs by 1 (0-64% coverage, with the latter value corresponding to 211 ± 19 surface-bound molecules of 1). X-ray photoelectron spectroscopy of Au NPs protected by a series of POM ligands (K(+) salts): 1, the Wells-Dawson ion [α-P2W18O62](6-) (2) and the monodefect Keggin anion [α-SiW11O39](8-) (3) revealed that binding energies of electrons in the Au 4f7/2 and 4f5/2 atomic orbitals decreased as a linear function of the POM charge and percent coverage of Au NPs, providing a direct correlation between the electronic effects of the POMs bound to the surfaces of the Au NPs and the rates of CO oxidation by O2. Additional data show that this effect is not limited to POMs but occurs, albeit to a lesser extent, when common anions capable of binding to Au-NP surfaces, such as citrate or phosphate, are present.

  15. Heterogeneous reaction of ozone with aluminum oxide

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1976-01-01

    Rates and collision efficiencies for ozone decomposition on aluminum oxide surfaces were determined. Samples were characterized by BET surface area, X-ray diffraction, particle size, and chemical analysis. Collision efficiencies were found to be between 2 times 10 to the -10 power and 2 times 10 to the -9 power. This is many orders of magnitude below the value of 0.000001 to 0.00001 needed for appreciable long-term ozone loss in the stratosphere. An activation energy of 7.2 kcal/mole was found for the heterogeneous reaction between -40 C and 40 C. Effects of pore diffusion, outgassing and treatment of the aluminum oxide with several chemical species were also investigated.

  16. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation.

    PubMed

    Könneke, Martin; Schubert, Daniel M; Brown, Philip C; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J; Stahl, David A; Berg, Ivan A

    2014-06-03

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments.

  17. Oxidative stress and inflammation response following aerobic exercise: role of ethnicity.

    PubMed

    McKenzie, M J; Goldfarb, A; Garten, R S; Vervaecke, L

    2014-09-01

    African-Americans are at a significantly greater risk for developing several diseases and conditions. These conditions often have underlying oxidative stress mechanisms. Therefore the purpose of this investigation was to ascertain the post-exercise oxidative response to a single bout of aerobic exercise in African-American and Caucasian college-age females. A total of 10 African-American and 10 Caucasian females completed the study. Each subject had her VO2 max measured while exercising on a treadmill. A week later, each subject returned to the laboratory and performed a 30-min run at 70% of her VO2max. Blood samples were taken immediately prior to and following exercise for analysis. Lipid hydroperoxides, protein carbonyls, malondialdehyde, xanthine oxidase, glutathione in the reduced (GSH) and oxidized (GSSG) forms, TNFα and interleukin 6 were measured from blood taken before and after exercise. Significance was set at p≤0.05 a priori. Xanthine oxidase was the only measure that did not significantly increase following exercise. All other markers showed a significant elevation in response to the exercise bout with no difference between groups except that the Caucasian group had significantly higher malondialdehyde post-exercise compared to the African-American group. This cohort of college-age African-American and Caucasian females showed little difference in their response to a single 30-min run at 70% of their max in the markers of oxidative stress within the blood.

  18. Independent and combined influence of AGTR1 variants and aerobic exercise on oxidative stress in hypertensives.

    PubMed

    Fenty-Stewart, Nicola; Park, Joon-Young; Roth, Stephen M; Hagberg, James M; Basu, Samar; Ferrell, Robert E; Brown, Michael D

    2009-01-01

    Abstract Angiotensin II (AngII), via the AngII type 1 receptor (AT(1)R), contributes to oxidative stress. Aerobic exercise training (AEXT) reduces the risk of cardiovascular (CV) disease, presumably by reducing the grade of oxidative stress. We investigated the independent and combined influence of the AGTR1 A1166C and -825 T/A polymorphisms on oxidative stress and plasma AngII responses to AEXT in pre- and stage 1 hypertensives. Urinary 8-iso-PGF(2alpha) significantly increased with AEXT (p=0.002); however, there were no significant changes in superoxide dismutase activity or AngII levels. There was a significant difference in the change in AngII levels with AEXT between A1166C genotype groups (p=0.04) resulting in a significant interactive effect of the A1166C polymorphism and AEXT on the change in AngII (p<0.05). Only the TT genotype group of the -825 T/A polymorphism had a significant reduction in plasma AngII (p=0.02). Risk allele analysis revealed a significant reduction in plasma AngII (p=0.04) and a significant increase in urinary 8-iso-PGF(2alpha) (p=0.01) with AEXT in individuals with two risk alleles only. Our findings suggest that variation in the AGTR1 gene is associated with differential changes in plasma AngII but not oxidative stress.

  19. Independent and combined influence of AGTR1 variants and aerobic exercise on oxidative stress in hypertensives

    PubMed Central

    FENTY-STEWART, NICOLA; PARK, JOON-YOUNG; ROTH, STEPHEN M.; HAGBERG, JAMES M.; BASU, SAMAR; FERRELL, ROBERT E.; BROWN, MICHAEL D.

    2010-01-01

    Angiotensin II (AngII), via the AngII type 1 receptor (AT1R), contributes to oxidative stress. Aerobic exercise training (AEXT) reduces the risk of cardiovascular (CV) disease, presumably by reducing the grade of oxidative stress. We investigated the independent and combined influence of the AGTR1 A1166C and −825 T/A polymorphisms on oxidative stress and plasma AngII responses to AEXT in pre- and stage 1 hypertensives. Urinary 8-iso-PGF2α significantly increased with AEXT (p=0.002); however, there were no significant changes in superoxide dismutase activity or AngII levels. There was a significant difference in the change in AngII levels with AEXT between A1166C genotype groups (p=0.04) resulting in a significant interactive effect of the A1166C polymorphism and AEXT on the change in AngII (p<0.05). Only the TT genotype group of the −825 T/A polymorphism had a significant reduction in plasma AngII (p=0.02). Risk allele analysis revealed a significant reduction in plasma AngII (p=0.04) and a significant increase in urinary 8-iso-PGF2α (p=0.01) with AEXT in individuals with two risk alleles only. Our findings suggest that variation in the AGTR1 gene is associated with differential changes in plasma AngII but not oxidative stress. PMID:19593696

  20. Short duration exhaustive aerobic exercise induces oxidative stress: a novel play-oriented volitional fatigue test.

    PubMed

    Kyparos, A; Salonikidis, K; Nikolaidis, M G; Kouretas, D

    2007-12-01

    Exercise is associated with the generation of reactive oxygen and nitrogen species. This study examined the oxidative stress in response to a novel volitional fatigue test. Eleven male college students performed a volitional fatigue test consisting of shuttle runs with a tennis racquet in the hand towards the left and right sidelines within the tennis singles court in an attempt to hit tennis balls until exhaustion. A tennis ball serving machine was adjusted to alternate feeds to the forehand and backhand sides of the subjects, standing at the baseline, at a frequency of 20 balls per minute. Mean time to volitional fatigue was 5.9+/-1.3 min and mean heart rate at volitional fatigue was 189+/-8.1 beats x min(-1). The volitional fatigue test resulted in significant increases in blood thiobarbituric acid-reactive substances (22%), protein carbonyls (58%), catalase activity (143%), total antioxidant capacity (34%) and oxidized glutathione (GSSG, 81%) concentration, as well as significant decreases in reduced glutathione (GSH, 15%) concentration and GSH/GSSG ratio (56%) immediately postexercise, as compared to the pre-exercise concentration. The data provide evidence that acute short duration exhaustive aerobic exercise in the form of a novel volitional fatigue test is capable of inducing oxidative stress. This novel test could serve as an alternative exercise modality to study oxidative stress.

  1. Aerobic exercise improves oxidant-antioxidant balance in patients with rheumatoid arthritis

    PubMed Central

    Tuna, Zeynep; Duger, Tulin; Atalay-Guzel, Nevin; Aral, Arzu; Basturk, Bilkay; Haznedaroglu, Seminur; Goker, Berna

    2015-01-01

    [Purpose] Although oxidative stress is known to be present in rheumatoid arthritis (RA), the effects of exercise on oxidative parameters are unknown. The aim of this study was to investigate the effects of acute aerobic exercise on serum oxidant and antioxidant levels in patients with RA. [Subjects and Methods] Sixteen patients with RA and 10 age-matched healthy volunteers participated in this study. All participants wore polar telemeters and walked on a treadmill for 30 minutes at a speed eliciting 60–75% of maximal heart rates. Blood samples were obtained before, immediately and 24 hours after exercise and malondialdehyde (MDA) and total sulfhydrile group (RSH) levels were measured. [Results] Both groups had similar heart rates during the test but the treadmill speed of the RA patients was significantly lower than that of the healthy volunteers. Serum MDA levels were lower than in both groups immediately after exercise, with greater decrements in the RA patients than controls. MDA levels returned to baseline 24 hours after the exercise only in the controls; they remained low in the RA patients. There was a slight increase in serum RSH levels after exercise compared to baseline in both groups. [Conclusion] Moderate intensity treadmill exercise did not have any adverse effect on the oxidant-antioxidant balance. The results suggest that such an exercise may be safely added to the rehabilitation program of RA for additional antioxidant effects. Morever, this antioxidant environment is maintained longer in RA patients. PMID:25995597

  2. Severe acute oxidant exposure: morphological damage and aerobic metabolism in the lung

    SciTech Connect

    Montgomery, M.R.; Teuscher, F.; LaSota, I.; Niewoehner, D.E.

    1986-09-01

    Groups of male rats were exposed to acute doses of oxygen, ozone, or paraquat which produced equivalent mortality (25-30%) over a 28 day post-exposure period. Quantitative evaluation of morphological changes indicated the primary response to be edema and inflammation with only slight fibrosis being apparent by the end of the observation period. Aerobic pulmonary metabolism was inhibited in lungs from animals exposed to oxygen and ozone as evidenced by decreased oxygen consumption; however, this was transient and O/sub 2/ consumption returned to normal within 24 hours after removal from the exposure chamber. Conversely, treatment with paraquat caused an immediate, transient stimulation of O/sub 2/ consumption. Glucose metabolism was unaltered by the gas exposures and, as previously reported, was initially stimulated by paraquat treatment. In vitro, only paraquat altered both O/sub 2/ consumption and glucose metabolism when added to lung slice preparations; ozone had no effect. Oxygen did not alter O/sub 2/ consumption but caused a slight biphasic response in glucose metabolism. Aerobic metabolism is relatively unchanged by these doses of oxygen and ozone which result in the death of 25-30% of all treated animals. Even though paraquat produces similar morphologic changes, it may represent a more severe metabolic insult than ''equivalent'' doses of oxygen or ozone. Also, if interstitial pulmonary fibrosis is a desired result of experimental exposure, rats may not be a suitable model for oxidant induced lung injury.

  3. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation

    PubMed Central

    Zheng, Xinde; Boyer, Leah; Jin, Mingji; Mertens, Jerome; Kim, Yongsung; Ma, Li; Ma, Li; Hamm, Michael; Gage, Fred H; Hunter, Tony

    2016-01-01

    How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size. DOI: http://dx.doi.org/10.7554/eLife.13374.001 PMID:27282387

  4. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph

    PubMed Central

    Harrold, Zoë R.; Skidmore, Mark L.; Hamilton, Trinity L.; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E.

    2015-01-01

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O32−), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O32− that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO42−) several orders of magnitude higher than those of S2O32−. Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O32−, CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O32− as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O32−-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O32− by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. PMID:26712544

  5. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph.

    PubMed

    Harrold, Zoë R; Skidmore, Mark L; Hamilton, Trinity L; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E; Boyd, Eric S

    2015-12-28

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O3 (2-)), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O3 (2-) that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO4 (2-)) several orders of magnitude higher than those of S2O3 (2-). Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O3 (2-), CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O3 (2-) as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O3 (2-)-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O3 (2-) by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Complete genome sequence of Methylocystis sp. strain SC2, an aerobic methanotroph with high-affinity methane oxidation potential.

    PubMed

    Dam, Bomba; Dam, Somasri; Kube, Michael; Reinhardt, Richard; Liesack, Werner

    2012-11-01

    Methylocystis sp. strain SC2 is an aerobic type II methanotroph isolated from a highly polluted aquifer in Germany. A specific trait of the SC2 strain is the expression of two isozymes of particulate methane monooxygenase with different methane oxidation kinetics. Here we report the complete genome sequence of this methanotroph that contains not only a circular chromosome but also two large plasmids.

  7. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    PubMed

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  8. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization

    SciTech Connect

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2015-10-16

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here in this study, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  9. Aerobic nitric oxide-induced thiol nitrosation in the presence and absence of magnesium cations.

    PubMed

    Kolesnik, Bernd; Heine, Christian L; Schmidt, Renate; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2014-11-01

    Although different routes for the S-nitrosation of cysteinyl residues have been proposed, the main in vivo pathway is unknown. We recently demonstrated that direct (as opposed to autoxidation-mediated) aerobic nitrosation of glutathione is surprisingly efficient, especially in the presence of Mg(2+). In the present study we investigated this reaction in greater detail. From the rates of NO decay and the yields of nitrosoglutathione (GSNO) we estimated values for the apparent rate constants of 8.9 ± 0.4 and 0.55 ± 0.06 M(-1)s(-1) in the presence and absence of Mg(2+). The maximum yield of GSNO was close to 100% in the presence of Mg(2+) but only about half as high in its absence. From this observation we conclude that, in the absence of Mg(2+), nitrosation starts by formation of a complex between NO and O2, which then reacts with the thiol. Omission of superoxide dismutase (SOD) reduced by half the GSNO yield in the absence of Mg(2+), demonstrating O2(-) formation. The reaction in the presence of Mg(2+) seems to involve formation of a Mg(2+)•glutathione (GSH) complex. SOD did not affect Mg(2+)-stimulated nitrosation, suggesting that no O2(-) is formed in that reaction. Replacing GSH with other thiols revealed that reaction rates increased with the pKa of the thiol, suggesting that the nucleophilicity of the thiol is crucial for the reaction, but that the thiol need not be deprotonated. We propose that in cells Mg(2+)-stimulated NO/O2-induced nitrosothiol formation may be a physiologically relevant reaction.

  10. Oxidative stability of pork emulsion containing tomato products and pink guava pulp during refrigerated aerobic storage.

    PubMed

    Joseph, Serlene; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari

    2014-11-01

    Lipid oxidation-induced quality problems can be minimized with the use of natural antioxidants. Antioxidant potential of tomato puree (10 %; T-1), tomato pulp (12.5 %; T-2), lyophilized tomato peel (6 %; T-3), and pink guava pulp (10 %; T-4) was evaluated in raw pork emulsion during refrigerated storage for 9 days under aerobic packaging. The lycopene and β-carotene content varied in pork emulsion as T-3 > T-1 > T-2 > T-4 and decreased (P < 0.05) during storage. The surface redness (a* value) increased (P < 0.05) with the incorporation of tomato products and pink guava pulp. Furthermore, metmyoglobin formation and lipid oxidation were lower (P < 0.05) in tomato- and guava-treated emulsions than in control. Overall, incorporation of tomato products and pink guava pulp improved the visual colour and odour scores of raw pork emulsion. These results indicated that tomato products and guava pulp can be utilized as sources of natural antioxidants in raw pork products to minimize lipid oxidation, off-odour development, and surface discolouration.

  11. Copper-catalyzed aerobic oxidative cleavage of C-C bonds in epoxides leading to aryl nitriles and aryl aldehydes.

    PubMed

    Gu, Lijun; Jin, Cheng

    2015-04-18

    Novel copper-catalyzed aerobic synthesis of aryl nitriles and aldehydes from epoxides via C-C single bond cleavage has been discovered. This reaction provides a practical method toward the synthesis of aryl nitriles and aldehydes, which are versatile intermediates and building blocks in organic synthesis.

  12. Preparation and catalytic activity of poly(N-vinyl-2-pyrrolidone)-protected Au nanoparticles for the aerobic oxidation of glucose.

    PubMed

    Zhang, Haijun; Li, Wenqi; Gu, Yajun; Zhang, Shaowei

    2014-08-01

    PVP-protected Au nanoparticles (NPs) for the aerobic oxidation of glucose were prepared by using NaBH4 reduction method. The effects of processing parameters such as Au3+ ion concentration, reaction temperature, ratio of NaBH4 or PVP to Au3+, and solvent composition on their particle sizes and catalytic activities were studied in detail and the synthesis conditions optimized. As-prepared Au NPs possessed a FCC structure, with an average size varying from about 100 to 2.6 nm depending on their preparation conditions. The size changes affected their catalytic activities in the aerobic oxidation of glucose. The Au NPs with the average size of 2.6 nm prepared under the optimal conditions showed a high instantaneous catalytic activity as well as a high long-time stability. Based on the kinetic study on the glucose oxidation over the PVP-protected Au NPs, the corresponding apparent activation energy was determined as 82 kJ mol(-1).

  13. A Bioinspired Catalytic Aerobic Oxidative C–H Functionalization of Primary Aliphatic Amines: Synthesis of 1,2-Disubstituted Benzimidazoles

    PubMed Central

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-01-01

    Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475

  14. Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau.

    PubMed

    Liu, Yong; Zhang, Jingxu; Zhao, Lei; Li, Yuzhao; Yang, Yuyin; Xie, Shuguang

    2015-03-01

    Both aerobic methane-oxidizing bacteria (MOB) and nitrite-dependent anaerobic methane oxidation (n-damo) bacteria can play an important role in mitigating the methane emission produced in anoxic sediment layers to the atmosphere. However, the environmental factors regulating the distribution of these methane-oxidizing microorganisms in lacustrine ecosystems remain essentially unclear. The present study investigated the distribution of aerobic MOB and n-damo bacteria in sediments of various freshwater lakes on the Yunnan Plateau (China). Quantitative PCR assay and clone library analysis illustrated the spatial variations in the abundances and structures of aerobic MOB and n-damo bacterial communities. Type I MOB (Methylosoma and Methylobacter) and type II MOB (Methylocystis) were detected, while type I MOB was more abundant than type II MOB. Lake sediments n-damo bacterial communities were composed of novel Methylomirabilis oxyfera-like pmoA genes. Lake sediments in the same geographic region could share a relatively similar aerobic MOB community structure. Moreover, Pearson's correlation analysis indicated that n-damo pmoA gene diversity showed a positive correlation with the ratio of organic matter to total nitrogen in lake sediment.

  15. Oxygen-transfer reactions of methylrhenium oxides

    SciTech Connect

    Abu-Omar, M.M.; Espenson, J.H.; Appelman, E.H.

    1996-12-18

    Methylrhenium dioxide, CH{sub 3}ReO{sub 2} (or MDO), is produced from methylrhenium trioxide, CH{sub 3}ReO{sub 3} (or MTO), and hypophosphorous acid in acidic aqueous medium. Its mechanism is discussed in light of MTO`s coordination ability and the inverse kinetic isotope effect (kie): H{sub 2}P(O)OH, k = 0.028 L mol{sup -1} s{sup -1}; D{sub 2}P(O)OH, k = 0.039 L mol{sup -1} s{sup -1}. The Re(V) complex, MDO, reduces perchlorate and other inorganic oxoanions (XO{sub n}{sup -}, where X = Cl, Br, or I and N = 4 or 3). The rate is controlled by the first oxygen abstraction from perchlorate to give chlorate, with a second-order rate constant at pH 0 and 25 {degrees}C of 7.3 L mol{sup -1} s{sup -1}. Organic oxygen-donors such as sulfoxides and pyridine N-oxides oxidize MDO to MTO as do metal oxo complexes: VO{sup 2+}{sub (aq)}, VO{sub 2}{sup +}{sub (aq)}, HOMoO{sub 2}{sup +}{sub (aq)}, and MnO{sub 4}{sup -}. The reaction between V{sup 2+}{sub (aq)} with MTO and the reduction of VO{sup 2+} with MDO made it possible to determine the free energy for MDO/MTO. Oxygen-atom transfer from oxygen-donors to MDO involves nucleophilic attack of X-O on the electrophilic Re(V) center of MDO; the reaction proceeds via an [MDO{center_dot}XO] adduct, which is supported by the saturation kinetics observed for some. The parameters that control and facilitate the kinetics of such oxygen-transfer processes are suggested and include the force constant for the asymmetric stretching of the element-oxygen bond.

  16. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  17. N-Heterocyclic Carbene Complexes in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Jurčík, Václav; Cazin, Catherine S. J.

    This chapter describes applications of N-heterocyclic carbenes (NHCs) in oxidation chemistry. The strong σ-donation capabilities of the NHCs allow an efficient stabilisation of metal centres in high oxidation states, while high metal-NHC bond dissociation energies suppress their oxidative decomposition. These properties make NHCs ideal ligands for oxidation processes. The first part of this chapter is dedicated to the reactivity of NHC-metal complexes towards molecular oxygen whilst the second half highlights all oxidation reactions catalysed by such complexes. These include oxidation of alcohols and olefins, oxidative cyclisations, hydrations of alkynes and nitriles, oxidative cleavage of alkenes and the oxidation of methane.

  18. Onset of the aerobic nitrogen cycle during the Great Oxidation Event

    NASA Astrophysics Data System (ADS)

    Zerkle, Aubrey L.; Poulton, Simon W.; Newton, Robert J.; Mettam, Colin; Claire, Mark W.; Bekker, Andrey; Junium, Christopher K.

    2017-02-01

    The rise of oxygen on the early Earth (about 2.4 billion years ago) caused a reorganization of marine nutrient cycles, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event). Our data fill a gap of about 400 million years in the temporal 15N/14N record and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton.

  19. Onset of the aerobic nitrogen cycle during the Great Oxidation Event.

    PubMed

    Zerkle, Aubrey L; Poulton, Simon W; Newton, Robert J; Mettam, Colin; Claire, Mark W; Bekker, Andrey; Junium, Christopher K

    2017-02-23

    The rise of oxygen on the early Earth (about 2.4 billion years ago) caused a reorganization of marine nutrient cycles, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope ((15)N/(14)N) values from approximately 2.31-billion-year-old shales of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event). Our data fill a gap of about 400 million years in the temporal (15)N/(14)N record and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton.

  20. Release of ANP and fat oxidation in overweight persons during aerobic exercise in water.

    PubMed

    Fenzl, M; Schnizer, W; Aebli, N; Schlegel, C; Villiger, B; Disch, A; Gredig, J; Zaugg, T; Krebs, J

    2013-09-01

    Exercise in water compared to land-based exercise (LE) results in a higher release of natriuretic peptides, which are involved in the regulation of exercise-induced adipose tissue lipolysis. The present study was performed to compare the release of atrial natriuretic peptide (ANP) and free fatty acids (FFA) during prolonged aerobic water-based exercise (WE) with the release after an identical LE. 14 untrained overweight subjects performed 2 steady state workload tests on the same ergometer in water and on land. Before and after exercise, venous blood samples were collected for measuring ANP, FFA, epinephrine, norepinephrine, insulin and glucose. The respiratory exchange ratio (RER) was determined for fat oxidation.The exercises resulted in a significant increase in ANP in LE (61%) and in WE (177%), and FFA increased about 3-fold in LE and WE with no significant difference between the groups. Epinephrine increased, while insulin decreased similarly in both groups. The RER values decreased during the exercises, but there was no significant difference between LE and WE. In conclusion, the higher ANP concentrations in WE had no additional effect on lipid mobilization, FFA release and fat oxidation. Moderate-intensity exercises in water offer no benefit regarding adipose tissue lipolysis in comparison to LE.

  1. Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process.

    PubMed

    Mandal, Tamal; Dasgupta, Dalia; Mandal, Subhasis; Datta, Siddhartha

    2010-08-15

    Degradation of leather industry wastewater by sole aerobic treatment incorporating Thiobacillus ferrooxidans, Fenton's reagents, and combined treatment was investigated in this study. The sole treatment by Fenton's oxidation involving the introduction of 6g FeSO(4) and 266 g H(2)O(2) in a liter of wastewater at pH of 3.5 and 30 degrees C for 30 min at batch conditions reduced COD, BOD(5), sulfide, total chromium and color up to 69%, 72%, 88%, 5%, 100% and T. ferrooxidans alone showed maximum reduction to an extent of 77, 80, 85, 52, 89, respectively, in 21 d treatment at pH 2.5, FeSO(4) 16 g/L and temperature of 30 degrees C. The combined treatment at batch conditions involving 30 min chemical treatment by Fenton's oxidation followed by 72 h biochemical treatment by T. ferrooxidans at batch conditions gave rise up to 93%, 98%, 72%, 62% and 100% removal efficiencies of COD, BOD, sulfide, chromium and color at pH of 2.5 and 30 degrees C. Decrease in photo absorption of the Fenton's reagent treated samples, as compared to the banks, at 280, 350 and 470 nm wave lengths was observed. This may be the key factor for stimulating the biodegradation by T. ferrooxidans. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria.

    PubMed

    Schmid, Markus C; Hooper, Alan B; Klotz, Martin G; Woebken, Dagmar; Lam, Phyllis; Kuypers, Marcel M M; Pommerening-Roeser, Andreas; Op den Camp, Huub J M; Jetten, Mike S M

    2008-11-01

    Bacterial aerobic ammonium oxidation and anaerobic ammonium oxidation (anammox) are important processes in the global nitrogen cycle. Key enzymes in both processes are the octahaem cytochrome c (OCC) proteins, hydroxylamine oxidoreductase (HAO) of aerobic ammonium-oxidizing bacteria (AOB), which catalyses the oxidation of hydroxylamine to nitrite, and hydrazine oxidoreductase (HZO) of anammox bacteria, which converts hydrazine to N(2). While the genomes of AOB encode up to three nearly identical copies of hao operons, genome analysis of Candidatus'Kuenenia stuttgartiensis' showed eight highly divergent octahaem protein coding regions as possible candidates for the HZO. Based on their phylogenetic relationship and biochemical characteristics, the sequences of these eight gene products grouped in three clusters. Degenerate primers were designed on the basis of available gene sequences with the aim to detect hao and hzo genes in various ecosystems. The hao primer pairs amplified gene fragments from 738 to 1172 bp and the hzo primer pairs amplified gene fragments from 289 to 876 bp in length, when tested on genomic DNA isolated from a variety of AOB and anammox bacteria. A selection of these primer pairs was also used successfully to amplify and analyse the hao and hzo genes in community DNA isolated from different ecosystems harbouring both AOB and anammox bacteria. We propose that OCC protein-encoding genes are suitable targets for molecular ecological studies on both aerobic and anaerobic ammonium-oxidizing bacteria.

  3. The aerobic oxidation of a Pd(II) dimethyl complex leads to selective ethane elimination from a Pd(III) intermediate.

    PubMed

    Khusnutdinova, Julia R; Rath, Nigam P; Mirica, Liviu M

    2012-02-01

    Oxidation of the Pd(II) complex (N4)Pd(II)Me(2) (N4 = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane) with O(2) or ROOH (R = H, tert-butyl, cumyl) produces the Pd(III) species [(N4)Pd(III)Me(2)](+), followed by selective formation of ethane and the monomethyl complex (N4)Pd(II)Me(OH). Cyclic voltammetry studies and use of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap suggest an inner-sphere mechanism for (N4)Pd(II)Me(2) oxidation by O(2) to generate a Pd(III)-superoxide intermediate. In addition, reaction of (N4)Pd(II)Me(2) with cumene hydroperoxide involves a heterolytic O-O bond cleavage, implying a two-electron oxidation of the Pd(II) precursor and formation of a transient Pd(IV) intermediate. Mechanistic studies of the C-C bond formation steps and crossover experiments are consistent with a nonradical mechanism that involves methyl group transfer and transient formation of a Pd(IV) species. Moreover, the (N4)Pd(II)Me(OH) complex formed upon ethane elimination reacts with weakly acidic C-H bonds of acetone and terminal alkynes, leading to formation of a new Pd(II)-C bond. Overall, this study represents the first example of C-C bond formation upon aerobic oxidation of a Pd(II) dimethyl complex, with implications in the development of Pd catalysts for aerobic oxidative coupling of C-H bonds.

  4. Variable carbon isotope fractionation expressed by aerobic CH 4-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Templeton, Alexis S.; Chu, Kung-Hui; Alvarez-Cohen, Lisa; Conrad, Mark E.

    2006-04-01

    Carbon isotope fractionation factors reported for aerobic bacterial oxidation of CH 4(α) range from 1.003 to 1.039. In a series of experiments designed to monitor changes in the carbon isotopic fractionation of CH 4 by Type I and Type II methanotrophic bacteria, we found that the magnitude of fractionation was largely due to the first oxidation step catalyzed by methane monooxygenase (MMO). The most important factor that modulates the (α) is the fraction of the total CH 4 oxidized per unit time, which strongly correlates to the cell density of the growth cultures under constant flow conditions. At cell densities of less than 0.1 g/L, fractionation factors greater than 1.03 were observed, whereas at cell densities greater than 0.5 g/L the fractionation factors decreased to as low as 1.002. At low cell densities, low concentrations of MMO limit the amount of CH 4 oxidized, while at higher cell densities, the overall rates of CH 4 oxidation increase sufficiently that diffusion of CH 4 from the gaseous to dissolved state and into the cells is likely the rate-determining step. Thus, the residual CH 4 is more fractionated at low cell densities, when only a small fraction of the total CH 4 has been oxidized, than at high cell densities, when up to 40% of the influent CH 4 has been utilized. Therefore, since Rayleigh distillation behavior is not observed, δ 13C values of the residual CH 4 cannot be used to infer the amount oxidized in either laboratory or field-studies. The measured (α) was the same for both Type I and Type II methanotrophs expressing particulate or soluble MMO. However, large differences in the δ 13C values of biomass produced by the two types of methanotrophs were observed. Methylosinus trichosporium OB3b (Type II) produced biomass with δ 13C values about 15‰ higher than the dissimilated CO 2, whereas Methylomonas methanica (Type I) produced biomass with δ 13C values only about 6‰ higher than the CO 2. These effects were independent of the

  5. Selective Aerobic Oxidation of Alcohols over Atomically-Dispersed Non-Precious Metal Catalysts

    SciTech Connect

    Xie, Jiahan; Yin, Kehua; Serov, Alexey; Artyushkova, Kateryna; Pham, Hien N.; Sang, Xiahan; Unocic, Raymond R.; Atanassov, Plamen; Datye, Abhaya K.; Davis, Robert J.

    2016-12-15

    Catalytic oxidation of alcohols often requires the presence of expensive transition metals. We show that earth-abundant Fe atoms dispersed throughout a nitrogen-containing carbon matrix catalyze the oxidation of benzyl alcohol and 5-hydroxymethylfurfural by O2 in the aqueous phase. Furthermore, the activity of the catalyst can be regenerated by a mild treatment in H2. An observed kinetic isotope effect indicates that β-H elimination from the alcohol is the kinetically relevant step in the mechanism, which can be accelerated by substituting Fe with Cu. Dispersed Cr, Co, and Ni also convert alcohols, demonstrating the general utility of metal–nitrogen–carbon materials for alcohol oxidation catalysis. Oxidation of aliphatic alcohols is substantially slower than that of aromatic alcohols, but adding 2,2,6,6-tetramethyl-1-piperidinyloxy as a co-catalyst with Fe can significantly improve the reaction rate.

  6. Quantification of Aerobic Ammonia-Oxidizing Bacteria in Soil using Activity-Based Fluorescent Labeling of Ammonia Monooxygenase

    NASA Astrophysics Data System (ADS)

    Farnan, J.; Bennett, K.; Hyman, M. R.

    2016-12-01

    Nitrification is a key step in the biological nitrogen cycle and has a large effect on the fate of nitrogen species in both wastewater treatment systems and agricultural soils. Aerobic ammonia-oxidizing bacteria (AOB) initiate nitrification by converting ammonia (NH3) to nitrite (NO2-) and are therefore pivotal to the process. AOB are ubiquitous in the environment but are difficult to quantify as they grow poorly on solid media. Other quantification methods like iquid most-probable number techniques are slow and error-prone, while modern molecular approaches involving polymerase chain reaction amplification are faster and more accurate but do not differentiate between active and inactive AOB. In this study, we explored using activity-based fluorescent mechanisms for rapidly quantifying metabolically active forms of AOB in soils. Initial experiments using Nitrosomonas europaea aimed to establish a relationship between NH3-dependent nitrite production and bacterial cell numbers. Active AMO was treated cells with 1,7-octadiyne (17OD) to inactivate the enzyme and a subsequent copper-dependent "click" reaction attached a fluor. The labeled protein was quantified by SDS-PAGE and IR scanning. In future experiments, AOB will be stimulated in soil microcosms by adding NH4Cl. AMO will again be inactivated by adding 17OD, and total bacteria will be separated from the soil samples using gradient centrifugation. After "click" conjugation with AlexaFluor 647 azide, the abundance of AMO will be determined with SDS-PAGE and IR analysis while metabolically active AOB will be measured via fluorescence-activating cell sorting.

  7. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  8. Techno-economic evaluation of the application of ozone-oxidation in a full-scale aerobic digestion plant.

    PubMed

    Chiavola, Agostina; D'Amato, Emilio; Gori, Riccardo; Lubello, Claudio; Sirini, Piero

    2013-04-01

    This paper deals with the application of the ozone-oxidation in a full scale aerobic sludge digester. Ozonation was applied continuously to a fraction of the biological sludge extracted from the digestion unit; the ozonated sludge was then recirculated to the same digester. Three different ozone flow rates were tested (60,500 and 670g O3 h(-1)) and their effects evaluated in terms of variation of the total and soluble fractions of COD, nitrogen and phosphorous, of total and volatile suspended solids concentrations and Sludge Volume Index in the aerobic digestion unit. During the 7-month operation of the ozonation process, it was observed an appreciable improvement of the aerobic digestion efficiency (up to about 20% under the optimal conditions) and of the sludge settleability properties. These results determined an average reduction of about 60% in the biological sludge extracted from the plant and delivered to final disposal. A thorough economic analysis showed that this reduction allowed to achieve a significant cost saving for the plant with respect to the previous years operated without ozonation. Furthermore, it was determined the threshold disposal cost above which implementation of the ozone oxidation in the aerobic digestion units of similar WWTPs becomes economically convenient (about 60€t(-1) of sludge).

  9. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  10. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol

    PubMed Central

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-01

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway. PMID:24413448

  11. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol

    NASA Astrophysics Data System (ADS)

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-01

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway.

  12. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol.

    PubMed

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-13

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C(3)N(4)) and Keggin-type polyoxometalate H(5)PMo(10)V(2)O(40) (PMoV(2)) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C(3)N(4) and O2 by the V-O-V structure of PMoV(2). This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway.

  13. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse

    NASA Astrophysics Data System (ADS)

    Yi, Xuenong; Wang, Yulin

    2017-06-01

    A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.

  14. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse

    NASA Astrophysics Data System (ADS)

    Yi, Xuenong; Wang, Yulin

    2016-08-01

    A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.

  15. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea

    PubMed Central

    Stieglmeier, Michaela; Mooshammer, Maria; Kitzler, Barbara; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Schleper, Christa

    2014-01-01

    Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell−1 h−1 and nitrification rates of 2.6±0.5 fmol NO2− cell−1 h−1 were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In 15N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting. PMID:24401864

  16. Selective Aerobic Oxidation of Alcohols over Atomically-Dispersed Non-Precious Metal Catalysts

    DOE PAGES

    Xie, Jiahan; Yin, Kehua; Serov, Alexey; ...

    2016-12-15

    Catalytic oxidation of alcohols often requires the presence of expensive transition metals. We show that earth-abundant Fe atoms dispersed throughout a nitrogen-containing carbon matrix catalyze the oxidation of benzyl alcohol and 5-hydroxymethylfurfural by O2 in the aqueous phase. Furthermore, the activity of the catalyst can be regenerated by a mild treatment in H2. An observed kinetic isotope effect indicates that β-H elimination from the alcohol is the kinetically relevant step in the mechanism, which can be accelerated by substituting Fe with Cu. Dispersed Cr, Co, and Ni also convert alcohols, demonstrating the general utility of metal–nitrogen–carbon materials for alcohol oxidationmore » catalysis. Oxidation of aliphatic alcohols is substantially slower than that of aromatic alcohols, but adding 2,2,6,6-tetramethyl-1-piperidinyloxy as a co-catalyst with Fe can significantly improve the reaction rate.« less

  17. Acylated Ghrelin and Circulatory Oxidative Stress Markers Responses to Acute Resistance and Aerobic Exercise in Postmenopausal Women.

