Science.gov

Sample records for aerobic process large

  1. Aerobic granular processes: Current research trends.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-06-01

    Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided. PMID:26873285

  2. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  3. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  4. Aerobic and anaerobic cecal bacterial flora of commercially processed broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in the bacterial flora of aerobic and anaerobic cultures of broiler ceca collected from a commercial poultry processing facility were determined. Bacterial isolates from cecal cultures were selected based on the ability of the bacteria to grow in media supplemented with lactate and succ...

  5. Effect of the process conditions of aerobic bioconversion on the characteristics of biologically processed brown coals

    SciTech Connect

    I.P. Ivanov

    2007-04-15

    The effect of the laboratory and pilot process conditions of the aerobic bioconversion of brown coals on the elemental composition and technical characteristics of the organic matter of the resulting biologically processed coals is reported.

  6. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes.

    PubMed

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L(-1) concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn't show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  7. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes

    PubMed Central

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  8. A proposed aerobic granules size development scheme for aerobic granulation process.

    PubMed

    Dahalan, Farrah Aini; Abdullah, Norhayati; Yuzir, Ali; Olsson, Gustaf; Salmiati; Hamdzah, Myzairah; Din, Mohd Fadhil Mohd; Ahmad, Siti Aqlima; Khalil, Khalilah Abdul; Anuar, Aznah Nor; Noor, Zainura Zainon; Ujang, Zaini

    2015-04-01

    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme. PMID:25661308

  9. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  10. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial

    PubMed Central

    Voorn, Eric L.; Koopman, Fieke S.; Brehm, Merel A.; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H. L.; Nollet, Frans

    2016-01-01

    Objective To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. Design A process evaluation using data from an RCT. Patients Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Methods Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60–70% heart rate reserve). Results The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Conclusion Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Trial Registration Netherlands National Trial Register NTR1371 PMID:27419388

  11. Process Improvements: Aerobic Food Waste Composting at ISF Academy

    NASA Astrophysics Data System (ADS)

    Lau, Y. K.

    2015-12-01

    ISF Academy, a school with 1500 students in Hong Kong, installed an aerobic food waste composting system in November of 2013. The system has been operational for over seven months; we will be making improvements to the system to ensure the continued operational viability and quality of the compost. As a school we are committed to reducing our carbon footprint and the amount of waste we send to the local landfill. Over an academic year we produce approximately 27 metric tons of food waste. Our system processes the food waste to compost in 14 days and the compost is used by our primary school students in a organic farming project.There are two areas of improvement: a) if the composting system becomes anaerobic, there is an odor problem that is noticed by the school community; we will be testing the use of a bio-filter to eliminate the odor problem and, b) we will be working with an equipment vendor from Australia to install an improved grease trap system. The grease and oil that is collected will be sold to a local company here in Hong Kong that processes used cooking oil for making biofuels. This system will include a two stage filtration system and a heated vessel for separating the oil from the waste water.The third project will be to evaluate biodegradable cutlery for the compositing in the system. Currently, we use a significant quantity of non-biodegradable cutlery that is then thrown away after one use. Several local HK companies are selling biodegradable cutlery, but we need to evaluate the different products to determine which ones will work with our composting system. The food waste composting project at ISF Academy demonstrates the commitment of the school community to a greener environment for HK, the above listed projects will improve the operation of the system.

  12. Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task.

    PubMed

    Audiffren, Michel; Tomporowski, Phillip D; Zagrodnik, James

    2008-11-01

    The immediate and short-term after effects of a bout of aerobic exercise on young adults' information processing were investigated. Seventeen participants performed an auditory two-choice reaction time (RT) task before, during, and after 40 min of ergometer cycling. In a separate session, the same sequence of testing was completed while seated on an ergometer without pedalling. Results indicate that exercise (1) improves the speed of reactions by energizing motor outputs; (2) interacts with the arousing effect of a loud auditory signal suggesting a direct link between arousal and activation; (3) gradually reduces RT and peaks between 15 and 20 min; (4) effects on RT disappear very quickly after exercise cessation; and (5) effects on motor processes cannot be explained by increases in body temperature caused by exercise. Taken together, these results support a selective influence of acute aerobic exercise on motor adjustment stage. PMID:18930445

  13. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  14. Aerobic N2O emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process.

    PubMed

    Wang, Huoqing; Guan, Yuntao; Pan, Min; Wu, Guangxue

    2016-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600mL/min sequencing batch reactor (SBRL) and 1200mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal. PMID:27155411

  15. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition.

    PubMed

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-07-15

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed. PMID:20233637

  16. The association between aerobic fitness and language processing in children: implications for academic achievement.

    PubMed

    Scudder, Mark R; Federmeier, Kara D; Raine, Lauren B; Direito, Artur; Boyd, Jeremy K; Hillman, Charles H

    2014-06-01

    Event-related brain potentials (ERPs) have been instrumental for discerning the relationship between children's aerobic fitness and aspects of cognition, yet language processing remains unexplored. ERPs linked to the processing of semantic information (the N400) and the analysis of language structure (the P600) were recorded from higher and lower aerobically fit children as they read normal sentences and those containing semantic or syntactic violations. Results revealed that higher fit children exhibited greater N400 amplitude and shorter latency across all sentence types, and a larger P600 effect for syntactic violations. Such findings suggest that higher fitness may be associated with a richer network of words and their meanings, and a greater ability to detect and/or repair syntactic errors. The current findings extend previous ERP research explicating the cognitive benefits associated with greater aerobic fitness in children and may have important implications for learning and academic performance. PMID:24747513

  17. The Association between Aerobic Fitness and Language Processing in Children: Implications for Academic Achievement

    PubMed Central

    Scudder, Mark R.; Federmeier, Kara D.; Raine, Lauren B.; Direito, Artur; Boyd, Jeremy K.; Hillman, Charles H.

    2014-01-01

    Event-related brain potentials (ERPs) have been instrumental for discerning the relationship between children’s aerobic fitness and aspects of cognition, yet language processing remains unexplored. ERPs linked to the processing of semantic information (the N400) and the analysis of language structure (the P600) were recorded from higher and lower aerobically fit children as they read normal sentences and those containing semantic or syntactic violations. Results revealed that higher fit children exhibited greater N400 amplitude and shorter latency across all sentence types, and a larger P600 effect for syntactic violations. Such findings suggest that higher fitness may be associated with a richer network of words and their meanings, and a greater ability to detect and/or repair syntactic errors. The current findings extend previous ERP research explicating the cognitive benefits associated with greater aerobic fitness in children and may have important implications for learning and academic performance. PMID:24747513

  18. Investigation of the use of aerobic granules for the treatment of sugar beet processing wastewater.

    PubMed

    Kocaturk, Irem; Erguder, Tuba Hande

    2015-01-01

    The treatment of sugar beet processing wastewater in aerobic granular sequencing batch reactor (SBR) was examined in terms of chemical oxygen demand (COD) and nitrogen removal efficiency. The effect of sugar beet processing wastewater of high solid content, namely 2255 ± 250 mg/L total suspended solids (TSS), on granular sludge was also investigated. Aerobic granular SBR initially operated with the effluent of anaerobic digester treating sugar beet processing wastewater (Part I) achieved average removal efficiencies of 71 ± 30% total COD (tCOD), 90 ± 3% total ammonifiable nitrogen (TAN), 76 ± 24% soluble COD (sCOD) and 29 ± 4% of TSS. SBR was further operated with sugar beet processing wastewater (Part II), where the tCOD, TAN, sCOD and TSS removal efficiencies were 65 ± 5%, 61 ± 4%, 87 ± 1% and 58 ± 10%, respectively. This study indicated the applicability of aerobic granular SBRs for the treatment of both sugar beet processing wastewater and anaerobically digested processing wastewater. For higher solids removal, further treatment such as a sedimentation tank is required following the aerobic granular systems treating solid-rich wastewaters such as sugar beet processing wastewater. It was also revealed that the application of raw sugar beet processing wastewater slightly changed the aerobic granular sludge properties such as size, structure, colour, settleability and extracellular polymeric substance content, without any drastic and negative effect on treatment performance. PMID:25851439

  19. Aerobic biodegradation process of petroleum and pathway of main compounds in water flooding well of Dagang oil field.