    PubMed

    Carteri, Randhall B; Lopes, André Luis; Schöler, Cinthia M; Correa, Cleiton Silva; Macedo, Rodrigo C; Gross, Júlia Silveira; Kruger, Renata Lopes; Homem de Bittencourt, Paulo I; Reischak-Oliveira, Álvaro

    2016-06-01

    Since exercise increases the production of reactive oxygen species in different tissues, the objective of this study is to evaluate, compare and correlate the acute effects of aerobic and resistance exercise in circulatory markers of oxidative stress and acylated ghrelin (AG) in postmenopausal women. Ten postmenopausal women completed different protocols: a control session (CON), an aerobic exercise session (AERO); and a single-set (SSR) or 3-set (MSR) resistance exercise protocol. After exercise, both MSR (P = .06) and AERO (P = .02) sessions showed significant increased lipid peroxidation compared with baseline levels. CON and SSR sessions showed no differences after exercise. No differences were found between sessions at any time for total glutathione, glutathione dissulfide or AG concentrations. Exercise significantly increased lipid peroxidation compared with baseline values. As pro oxidant stimuli is necessary to promote chronic adaptations to the antioxidant defenses induced by exercise, our findings are important to consider when evaluating exercise programs prescription variables aiming quality of life in this population.

  18. Aerobic oxidation of cyclic amines to lactams catalyzed by ceria-supported nanogold

    DOE PAGES

    Dairo, Taiwo O.; Nelson, Nicholas C.; Slowing, Igor I.; ...

    2016-09-23

    Here, the oxidative transformation of cyclic amines to lactams, which are important chemical feedstocks, is efficiently catalyzed by CeO2-supported gold nanoparticles (Au/CeO2) and Aerosil 200 in the presence of an atmosphere of O2. The complete conversion of pyrrolidine was achieved in 6.5 h at 160 °C, affording a 97 % yield of the lactam product 2-pyrrolidone (γ-butyrolactam), while 2-piperidone (δ-valerolactam) was synthesized from piperidine (83 % yield) in 2.5 h. Caprolactam, the precursor to the commercially important nylon-6, was obtained from hexamethyleneimine in 37 % yield in 3 h. During the oxidation of pyrrolidine, two transient species, 5-(pyrrolidin-1-yl)-3,4-dihydro-2H-pyrrole (amidine-5) andmore » 4-amino-1-(pyrrolidin-1-yl)butan-1-one, were observed. Both of these compounds were oxidized to 2-pyrrolidone under catalytic conditions, indicating their role as intermediates in the reaction pathway. In addition to the reactions of cyclic secondary amines, Au/CeO2 also efficiently catalyzes the oxidation of N-methyl cyclic tertiary amines to the corresponding lactams at 80 and 100 °C.« less

  19. Aerobic oxidation of cyclic amines to lactams catalyzed by ceria-supported nanogold

    SciTech Connect

    Dairo, Taiwo O.; Nelson, Nicholas C.; Slowing, Igor I.; Angelici, Robert J.; Woo, L. Keith

    2016-09-23

    Here, the oxidative transformation of cyclic amines to lactams, which are important chemical feedstocks, is efficiently catalyzed by CeO2-supported gold nanoparticles (Au/CeO2) and Aerosil 200 in the presence of an atmosphere of O2. The complete conversion of pyrrolidine was achieved in 6.5 h at 160 °C, affording a 97 % yield of the lactam product 2-pyrrolidone (γ-butyrolactam), while 2-piperidone (δ-valerolactam) was synthesized from piperidine (83 % yield) in 2.5 h. Caprolactam, the precursor to the commercially important nylon-6, was obtained from hexamethyleneimine in 37 % yield in 3 h. During the oxidation of pyrrolidine, two transient species, 5-(pyrrolidin-1-yl)-3,4-dihydro-2H-pyrrole (amidine-5) and 4-amino-1-(pyrrolidin-1-yl)butan-1-one, were observed. Both of these compounds were oxidized to 2-pyrrolidone under catalytic conditions, indicating their role as intermediates in the reaction pathway. In addition to the reactions of cyclic secondary amines, Au/CeO2 also efficiently catalyzes the oxidation of N-methyl cyclic tertiary amines to the corresponding lactams at 80 and 100 °C.

  20. Predictive value of exhaled nitric oxide and aerobic capacity for sepsis complications after liver transplantation.

    PubMed

    Neviere, Remi; Trinh-Duc, Pierre; Hulo, Sébastien; Edme, Jean Louis; Dehon, Aurélie; Boleslawski, Emmanuel; Dharancy, Sébastien; Lebuffe, Gilles

    2016-12-01

    Our objective was to investigate the predictive value of fractional nitric oxide (NO) concentration in exhaled breath (FeNO) and aerobic capacity (peak VO2 ) for postoperative sepsis in liver transplantation candidates. Patients were identified and charts of all consecutive patients were prospectively reviewed. Bacterial sepsis represented the commonest postoperative complications (30%), which was attributed to peritonitis, pneumonia, and catheter-related infections. Preoperative FeNO and peak VO2 values were lower in patients with postoperative sepsis. Patients with sepsis required higher needs for mechanical ventilation and ICU length of stay. Inverse correlation was found between logarithmically FeNO-transformed data and systolic pulmonary artery pressure (r = -0.348; P = 0.018). Multivariate analyses using bootstrap sampling method indicated that odds of sepsis were associated with lower values of peak exercise VO2 [OR = 0.790 (0.592; 0.925)] and reduced log(FeNo) [OR = 0.027 (0.001; 0.451)], but not with higher MELD scores [OR = 1.141 (0.970; 1.486)]. By evaluating the cutoff for the ROC curves in each bootstrap resampling, median and 95% confidence interval were calculated for peak VO2 : 17 [16.2; 22] ml/kg/min and FeNO: 17.2 [13.0; 33.9] ppb. We conclude that low peak exercise VO2 and reduced FeNO may help identify patients who are at risk to develop perioperative sepsis. © 2016 Steunstichting ESOT.

  1. Nitric oxide-dependent killing of aerobic, anaerobic and persistent Burkholderia pseudomallei

    PubMed Central

    Jones-Carson, Jessica; Laughlin, James R.; Stewart, Amanda L.; Voskuil, Martin I.; Vázquez-Torres, Andrés

    2012-01-01

    Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis. PMID:22521523

  2. Praseodymium incorporated AIPO-5 molecular sieves for aerobic oxidation of ethylbenzene.

    PubMed

    Sundaravel, B; Babu, C M; Palanisamy, B; Palanichamy, M; Shanthi, K; Murugesan, V

    2013-04-01

    PrAlPO-5 with (Al + P)/Pr ratios of 25, 50, 75 and 100 molecular sieves were successfully synthesized by hydrothermal method. These molecular sieves were characterised using XPS, TPD-NH3, ex-situ pyridine adsorbed IR, TPR, TGA, 27Al and 31P MAS-NMR and ESR studies. The incorporation of praseodymium in the framework of AlPO-5 was confirmed by XRD, DRS UV-vis and 27Al and 31P MAS-NMR analysis. ESR spectrum showed the presence of adsorbed oxygen. The nature and strength of acid sites were identified by ex-situ pyridine adsorbed IR and TPD-NH3. The BET surface area was found to be in the range of 238-272 m2 g(-1). The catalytic activity of the molecular sieves was tested for the liquid phase aerobic oxidation of ethylbenzene. Acetophenone was found to be the major product with more than 90% ethylbenzene conversion. ICP-OES analysis revealed the presence of praseodymium intact in the framework of AlPO-5 up to five cycles.

  3. [Enhanced Resistance of Pea Plants to Oxidative: Stress Caused by Paraquat during Colonization by Aerobic Methylobacteria].

    PubMed

    Agafonova, N V; Doronina, N Y; Trotsenko, Yu A

    2016-01-01

    The influence of colonization of the pea (Pisum sativum L.) by aerobic methylobacteria of five different species (Methylophilus flavus Ship, Methylobacterium extorquens G10, Methylobacillus arboreus Iva, Methylopila musalis MUSA, Methylopila turkiensis Sidel) on plant resistance to paraquat-induced stresses has been studied. The normal conditions of pea colonization by methylobacteria were characterized by a decrease in the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) and in the concentrations of endogenous H2O2, proline, and malonic dialdehyde, which is a product of lipid peroxidation and indicator of damage to plant cell membranes, and an increase in the activity of the photosynthetic apparatus (the content of chlorophylls a, b and carotenoids). In the presence of paraquat, the colonized plants had higher activities of antioxidant enzymes, stable photosynthetic indices, and a less intensive accumulation of the products of lipid peroxidation as compared to noncolonized plants. Thus, colonization by methylobacteria considerably increased the adaptive protection of pea plants to the paraquat-induced oxidative stress.

  4. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation

    PubMed Central

    Wu, Hao; Ying, Minfeng; Hu, Xun

    2016-01-01

    While transformation of normal cells to cancer cells is accompanied with a switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, it is interesting to ask if cancer cells can revert from Warburg effect to OXPHOS. Our previous works suggested that cancer cells reverted to OXPHOS, when they were exposed to lactic acidosis, a common factor in tumor environment. However, the conclusion cannot be drawn unless ATP output from glycolysis and OXPHOS is quantitatively determined. Here we quantitatively measured ATP generation from glycolysis and OXPHOS in 9 randomly selected cancer cell lines. Without lactic acidosis, glycolysis and OXPHOS generated 23.7% − 52.2 % and 47.8% − 76.3% of total ATP, respectively; with lactic acidosis (20 mM lactate with pH 6.7), glycolysis and OXPHOS provided 5.7% − 13.4% and 86.6% − 94.3% of total ATP. We concluded that cancer cells under lactic acidosis reverted from Warburg effect to OXPHOS phenotype. PMID:27259254

  5. Central release of nitric oxide mediates antinociception induced by aerobic exercise.

    PubMed

    Galdino, G S; Duarte, I D; Perez, A C

    2015-09-01

    Nitric oxide (NO) is a soluble gas that participates in important functions of the central nervous system, such as cognitive function, maintenance of synaptic plasticity for the control of sleep, appetite, body temperature, neurosecretion, and antinociception. Furthermore, during exercise large amounts of NO are released that contribute to maintaining body homeostasis. Besides NO production, physical exercise has been shown to induce antinociception. Thus, the present study aimed to investigate the central involvement of NO in exercise-induced antinociception. In both mechanical and thermal nociceptive tests, central [intrathecal (it) and intracerebroventricular (icv)] pretreatment with inhibitors of the NO/cGMP/KATP pathway (L-NOArg, ODQ, and glybenclamide) prevented the antinociceptive effect induced by aerobic exercise (AE). Furthermore, pretreatment (it, icv) with specific NO synthase inhibitors (L-NIO, aminoguanidine, and L-NPA) also prevented this effect. Supporting the hypothesis of the central involvement of NO in exercise-induced antinociception, nitrite levels in the cerebrospinal fluid increased immediately after AE. Therefore, the present study suggests that, during exercise, the NO released centrally induced antinociception.

  6. Flexible bacterial strains that oxidize arsenite in anoxic or aerobic conditions and utilize hydrogen or acetate as alternative electron donors.

    PubMed

    Rodríguez-Freire, Lucía; Sun, Wenjie; Sierra-Alvarez, Reyes; Field, Jim A

    2012-02-01

    Arsenic is a carcinogenic compound widely distributed in the groundwater around the world. The fate of arsenic in groundwater depends on the activity of microorganisms either by oxidizing arsenite (As(III)), or by reducing arsenate (As(V)). Because of the higher toxicity and mobility of As(III) compared to As(V), microbial-catalyzed oxidation of As(III) to As(V) can lower the environmental impact of arsenic. Although aerobic As(III)-oxidizing bacteria are well known, anoxic oxidation of As(III) with nitrate as electron acceptor has also been shown to occur. In this study, three As(III)-oxidizing bacterial strains, Azoarcus sp. strain EC1-pb1, Azoarcus sp. strain EC3-pb1 and Diaphorobacter sp. strain MC-pb1, have been characterized. Each strain was tested for its ability to oxidize As(III) with four different electron acceptors, nitrate, nitrite, chlorate and oxygen. Complete As(III) oxidation was achieved with both nitrate and oxygen, demonstrating the novel ability of these bacterial strains to oxidize As(III) in either anoxic or aerobic conditions. Nitrate was only reduced to nitrite. Different electron donors were used to study their suitability in supporting nitrate reduction. Hydrogen and acetate were readily utilized by all the cultures. The flexibility of these As(III)-oxidizing bacteria to use oxygen and nitrate to oxidize As(III) as well as organic and inorganic substrates as alternative electron donors explains their presence in non-arsenic-contaminated environments. The findings suggest that at least some As(III)-oxidizing bacteria are flexible with respect to electron-acceptors and electron-donors and that they are potentially widespread in low arsenic concentration environments.

  7. Aerobic methane oxidation in a coastal environment with seasonal hypoxia - a time series study

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Bethke, Christina; Schweers, Johanna; Bange, Hermann; Kock, Annette; Lehmann, Moritz F.; Treude, Tina; Niemann, Helge

    2014-05-01

    In the coastal ocean, methane is generally produced in anoxic sediments from where it can migrate through the water column to the atmosphere. A significant amount of methane is consumed along this passage by a series of microbial filter systems. Over the last 15 years, researchers focused on the first filter in marine sediments, the anaerobic oxidation of methane (AOM). Comparably little is known about the second filter, the aerobic methane oxidation (MOx), which is mediated by bacteria and takes place in the oxic water column. MOx is particularly important in shallow coastal environments that account for more than 75 % of the global oceanic methane emissions. Key environmental factors possibly controlling MOx in these systems are subjected to strong temporal variations since coastal regions are highly dynamic systems. We will present results from a time-series study on methane cycling in the water column of a coastal inlet in the southwestern Baltic Sea (Eckernförde Bay, Boknis Eck Time Series Station, 54°31.823 N, 10°02.764 E, 28m water depth; www.bokniseck.de). Results from monthly samplings for the last 8 years revealed year-round methane seepage from the seafloor and methane supersaturation (with respect to the atmospheric equilibrium) of surface waters. Seasonal stratification during the summer months leads to intermittent oxygen depletion (hypoxic to anoxic) in bottom waters in late summer to early fall. The frequency of these low-oxygen events increased over the last 20 years. In addition to oxygen fluctuations, bottom water salinity can vary strongly (17-24 psu) due to regular inflows of salty North Sea water through the Kattegat. Over the course of one and a half years, we investigated MOx rates, the methanotrophic community, methane concentrations and physicochemical parameters of the water column on a quarterly basis. Albeit methane concentrations were high throughout the water column (20-120 nM), methane turnover showed a clear spatial pattern. That

  8. Investigating the chemical and isotopic kinetics of aerobic methane oxidation in the Northern US Atlantic Margin, Hudson Canyon

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Shiller, A. M.; Redmond, M. C.; Arrington, E. C.; Valentine, D. L.

    2015-12-01

    Recent discoveries of methane seepage along the US Atlantic margin have led to speculation on the fate of the released methane. Here we examine the kinetics of aerobic methane oxidation to gain a fundamental understanding of this methane sink. In order to look at this process in its entirety, a unique mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) to monitor in real time the chemical and isotopic changes involved with aerobic methane oxidation. This system measures changes in methane, carbon dioxide, and oxygen concentrations as well as the stable carbon isotopes of methane and carbon dioxide with time. In addition samples are strategically removed to characterize trace metals, nutrients, cell counts, and microbial community genetics. This presentation will detail the results obtained from samples collected inside the Hudson Canyon at the edge of the methane clathrate stability zone and outside the Hudson Canyon, not influenced by the methane seepage. These results show that in both environments along the Atlantic margin, methane was consumed aggressively but the timing of consumption varied based on location. In addition, these results are leading to insights into the chemical requirements needed for aerobic methane oxidation and the resulting isotopic fractionation.

  9. ANAEROBIC VS. AEROBIC PATHWAYS OF CARBONYL AND OXIDANT STRESS IN HUMAN LENS AND SKIN DURING AGING AND IN DIABETES: A COMPARATIVE ANALYSIS

    PubMed Central

    Fan, Xingjun; Sell, David R; Zhang, Jianye; Nemet, Ina; Theves, Mathilde; Lu, Jie; Strauch, Christopher; Halushka, Marc K.; Monnier, Vincent M.

    2010-01-01

    The effects of anaerobic (lens) vs aerobic (skin) environment on carbonyl and oxidant stress are compared using de novo and existing data on advanced glycation and oxidation products in human crystallins and collagen. Almost all modifications increase with age. Methylglyoxal hydroimidazolones (MG-H1), carboxymethyl-lysine (CML), and carboxyethyl-lysine (CEL) are several folds higher in lens than skin, and markedly increase upon incubation of lens crystallins with 5 mM ascorbic acid. Vice-versa, fructose-lysine, glucosepane crosslinks, glyoxal hydroimidazolones (G-H1), metal catalyzed oxidation (allysine) and H2O2 dependent modifications (2-aminoapidic acid and methionine sulfoxide) are markedly elevated in skin, but relatively suppressed in the aging lens. In both tissues ornithine is the dominant modification, implicating arginine residues as the principal target of the Maillard reaction in vivo. Diabetes (here mostly type 2 studied) increases significantly fructose-lysine and glucosepane in both tissues (P<0.001) but has surprisingly little effect on the absolute level of most other advanced glycation end products (AGEs) . However, diabetes strengthens the Spearman correlation coefficients for age-related accumulation of hydrogen peroxide mediated modifications in the lens. Overall, the data suggest oxoaldehyde stress involving methylglyoxal from either glucose or ascorbate is predominant in the aging non-cataractous lens, while aging skin collagen undergoes combined attack by non-oxidative glucose mediated modifications, as well as those from metal catalyzed oxidation and H2O2. PMID:20541005

  10. Oxidation and Reduction Reactions in Organic Chemistry

    ERIC Educational Resources Information Center

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  11. Oxidation and Reduction Reactions in Organic Chemistry

    ERIC Educational Resources Information Center

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  12. Tunable porosity of crosslinked-polyhedral oligomeric silsesquioxane (POSS) supports for palladium-catalyzed aerobic alcohol oxidation in water.

    PubMed

    Sangtrirutnugul, Preeyanuch; Chaiprasert, Thanawat; Hunsiri, Warodom; Jitjaroendee, Thanudkit; Songkhum, Patsaya; Laohhasurayotin, Kritapas; Osotchan, Tanakorn; Ervithayasuporn, Vuthichai

    2017-03-24

    Polyhedral oligomeric silsesquioxane (POSS)-based materials, poly-POSS-Tn [n = 8 (1), 10 (2), 12 (3), and mix (4)], were prepared in high yields via free radical polymerization of corresponding pure forms of methacrylate-functionalized POSS monomers, MMA-POSS-Tn (n = 8, 10, 12), and the mixture form, MMA-POSS-Tmix. Powder X-ray diffraction (XRD) spectra and BET analysis indicate that 1-4 are amorphous materials with high surface areas (683-839 m2•g-1). The surface areas and total pore volumes follow the trend: poly-POSS-T12 > poly-POSS-T10 > poly-POSS-Tmix > poly-POSS-T8. In addition, based on Barrett-Joyner-Halenda (BJH) analysis, poly-POSS-T12 contains the highest amount of mesopores. The Pd nanoparticles immobilized on poly-POSS-Tn [n = 8 (5), 10 (6), 12 (7), and mix (8)] are well dispersed with 4-6 wt% Pd content and similar average particle size of 6.2-6.5 nm, according to transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDX) and microwave plasma-atomic emission spectroscopy (MP-AES). At 90 oC, the stabilized Pd nanoparticles in 5-8 catalyzed aerobic oxidation of benzyl alcohol to benzaldehyde in 72-100% yields at 6 h using a mixture of a H2O/Pluronic (P123) solution. The PdNp@poly-POSS-T8 catalyst (5) exhibited the lowest catalytic activity, as a result of its lowest surface areas, total pore volumes, and amounts of mesopores. With the catalyst 8, various benzyl alcohol derivatives were converted to the corresponding aldehydes in good to excellent yields. However, with alcoholic substrates featuring electron-withdrawing substituents, high conversions were achieved with one equivalent of K2CO3 additive and longer reaction times.

  13. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.

    PubMed

    Lösekann, Tina; Knittel, Katrin; Nadalig, Thierry; Fuchs, Bernhard; Niemann, Helge; Boetius, Antje; Amann, Rudolf

    2007-05-01

    Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56%+/-8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94%+/-2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and

  14. Methane Emission From the Congo Deep Sea Fan and Subsequent Aerobic Oxidation in the Quaternary Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Handley, L.; Cooke, M. P.; Talbot, H. M.; Wagner, T.

    2008-12-01

    The Congo Fan is a well-documented region of important methane (CH4) storage and gas seepage: gas hydrates abound at and just below the sediment surface as do large deeply-buried reservoirs of thermogenic methane linked with hydrocarbon source rocks. In the Congo Fan, both sources of methane are intimately connected through a complex network of faults, structuring this massive sediment wedge in a unique way. Methane release from both reservoirs has the potential to drive or respond to changes in local and global climate, thus causing changes in ocean chemical properties and biotic responses. Understanding these poorly-constrained mechanisms of methane emission and reconstructing the history of past emissions in the ocean is the main focus of our study. The ultimate fate of CH4 is, typically, its oxidation to CO2; this process can occur aerobically and anaerobically. Compared to anaerobic processes, aerobic methane oxidation, and its underlying mechanisms and possible feedbacks for the ocean-climate system, has received little attention. Here we present molecular evidence from Congo Fan sediments for aerobic methane oxidation and highlight how the process may play a previously unrecognised role in carbon cycling and oxygen availability in the water column. Bacteriohopanepolyols (BHPs) are lipid membrane constituents and occur with a wide range of structural and functional variability in many bacteria. Amino-BHPs are produced in large abundances by methane-oxidising bacteria and the 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) is a highly specific biomarker for aerobic methane oxidation. The Congo Fan record (ODP Leg 175, Site 1075; 2996 m depth) spans the last 1 Myr and reveals remarkable organic biomarker preservation, with a suite of 13 different BHPs identified in most sediment horizons, including aminopentol. Aminopentol abundance varies widely throughout the section and appears to do so cyclically, with markedly greater concentrations between ca

  15. Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann W.; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F.; Niemann, Helge

    2017-03-01

    Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from which it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter, reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the south-western Baltic Sea (Eckernförde Bay). We found that MOx rates generally increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol L-1 d-1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 2.4-19.0 times more methane was oxidized than emitted to the atmosphere, whereas about the same amount was consumed and emitted during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2-220 µmol L-1 revealed a submicromolar oxygen optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidized methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results

  16. Palladium containing periodic mesoporous organosilica with imidazolium framework (Pd@PMO-IL): an efficient and recyclable catalyst for the aerobic oxidation of alcohols.

    PubMed

    Karimi, Babak; Elhamifar, Dawood; Clark, James H; Hunt, Andrew J

    2011-11-07

    The application of a novel palladium containing ionic liquid based periodic mesoporous organosilica (Pd@PMO-IL) catalyst in the aerobic oxidation of primary and secondary alcohols under molecular oxygen and air atmospheres is investigated. It was found that the catalyst is quite effective for the selective oxidation of several activated and non-activated alcoholic substrates. The catalyst system could be successfully recovered and reused several times without any significant decrease in activity and selectivity. Moreover, the hot filtration test, atomic absorption spectroscopy (AA) and kinetic study with and without selective catalyst poisons showed that the catalyst works in a heterogeneous pathway without any palladium leaching in reaction solution. Furthermore, nitrogen-sorption experiment and transmission electron microscopy (TEM) image proved the superior stability of high-ordered PMO-IL mesostructure during reaction process. TEM image also confirmed the presence of well-distributed Pd-nanoparticles in the uniform mesochannels of the material. These observations can be attributed to the ionic liquid nature of PMO-IL mesostructure which facilitates the reaction through production, chemical immobilization and stabilization of active palladium nanoparticles, as well as preventing Pd-agglomeration during overall process.

  17. Oxidative reactions during early stages of beer brewing studied by electron spin resonance and spin trapping.

    PubMed

    Frederiksen, Anne M; Festersen, Rikke M; Andersen, Mogens L

    2008-09-24

    An electron spin resonance (ESR)-based method was used for evaluating the levels of radical formation during mashing and in sweet wort. The method included the addition of 5% (v/v) ethanol together with the spin trap alpha-4-pyridyl(1-oxide)- N- tert-butylnitrone (POBN) to wort, followed by monitoring the rate of formation of POBN spin adducts during aerobic heating of the wort. The presence of ethanol makes the spin trapping method more selective and sensitive for the detection of highly reactive radicals such as hydroxyl and alkoxyl radicals. Samples of wort that were collected during the early stages of the mashing process gave higher rates of spin adduct formation than wort samples collected during the later stages. The lower oxidative stability of the early wort samples was confirmed by measuring the rate of oxygen consumption during heating of the wort. The addition of Fe(II) to the wort samples increased the rate of spin adduct formation, whereas the addition of Fe(II) during the mashing had no effect on the oxidative stability of the wort samples. Analysis of the iron content in the sweet wort samples demonstrated that iron added during the mashing had no effect on the iron level in the wort. The moderate temperatures during the early steps of mashing allow the endogenous malt enzymes to be active. The potential antioxidative effects of different redox-active enzymes during mashing were tested by measuring the rate of spin adduct formation in samples of wort. Surprisingly, a high catalase dosage caused a significant, 20% reduction of the initial rate of radical formation, whereas superoxide dismutase had no effect on the oxidation rates. This suggests that hydrogen peroxide and superoxide are not the only intermediates that play a role in the oxidative reactions occurring during aerobic oxidation of sweet wort.

  18. Synthesis of indazoles and azaindazoles by intramolecular aerobic oxidative C-N coupling under transition-metal-free conditions.

    PubMed

    Hu, Jiantao; Xu, Huacheng; Nie, Pengju; Xie, Xiaobo; Nie, Zongxiu; Rao, Yu

    2014-04-01

    A transition-metal-free oxidative C-N coupling method has been developed for the synthesis of 1H-azaindazoles and 1H-indazoles from easily accessible hydrazones. The procedure uses TEMPO, a basic additive, and dioxygen gas as the terminal oxidant. This reaction demonstrates better reactivity, functional group tolerance, and broader scope than comparable metal catalyzed reactions.

  19. Reaction pathways of NO oxidation by sodium chlorite powder.

    PubMed

    Byun, Youngchul; Ko, Kyoung Bo; Cho, Moohyun; Namkung, Won; Lee, Kiman; Shin, Dong Nam; Koh, Dong Jun

    2009-07-01

    NO oxidation is an important prerequisite step to assist selective catalytic reduction at low temperatures (< 250 degrees C). If sodium chlorite powder (NaClO2(s)) can oxidize NO to NO2, the injection of NaClO2(s) can be simply adapted to NO oxidation. Therefore, we explored the reaction pathways of NO oxidation by NaClO2(s). Known concentrations of NO and NO2 in N2 balance were injected into packed-bed reactor containing NaClO2(s) at 130 degreesC. NaClO2(s) oxidized NO to NO2 which reacts again with NaClO2(s) to produce OClO. Comparison of experimental data with simulation results demonstrates that each NO2 molecule removed by the reaction with NaClO2(s) generated one OClO molecule, which also oxidized NO to NO2 with the production of ClNO and ClNO2. Using these results, we conclude that the oxidation of NO by NaClO2(s) occurred by two pathways. One is through the direct reaction of NO with NaClO(s). The other is through both the reaction of NO with OlCO produced by the reaction of NO2 with NaClO2(s) and the reaction of NO with ClO produced by the reaction of NO with OClO.

  20. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.

    PubMed

    Powell, C L; Nogaro, G; Agrawal, A

    2011-06-01

    The degradation potential of trichloroethene by the aerobic methane- and ammonia-oxidizing microorganisms naturally associated with wetland plant (Carex comosa) roots was examined in this study. In bench-scale microcosm experiments with washed (soil free) Carex comosa roots, the activity of root-associated methane- and ammonia-oxidizing microorganisms, which were naturally present on the root surface and/or embedded within the roots, was investigated. Significant methane and ammonia oxidation were observed reproducibly in batch reactors with washed roots incubated in growth media, where methane oxidation developed faster (2 weeks) compared to ammonia oxidation (4 weeks) in live microcosms. After enrichment, the methane oxidizers demonstrated their ability to degrade 150 μg l(-1) TCE effectively at 1.9 mg l(-1) of aqueous CH(4). In contrast, ammonia oxidizers showed a rapid and complete inhibition of ammonia oxidation with 150 μg l(-1) TCE at 20 mg l(-1) of NH(4)(+)-N, which may be attributed to greater sensitivity of ammonia oxidizers to TCE or its degradation product. No such inhibitory effect of TCE degradation was detected on methane oxidation at the above experimental conditions. The results presented here suggest that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments.

  1. QuadraPure-Supported Palladium Nanocatalysts for Microwave-Promoted Suzuki Cross-Coupling Reaction under Aerobic Condition

    PubMed Central

    Loh, Poh Lee; Juan, Joon Ching; Yarmo, Mohd Ambar; Yusop, Rahimi M.

    2014-01-01

    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4–10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity. PMID:25054185

  2. QuadraPure-supported palladium nanocatalysts for microwave-promoted Suzuki cross-coupling reaction under aerobic condition.

    PubMed

    Liew, Kin Hong; Loh, Poh Lee; Juan, Joon Ching; Yarmo, Mohd Ambar; Yusop, Rahimi M

    2014-01-01

    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4-10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity.

  3. Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B**

    PubMed Central

    Murray, Alexander T; Dowley, Myles J H; Pradaux-Caggiano, Fabienne; Baldansuren, Amgalanbaatar; Fielding, Alistair J; Tuna, Floriana; Hendon, Christopher H; Walsh, Aron; Lloyd-Jones, Guy C; John, Matthew P; Carbery, David R

    2015-01-01

    The flavoenzyme monoamine oxidase (MAO) regulates mammalian behavioral patterns by modulating neurotransmitters such as adrenaline and serotonin. The mechanistic basis which underpins this enzyme is far from agreed upon. Reported herein is that the combination of a synthetic flavin and alloxan generates a catalyst system which facilitates biomimetic amine oxidation. Mechanistic and electron paramagnetic (EPR) spectroscopic data supports the conclusion that the reaction proceeds through a radical manifold. This data provides the first example of a biorelevant synthetic model for monoamine oxidase B activity. PMID:26087676

  4. Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B.

    PubMed

    Murray, Alexander T; Dowley, Myles J H; Pradaux-Caggiano, Fabienne; Baldansuren, Amgalanbaatar; Fielding, Alistair J; Tuna, Floriana; Hendon, Christopher H; Walsh, Aron; Lloyd-Jones, Guy C; John, Matthew P; Carbery, David R

    2015-07-27

    The flavoenzyme monoamine oxidase (MAO) regulates mammalian behavioral patterns by modulating neurotransmitters such as adrenaline and serotonin. The mechanistic basis which underpins this enzyme is far from agreed upon. Reported herein is that the combination of a synthetic flavin and alloxan generates a catalyst system which facilitates biomimetic amine oxidation. Mechanistic and electron paramagnetic (EPR) spectroscopic data supports the conclusion that the reaction proceeds through a radical manifold. This data provides the first example of a biorelevant synthetic model for monoamine oxidase B activity.

  5. The importance of biological oxidation of iron in the aerobic cells of the Wheal Jane pilot passive treatment system.

    PubMed

    Hall, G; Swash, P; Kotilainen, S

    2005-02-01

    The passive treatment system designed to treat the mine water discharge of the abandoned Wheal Jane tin mine in Cornwall consisted of a sequence of artificial wetland cells, an anaerobic cell and a final series of rock filters. Three systems were operated which differed only in the pre-treatment of the mine water before discharge to the aerobic wetland cells. The aerobic cells were designed to promote aerobic oxidation and precipitation of iron which could exceed a concentration of 100 mg/l in the raw mine water discharge. The largest investment of land area was to the artificial wetland cells and it was important to understand the processes of oxidation and precipitation of iron so that the performance of this aspect the pilot passive treatment plant (PPTP) could be managed as efficiently as possible. The generally low pH of the influent mine water and inevitable trend of decreasing pH due to hydrolysis of Fe(III) meant that distinguishing between biotic and abiotic mechanisms was fundamental for further design planning of passive treatment systems. This paper describes these observations.

  6. Six weeks of aerobic dance exercise improves blood oxidative stress status and increases interleukin-2 in previously sedentary women.

    PubMed

    Leelarungrayub, Donrawee; Saidee, Kunteera; Pothongsunun, Prapas; Pratanaphon, Sainetee; YanKai, Araya; Bloomer, Richard J

    2011-07-01

    This study evaluated the change in blood oxidative stress, blood interleukin-2, and physical performance following 6 weeks of moderate intensity and duration aerobic dance exercise in 24 sedentary women. Blood samples were collected at rest twice before (baseline) and after the 6-week intervention for analysis of protein hydroperoxide (PrOOH), malondialdehyde (MDA), total anti-oxidant capacity (TAC), and interleukin-2 (IL-2) levels. Maximal treadmill run time (Time(max)) and maximal oxygen consumption (VO(2max)) were also measured. All variables were statistically analyzed with a repeated measurement ANOVA and Tukey post hoc. No differences were noted in any variable during the baseline period (p > 0.05). After aerobic dance exercise, VO(2max), Time(max), TAC and IL-2 were significantly increased, whereas MDA levels were decreased significantly (p < 0.05). PrOOH did not change either between baseline measures or after exercise. It can be concluded that aerobic dance exercise at a moderate intensity and duration can improve physical fitness, decrease MDA, and increase TAC and IL-2 in previously sedentary women.

  7. Dynamics of photoinduced reactions at oxide surfaces

    NASA Astrophysics Data System (ADS)

    Al-Shamery, K.

    1996-11-01

    This report summarizes our work on UV-laser induced desorption of small molecules and atoms from transition metal oxides. The systems presented serve as examples for a simple photochemical reaction, the fission of the molecule surface bond. State resolved detection methods were used to record the final state distributions of the desorbing neutral molecules. Detailed results on the systems NO/NiO(1 1 1) and CO/Cr2O3(0 0 0 1) are presented. The experiments include investigations on stereodynamic aspects like the angular distributions of the desorbing molecules and, in the case of CO desorption, the rotational alignment with respect to the surface normal. Large desorption cross sections of (6±1) ṡ 10-17 cm2 for NO and (3.5±1) ṡ 10-17 cm2 for CO have been found for the desorption at 6.4 eV. The wavelength dependence indicates that the primary excitation step is substrate induced. The final state distributions show a high degree of translational, rotational and vibrational excitation and are clearly nonthermal of origin. The results are consistent with the formation of a negative ion intermediate state of the adsorbate. This observation is supported from a comparison to former results on NO/NiO(1 0 0) for which extensive ab initio calculations including electronically excited states exist. A spin state dependence of the vibrational excitation of NO could only be observed for NO/NiO(1 1 1) and is absent for NO/NiO(1 0 0). We attribute this observation to a spin state dependent coupling of the desorbing molecule to the surface in case the spin lattice orientation of the surface shows a preferential orientation. In the (1 1 1) plane the spin orientation is parallel within neighbour nickel ions while it is alternating in the (1 0 0) plane. For both systems studied the velocity component parallel to the surface is constant leading to a strong peaking along the surface normal for the fast molecules. The change from a preferred helicopter rotation (angular momentum

  8. Anaerobic vs aerobic pathways of carbonyl and oxidant stress in human lens and skin during aging and in diabetes: A comparative analysis.

    PubMed

    Fan, Xingjun; Sell, David R; Zhang, Jianye; Nemet, Ina; Theves, Mathilde; Lu, Jie; Strauch, Christopher; Halushka, Marc K; Monnier, Vincent M

    2010-09-01

    The effects of anaerobic (lens) vs aerobic (skin) environment on carbonyl and oxidant stress are compared using de novo and existing data on advanced glycation and oxidation products in human crystallins and collagen. Almost all modifications increase with age. Methylglyoxal hydroimidazolones, carboxymethyllysine, and carboxyethyllysine are severalfold higher in lens than in skin and markedly increase upon incubation of lens crystallins with 5mM ascorbic acid. In contrast, fructose-lysine, glucosepane crosslinks, glyoxal hydroimidazolones, metal-catalyzed oxidation (allysine), and H(2)O(2)-dependent modifications (2-aminoapidic acid and methionine sulfoxide) are markedly elevated in skin, but relatively suppressed in the aging lens. In both tissues ornithine is the dominant modification, implicating arginine residues as the principal target of the Maillard reaction in vivo. Diabetes (here mostly type 2 studied) increases significantly fructose-lysine and glucosepane in both tissues (P<0.001) but has surprisingly little effect on the absolute level of most other advanced glycation end products. However, diabetes strengthens the Spearman correlation coefficients for age-related accumulation of hydrogen peroxide-mediated modifications in the lens. Overall, the data suggest that oxoaldehyde stress involving methylglyoxal from either glucose or ascorbate is predominant in the aging noncataractous lens, whereas aging skin collagen undergoes combined attack by nonoxidative glucose-mediated modifications, as well as those from metal-catalyzed oxidation and H(2)O(2).

  9. Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans Under Aerobic vs. Denitrifying Conditions

    SciTech Connect

    Beller, H R; Letain, T E; Chakicherla, A; Kane, S R; Legler, T C; Coleman, M A

    2006-04-22

    Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with ke chemolithoautotrophic functions (such as sulfur-compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately ten percent of the genome) as differentially expressed using Robust Multi-array Average statistical analysis and a 2-fold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated respectively with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur-compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription, quantitative PCR analysis was used to validate these trends.

  10. Warburg Meets Autophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis via Oxidative Stress, Mitophagy, and Aerobic Glycolysis

    PubMed Central

    Pavlides, Stephanos; Vera, Iset; Gandara, Ricardo; Sneddon, Sharon; Pestell, Richard G.; Mercier, Isabelle; Martinez-Outschoorn, Ubaldo E.; Whitaker-Menezes, Diana; Howell, Anthony

    2012-01-01

    Abstract Significance: Here, we review certain recent advances in oxidative stress and tumor metabolism, which are related to understanding the contributions of the microenvironment in promoting tumor growth and metastasis. In the early 1920s, Otto Warburg, a Nobel Laureate, formulated a hypothesis to explain the “fundamental basis” of cancer, based on his observations that tumors displayed a metabolic shift toward glycolysis. In 1963, Christian de Duve, another Nobel Laureate, first coined the phrase auto-phagy, derived from the Greek words “auto” and “phagy,” meaning “self” and “eating.” Recent Advances: Now, we see that these two ideas (autophagy and aerobic glycolysis) physically converge in the tumor stroma. First, cancer cells secrete hydrogen peroxide. Then, as a consequence, oxidative stress in cancer-associated fibroblasts drives autophagy, mitophagy, and aerobic glycolysis. Critical Issues: This “parasitic” metabolic coupling converts the stroma into a “factory” for the local production of recycled and high-energy nutrients (such as L-lactate)—to fuel oxidative mitochondrial metabolism in cancer cells. We believe that Warburg and de Duve would be pleased with this new two-compartment model for understanding tumor metabolism. It adds a novel stromal twist to two very well-established cancer paradigms: aerobic glycolysis and autophagy. Future Directions: Undoubtedly, these new metabolic models will foster the development of novel biomarkers, and corresponding therapies, to achieve the goal of personalized cancer medicine. Given the central role that oxidative stress plays in this process, new powerful antioxidants should be developed in the fight against cancer. Antioxid. Redox Signal. 16, 1264–1284. PMID:21883043

  11. Acetic acid promoted metal-free aerobic carbon-carbon bond forming reactions at α-position of tertiary amines.

    PubMed

    Ueda, Hirofumi; Yoshida, Kei; Tokuyama, Hidetoshi

    2014-08-15

    The oxidative functionalization of the benzylic C-H bonds in tetrahydroisoquinolines and tetrahydro-β-carboline derivatives was investigated. C-C bond forming reactions proceeded with a range of nucleophiles (nitroalkane, enol silyl ether, indole, allylstannane, and tetrabutylammonium cyanide) under metal-free conditions and an oxygen atmosphere. Acetic acid caused a significant acceleration effect.

  12. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect

    NASA Astrophysics Data System (ADS)

    Zahed, Bahareh; Hosseini-Monfared, Hassan

    2015-02-01

    Three different nanocomposites of silver and graphene oxide, namely silver nanoparticles (AgNPs) immobilized on reduced graphene oxide (AgNPs/rGO), partially reduced graphene oxide (AgNPs/GO) and thiolated partially reduced graphene oxide (AgNPs/GOSH), were synthesized in order to compare their properties. Characterizations were carried out by infrared and UV-Vis and Raman spectroscopy, ICP, X-ray diffraction, SEM and TEM, confirming both the targeted chemical modification and the composite formation. The nanocomposites were successfully employed in the aerobic oxidation of benzyl alcohol at atmospheric pressure. AgNPs/GOSH is stable and recyclable catalyst which showed the highest activity in the aerobic oxidation of benzyl alcohol in the presence of N-hydroxyphthalimide (NHPI) to give benzaldehyde with 58% selectivity in 24 h at 61% conversion. The favorite properties of AgNPs/GOSH are reasonably attributed to the stable and well distributed AgNPs over GOSH due to strong adhesion between AgNPs and GOSH.

  13. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    EPA Science Inventory

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  14. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions

    PubMed Central

    Rifkind, Joseph M.; Mohanty, Joy G.; Nagababu, Enika

    2015-01-01

    Hemoglobin (Hb) continuously undergoes autoxidation producing superoxide which dismutates into hydrogen peroxide (H2O2) and is a potential source for subsequent oxidative reactions. Autoxidation is most pronounced under hypoxic conditions in the microcirculation and for unstable dimers formed at reduced Hb concentrations. In the red blood cell (RBC), oxidative reactions are inhibited by an extensive antioxidant system. For extracellular Hb, whether from hemolysis of RBCs and/or the infusion of Hb-based blood substitutes, the oxidative reactions are not completely neutralized by the available antioxidant system. Un-neutralized H2O2 oxidizes ferrous and ferric Hbs to Fe(IV)-ferrylHb and OxyferrylHb, respectively. FerrylHb further reacts with H2O2 producing heme degradation products and free iron. OxyferrylHb, in addition to Fe(IV) contains a free radical that can undergo additional oxidative reactions. Fe(III)Hb produced during Hb autoxidation also readily releases heme, an additional source for oxidative stress. These oxidation products are a potential source for oxidative reactions in the plasma, but to a greater extent when the lower molecular weight Hb dimers are taken up into cells and tissues. Heme and oxyferryl have been shown to have a proinflammatory effect further increasing their potential for oxidative stress. These oxidative reactions contribute to a number of pathological situations including atherosclerosis, kidney malfunction, sickle cell disease, and malaria. The toxic effects of extracellular Hb are of particular concern with hemolytic anemia where there is an increase in hemolysis. Hemolysis is further exacerbated in various diseases and their treatments. Blood transfusions are required whenever there is an appreciable decrease in RBCs due to hemolysis or blood loss. It is, therefore, essential that the transfused blood, whether stored RBCs or the blood obtained by an Autologous Blood Recovery System from the patient, do not further increase

  15. Guanine oxidation: one- and two-electron reactions.

    PubMed

    Pratviel, Geneviève; Meunier, Bernard

    2006-08-07

    Guanine bases in DNA are the most sensitive to oxidation. A lot of effort has been devoted to the understanding of the chemical modifications of guanine under different oxidizing conditions, the final goal being to know which lesions in DNA can be expected in vivo and their biological consequences. This article analyses the mechanisms underlying guanine oxidation by the comparison between one- and two-electron transfer processes. The different oxidants used in vitro give complementary answers. This overview presents a choice of some key intermediates and the predictive description of G-oxidation products that can be generated from these intermediates depending on the reaction conditions.

  16. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

    NASA Astrophysics Data System (ADS)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and

  17. Aerobic oxidation of methanol to formic acid on Au8-: benchmark analysis based on completely renormalized coupled-cluster and density functional theory calculations.

    PubMed

    Hansen, Jared A; Ehara, Masahiro; Piecuch, Piotr

    2013-10-10

    The left-eigenstate completely renormalized coupled-cluster (CC) method with singles, doubles, and noniterative triples [CR-CC(2,3)] and a few representative density functional theory (DFT) approaches have been applied to methanol oxidation to formic acid on a Au8(-) cluster, which is a model for aerobic oxidations on gold nanoparticles. It is demonstrated that CR-CC(2,3) supports the previous exothermic reaction mechanism, placing the initial rate-determining transition state, which corresponds to hydrogen transfer from the methoxy species to the molecular oxygen, at about 20 kcal/mol above the reactants, less than 40 kcal/mol above the O2 and CH3O(-) species coadsorbed on Au8(-), and considerably above the remaining two transition states along the reaction pathway. The DFT calculations using the previously exploited M06 hybrid functional show reasonable agreement with CR-CC(2,3), but B3LYP offers additional improvements in the description of the relevant activation energies. Pure functionals, including M06-L, BP86, and TPSS, do not work well, significantly underestimating the activation barriers, but dispersion corrections, as in B97-D, bring the results closer to the M06 accuracy level.

  18. [Characteristics of sulfate reduction-ammonia oxidation reaction].

    PubMed

    Yuan, Yi; Huang, Yong; Li, Xiang; Zhang, Chun-Lei; Zhang, Li; Pan, Yang; Liu, Fu-Xin

    2013-11-01

    The sulfate reduction-ammonia oxidation reaction with ANAMMOX sludge at autotrophic condition was implemented. It was found that the pH level decreased during the reaction. Elemental sulfur and nitrogen gas were the final products, while NO3(-) -N was the intermediate product during the sulfate reduction-ammonia oxidation reaction. The conversion ratio of NH4(+) -N/SO4(2-) -S decreased with the decrease in n(N)/n(S) (molar ratio) of raw water. n(N)/n(S) of raw water had little effect on the ammonia conversion ratio. Lower n(N)/n(S) could improve the SO4(2-)-S conversion ratio, but with more NH4(+) -N oxidized into NO3(-) -N, resulting in decreased n(TN)/n(TS) removal ratio. This indicates that the sulfate reduction-ammonia oxidation reaction is not an elementary reaction. Ammonia can be oxidized into NO2(-) -N or NO3(-) -N by sulfate. Shortening the reaction time would be conducive to nitrogen losses, because the reaction of NO3(-) -N production is the rate-limiting step.

  19. Cyclization Reactions through DDQ-Mediated Vinyl Oxazolidinone Oxidation

    PubMed Central

    Liu, Lei; Floreancig, Paul E.

    2009-01-01

    Vinyl oxazolidinones react with DDQ to form α,β-unsaturated acyliminium ions in a new method for forming electrophiles under oxidative conditions. Appended nucleophiles undergo 1,4-addition reactions with these intermediates to form cyclic vinyl oxazolidinones with good levels of diastereocontrol, highlighting a new approach to utilizing oxidative carbon–hydrogen bond functionalization to increase molecular complexity. PMID:19552390

  20. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  1. Metal-Organic Frameworks as Catalysts for Oxidation Reactions.

    PubMed

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; Garcia, Hermenegildo

    2016-06-06

    This Concept is aimed at describing the current state of the art in metal-organic frameworks (MOFs) as heterogeneous catalysts for liquid-phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal-free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion.

  2. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry

    PubMed Central

    2015-01-01

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents. PMID:26622165

  3. Experimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industry

    DOE PAGES

    Osterberg, Paul M.; Niemeier, Jeffry K.; Welch, Christopher J.; ...

    2014-12-06

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. Furthermore, the data obtained from these studies help define safe operating conditions for the use of oxygen with organicmore » solvents.« less

  4. Thermal oxidative degradation reactions of perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1981-01-01

    The mechanisms operative in thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes are investigated. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids is not established. It was determined that this behavior is not associated with hydrogen end groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres is dependent on the surface/volume ratio. Once a limiting ratio is reached, a steady rate appears to be attained. Based on elemental analysis and oxygen consumption data, CF2OCF2CF2O2, no. CF2CF2O, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys is much more drastic in the case of Fomblin Z fluids than that observed for the hexafluoropropene derived materials. The effectiveness of antioxidation anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys is very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appears to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes this takes place to a much lesser degree with M-50.

  5. A protective protein matrix improves the discrimination of nitroxyl from nitric oxide by MnIII protoporphyrinate IX in aerobic media.

    PubMed

    Boron, Ignacio; Suárez, Sebastián A; Doctorovich, Fabio; Martí, Marcelo A; Bari, Sara E

    2011-08-01

    The selectivity of MnIII/II porphyrinates toward nitroxyl or nitric oxide donors provides a convenient starting point for the development of new materials for the speciation of these nitrogen-containing redox relatives. In the present report, we describe the insertion of MnIII protoporphyrinate IX in apomyoglobin and its chemical behavior toward HNO or NO donors, either under anaerobic or aerobic conditions. For comparison and discussion, the MnIII porphyrinate, devoid of the protein matrix, was studied in parallel. The MnIII reconstituted globin successfully reacted with the nitroxyl donor trioxodinitrate, while it was unreactive toward NO or NO donors, in good agreement with previously reported data on water soluble MnIII porphyrinates. The estimated association rate constant for the reaction with the nitroxyl donor was of the same order of magnitude for the reconstituted globin and the free porphyrinate, suggesting that the protein environment is not involved in the reaction mechanism. In contrast, the reaction product exhibited enhanced stability in the presence of dioxygen only when the porphyrinate was included in the protein matrix; this feature is ascribed to the role of the distal residues on the metal centered reactivity. This behavior is required for spectroscopic detection under biologically relevant conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydroxypropyl methacrylate, reaction... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... reporting. (1) The chemical substance identified generically as hydroxypropyl methacrylate,...

  7. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydroxypropyl methacrylate, reaction... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... reporting. (1) The chemical substance identified generically as hydroxypropyl methacrylate,...

  8. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydroxypropyl methacrylate, reaction... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... reporting. (1) The chemical substance identified generically as hydroxypropyl methacrylate,...

  9. Thermal oxidative degradation reactions of perfluoroalklethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Harris, D. H.; Smythe, M. E.; Kratzer, R. H.

    1983-01-01

    The objective of this contract was to investigate the mechanisms operative in thermal and thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids has not been established. It was determined that this behavior was not associated with hydrogen end-groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres was found to be dependent on the surface/volume ratio. Once a limiting ratio was reached, a steady rate appeared to be attained. Based on elemental analysis and oxygen consumption data, -CF2OCF2CF2O-, not -CF2CF2O-, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys was found to be much more drastic in the case of Fomblin Z fluids than that observed for the hexalfuoropropane oxide derived materials. The effectiveness of antioxidation/anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys was very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appeared to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes; this took place to a much lesser degree with M-50.

  10. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  11. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2013-10-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans, respectively. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  12. Synthesis, characterization and structure of nickel and copper compounds containing ligands derived from keto-enehydrazines and their catalytic application for aerobic oxidation of alcohols.

    PubMed

    Gaona, Miguel Ángel; Montilla, Francisco; Álvarez, Eleuterio; Galindo, Agustín

    2015-04-14

    Ligand precursors HL(R,Ph) (R = Me, Ph) were synthesised by condensation of acetylacetone and the corresponding N,N-substituted hydrazines and were characterised spectroscopically and structurally. Both in the solid state and in solution they behave as (Z)-keto-enehydrazines and this was confirmed by DFT calculations which showed that this form was the most stable of their possible tautomers. The reaction of HL(R,Ph) compounds with copper acetate and nickel acetate in EtOH afforded the corresponding complexes [M(L(R,Ph))2] (M = Cu, Ni; R = Me, Ph). The methyl-substituted derivatives were structurally characterised by X-ray methods. A four-coordinate environment around the metal centre, where the two L(Me,Ph) ligands act as bidentate N,O-chelators and lie in a pseudo-trans conformation, was found for both compounds. The dihedral angle between the two six-membered metallacycles M(L(Me,Ph)) was 0° for nickel, a typical square planar coordination, meanwhile it was 23° for copper, a square planar slightly distorted to pseudotetrahedral coordination. Copper complexes [Cu(L(R,Ph))2] were tested as catalysts, in combination with TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl radical), for the aerobic oxidation of 4-nitrobenzyl alcohol as the model reaction. An almost complete conversion to the corresponding aldehyde was observed after 1 h at 60 °C and 1 bar of dioxygen, in toluene as the solvent. Importantly, air at atmospheric pressure was also observed to be appropriate for the oxidation, although longer reaction times were required. After the optimization of the reaction conditions, the study was extended to other alcohol substrates and good catalytic activity was found for benzylic-type alcohols, while low yield was found for 1-octanol.

  13. A Bioorthogonal Reaction of N-Oxide and Boron Reagents.

    PubMed

    Kim, Justin; Bertozzi, Carolyn R

    2015-12-21

    The development of bioorthogonal reactions has classically focused on bond-forming ligation reactions. In this report, we seek to expand the functional repertoire of such transformations by introducing a new bond-cleaving reaction between N-oxide and boron reagents. The reaction features a large dynamic range of reactivity, showcasing second-order rate constants as high as 2.3×10(3)  M(-1)  s(-1) using diboron reaction partners. Diboron reagents display minimal cell toxicity at millimolar concentrations, penetrate cell membranes, and effectively reduce N-oxides inside mammalian cells. This new bioorthogonal process based on miniscule components is thus well-suited for activating molecules within cells under chemical control. Furthermore, we demonstrate that the metabolic diversity of nature enables the use of naturally occurring functional groups that display inherent biocompatibility alongside abiotic components for organism-specific applications.

  14. Transition-Metal-Controlled Inorganic Ligand-Supported Non-Precious Metal Catalysts for the Aerobic Oxidation of Amines to Imines.

    PubMed

    Yu, Han; Zhai, Yongyan; Dai, Guoyong; Ru, Shi; Han, Sheng; Wei, Yongge

    2017-08-21

    Most state-of-art transition-metal catalysts usually require organic ligands, which are essential for controlling the reactivity and selectivity of reactions catalyzed by transition metals. However, organic ligands often suffer from severe problems including cost, toxicity, air/moisture sensitivity, and being commercially unavailable. Herein, we show a simple, mild, and efficient aerobic oxidation procedure of amines using inorganic ligand-supported non-precious metal catalysts 1, (NH4 )n [MMo6 O18 (OH)6 ] (M=Cu(2+) ; Fe(3+) ; Co(3+) ; Ni(2+) ; Zn(2+) , n=3 or 4), synthesized by a simple one-step method in water at 100 °C, demonstrating that the catalytic activity and selectivity can be significantly improved by changing the central metal atom. In the presence of these catalysts, the catalytic oxidation of primary and secondary amines, as well as the coupling of alcohols and amines, can smoothly proceed to afford various imines with O2 (1 atm) as the sole oxidant. In particular, the catalysts 1 have transition-metal ion core, and the planar arrangement of the six Mo(VI) centers at their highest oxidation states around the central heterometal can greatly enhance the Lewis acidity of catalytically active sites, and also enable the electrons in the center to delocalize onto the six edge-sharing MO6 units, in the same way as ligands in traditional organometallic complexes. The versatility of this methodology maybe opens a path to catalytic oxidation through inorganic ligand-coordinated metal catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heterogeneously-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with MnO2.

    PubMed

    Hayashi, Eri; Komanoya, Tasuku; Kamata, Keigo; Hara, Michikazu

    2017-02-22

    A simple non-precious-metal catalyst system based on costeffective and ubiquitously available MnO2 , NaHCO3 , and molecular oxygen was used to convert 5-hydroxymethylfurfural (HMF) to 2,5-difurandicarboxylic acid (FDCA) as a bioplastics precursor in 91 % yield. The MnO2 catalyst could be recovered by simple filtration and reused several times. The present system was also applicable to the aerobic oxidation of other biomass-derived substrates and the gram-scale oxidation of HMF to FDCA, in which 2.36 g (86 % yield) of the analytically pure FDCA could be isolated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A method for on-line measurement of wastewater organic substrate oxidation level during aerobic heterotrophic respiration.

    PubMed

    Rudelle, E A; Vollertsen, J; Hvitved-Jacobsen, T; Nielsen, A H

    2013-01-01

    A method for on-line measurement of the organic carbon oxidation level (OXC) during aerobic heterotrophic respiration in domestic wastewater was developed and tested. The method is based on batch incubation of sewer wastewater in an intermittently aerated respirometric reactor. Between aeration cycles, measured pH, dissolved oxygen (DO) and dissolved carbon dioxide (CO2) were used to calculate electron flow accepted by DO and the resulting production of dissolved inorganic carbon (DIC). The CO2 production was measured using a novel fiber-optic sensor based on luminescence quenching. The method was tested on domestic wastewater with a relatively high pH and alkalinity. From the DO and DIC measurements, it was possible to evaluate substrate oxidation levels with a temporal resolution of less than an hour. Addition of organic substrates during the experiments confirmed the method's applicability. The substrates tested included ethanol (OXC = -2), glucose (OXC = 0) and oxalic acid (OXC = 3).

  17. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath)

    NASA Astrophysics Data System (ADS)

    Wang, David T.; Welander, Paula V.; Ono, Shuhei

    2016-11-01

    Aerobic oxidation of methane plays a major role in reducing the amount of methane emitted to the atmosphere from freshwater and marine settings. We cultured an aerobic methanotroph, Methylococcus capsulatus (Bath) at 30 and 37 °C, and determined the relative abundance of 12CH4, 13CH4, 12CH3D, and 13CH3D (a doubly-substituted, or ;clumped; isotopologue of methane) to characterize the clumped isotopologue effect associated with aerobic methane oxidation. In batch culture, the residual methane became enriched in 13C and D relative to starting methane, with D/H fractionation a factor of 9.14 (Dε/13ε) larger than that of 13C/12C. As oxidation progressed, the Δ13CH3D value (a measure of the excess in abundance of 13CH3D relative to a random distribution of isotopes among isotopologues) of residual methane decreased. The isotopologue fractionation factor for 13CH3D/12CH4 was found to closely approximate the product of the measured fractionation factors for 13CH4/12CH4 and 12CH3D/12CH4 (i.e., 13C/12C and D/H). The results give insight into enzymatic reversibility in the aerobic methane oxidation pathway. Based on the experimental data, a mathematical model was developed to predict isotopologue signatures expected for methane in the environment that has been partially-oxidized by aerobic methanotrophy. Measurement of methane clumped isotopologue abundances can be used to distinguish between aerobic methane oxidation and alternative methane-cycling processes.

  18. Isolation and characterization of homodimeric type-I reaction center complex from Candidatus Chloracidobacterium thermophilum, an aerobic chlorophototroph.

    PubMed

    Tsukatani, Yusuke; Romberger, Steven P; Golbeck, John H; Bryant, Donald A

    2012-02-17

    The recently discovered thermophilic acidobacterium Candidatus Chloracidobacterium thermophilum is the first aerobic chlorophototroph that has a type-I, homodimeric reaction center (RC). This organism and its type-I RCs were initially detected by the occurrence of pscA gene sequences, which encode the core subunit of the RC complex, in metagenomic sequence data derived from hot spring microbial mats. Here, we report the isolation and initial biochemical characterization of the type-I RC from Ca. C. thermophilum. After removal of chlorosomes, crude membranes were solubilized with 0.1% (w/v) n-dodecyl β-D-maltoside, and the RC complex was purified by ion-exchange chromatography. The RC complex comprised only two polypeptides: the reaction center core protein PscA and a 22-kDa carotenoid-binding protein denoted CbpC. The absorption spectrum showed a large, broad absorbance band centered at ∼483 nm from carotenoids as well as smaller Q(y) absorption bands at 672 and 812 nm from chlorophyll a and bacteriochlorophyll a, respectively. The light-induced difference spectra of whole cells, membranes, and the isolated RC showed maximal bleaching at 840 nm, which is attributed to the special pair and which we denote as P840. Making it unique among homodimeric type-I RCs, the isolated RC was photoactive in the presence of oxygen. Analyses by optical spectroscopy, chromatography, and mass spectrometry revealed that the RC complex contained 10.3 bacteriochlorophyll a(P), 6.4 chlorophyll a(PD), and 1.6 Zn-bacteriochlorophyll a(P)' molecules per P840 (12.8:8.0:2.0). The possible functions of the Zn-bacteriochlorophyll a(P)' molecules and the carotenoid-binding protein are discussed.

  19. Divergence between organometallic and single-electron-transfer mechanisms in copper(II)-mediated aerobic C-H oxidation.

    PubMed

    Suess, Alison M; Ertem, Mehmed Z; Cramer, Christopher J; Stahl, Shannon S

    2013-07-03

    Copper(II)-mediated C-H oxidation is the subject of extensive interest in synthetic chemistry, but the mechanisms of many of these reactions are poorly understood. Here, we observe different products from Cu(II)-mediated oxidation of N-(8-quinolinyl)benzamide, depending on the reaction conditions. Under basic conditions, the benzamide group undergoes directed C-H methoxylation or chlorination. Under acidic conditions, the quinoline group undergoes nondirected chlorination. Experimental and computational mechanistic studies implicate an organometallic C-H activation/functionalization mechanism under the former conditions and a single-electron-transfer mechanism under the latter conditions. This rare observation of divergent, condition-dependent mechanisms for oxidation of a single substrate provides a valuable foundation for understanding Cu(II)-mediated C-H oxidation reactions.

  20. Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization

    NASA Astrophysics Data System (ADS)

    Jeong, Hoon Y.; Han, Young-Soo; Park, Sung W.; Hayes, Kim F.

    2010-06-01

    Oxidation of mackinawite (FeS) and concurrent mobilization of arsenic were investigated as a function of pH under oxidizing conditions. At acidic pH, FeS oxidation is mainly initiated by the proton-promoted dissolution, which results in the release of Fe(II) and sulfide in the solution. While most of dissolved sulfide is volatilized before being oxidized, dissolved Fe(II) is oxidized into green rust-like precipitates and goethite ( α-FeOOH). At basic pH, the development of Fe(III) (oxyhydr)oxide coating on the FeS surface inhibits the solution-phase oxidation following FeS dissolution. Instead, FeS is mostly oxidized into lepidocrocite ( γ-FeOOH) via the surface-mediated oxidation without dissolution. At neutral pH, FeS is oxidized via both the solution-phase oxidation following FeS dissolution and the surface-mediated oxidation mechanisms. The mobilization of arsenic during FeS oxidation is strongly affected by FeS oxidation mechanisms. At acidic pH (and to some extent at neutral pH), the rapid FeS dissolution and the slow precipitation of Fe (oxyhydr)oxides results in arsenic accumulation in water. In contrast, the surface-mediated oxidation of FeS at basic pH leads to the direct formation of Fe (oxyhydr)oxides, which provides effective adsorbents for As under oxic conditions. At acidic and neutral pH, the solution-phase oxidation of dissolved Fe(II) accelerates the oxidation of the less adsorbing As(III) to the more adsorbing As(V). This study reveals that the oxidative mobilization of As may be a significant pathway for arsenic enrichment of porewaters in sulfidic sediments.

  1. Reactions of nitric oxide with tree and fungal laccase.

    PubMed

    Martin, C T; Morse, R H; Kanne, R M; Gray, H B; Malmström, B G; Chan, S I

    1981-09-01

    The reactions of nitric oxide (NO) with the oxidized and reduced forms of fungal and tree laccase, as well as with tree laccase depleted in type 2 copper, are reported. The products of the reactions were determined by NMR and mass spectroscopy, whereas the oxidation states of the enzymes were monitored by EPR and optical spectroscopy. All three copper sites in fungal laccase are reduced by NO. In addition, NO forms a specific complex with the reduced type 2 copper. NO similarly reduces all of the copper sites in tree laccase, but it also oxidizes the reduced sites produced by ascorbate or NO reduction. A catalytic cycle is set up in which N2O, NO2-, and various forms of the enzyme are produced. On freezing of fully reduced tree laccase in the presence of NO, the type 1 copper becomes reoxidized. This reaction does not occur with the enzyme depleted in type 2 copper, suggesting that it involves intramolecular electron transfer from the type 1 copper to NO bound to the type 2 copper. When the half-oxidized tree laccase is formed in the presence of NO, a population of molecules exists which exhibits a type 3 EPR signal. A triplet EPR signal is also seen in the same preparation and is attributed to a population of the enzyme molecules in which NO is bound to the reduced copper of a half-oxidized type 3 copper site.

  2. Highly efficient direct aerobic oxidative esterification of cinnamyl alcohol with alkyl alcohols catalysed by gold nanoparticles incarcerated in a nanoporous polymer matrix: a tool for investigating the role of the polymer host.

    PubMed

    Buonerba, Antonio; Noschese, Annarita; Grassi, Alfonso

    2014-04-25

    The selective aerobic oxidation of cinnamyl alcohol to cinnamaldehyde, as well as direct oxidative esterification of this alcohol with primary and secondary aliphatic alcohols, were achieved with high chemoselectivity by using gold nanoparticles supported in a nanoporous semicrystalline multi-block copolymer matrix, which consisted of syndiotactic polystyrene-co-cis-1,4-polybutadiene. The cascade reaction that leads to the alkyl cinnamates occurs through two oxidation steps: the selective oxidation of cinnamyl alcohol to cinnamaldehyde, followed by oxidation of the hemiacetal that results from the base-catalysed reaction of cinnamaldehyde with an aliphatic alcohol. The rate constants for the two steps were evaluated in the temperature range 10-45 °C. The cinnamyl alcohol oxidation is faster than the oxidative esterification of cinnamaldehyde with methanol, ethanol, 2-propanol, 1-butanol, 1-hexanol or 1-octanol. The rate constants of the latter reaction are pseudo-zero order with respect to the aliphatic alcohol and decrease as the bulkiness of the alcohol is increased. The activation energy (Ea) for the two oxidation steps was calculated for esterification of cinnamyl alcohol with 1-butanol (Ea = 57.8±11.5 and 62.7±16.7 kJ mol(-1) for the first and second step, respectively). The oxidative esterification of cinnamyl alcohol with 2-phenylethanol follows pseudo-first-order kinetics with respect to 2-phenylethanol and is faster than observed for other alcohols because of fast diffusion of the aromatic alcohol in the crystalline phase of the support. The kinetic investigation allowed us to assess the role of the polymer support in the determination of both high activity and selectivity in the title reaction.

  3. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    NASA Technical Reports Server (NTRS)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  4. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  5. Kinetics of oxytetracycline reaction with a hydrous manganese oxide.

    PubMed

    Rubert, Kennedy F; Pedersen, Joel A

    2006-12-01

    Tetracycline antibiotics comprise a class of broad spectrum antimicrobial agents finding application in human therapy, animal husbandry, aquaculture, and fruit crop production. To better understand the processes affecting these antibiotics in soils and sediments, the kinetics of oxytetracycline transformation by a hydrous manganese oxide (MnO2) were investigated as a function of reactant concentration, pH, and temperature. Oxytetracycline was rapidly degraded by MnO2. Initial reaction rates exhibited pronounced pH-dependence, increasing as pH decreased. Reaction of oxytetracycline with MnO2 was accompanied by generation of Mn(II) ions, suggesting oxidative transformation of the antibiotic. At pH 5.6, apparent reaction orders for oxytetracycline and MnO2 were 0.7 and 0.8. Reaction order with respect to H+ was 0.6 between pH 4 and 9. Initial reaction rates increased by a factor of approximately 2.4 for 10 degrees C temperature increases; the apparent activation energy (60 kJ x mol(-1)) was consistent with a surface-controlled reaction. Reactivity of tetracycline antibiotics toward MnO2 increased in the following order: rolitetracyline oxytetracycline < or =tetracycline approximately meclocycline < chlortetracycline. The initial rate of chlortetracycline degradation by MnO2 was substantially larger than that of the other tetracycline antibiotics investigated. MnO2 reactivity toward oxytetracycline decreased with time; a retarded rate equation was used to describe oxytetracycline reaction with MnO2 under declining rate conditions. This study indicates that natural manganese oxides in soils and sediments are likely to promote appreciable degradation of tetracycline antibiotics, and that reaction rates are strongly dependent on reaction time scale and solution conditions.

  6. Effect of an 8-weeks aerobic training program in elderly on oxidative stress and HSP72 expression in leukocytes during antioxidant supplementation.

    PubMed

    Simar, D; Malatesta, D; Mas, E; Delage, M; Caillaud, C

    2012-02-01

    To investigate the effect of aerobic training in the context of antioxidant supplementation on systemic oxidative stress and leukocytes heat shock protein (Hsp)72 expression in the elderly. Sixteen septuagenarians (8 males and 8 females, mean age 74.6) were supplemented with Vitamin C and E (respectively 500 and 100mg per day) and randomly assigned either to sedentary (AS) or individualized aerobically trained (AT) group for 8 weeks. Plasma Vitamin C and E concentrations and aerobic fitness, as well as resting and post graded exercise (GXT) Hsp72 expression in leukocytes, plasma levels of thiobarbituric acid reactive substances (TBARS) and advanced oxidation protein product (AOPP) were measured pre and post training / supplementation. At the end of the intervention, the two groups showed a significant increase in resting plasma vitamin C and E (approximately 50 and 20% increase respectively) and a significant decrease in both resting and post GXT plasma TBARS and AOPP (approximately 25 and 20% decrease respectively). These changes were of similar magnitude in the two groups. The reduced oxidative stress was concomitant with a 15% decreased expression of Hsp72 in monocytes and granulocytes in both groups. This study provides evidence that in elderly, increased concentration of antioxidant vitamins C and E is associated with a reduction in oxidative stress and leukocytes Hsp72. In this context, 8 weeks of aerobic training has no impact on oxidative stress or leukocytes Hsp72 expression in elderly people.

  7. Organization of the Escherichia coli aerobic enzyme complexes of oxidative phosphorylation in dynamic domains within the cytoplasmic membrane

    PubMed Central

    Erhardt, Heiko; Dempwolff, Felix; Pfreundschuh, Moritz; Riehle, Marc; Schäfer, Caspar; Pohl, Thomas; Graumann, Peter; Friedrich, Thorsten

    2014-01-01

    The Escherichia coli cytoplasmic membrane contains the enzyme complexes of oxidative phosphorylation (OXPHOS). Not much is known about their supramolecular organization and their dynamics within the membrane in this model organism. In mitochondria and other bacteria, it was demonstrated by nondenaturing electrophoretic methods and electron microscopy that the OXPHOS complexes are organized in so-called supercomplexes, stable assemblies with a defined number of the individual enzyme complexes. To investigate the organization of the E. coli enzyme complexes of aerobic OXPHOS in vivo, we established fluorescent protein fusions of the NADH:ubiquinone oxidoreductase, the succinate:ubiquinone oxidoreductase, the cytochrome bd-I, and the cytochrome bo3 terminal oxidases, and the FoF1 ATP-synthase. The fusions were integrated in the chromosome to prevent artifacts caused by protein overproduction. Biochemical analysis revealed that all modified complexes were fully assembled, active, and stable. The distribution of the OXPHOS complexes in living cells was determined using total internal reflection fluorescence microscopy. The dynamics within the membrane were detected by fluorescence recovery after photobleaching. All aerobic OXPHOS complexes showed an uneven distribution in large mobile patches within the E. coli cytoplasmic membrane. It is discussed whether the individual OXPHOS complexes are organized as clustered individual complexes, here called “segrazones.” PMID:24729508

  8. Ozone oxidation and aerobic biodegradation with spent mushroom compost for detoxification and benzo(a)pyrene removal from contaminated soil.

    PubMed

    Russo, Lara; Rizzo, Luigi; Belgiorno, Vincenzo

    2012-05-01

    The combination of ozonation and spent mushroom compost (SMC)-mediated aerobic biological treatment was investigated in the removal of benzo(a)pyrene from contaminated soil. The performances of the process alone and combined were evaluated in terms of benzo(a)pyrene removal efficiency, mineralization efficiency (as total organic carbon removal), and soil residual toxicity (phytotoxicity to Lepidium Sativum and toxicity to Vibrio fischeri). In spite of the removal efficiency (35%) obtained by SMC-mediated biological process as a stand-alone treatment, the combined process showed a benzo(a)pyrene concentration reduction higher than 75%; the best removal (82%) was observed after 10 min pre-ozonation treatment. In particular, ozonation improved the biodegradability of the contaminant, as confirmed by the increase of CO(2) production (close to 70% compared to the control), mineralization (greater than 60%) and bacterial density (which increased by two orders of magnitude). Moreover, according to phytotoxicity tests on L. Sativum, the aerobic biological process of pre-ozonated soil decreased toxicity. According to the results achieved in the present study, ozonation pre-treatment showed an high potential to overcome the limitation of bioremediation of recalcitrant compound, but it should be carefully operated in order to maximize PAH removal efficiency as well as to minimize soil residual toxicity which can result from the formation of the oxidation intermediates.

  9. Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature.