    PubMed

    Cai, Minmin; Yao, Jun; Yang, Huaijun; Wang, Ruixia; Masakorala, Kanaji

    2013-09-01

    Aerobic biodegradation of crude oil and its pathways were investigated via in vitro culture and GC-MS analysis in water flooding wells of Dagang oil field. The in vitro aerobic culture lasted 90 days when 99.0% of n-alkanes and 43.03-99.9% of PAHs were degraded and the biomarkers and their ratios were changed. The spectra of components in the residual oil showed the similar biodegradation between aerobic process of 90 days and degradation in reservoir which may last for some millions years, and the potential of serious aerobic biodegradation of petroleum in reservoir. 24 Metabolites compounds were separated and identified from aerobic culture, including fatty acid, naphthenic acid, aromatic carboxylic acid, unsaturated acid, alcohols, ketones and aldehydes. The pathways of alkanes and aromatics were proposed, which suggests that oxidation of hydrocarbon to organic acid is an important process in the aerobic biodegradation of petroleum. PMID:23867530

  20. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    PubMed

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-01

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  1. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. PMID:26760266

  2. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned. PMID:27620082

  3. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Wei, Li; Wei, Chao; Chang, Chein-Chi; You, Shao-Hong

    2015-10-01

    This is a literature review for the year 2014 and contains information specifically associated with suspended growth processes including activated sludge and sequencing batch reactors. This review is a subsection of the treatment systems section of the annual literature review. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2014. These include, nitrogen and phosphorus control, fate and effect of xenobiotics, industrial wastes treatment, and some new method for the determination of activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology of activated sludge, modeling and kinetics. Many of the subsections in the industrial wastes: converting sewage sludge into fuel gases, thermos-alkali hydrolysis of Waste Activated Sludge (WAS), sludge used as H2 S adsorbents were also mentioned in this review. PMID:26420077

  4. Microbiology of the Frankfurter Process: Salmonella and Natural Aerobic Flora

    PubMed Central

    Palumbo, S. A.; Huhtanen, C. N.; Smith, J. L.

    1974-01-01

    Salmonella senftenberg 775W added to frankfurter emulsion was killed during normal processing in the smoke house when internal product temperature was 71.1 C (160 F) or above. The thermal destruction point of S. senftenberg 775W in frankfurters (temperature at which no viable cells were detected) was a function of the length of time of the process rather than of the starting number of cells. Heating of frankfurters to 73.9 C (165 F) substantially reduced the total non-salmonella count. For total non-salmonella bacterial flora and salmonella, relatively little thermal destruction occurred below 43.3 C (110 F). The heating step can bring about a 7-log cycle decrease (108 to 101/g) of bacteria present in the raw emulsion. The flora of this high-bacteriological-count raw emulsion was predominantly gram-negative rods. Variation in the number of bacteria (both total and salmonella) surviving at various temperatures during processing was attributed to slight variations in the temperature pattern of the smoke house during its operation. An integration process was devised which allowed calculation of exposure to temperatures above 110 F (43.3 C) on the basis of degree-minutes. Plots of degree-minutes versus log of surviving bacteria were linear. The salmonella plot had a greater slope than that of the total non-salmonella flora, indicating that salmonellae are more heat sensitive than the bacterial population as a whole. The predominant bacteria surviving the heating step were micrococci. These micrococci were able to increase in number in or on the frankfurters during storage at 5 C. PMID:4596752

  5. Microbiology of the frankfurter process: salmonella and natural aerobic flora.

    PubMed

    Palumbo, S A; Huhtanen, C N; Smith, J L

    1974-04-01

    Salmonella senftenberg 775W added to frankfurter emulsion was killed during normal processing in the smoke house when internal product temperature was 71.1 C (160 F) or above. The thermal destruction point of S. senftenberg 775W in frankfurters (temperature at which no viable cells were detected) was a function of the length of time of the process rather than of the starting number of cells. Heating of frankfurters to 73.9 C (165 F) substantially reduced the total non-salmonella count. For total non-salmonella bacterial flora and salmonella, relatively little thermal destruction occurred below 43.3 C (110 F). The heating step can bring about a 7-log cycle decrease (10(8) to 10(1)/g) of bacteria present in the raw emulsion. The flora of this high-bacteriological-count raw emulsion was predominantly gram-negative rods. Variation in the number of bacteria (both total and salmonella) surviving at various temperatures during processing was attributed to slight variations in the temperature pattern of the smoke house during its operation. An integration process was devised which allowed calculation of exposure to temperatures above 110 F (43.3 C) on the basis of degree-minutes. Plots of degree-minutes versus log of surviving bacteria were linear. The salmonella plot had a greater slope than that of the total non-salmonella flora, indicating that salmonellae are more heat sensitive than the bacterial population as a whole. The predominant bacteria surviving the heating step were micrococci. These micrococci were able to increase in number in or on the frankfurters during storage at 5 C. PMID:4596752

  6. Aerobic composting leachate treatment by the combination of membrane processes.

    PubMed

    Çakmakci, Mehmet; Özyaka, Vahide Seyda

    2013-02-01

    The main product of the conversion process of organic wastes to a useful organic fertilizer, known as compost, has gained an increasing interest in management of organic wastes recently. One of the main problems arising in the composting facilities is the high organic loaded leachate. In this study, a treatability experiment for composting leachate from a full-scale composting facility was carried out with the combination of membrane processes. The parameters such as chemical oxygen demand, total organic carbon, Cl⁻ and NH₄⁺ were analysed to evaluate the membrane treatment performances of single and combined membrane systems consisting centrifuge, cartridge filter, ultrafiltration and nanofiltration membranes. The removal efficiencies of all pollutants were observed between 4.4 and 98%. The highest removal efficiencies were observed with the nanofiltration membrane (NF90) having a lower molecular weight cut-off than the others used in this study. It was observed that the effluent of NF90 membrane did not exceed the allowed maximum COD value. PMID:23076267

  7. The importance of aerobic metabolism in the renal concentrating process

    PubMed Central

    Weinstein, Edward; Manitius, Andrzej; Epstein, Franklin H.