    PubMed

    Robinson, Austin T; Fancher, Ibra S; Sudhahar, Varadarajan; Bian, Jing Tan; Cook, Marc D; Mahmoud, Abeer M; Ali, Mohamed M; Ushio-Fukai, Masuko; Brown, Michael D; Fukai, Tohru; Phillips, Shane A

    2017-05-01

    High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for comparison with sedentary controls. Hindlimb adipose resistance arteries were dissected from mice for measurements of flow-induced dilation (FID; with or without high intraluminal pressure exposure) or protein expression of NADPH oxidase II (NOX II) and superoxide dismutase (SOD). Microvascular endothelial cells were subjected to high physiological laminar shear stress (20 dyn/cm(2)) or static condition and treated with ANG II + pharmacological inhibitors. Cells were analyzed for the detection of ROS or collected for Western blot determination of NOX II and SOD. Resistance arteries from exercised mice demonstrated preserved FID after high pressure exposure, whereas FID was impaired in control mouse arteries. Inhibition of ANG II or NOX II restored impaired FID in control mouse arteries. High pressure increased superoxide levels in control mouse arteries but not in exercise mouse arteries, which exhibited greater ability to convert superoxide to H2O2 Arteries from exercised mice exhibited less NOX II protein expression, more SOD isoform expression, and less sensitivity to ANG II. Endothelial cells subjected to laminar shear stress exhibited less NOX II subunit expression. In conclusion, aerobic exercise prevents high pressure-induced vascular dysfunction through an improved redox environment in the adipose microvasculature.NEW & NOTEWORTHY We describe potential mechanisms contributing to aerobic exercise-conferred protection against high intravascular pressure. Subcutaneous adipose microvessels from exercise mice express less NADPH oxidase (NOX) II and more superoxide

  10. Influence of composition of reaction mixture on selectivity in oxidation of aromatic compounds on oxide catalysts

    SciTech Connect

    Belokopytov, Yu.V.; Pyatnitskii, Yu.I.; Tatarinova, T.A.; Strashnenko, A.V.

    1985-07-01

    A general outline is given of a kinetic model of oxidation of a hydrocarbon under the conditions of coexistence on the catalyst surface of sections of different oxidation levels. An analytical dependence has been obtained of the selectivity of the process and conversion on the composition of the reaction mixture. A qualitative agreement has been established between the theoretical and experimental dependences of selectivity and conversion on the ratio of the benzene and oxygen concentrations in the reaction mixture.

  11. Aerobic Oxidation of Cyclohexane on Catalysts Based on Twinned and Single-Crystal Au75Pd25 Bimetallic Nanocrystals.

    PubMed

    Wang, Liangbing; Zhao, Songtao; Liu, Chenxuan; Li, Chen; Li, Xu; Li, Hongliang; Wang, Youcheng; Ma, Chao; Li, Zhenyu; Zeng, Jie

    2015-05-13

    Bimetallic Au75Pd25 nanocrystals with shapes of icosahedron and octahedron were synthesized by adding different amounts of iodide ions, and were employed as catalysts for solvent-free aerobic oxidation of cyclohexane. Although both icosahedrons and octahedrons were bounded by {111} facets, the turnover frequency number of Au75Pd25 icosahedrons reached 15,106 h(-1), almost three times as high as that of Au75Pd25 octahedrons. The conversion of cyclohexane reached 28.1% after 48 h using Au75Pd25 icosahedrons, with the selectivity of 84.3% to cyclohexanone. Density functional theory calculations along with X-ray photoelectron spectroscopy examinations reveal that the excellent catalytic performance of AuPd icosahedrons could be ascribed to twin-induced strain and highly negative charge density of Au atoms on the surface.

  12. The influence of pyrite grain size on the final oxygen isotope difference between sulphate and water in aerobic pyrite oxidation experiments.

    PubMed

    Heidel, Claudia; Tichomirowa, Marion; Junghans, Manuela

    2009-12-01

    Oxidation experiments with different pyrite grain sizes (63-100, 100-140, 140-180 microm) were carried out to investigate the oxygen and sulphur isotope composition of sulphate produced under aerobic acid conditions, which may help to understand oxidation mechanisms and to interpret data from natural sites. Long-term experiments with grain size 63-100 microm showed that constant delta (18)O(SO4) values were not achieved before 100 days. The final oxygen isotope difference between water and sulphate indicates that a small proportion of molecular oxygen is incorporated into sulphate even in the later course of the oxidation due to sulphite oxidation by molecular oxygen. However, most of the sulphate oxygen derives from water. Similar delta (18)O(SO4) values from experiments with grain sizes 63-100, 100-140, and 140-180 microm indicate similar oxidation mechanisms for all three grain sizes. These results differed from previous results of identical experiments with grain size<63 microm, where higher delta (18)O(SO4) values were obtained. We propose that the greater proportion of molecular oxygen in sulphate from oxidised fine-grained pyrite is caused by an intensified adsorption of molecular oxygen on sulphur sites of ultrafine pyrite particles. Hence, the formation of sulphate from the (initial) reaction on sulphur sites of pyrite and from sulphite oxidation should be more dominant if ultrafine material is present. The delta (34)S(SO4) values (2.0-2.7) obtained from experiments with the coarser grain sizes agreed with the delta (34)S value of pyrite (2.4), whereas sulphur isotopes of sulphate obtained from previous experiments with fine-grained pyrite showed an initial (32)S enrichment compared with pyrite. Due to the lack of delta (34)S(SO4) values from the beginning of the experiments with coarser grain sizes, it remains speculative that sulphur isotopes indicate at least initial differences in oxidation mechanisms between fine and coarser pyrite grain sizes.

  13. L-Proline: an efficient N,O-bidentate ligand for copper-catalyzed aerobic oxidation of primary and secondary benzylic alcohols at room temperature.

    PubMed

    Zhang, Guofu; Han, Xingwang; Luan, Yuxin; Wang, Yong; Wen, Xin; Ding, Chengrong

    2013-09-18

    A novel and highly practical copper-catalyzed aerobic alcohol oxidation system with L-proline as the ligand at room temperature has been developed. A wide range of primary and secondary benzylic alcohols tested have been smoothly transformed into corresponding aldehydes and ketones with high yields and selectivities.

  14. Aqueous aerobic oxidation of alkyl arenes and alcohols catalyzed by copper(II) phthalocyanine supported on three-dimensional nitrogen-doped graphene at room temperature.

    PubMed

    Mahyari, Mojtaba; Laeini, Mohammad Sadegh; Shaabani, Ahmad

    2014-07-25

    Copper(ii) tetrasulfophthalocyanine supported on three-dimensional nitrogen-doped graphene-based frameworks was synthesized and introduced as a bifunctional catalyst for selective aerobic oxidation of alkyl arenes and alcohols to the corresponding carbonyl compounds. The ease of catalyst separation, high turnover, low catalyst loading and recyclability could potentially render it applicable in industrial setting.

  15. Method for facilitating catalyzed oxidation reactions, device for facilitating catalyzed oxidation reactions

    DOEpatents

    Beuhler, Robert J.; White, Michael G.; Hrbek, Jan

    2006-08-15

    A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.

  16. New evidence for Cu-decorated binary-oxides mediating bacterial inactivation/mineralization in aerobic media.

    PubMed

    Rtimi, S; Pulgarin, C; Bensimon, M; Kiwi, J

    2016-08-01

    Binary oxide semiconductors TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 (TiO2-ZrO2-Cu) uniform films were sputtered on polyester (PES). These films were irradiated under low intensity solar simulated light and led to bacterial inactivation in aerobic and anaerobic media as evaluated by CFU-plate counting. But bacterial mineralization was only induced by TiO2-ZrO2-Cu in aerobic media. The highly oxidative radicals generated on the films surface under light were identified by the use of appropriate scavengers. The hole generated on the TiO2-ZrO2 films is shown to be the main specie leading to bacterial inactivation. TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 films release Zr and Ti <1ppb and Cu 4.6ppb/cm(2) as determined by inductively coupled plasma mass spectrometry (ICP-MS) This level is far below the citotoxicity permitted level allowed for mammalian cells suggesting that bacterial disinfection proceeds through an oligodynamic effect. By Fourier transform attenuated infrared spectroscopy (ATR-FTIR) the systematic shift of the predominating νs(CH2) vibrational-rotational peak making up most of the bacterial cell-wall content in C was monitored. Based on this evidence a mechanism suggested leading to CH bond stretching followed by cell lysis and cell death. Bacterial inactivation cycling was observed on TiO2-ZrO2-Cu showing the stability of these films leading to bacterial inactivation.

  17. Investigation of oxidative phosphorylation in continuous cultures. A non-equilibrium thermodynamic approach to energy transduction for Escherichia coli in aerobic condition

    NASA Astrophysics Data System (ADS)

    Ghafuri, Mohazabeh; Nosrati, Mohsen; Hosseinkhani, Saman

    2015-03-01

    Adenosine triphosphate (ATP) production in living cells is very important. Different researches have shown that in terms of mathematical modeling, the domain of these investigations is essentially restricted. Recently the thermodynamic models have been suggested for calculation of the efficiency of oxidative phosphorylation process and rate of energy loss in animal cells using chemiosmotic theory and non-equilibrium thermodynamics equations. In our previous work, we developed a mathematical model for mitochondria of animal cells. In this research, according to similarities between oxidative phosphorylation process in microorganisms and animal cells, Golfar's model was developed to predict the non-equilibrium thermodynamic behavior of the oxidative phosphorylation process for bacteria in aerobic condition. With this model the rate of energy loss, P/O ratio, and efficiency of oxidative phosphorylation were calculated for Escherichia coli in aerobic condition. The results then were compared with experimental data given by other authors. The thermodynamic model had an acceptable agreement with the experimental data.

  18. Benzimidazole-triazole ligands with pendent triazole functionality: unexpected formation and effects on copper-catalyzed aerobic alcohol oxidation.

    PubMed

    Kongkaew, Manisa; Sitthisuwannakul, Kannika; Nakarajouyphon, Vasut; Pornsuwan, Soraya; Kongsaeree, Palangpon; Sangtrirutnugul, Preeyanuch

    2016-11-14

    A series of benzimidazole-triazole ligands (NN') having a pendent triazole arm with different triazole substituents including CH2Ph (3a), cyclo-C6H11 (3b), and CH2SiMe3 (3c) were obtained in moderate yields from Cu-catalyzed oxidative C-N cyclization of the respective amine-triazole compounds N,N'-bis((1-R-1,2,3-triazol-4-yl)methyl)benzene-1,2-diamine (2a-2c). Treatment of CuCl2 with one equiv. of the benzimidazole-triazole ligands afforded the corresponding Cu(II) complexes with the empirical formula of Cu(NN')Cl2 (4a-4c). Crystal structures of 4b and 4c reveal mononuclear and dinuclear Cu(II) complexes, respectively. Despite the differences in triazole substituents and their solid state structures, ESR spectra indicate the same molecular structures in CH3CN solution whereas CV data suggest similar redox potentials for 4a-4c. Catalytic activities for aerobic oxidation of benzyl alcohol to benzaldehyde follow this trend: 4c > 4a > 4b. In addition, the catalytic system 4c/TEMPO/Cu(0)/NMI (TEMPO = 2,2,6,6-tetramethyl-1-piperidinyloxyl, NMI = N-methylimidazole) exhibited high activities for oxidation of activated alcohols (i.e., benzyl alcohol derivatives and allylic alcohol) in CH3CN at room temperature.

  19. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, W.A.

    1998-08-18

    A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

  20. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, William A.

    1998-01-01

    A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

  1. Copper-catalyzed aerobic oxidation and cleavage/formation of C-S bond: a novel synthesis of aryl methyl sulfones from aryl halides and DMSO.

    PubMed

    Yuan, Gaoqing; Zheng, Junhua; Gao, Xiaofang; Li, Xianwei; Huang, Liangbin; Chen, Huoji; Jiang, Huanfeng

    2012-08-04

    With atmospheric oxygen as the oxidant, a novel copper(I)-catalyzed synthesis of aryl methyl sulfones from aryl halides and widely available DMSO is described. The procedure tolerates aryl halides with various functional groups (such as methoxy, acetyl, chloro, fluoro and nitro groups), which could afford aryl methyl sulfones in moderate to high yields. The copper-catalyzed aerobic oxidation and the cleavage/formation of C-S bond are the key steps for this transformation.

  2. A Gallium Oxide-Graphene Oxide Hybrid Composite for Enhanced Photocatalytic Reaction

    PubMed Central

    Kim, Seungdu; Han, Kook In; Lee, In Gyu; Park, Won Kyu; Yoon, Yeojoon; Yoo, Chan Sei; Yang, Woo Seok; Hwang, Wan Sik

    2016-01-01

    Hybrid composites (HCs) made up of gallium oxide (GaO) and graphene oxide (GO) were investigated with the intent of enhancing a photocatalytic reaction under ultraviolet (UV) radiation. The material properties of both GaO and GO were preserved, even after the formation of the HCs. The incorporation of the GO into the GaO significantly enhanced the photocatalytic reaction, as indicated by the amount of methylene blue (MB) degradation. The improvements in the reaction were discussed in terms of increased surface area and the retarded recombination of generated charged carriers. PMID:28335255

  3. The oxidative burst reaction in mammalian cells depends on gravity

    PubMed Central

    2013-01-01

    Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and

  4. The oxidative burst reaction in mammalian cells depends on gravity.

    PubMed

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  5. Reactions of metal ions at surfaces of hydrous iron oxide

    USGS Publications Warehouse

    Hem, J.D.

    1977-01-01

    Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.

  6. The history of aerobic ammonia oxidizers: from the first discoveries to today.

    PubMed

    Monteiro, Maria; Séneca, Joana; Magalhães, Catarina

    2014-07-01

    Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.

  7. Homogeneous and heterogeneous reactions of anthracene with selected atmospheric oxidants.

    PubMed

    Zhang, Yang; Shu, Jinian; Zhang, Yuanxun; Yang, Bo

    2013-09-01

    The reactions of gas-phase anthracene and suspended anthracene particles with O3 and O3-NO were conducted in a 200-L reaction chamber, respectively. The secondary organic aerosol (SOA) formations from gas-phase reactions of anthracene with O3 and O3-NO were observed. Meanwhile, the size distributions and mass concentrations of SOA were monitored with a scanning mobility particle sizer (SMPS) during the formation processes. The rapid exponential growths of SOA reveal that the atmospheric lifetimes of gas-phase anthracene towards O3 and O3-NO are less than 20.5 and 4.34 hr, respectively. The particulate oxidation products from homogeneous and heterogeneous reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). Gas chromatograph/mass spectrometer (GC/MS) analyses of oxidation products of anthracene were carried out for assigning the time-of-flight (TOF) mass spectra of products from homogeneous and heterogeneous reactions. Anthrone, anthraquinone, 9,10-dihydroxyanthracene, and 1,9,10-trihydroxyanthracene were the ozonation products of anthracene, while anthrone, anthraquinone, 9-nitroanthracene, and 1,8-dihydroxyanthraquinone were the main products of anthracene with O3-NO.

  8. Redox Couple Involving NOx in Aerobic Pd-Catalyzed Oxidation of sp(3)-C-H Bonds: Direct Evidence for Pd-NO3(-)/NO2(-) Interactions Involved in Oxidation and Reductive Elimination.

    PubMed

    Wenzel, Margot N; Owens, Philippa K; Bray, Joshua T W; Lynam, Jason M; Aguiar, Pedro M; Reed, Christopher; Lee, James D; Hamilton, Jacqueline F; Whitwood, Adrian C; Fairlamb, Ian J S

    2017-01-25

    NaNO3 is used in oxidative Pd-catalyzed processes as a complementary co-catalyst to common oxidants, e.g., Cu(II) salts, in C-H bond activation and Wacker oxidation processes. NaNO3 and NaNO2 (with air or O2) assist the sp(3)-C-H bond acetoxylation of substrates bearing an N-directing group. It has been proposed previously that a redox couple is operative. The role played by NOx anions is examined in this investigation. Evidence for an NOx anion interaction at Pd(II) is presented. Palladacyclic complexes containing NOx anions are competent catalysts for acetoxylation of 8-methylquinoline, with and without exogenous NaNO3. The oxidation of 8-methylquinoline to the corresponding carboxylic acid has also been noted at Pd(II). (18)O-Labeling studies indicate that oxygen derived from nitrate appears in the acetoxylation product, the transfer of which can only occur by interaction of (18)O at Pd with a coordinating-acetate ligand. Nitrated organic intermediates are formed under catalytic conditions, which are converted to acetoxylation products, a process that occurs with (50 °C) and without Pd (110 °C). A catalytically competent palladacyclic dimer intermediate has been identified. Head-space analysis measurements show that NO and NO2 gases are formed within minutes on heating catalytic mixtures to 110 °C from room temperature. Measurements by in situ infrared spectroscopy show that N2O is formed in sp(3)-C-H acetoxylation reactions at 80 °C. Studies confirm that cyclopalladated NO2 complexes are rapidly oxidized to the corresponding NO3 adducts on exposure to NO2(g). The investigation shows that NOx anions act as participating ligands at Pd(II) in aerobic sp(3)-C-H bond acetoxylation processes and are involved in redox processes.

  9. Archaea produce lower yields of N2 O than bacteria during aerobic ammonia oxidation in soil.

    PubMed

    Hink, Linda; Nicol, Graeme W; Prosser, James I

    2016-03-11

    Nitrogen fertilisation of agricultural soil contributes significantly to emissions of the potent greenhouse gas nitrous oxide (N2 O), which is generated during denitrification and, in oxic soils, mainly by ammonia oxidisers. Although laboratory cultures of ammonia oxidising bacteria (AOB) and archaea (AOA) produce N2 O, their relative activities in soil are unknown. This work tested the hypothesis that AOB dominate ammonia oxidation and N2 O production under conditions of high inorganic ammonia (NH3 ) input, but result mainly from the activity of AOA when NH3 is derived from mineralisation. 1-octyne, a recently discovered inhibitor of AOB, was used to distinguish N2 O production resulting from archaeal and bacterial ammonia oxidation in soil microcosms, and specifically inhibited AOB growth, activity and N2 O production. In unamended soils, ammonia oxidation and N2 O production were lower and resulted mainly from ammonia oxidation by AOA. The AOA N2 O yield relative to nitrite produced was half that of AOB, likely due to additional enzymatic mechanisms in the latter, but ammonia oxidation and N2 O production were directly linked in all treatments. Relative contributions of AOA and AOB to N2 O production, therefore, reflect their respective contributions to ammonia oxidation. These results suggest potential mitigation strategies for N2 O emissions from fertilised agricultural soils.

  10. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    DOEpatents

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.

  11. New Insights of the Fenton Reaction Using Glycerol as the Experimental Model. Effect of O2, Inhibition by Mg(2+), and Oxidation State of Fe.

    PubMed

    Vitale, Arturo Alberto; Bernatene, Eduardo A; Vitale, Martín Gustavo; Pomilio, Alicia Beatriz

    2016-07-21

    The use of iron ions as catalyst of oxidation with hydrogen peroxide, known as the Fenton reaction, is important for industry and biological systems. It has been widely studied since its discovery in the 19th century, but important aspects of the reaction as which is the oxidant, the role of oxygen, and the oxidation state of Fe still remain unclear. In this work new mechanistic insights of the oxidation of carbohydrates by the Fenton reaction using glycerol as experimental model are described. The reaction was studied by means of oxidation reduction potential (ORP) measures. The stoichiometry was measured, showing the important role of oxygen for lowering H2O2 consumption under aerobic conditions. Evidence is provided to demonstrate that in this system Fe(2+) generates a catalyst by reacting with a substrate to produce a complex, which gives rise to singlet oxygen after reacting with H2O2. This is the first time that the inhibitor effect of Mg(2+) is reported in this reaction, and its participation in the mechanism is described. A rational mechanism for the oxidation of glycerol using the Fenton reaction under these specific conditions is proposed. The role of oxygen, the participation of Fe(2+), and the inhibition by Mg(2+) are fully demonstrated experimentally.

  12. Hydrogen production from methane through catalytic partial oxidation reactions

    NASA Astrophysics Data System (ADS)

    Freni, S.; Calogero, G.; Cavallaro, S.

    This paper reviews recent developments in syn-gas production processes used for partial methane oxidation with and/or without steam. In particular, we examined different process charts (fixed bed, fluidised bed, membrane, etc.), kinds of catalysts (powders, foams, monoliths, etc.) and catalytically active phases (Ni, Pt, Rh, etc.). The explanation of the various suggested technical solutions accounted for the reaction mechanism that may selectively lead to calibrated mixtures of CO and H 2 or to the unwanted formation of products of total oxidation (CO 2 and H 2O) and pyrolysis (coke). Moreover, the new classes of catalysts allow the use of small reactors to treat large amounts of methane (monoliths) or separate hydrogen in situ from the other reaction products (membrane). This leads to higher conversions and selectivity than could have been expected thermodynamically. Although catalysts based on Rh are extremely expensive, they can be used to minimise H 2O formation by maximising H 2 yield.

  13. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti cluster

    EPA Science Inventory

    The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light.

  14. More than just one Methane Paradox? - Methane Production in Oxic Waters and Aerobic Methane Oxidation under Oxygen-Depleted Conditions

    NASA Astrophysics Data System (ADS)

    Lehmann, M. F.; Niemann, H.; Bartosiewicz, M.; Blees, J.; Steinle, L.; Su, G.; Zopfi, J.

    2016-12-01

    The standing paradigm is that methane (CH4) production through methanogenesis occurs exclusively under anoxic conditions and that at least in freshwater environments most of the biogenic CH4 is oxidized by aerobic methanotrophic bacteria (MOB) under oxic conditions. However, subsurface CH4 accumulation in oxic waters, a phenomenon referred to as the "CH4 paradox", has been observed both in the ocean and in lakes, and suggests in-situ CH4 production or a remarkable tolerance of at least some methanogens to O2. Analogously, MOB seem to thrive also under micro-oxic conditions, i.e., they may be responsible for significant CH4 turnover at extremely low O2 concentrations. O2 availability particularly within the sub-micromolar range is likely one of the key factors controlling the balance between CH4 production and consumption in redox-transition zones of aquatic environments, yet threshold O2 concentrations are poorly constrained. Here we provide multiple lines of evidence for apparent "methanogenesis" in well-oxygenated waters and discuss the potential mechanisms that lead to CH4 accumulation in the oxic epilimnia of two south-alpine lakes. On the other end, we present data from a deep meromictic lake, which indicate aerobic CH4 oxidation (MOx) at O2 concentrations below the detection limit of common O2 sensors. A strong MOx potential throughout the anoxic hyplimnion of the studied lake implies that the MOB community is able to survive prolonged periods of O2 starvation and is capable to rapidly resume microaerobic MOx upon introduction of low levels of O2. This conclusion is qualitatively consistent with field data from a coastal shelf environment in the Baltic Sea, where we observed maximum MOx rates during the summer stratification period when O2 concentrations were lowest, implying that in both environments MOx bacteria are adapted to trace levels of O2. Indeed, laboratory experiments at different manipulated O2 concentration levels suggest a nanomolar O2 optimum

  15. Reaction Mechanism and Kinetics of Enargite Oxidation at Roasting Temperatures

    NASA Astrophysics Data System (ADS)

    Padilla, Rafael; Aracena, Alvaro; Ruiz, Maria C.

    2012-10-01

    Roasting of enargite (Cu3AsS4) in the temperature range of 648 K to 898 K (375 °C to 625 °C) in atmospheres containing variable amounts of oxygen has been studied by thermogravimetric methods. From the experimental results of weight loss/gain data and X-ray diffraction (XRD) analysis of partially reacted samples, the reaction mechanism of the enargite oxidation was determined, which occurred in three sequential stages:

  16. Aerobic Lineage of the Oxidative Stress Response Protein Rubrerythrin Emerged in an Ancient Microaerobic, (Hyper)Thermophilic Environment

    PubMed Central

    Cardenas, Juan P.; Quatrini, Raquel; Holmes, David S.

    2016-01-01

    Rubrerythrins (RBRs) are non-heme di-iron proteins belonging to the ferritin-like superfamily. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues) that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin). In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyper)thermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the “aerobic-type” lineage) subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase, respectively. Proposed Horizontal Gene Transfer events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage) is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE). It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with “whiffs” of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one. PMID:27917155

  17. Aerobic Lineage of the Oxidative Stress Response Protein Rubrerythrin Emerged in an Ancient Microaerobic, (Hyper)Thermophilic Environment.

    PubMed

    Cardenas, Juan P; Quatrini, Raquel; Holmes, David S

    2016-01-01

    Rubrerythrins (RBRs) are non-heme di-iron proteins belonging to the ferritin-like superfamily. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues) that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin). In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyper)thermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the "aerobic-type" lineage) subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase, respectively. Proposed Horizontal Gene Transfer events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage) is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE). It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with "whiffs" of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one.

  18. Elementary reaction modeling of solid oxide electrolysis cells: Main zones for heterogeneous chemical/electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Li, Wenying; Shi, Yixiang; Luo, Yu; Cai, Ningsheng

    2015-01-01

    A theoretical model of solid oxide electrolysis cells considering the heterogeneous elementary reactions, electrochemical reactions and the transport process of mass and charge is applied to study the relative performance of H2O electrolysis, CO2 electrolysis and CO2/H2O co-electrolysis and the competitive behavior of heterogeneous chemical and electrochemical reactions. In cathode, heterogeneous chemical reactions exist near the outside surface and the electrochemical reactions occur near the electrolyte. According to the mathematical analysis, the mass transfer flux D ∇c determines the main zone size of heterogeneous chemical reactions, while the charge transfer flux σ ∇V determines the other one. When the zone size of heterogeneous chemistry is enlarged, more CO2 could react through heterogeneous chemical pathway, and polarization curves of CO2/H2O co-electrolysis could be prone to H2O electrolysis. Meanwhile, when the zone size of electrochemistry is enlarged, more CO2 could react through electrochemical pathway, and polarization curves of CO2/H2O co-electrolysis could be prone to CO2 electrolysis. The relative polarization curves, the ratio of CO2 participating in electrolysis and heterogeneous chemical reactions, the mass and charge transfer flux and heterogeneous chemical/electrochemical reaction main zones are simulated to study the effects of cathode material characteristics (porosity, particle diameter and ionic conductivity) and operating conditions (gas composition and temperature).

  19. The effects of periodized concurrent and aerobic training on oxidative stress parameters, endothelial function and immune response in sedentary male individuals of middle age.

    PubMed

    Schaun, Maximiliano Isoppo; Dipp, Thiago; Rossato, Juliane da Silva; Wilhelm, Eurico Nestor; Pinto, Ronei; Rech, Anderson; Plentz, Rodrigo Della Méa; Homem de Bittencourt, Paulo I; Reischak-Oliveira, Alvaro

    2011-10-01

    The vascular endothelium plays a key role in arterial wall homeostasis by preventing atherosclerotic plaque formation. A primary causal factor of endothelial dysfunction is the reactive oxygen species. Aerobic exercise is ascribed as an important adjuvant therapy in endothelium-dependent cardiovascular disease. However, little is known about the effects of concurrent (aerobic + strength) training on that. For a comparison of the effects of aerobic and concurrent physical training on endothelial function, oxidative stress parameters and the immunoinflammatory activity of monocytes/macrophages, 20 adult male volunteers of middle age were divided into a concurrent training (CT) programme group and an aerobic training group. The glutathione disulphide to glutathione ratio (GSSG/GSH) and plasma lipoperoxide (LPO) levels, as well as flow-mediated dilation (FMD), monocyte/macrophage functional activity (zymosan phagocytosis), body lipid profiles, aerobic capacity (maximal oxygen uptake) and strength parameters (one-repetition maximum test), were measured before and after the exercise training programmes. The CT exhibited reduced acute effects of exercise on the GSSG/GSH ratio, plasma LPO levels and zymosan phagocytosis. The CT also displayed improved lipid profiles, glycaemic control, maximal oxygen uptake and one-repetition maximum test values. In both the aerobic training and the CT, training improved the acute responses to exercise, as inferred from a decrease in the GSSG/GSH ratios. The aerobic sessions did not alter basal levels of plasma LPO or macrophage phagocytic activity but improved FMD values as well as lipid profiles and glycaemic control. In summary, both training programmes improve systemic redox status and antioxidant defences. However, the aerobic training was more efficient in improving FMD in the individuals studied.

  20. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Astrophysics Data System (ADS)

    Tsotsis, T. T.; Sane, R. C.

    1987-04-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  1. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Technical Reports Server (NTRS)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  2. Reaction between nitric oxide and ozone in solid nitrogen

    NASA Technical Reports Server (NTRS)

    Lucas, D.; Pimentel, G. C.

    1979-01-01

    Nitrogen dioxide, NO2, is produced when nitric oxide, NO, and ozone, O3, are suspended in a nitrogen matrix at 11-20 K. The NO2 is formed with first-order kinetics, a 12 K rate constant of (1.4 + or - 0.2) x 0.00001/sec, and an apparent activation energy of 106 + or - 10 cal/mol. Isotopic labeling, variation of concentrations, and cold shield experiments show that the growth of NO2 is due to reaction between ozone molecules and NO monomers, and that the reaction is neither infrared-induced nor does it seem to be a heavy atom tunneling process. Reaction is attributed to nearest-neighbor NO.O3 pairs probably held in a specific orientational relationship that affects the kinetic behavior. When the temperature is raised, more such reactive pairs are generated, presumably by local diffusion. Possible mechanisms are discussed.

  3. Kinetics of the reaction of nitric oxide with hydrogen

    NASA Technical Reports Server (NTRS)

    Flower, W. L.; Hanson, R. K.; Kruger, C. H.

    1974-01-01

    Mixtures of NO and H2 diluted in argon or krypton were heated by incident shock waves, and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The reaction kinetics were studied in the temperature range 2400-4500 K using a shock-tube technique. The decomposition of nitric oxide behind the shock was found to be modeled well by a fifteen-reaction system. A principle result of the study was the determination of the rate constant for the reaction H + NO yields N + OH, which may be the rate-limiting step for NO removal in some combustion systems. Experimental values of k sub 1 were obtained for each test through comparisons of measured and numerically predicted NO profiles.

  4. A highly efficient and aerobic protocol for the synthesis of N-heteroaryl substituted 9-arylcarbazolyl derivatives via a palladium-catalyzed ligand-free Suzuki reaction.

    PubMed

    Rao, Xiaofeng; Liu, Chun; Qiu, Jieshan; Jin, Zilin

    2012-10-21

    A palladium-catalyzed aerobic and ligand-free Suzuki reaction in aqueous ethanol has been developed for the synthesis of N-heteroaryl substituted 9-arylcarbazolyl derivatives. A number of N-heteroaryl halides, namely 2-halogenated pyridines, 2-bromoquinoline, 5-bromopyrimidine and 2-chloropyrazine, were coupled with 4-(9H-carbazol-9-yl)phenylboronic acid (CPBA) or 9-phenyl-9H-carbazol-3-ylboronic acid (PCBA) efficiently to afford good to excellent yields in a short reaction time. Moreover, the catalytic system of Pd(OAc)(2)-EtOH/H(2)O-K(2)CO(3) was successfully extended to the cross-couplings of N-heteroaryl halides with various arylboronic acids. The results demonstrated that the cross-coupling reaction in the present protocol was promoted by oxygen.

  5. Aerobic oxidative amidation of aromatic and cinnamic aldehydes with secondary amines by CuI/2-pyridonate catalytic system.

    PubMed

    Zhu, Mingwen; Fujita, Ken-ichi; Yamaguchi, Ryohei

    2012-10-19

    A simple and convenient CuI/2-pyridonate catalytic system for the oxidative amidation of aldehydes with secondary amines has been developed. With this system, a variety of useful arylamides have been synthesized in moderate to good yields in the presence of small amount of copper catalyst and the pyridonate ligand, generating only water as a coproduct. Synthesis of cinnamamides was also achieved by the reactions of cinnamaldehydes with secondary amines in moderate yields. Air was successfully employed as a green oxidant in this catalytic system, achieving a safe and atom-efficient system for the synthesis of amides.

  6. Reaction and spectroscopic study of supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Ramani, Narayanan C.

    The role of surface structure, cation reducibility, surface acidity and the effect of the support was examined in the reaction of 1-butene over well characterized, supported metal oxide catalysts. Cr, Mo and W oxides supported on SiOsb2 were used to study the effect of structure, surface acidity and cation reducibility in the isomerization and selective oxidation of 1-butene. Supported oxides of Mo on TiOsb2,\\ Alsb2Osb3 and SiOsb2 were used to understand the role of the support in the selective oxidation of 1-butene. The surface acidity of SiOsb2 supported Cr, Mo, W and V oxide catalysts was examined by pyridine adsorption. Existing theoretical models of acidity were compared against experimental data. Over Mo(VI)/SiOsb2 and W(VI)/SiOsb2, isomerization through both a Bronsted catalyzed pathway and an allylic pathway were observed, while only the allylic pathway was observed over Cr(VI)/SiOsb2. The greater reducibility of the Cr cation compared to Mo and W cations was identified as the reason for the allylic pathway being dominant over Cr(VI)/SiOsb2. Cation reducibility was again seen to play an important role in the selective oxidation of 1-butene over SiOsb2 supported metal oxides. The turn over frequencies for 1,3-butadiene formation followed the trend in red-ox ability, with Cr > Mo > W. The activity to 1,3-butadiene formation did not change with increasing weight loading of Mo over TiOsb2 and Alsb2Osb3 supports. An analysis of the turn over frequencies of the supports and the supported cations revealed that a support effect, through the bridging oxygen ligand, dominated the intrinsic cation reducibility of Mo for these catalysts. The existence of Bronsted acidity over SiOsb2 supported Cr, Mo and V oxides was shown by an analysis of the OH region of the infrared spectrum, and by the adsorption of 1-butene and pyridine. Existing theoretical models for Bronsted acidity over supported metal oxides were shown to be inadequate to describe the observed results over

  7. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    PubMed Central

    Bustos-Ramírez, Karina; Martínez-Hernández, Ana L.; Martínez-Barrera, Gonzalo; de Icaza, Miguel; Castaño, Víctor M.; Velasco-Santos, Carlos

    2013-01-01

    Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet. PMID:28809348

  8. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction.

    PubMed

    Bustos-Ramírez, Karina; Martínez-Hernández, Ana L; Martínez-Barrera, Gonzalo; Icaza, Miguel de; Castaño, Víctor M; Velasco-Santos, Carlos

    2013-03-07

    Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  9. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise

    PubMed Central

    Damirchi, Arsalan; Farjaminezhad, Manoochehr

    2016-01-01

    Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT), moderately trained (MT), and untrained (UT) groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG), cysteine/cystine (Cys/CySS), and GSH/GSSG ratio in red blood cells (RBCs) were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p = 0.001) and Cys/CySS (p = 0.005) were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p = 0.860), while RBCs GSH/GSSG showed significant reduction (p = 0.003) and elevation (p = 0.007) in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases. PMID:27064342

  10. Combination Sorbent and Reactive Chemistries for Use in Highly Efficient Aerobic Oxidations (W911NF0510081)

    DTIC Science & Technology

    2009-07-14

    oxidation of alcohols to carbonyl compounds is a common and important transformation in organic synthesis . Although there are many different methods...Metals for Organic Synthesis , 2nd ed. (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 2004, pp. 437-478; d) B.-Z. Zhan, A. Thompson, Tetrahedron

  11. Nitrite-Driven Nitrous Oxide Production Under Aerobic Soil Conditions: Kinetics and Biochemical Controls

    USDA-ARS?s Scientific Manuscript database

    Nitrite (NO2-) can accumulate during nitrification in soil following fertilizer application. While the role of NO2- as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil-to-atmosphere fluxes as a functi...

  12. Copper-catalyzed aerobic oxidative synthesis of aryl nitriles from benzylic alcohols and aqueous ammonia.

    PubMed

    Tao, Chuanzhou; Liu, Feng; Zhu, Youmin; Liu, Weiwei; Cao, Zhiling

    2013-05-28

    Copper-catalyzed direct conversion of benzylic alcohols to aryl nitriles was realized using NH3(aq.) as the nitrogen source, O2 as the oxidant and TEMPO as the co-catalyst. Furthermore, copper-catalyzed one-pot synthesis of primary aryl amides from alcohols was also achieved.

  13. Aerobic oxidation of alcohols in visible light on Pd-grafted Ti ...

    EPA Pesticide Factsheets

    The titanium cluster with the reduced band gap has been synthesized having the palladium nanoparticles over the surface, which not only binds to the atmospheric oxygen but also catalyzes the oxidation of alcohols under visible light. Prepared as an invited article for submission to the Elsevier journal, Tetrahedron.

  14. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  15. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  16. Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

    PubMed Central

    Nguyen, Bichlien H; Perkins, Robert J; Smith, Jake A

    2015-01-01

    Summary The combination of visible light, photovoltaics, and electrochemistry provides a convenient, inexpensive platform for conducting a wide variety of sustainable oxidation reactions. The approach presented in this article is compatible with both direct and indirect oxidation reactions, avoids the need for a stoichiometric oxidant, and leads to hydrogen gas as the only byproduct from the corresponding reduction reaction. PMID:25815081

  17. N-formylation of amines via the aerobic oxidation of methanol over supported gold nanoparticles.

    PubMed

    Ishida, Tamao; Haruta, Masatake

    2009-01-01

    Dress code: formyl. Gold nanoparticles supported on NiO catalyze the one-pot N-formylation of amines with methanol and molecular oxygen to produce formamide at a selectivity of 90 %. This process generates methyl formate in situ, followed by reaction with amines.

  18. Ionic Conductivity and its Role in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Tamimi, Mazin Abdulla

    In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the

  19. Reaction of lincosamide antibiotics with manganese oxide in aqueous solution.

    PubMed

    Chen, Wan-Ru; Ding, Yunjie; Johnston, Cliff T; Teppen, Brian J; Boyd, Stephen A; Li, Hui

    2010-06-15

    Lincosamides are among the most frequently detected antibacterial agents in effluents from wastewater treatment plants and surface runoff at agricultural production systems. Little is known about their transformations in the environment. This study revealed that manganese oxide caused rapid and extensive decomposition of clindamycin and lincomycin in aqueous solution. The reactions occurred mainly at the pyranose ring of lincosamides, initially by formation of complexes with Mn and cleavage of the ether linkage, leading to the formation of a variety of degradation products via subsequent hydrolytic and oxidative reactions. The results of LC-MS/MS and FTIR analysis confirm cleavage of the C-O-C bond in the pyranose ring, formation of multiple carbonyl groups, and transformation of the methylthio moiety to sulfur oxide. The overall transformation was controlled by interactions of cationic species of lincosamides with MnO(2) surfaces. The presence of electrolytes (i.e., NaCl, CaCl(2), and MnCl(2)) and dissolved organic matter in aqueous solution, and increase of solution pH, diminished lincosamide binding to MnO(2) hence reducing the rate and magnitude of the transformations. Results from this study indicate that manganese dioxides in soils and sediments could contribute to the decomposition of lincosamide antibiotics released into the environment.

  20. Single Platinum Atoms Electrocatalysts: Oxygen Reduction and Hydrogen Oxidation Reactions

    DOE PAGES

    Vukmirovic, Miomir B.; Teeluck, Krishani M.; Liu, Ping; ...

    2017-08-08

    We prepared atomically dispersed catalyst consisting of Pt atoms arranged in a c(2 × 2) array on RuO2(110) substrate. A large interatomic distance of Pt atoms in a c(2 × 2) phase precludes the reactants to interact with more than one Pt atoms. A strong bond of Pt atoms with RuO2 prevents agglomeration of Pt atoms to form 2D-islands or 3D-clusters. The activities of single Pt atom catalyst for the oxygen reduction and hydrogen oxidation reactions were determined and compared with those of bulk Pt. It has lower catalytic activity for the oxygen reduction reaction and similar activity for hydrogenmore » oxidation reaction compared to Pt(111). This was explained by a large calculated up-shift of the dband center of Pt atoms and larger Pt-Pt interatomic distance than that of Pt(111). Our information is of considerable interest for further development of electrocatalysis.« less

  1. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    PubMed Central

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  2. Reactions of oxidatively activated arylamines with thiols: reaction mechanisms and biologic implications. An overview.

    PubMed Central

    Eyer, P

    1994-01-01

    Aromatic amines belong to a group of compounds that exert their toxic effects usually after oxidative biotransformation, primarily in the liver. In addition, aromatic amines also undergo extrahepatic activation to yield free arylaminyl radicals. The reactive intermediates are potential promutagens and procarcinogens, and responsible for target tissue toxicity. Since thiols react with these intermediates at high rates, it is of interest to know the underlying reaction mechanisms and the toxicologic implications. Phenoxyl radicals from aminophenols and aminyl radicals from phenylenediamines quickly disproportionate to quinone imines and quinone diimines. Depending on the structure, Michael addition or reduction reactions with thiols may prevail. Products of sequential oxidation/addition reactions (e.g., S-conjugates of aminophenols) are occasionally more toxic than the parent compounds because of their higher autoxidizability and their accumulation in the kidney. Even after covalent binding of quinone imines to protein SH groups, the resulting thioethers are able to autoxidize. The quinoid thioethers can then cross-link the protein by addition to neighboring nucleophiles. The reactions of nitrosoarenes with thiols yield a so-called "semimercaptal" from which various branching reactions detach, depending on substituents. Compounds with strong pi-donors, like 4-nitrosophenetol, give a resonance-stabilized N-(thiol-S-yl)-arylamine cation that may lead to bicyclic products, thioethers, and DNA adducts. Examples of toxicologic implications of the interactions of nitroso compounds with thiols are given for nitrosoimidazoles, heterocyclic nitroso compounds from protein pyrolysates, and nitrosoarenes. These data indicate that interactions of activated arylamines with thiols may not be regarded exclusively as detoxication reactions. PMID:7889834

  3. Integrated thermophilic submerged aerobic membrane bioreactor and electrochemical oxidation for pulp and paper effluent treatment--towards system closure.

    PubMed

    Qu, X; Gao, W J; Han, M N; Chen, A; Liao, B Q

    2012-07-01

    A novel integrated thermophilic submerged aerobic membrane bioreactor (TSAMBR) and electrochemical oxidation (EO) technology was developed for thermomechanical pulping pressate treatment with the aim of system closure. The TSAMBR was able to achieve a chemical oxygen demand (COD) removal efficiency of 88.6 ± 1.9-92.3 ± 0.7% under the organic loading rate of 2.76 ± 0.13-3.98 ± 0.23 kg COD/(m(3) d). An optimal hydraulic retention time (HRT) of 1.1 ± 0.1d was identified for COD removal. Cake formation was identified as the dominant mechanism of membrane fouling. The EO of the TSAMBR permeate was performed using a Ti/SnO(2)-Sb(2)O(5)-IrO(2) electrode. After 6-h EO, a complete decolourization was achieved and the COD removal efficiency was increased to 96.2 ± 1.2-98.2 ± 0.3%. The high-quality effluent produced by the TSAMBR-EO system can be reused as process water for system closure in pulp and paper mill.

  4. Special role of corn flour as an ideal carbon source for aerobic denitrification with minimized nitrous oxide emission.

    PubMed

    Zhu, Shuangyue; Zheng, Maosheng; Li, Can; Gui, Mengyao; Chen, Qian; Ni, Jinren

    2015-06-01

    Much effort has been made for reducing nitrous oxide (N2O) emission in wastewater treatment processes. This paper presents an interesting way to minimize N2O in aerobic denitrification by strain Pseudomonas stutzeri PCN-1 with help of corn flour as cheaper additional carbon source. Experimental results showed that maximal N2O accumulation by strain PCN-1 was only 0.02% of removed nitrogen if corn flour was used as sole carbon source, which was significantly reduced by 52.07-99.81% comparing with others such as succinate, glucose, acetate and citrate. Sustained release of reducing sugar from starch and continuous expression of nosZ coding for N2O reductase contributed to the special role of corn flour as the ideal carbon source for strain PCN-1. Further experiments in sequencing batch reactors (SBRs) demonstrated similarly efficient nitrogen removal with much less N2O emission due to synergy of the novel strain and activated sludge, which was then confirmed by quantitative PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment in an aerobic bioreactor packed with carbon fibers.

    PubMed

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi

    2015-03-01

    Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3  + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors.

  6. TEMPO-Appended Metal-Organic Frameworks as Highly Active, Selective, and Reusable Catalysts for Mild Aerobic Oxidation of Alcohols.

    PubMed

    Zwoliński, Krzysztof M; Chmielewski, Michał J

    2017-10-04

    Metal-organic frameworks (MOFs) decorated with stable organic radicals are highly promising materials for redox catalysis. Unfortunately however, the synthesis of chemically robust MOFs typically requires harsh solvothermal conditions, which are not compatible with organic radicals. Here, we describe the synthesis of two isoreticular families of stable, mixed component, zirconium MOFs with UiO-66 and UiO-67 structures and controlled amounts of covalently attached TEMPO radicals. The materials were obtained using a relatively low-temperature, HCl-modulated de novo method developed by Hupp and Farha and shown to contain large amounts of missing cluster defects, forming nanodomains of the reo phase with 8-connected clusters. In the extreme case of homoleptic UiO-67-TEMPO(100%), the material exists as an almost pure reo phase. Large voids due to missing clusters and linkers allowed these materials to accommodate up to 2 times more of bulky TEMPO substituents than theoretically predicted for the idealized structures and proved to be beneficial for catalytic activity. The TEMPO-appended MOFs were shown to be highly active and recyclable catalysts for selective aerobic oxidation of a broad range of primary and secondary alcohols under exceptionally mild conditions (room temperature, atmospheric pressure of air). The influence of various parameters, including the pore size and TEMPO content, on the catalytic activity was also comprehensively investigated.

  7. Activity of deuterated aldehyde acetals in oxidation reactions

    SciTech Connect

    Kuramshin, E.M.; Gumerova, V.K.; Kulak, L.G.; Zlotskii, S.S.

    1986-01-10

    This paper studies the activity of acetals - 2-methyl-1,3-dioxolane (I), 2-phenyl-1,3-dioxolane (II), and 1,1-dipropoxyethane (III) - and their deuterated analogs - 2-methyl-D/sub 3/-1,3-dioxolane-2-D (Ia), 2-phenyl-1,3dioxolane-2-D (IIa), and 1,1-dipropoxyethane-1,2,2,2-D/sub 4/ (IIIa) - in oxidation by ozone and oxygen. The replacement of hydrogen atoms at the acetal carbon by deuterium in I-III leads to a decrease in the ozonolysis and oxidation rate constants, indicating the predominant involvement of the C-H bond adjacent to the two heteroatoms. The increase in the kinetic isotope effect from 2 to 4 in going from formaldehyde derivatives to acetaldehyde and benzaldehyde derivatives is related to the increase in charge separation in the transition state of the reaction of acetals with ozone.

  8. Selective aerobic oxidation of 1,3-propanediol to 3-hydroxypropanoic acid using hydrotalcite supported bimetallic gold nanoparticle catalyst in water

    NASA Astrophysics Data System (ADS)

    Mohammad, Mujahid; Nishimura, Shun; Ebitani, Kohki

    2015-02-01

    Selective oxidation of 1,3-propanediol (1,3-PD) to 3-hydroxypropanoic acid (3-HPA), an important industrial building block, was successfully achieved using hydrotalcite-supported bimetallic Au nanoparticle catalysts in water at 343 K under aerobic and base-free conditions. The highest yield of 42% with 73% selectivity towards 3-HPA was afforded by 1wt% Au0.8Pd0.2-PVP/HT catalyst.

  9. Aerobic oxidative cyclization of benzamides via meta-selective C-H tert-alkylation: rapid entry to 7-alkylated isoquinolinediones.

    PubMed

    Tang, Shi; Deng, You-Lin; Li, Jie; Wang, Wen-Xin; Wang, Ying-Chun; Li, Zeng-Zeng; Yuan, Li; Chen, Shi-Lu; Sheng, Rui-Long

    2016-03-25

    A novel copper-catalyzed aerobic oxidative cyclization of benzamides via meta-selective C-H tert-alkylation using AIBN and analogues as radical precursors was described. This strategy provides an elusive and rapid means to 7-tert-alkylated isoquinolinediones, as well as the construction of tertiary alkyl-aryl C(sp(3))-C(sp(2)) bonds with positional selectivity.

  10. Fly Ash and Mercury Oxidation/Chlorination Reactions

    SciTech Connect

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using

  11. Oxidation reactions of thymol: a pulse radiolysis and theoretical study.

    PubMed

    Venu, S; Naik, D B; Sarkar, S K; Aravind, Usha K; Nijamudheen, A; Aravindakumar, C T

    2013-01-17

    The reactions of (•)OH and O(•-), with thymol, a monoterpene phenol and an antioxidant, were studied by pulse radiolysis technique and DFT calculations at B3LYP/6-31+G(d,p) level of theory. Thymol was found to efficiently scavenge OH radicals (k = 8.1 × 10(9) dm(3) mol(-1) s(-1)) to produce reducing adduct radicals, with an absorption maximum at 330 nm and oxidizing phenoxyl radicals, with absorption maxima at 390 and 410 nm. A major part of these adduct radicals was found to undergo water elimination, leading to phenoxyl radicals, and the process was catalyzed by OH(-) (or Na(2)HPO(4)). The rate of reaction of O(•-) with thymol was found to be comparatively low (k = 1.1 × 10(9) dm(3) mol(-1) s(-1)), producing H abstracted species of thymol as well as phenoxyl radicals. Further, these phenoxyl radicals of thymol were found to be repaired by ascorbate (k = 2.1 × 10(8) dm(3) mol(-1) s(-1)). To support the interpretation of the experimental results, DFT calculations were carried out. The transients (both adducts and H abstracted species) have been optimized in gas phase at B3LYP/6-31+G(d,p) level of calculation. The relative energy values and thermodynamic stability suggests that the ortho adduct (C6_OH adduct) to be most stable in the reaction of thymol with OH radicals, which favors the water elimination. However, theoretical calculations showed that C4 atom in thymol (para position) can also be the reaction center as it is the main contributor of HOMO. The absorption maxima (λ(max)) calculated from time-dependent density functional theory (TDDFT) for these transient species were close to those obtained experimentally. Finally, the redox potential value of thymol(•)/thymol couple (0.98 V vs NHE) obtained by cyclic voltammetry is less than those of physiologically important oxidants, which reveals the antioxidant capacity of thymol, by scavenging these oxidants. The repair of the phenoxyl radicals of thymol with ascorbate together with the redox potential

  12. Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs.

    PubMed

    Daelman, Matthijs R J; Van Eynde, Tamara; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2014-12-01

    Methane is a potent greenhouse gas and its emission from municipal wastewater treatment plants (WWTPs) should be prevented. One way to do this is to promote the biological conversion of dissolved methane over stripping in aeration tanks. In this study, the well-established Activated Sludge Model n°1 (ASM1) and Benchmark Simulation Model n°1 (BSM1) were extended to study the influence of process design and operating parameters on biological methane oxidation. The aeration function used in BSM 1 was upgraded to more accurately describe gas-liquid transfer of oxygen and methane in aeration tanks equipped with subsurface aeration. Dissolved methane could be effectively removed in an aeration tank at an aeration rate that is in agreement with optimal effluent quality. Subsurface bubble aeration proved to be better than surface aeration, while a CSTR configuration was superior to plug flow conditions in avoiding methane emissions. The conversion of methane in the activated sludge tank benefits from higher methane concentrations in the WWTP's influent. Finally, if an activated sludge tank is aerated with methane containing off-gas, a limited amount of methane is absorbed and converted in the mixed liquor. This knowledge helps to stimulate the methane oxidizing capacity of activated sludge in order to abate methane emissions from wastewater treatment to the atmosphere.

  13. Use of Advanced Oxidation and Aerobic Degradation for Remediation of Various Hydrocarbon Contaminates

    SciTech Connect

    Paul Fallgren

    2009-03-06

    Western Research Institute in conjunction with Sierra West Consultants, Inc., Tetra Tech, Inc., and the U.S. Department of Energy conducted laboratory and field studies to test different approaches to enhance degradation of hydrocarbons and associated contaminants. WRI in conjunction with Sierra West Consultants, Inc., conducted a laboratory and field study for using ozone to treat a site contaminated with MTBE and other hydrocarbons. Results from this study demonstrate that a TOD test can be used to resolve the O{sub 3} dosage problem by establishing a site-specific benchmark dosage for field ozone applications. The follow-up testing of the laboratory samples provided indications that intrinsic biodegradation could be stimulated by adding oxygen. Laboratory studies also suggests that O3 dosage in the full-scale field implementation could be dialed lower than stoichiometrically designed to eliminate the formation of Cr(VI). WRI conducted a study involving a series of different ISCO oxidant applications to diesel-contaminated soil and determined the effects on enhancing biodegradation to degrade the residual hydrocarbons. Soils treated with permanganate followed by nutrients and with persulfate followed by nutrients resulted in the largest decrease in TPH. The possible intermediates and conditions formed from NOM and TPH oxidation by permanganate and activated persulfate favors microbial TPH degrading activity. A 'passive-oxidation' method using microbial fuel cell (MFC) technology was conducted by WRI in conjunction with Tetra Tech, Inc., to degrade MTBE in groundwater. These experiments have demonstrated that a working MFC (i.e., one generating power) could be established in the laboratory using contaminated site water or buffered media inoculated with site water and spiked with MTBE, benzene, or toluene. Electrochemical methods were studied by WRI with goal of utilizing low voltage and amperage electrical sources for 'geo-oxidation' of organic contaminants. The

  14. Field and experimental evidence for low-O2 affinity of aerobic methane oxidizers in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Bange, Hermann; Kock, Annette; Lehmann, Moritz F.; Treude, Tina; Niemann, Helge

    2015-04-01

    The coastal ocean accounts for more than 75 % of the global oceanic methane emissions. An important process in mitigating methane emissions from the seawater to the atmosphere is aerobic methane oxidation (MOx). Coastal oceans are highly dynamic systems, in particular with regard to the variability of temperature, salinity, and oxygen concentrations, all of which are potential key environmental factors controlling MOx. We conducted a two-year time-series study of MOx measurements in the water column of a coastal inlet in the southwestern Baltic Sea (Eckernförde Bay, Boknis Eck Time Series Station, 54°31.823 N, 10°02.764 E, 28 m water depth; www.bokniseck.de). Physicochemical parameters at this station have been monitored since 1957. Seasonal stratification during summer/autumn leads to intermittent oxygen depletion (hypoxic to anoxic) in bottom waters in the later part of the stratification period. The duration of these low-oxygen events increased since the 1970s (Lennartz et al., 2014). Furthermore, the organic-rich seafloor continuously produces methane, which leads to gas ebullition followed by accumulation of dissolved methane in bottom waters (up to 470 nM) and supersaturation (with respect to the atmospheric equilibrium) in surface waters (up to 27 nM). MOx communities were most active in bottom waters (1-5 nM/day), which usually contain the lowest oxygen concentrations (sometimes below the in situ detection limit of ~1 µM). In order to better understand the effect of low oxygen concentrations, and thus of hypoxic and suboxic events, on MOx in coastal systems, we conducted lab-based experiments, during which we adjusted oxygen concentrations to values between 0.2 - 220 µM in methane-rich (~100 nM) Eckernförde Bay waters. These samples were then incubated with trace amounts of tritium-labeled methane to assess first order rate constants of methane oxidation. Highest MOx rates were detected at oxygen concentrations of ~0.5 µM (considerably higher than at

  15. Mechanism of heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong; Xu, Wenqing; Yu, Yunbo

    2007-05-24

    Heterogeneous reaction of carbonyl sulfide (OCS) on magnesium oxide (MgO) under ambient conditions was investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), quadrupole mass spectrometer (QMS), and density functional theory (DFT) calculations. It reveals that OCS can be catalytically hydrolyzed by surface hydroxyl on MgO to produce carbon dioxide (CO2) and hydrogen sulfide (H2S), and then H2S can be further catalytically oxidized by surface oxygen or gaseous oxygen on MgO to form sulfite (SO3(2-)) and sulfate (SO4(2-)). Hydrogen thiocarbonate (HSCO2-) was found to be the crucial intermediate. Surface hydrogen sulfide (HS), sulfur dioxide (SO2), and surface sulfite (SO3(2-)) were also found to be intermediates for the formation of sulfate. Furthermore, the surface hydroxyl contributes not only to the formation of HSCO2- but also to HSCO2- decomposition. On the basis of experimental results, the heterogeneous reaction mechanism of OCS on MgO was discussed.

  16. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    SciTech Connect

    Zhuang Lina; Wang Wenjin; Hong Feng; Yang Shengchun; You Hongjun; Fang Jixiang; Ding Bingjun

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  17. Infrared driven CO oxidation reactions on isolated platinum cluster oxides, Pt(n)O(m)+.

    PubMed

    Hermes, Alexander C; Hamilton, Suzanne M; Cooper, Graham A; Kerpal, Christian; Harding, Dan J; Meijer, Gerard; Fielicke, André; Mackenzie, Stuart R

    2012-01-01

    This collaboration has recently shown that infrared excitation can drive decomposition reactions of molecules on the surface of gas-phase transition metal clusters. We describe here a significant extension of this work to the study of bimolecular reactions initiated in a similar manner. Specifically, we have observed the infrared activated CO oxidation reaction (CO(ads) + O(ads) --> CO2(g)) on isolated platinum oxide cations, Pt(n)O(m)+. Small platinum cluster oxides Pt(n)O(m)+ (n = 3-7, m = 2, 4), have been decorated with CO molecules and subjected to multiple photon infrared excitation in the range 400-2200 cm(-1) using the Free Electron Laser for Infrared eXperiments (FELIX). The Pt(n)O(m)CO+ clusters have been characterised by infrared multiple photon dissociation spectroscopy using messenger atom tagging. Evidence is observed for isomers involving both dissociatively and molecularly adsorbed oxygen on the cluster surface. Further information is obtained on the evolution of the cluster structure with number of platinum atoms and CO coverage. In separate experiments, Pt(n)O(m)CO+ clusters have been subjected to infrared heating via the CO stretch around 2100 cm(-1). On all clusters investigated, the CO oxidation reaction, indicated by CO2 loss and production of Pt(n)O(m) = 1+, is found to compete effectively with the CO desorption channel. The experimental observations are compared with the results of preliminary DFT calculations in order to identify both cluster structures and plausible mechanisms for the surface reaction.

  18. Mass transfer model for two-layer TBP oxidation reactions

    SciTech Connect

    Laurinat, J.E.

    1994-09-28

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development.

  19. Oxidative-coupling reaction of TNT reduction products by manganese oxide.

    PubMed

    Kang, Ki-Hoon; Lim, Dong-Min; Shin, Hyunsang

    2006-03-01

    Abiotic transformation of TNT reduction products via oxidative-coupling reaction was investigated using Mn oxide. In batch experiments, all the reduction products tested were completely transformed by birnessite, one of natural Mn oxides present in soil. Oxidative-coupling was the major transformation pathway, as confirmed by mass spectrometric analysis. Using observed pseudo-first-order rate constants with respect to birnessite loadings, surface area-normalized specific rate constants, ksurf, were determined. As expected, ksurf of diaminonitrotoluenes (DATs) (1.49-1.91L/m2 d) are greater about 2 orders than that of dinitroaminotoluenes (DNTs) (1.15 x 10(-2)-2.09 x 10(-2)L/m2d) due to the increased number of amine group. In addition, by comparing the value of ksurf between DNTs or DATs, amine group on ortho position is likely to be more preferred for the oxidation by birnessite. Although cross-coupling of TNT in the presence of various mediator compounds was found not to be feasible, transformation of TNT by reduction using Fe0 followed by oxidative-coupling using Mn oxide was efficient, as evaluated by UV-visible spectrometry.

  20. Kinetics and dynamics of oxidation reactions involving an adsorbed CO species on bulk and supported platinum and copper-oxide

    SciTech Connect

    Harold, M.P.

    1991-07-01

    The proposed research is an integrated experimental and modeling study of oxidation reactions involving CO as a key player -- be it a reactant, adsorbed intermediate, and/or partial oxidation product -- in the catalytic sequence and chemistry. The reaction systems of interest in the project include CO, formaldehyde, and methanol oxidation by O{sub 2} and CO oxidation by NO, on both Pt and copper oxide catalysts. These reactions are of importance in automobile exhaust catalysis. There is a paucity of rate data in the literature for these important environmental control reactions. The goal of this research is to better understand the catalytic chemistry and kinetics of oxidations reactions involving CO as an adsorbed intermediate. Successfully meeting this goal requires an integration of basic kinetic measurements, in situ catalyst surface monitoring, kinetic modeling, and nonlinear mathematical tools.

  1. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation.

    PubMed

    Andersen, M S; Larsen, F; Postma, D

    2001-10-15

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4 x 10(-10) mol FeS2/g x s are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate the reaction stoichiometry and partitioning of gases between the solution and the gas phase. Pyrite oxidation with concurrent calcite dissolution was found to be consistent with the experimental data while organic carbon oxidation was not. The reaction involves changes in the total volume of the gas phase. The reaction scheme predicts the volume of O2 gas consumed to be larger than of CO2 produced. In addition the solubility of CO2 in water is about 30 times larger than of O2 causing a further decrease in total gas volume. The change in total gas volume therefore also depends on the gas/water volume ratio and the lower the ratio the more pronounced the loss of volume will be. Under field conditions the change in total volume may amount up to 20% in the absence of calcite and over 10% in the presence of calcite. Such changes in gas volume during the oxidation of pyrite are expected to result in pressure gradients causing advective transport of gaseous oxygen.

  2. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    PubMed Central

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  3. Acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease.

    PubMed

    Böhm, Joseane; Monteiro, Mariane Borba; Andrade, Francini Porcher; Veronese, Francisco; Thomé, Fernando Saldanha

    2017-04-27

    Hemodialysis contributes to increased oxidative stress and induces transitory hypoxemia. Compartmentalization decreases the supply of solutes to the dialyzer during treatment. The aim of this study was to investigate the acute effects of intradialytic aerobic exercise on solute removal, blood gases and oxidative stress in patients with chronic kidney disease during a single hemodialysis session. Thirty patients were randomized to perform aerobic exercise with cycle ergometer for lower limbs during 30 minutes with intensity between 60-70% of maximal heart rate, or control group (CG). Blood samples were collected prior to and immediately after exercise or the equivalent time in CG. Analysis of blood and dialysate biochemistry as well as blood gases were performed. Mass removal and solute clearance were calculated. Oxidative stress was determined by lipid peroxidation and by the total antioxidant capacity. Serum concentrations of solutes increased with exercise, but only phosphorus showed a significant elevation (p = 0.035). There were no significant changes in solute removal and in the acid-base balance. Both oxygen partial pressure and saturation increased with exercise (p = 0.035 and p = 0.024, respectivelly), which did not occur in the CG. The total antioxidant capacity decreased significantly (p = 0.027). The acute intradialytic aerobic exercise increased phosphorus serum concentration and decreased total antioxidant capacity, reversing hypoxemia resulting from hemodialysis. The intradialytic exercise did not change the blood acid-base balance and the removal of solutes. A hemodiálise contribui para aumentar o estresse oxidativo e induz a hipoxemia transitória. A compartimentalização dos solutos diminui sua oferta para o dialisador durante o tratamento. O objetivo deste estudo foi investigar os efeitos agudos do exercício aeróbio intradialítico sobre a remoção de solutos, gasometria e estresse oxidativo em pacientes com doença renal crônica durante uma

  4. Continuous Aerobic Training in Individualized Intensity Avoids Spontaneous Physical Activity Decline and Improves MCT1 Expression in Oxidative Muscle of Swimming Rats

    PubMed Central

    Scariot, Pedro P. M.; Manchado-Gobatto, Fúlvia de Barros; Torsoni, Adriana S.; dos Reis, Ivan G. M.; Beck, Wladimir R.; Gobatto, Claudio A.

    2016-01-01

    Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home

  5. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  6. Oxidation of humic substances supports denitrification reactions in agricultural soils.

    NASA Astrophysics Data System (ADS)

    van Trump, J. I.; Coates, J. D.

    2007-12-01

    , nitrite, Fe(II), and humic-born hydroquinones. All data were analyzed with respect to dilution factors obtained through analysis of a conservative bromide tracer present in electron donor medium. Addition of oxidized HS, reduced HS, and acetate all resulted in significant loss of nitrate from the columns. Significant nitrite accumulation was not observed. Of all the electron donor treatments, reduced HS, enriched for hydroquinone-containing functional moieties, supported the greatest degree of denitrification. The participation of excess hydroquinones in denitrification accounted for approximately 104% of the difference in nitrate reduction between reduced and oxidized HS treatments. This electron balance allowed for assignment of respiratory activity due to hydroquinone oxidation, rather than degradation of humic substances or associated electron-donating compounds. These results suggest that denitrification reactions catalyzed by microbial oxidation of reduced HS may be prevalent in agricultural soils. Likewise, these results demonstrate for the first time that respiratory behavior due to hydroquinone oxidation, as well as impact upon local geochemistry, can be analyzed in complex flow-through model systems.

  7. Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL.

    PubMed

    Robinson, G L; Dinsdale, D; Macfarlane, M; Cain, K

    2012-11-29

    TRAIL (TNF (tumour necrosis factor)-related apoptosis-inducing ligand) a putative anti-cancer cytokine induces apoptosis through DISC (death-inducing signalling complex)-mediated activation of caspase-8 and/or cleavage of Bid. TRAIL is relatively specific for tumour cells but primary chronic lymphocytic leukaemia and mantle cell lymphoma (MCL) cells are resistant. Herein, we show that cellular metabolism influences cell death and that MCL cells (Z138 cell line) can survive/proliferate in glucose-free media by switching from aerobic glycolysis to 'coupled' oxidative phosphorylation. Extracellular flux analysis and mitochondrial inhibitors reveal that in the absence of glycolysis, Z138 cells have enhanced respiratory capacity coupled to ATP synthesis, similar to 'classical' state 3 mitochondria. Conversely, 2-deoxyglucose (2DG) blocked glycolysis and partially inhibited glycolytic-dependent oxidative phosphorylation, resulting in a 50% reduction in cellular ATP levels. Also, 2DG sensitised Z138 cells to TRAIL and induced a marked decrease in caspase-8, -3, cFLIP(S), Bid and Mcl-1 expression but Bak remained unchanged, altering the Mcl-1/Bak ratio, facilitating cytochrome c release and cell death. Conversely, under glucose-free conditions, Z138 cells were less sensitive to TRAIL with reduced TRAIL-R1/R2 surface receptor expression and impaired DISC formation. Anti-apoptotic proteins Bcl-2 and XIAP were up-regulated while pro-apoptotic BAX was down-regulated. Additionally, mitochondria had higher levels of cytochrome c and ultrastucturally exhibited a condensed configuration with enhanced intracristal spaces. Thus, metabolic switching was accompanied by mitochondrial proteome and ultrastructural remodelling enabling enhanced respiration activity. Cytochrome c release was decreased in glucose-free cells, suggesting that either pore formation was inhibited or that cytochrome c was more tightly bound. Glucose-free Z138 cells were also resistant to intrinsic cell death

  8. Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone

    ERIC Educational Resources Information Center

    Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter

    2011-01-01

    Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal…

  9. Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone

    ERIC Educational Resources Information Center

    Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter

    2011-01-01

    Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal…

  10. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  11. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise.

    PubMed

    Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-07-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p <0.01) and the LLLT and exercise group (p <0.05). The results indicate that the activities of CAT, SOD, and GPx were higher and statistically significant (p <0.05) in the LLLT/exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT.

  12. Effects of Sesame (Sesamum indicum L.) Supplementation on Creatine Kinase, Lactate Dehydrogenase, Oxidative Stress Markers, and Aerobic Capacity in Semi-Professional Soccer Players

    PubMed Central

    Barbosa, Carlos V. da Silva; Silva, Alexandre S.; de Oliveira, Caio V. C.; Massa, Nayara M. L.; de Sousa, Yasmim R. F.; da Costa, Whyara K. A.; Silva, Ayice C.; Delatorre, Plínio; Carvalho, Rhayane; Braga, Valdir de Andrade; Magnani, Marciane

    2017-01-01

    Nutritional intervention with antioxidants rich foods has been considered a strategy to minimize the effects of overtraining in athletes. This experimental, randomized, and placebo-controlled study evaluated the effects of consumption of sesame (Sesamum indicum L.) on muscle damage markers, oxidative stress, systemic inflammation, and aerobic performance in male semi-professional soccer players. Twenty athletes were randomly assigned to groups that received 40 g (two tablespoons) per day of sesame or a placebo during 28 days of regular training (exposed to routine training that includes loads of heavy training in the final half of the season). Before and after intervention, creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), C-reactive protein (hs-CRP), and aerobic capacity were evaluated. Before intervention, a physiologic imbalance was noted in both groups related to CK and LDH levels. Sesame intake caused a reduction of CK (19%, p < 0.05), LDH (37%, p < 0.05), MDA (55%, p < 0.05) and hs-CRP (53%, p < 0.05) and increased SOD (14%, p < 0.05), vitamin A (25%, p < 0.05), and vitamin E (65%, p < 0.05) in the experimental group. These phenomena were accompanied by increased aerobic capacity (17%, p < 0.05). The placebo group showed an increase in CK (5%, p < 0.05) and no significant change in LDH, SOD or vitamin A. MDA levels decreased (21%, p < 0.05) and vitamin E increased (14%, p < 0.05) in the placebo group, but to a much lesser extent than in the experimental group. These results show that sesame consumption may reduce muscle damage and oxidative stress while improving the aerobic capacity in soccer players. PMID:28408889

  13. Effects of Sesame (Sesamum indicum L.) Supplementation on Creatine Kinase, Lactate Dehydrogenase, Oxidative Stress Markers, and Aerobic Capacity in Semi-Professional Soccer Players.

    PubMed

    Barbosa, Carlos V da Silva; Silva, Alexandre S; de Oliveira, Caio V C; Massa, Nayara M L; de Sousa, Yasmim R F; da Costa, Whyara K A; Silva, Ayice C; Delatorre, Plínio; Carvalho, Rhayane; Braga, Valdir de Andrade; Magnani, Marciane

    2017-01-01

    Nutritional intervention with antioxidants rich foods has been considered a strategy to minimize the effects of overtraining in athletes. This experimental, randomized, and placebo-controlled study evaluated the effects of consumption of sesame (Sesamum indicum L.) on muscle damage markers, oxidative stress, systemic inflammation, and aerobic performance in male semi-professional soccer players. Twenty athletes were randomly assigned to groups that received 40 g (two tablespoons) per day of sesame or a placebo during 28 days of regular training (exposed to routine training that includes loads of heavy training in the final half of the season). Before and after intervention, creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), C-reactive protein (hs-CRP), and aerobic capacity were evaluated. Before intervention, a physiologic imbalance was noted in both groups related to CK and LDH levels. Sesame intake caused a reduction of CK (19%, p < 0.05), LDH (37%, p < 0.05), MDA (55%, p < 0.05) and hs-CRP (53%, p < 0.05) and increased SOD (14%, p < 0.05), vitamin A (25%, p < 0.05), and vitamin E (65%, p < 0.05) in the experimental group. These phenomena were accompanied by increased aerobic capacity (17%, p < 0.05). The placebo group showed an increase in CK (5%, p < 0.05) and no significant change in LDH, SOD or vitamin A. MDA levels decreased (21%, p < 0.05) and vitamin E increased (14%, p < 0.05) in the placebo group, but to a much lesser extent than in the experimental group. These results show that sesame consumption may reduce muscle damage and oxidative stress while improving the aerobic capacity in soccer players.

  14. A factorial randomized controlled trial to evaluate the effect of micronutrients supplementation and regular aerobic exercise on maternal endothelium-dependent vasodilatation and oxidative stress of the newborn

    PubMed Central

    2011-01-01

    Background Many studies have suggested a relationship between metabolic abnormalities and impaired fetal growth with the development of non-transmissible chronic diseases in the adulthood. Moreover, it has been proposed that maternal factors such as endothelial function and oxidative stress are key mechanisms of both fetal metabolic alterations and subsequent development of non-transmissible chronic diseases. The objective of this project is to evaluate the effect of micronutrient supplementation and regular aerobic exercise on endothelium-dependent vasodilation maternal and stress oxidative of the newborn. Methods and design 320 pregnant women attending to usual prenatal care in Cali, Colombia will be included in a factorial randomized controlled trial. Women will be assigned to the following intervention groups: 1. Control group: usual prenatal care (PC) and placebo (maltodextrine). 2. Exercise group: PC, placebo and aerobic physical exercise. 3. Micronutrients group: PC and a micronutrients capsule consisting of zinc (30 mg), selenium (70 μg), vitamin A (400 μg), alphatocopherol (30 mg), vitamin C (200 mg), and niacin (100 mg). 4. Combined interventions Group: PC, supplementation of micronutrients, and aerobic physical exercise. Anthropometric measures will be taken at the start and at the end of the interventions. Discussion Since in previous studies has been showed that the maternal endothelial function and oxidative stress are related to oxidative stress of the newborn, this study proposes that complementation with micronutrients during pregnancy and/or regular physical exercise can be an early and innovative alternative to strengthen the prevention of chronic diseases in the population. Trial registration NCT00872365. PMID:21356082

  15. Oxidative stress and inflammatory reaction modulation by white wine.

    PubMed

    Bertelli, Alberto A E; Migliori, Massamiliano; Panichi, Vincenzo; Longoni, Bianamaria; Origlia, Nicola; Ferretti, Agnese; Cuttano, Maria Giuseppa; Giovannini, Luca

    2002-05-01

    Wine and olive oil, essential components of the Mediterranean diet, are considered important factors for a healthy life style. Tyrosol (T) and caffeic acid (CA) are found in both extra virgin olive oil and in white wine. Three white wines from the northeast Italy and four white wines from Germany were analyzed for their content of T and CA. These compounds were tested for their antioxidant activity and their capacity to modulate three different cytokines: IL-1 beta, IL-6, and TNF-alpha, which are currently considered to be the major cytokines influencing the acute phase of the inflammatory response. Furthermore, the antioxidant activity of T and CA was analyzed by monitoring the oxidation of a redox-sensitive probe by using laser scanning confocal microscopy. T and CA, applied at nanomolar range, were found to significantly reduce the generation of oxidants induced by azobis-amidinopropanedihydrochloride. Peripheral blood mononuclear cells (PBMC) from healthy volunteers were incubated at 37 degrees C for 12 hours with 100 ng LPS (E. coli and P. maltofilia). Increasing doses of T and CA (150 nM to 300 microM) were added and cell-associated IL-1 beta and TNF-alpha were determined by immunoreactive tests after three freeze-thaw cycles. IL-6 release was also determined in cell surnatants. LPS-stimulated PBMC showed a significant increase in cytokine release, while T and CA, used at nanomolar concentrations, were able to modulate their expression. Taken together, these results suggest a remarkable effect of white wine non-alcoholic compounds on oxidative stress and inflammatory reaction.