    1969-01-01

    The extent to which the concentrating function of the kidney depends on oxidative processes was investigated by infusing cyanide into one renal artery of dogs undergoing mild mannitol diuresis while receiving an infusion of vasopressin. This produced an abrupt fall in concentrating capacity (TcH2O) that was reversed when the cyanide infusion was stopped. The change could not be accounted for by the accompanying solute diuresis, since it was not reproduced by increasing the rate of mannitol infusion. The reduction in TcH2O induced by cyanide did not result from increased delivery of dilute urine to the collecting ducts, since free water clearance (CH2O), studied in other dogs during water diuresis, was unchanged or decreased by cyanide. Cyanide produced renal vasodilatation, as did intraarterial acetylcholine, but in contrast to the striking reduction in concentrating capacity evoked by cyanide, TcH2O was not significantly changed by acetylcholine. The data indicate that concentrating ability is closely tied to oxidative metabolism in the kidney, and it is suggested that the region where this is critically important is the red medulla and the thick ascending limb of Henle's loop. PMID:5822590

  8. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates

    PubMed Central

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-01-01

    Colonies of N2-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. 15N-isotope labelling experiments and nutrient analyses revealed that N2 fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N2 were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO3−-depleted, fully oxygenated (surface) waters. In NO3−-enriched (>1.5 μM), O2-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes. PMID:25575306

  9. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    PubMed

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO(3)(-)-depleted, fully oxygenated (surface) waters. In NO(3)(-)-enriched (>1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes. PMID:25575306

  10. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems

    PubMed Central

    Ma, Qiao; Qu, Yuanyuan; Zhang, Xuwang; Liu, Ziyan; Li, Huijie; Zhang, Zhaojing; Wang, Jingwei; Shen, Wenli; Zhou, Jiti

    2015-01-01

    Indole is widely spread in various environmental matrices. Indole degradation by bacteria has been reported previously, whereas its degradation processes driven by aerobic microbial community were as-yet unexplored. Herein, eight sequencing batch bioreactors fed with municipal and coking activated sludges were constructed for aerobic treatment of indole. The whole operation processes contained three stages, i.e. stage I, glucose and indole as carbon sources; stage II, indole as carbon source; and stage III, indole as carbon and nitrogen source. Indole could be completely removed in both systems. Illumina sequencing revealed that alpha diversity was reduced after indole treatment and microbial communities were significantly distinct among the three stages. At genus level, Azorcus and Thauera were dominant species in stage I in both systems, while Alcaligenes, Comamonas and Pseudomonas were the core genera in stage II and III in municipal sludge system, Alcaligenes and Burkholderia in coking sludge system. In addition, four strains belonged to genera Comamonas, Burkholderia and Xenophilus were isolated using indole as sole carbon source. Burkholderia sp. IDO3 could remove 100 mg/L indole completely within 14 h, the highest degradation rate to date. These findings provide novel information and enrich our understanding of indole aerobic degradation processes. PMID:26657581

  11. Integrated anaerobic-aerobic process for the biodegradation of chlorinated aromatic compounds

    SciTech Connect

    Armenante, P.M.; Lewandowski, G.; Chengming Kung ); Kafkewitz, D. )

    1992-05-01

    An integrated anaerobic-aerobic process for the complete mineralization of 2,4,6-trichlorophenol was successfully tested and operated. The sludge obtained from the anaerobic digester of a commercial treatment plant was used to obtain an anaerobic consortium capable of partially dechlorinating 2,4,6-trichlorophenol (2,4,6-TCP). The clarified and sterilized effluent from the same anaerobic digester was used as the medium for the anaerobic consortium. During the anaerobic process 2,4,6-TCP was first dechlorinated to 2,4-dichlorophenol and then to 4-chlorophenol (4CP). Stoichiometric amounts of 4-CP were recovered. Similar results were obtained when the anaerobic microorganisms were immobilized on Manville R-635 silica beads. After immobilization, the consortium was able to dechlorinate 150{mu}M of 2,4,6-TCP in four days. Pseudomonas Glathei and an indigenous culture obtained from same sludge used to produce the anaerobic enrichment culture were shown to be able to degrade the 4-CP produced from the anaerobic dechlorination of 2,4,6-TCP. However, for the aerobic 4-CP mineralization to occur the medium had to be buffered with phosphate, since high pH would inhibit the aerobic bacterial activity. It is expected that the proposed approach will be used to treat recalcitrant halogenated compounds that are not amenable to conventional biological treatment.

  12. Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge.

    PubMed

    Wei, Dong; Li, Mengting; Wang, Xiaodong; Han, Fei; Li, Lusheng; Guo, Jie; Ai, Lijie; Fang, Lulu; Liu, Ling; Du, Bin; Wei, Qin

    2016-01-15

    The aim of this study was to evaluate the interaction between extracellular polymeric substances (EPS) and Zn (II) during the sorption process of Zn (II) onto aerobic granular sludge. Batch results showed that the adsorption rate of Zn (II) onto aerobic granular sludge was better fitted with pseudo-second order kinetics model, and the adsorption isotherm data agreed well with Freundlich equation. Extracellular polymeric substances (EPS) for Zn (II) binding during sorption process was investigated by using a combination of three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence spectra, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FTIR). Results implied that the main composes of EPS, including polysaccharide (PS) and protein (PN), decreased from 5.92±0.13 and 23.55±0.76 mg/g SS to 4.11±0.09 and 9.55±0.68 mg/g SS after the addition of different doses of Zn (II). 3D-EEM showed that the intensities of PN-like substances and humic-like substances were obviously decreased during the sorption process. According to synchronous fluorescence spectra, the quenching mechanism between PN-like substances and Zn (II) was mainly caused by a static quenching process. Additionally, 2D-COS indicated that PN-like substances were more susceptible to Zn (II) binding than humic-like substances. It was also found that the main functional groups for complexation of Zn (II) and EPS were OH groups, N-H groups and C=O stretching vibration. The findings of this study are significant to reveal the fate of heavy metal during its sorption process onto aerobic granular sludge through EPS binding, and provide useful information on the interaction between EPS and heavy metal. PMID:26410269

  13. [Modeling and dynamic simulation of the multimode anaerobic/anoxic/aerobic wastewater treatment process].

    PubMed

    Zhou, Zhen; Wu, Zhi-Chao; Wang, Zhi-Wei; Du, Xing-Zhi; Jiang, Ling-Yan; Xing, Can

    2013-04-01

    Mathematical modeling is a useful tool for professional education, process development, design evaluation, operational optimization and automatic control of the wastewater treatment system, and has been extensively applied in numerous full-scale wastewater treatment plants. The ASM2d model was calibrated by the process data, and used to simulate 15 operational test runs of the multimode anaerobic/anoxic/aerobic (AAO) process. After calibration, the model was capable of simulating the sludge concentrations and effluent data in 15 test runs of the multimode AAO system. The dynamic simulation results showed an overall good agreement between the measured and simulated data, for both effluent data and sludge concentrations, with a good reproduction of dynamic processes in AO test runs. PMID:23798127

  14. [Effective nitrogen removal in low C/N wastewater with combined aerobic-low DO biofilm treatment process].

    PubMed

    Chen, Xiu-Rong; Ai, Qi-Feng; Xu, Wen-Lu; Wu, Min-Lin

    2011-10-01

    The municipal wastewater in China is characterized by low ratio of carbon to nitrogen, which is the key restrictive factor for effective biological removal of nitrogen. In this study, the aerobic-low DO biofilm process was used for the nitrogen removal of municipal wastewater. By means of adjusting inflow ratios of aerobic section to low-DO section, hydraulic retention time (HRT) and inflow ratio of carbon to nitrogen (C/N), the performances of nitrification in aerobic biofilm section and denitrification in low-DO section could be improved, the good performance of nitrogen removal was achieved. In order to insure the good effluent quality, especially for ammonia nitrogen and total nitrogen indexes, the nitrification and denitrification could be made up in aerobic and low-DO biofilm section respectively due to the coexistence of aerobic and anoxic zone in biofilm. There were 3 stages for the research process. In the first stage, the original C/N, inflow ratios of aerobic section to low-DO section were chosen as 3:1 and 1:1 respectively, then the effects of various HRT (aerobic section + low DO section) values such as (10 + 5) h, (8 + 4) h, (6 + 3) h, (4 + 2) h to nitrogen removal were analyzed. According to the conclusion in the first stage, the original C/N was kept at 3:1, HRT (aerobic section + low DO section) was (10 + 5) h. Then, the effects of various inflow ratios to nitrogen removal were studied in the second stage. In the third stage, when HRT(aerobic section + low DO section) was (10 + 5) h and inflow ratio was 1:1, the original C/N were adjusted from 2:1, 3:1, 5:1 to 10:1. To conclude, the optimal parameters for nitrogen removal in the biofilm system were as follows: original C/N = 5:1, inflow ratio of aerobic to low-DO section = 1:1, HRT of aerobic and low-DO sections were 10 h and 5 h respectively. As a result, COD, ammonia nitrogen and total nitrogen could be removed from 254 mg/L to 48 mg/L, 37.2 mg/L to 9.3 mg/L and 48.2 mg/L to 14.8 mg