  16. Aerobic oxidation of β-isophorone catalyzed by N-hydroxyphthalimide: the key features and mechanism elucidated.

    PubMed

    Chen, Kexian; Sun, Yong; Wang, Congmin; Yao, Jia; Chen, Zhirong; Li, Haoran

    2012-09-21

    Due to the insufficient understanding of the selective oxidation mechanism of α/β-isophorones (α/β-IP) to ketoisophorone (KIP), the key features in the β-IP oxidation catalyzed by N-hydroxyphthalimide (NHPI) have been explored via theoretical calculations. β-IP is more favourable to being activated by phthalimide-N-oxyl radical (PINO˙) and peroxyl radical (ROO˙) than α-IP owing to the different C-H strengths at their reactive sites, thereby exhibiting selective product distributions. It was found that NHPI accelerates β-IP activation due to the higher reactivity of PINO˙ than ROO˙ and the equilibrium reaction between them, yielding considerable hydroperoxide (ROOH) and ROO˙. In addition, the ROOH decomposition is more favourable viaα-H abstraction by radicals than its self-dehydration and thermal dissociation. The strong exothermicity of this α-H abstraction, along with that from H-abstraction by co-yielded hot HO˙, is in favor of the straightforward formation of KIP, simultaneously leading to the isomerization of a few β-IP to α-IP and production of 4-hydroxyisophorone (HIP) and water. The proposed mechanisms, consistent with the experimental observations, allow for the deeper understanding and effective design of oxidation systems involving similar substrates or NHPI analogues that are of industrial importance.

  17. Visible-light-mediated decarboxylation/oxidative amidation of α-keto acids with amines under mild reaction conditions using O(2).

    PubMed

    Liu, Jie; Liu, Qiang; Yi, Hong; Qin, Chu; Bai, Ruopeng; Qi, Xiaotian; Lan, Yu; Lei, Aiwen

    2014-01-07

    Photochemistry has ushered in a new era in the development of chemistry, and photoredox catalysis has become a hot topic, especially over the last five years, with the combination of visible-light photoredox catalysis and radical reactions. A novel, simple, and efficient radical oxidative decarboxylative coupling with the assistant of the photocatalyst [Ru(phen)3 ]Cl2 is described. Various functional groups are well-tolerated in this reaction and thus provides a new approach to developing advanced methods for aerobic oxidative decarboxylation. The preliminary mechanistic studies revealed that: 1) an SET process between [Ru(phen)3 ](2+) * and aniline play an important role; 2) O2 activation might be the rate-determining step; and 3) the decarboxylation step is an irreversible and fast process. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. On the interaction of isotopic exchange processes with photochemical reactions in atmospheric oxides of nitrogen

    SciTech Connect

    Freyer, H.D.; Kley, D.; Volz-Thomas, A.; Kobel, K.

    1993-08-20

    The authors study the isotopic composition of nitic oxide and nitrogen dioxide in the atmosphere. They model the observed results for {sup 15}N/{sup 14}N ratios in terms of isotopic exchange reactions with ozone and photolytic reactions on the oxides. They find there has to be an interaction of these two reactions, in conjunction with seasonl variations of nitrogen oxide/ozone ratios, to account for observed isotopic ratios of the nitrogen isotopes.

  19. THE REACTIONS OF 2- AND 4-PICOLINE N-OXIDES WITH PHENYLACETIC ANHYDRIDE.

    DTIC Science & Technology

    pyridinemethanol phenylacetate (X) and 2-phenylethylpyridine (XI) in the case of 2-picoline N-oxide and of 4 - pyridinemethanol phenylacetate (XIV) and 4 ...The reactions of 2- and 4 -picoline N-oxide with phenylacetic anhydride yield the oxidation-reduction products, benzaldehyde, carbon dioxide...phenylethylpyridine (XV) in the case of 4 -picoline N-oxide. The product composition is unchanged when the reactions are performed in the presence of the radical

  20. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  1. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  2. The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide.

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions were studied with the aid of a mass spectrometer. A pinhole bleed system provided continuous sampling of the gas mixture in the cell during the reaction. It was found that the homogeneous reactions of nitric oxide and nitrogen dioxide with hydrogen peroxide are too slow to be of any significance in the upper atmosphere. However, the heterogeneous reactions may be important in the conversion of nitric oxide to nitrogen dioxide in the case of polluted urban atmospheres.

  3. Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals

    NASA Astrophysics Data System (ADS)

    Wang, Zimeng; Lee, Sung-Woo; Kapoor, Pratyul; Tebo, Bradley M.; Giammar, Daniel E.

    2013-01-01

    The longevity of subsurface U(IV) produced by reduction of U(VI) during in situ bioremediation can be limited by reoxidation to more mobile U(VI) species. Coupling of the biogeochemical cycles of U and Mn may affect the fate and transport of uranium. Manganese oxides can act as a powerful oxidant that accelerates the oxidative dissolution of UO2. This study investigated the physical and chemical factors controlling the interaction between UO2 and MnO2, which are both poorly soluble minerals. A multi-chamber reactor with a permeable membrane was used to eliminate direct contact of the two minerals while still allowing transport of aqueous species. The oxidation of UO2 was not significantly enhanced by MnO2 if the two solids were physically separated. Complete mixing of MnO2 with UO2 led to a much greater extent and rate of U oxidation. When direct contact is not possible, the reaction slowly progresses through release of soluble U(IV) with its adsorption and oxidation on MnO2. Continuously-stirred tank reactors (CSTRs) were used to quantify the steady-state rates of UO2 dissolution induced by MnO2. MnO2 dramatically promoted UO2 dissolution, but the degree of promotion leveled off once the MnO2:UO2 ratio exceeded a critical value. Substantial amounts of U(VI) and Mn(II) were retained on MnO2 surfaces. The total production of Mn(II) was less than that of U(VI), indicating that the fate of Mn products and their impact on UO2-MnO2 reaction kinetics were complicated and may involve formation of Mn(III) phases. At higher dissolved inorganic carbon concentrations, UO2 oxidation by MnO2 was faster and less U(VI) was adsorbed to MnO2. Such an inverse relationship suggested that U(VI) may passivate MnO2 surfaces. A conceptual model was developed to describe the oxidation rate of UO2 by MnO2. This model is potentially applicable to a broad range of water chemistry conditions and is relevant to other environmental redox processes involving two poorly soluble minerals.

  4. Thermochemistry and reaction paths in the oxidation reaction of benzoyl radical: C6H5C•(═O).

    PubMed

    Sebbar, Nadia; Bozzelli, Joseph W; Bockhorn, Henning

    2011-10-27

    Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(•)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(•)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products.

  5. Theoretical study on the catalytic reactivity of N-hydroxyphthalimide tuned by different heterocyclic substitutions on its phenyl ring for aerobic oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Kexian; Xie, Haiying; Jiang, Kezhi; Mao, Jianyong

    2016-07-01

    The structure-reactivity relationship of new hydroxyimide organocatalysts based on the heterocyclic replacements of the phenyl ring of N-hydroxyphthalimide (NHPI) has been theoretically investigated to gain a mature understanding of this particular catalysis for aerobic oxidation. We find that the reactivity of catalysts with the common five-member aromatic rings is lower than that of NHPI. The catalyst with the recyclable structure of imidazolium ionic liquid may serve as a novel model catalyst for further improvements due to its reactivity comparable to that of NHPI. The catalytic reactivity of multi-nitroxyl catalysts is theoretically more fascinating than that of the highly efficient N,N-dihydroxypyromellitimide.

  6. Pd@Cu(II)-MOF-Catalyzed Aerobic Oxidation of Benzylic Alcohols in Air with High Conversion and Selectivity.

    PubMed

    Chen, Gong-Jun; Wang, Jing-Si; Jin, Fa-Zheng; Liu, Ming-Yang; Zhao, Chao-Wei; Li, Yan-An; Dong, Yu-Bin

    2016-03-21

    A new 3D porous Cu(II)-MOF (1) was synthesized based on a ditopic pyridyl substituted diketonate ligand and Cu(OAc)2 in solution, and it features a 3D NbO motif which is determined by the X-ray crystallography. Furthermore, the Pd NPs-loaded hybrid material Pd@Cu(II)-MOF (2) was prepared based on 1 via solution impregnation, and its structure was confirmed by HRTEM, SEM, XRPD, gas adsorption-desorption, and ICP measurement. 2 exhibits excellent catalytic activity (conversion, 93% to >99%) and selectivity (>99% to benzaldehydes) for various benzyl alcohol substrates (benzyl alcohol and its derivatives with electron-withdrawing and electron-donating groups) oxidation reactions in air. In addition, 2 is a typical heterogeneous catalyst, which was confirmed by hot solution leaching experiment, and it can be recycled at least six times without significant loss of its catalytic activity and selectivity.

  7. Hydrogen oxidation reaction at the Ni/YSZ anode of solid oxide fuel cells from first principles.

    PubMed

    Cucinotta, Clotilde S; Bernasconi, Marco; Parrinello, Michele

    2011-11-11

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  8. CFD Study of Full-Scale Aerobic Bioreactors: Evaluation of Dynamic O2 Distribution, Gas-Liquid Mass Transfer and Reaction

    SciTech Connect

    Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael A.; McMillan, Jim

    2016-11-18

    If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economies of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.

  9. Fracture of flash oxidized, yttria-doped sintered reaction-bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Govila, R. K.

    1987-01-01

    The oxidation behavior of a slip cast, yttria-doped, sintered reaction-bonded silicon nitride after 'flash oxidation' was investigated. It was found that both the static oxidation resistance and flexural stress rupture life (creep deformation) were improved at 1000 C in air compared to those of the same material without flash oxidation. Stress rupture data at high temperatures (1000 to 1200 C) are presented to indicate applied stress levels for oxidation-dependent and independent failures.

  10. Activation energy of tantalum-tungsten oxide thermite reactions

    SciTech Connect

    Cervantes, Octavio G.; Munir, Zuhair A.; Kuntz, Joshua D.; Gash, Alexander E.

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)

  11. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    SciTech Connect

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300 C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.

  12. RuO2 supported NaY zeolite catalysts: Effect of preparation methods on catalytic performance during aerobic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Jung, Dasom; Lee, Sunwoo; Na, Kyungsu

    2017-10-01

    The effects of preparation method for RuO2 supported zeolite catalysts on the catalytic consequences during the aerobic oxidation of benzyl alcohol to benzaldehyde were investigated. Three preparation methods, i.e., (i) simultaneous crystallization of the zeolite framework in the presence of RuCl3 (Ru(SC)/NaY), (ii) post ion-exchange with RuCl3 on the zeolite framework (Ru(IE)/NaY), and (iii) post support of preformed Ru metal nanoparticles on the zeolite surface (Ru(PS)/NaY), were used to construct three different RuO2 supported NaY zeolite catalysts. The catalyst performance was investigated as functions of the reaction time and temperature, in correlation with the structural changes of the catalysts, as analyzed by X-ray diffraction (XRD). The results revealed that the catalytic consequences were dramatically affected by the preparation methods. Although similar conversion was achieved with all three catalysts, the turnover frequency (TOF) differed. The Ru(PS)/NaY catalyst exhibited the highest TOF (33-48 h-1), whereas the other catalysts produced much lower TOFs (9-12 h-1). The Ru(PS)/NaY catalyst also had the highest activation energy (Ea) of 48.39 kJ mol-1, whereas the Ru(SC)/NaY and Ru(IE)/NaY catalysts had Ea values of 18.58 and 24.11 kJ mol-1, respectively. Notably, the Ru(PS)/NaY catalyst yielded a significantly higher pre-exponential factor of 5.22 × 105 h-1, which is about 5 orders of magnitude larger than that of the Ru(SC)/NaY catalyst (7.15 × 100 h-1). This suggests that collision between benzyl alcohol and molecular oxygen was very intensive on the Ru(PS)/NaY catalyst, which explains the higher TOF of the Ru(PS)/NaY catalyst relative to the others in spite of the higher Ea value of the former. In terms of recyclability, the pristine crystallinity of the zeolite framework was maintained in the Ru(SC)/NaY catalyst and the RuO2 phase exhibited an insignificant loss of the initial activity up to three catalytic cycles, whereas Ru(PS)/NaY showed slight

  13. Tandem Brook Rearrangement/Silicon Polonovski Reaction via Oxidative Generation of Ammonium Ylides.

    PubMed

    Shibuya, Hiromasa; Nakago, Takahiro; Inoue, Seiichi; Hoshino, Yujiro; Honda, Kiyoshi

    2017-08-01

    A tandem Brook rearrangement/silicon Polonovski reaction has been achieved by in situ generation of ammonium ylides via the oxidation of α-silyl-tertiary amines. Furthermore, we found that the oxidation of N-(1-cyano-1-silyl)methyl-tertiary amines with peracids induced the tandem Brook rearrangement/silicon Polonovski reaction/fragmentation to give formamide derivatives in moderate yields.

  14. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.

    PubMed

    Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian

    2017-01-03

    The design of a high-performance catalyst for Hg(0) oxidation and predicting the extent of Hg(0) oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg(0) oxidation, and the reaction mechanism and the reaction kinetics of Hg(0) oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg(0) oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg(0) concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg(0) oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg(0) with adsorbed HCl), and the rate of Hg(0) oxidation mainly depended on Cl(•) concentration on the surface. As H2O, SO2, and NO not only inhibited Cl(•) formation on the surface but also interfered with the interface reaction between gaseous Hg(0) and Cl(•) on the surface, Hg(0) oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H2O, SO2, and NO. Furthermore, the extent of Hg(0) oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter kE-R, and the predicted result was consistent with the experimental result.

  15. 12 weeks' aerobic and resistance training without dietary intervention did not influence oxidative stress but aerobic training decreased atherogenic index in middle-aged men with impaired glucose regulation.

    PubMed

    Venojärvi, Mika; Korkmaz, Ayhan; Wasenius, Niko; Manderoos, Sirpa; Heinonen, Olli J; Lindholm, Harri; Aunola, Sirkka; Eriksson, Johan G; Atalay, Mustafa

    2013-11-01

    Our aim was to determine whether 12 weeks' aerobic Nordic walking (NW) or resistance exercise training (RT) without diet-induced weight loss could decrease oxidative stress and atherogenic index of plasma (AIP), prevalence of metabolic syndrome (MetS) and MetS score in middle-aged men with impaired glucose regulation (IGR) (n=144. 54.5 ± 6.5 years). In addition, we compared effects of intervention between overweight and obese subgroups. Prevalence of MetS and AIP index decreased only in NW group and MetS score in both NW and RT groups but not in control group. The changes in AIP index correlated inversely with changes in plasma antioxidant capacity. The change in AIP index remained a significant independent predictor of the changes in MetS score after the model was adjusted for age, BMI and volume of exercise (MET h/week) in NW group. There were no changes in the other measured markers of oxidative stress and related cytokines (e.g. osteopontin and osteoprotegerin) in any of the groups. Nordic walking decreased prevalence of MetS and MetS score. Improved lipid profile remained a predictor of decreased MetS score only in NW group and it seems that Nordic walking has more beneficial effects on cardiovascular disease risks than RT training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Anti-oxidant enzyme activities and expression and oxidative damage in patients with non-immediate reactions to drugs

    PubMed Central

    Cornejo-Garcia, J A; Mayorga, C; Torres, M J; Fernandez, T D; R-Pena, R; Bravo, I; Mates, J M; Blanca, M

    2006-01-01

    Adverse drug reactions with an immunological basis (ADRIB) may involve activation of other concomitant, non-specific mechanisms, amplifying the specific response and contributing to the severity and duration. One concomitant mechanism could be the generation of reactive oxygen species (ROS) and/or their detoxification by anti-oxidants, including anti-oxidant enzymes. We analysed the activity of the anti-oxidant enzymes Cu/Zn-superoxide dismutase (SOD), catalase (CAT) and cellular glutathione peroxidase (GPX), as well as certain markers of oxidative damage (thiobarbituric acid reactive substances (TBARS) and carbonyl content) in peripheral blood mononuclear cells from patients with non-immediate ADRIB using spectrophotometric methods and the anti-oxidant enzymes expression by quantitative real-time reverse transcription–polymerase chain reaction. SOD activity and expression were increased in all types of non-immediate reactions (urticaria, maculopapular exanthema and toxic epidermal necrolysis). Regarding oxidative damage, TBARS were increased in urticaria and maculopapular exanthema, and carbonyl groups in all types of reactions. Our observations indicate that oxidative damage occurs in non-immediate reactions. Carbonyl stress and the inadequacy of the anti-oxidant defences are probable causes. PMID:16879248

  17. Anti-oxidant enzyme activities and expression and oxidative damage in patients with non-immediate reactions to drugs.

    PubMed

    Cornejo-Garcia, J A; Mayorga, C; Torres, M J; Fernandez, T D; R-Pena, R; Bravo, I; Mates, J M; Blanca, M

    2006-08-01

    Adverse drug reactions with an immunological basis (ADRIB) may involve activation of other concomitant, non-specific mechanisms, amplifying the specific response and contributing to the severity and duration. One concomitant mechanism could be the generation of reactive oxygen species (ROS) and/or their detoxification by anti-oxidants, including anti-oxidant enzymes. We analysed the activity of the anti-oxidant enzymes Cu/Zn-superoxide dismutase (SOD), catalase (CAT) and cellular glutathione peroxidase (GPX), as well as certain markers of oxidative damage (thiobarbituric acid reactive substances (TBARS) and carbonyl content) in peripheral blood mononuclear cells from patients with non-immediate ADRIB using spectrophotometric methods and the anti-oxidant enzymes expression by quantitative real-time reverse transcription-polymerase chain reaction. SOD activity and expression were increased in all types of non-immediate reactions (urticaria, maculopapular exanthema and toxic epidermal necrolysis). Regarding oxidative damage, TBARS were increased in urticaria and maculopapular exanthema, and carbonyl groups in all types of reactions. Our observations indicate that oxidative damage occurs in non-immediate reactions. Carbonyl stress and the inadequacy of the anti-oxidant defences are probable causes.

  18. Reactions of. cap alpha. -oxides in the presence of hexamethylenetetramine and glycerine diphenyl ether

    SciTech Connect

    Nikolaev, P.V.; Sveshnikova, N.F.; Ignatov, V.A.

    1987-11-20

    Hexamethylenetetramine (HMTA) is widely used as a catalyst for the condensation and hardening of compositions based on epoxide oligomer. To provide objective information about the reaction scheme and the kinetics of reactions in which epoxide oligomers participate we studied a model reaction system. The model epoxide oligomer selected was phenyl glycidyl ether (PGE) and the ..cap alpha..,..gamma..-diphenyl ether of glycerine (GDPE). The reference substances in the differential thermal analysis were magnesium oxide, aluminum oxide, and GDPE. Monitoring of the progress of the isothermal reaction was effected by determining the ..cap alpha..-oxide group mercurimetrically. The concentration of HMTA was determined iodometrically.

  19. Surface Reactions of Uranium Oxide Powder, Thin Films and Single Crystals

    SciTech Connect

    Idriss, H.

    2010-01-01

    The review deals with surface reactions of the complex uranium oxide systems with relevance to catalysis and the environment. After a brief introduction on the properties of uranium oxides, the focus of the review is on surface science studies of defined structures of uranium oxides which are entirely on UO{sub 2} because of the lack of available model on other uranium oxide systems. Powder work is also included as it has given considerable information related to the dynamics between the many phases of uranium oxides. Many chemical reactions are mapped and these include water dissociative adsorption and reaction, CO oxidation and reductive coupling, as well as the reaction of oxygen containing organic compounds such as alcohols, aldehydes, ketones and carboxylic acids in addition to a few examples of sulfur and nitrogen containing compounds.

  20. Anti-Campylobacter, anti-aerobic, and anti-oxidative effects of roselle calyx extract and protocatechuic acid in ground beef.

    PubMed

    Yin, Mei-chin; Chao, Che-yi

    2008-09-30

    The inhibitory effect of roselle calyx extract and protocatechuic acid against susceptible and antibiotic-resistant Campylobacter jejuni, C. coli and C. fetus in agar plate and ground beef was examined. The minimal inhibitory concentrations of roselle calyx extract and protocatechuic acid against susceptible and antibiotic-resistant Campylobacter species were in the range of 96-152 and 20-44 microg/ml, respectively. Temperature treatments from 25 to 100 degrees C did not affect the anti-Campylobacter activity of protocatechuic acid. In ground beef stored at 15 degrees C for 6 days, roselle calyx extract and protocatechuic acid inhibited the survival and growth of aerobes, and susceptible and antibiotic-resistant Campylobacter species, in which protocatechuic acid exhibited dose-dependent effect. Both roselle calyx extract and protocatechuic acid decreased lipid oxidation levels in ground beef, in which protocatechuic acid also exhibited dose-dependent effect. The addition of roselle calyx extract or protocatechuic acid did not affect cooking loss, pH value, sensory attributes and content of fat, protein and moisture of beef samples during storage at 4 degrees C for 15 days. These data support that roselle calyx extract and protocatechuic acid may be used for muscle foods to prevent contamination from Campylobacter and aerobes, as well as delay lipid oxidation.

  1. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.

    PubMed

    Claes, Laurens; Verduyckt, Jasper; Stassen, Ivo; Lagrain, Bert; De Vos, Dirk E

    2015-04-18

    Oxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.

  2. Development of Nitric Oxide Oxidation Catalysts for the Fast SCR Reaction

    SciTech Connect

    Mark Crocker

    2005-09-30

    This study was undertaken in order to assess the potential for oxidizing NO to NO{sub 2} in flue gas environments, with the aim of promoting the so-called fast SCR reaction. In principle this can result in improved SCR kinetics and reduced SCR catalyst volumes. Prior to commencing experimental work, a literature study was undertaken to identify candidate catalysts for screening. Selection criteria comprised (1) proven (or likely) activity for NO oxidation, (2) low activity for SO2 oxidation (where data were available), and (3) inexpensive component materials. Catalysts identified included supported base metal oxides, supported and unsupported mixed metal oxides, and metal ion exchanged ZSM-5 (Fe, Co, Cu). For comparison purposes, several low loaded Pt catalysts (0.5 wt% Pt) were also included in the study. Screening experiments were conducted using a synthetic feed gas representative of flue gas from coal-fired utility boilers: [NO] = 250 ppm, [SO{sub 2}] = 0 or 2800 ppm, [H{sub 2}O] = 7%, [CO{sub 2}] = 12%, [O{sub 2}] = 3.5%, balance = N{sub 2}; T = 275-375 C. Studies conducted in the absence of SO{sub 2} revealed a number of supported and unsupported metal oxides to be extremely active for NO oxidation to NO{sub 2}. These included known catalysts (Co{sub 3}O{sub 4}/SiO{sub 2}, FeMnO{sub 3}, Cr{sub 2}O{sub 3}/TiO{sub 2}), as well as a new one identified in this work, CrFeO{sub x}/SiO{sub 2}. However, in the presence of SO{sub 2}, all the catalysts tested were found to be severely deactivated with respect to NO oxidation. Of these, Co{sub 3}O{sub 4}/SiO{sub 2}, Pt/ZSM-5 and Pt/CeO{sub 2} showed the highest activity for NO oxidation in the presence of SO{sub 2} (based on peak NO conversions to NO{sub 2}), although in no cases did the NO conversion exceed 7%. Reactor studies indicate there are two components to SO{sub 2}-induced deactivation of Co{sub 3}O{sub 4}/SiO{sub 2}, corresponding to an irreversible deactivation due to sulfation of the surface of the Co{sub 3

  3. Exothermic Surface Reactions in Alumina-Aluminum Shell-Core Nanoparticles with Iodine Oxide Decomposition Fragments

    DTIC Science & Technology

    2014-02-22

    AND SUBTITLE Sa. CONTRACT NUMBER Exothennic smface reactions in alumina-aluminum shell-core W911NF-11-1-0439 nanoprui icles with iodine oxide...is observed for aluminum and an iodine -containing oxidizer. This PIR is exothermic and precedes the main exothennic reaction conesponding to aluminum...combustion. For the aluminum and iodine oxide system, exothennic smface chemistiy was recently predicted for I-0 fragments fonning bridge bonds with

  4. The kinetics of reactions of hexacarbonyls of chromium, molybdenum, and tungsten with hydroxylamine and trimethylamine oxide

    SciTech Connect

    Maksakov, V.A.; Ershova, V.A.

    1994-04-01

    The mechanism of the reactions of M(CO){sub 6}(M=Cr, Mo, and W) with hydroxylamine was studied. As follows from kinetic data, the reaction results in the oxidation of CO to CO{sub 2} and an intramolecular transfer of the formed amine to a central metal atom. The mechanisms of reactions of M(CO){sub 6} with hydroxylamine and trimethylamine oxide are compared.

  5. Reactions Leading to Ignition in Nanocomposite Al-oxide Systems

    DTIC Science & Technology

    2010-03-01

    processing at room temperature, and the nature of the interface present between aluminum and the oxidizer (metal oxide, e.g., CuO, MoO3, Bi2O3 , etc...at room temperature, and the nature of the interface present between aluminum and the oxidizer (metal oxide, e.g., CuO, MoO3, Bi2O3 , etc.) is

  6. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide.

    PubMed

    Kuwata, Keith T; Hermes, Matthew R; Carlson, Matthew J; Zogg, Cheryl K

    2010-09-02

    Alkene ozonolysis is a major source of hydroxyl radical (*OH), the most important oxidant in the troposphere. Previous experimental and computational work suggests that for many alkenes the measured *OH yields should be attributed to the combined impact of both chemically activated and thermalized syn-alkyl Criegee intermediates (CIs), even though the thermalized CI should be susceptible to trapping by molecules such as water. We have used RRKM/master equation and variational transition state theory calculations to quantify the competition between unimolecular isomerization and bimolecular hydration reactions for the syn and anti acetaldehyde oxide formed in trans-2-butene ozonolysis and for the CIs formed in isoprene ozonolysis possessing syn-methyl groups. Statistical rate theory calculations were based on quantum chemical data provided by the B3LYP, QCISD, and multicoefficient G3 methods, and thermal rate constants were corrected for tunneling effects using the Eckart method. At tropospheric temperatures and pressures, all thermalized CIs with syn-methyl groups are predicted to undergo 1,4-hydrogen shifts from 2 to 8 orders of magnitude faster than they react with water monomer at its saturation number density. For thermalized anti acetaldehyde oxide, the rates of dioxirane formation and hydration should be comparable.

  7. Integrated model of reaction rate equations and thermal energy balance in aerobic bioreactor for food waste decomposition.

    PubMed

    Watanabe, Osamu; Isoda, Satoru

    2011-06-01

    The integrated model is composed of two basic parts: one is a reaction rate model of biodegradation in combination with bioenergetics and the other is a thermal engineering model of energy flow and balance in the bioreactor. Integrating these models provides possibility to estimate microbial activity using time course of physicochemical parameters such as bed temperature, bed weight, and/or C02 concentration during decomposition. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Experimental Study of Iron Reaction with Oxides: Implications for Core-Mantle Reaction

    NASA Astrophysics Data System (ADS)

    Saxena, S.; Rekhi, S.; Wang, Z.; Pischedda, V.; Liermann, P.; Shen, G.

    2001-05-01

    Whether the iron core reacts with the silicate mantle is an important question in geophysics. If a significant reaction occurs, it may also provide a mechanism of introducing a mantle component in the outer core as required by seismic density profiling of the core. We have studied several reactions at high pressure and high temperature over the last five years. The study covers the species enstatite (MgSiO3), FeO, MgO and Al2O3. Our experimental techniques employ the use of diamond-anvil cells. The samples in the cells were heated either externally to 1800 K or by stabilized YLF laser. Pressure was measured mostly from cell constants of the sample material with XRD. All samples were in fine powder form to ensure reactivity. Our conclusions are that enstatite and MgO did not react with iron at any pressure to iron melting temperatures in this study. We also used water to wet the samples thoroughly. At pressures in excess of 60 GPa, again no reaction was noted (1). In contrast to these results, corundum (Al2O3) did react strongly with iron at 36 Gpa. The laser-heated spots showed iron to rise as plumes through corundum and in all cases resulted in Fe-Al alloys of various compositions. It was not possible to determine the compositions quantitatively. The result confirms the study by Annersten et al. (2) who used Mossbauer spectroscopy to determine the composition of Fe-Al alloy. Compositionally Al2O3 could only be a minor component of the lower mantle occurring in perovskite. Elsewhere (3), we have discussed a possible dissociation of ferropericlase to an oxide mixture. FeO or FeO component in wustite does react with Fe as shown by Boehler (4) without lowering the iron melting temperature significantly (a point that requires confirmation). In conclusion, FeO from ferropericlase and Al2O3 from perovskite are the only two components that could be extracted from the mantle and incorporated in to the outer core. 1. Saxena, S.K., Wang, Z., Pischedda, V. and Durovinsky, L

  9. In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones

    DTIC Science & Technology

    2016-02-11

    compounds, passive oxygen diffusion devices , or other means. If appropriate methanotrophs are present in the aquifer in the microaerophilic/aerobic...KH2PO4). These bottles also received 15 μM tetrathiomolybdate as a copper chelator ( Medici and Sturniolo, 2008) for the reason described in Treatment 4...addition, two different copper chelators (tetrathiomolybdate and allylthioyurea; Yu et al., 2009; Medici and Sturniolo, 2008) were used in order to

  10. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation.

    PubMed

    Verginelli, Iason; Baciocchi, Renato

    2011-11-01

    A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

  11. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation.

    PubMed Central

    Xu, K; Delling, J; Elliott, T

    1992-01-01

    Insertion mutagenesis has been used to isolate Salmonella typhimurium strains that are blocked in the conversion of 5-aminolevulinic acid (ALA) to heme. These mutants define the steps of the heme biosynthetic pathway after ALA. Insertions were recovered at five unlinked loci: hemB, hemCD, and hemE, which have been mapped previously in S. typhimurium, and hemG and hemH, which have been described only for Escherichia coli. No other simple hem mutants were found. However, double mutants are described that are auxotrophic for heme during aerobic growth and fail to convert coproporphyrinogen III to protoporphyrinogen IX. These mutant strains are defective in two genes, hemN and hemF. Single mutants defective only in hemN require heme for anaerobic growth on glycerol plus nitrate but not for aerobic growth on glycerol. Mutants defective only in hemF have no apparent growth defect. We suggest that these two genes encode alternative forms of coproporphyrinogen oxidase. Anaerobic heme synthesis requires hemN function, while either hemN or hemF is sufficient for aerobic heme synthesis. These phenotypes are consistent with the requirement of a well-characterized class of coproporphyrinogen oxidase for molecular oxygen. PMID:1317844

  12. SUPECA kinetics for scaling redox reactions in networks of mixed substrates and consumers and an example application to aerobic soil respiration

    NASA Astrophysics Data System (ADS)

    Tang, Jin-Yun; Riley, William J.

    2017-09-01

    Several land biogeochemical models used for studying carbon-climate feedbacks have begun explicitly representing microbial dynamics. However, to our knowledge, there has been no theoretical work on how to achieve a consistent scaling of the complex biogeochemical reactions from microbial individuals to populations, communities, and interactions with plants and mineral soils. We focus here on developing a mathematical formulation of the substrate-consumer relationships for consumer-mediated redox reactions of the form A + BE products, where products could be, e.g., microbial biomass or bioproducts. Under the quasi-steady-state approximation, these substrate-consumer relationships can be formulated as the computationally difficult full equilibrium chemistry problem or approximated analytically with the dual Monod (DM) or synthesizing unit (SU) kinetics. We find that DM kinetics is scaling inconsistently for reaction networks because (1) substrate limitations are not considered, (2) contradictory assumptions are made regarding the substrate processing rate when transitioning from single- to multi-substrate redox reactions, and (3) the product generation rate cannot be scaled from one to multiple substrates. In contrast, SU kinetics consistently scales the product generation rate from one to multiple substrates but predicts unrealistic results as consumer abundances reach large values with respect to their substrates. We attribute this deficit to SU's failure to incorporate substrate limitation in its derivation. To address these issues, we propose SUPECA (SU plus the equilibrium chemistry approximation - ECA) kinetics, which consistently imposes substrate and consumer mass balance constraints. We show that SUPECA kinetics satisfies the partition principle, i.e., scaling invariance across a network of an arbitrary number of reactions (e.g., as in Newton's law of motion and

  13. SUPECA kinetics for scaling redox reactions in networks of mixed substrates and consumers and an example application to aerobic soil respiration

    DOE PAGES

    Tang, Jin-Yun; Riley, William J.

    2017-09-05

    Several land biogeochemical models used for studying carbon–climate feedbacks have begun explicitly representing microbial dynamics. However, to our knowledge, there has been no theoretical work on how to achieve a consistent scaling of the complex biogeochemical reactions from microbial individuals to populations, communities, and interactions with plants and mineral soils. We focus here on developing a mathematical formulation of the substrate–consumer relationships for consumer-mediated redox reactions of the form A + BE→  products, where products could be, e.g., microbial biomass or bioproducts. Under the quasi-steady-state approximation, these substrate–consumer relationships can be formulated as the computationally difficult full equilibrium chemistry problem or approximatedmore » analytically with the dual Monod (DM) or synthesizing unit (SU) kinetics. We find that DM kinetics is scaling inconsistently for reaction networks because (1) substrate limitations are not considered, (2) contradictory assumptions are made regarding the substrate processing rate when transitioning from single- to multi-substrate redox reactions, and (3) the product generation rate cannot be scaled from one to multiple substrates. In contrast, SU kinetics consistently scales the product generation rate from one to multiple substrates but predicts unrealistic results as consumer abundances reach large values with respect to their substrates. We attribute this deficit to SU's failure to incorporate substrate limitation in its derivation. To address these issues, we propose SUPECA (SU plus the equilibrium chemistry approximation – ECA) kinetics, which consistently imposes substrate and consumer mass balance constraints. We show that SUPECA kinetics satisfies the partition principle, i.e., scaling invariance across a network of an arbitrary number of reactions (e.g., as in Newton's law of motion and Dalton's law of partial pressures). We tested SUPECA kinetics with

  14. Gas-phase reactions of nickel and nickel-rich oxide cluster anions with nitric oxide. 2: The addition of nitric oxide, oxidation of nickel clusters, and the formation of nitrogen oxide anions

    SciTech Connect

    Vann, W.D.; Wagner, R.L.; Castleman, A.W. Jr.

    1998-11-05

    A fast flow reactor-quadrupole mass spectrometer coupled with a laser vaporization source is used to study the gas-phase reactions of nickel and nickel oxide cluster anions (Ni{sub x}O{sub y}{sup {minus}}, where x = 1--12 and y = 0, 1, or 2) with nitric oxide. The results indicate that three processes are occurring in the presence of the nickel cluster anions. First, nickel and nickel oxide clusters are oxidized by the reaction with nitric oxide. Second, addition products with these oxides are also formed. Third, nitrogen dioxide and nitrogen trioxide are formed on nickel oxide clusters and subsequently released as anions. Rate constants are reported for the initial reaction occurring between the nickel cluster anions and the nitric oxide, and the reaction rates are compared with reaction rates of the same nickel anion clusters with molecular oxygen. Finally, a comparison of the reaction rates for nickel oxides formed both in the flow tube and in the laser vaporization source are reported. These reactions (previously reported on Part 1) to help to provide a better understanding of the formation of free nitrogen oxide anions observed in the current experiments.

  15. Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media.

    PubMed

    Ginn, T R; Murphy, E M; Chilakapati, A; Seeboonruang, U

    2001-03-01

    Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.

  16. Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Murphy, E. M.; Chilakapati, A.; Seeboonruang, U.

    2001-03-01

    Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.

  17. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Leonte, Mihai; Kessler, John D.; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Sylva, Sean P.

    2017-05-01

    Aerobic oxidation is an important methane sink in seawater overlying gas seeps. Recent surveys have identified active methane seeps in the waters of Hudson Canyon, US Atlantic Margin near the updip limit of methane clathrate hydrate stability. The close proximity of these seeps to the upper stability limit of methane hydrates suggests that changing bottom water temperatures may influence the release rate of methane into the overlying water column. In order to assess the significance of aerobic methane oxidation in limiting the atmospheric expression of methane released from Hudson Canyon, the total extent of methane oxidized along with integrated oxidation rates were quantified. These calculations were performed by combining the measurements of the natural levels of methane concentrations, stable carbon isotopes, and water current velocities into kinetic isotope models yielding rates ranging from 22.8 ± 17 to 116 ± 76 nM/day with an average of 62.7 ± 37 nM/day. Furthermore, an average of 63% of methane released into the water column from an average depth of 515 m was oxidized before leaving this relatively small study area (6.5 km2). Results from the kinetic isotope model were compared to previously-published but concurrently-sampled ex situ measurements of oxidation potential performed using 13C-labeled methane. Ex situ rates were substantially lower, ranging from 0.1 to 22.5 nM/day with an average of 5.6 ± 2.3 nM/day, the discrepancy likely due to the inherent differences between these two techniques. Collectively, the results reveal exceptionally-rapid methane oxidation, with turnover times for methane as low as 0.3-3.7 days, indicating that methane released to the water column is removed quantitatively within the greater extent of Hudson Canyon. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text.

  18. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  19. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  20. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater.

    PubMed

    Suarez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan A; Fabregat, Azael; Stüber, Frank; Fortuny, Agustí; Font, Josep; Carrera, Julián

    2007-02-01

    This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.

  1. Aerobic Tennis.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Ahlschwede, Robert

    1989-01-01

    Increasing the aerobic nature of tennis drills in the physical education class may be necessary if tennis is to remain a part of the public school curriculum. This article gives two examples of drills that can be modified by teachers to increase activity level. (IAH)

  2. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota.

    PubMed

    Stieglmeier, Michaela; Klingl, Andreas; Alves, Ricardo J E; Rittmann, Simon K-M R; Melcher, Michael; Leisch, Nikolaus; Schleper, Christa

    2014-08-01

    A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76(T), was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6-0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76(T) had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76(T) had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76(T) is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85% 16S rRNA gene sequence identity with the closest cultivated relative 'Candidatus Nitrosopumilus maritimus' SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81% 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. 'Korarchaeota' and 'Aigarchaeota'). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76(T). The type strain of Nitrososphaera viennensis is strain EN76(T) ( = DSM 26422(T) = JMC 19564(T)). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov.

  3. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota

    PubMed Central

    Stieglmeier, Michaela; Klingl, Andreas; Alves, Ricardo J. E.; Rittmann, Simon K.-M. R.; Melcher, Michael; Leisch, Nikolaus

    2014-01-01

    A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76T, was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6–0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76T had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76T had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76T is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85 % 16S rRNA gene sequence identity with the closest cultivated relative ‘Candidatus Nitrosopumilus maritimus’ SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81 % 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. ‘Korarchaeota’ and ‘Aigarchaeota’). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76T. The type strain of Nitrososphaera viennensis is strain EN76T ( = DSM 26422T = JMC 19564T). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov. PMID:24907263

  4. 5-Carboxamido-5-formamido-2-iminohydantoin, in Addition to 8-oxo-7,8-Dihydroguanine, Is the Major Product of the Iron-Fenton or X-ray Radiation-Induced Oxidation of Guanine under Aerobic Reducing Conditions in Nucleoside and DNA Contexts

    PubMed Central

    2016-01-01

    Exogenously and endogenously produced reactive oxygen species attack the base and sugar moieties of DNA showing a preference for reaction at 2′-deoxyguanosine (dG) sites. In the present work, dG was oxidized by HO• via the Fe(II)-Fenton reaction or by X-ray radiolysis of water. The oxidized lesions observed include the 2′-deoxynucleosides of 8-oxo-7,8-dihydroguanine (dOG), spiroiminodihydantoin (dSp), 5-guanidinohydantoin (dGh), oxazolone (dZ), 5-carboxamido-5-formamido-2-iminohydantoin (d2Ih), 5′,8-cyclo-2′-deoxyguanosine (cyclo-dG), and the free base guanine (Gua). Reactions conducted with ascorbate or N-acetylcysteine as a reductant under aerobic conditions identified d2Ih as the major lesion formed. Studies were conducted to identify the role of O2 and the reductant in product formation. From these studies, mechanisms are proposed to support d2Ih as a major oxidation product detected under aerobic conditions in the presence of the reductant. These nucleoside observations were then validated in oxidations of oligodeoxynucleotide and λ-DNA contexts that demonstrated high yields of d2Ih in tandem with dOG, dSp, and dGh. These results identify dG oxidation to d2Ih to occur in high yields leading to a hypothesis that d2Ih could be found from in cells stressed with HO•. Further, the distorted ring structure of d2Ih likely causes this lesion to be highly mutagenic. PMID:26092110

  5. Photo- and thermal-oxidation studies on methyl and phenyl linoleate: anti-oxidant behaviour and rates of reaction.

    PubMed

    Chacón, J N; Gaggini, P; Sinclair, R S; Smith, F J

    2000-09-01

    Photo-peroxidation of methyl and phenyl linoleate in methanol solutions at 25 degrees C, in the presence of methylene blue or 5,10,15,20-tetra(4-pyridyl)-porphyrin (TPP) as sensitisers of singlet oxygen, was found to proceed at more than 30 times the rate of the same polyunsaturated fatty acid (PUFA) ester species undergoing thermal-peroxidation in the bulk phase at 50 degrees C. The addition of anti-oxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) quench the thermal-oxidation effectively but appear to only partially inhibit the photosensitized peroxidation reactions. The kinetics of the overall peroxidation reactions were followed by ultraviolet spectroscopy, measurements of hydroperoxide concentration and by high performance liquid chromatography (HPLC). The photo-peroxidation reaction proceeds more rapidly in chloroform solution as the lifetime of singlet oxygen is shown to be over ten times longer in chloroform than methanol. The initial fast reaction kinetics of the photo-peroxidation reactions were evaluated using a pulsed laser technique to show that singlet oxygen reacts competitively with both the anti-oxidants and the polyunsaturated fatty acid ester. Second order kinetic rate constants (in the range 10(5)-10(7) dm(3) mol(-1) s(-1)) were evaluated for the reactivity of singlet oxygen with a range of anti-oxidants and a singlet oxygen quencher, and the results used to explain the effect of anti-oxidants at different concentrations on the rate of the linoleate photo-peroxidation reaction.

  6. Microelectrode arrays: a general strategy for using oxidation reactions to site selectively modify electrode surfaces.

    PubMed

    Nguyen, Bichlien H; Kesselring, David; Tesfu, Eden; Moeller, Kevin D

    2014-03-04

    Oxidation reactions are powerful tools for synthesis because they allow for the functionalization of molecules. Here, we present a general method for conducting these reactions on a microelectrode array in a site-selective fashion. The reactions are run as a competition between generation of a chemical oxidant at the electrodes in the array and reduction of the oxidant by a "confining agent" in the solution above the array. The "confining agent" does not need to be more reactive than the substrate fixed to the surface of the array. In many cases, the same substrate placed on the surface of the array can also be used in solution as the confining agent.

  7. A Biomimetic Mechanism for the Copper-Catalyzed Aerobic Oxygenation of 4-tert-Butylphenol.

    PubMed

    Askari, Mohammad S; Esguerra, Kenneth Virgel N; Lumb, Jean-Philip; Ottenwaelder, Xavier

    2015-09-08

    Controlling product selectivity during the catalytic aerobic oxidation of phenols remains a significant challenge that hinders reaction development. This work provides a mechanistic picture of a Cu-catalyzed, aerobic functionalization of phenols that is selective for phenoxy-coupled ortho-quinones. We show that the immediate product of the reaction is a Cu(II)-semiquinone radical complex and reveal that ortho-oxygenation precedes oxidative coupling. This complex is the resting state of the Cu catalyst during turnover at room temperature. A mechanistic study of the formation of this complex at low temperatures demonstrates that the oxygenation pathway mimics the dinuclear Cu enzyme tyrosinase by involving a dinuclear side-on peroxodicopper(II) oxidant. Unlike the enzyme, however, the rate-limiting step of the ortho-oxygenation reaction is the self-assembly of the oxidant from Cu(I) and O2. We provide details for all steps in the cycle and demonstrate that turnover is contingent upon proton-transfer events that are mediated by a slight excess of ligand. Finally, our knowledge of the reaction mechanism can be leveraged to diversify the reaction outcome. Thus, uncoupled ortho-quinones are favored in polar, coordinating media, highlighting unusually high levels of chemoselectivity for a catalytic aerobic oxidation of a phenol.

  8. Thiomicrospira hydrogeniphila sp. nov., an aerobic, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a seawater tank containing a block of beef tallow.

    PubMed

    Watsuji, Tomo-O; Hada, Emi; Miyazaki, Masayuki; Ichimura, Masako; Takai, Ken

    2016-09-01

    A moderately psychrophilic, aerobic, hydrogen- and sulfur-oxidizing bacterium, designated strain MAS2T, was isolated from a tank containing coastal seawater from Tokyo Bay and a block of beef tallow added as organic material. Growth occurred under aerobic chemolithoautotrophic conditions in the presence of molecular hydrogen, thiosulfate, tetrathionate, elemental sulfur or sulfide as the sole energy source and bicarbonate as a carbon source. The isolate represented a Gram-staining-negative rod with a single polar flagellum and grew in artificial seawater medium with thiosulfate at 2-40 °C (optimum 30 °C). The isolate grew in media with thiosulfate at Na+ concentrations between 30 and 1380 mM (optimum 270 mM). MAS2T possessed C16 : 0, C16 : 1 and C18 : 1 as the major fatty acids. The G+C content of the genomic DNA was 39.6 mol%. The 16S rRNA gene sequence similarity analysis showed that the isolate represented a member of the genus Thiomicrospira within the class Gammaproteobacteria and was most closely related to Thiomicrospira frisia JB-A2T. On the basis of phenotypic and molecular properties, the isolate represents a novel species of the genus Thiomicrospira, for which the name Thiomicrospira hydrogeniphila sp. nov. is proposed (type strain, MAS2T=JCM 30760T=DSM 100274T).

  9. Aerobic Production and Utilization of Lactate Satisfy Increased Energy Demands Upon Neuronal Activation in Hippocampal Slices and Provide Neuroprotection Against Oxidative Stress

    PubMed Central

    Schurr, Avital; Gozal, Evelyne

    2012-01-01

    Ever since it was shown for the first time that lactate can support neuronal function in vitro as a sole oxidative energy substrate, investigators in the field of neuroenergetics have been debating the role, if any, of this glycolytic product in cerebral energy metabolism. Our experiments employed the rat hippocampal slice preparation with electrophysiological and biochemical methodologies. The data generated by these experiments (a) support the hypothesis that lactate, not pyruvate, is the end-product of cerebral aerobic glycolysis; (b) indicate that lactate plays a major and crucial role in affording neural tissue to respond adequately to glutamate excitation and to recover unscathed post-excitation; (c) suggest that neural tissue activation is accompanied by aerobic lactate and NADH production, the latter being produced when the former is converted to pyruvate by mitochondrial lactate dehydrogenase (mLDH); (d) imply that NADH can be utilized as an endogenous scavenger of reactive oxygen species (ROS) to provide neuroprotection against ROS-induced neuronal damage. PMID:22275901

  10. Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    1995-01-01

    Pure coupons of chemically vapor deposited (CVD) SiC were oxidized for 100 h in dry flowing oxygen at 1300 C. The oxidation kinetics were monitored using thermogravimetry (TGA). The experiments were first performed using high-purity alumina reaction tubes. The experiments were then repeated using fused quartz reaction tubes. Differences in oxidation kinetics, scale composition, and scale morphology were observed. These differences were attributed to impurities in the alumina tubes. Investigators interested in high-temperature oxidation of silica formers should be aware that high-purity alumina can have significant effects on experiment results.

  11. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  12. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  13. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base.

    PubMed

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2014-06-01

    Palladium (PdNTs) and gold nanotubes (AuNTs) were synthesized by the galvanic displacement of silver nanowires. PdNTs and AuNTs have wall thicknesses of 6 nm, outer diameters of 60 nm, and lengths of 5-10 and 5-20 μm, respectively. Rotating disk electrode experiments showed that the PdNTs and AuNTs have higher area normalized activities for the oxygen reduction reaction (ORR) than conventional nanoparticle catalysts. The PdNTs produced an ORR area activity that was 3.4, 2.2, and 3.7 times greater than that on carbon-supported palladium nanoparticles (Pd/C), bulk polycrystalline palladium, and carbon-supported platinum nanoparticles (Pt/C), respectively. The AuNTs produced an ORR area activity that was 2.3, 9.0, and 2.0 times greater than that on carbon-supported gold nanoparticles (Au/C), bulk polycrystalline gold, and Pt/C, respectively. The PdNTs also had lower onset potentials than Pd/C and Pt/C for the oxidation of methanol (0.236 V), ethanol (0.215 V), and ethylene glycol (0.251 V). In comparison to Pt/C, the PdNTs and AuNTs further demonstrated improved alcohol tolerance during the ORR. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The role of oxygen in lipid oxidation reactions: a review.

    PubMed

    Johnson, David R; Decker, Eric A

    2015-01-01

    The susceptibility of food oil to quality loss is largely determined by the presence of oxygen. This article reviews the current understanding concerning the effect of oxygen types, location, and concentration on the oxidative stability of foods. It also discusses the major factors that influence the interaction between oxygen and lipids such as antioxidants, prooxidants, reactive oxygen species (ROS), environmental conditions, and oxygen scavengers. Research has shown that the amount of oxygen needed to cause oxidation is generally very small and that by reducing oxygen concentration in containers to less than 2%, oxidative stability can be greatly enhanced. However, very few studies have systematically examined the oxygen levels needed to reduce, or inhibit, lipid oxidation processes. Thus, a more comprehensive understanding of the relationship between oxygen levels and lipid oxidation is necessary for the development of innovative antioxidant solutions and package designs that prolong the quality of foods containing lipids.

  15. Thermal oxidative degradation reactions of linear perfluoroalkyl ethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paclorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1983-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoroalkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors is reported. The linear perfluoroalkyl ethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoroalkyl ether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating. Previously announced in STAR as N82-26468

  16. Thermal oxidative degradation reactions of linear perfluoroalky lethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1982-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoro alkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors are reported. The liner perfluoro alkylethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoro alkylether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating.

  17. Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation-Condensation Reactions.

    PubMed

    Wang, Jing-Si; Jin, Fa-Zheng; Ma, Hui-Chao; Li, Xiao-Bo; Liu, Ming-Yang; Kan, Jing-Lan; Chen, Gong-Jun; Dong, Yu-Bin

    2016-07-05

    A new composite Au@Cu(II)-MOF catalyst has been synthesized via solution impregnation and full characterized by HRTEM, SEM-EDS, XRD, gas adsorption-desorption, XPS, and ICP analysis. It has been shown here that the Cu(II)-framework can be a useful platform to stabilize and support gold nanoparticles (Au NPs). The obtained Au@Cu(II)-MOF exhibits a bifunctional catalytic behavior and is able to promote selective aerobic benzyl alcohol oxidation-Knoevenagel condensation in a stepwise way.

  18. Influence of a reaction medium on the oxidation of aromatic nitrogen-containing compounds by peroxyacids

    NASA Astrophysics Data System (ADS)

    Dutka, V. S.; Matsyuk, N. V.; Dutka, Yu. V.

    2011-01-01

    The influence of different solvents on the oxidation reaction rate of pyridine (Py), quinoline (QN), acridine (AN), α-oxyquinoline (OQN) and α-picolinic acid (APA) by peroxydecanoic acid (PDA) was studied. It was found that the oxidation rate grows in the series Py < QN < AN, and the rate of the oxidation reaction of compounds containing a substituent in the α position from a reactive center is significantly lower than for unsubstituted analogues. The effective energies of activation of the oxidation reaction were found. It was shown that in the first stage, the reaction mechanism includes the rapid formation of an intermediate complex nitrogen-containing compound, peroxyacid, which forms products upon decomposing in the second stage. A kinetic equation that describes the studied process is offered. The constants of equilibrium of the intermediate complex formation ( K eq) and its decomposition constant ( k 2) in acetone and benzene were calculated. It was shown that the nature of the solvent influences the numerical values of both K p and k 2. It was established that introduction of acetic acid (which is able to form compounds with Py) into the reaction medium slows the rate of the oxidation process drastically. Correlation equations linking the polarity, polarizability, electrophilicity, and basicity of solvents with the constant of the PDA oxidation reaction rate for Py were found. It was concluded that the basicity and polarity of the solvent have a decisive influence on the oxidation reaction rate, while the polarizability and electrophilicity of the reaction medium do not influence the oxidation reaction rate.

  19. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  20. North Pond: a natural observatory for sub-seafloor oxidant supply and metabolic reactions

    NASA Astrophysics Data System (ADS)

    Ziebis, Wiebke; Ferdelman, Timothy; McManus, James; Muratli, Jesse; Picard, Aude; Schmidt-Schierhorn, Friederike; Stephan, Sebastian; Villinger, Heinrich; Edwards, Katrina J.

    2010-05-01

    Evidence of upward transport of oxidants from basaltic aquifers to deeply buried sediments has raised questions on microbial respiration and energy cycling within the deep biosphere. Sediment ponds that occur over a vast area of sea floor on the flank of the Mid-Atlantic Ridge maybe ideal observatories to study the role of unsuspected sources of oxidants for sub-seafloor microbial life. The western flank of the Mid-Atlantic Ridge, at 22°45'N is characterized by depressions filled with sediment and surrounded by high relief topography of 7 Ma old basement. The largest depressions are 5 km to 20 km wide and sediment thickness varies but can reach 400 m (Langseth et al. 1992). They are believed to overly recharge zones for the venting of fluids that takes place locally through unsedimented young ocean crust. If we consider the sediments as boundaries overlying the hydrologically active crustal environment, then using profiles of bioactive compounds measured through the sediment layer with the goal to extract information on transport and reactions is an obvious approach to understanding the implications of subsurface transport of oxidants on metabolic activity. Recently obtained deep oxygen profiles obtained during a site survey expedition in February/March of 2009 onboard RV Maria S. Merian to North Pond, one of the larger (70 square km) and best studied sediment ponds, provided proof of this principal. North Pond is the site of the proposed IODP Expedition "677 Mid-Atlantic Microbiology". Investigations included heat-flow, single-channel seismic and bathymetry surveys, as well as gravity coring. Oxygen measurements and pore water sampling (25 cm depth intervals) were performed directly on intact sediment cores, which were subsequently sampled for microbiological analyses, as well as for incubation experiments to test for autotrophic and heterotrophic microbial activity. The entire sediment column down to > 8 m sediment depth contained oxygen. In the central part of

  1. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum

    PubMed Central

    Kitamura, Takuya; Seki, Naoya

    2017-01-01

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals. PMID:28289220

  2. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  3. Process of forming catalytic surfaces for wet oxidation reactions

    NASA Technical Reports Server (NTRS)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  4. Radiosensitization of E. coli B/r by the cytotoxic agent procarbazine: a hypoxic cell sensitizer preferentially toxic to aerobic cells and easily oxidized.

    PubMed Central

    Roberts, P. B.

    1979-01-01

    Procarbazine has been shown to be a hypoxic cell sensitizer of moderate ability in E. coli B/r, with an achievable enhancement ratio of 1.4 at subtoxic concentrations. The drug appears to act in a manner similar to the expected with the electron-affinic radiosensitizers. However, procarbazine and the electron-affinic sensitizers differ in two important respects. Unlike the electron-affinic sensitizers, procarbazine is not easily reduced, but is easily oxidized. It is more toxic to aerobic than to hypoxic cells. At the drug dosages in present clinical use, procarbazine is likely to be only a weak radiosensitizer. The possible implications of the data for the further development of a new class of sensitizers and combination therapy are discussed. PMID:375966

  5. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  6. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  7. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  8. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  9. Bulk Gold-Catalyzed Reactions of Isocyanides, Amines, and Amine N-Oxides

    SciTech Connect

    Klobukowski, Erik; Angelici, Robert; Woo, Keith L.

    2012-01-26

    Bulk gold powder (5–50 μm particles) catalyzes the reactions of isocyanides with amines and amine N-oxides to produce ureas. The reaction of n-butyl isocyanide (nBu–N≡C) with di-n-propylamine and N-methylmorpholine N-oxide in acetonitrile, which was studied in the greatest detail, produced 3-butyl-1,1-dipropylurea (O═C(NHnBu)(NnPr2)) in 99% yield at 60 °C within 2 h. Sterically and electronically different isocyanides, amines, and amine N-oxides react successfully under these conditions. Detailed studies support a two-step mechanism that involves a gold-catalyzed reaction of adsorbed isocyanide with the amine N-oxide to form an isocyanate (RN═C═O), which rapidly reacts with the amine to give the urea product. These investigations show that bulk gold, despite its reputation for poor catalytic activity, is capable of catalyzing these reactions.

  10. Enantioselective Pd(II)-catalyzed aerobic oxidative amidation of alkenes and insights into the role of electronic asymmetry in pyridine-oxazoline ligands.

    PubMed

    McDonald, Richard I; White, Paul B; Weinstein, Adam B; Tam, Chun Pong; Stahl, Shannon S

    2011-06-03

    Enantioselective intramolecular oxidative amidation of alkenes has been achieved using a (pyrox)Pd(II)(TFA)(2) catalyst (pyrox = pyridine-oxazoline, TFA = trifluoroacetate) and O(2) as the sole stoichiometric oxidant. The reactions proceed at room temperature in good-to-excellent yields (58-98%) and with high enantioselectivity (ee = 92-98%). Catalyst-controlled stereoselective cyclization reactions are demonstrated for a number of chiral substrates. DFT calculations suggest that the electronic asymmetry of the pyrox ligand synergizes with steric asymmetry to control the stereochemical outcome of the key amidopalladation step.

  11. Enantioselective Pd(II)-Catalyzed Aerobic Oxidative Amidation of Alkenes and Insights into the Role of Electronic Asymmetry in Pyridine-Oxazoline Ligands

    PubMed Central

    McDonald, Richard I.; White, Paul B.; Weinstein, Adam B.; Tam, Chun Pong; Stahl, Shannon S.

    2011-01-01

    Enantioselective intramolecular oxidative amidation of alkenes has been achieved using a (pyrox)Pd(II)(TFA)2 catalyst (pyrox = pyridine-oxazoline, TFA = trifluoroacetate) and O2 as the sole stoichiometric oxidant. The reactions proceed at room temperature in good-to-excellent yield (58-98%) and with high enantioselectivity (ee = 92-98%). Catalyst-controlled stereoselective cyclization reactions are demonstrated for a number of chiral substrates. DFT calculations suggest that the electronic asymmetry of the pyrox ligand synergizes with steric asymmetry to control the stereochemical outcome of the key amidopalladation step. PMID:21534607

  12. FeCl3/ZnI2-catalyzed synthesis of benzo[d]imidazo[2,1-b]thiazole through aerobic oxidative cyclization between 2-aminobenzothiazole and ketone.

    PubMed

    Mishra, Subhajit; Monir, Kamarul; Mitra, Shubhanjan; Hajra, Alakananda

    2014-12-05

    The FeCl3/ZnI2-catalyzed aerobic oxidative cyclization between 2-aminobenzothiazole and ketone/chalcone for the synthesis of benzo[d]imidazo[2,1-b]thiazole is described. A variety of fused benzoimidazothiazole derivatives are obtained by this protocol.

  13. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  14. New Insights into the Diels-Alder Reaction of Graphene Oxide.

    PubMed

    Brisebois, Patrick P; Kuss, Christian; Schougaard, Steen B; Izquierdo, Ricardo; Siaj, Mohamed

    2016-04-18

    Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies.

  15. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.

    PubMed

    Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-04-27

    Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications.

  16. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings

    PubMed Central

    2013-01-01

    Background One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that

  17. Ceramic oxide reactions with V2O5 and SO3

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Williams, C. E.

    1985-01-01

    Ceramic oxides are not inert in combustion environments, but can react with, inter alia, SO3, and Na2SO4 to yield low melting mixed sulfate eutectics, and with vanadium compounds to produce vanadates. Assuming ceramic degradation to become severe only when molten phases are generated in the surface salt (as found for metallic hot corrosion), the reactivity of ceramic oxides can be quantified by determining the SO3 partial pressure necessary for molten mixed sulfate formation with Na2SO3. Vanadium pentoxide is an acidic oxide that reacts with Na2O, SO3, and the different ceramic oxides in a series of Lux-Flood type of acid-base displacement reactions. To elucidate the various possible vanadium compound-ceramic oxide interactions, a study was made of the reactions of a matrix involving, on the one axis, ceramix oxides of increasing acidity, and on the other axis, vanadium compounds of increasing acidity. Resistance to vanadium compound reaction increased as the oxide acidity increased. Oxides more acidic than ZrO2 displaced V2O5. Examination of Y2O3- and CeO2-stabilized ZrO2 sintered ceramics which were degraded in 700 C NaVO3 has shown good agreement with the reactions predicted above, except that the CeO2-ZrO2 ceramic appears to be inexplicably degraded by NaVO3.

  18. [Formation and reactions of biogenic manganese oxides with heavy metals in environment].

    PubMed

    Meng, You-Ting; Zheng, Yuan-Ming; Zhang, Li-Mei; He, Ji-Zheng

    2009-02-15

    Manganese (Mn) oxides are common minerals in natural environments that may play an important role in the biogeochemical cycles of heavy metals. Increasing evidences have shown that Mn (II) oxidation is a microbially-mediated process, and the Mn oxidizing microorganisms are thus recognized as the major drivers of the global Mn cycle. The major pathway for bacterial Mn (II) oxidation is catalysed by a multicopper oxidizing enzyme family. The primary Mn (IV) biooxides are phyllomanganate-like minerals most similar to delta-MnO2 or acid birnessite. Manganese oxides are known to have high sorption capacities for a wide variety of metal ions and considered to be the important environmental oxidant to many metal ions. This paper reviewed the mechanisms of biogenic manganese oxides formation and their reactions with heavy metal ions in environment.

  19. Reaction pathways during oxidation of cereal β-glucans.

    PubMed

    Mäkelä, Noora; Sontag-Strohm, Tuula; Schiehser, Sonja; Potthast, Antje; Maaheimo, Hannu; Maina, Ndegwa H

    2017-02-10

    Oxidation of cereal β-glucans may affect their stability in food products. Generally, polysaccharides oxidise via different pathways leading to chain cleavage or formation of oxidised groups within the polymer chain. In this study, oxidation pathways of oat and barley β-glucans were assessed with different concentrations of hydrogen peroxide (H2O2) or ascorbic acid (Asc) with ferrous iron (Fe(2+)) as a catalyst. Degradation of β-glucans was evaluated using high performance size exclusion chromatography and formation of carbonyl groups using carbazole-9-carbonyloxyamine labelling. Furthermore, oxidative degradation of glucosyl residues was studied. Based on the results, the oxidation with Asc mainly resulted in glycosidic bond cleavage. With H2O2, both glycosidic bond cleavage and formation of carbonyl groups within the β-glucan chain was found. Moreover, H2O2 oxidation led to production of formic acid, which was proposed to result from Ruff degradation where oxidised glucose (gluconic acid) is decarboxylated to form arabinose.

  20. Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Bagherzadeh, Mojtaba

    2015-06-15

    We report the green synthesis of palladium/CuO nanoparticles (Pd/CuO NPs) using Theobroma cacao L. seeds extract and their catalytic activity for the reduction of 4-nitrophenol and Heck coupling reaction under aerobic conditions. The catalyst was characterized using the powder XRD, TEM, EDS, UV-vis and FT-IR. This method has the advantages of high yields, elimination of surfactant, ligand and homogeneous catalysts, simple methodology and easy work up. The catalyst can be recovered from the reaction mixture and reused several times without any significant loss of catalytic activity.

  1. Catalytic reactions on neutral Rh oxide clusters more efficient than on neutral Rh clusters.

    PubMed

    Yamada, Akira; Miyajima, Ken; Mafuné, Fumitaka

    2012-03-28

    Gas phase catalytic reactions involving the reduction of N(2)O and oxidation of CO were observed at the molecular level on isolated neutral rhodium clusters, Rh(n) (n = 10-28), using mass spectrometry. Sequential oxygen transfer reactions, Rh(n)O(m-1) + N(2)O → Rh(n)O(m) + N(2) (m = 1, 2, 3,…), were monitored and the rate constant for each reaction step was determined as a function of the cluster size. Oxygen extraction reactions by a CO molecule, Rh(n)O(m) + CO → Rh(n)O(m-1) + CO(2) (m = 1, 2, 3,…), were also observed when a small amount of CO was mixed with the reactant N(2)O gas. The rate constants of the oxygen extraction reactions by CO for m ≥ 4 were found to be two or three orders of magnitude higher than the rate constants for m ≤ 3, which indicates that the catalytic reaction proceeds more efficiently when the reaction cycles turn over around Rh(n)O(m) (m ≥ 4) than around bare Rh(n). Rhodium clusters operate as more efficient catalysts when they are oxidized than non- or less-oxidized rhodium clusters, which is consistent with theoretical and experimental studies on the catalytic CO oxidation reaction on a rhodium surface.

  2. Photocatalytic reaction of catechol on rutile titanium oxide

    NASA Astrophysics Data System (ADS)

    Jacobson, Peter; Wang, Chundao; Diebold, Ulrike

    2008-03-01

    In an attempt to understand the fundamental aspects of photocatalysis we have studied the substituted benzene catechol on TiO2(110). Previous studies have given detailed information about the catechol bonding configuration letting our group focus on molecular level interactions with scanning tunneling microscopy and X ray photoelectron spectroscopy. Under UV exposure (248 nm) in an oxygen background, catechol is observed to degrade via oxidation. This oxidation process results in removal of roughly 10% of the initial monolayer. The removal of carbon from the TiO2 surface is shown to depend upon the background gas. Formation of a residual carbon layer is achieved by annealing the catechol monolayer to 600C. This carbon layer is more difficult to remove by photocatalytic oxidation than a pristine catechol monolayer. Work supported by Intel Corporation

  3. Determination of carbon by the oxidation reduction reaction with chromium

    NASA Technical Reports Server (NTRS)

    Mashkovich, L.; Kuteynikov, A. F.

    1978-01-01

    Free carbon was determined in silicon and boron carbides in ash, oxides, and other materials by oxidation to carbon dioxide with a mixture of K2Cr2O7 + H2SO4. The determination was made from the amount of CR(6) consumed, by adding excess Mohr's salt and titrating with a standard solution of KMnO4. The amount of Cr(6) self reduced was determined in a blank test. Optimum oxidation and conditions were achieved when the volumes of 5% k2Cr2Oz and H2SO4 were equal. The mixture was boiled for 1-2 hours using a reflex condenser. The volume should not be reduced, in order to avoid an increase in the sulfuric acid concentration. The relative error was 4-7% for 0.005-0.04 g C and less than or equal to 3.5% for 0.1 g C.

  4. Mutagenicity screening of reaction products from the enzyme-catalyzed oxidation of phenolic pollutants

    SciTech Connect

    Massey, I.J.; Aitken, M.D.; Ball, L.M.; Heck, P.E. . Dept. of Environmental Sciences and Engineering)

    1994-11-01

    Phenol-oxidizing enzymes such as peroxidases, laccases, and mushroom polyphenol oxidase are capable of catalyzing the oxidation of a wide range of phenolic pollutants. Although the use of these enzymes in waste-treatment applications has been proposed by a number of investigators, little information exists on the toxicological characteristics of the oxidation products. The enzymes chloroperoxidase, horseradish peroxidase, lignin peroxidase, and mushroom polyphenol oxidase were used in this study to catalyze the oxidation of phenol, several mono-substituted phenols, and pentachlorophenol. Seventeen reaction mixtures representing selected combinations of enzyme and parent phenol were subjected to mutagenicity screening using the Ames Salmonella typhimurium plate incorporation assay; five selected mixtures were also incubated with the S9 microsomal preparation to detect the possible presence of promutagens. The majority of reaction mixtures tested were not directly mutagenic, and none of those tested with S9 gave a positive response. Such lack of mutagenicity of enzymatic oxidation products provides encouragement for establishing the feasibility of enzyme-catalyzed oxidation as a waste-treatment process. The only positive responses were obtained with reaction products from the lignin peroxidase-catalyzed oxidation of 2-nitrophenol and 4-nitrophenol. Clear positive responses were observed when strain TA100 was incubated with 2-nitrophenol reaction-product mixtures, and when strain TA98 was incubated with the 4-nitrophenol reaction mixture. Additionally, 2,4-dinitrophenol was identified as a reaction product from 4-nitrophenol, and preliminary evidence indicates that both 2,4- and 2,6-dinitrophenol are produced from the oxidation of 2-nitrophenol. Possible mechanism by which these nitration reactions occur are discussed.

  5. A comparative theoretical study of CO oxidation reaction by O2 molecule over Al- or Si-decorated graphene oxide.

    PubMed

    Esrafili, Mehdi D; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-09-01

    Using density functional theory calculations, the probable CO oxidation reaction mechanisms are investigated over Al- or Si-decorated graphene oxide (GO). The equilibrium geometry and electronic structure of these metal decorated-GOs along with the O2/CO adsorption configurations are studied in detail. The relatively large adsorption energies reveal that both Al and Si atoms can disperse on GO quite stably without clustering problem. Hence, both Al- and Si-decorated GOs are stable enough to be utilized in catalytic oxidation of CO by molecular O2. The two possible reaction pathways proposed for the oxidation of CO with O2 molecule are as follows: O2+CO→CO2+Oads and CO+Oads→CO2. The estimated energy barriers of the first oxidation reaction on Si-decorated GOs, following the Eley-Rideal (ER) reaction, are lower than that on Al-decorated ones. This is most likely due to the larger atomic charge on the Si atom than the Al one, which tends to stabilize the corresponding transition state structure. The results of this study can be useful for better understanding the chemical properties of Al- and Si-decorated GOs, and are valuable for the development of an automobile catalytic converter in order to remove the toxic CO molecule.

  6. Nitrogen oxide reactions in the urban plume of Boston.

    PubMed

    Spicer, C W

    1982-02-26

    The rate of removal or conversion of nitrogen oxides has been determined from airborne measurements in the urban plume of Boston. The average pseudo-first-order rate constant for removal was 0.18 per hour, with a range of 0.14 to 0.24 per hour under daylight conditions for four study days. The removal process is dominated by chemical conversion to nitric acid and organic nitrates. The removal rate suggests an atmospheric lifetime for nitrogen oxides of about 5 to 6 hours in urban air.

  7. Method for catalyzing oxidation/reduction reactions of simple molecules

    SciTech Connect

    Bicker, D.; Bonaventura, J.

    1988-06-14

    A method for oxidizing carbon monoxide to carbon dioxide is described comprising: (1) contacting, together, carbon monoxide, a nitrogen-containing chelating agent and water; wherein the chelating agent is at least one member selected from the group consisting of methmeoglobin bound to a support, ferric hemoglobin bound to a support, iron-containing porphyrins bound to a support, and sperm whale myoglobin bound to a support, wherein the support is glass, a natural fiber, a synthetic fiber, a gel, charcoal, carbon ceramic material, a metal oxide, a synthetic polymer, a zeolite, a silica compound of an alumina compound; and (2) obtaining carbon dioxide.