  15. Characteristics of the bioreactor landfill system using an anaerobic-aerobic process for nitrogen removal.

    PubMed

    He, Ruo; Liu, Xin-Wen; Zhang, Zhi-Jian; Shen, Dong-Sheng

    2007-09-01

    A sequential upflow anaerobic sludge blanket (UASB) and air-lift loop sludge blanket (ALSB) treatment was introduced into leachate recirculation to remove organic matter and ammonia from leachate in a lab-scale bioreactor landfill. The results showed that the sequential anaerobic-aerobic process might remove above 90% of COD and near to 100% of NH4+ -N from leachate under the optimum organic loading rate (OLR). The total COD removal efficiency was over 98% as the OLR increased to 6.8-7.7 g/l d, but the effluent COD concentration increased to 2.9-4.8 g/l in the UASB reactor, which inhibited the activity of nitrifying bacteria in the subsequent ALSB reactor. The NO3- -N concentration in recycled leachate reached 270 mg/l after treatment by the sequential anaerobic-aerobic process, but the landfill reactor could efficiently denitrify the nitrate. After 56 days operation, the leachate TN and NH4+ -N concentrations decreased to less than 200 mg/l in the bioreactor landfill system. The COD concentration was about 200 mg/l with less than 8 mg/l BOD in recycled leachate at the late stage. In addition, it was found that nitrate in recycled leachate had a negative effect on waste decomposition. PMID:17071082

  16. Characteristics of Biological Nitrogen Removal in a Multiple Anoxic and Aerobic Biological Nutrient Removal Process

    PubMed Central

    Wang, Huoqing; Guan, Yuntao; Li, Li; Wu, Guangxue

    2015-01-01

    Two sequencing batch reactors, one with the conventional anoxic and aerobic (AO) process and the other with the multiple AO process, were operated to examine characteristics of biological nitrogen removal, especially of the multiple AO process. The long-term operation showed that the total nitrogen removal percentage of the multiple AO reactor was 38.7% higher than that of the AO reactor. In the multiple AO reactor, at the initial SBR cycle stage, due to the occurrence of simultaneous nitrification and denitrification, no nitrite and/or nitrate were accumulated. In the multiple AO reactor, activities of nitrite oxidizing bacteria were inhibited due to the multiple AO operating mode applied, resulting in the partial nitrification. Denitrifiers in the multiple AO reactor mainly utilized internal organic carbon for denitrification, and their activities were lower than those of denitrifiers in the AO reactor utilizing external organic carbon. PMID:26491676

  17. Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Bartlett, John; Pembroke, Tony J.

    2010-01-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

  18. [Research advances in aerobic denitrifiers].

    PubMed

    Wang, Wei; Cai, Zu-cong; Zhong, Wen-hui; Wang, Guo-xiang

    2007-11-01

    This paper reviewed the varieties and characteristics of aerobic denitrifiers, their action mechanisms, and the factors affecting aerobic denitrification. Aerobic denitrifiers mainly include Pseudomonas, Alcaligenes, Paracoccus and Bacillus, which are either aerobic or facultative aerobic, and heterotrophic. They can denitrify under aerobic conditions, with the main product being N2O. They can also convert NH4+ -N to gas product. The nitrate reductase which catalyzes the denitrification is periplasmic nitrate reductase rather than membrane-bound nitrate reductase. Dissolved oxygen concentration and C/N ratio are the main factors affecting aerobic denitrification. The main methods for screening aerobic denitrifiers, such as intermittent aeration and selected culture, were also introduced. The research advances in the application of aerobic denitrifiers in aquaculture, waste water processing, and bio-degradation of organic pollutants, as well as the contributions of aerobic denitrifiers to soil nitrogen emission were summarized. PMID:18260473

  19. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model. PMID:18476403

  20. Sequential anaerobic/aerobic digestion for enhanced sludge stabilization: comparison of the process performance for mixed and waste sludge [corrected].

    PubMed

    Tomei, M Concetta; Carozza, Nicola Antonello

    2015-05-01

    Sequential anaerobic-aerobic digestion has been demonstrated as a promising alternative for enhanced sludge stabilization. In this paper, a feasibility study of the sequential digestion applied to real waste activated sludge (WAS) and mixed sludge is presented. Process performance is evaluated in terms of total solid (TS) and volatile solid (VS) removal, biogas production, and dewaterability trend in the anaerobic and double-stage digested sludge. In the proposed digestion lay out, the aerobic stage was operated with intermittent aeration to reduce the nitrogen load recycled to the wastewater treatment plant (WWTP). Experimental results showed a very good performance of the sequential digestion process for both waste and mixed sludge, even if, given its better digestibility, higher efficiencies are observed for mixed sludge. VS removal efficiencies in the anaerobic stage were 48 and 50% for waste and mixed sludge, respectively, while a significant additional improvement of the VS removal of 25% for WAS and 45% for mixed sludge has been obtained in the aerobic stage. The post-aerobic stage, operated with intermittent aeration, was also efficient in nitrogen removal, providing a significant decrease of the nitrogen content in the supernatant: nitrification efficiencies of 90 and 97% and denitrification efficiencies of 62 and 70% have been obtained for secondary and mixed sludges, respectively. A positive effect due to the aerobic stage was also observed on the sludge dewaterability in both cases. Biogas production, expressed as Nm(3)/(kgVSdestroyed), was 0.54 for waste and 0.82 for mixed sludge and is in the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. PMID:25028317

  1. [Effect of Increasing Organic Loading Rate on the Formation and Stabilization Process of Aerobic Granular Sludge].

    PubMed

    Liu, Xiao-peng; Wang, Jan-fang; Qian, Fei-yue; Wang, Yan; Chen, Chong-jun; Shen, Yao-liang

    2015-09-01

    In order to evaluate the effect of organic loading rate ( OLR) on the formation of aerobic granular sludge (AGS), a lab-scale cylindrical SBR reactor (sodium acetate as carbon source) was constructed and inoculated with collected sewage sludge. The evolution of morphology, microbial activity and extracellular polymeric substances (EPS) characteristics of sludge samples in the reactor were recorded and analyzed. The results showed that AGS has the highest growth rate under the condition of 3. 20-4. 84 kg.(m3.d)-1 OLR, and a selective discharging strategy of the floccular sludge was suggested to maintain the predominance of AGS in reactor. The accumulated sludge concentration, SVI30, mean granule size, settling velocity and SOUR value of the AGS in steady-state operated SBR was 23. 9 g.L-1, 20 mL.g-1, 1. 4 mm, 102 m.h-1 and 50. 2 mg.(g.h)-1, respectively. The granulation process not only obviously changed the sludge appearance, but also significantly improved the microbial activity. Meanwhile, linear correlation was observed between the variation of protein/polysaccharide concentration and the granule size of AGS. Thus, variation of protein/ polysaccharide concentration of the EPS could be applied as an indicator for optimization of the cultivation method of AGS. PMID:26717698

  2. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. PMID:25689817

  3. Aerobic Exercise for Reducing Migraine Burden: Mechanisms, Markers, and Models of Change Processes

    PubMed Central

    Irby, Megan B.; Bond, Dale S.; Lipton, Richard B.; Nicklas, Barbara; Houle, Timothy T.; Penzien, Donald B.

    2016-01-01

    Background Engagement in regular exercise routinely is recommended as an intervention for managing and preventing migraine, and yet empirical support is far from definitive. We possess at best a weak understanding of how aerobic exercise and resulting change in aerobic capacity influence migraine, let alone the optimal parameters for exercise regimens as migraine therapy (eg, who will benefit, when to prescribe, optimal types, and doses/intensities of exercise, level of anticipated benefit). These fundamental knowledge gaps critically limit our capacity to deploy exercise as an intervention for migraine. Overview Clear articulation of the markers and mechanisms through which aerobic exercise confers benefits for migraine would prove invaluable and could yield insights on migraine pathophysiology. Neurovascular and neuroinflammatory pathways, including an effect on obesity or adiposity, are obvious candidates for study given their role both in migraine as well as the changes known to accrue with regular exercise. In addition to these biological pathways, improvements in aerobic fitness and migraine alike also are mediated by changes in psychological and sociocognitive factors. Indeed a number of specific mechanisms and pathways likely are operational in the relationship between exercise and migraine improvement, and it remains to be established whether these pathways operate in parallel or synergistically. As heuristics that might conceptually benefit our research programs here forward, we: (1) provide an extensive listing of potential mechanisms and markers that could account for the effects of aerobic exercise on migraine and are worthy of empirical exploration and (2) present two exemplar conceptual models depicting pathways through which exercise may serve to reduce the burden of migraine. Conclusion Should the promise of aerobic exercise as a feasible and effective migraine therapy be realized, this line of endeavor stands to benefit migraineurs (including the

  4. [Fractal structure and physicochemical characteristics analysis of aerobic sludge floc in A2/O process].

    PubMed

    Xuan, Ke-Jia; Wang, Yi-Li; Wei, Ke-Ji; Du, Jie-Di; Zhang, Tong

    2009-07-15

    Image analysis method, free settling test were performed to determine the morphology, particle size distribution, free setting velocity, effective density, porosity and fractal dimensions in different topological spaces of aerobic sludge flocs in A2/O process. Then the physicochemical indices, corresponding to the sludge properties such as: settleability, compressibility, dewaterability and stability, were measured. Besides these, the extra-cellular polymeric substances (EPS) were extracted from sludge and classified as different components. The results showed that the sludge floc with irregular morphology was high porous. The effective densities of these sludge flocs generally increased with the increase of their size, but the porosities within the flocs and their free settling velocities decreased accordingly. The median diameters of the sludge flocs at two different sampling times were 248.81 microm, 332.86 microm, respectively. Their corresponding average effective densities were 0.0040, 0.0072 g x cm(-3), and average free settling velocities were 2.67 mm x s(-1), 4.79 mm x s(-1), and giving the average porosities of0.94, 0.89. The dimensional analysis methods, based on power law correlations between floc perimeter, projected area and maximum length, were used to determine the one- and two-dimensional fractal dimensions (D1 and D2 ) of sludge flocs, giving D1 = 1.03 or 1.19, D2 = 1.64 or 1.84. The mass fractal dimensions (D(f)) of these sludge flocs were determined by the bi-logarithm relations of effective density (based on Logan empirical equation)-maximum diameter which equaled to 1.74 or 2.29. The above results demonstrated that the second sample of sludge flocs was larger and more compact, but smoother than the first sample. Moreover, the results also showed that the sludge flocs in A2/O process with high flocculating ability or high negative surface charge had high values of sludge volume index (SVI) and zone setting velocity (ZSV), and low values of

  5. Optimization of hydraulic shear parameters and reactor configuration in the aerobic granular sludge process.

    PubMed

    Zhu, Liang; Zhou, Jiaheng; Yu, Haitian; Xu, Xiangyang

    2015-01-01

    The hydraulic shear acts as an important selection pressure in aerobic sludge granulation. The effects of the hydraulic shear rate and reactor configuration on structural characteristics of aerobic granule in view of the hydromechanics. The hydraulic shear analysis was proposed to overcome the limitation of using superficial gas velocity (SGV) to express the hydraulic shear stress. Results showed that the stronger hydraulic shear stress with SGV above 2.4 cm s(-1) promoted the microbial aggregation, and favoured the structural stability of the granular sludge. According to the hydraulic shear analysis, the total shear rate reached (0.56-2.31)×10(5) s(-1) in the granular reactor with a larger ratio of height to diameter (H/D), and was higher than that in the reactor with smaller H/D, where the sequencing airlift bioreactor with smaller H/D had a high total shear rate under the same SGV. Results demonstrated that the granular reactor could provide a stronger hydraulic shear stress which promotes the formation and structural stability of aerobic granules. PMID:25558911

  6. Full scale performance of the aerobic granular sludge process for sewage treatment.

    PubMed

    Pronk, M; de Kreuk, M K; de Bruin, B; Kamminga, P; Kleerebezem, R; van Loosdrecht, M C M

    2015-11-01

    Recently, aerobic granular sludge technology has been scaled-up and implemented for industrial and municipal wastewater treatment under the trade name Nereda(®). With full-scale references for industrial treatment application since 2006 and domestic sewage since 2009 only limited operating data have been presented in scientific literature so far. In this study performance, granulation and design considerations of an aerobic granular sludge plant on domestic wastewater at the WWTP Garmerwolde, the Netherlands were analysed. After a start-up period of approximately 5 months, a robust and stable granule bed (>8 g L(-1)) was formed and could be maintained thereafter, with a sludge volume index after 5 min settling of 45 mL g(-1). The granular sludge consisted for more than 80% of granules larger than 0.2 mm and more than 60% larger than 1 mm. Effluent requirements (7 mg N L(-1) and 1 mg P L(-1)) were easily met during summer and winter. Maximum volumetric conversion rates for nitrogen and phosphorus were respectively 0.17 and 0.24 kg (m(3) d)(-1). The energy usage was 13.9 kWh (PE150·year)(-1) which is 58-63 % lower than the average conventional activated sludge treatment plant in the Netherlands. Finally, this study demonstrated that aerobic granular sludge technology can effectively be implemented for the treatment of domestic wastewater. PMID:26233660

  7. High cell density media for Escherichia coli are generally designed for aerobic cultivations – consequences for large-scale bioprocesses and shake flask cultures

    PubMed Central

    Soini, Jaakko; Ukkonen, Kaisa; Neubauer, Peter

    2008-01-01

    Background For the cultivation of Escherichia coli in bioreactors trace element solutions are generally designed for optimal growth under aerobic conditions. They do normally not contain selenium and nickel. Molybdenum is only contained in few of them. These elements are part of the formate hydrogen lyase (FHL) complex which is induced under anaerobic conditions. As it is generally known that oxygen limitation appears in shake flask cultures and locally in large-scale bioreactors, function of the FHL complex may influence the process behaviour. Formate has been described to accumulate in large-scale cultures and may have toxic effects on E. coli. Although the anaerobic metabolism of E. coli is well studied, reference data which estimate the impact of the FHL complex on bioprocesses of E. coli with oxygen limitation have so far not been published, but are important for a better process understanding. Results Two sets of fed-batch cultures with conditions triggering oxygen limitation and formate accumulation were performed. Permanent oxygen limitation which is typical for shake flask cultures was caused in a bioreactor by reduction of the agitation rate. Transient oxygen limitation, which has been described to eventually occur in the feed-zone of large-scale bioreactors, was mimicked in a two-compartment scale-down bioreactor consisting of a stirred tank reactor and a plug flow reactor (PFR) with continuous glucose feeding into the PFR. In both models formate accumulated up to about 20 mM in the culture medium without addition of selenium, molybdenum and nickel. By addition of these trace elements the formate accumulation decreased below the level observed in well-mixed laboratory-scale cultures. Interestingly, addition of the extra trace elements caused accumulation of large amounts of lactate and reduced biomass yield in the simulator with permanent oxygen limitation, but not in the scale-down two-compartment bioreactor. Conclusion The accumulation of formate in

  8. Oxidation-reduction processes in ice swimmers after ice-cold water bath and aerobic exercise.

    PubMed

    Sutkowy, Paweł; Woźniak, Alina; Boraczyński, Tomasz; Boraczyński, Michał; Mila-Kierzenkowska, Celestyna

    2015-06-01

    The effect of an ice-cold water (ICW) bath as a recovery intervention from aerobic exercise on the oxidant-antioxidant balance in healthy ice swimmers was determined. Twenty ice swimmers aged 31.2 ± 6.3 years performed a 30-min cycloergometer exercise test at room temperature (20°C, RT), followed by recovery at RT or in a pool of ice-cold water (ICW bath, 3°C, 5 min). Blood for laboratory assays was collected from the basilic vein two times: before the exercise (baseline) and 40 min after the RT or ICW recovery. The concentrations of plasma and erythrocytic thiobarbituric acid reactive substances (plTBARS and erTBARS, respectively), serum concentrations of 8-iso-prostaglandin F2α, 4-hydroxynonenal and malondialdehyde, along with the erythrocytic activities of catalase (CAT) and superoxide dismutase (SOD), as well as the serum level of total antioxidant capacity, were assessed. No statistically significant changes were observed. However, a statistically significant negative linear correlation between the erTBARS concentration and the SOD activity was found 40 min after the combination of exercise/RT recovery (r=-0.571, P<0.01). The baseline CAT and SOD activities were also linearly correlated (r=0.469, P<0.05). Both the 5-min ICW bath and the 30-min aerobic exercise have practically no impact on the oxidant-antioxidant balance in healthy ice swimmers. PMID:25910677

  9. Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process.

    PubMed

    Tang, Shaoyu; Yin, Hua; Chen, Shuona; Peng, Hui; Chang, Jingjing; Liu, Zehua; Dang, Zhi

    2016-05-01

    Decabromodiphenyl ether (BDE-209) is one of the most commonly used brominated flame retardants that have contaminated the environment worldwide. Microbial bioremediation has been considered as an effective technique to remove these sorts of persistent organic pollutants. Enterococcus casseliflavus, a gram-positive bacterium capable of aerobically transforming BDE-209, was isolated by our team from sediments in Guiyu, an e-waste dismantling area in Guangdong Province, China. To promote microbial bioremediation of BDE-209 and elucidate the mechanism behind its aerobic degradation, the effects of BDE-209 on the cell changes of E. casseliflavus were examined in this study. The experimental results demonstrated that the high cell surface hydrophobicity (CSH) of E. casseliflavus made the bacteria absorb hydrophobic BDE-209 more easily. E. casseliflavus responded to BDE-209 stress, resulting in an increase in cell membrane permeability and accumulation of BDE-209 inside the cell. The differential expression of intracellular protein was analyzed through two-dimensional gel electrophoresis (2-DE). More than 50 differentially expressed protein spots were reproducibly detected, including 25 up, and 25 down regulated after a 4 days exposure. Moreover, the apoptotic-like cell changes were observed during E. casseliflavus mediated degradation of BDE-209 by means of flow cytometry. PMID:26852209

  10. Seasonal and wastewater stream variation of trace organic compounds in a dairy processing plant aerobic bioreactor.

    PubMed

    Heaven, Michael W; Wild, Karl; Verheyen, Vincent; Cruickshank, Alicia; Watkins, Mark; Nash, David

    2011-09-01

    Bioreactors are often an integral part of dairy factory efforts to reduce the biological oxygen demand of their wastewater. In this study, infeed, mixed liquor and supernatant samples of an aerobic bioreactor used by a dairy factory in South-Eastern Australia were analyzed for nutrients and organic compounds using gas chromatography-mass spectrometry and physicochemical analyses. Despite different concentrations of organic inputs into the bioreactor, nutrients and trace organic compounds were reduced significantly (i.e. average concentration of trace organic compounds: infeed=1681 μg/L; mixed liquor=257 μg/L; supernatant=23 μg/L). However, during one sampling period the bioreactor was adversely affected by the organic loading. Trace organic compounds in the samples were predominantly fatty acids associated with animal products. The analyses suggest that it is possible to trace a disruptive input (i.e. infeed with high organic carbon concentrations) into an aerobic bioreactor by measuring concentrations of fatty acids or ammonia. PMID:21704516

  11. Large deviations for Markov processes with resetting.

    PubMed

    Meylahn, Janusz M; Sabhapandit, Sanjib; Touchette, Hugo

    2015-12-01

    Markov processes restarted or reset at random times to a fixed state or region in space have been actively studied recently in connection with random searches, foraging, and population dynamics. Here we study the large deviations of time-additive functions or observables of Markov processes with resetting. By deriving a renewal formula linking generating functions with and without resetting, we are able to obtain the rate function of such observables, characterizing the likelihood of their fluctuations in the long-time limit. We consider as an illustration the large deviations of the area of the Ornstein-Uhlenbeck process with resetting. Other applications involving diffusions, random walks, and jump processes with resetting or catastrophes are discussed. PMID:26764673

  12. Improving phosphorus removal in aerobic granular sludge processes through selective microbial management.

    PubMed

    Henriet, Olivier; Meunier, Christophe; Henry, Paul; Mahillon, Jacques

    2016-07-01

    This study aimed to improve phosphorus removal in aerobic granular sludge sequential batch reactors (AGS-SBR) by a differential selection of the granules containing the highest proportion of phosphate accumulating organisms (PAOs). The abundance of PAOs in granules with different density was analyzed by PCR-DGGE, pyrosequencing and qPCR. Dense granules contained a higher proportion of Candidatus Accumulibacter (PAO) with a 16S rRNA gene frequency up to 45%. Starting with an AGS-SBR with low height/diameter ratio performing unstable P removal, two strategies of biomass removal were assessed. First, a high selective pressure (short settling time) was applied and second, an increase of the settling time was combined with a homogeneous purge of the sludge bed. The first strategy resulted in a reduction of P removal efficiency while the second improved and stabilized P removal over 90%. This study offers a new approach of biomass management in AGS-SBR. PMID:27023385

  13. Aerobic biodegradation of sludge with high hydrocarbon content generated by a Mexican natural gas processing facility.

    PubMed

    Roldán-Carrillo, T; Castorena-Cortés, G; Zapata-Peñasco, I; Reyes-Avila, J; Olguín-Lora, P

    2012-03-01

    The biodegradation of oil sludge from Mexican sour gas and petrochemical facilities contaminated with a high content of hydrocarbons, 334.7 ± 7.0 g kg(-1) dry matter (dm), was evaluated. Studies in microcosm systems were carried out in order to determine the capacity of the native microbiota in the sludge to reduce hydrocarbon levels under aerobic conditions. Different carbon/nitrogen/phosphorous (C/N/P) nutrient ratios were tested. The systems were incubated at 30 °C and shaken at 100 rpm. Hydrocarbon removals from 32 to 51% were achieved in the assays after 30 days of incubation. The best assay had C/N/P ratio of 100/1.74/0.5. The results of the Microtox(®) and Ames tests indicated that the original sludge was highly toxic and mutagenic, whereas the best assay gave a final product that did not show toxicity or mutagenicity. PMID:21600691

  14. Nitritation and denitritation of domestic wastewater using a continuous anaerobic-anoxic-aerobic (A(2)O) process at ambient temperatures.

    PubMed

    Zeng, Wei; Li, Lei; Yang, Yingying; Wang, Shuying; Peng, Yongzhen

    2010-11-01

    In a continuous anaerobic-anoxic-aerobic (A(2)O) process treating domestic wastewater at ambient temperatures, nitritation was achieved through a combination of short aerobic actual hydraulic retention time (AHRT) and low dissolved oxygen (DO) levels (0.3-0.5mg/L). The nitrite accumulation rate was about 90% and ammonia removal efficiency was over 95%. With respect to total nitrogen removal, nitritation-denitritation at low DO levels of 0.3-0.5mg/L was essentially equal to the complete nitrification-denitrification at DO levels of 1.5-2.5mg/L with the addition of external carbon sources. Regardless of low DO operation, sludge bulking did not occur since the sludge volume index was below 150ml/g. Real-time PCR assays showed that in response to complete and partial nitrification modes, the numbers of ammonia oxidizing bacteria population were 5.28x10(9)cells/g MLVSS and 3.95x10(10)cells/g MLVSS, respectively. Achievement of nitritation-denitritation is highly beneficial to the treatment of domestic wastewater in terms of lower carbon requirements and reduced aeration costs. PMID:20579871

  15. Treatment of artificial soybean wastewater anaerobic effluent in a continuous aerobic-anaerobic coupled (CAAC) process with excess sludge reduction.

    PubMed

    Wang, Jun; Li, Xiaoxia; Fu, Weichao; Wu, Shihan; Li, Chun

    2012-12-01

    In this study, treatment of artificial soybean wastewater anaerobic effluent was studied in a continuous aerobic-anaerobic coupled (CAAC) process. The focus was on COD and nitrogen removal as well as excess sludge reduction. During the continuous operation without reflux, the COD removal efficiency was 96.5% at the optimal hydraulic retention time (HRT) 1.3 days. When HRT was shortened to 1.0 day, reflux from anaerobic zone to moving bed biofilm reactor (MBBR) was introduced. The removal efficiencies of COD and TN were 94.4% and 76.0% at the optimal reflux ratio 30%, respectively. The sludge yield coefficient of CAAC was 0.1738, the simultaneous removal of COD and nitrogen with in situ sludge reduction could be achieved in this CAAC process. The sludge reduction mechanism was discussed by soluble components variation along the water flow. PMID:23073101

  16. Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant.

    PubMed

    Li, Lili; Ye, Lei; Zhang, Sen; Meng, Hecheng

    2016-06-01

    Microbial contamination in food-processing plants can play a fundamental role in food quality and safety. The purpose of this study was to investigate aerobic bacteria carrying tetracycline and sulfonamide resistance genes from a meat processing plant as possible sources of meat contamination. One hundred swab samples from surfaces of conveyor belts, meat slicers, meat knives, benches, plastic trays, gloves, and aprons were analyzed. A total of 168 isolates belonging to 10 genera were obtained, including Pseudomonas sp. (n = 35), Acinetobacter sp. (n = 30), Aeromonas sp. (n = 20), Myroides sp. (n = 15), Serratia sp. (n = 15), Staphylococcus sp. (n = 14), Enterobacter sp. (n = 11), Escherichia coli (n = 10), Lactococcus sp. (n = 10), and Klebsiella sp. (n = 8). Of the 168 isolates investigated, 60.7% showed resistance to tetracycline and 57.7% to trimethoprim/sulfamethoxazole. The tetracycline resistance genes tetL, tetA, tetB, tetC, tetE, tetM, tetS, tetK, and tetX were found in the frequency of 7.7%, 6.0%, 4.8%, 4.8%, 3.6%, 3.6%, 3.6%, 1.2%, and 0.6%, respectively. Sulfonamide resistance genes sul1 and sul2 were observed in the frequency of 17.9% and 38.1%, respectively. The tetracycline resistance genes tetX was first found in Myroides sp. This investigation demonstrated that food contact surfaces in a meat processing plant may be sources of contamination of aerobic bacteria carrying tetracycline and sulfonamide antibiotic resistance genes. PMID:27100915

  17. Cloud Based Processing of Large Photometric Surveys

    NASA Astrophysics Data System (ADS)

    Farivar, R.; Brunner, R. J.; Santucci, R.; Campbell, R.

    2013-10-01

    Astronomy, as is the case with many scientific domains, has entered the realm of being a data rich science. Nowhere is this reflected more clearly than in the growth of large area surveys, such as the recently completed Sloan Digital Sky Survey (SDSS) or the Dark Energy Survey, which will soon obtain PB of imaging data. The data processing on these large surveys is a major challenge. In this paper, we demonstrate a new approach to this common problem. We propose the use of cloud-based technologies (e.g., Hadoop MapReduce) to run a data analysis program (e.g., SExtractor) across a cluster. Using the intermediate key/value pair design of Hadoop, our framework matches objects across different SExtractor invocations to create a unified catalog from all SDSS processed data. We conclude by presenting our experimental results on a 432 core cluster and discuss the lessons we have learned in completing this challenge.

  18. Parallel-processing a large scientific problem

    SciTech Connect

    Hiromoto, R.

    1982-01-01

    The author discusses a parallel-processing experiment that uses a particle-in-cell (PIC) code to study the feasibility of doing large-scale scientific calculations on multiple-processor architectures. A multithread version of this Los Alamos PIC code was successfully implemented and timed on a Univac system 1100/80 computer. Use of a single copy of the instruction stream, and common memory to hold data, eliminated data transmission between processors. The multiple-processing algorithm exploits the Pic code's high degree of large, independent tasks, as well as the configuration of the Univac system 1100/80. Timing results for the multithread version of the PIC code using one, two, three, and four identical processors are given and are shown to have promising speedup times when compared to the overall run times measured for a single-thread version of the PIC code. 4 references.

  19. Parallel processing a large scientific problem

    SciTech Connect

    Hiromoto, R.

    1982-01-01

    A parallel-processing experiment is discussed that uses a particle-in-cell (PIC) code to study the feasibility of doing large-scale scientific calculations on multiple-processor architectures. A multithread version of this Los Alamos PIC code was successfully implemented and timed on a UNIVAC System 1100/80 computer. Use of a single copy of the instruction stream, and common memory to hold data, eliminated data transmission between processors. The multiple-processing algorithm exploits the PIC code's high degree of large, independent tasks, as well as the configuration of the UNIVAC System 1100/80. Timing results for the multithread version of the PIC code using one, two, three, and four identical processors are given and are shown to have promising speedup times when compared to the overall run times measured for a single-thread version of the PIC code.

  20. Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Meng, Qiu; Fu, Huihui; Gao, Haichun

    2016-01-01

    Inhibition of bacterial growth under aerobic conditions by elevated levels of cyclic adenosine 3′,5′-monophosphate (cAMP), first revealed more than 50 years ago, was attributed to accumulation of toxic methylglyoxal (MG). Here, we report a Crp-dependent mechanism rather than MG accumulation that accounts for the phenotype in Shewanella oneidensis, an emerging research model for the bacterial physiology. We show that a similar phenotype can be obtained by removing CpdA, a cAMP phosphodiesterase that appears more effective than its Escherichia coli counterpart. Although production of heme c and cytochromes c is correlated well with cAMP levels, neither is sufficient for the retarded growth. Quantities of overall cytochromes c increased substantially in the presence of elevated cAMP, a phenomenon resembling cells respiring on non-oxygen electron acceptors. In contrast, transcription of Crp-dependent genes encoding both cytochromes bd and cbb3 oxidases is substantially repressed under the same condition. Overall, our results suggest that cAMP of elevated levels drives cells into a low-energetic status, under which aerobic respiration is inhibited. PMID:27076065

  1. Large scale processes in the solar nebula.

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    Most proposed chondrule formation mechanisms involve processes occurring inside the solar nebula, so the large scale (roughly 1 to 10 AU) structure of the nebula is of general interest for any chrondrule-forming mechanism. Chondrules and Ca, Al-rich inclusions (CAIs) might also have been formed as a direct result of the large scale structure of the nebula, such as passage of material through high temperature regions. While recent nebula models do predict the existence of relatively hot regions, the maximum temperatures in the inner planet region may not be high enough to account for chondrule or CAI thermal processing, unless the disk mass is considerably greater than the minimum mass necessary to restore the planets to solar composition. Furthermore, it does not seem to be possible to achieve both rapid heating and rapid cooling of grain assemblages in such a large scale furnace. However, if the accretion flow onto the nebula surface is clumpy, as suggested by observations of variability in young stars, then clump-disk impacts might be energetic enough to launch shock waves which could propagate through the nebula to the midplane, thermally processing any grain aggregates they encounter, and leaving behind a trail of chondrules.

  2. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant.

    PubMed

    Liu, Dongming; Li, Mingxiao; Xi, Beidou; Zhao, Yue; Wei, Zimin; Song, Caihong; Zhu, Chaowei

    2015-11-01

    Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase. PMID:25989417

  3. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant

    PubMed Central

    Liu, Dongming; Li, Mingxiao; Xi, Beidou; Zhao, Yue; Wei, Zimin; Song, Caihong; Zhu, Chaowei

    2015-01-01

    Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase. PMID:25989417

  4. Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs.

    PubMed

    Šlouf, Václav; Fuciman, Marcel; Dulebo, Alexander; Kaftan, David; Koblížek, Michal; Frank, Harry A; Polívka, Tomáš

    2013-09-26

    Light-harvesting complexes ensure necessary flow of excitation energy into photosynthetic reaction centers. In the present work, transient absorption measurements were performed on LH1-RC complexes isolated from two aerobic anoxygenic phototrophs (AAPs), Roseobacter sp. COL2P containing the carotenoid spheroidenone, and Erythrobacter sp. NAP1 which contains the carotenoids zeaxanthin and bacteriorubixanthinal. We show that the spectroscopic data from the LH1-RC complex of Roseobacter sp. COL2P are very similar to those previously reported for Rhodobacter sphaeroides, including the transient absorption spectrum originating from the intramolecular charge-transfer (ICT) state of spheroidenone. Although the ICT state is also populated in LH1-RC complexes of Erythrobacter sp. NAP1, its appearance is probably related to the polarity of the bacteriorubixanthinal environment rather than to the specific configuration of the carotenoid, which we hypothesize is responsible for populating the ICT state of spheroidenone in LH1-RC of Roseobacter sp. COL2P. The population of the ICT state enables efficient S1/ICT-to-bacteriochlorophyll (BChl) energy transfer which would otherwise be largely inhibited for spheroidenone and bacteriorubixanthinal due to their low energy S1 states. In addition, the triplet states of these carotenoids appear well-tuned for efficient quenching of singlet oxygen or BChl-a triplets, which is of vital importance for oxygen-dependent organisms such as AAPs. PMID:23130956

  5. ANAEROBIC AND AEROBIC TREATMENT OF COMBINED POTATO PROCESSING AND MUNICIPAL WASTES

    EPA Science Inventory

    Demonstration and evaluation of the treatment of combined potato processing waste-water and domestic wastes using various combinations of anaerobic and aerated lagoons. Measured parameters included: BOD, COD, TSS, VSS, nitrogen, phosphorus, volatile acids, total coliform, fecal c...

  6. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate

    PubMed Central

    Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251

  7. Effects of oxidation reduction potential in the bypass micro-aerobic sludge zone on sludge reduction for a modified oxic-settling-anaerobic process.

    PubMed

    Li, Kexun; Wang, Yi; Zhang, Zhongpin; Liu, Dongfang

    2014-01-01

    Batch experiments were conducted to determine the effect of oxidation reduction potential (ORP) on sludge reduction in a bypass micro-aerobic sludge reduction system. The system was composed of a modified oxic-settling-anaerobic process with a sludge holding tank in the sludge recycle loop. The ORPs in the micro-aerobic tanks were set at approximately +350, -90, -150, -200 and -250 mV, by varying the length of aeration time for the tanks. The results show that lower ORP result in greater sludge volume reduction, and the sludge production was reduced by 60% at the lowest ORP. In addition, low ORP caused extracellular polymer substances dissociation and slightly reduced sludge activity. Comparing the sludge backflow characteristics of the micro-aerobic tank's ORP controlled at -250 mV with that of +350 mV, the average soluble chemical oxygen (SCOD), TN and TP increased by 7, 0.4 and 2 times, median particle diameter decreased by 8.5 μm and the specific oxygen uptake rate (SOUR) decreased by 0.0043 milligram O2 per gram suspended solids per minute. For the effluent, SCOD and TN and TP fluctuated around 30, 8.7 and 0.66 mg/L, respectively. Therefore, the effective assignment of ORP in the micro-aerobic tank can remarkably reduce sludge volume and does not affect final effluent quality. PMID:24845332

  8. Effect of sludge age on methanogenic and glycogen accumulating organisms in an aerobic granular sludge process fed with methanol and acetate.

    PubMed

    Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M

    2015-09-01

    The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251

  9. Composting of bio-waste, aerobic and anaerobic sludges--effect of feedstock on the process and quality of compost.

    PubMed

    Himanen, Marina; Hänninen, Kari

    2011-02-01

    In-vessel composting of three stocks with originally different degree of organic matter degradation was conducted for: (1) kitchen source-separated bio-waste (BW), (2) aerobic (AS) as well as (3) anaerobic sludges (AnS) from municipal wastewater treatment plant. Composting experiment lasted over a year. The highest activity of the process was in the BW compost. It was implied by the highest temperature, CO(2) release, ammonification and nitrification, intensive accumulation and removal of low-weight carboxylic acids (water- and NaOH-extractable). Between the sludges higher mineralization and CO2 release was in AnS, while ammonification and nitrification were higher in AS compost; no significant difference between sludge composts was noticed for dynamics of pH, conductivity, concentrations of LWCA, and some nutrient compounds and heavy metals. Nitrogen content of the final compost increased in BW, but decreased in AS and AnS. Phytotoxicity of Lepidium sativum was eliminated faster in sludge composts compared to BW compost. PMID:21095117

  10. Presence of Aerobic Microorganisms, Enterobacteriaceae and Salmonella in the Shell