  8. Theoretical analysis of hydrogen oxidation reaction in solid oxide fuel cell anode based on species territory adsorption model

    NASA Astrophysics Data System (ADS)

    Nagasawa, Tsuyoshi; Hanamura, Katsunori

    2015-09-01

    A modified reaction model of hydrogen oxidation around a triple phase boundary (TPB) is proposed for solid oxide fuel cells (SOFCs) with a Ni/oxide ion conductor cermet anode containing proton conductor particles in order to describe the mechanism of anode overpotential reduction. In this model, three kinds of TPBs consisting of nickel metal, oxide ion conductors, proton conductors, and gas phases were considered. It was assumed that the chemical species could be adsorbed within a finite narrow area on each material around the TPB. The reaction rate in the anode was controlled by the surface reaction between the adsorbed hydrogen and adsorbed oxygen; all other reactions took place under chemical equilibrium. Based on the reaction model, analytical expressions of current density with oxygen activity and anode overpotential with current density could be obtained. The latter could combine the anode overpotential at low- and high-current-density regions, which were conventionally expressed independently. The analytical results were in good agreement with the experimental results for both the conventional anode and the new anode incorporating a proton conductor. Especially, the anode overpotential reduction could be explained by the additional supply of adsorbed hydrogen from the proton conductor to the TPB.

  9. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid

    PubMed Central

    2013-01-01

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation. PMID:24229051

  10. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid.

    PubMed

    Lee, Myungjin; Kim, Kijeong; Lee, Hangil

    2013-09-02

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation.

  11. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid

    NASA Astrophysics Data System (ADS)

    Lee, Myungjin; Kim, Kijeong; Lee, Hangil

    2013-09-01

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation.

  12. Graphitic-Carbon Layers on Oxides: Toward Stable Heterogeneous Catalysts for Biomass Conversion Reactions.

    PubMed

    Xiong, Haifeng; Schwartz, Thomas J; Andersen, Nalin I; Dumesic, James A; Datye, Abhaya K

    2015-06-26

    Conversion of biomass-derived molecules involves catalytic reactions under harsh conditions in the liquid phase (e.g., temperatures of 250 °C and possibly under either acidic or basic conditions). Conventional oxide-supported catalysts undergo pore structure collapse and surface area reduction leading to deactivation under these conditions. Here we demonstrate an approach to deposit graphitic carbon to protect the oxide surface. The heterogeneous catalysts supported on the graphitic carbon/oxide composite exhibit excellent stability (even under acidic conditions) for biomass conversion reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. REACTION OF BENZENE OXIDE WITH THIOLS INCLUDING GLUTATHIONE

    EPA Science Inventory

    This study accounts for the observations that the metabolism of benzene is dominated by the formation of phenol. As demonstrated here, the pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at ...

  14. REACTION OF BENZENE OXIDE WITH THIOLS INCLUDING GLUTATHIONE

    EPA Science Inventory

    This study accounts for the observations that the metabolism of benzene is dominated by the formation of phenol. As demonstrated here, the pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at ...

  15. [Study on apparent kinetics of photocatalytic oxidation degradation Rhodamine B by photo-Fenton reaction].

    PubMed

    Li, Hong; Zheng, Huai-Li; Li, Xiao-Hong; Xie, Li-Guo; Tang, Xue

    2008-11-01

    The Fenton process, mixed by hydrogen peroxide and iron salts with highly oxidative effect, is recognized as one of powerful advanced oxidation technologies available and can be used to destroy a variety of persistent organic pollutants. The oxidation power of Fenton reagent is due to the generation of hydroxyl radical (* OH) during the iron catalysed decomposition of hydrogen peroxide in acid medium. The hydroxyl radical with a high oxidation potential (2.8 eV) attacks and completely destroys the pollutants in Fenton process. The degradation of pollutants can be considerably improved by using sunlight radiation, which is due to the generation of additional hydroxyl radicals. This photo-Fenton process had been effectively used to degrade the pollutants. In this paper, the definite quantity of Fenton reagent was added in the definite concentration of Rhodamine B solution. The degradation reaction was carried out at pH 3.5 under natural sunlight. The factors influencing on photocatalytic oxidation degradation rate of Rhodamine B were studied following: the initial concentration of Rhodamine B, initial concentrateions of Fe2+ and H2O2. The orders of degradation reaction were obtained by solving exponential kinetics equations of curve fitting, thereby gaining the kinetic parameters and reaction dynamics equation of the reaction system. The research contents included mainly: the UV-Vis spectra of Rhodamine B solution, the concentration-absorbency work curve of Rhodamine B solution, the analysis of the reaction system at various initial Rhodamine B concentrations, the analysis of the reaction system at various initial Fe2+ concentrateions, the analysis of the reaction system at various initial H2O2 concentrations, and the calculation of the apparent kinetics parameters in reaction dynamics equation. The reaction dynamics equation from experiments was constructed: V = 5 x 10(-9) P1.28 F0.366 E0.920, and overall reaction order was 2.57.

  16. Immobilization of cobalt(II) Schiff base complexes on polystyrene resin and a study of their catalytic activity for the aerobic oxidation of alcohols.

    PubMed

    Jain, Suman; Reiser, Oliver

    2008-01-01

    The copper-catalyzed [3+2] azide-alkyne cycloaddition and the Staudinger ligation are readily applicable and highly efficient for the immobilization of cobalt Schiff base complexes onto polystyrene resins. Stepwise synthesis of polymer-bound Schiff bases followed by their subsequent complexation with metal ions were successfully carried out. Direct covalent attachment of preformed homogeneous cobalt Schiff base complexes to the resins was also possible. The catalytic efficiency of the so-prepared polystyrene-bound cobalt Schiff bases was studied for the oxidation of alcohols to carbonyl compounds using molecular oxygen as oxidant. The immobilized complexes were highly efficient and even more reactive than the corresponding homogenous analogues, thus affording better yields of oxidized products within shorter reaction times. The supported catalysts could easily be recovered from the reaction mixture by simple filtration and reused for subsequent experiments with consistent catalytic activity.

  17. Relating carbon and nitrogen isotope effects to reaction mechanisms during aerobic or anaerobic degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by pure bacterial cultures

    USGS Publications Warehouse

    Fuller, Mark E.; Heraty, Linnea J.; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, John Karl; Hatzinger, Paul B.

    2016-01-01

    Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted.

  18. Things fall apart: Fragmentation reactions in the oxidative aging of organic species

    NASA Astrophysics Data System (ADS)

    Kroll, J. H.; Isaacman-VanWertz, G. A.; Wilson, K. R.; Daumit, K. E.; Kessler, S. H.; Lim, C. Y.; Worsnop, D. R.

    2016-12-01

    The atmospheric oxidation of organic compounds involves a wide array of chemical transformations, including functionalization reactions (addition of polar functional groups to the carbon skeleton), fragmentation reactions (formation of lower carbon-number products via C-C bond scission), and accretion reactions (increases in molecular weight by the combination of two chemical species). Each of these reaction classes can lead to large changes in volatility, and hence can have major implications for atmospheric organic aerosol (OA). For example, the formation of OA is predominantly driven by functionalization and accretion reactions, which generally lead to decreases in volatility. Here we describe a series of laboratory studies of the subsequent organic "aging", the multiday oxidation processes that occur after the initial OA formation and growth. In these studies, the multigenerational oxidation of organic compounds in various phases (the gas phase, the condensed OA phase, and the aqueous phase) is carried out within either an environmental chamber or a flow reactor, and monitored using various high-resolution mass spectrometric techniques. In all cases it is found that fragmentation reactions play a major role in the observed aging chemistry, dominated by the formation of small, volatile oxidation products. These results suggest that multi-day oxidative aging processes do not lead to sustained aerosol growth, but rather may serve as a chemical sink for atmospheric OA.

  19. Oxidation Reactions of Ethane over Ba-Ce-O Based Perovskites

    SciTech Connect

    Miller, James E.; Sault, Allen G.; Trudell, Daniel E.; Nenoff, Tina M.; Thoma, Steven G.; Jackson, Nancy B.

    1999-08-18

    Ethane oxidation reactions were studied over pure and Ca-, Mg-, Sr-, La-, Nd-, and Y-substituted BaCeO{sub 3} perovskites under oxygen limited conditions. Several of the materials, notably the Ca- and Y-substituted materials, show activity for complete oxidation of the hydrocarbon to CO{sub 2} at temperatures below 650 C. At higher temperatures, the oxidative dehydrogenation (ODH) to ethylene becomes significant. Conversions and ethylene yields are enhanced by the perovskites above the thermal reaction in our system in some cases. The perovskite structure is not retained in the high temperature reaction environment. Rather, a mixture of carbonates and oxides is formed. Loss of the perovskite structure correlates with a loss of activity and selectivity to ethylene.

  20. The reactions of imidogen with nitric oxide and molecular oxygen

    SciTech Connect

    Miller, J.A.; Melius, C.F.

    1991-01-01

    Using potential energy surface information from BAC-MP4 calculations and statistical-dynamical methods, we have calculated the branching fraction for the NH + NO reaction, NH + NO {r arrow} N{sub 2} + H (1) NH + NO {r arrow} N{sub 2}O + H (2). We find that reaction (2) dominates over the entire temperature range considered, 300 K < T < 3500 K, with f=k{sub 1}/(k{sub 1} + K{sub 2}) varying from about 0.07 at room temperature to about 0.20 at 3500 K. In addition, we have calculated rate coefficients for the two-channel process, NH + O{sub 2} {r arrow} HNO + O (3) NH + O{sub 2} {r arrow} NO + OH (4). In this case we find that reaction (4) dominates at low temperature, reaction (3) at high temperature. All these results are discussed in terms of the experimental results available and compared with previous theoretical investigations where appropriate. 21 refs., 4 figs., 3 tabs.

  1. The reactions of imidogen with nitric oxide and molecular oxygen

    SciTech Connect

    Miller, J.A.; Melius, C.F.

    1991-12-31

    Using potential energy surface information from BAC-MP4 calculations and statistical-dynamical methods, we have calculated the branching fraction for the NH + NO reaction, NH + NO {r_arrow} N{sub 2} + H (1) NH + NO {r_arrow} N{sub 2}O + H (2). We find that reaction (2) dominates over the entire temperature range considered, 300 K < T < 3500 K, with f=k{sub 1}/(k{sub 1} + K{sub 2}) varying from about 0.07 at room temperature to about 0.20 at 3500 K. In addition, we have calculated rate coefficients for the two-channel process, NH + O{sub 2} {r_arrow} HNO + O (3) NH + O{sub 2} {r_arrow} NO + OH (4). In this case we find that reaction (4) dominates at low temperature, reaction (3) at high temperature. All these results are discussed in terms of the experimental results available and compared with previous theoretical investigations where appropriate. 21 refs., 4 figs., 3 tabs.

  2. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  3. Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; Zhao, Feifei; McLuckey, Scott A.

    2017-06-01

    Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides. [Figure not available: see fulltext.

  4. Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; Zhao, Feifei; McLuckey, Scott A.

    2017-01-01

    Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides.

  5. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  6. Controlled Nitric Oxide Production via O(1D) + N2O Reactions for Use in Oxidation Flow Reactor Studies

    NASA Technical Reports Server (NTRS)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; hide

    2017-01-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO+NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D)+N2O->2NO, followed by the reaction NO+O3->NO2+O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D)+N2O reactions can be used to systematically vary the relative branching ratio of RO2 +NO reactions relative to RO2 +HO2 and/or RO2+RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO-3 ) reagent ion to detect gas-phase oxidation products of isoprene and -pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  7. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE PAGES

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; ...

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  8. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    SciTech Connect

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication of crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.

  9. Evaluation of Salivary Nitric Oxide Levels in Smokers, Tobacco Chewers and Patients with Oral Lichenoid Reactions

    PubMed Central

    Jose, Joy Idiculla; Sivapathasundharam, B.; Sabarinath, B.

    2016-01-01

    Introduction Nitric oxide (NO), a free radical, acts as a signalling molecule affecting numerous physiological and pathological processes. Role of nitric oxide as a mediator in tobacco related habits and the resultant oral lichenoid reactions was assessed. Aim The aim of the study is to evaluate and compare the salivary nitric oxide levels in normal patients with that of smokers, tobacco chewers and patients with oral lichenoid reactions. Materials and Methods One hundred and twenty patients were enrolled in the study which included 30 healthy patients without any chronic inflammatory lesion and habit as controls (group I), 30 smokers without the habit of tobacco/betel nut chewing and any oral lesion (group II), 30 tobacco chewers without the habit of smoking and any oral lesion (group III) and 30 histologically confirmed cases of oral lichenoid reaction with the habit of tobacco usage (group IV). Saliva from these patients was collected and the nitrite concentration was assessed. Results Our results concluded that there was highly significant increase in the nitric oxide levels in smokers, tobacco chewers and patients with oral lichenoid reactions compared to that of controls. Also, there was a significant increase in nitric oxide levels in patients with smoking associated oral lichenoid reactions in comparison with smokers and in patients with lichenoid reactions associated with tobacco chewing in comparison with tobacco chewers. Conclusion Estimation of salivary nitric oxide levels is a simple, non-invasive procedure and could be analysed to suggest the role of nitric oxide in the pathogenesis of these lesions. The increased activity of the enzyme may indicate that nitric oxide has a pathophysiological role in these lesions. PMID:26894179

  10. Effects of one year aerobic endurance training on resting metabolic rate and exercise fat oxidation in previously untrained men and women. Metabolic endurance training adaptations.

    PubMed

    Scharhag-Rosenberger, F; Meyer, T; Walitzek, S; Kindermann, W

    2010-07-01

    Although metabolic training adaptations are considered to be an important aim of recreational endurance exercise, effects of aerobic endurance training on metabolism have hardly been recorded over longer training periods. The aim of the study was therefore to record changes in resting metabolic rate (RMR), substrate oxidation at rest and maximal exercise fat oxidation rate (MFO) after one year of recreational endurance training within the ACSM-recommendations. Seventeen sedentary participants (7 male symbol/10 female symbol, 42+/-5 yr, pre-training characteristics: BMI: 24.6+/-2.2 kg.m (-2), VO(2max): 37.5+/-4.7 ml.min (-1).kg (-1)) completed a 12 months jogging/walking program 3 days/week for 45 min/session at a constant heart rate (HR) prescription of 60% HR-reserve. Resting measurements and maximal incremental treadmill tests were conducted before the training program, after 6 and 12 months of training. Indirect calorimetry was used to assess metabolic parameters. After 12 months of training, body weight remained unchanged ( P=0.16), however, body fat was significantly reduced by 3.4+/-2.1% ( P<0.001). Neither RMR ( P=0.42) nor substrate oxidation at rest ( P=0.25) changed significantly. MFO increased significantly over time by 0.07+/-0.08 g.min (-1) ( P<0.01) and occurred at significantly higher exercise intensities (35+/-6 vs. 44+/-15 vs. 50+/-14%VO(2max), P<0.01). In summary one year of recreational endurance training does therefore not appear to influence RMR or substrate oxidation at rest in previously untrained non-obese participants. In contrast, a constant training stimulus within the ACSM-recommendations elicits sustained improvements in MFO over at least one year of training. Georg Thieme Verlag KG Stuttgart, New York.

  11. Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH.

    PubMed

    Ríos, Francisco; Lechuga, Manuela; Fernández-Serrano, Mercedes; Fernández-Arteaga, Alejandro

    2017-03-01

    The present study was designed to provide information regarding the effect of the molecular structure of amphoteric amine-oxide-based surfactants and the initial surfactant concentration on their ultimate biodegradation. Moreover, given this parameter's pH-dependence, the effect of pH was also investigated. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R12), Myristamine oxide (AO-R14) and Cocamidopropylamine oxide (AO-Cocoamido). We studied the ultimate biodegradation using the Modified OECD Screening Test at initial surfactant concentrations ranged from 5 to 75 mg L(-1) and at pH levels from 5 to 7.4. The results demonstrate that at pH 7.4, amine-oxide-based surfactants are readily biodegradable. In this study, we concluded that ω-oxidation can be assumed to be the main biodegradation pathway of amine-oxides and that differences in the biodegradability between them can be explained by the presence of an amide group in the alkyl chain of AO-Cocoamido; the CN fission of the amide group slows down their mineralization process. In addition, the increase in the concentration of the surfactant from 5 to 75 mg L(-1) resulted in an increase in the final biodegradation of AO-R12 and AO-R14. However, in the case of AO-Cocoamido, a clear relationship between the concentration and biodegradation cannot be stated. Conversely, the biodegradability of AO-R12 and AO-R14 was considerably lower in an acid condition than at a pH of 7.4, whereas AO-Cocoamido reached similar percentages in acid conditions and at a neutral pH. However, microorganisms required more time to acclimate.

  12. Gold nanoparticles on OMS-2 for heterogeneously catalyzed aerobic oxidative α,β-dehydrogenation of β-heteroatom-substituted ketones.

    PubMed

    Yoshii, Daichi; Jin, Xiongjie; Yatabe, Takafumi; Hasegawa, Jun-Ya; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-12-06

    In the presence of Au nanoparticles supported on manganese oxide OMS-2 (Au/OMS-2), various kinds of β-heteroatom-substituted α,β-unsaturated ketones (heteroatom = N, O, S) can be synthesized through α,β-dehydrogenation of the corresponding saturated ketones using O2 (in air) as the oxidant. The catalysis of Au/OMS-2 is truly heterogeneous, and the catalyst can be reused.

  13. Constraints in the colonization of natural and engineered subterranean igneous rock aquifers by aerobic methane-oxidizing bacteria inferred by culture analysis.

    PubMed

    Chi Fru, E

    2008-08-01

    The aerobic methane-oxidizing bacteria (MOB) are suggested to be important for the removal of oxygen from subterranean aquifers that become oxygenated by natural and engineering processes. This is primarily because MOB are ubiquitous in the environment and in addition reduce oxygen efficiently. The biogeochemical factors that will control the success of the aerobic MOB in these kinds of underground aquifers remain unknown. In this study, viable and cultivable MOB occurring at natural and engineered deep granitic aquifers targeted for the disposal of spent nuclear fuel (SNF) in the Fennoscandian Shield (approximately 3-1000 m) were enumerated. The numbers were correlated with in situ salinity, methane concentrations, conductivity, pH, and depth. A mixed population habiting freshwater aquifers (approximately 3-20 m), a potential source for the inoculation of MOB into the deeper aquifers was tested for tolerance to NaCl, temperature, pH, and an ability to produce cysts and exospores. Extrapolations show that due to changing in situ parameters (salinity, conductivity, and pH), the numbers of MOB in the aquifers dropped quickly with depth. A positive correlation between the most probable numbers of MOB and methane concentrations was observed. Furthermore, the tolerance-based tests of cultured strains indicated that the MOB in the shallow aquifers thrived best in mesophilic and neutrophilic conditions as opposed to the hyperthermophilic and alkaliphilic conditions expected to develop in an engineered subterranean SNF repository. Overall, the survival of the MOB both quantitatively and physiologically in the granitic aquifers was under the strong influence of biogeochemical factors that are strongly depth-dependent.

  14. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    NASA Astrophysics Data System (ADS)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  15. Application of hydrogen peroxide encapsulated in silica xerogels to oxidation reactions.

    PubMed

    Bednarz, Szczepan; Ryś, Barbara; Bogdał, Dariusz

    2012-07-04

    Hydrogen peroxide was encapsulated into a silica xerogel matrix by the sol-gel technique. The composite was tested as an oxidizing agent both under conventional and microwave conditions in a few model reactions: Noyori's method of octanal and 2-octanol oxidation and cycloctene epoxidation in a 1,1,1-trifluoroethanol/Na2WO4 system. The results were compared with yields obtained for reactions with 30% H2O2 and urea-hydrogen peroxide (UHP) as oxidizing agents. It was found that the composite has activity similar to 30% H2O2 and has a several advantages over UHP such as the fact that silica and H2O are the only products of the composite decomposition or no contamination by urea or its derivatives occurs; the xerogel is easier to heated by microwave irradiation than UHP and could be used as both an oxidizing agent and as solid support for microwave assisted solvent-free oxidations.

  16. High Temperature Reactions of Uranium Dioxide with Various Metal Oxides

    DTIC Science & Technology

    1956-02-20

    less oxygen than that in U308, even at low tem- peratures; (b) reduction of oxides such as U205 , U30,, and UO3 at temperatures above 1,450’ C to a...Corporation. Thorium dioxide (ThO2). Lindsay Light & Power Co. low-tem- perature, calcined material of 99.99-percent purity. Vanadium pentoxide (V2O6

  17. Mass spectrometer sampling of supercritical water-oxidation reactions

    SciTech Connect

    Miller, D.R.; Maharrey, S.

    1995-03-01

    Supercritical water is a useful medium for oxidation of toxic hydrocarbons because under such conditions hydrocarbons and oxidizers are dissolved into a single phase, diffusivities are high, the combustion is complete, and it occurs at relatively low temperatures. There is a large literature on the thermodynamics, kinetics, and applications of supercritical water oxidation. Supercritical fluids have also been used as solvent carriers in chromatography and the interface of the column output to mass spectrometers has been investigated by many researchers. In the present investigation the authors seek to operate a micro-reactor in which supercritical water oxidation kinetics can be examined and for which the output flow can be injected directly into a mass spectrometer system. The motivation for this approach was the microjet burner utilized by Groeger and Fenn for combustion studies. Water is one of the more difficult supercritical solvents to interface with the mass spectrometer, compared with CO{sub 2} for example, because the pressures and temperatures are of order 30MPa and 500{degrees}C, and because the large water throughput must be removed by the vacuum pumps. They have fabricated supercritical nozzles from both stainless steel and from quartz capillary tubing. Despite the fact that supercritical water can dissolve quartz in the ppm range they have been able to operate quartz capillary reactors and nozzles in excess of 20hrs without any measurable degradation in performance. Because these nozzles are much easier to fabricate, especially to diameters below 0.004cm, they have been recently using them exclusively. This variable nozzle diameter is important because it permits us to vary the range of residence times in the reactor. The converging nozzle length is less than two capillary diameters, so the flow time through the nozzle is very short compared with the residence time in the reactor.

  18. Implications of sterically constrained n-butane oxidation reactions on the reaction mechanism and selectivity to 1-butanol

    NASA Astrophysics Data System (ADS)

    Dix, Sean T.; Gómez-Gualdrón, Diego A.; Getman, Rachel B.

    2016-11-01

    Density functional theory (DFT) is used to analyze the reaction network in n-butane oxidation to 1-butanol over a Ag/Pd alloy catalyst under steric constraints, and the implications on the ability to produce 1-butanol selectively using MOF-encapsulated catalysts are discussed. MOFs are porous crystalline solids comprised of metal nodes linked by organic molecules. Recently, they have been successfully grown around metal nanoparticle catalysts. The resulting porous networks have been shown to promote regioselective chemistry, i.e., hydrogenation of trans-1,3-hexadiene to 3-hexene, presumably by forcing the linear alkene to stand "upright" on the catalyst surface and allowing only the terminal C-H bonds to be activated. In this work, we extend this concept to alkane oxidation. Our goal is to determine if a MOF-encapsulated catalyst could be used to selectively produce 1-butanol. Reaction energies and activation barriers are presented for more than 40 reactions in the pathway for n-butane oxidation. We find that C-H bond activation proceeds through an oxygen-assisted pathway and that butanal and 1-butanol are some of the possible products.

  19. Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko

    2017-04-01

    Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.

  20. Boundary effects in a surface reaction model for CO oxidation

    NASA Astrophysics Data System (ADS)

    Brosilow, Benjamin J.; Gulari, Erdogan; Ziff, Robert M.

    1993-01-01

    The surface reaction model of Ziff, Gulari, and Barshad (ZGB) is investigated on finite systems with ``hard'' oxygen boundary conditions. The rate of production of CO2 is calculated as a function of y and system size. When the rate of CO adsorption y is above the first-order transition value y2, the reactive region is found to extend into the system a distance ξ which scales as (y-y2)-0.40 when y→y2.

  1. Theoretical study of reactions of HO{sub 2} in low-temperature oxidation of benzene

    SciTech Connect

    Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.; Kennedy, Eric M.; Mackie, John C.

    2010-07-15

    We have generated a set of thermodynamic and kinetic parameters for the reactions involving HO{sub 2} in the very early stages of benzene oxidation at low temperatures using density functional theory (DFT). In particular, we report the rate constants for the reactions of HO{sub 2} with benzene and phenyl. The calculated reaction rate constant for the abstraction of H-C{sub 6}H{sub 5} by HO{sub 2} is found to be in good agreement with the limited experimental values. HO{sub 2} addition to benzene is found to be more important than direct abstraction. We show that the reactions of HO{sub 2} with the phenyl radical generate the propagating radical OH in a highly exoergic reaction. The results presented herein should be useful in modeling the oxidation of aromatic compounds at low temperatures. (author)

  2. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides

    NASA Astrophysics Data System (ADS)

    Taatjes, Craig A.

    2017-05-01

    The carbonyl oxide intermediates in the ozonolysis of alkenes, often known as Criegee intermediates, are potentially important reactants in Earth's atmosphere. For decades, careful analysis of ozonolysis systems was employed to derive an understanding of the formation and reactions of these species. Recently it has proved possible to synthesize at least some of these intermediates separately from ozonolysis, and hence to measure their reaction kinetics directly. Direct measurements have allowed new or more detailed understanding of each type of gas-phase reaction that carbonyl oxides undergo, often acting as a complement to highly detailed ozonolysis experiments. Moreover, the use of direct characterization methods to validate increasingly accurate theoretical investigations can enhance their impact well beyond the set of specific reactions that have been measured. Reactions that initiate particles or fuel their growth could be a new frontier for direct measurements of Criegee intermediate chemistry.

  3. Facile green synthesis of Pd/N-doped carbon nanotubes catalysts and their application in Heck reaction and oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Wang, Ling-ling; Zhu, Lu-ping; Bing, Nai-ci; Wang, Li-jun

    2017-08-01

    Evenly dispersed Pd nanoparticles are facilely and successfully deposited on N-doped carbon nanotubes (Pd/N-CNTs) by employing sodium dodecyl sulfate (SDS) as a salt and polyvinylpyrrolidone (PVP) as both a surface modifier and a stabilizing agent. The presence of SDS and the amount of PVP have significant influences on the formation of evenly dispersed Pd/N-CNTs catalyst. No additional functionalization steps, reducing agents and stabilizers are required as usual to achieve the uniform deposition of Pd NPs over the N-CNTs surfaces. The as-synthesized Pd/N-CNTs catalyst is proved to be very active in the Heck reaction and can be reused at least for 5 times without significant loss of catalytic activity in the aerobic oxidation of benzyl alcohol.

  4. Enhancement of Bacterial Transport in Aerobic and Anaerobic Environments: Assessing the Effect of Metal Oxide Chemical Heterogeneities

    SciTech Connect

    T.C. Onstott

    2005-09-30

    The goal of our research was to understand the fundamental processes that control microbial transport in physically and chemically heterogeneous aquifers and from this enhanced understanding determine the requirements for successful, field-scale delivery of microorganisms to metal contaminated subsurface sites. Our specific research goals were to determine; (1) the circumstances under which the preferential adsorption of bacteria to Fe, Mn, and Al oxyhydroxides influences field-scale bacterial transport, (2) the extent to which the adhesion properties of bacterial cells affect field-scale bacterial transport, (3) whether microbial Fe(III) reduction can enhance field-scale transport of Fe reducing bacteria (IRB) and other microorganisms and (4) the effect of field-scale physical and chemical heterogeneity on all three processes. Some of the spin-offs from this basic research that can improve biostimulation and bioaugmentation remediation efforts at contaminated DOE sites have included; (1) new bacterial tracking tools for viable bacteria; (2) an integrated protocol which combines subsurface characterization, laboratory-scale experimentation, and scale-up techniques to accurately predict field-scale bacterial transport; and (3) innovative and inexpensive field equipment and methods that can be employed to enhance Fe(III) reduction and microbial transport and to target microbial deposition under both aerobic and anaerobic conditions.

  5. Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review.

    PubMed

    Xu, Haomiao; Yan, Naiqiang; Qu, Zan; Liu, Wei; Mei, Jian; Huang, Wenjun; Zhao, Songjian

    2017-08-15

    Manganese oxide has been recognized as one of the most promising gaseous heterogeneous catalysts due to its low cost, environmental friendliness, and high catalytic oxidation performance. Mn-based oxides can be classified into four types: (1) single manganese oxide (MnOx), (2) supported manganese oxide (MnOx/support), (3) composite manganese oxides (MnOx-X), and (4) special crystalline manganese oxides (S-MnOx). These Mn-based oxides have been widely used as catalysts for the elimination of gaseous pollutants. This review aims to describe the environmental applications of these manganese oxides and provide perspectives. It gives detailed descriptions of environmental applications of the selective catalytic reduction of NOx with NH3, the catalytic combustion of volatile organic compounds, Hg(0) oxidation and adsorption, and soot oxidation, in addition to some other environmental applications. Furthermore, this review mainly focuses on the effects of structure, morphology, and modified elements and on the role of catalyst supports in gaseous heterogeneous catalytic reactions. Finally, future research directions for developing manganese oxide catalysts are proposed.

  6. Concurrent Formation of Carbon–Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction

    PubMed Central

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C–H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C–C bond formation via C–H transformation and production of functionalized graphene. PMID:27181191

  7. Concurrent Formation of Carbon–Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction

    NASA Astrophysics Data System (ADS)

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-05-01

    Oxidative C–H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C–C bond formation via C–H transformation and production of functionalized graphene.

  8. Equilibrating metal-oxide cluster ensembles for oxidation reactions using oxygen in water

    Treesearch

    Ira A. Weinstock; Elena M. G. Barbuzzi; Michael W. Wemple; Jennifer J. Cowan; Richard S. Reiner; Dan M. Sonnen; Robert A. Heintz; James S. Bond; Craig L. Hill

    2001-01-01

    Although many enzymes can readily and selectively use oxygen in water--the most familiar and attractive of all oxidants and solvents, respectively–-the design of synthetic catalysts for selective water-based oxidation processes utilizing molecular oxygen remains a daunting task. Particularly problematic is the fact that oxidation of substrates by O2 involves radical...

  9. Bench-scale study of the effect of phosphate on an aerobic iron oxidation plant for mine water treatment.

    PubMed

    Tischler, Judith S; Wiacek, Claudia; Janneck, Eberhard; Schlömann, Michael

    2014-01-01

    At the opencast pit Nochten acidic iron- and sulfate-rich mine waters are treated biotechnologically in a mine-water treatment plant by microbial iron oxidation. Due to the low phosphate concentration in such waters the treatment plant was simulated in bench-scale to investigate the influence of addition of potassium dihydrogen phosphate on chemical and biological parameters of the mine-water treatment. As a result of the phosphate addition the number of cells increased, which resulted in an increase of the iron oxidation rate in the reactor with phosphate addition by a factor of 1.7 compared to a reference approach without phosphate addition. Terminal restriction fragment length polymorphism (T-RFLP) analysis during the cultivation revealed a shift of the microbial community depending on the phosphate addition. While almost exclusively iron-oxidizing bacteria related to "Ferrovum" sp. were detected with phosphate addition, the microbial community was more diverse without phosphate addition. In the latter case, iron-oxidizing bacteria ("Ferrovum" sp., Acidithiobacillus spp.) as well as non-iron-oxidizing bacteria (Acidiphilium sp.) were identified.

  10. Metabolic alkene labeling and in vitro detection of histone acylation via the aqueous oxidative Heck reaction.

    PubMed

    Ourailidou, Maria E; Dockerty, Paul; Witte, Martin; Poelarends, Gerrit J; Dekker, Frank J

    2015-03-28

    The detection of protein lysine acylations remains a challenge due to lack of specific antibodies for acylations with various chain lengths. This problem can be addressed by metabolic labeling techniques using carboxylates with reactive functionalities. Subsequent chemoselective reactions with a complementary moiety connected to a detection tag enable the visualization and quantification of the protein lysine acylome. In this study, we present EDTA-Pd(II) as a novel catalyst for the oxidative Heck reaction on protein-bound alkenes, which allows employment of fully aqueous reaction conditions. We used this reaction to monitor histone lysine acylation in vitro after metabolic incorporation of olefinic carboxylates as chemical reporters.

  11. Effects of midazolam and phenobarbital on brain oxidative reactions induced by pentylenetetrazole in a convulsion model.

    PubMed

    Arai, Yukiko; Maeda, Shigeru; Higuchi, Hitoshi; Tomoyasu, Yumiko; Shimada, Masahiko; Miyawaki, Takuya

    2012-04-01

    Brain oxidative reactions are involved in epilepsy as well as neurodegenerative diseases. In animal convulsion models, some anticonvulsants have been found to suppress oxidative reactions associated with convulsions. However, the effect of anticonvulsants on brain oxidative reactions has not fully been clarified. Midazolam and phenobarbital are often used as an intravenous anesthetic, and are known to have anticonvulsive effect, but antioxidative effect of these drugs has rarely been studied. Thus, the purpose of this study was to evaluate the effects of these drugs on the degree of convulsions and brain oxidative reactions in an animal convulsion model. In order to evaluate brain oxidative reactions, we measured malondialdehyde (MDA) level and heme oxygenase (HO)-1 mRNA expression level in the brain of mice in a convulsion model generated by a single injection of pentylenetetrazole (PTZ). We evaluated the effects of midazolam and phenobarbital on the degree of PTZ-induced convulsions and on the changes in brain MDA level and HO-1 mRNA expression level. After PTZ injection, severe convulsions were observed in all mice. MDA level was increased in the whole brain, while HO-1 mRNA expression level was increased only in the hippocampus. Both midazolam and phenobarbital prevented the convulsions and suppressed the increase in both MDA level and HO-1 mRNA expression level in the brain. In this study, both midazolam and phenobarbital suppressed PTZ-induced MDA and HO-1 reactions in the brain, suggesting that these drugs inhibit brain oxidative reactions in a convulsion model.

  12. The characteristics of the `peroxidatic' reaction of catalase in ethanol oxidation

    PubMed Central

    Oshino, Nozomu; Oshino, Reiko; Chance, Britton

    1973-01-01

    Ethanol oxidation by rat liver catalase (the `peroxidatic' reaction) was studied quantitatively with respect to the rate of H2O2 generation, catalase haem concentration, ethanol concentration and the steady-state concentration of the catalase–H2O2 intermediate (Compound I). At a low ratio of H2O2-generation rate to catalase haem concentration, the rate of ethanol oxidation was independent of the catalase haem concentration. The magnitude of the inhibition of ethanol oxidation by cyanide was not paralleled by the formation of the catalase–cyanide complex and was altered greatly by varying either the ethanol concentration or the ratio of the rate of H2O2 generation to catalase haem concentration. The ethanol concentration producing a half-maximal activity was also dependent on the ratio of the H2O2-generation rate to catalase haem concentration. These phenomena are explained by changes in the proportion of the `catalatic' and `peroxidatic' reactions in the overall H2O2-decomposition reaction. There was a correlation between the proportion of the `peroxidatic' reaction in the overall catalase reaction and the steady-state concentration of the catalase–H2O2 intermediate. Regardless of the concentration of ethanol and the rate of H2O2 generation, a half-saturation of the steady state of the catalase–H2O2 intermediate indicated that about 45% of the H2O2 was being utilized by the ethanol-oxidation reaction. The results reported show that the experimental results in the study on the `microsomal ethanol-oxidation system' may be reinterpreted and the catalase `peroxidatic' reaction provides a quantitative explanation for the activity hitherto attributed to the `microsomal ethanol-oxidation system'. PMID:4720713

  13. Evaluation of reaction mechanism of coal-metal oxide interactions in chemical-looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Richards, George; Poston, James; Tian, Hanjing; Miller, Duane; Simonyi, Thomas

    2010-11-15

    The knowledge of reaction mechanism is very important in designing reactors for chemical-looping combustion (CLC) of coal. Recent CLC studies have considered the more technically difficult problem of reactions between abundant solid fuels (i.e. coal and waste streams) and solid metal oxides. A definitive reaction mechanism has not been reported for CLC reaction of solid fuels. It has often been assumed that the solid/solid reaction is slow and therefore requires that reactions be conducted at temperatures high enough to gasify the solid fuel, or decompose the metal oxide. In contrast, data presented in this paper demonstrates that solid/solid reactions can be completed at much lower temperatures, with rates that are technically useful as long as adequate fuel/metal oxide contact is achieved. Density functional theory (DFT) simulations as well as experimental techniques such as thermo-gravimetric analysis (TGA), flow reactor studies, in situ X-ray photo electron spectroscopy (XPS), in situ X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to evaluate how the proximal interaction between solid phases proceeds. The data indicate that carbon induces the Cu-O bond breaking process to initiate the combustion of carbon at temperatures significantly lower than the spontaneous decomposition temperature of CuO, and the type of reducing medium in the vicinity of the metal oxide influences the temperature at which the oxygen release from the metal oxide takes place. Surface melting of Cu and wetting of carbon may contribute to the solid-solid contacts necessary for the reaction. (author)

  14. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    PubMed

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles.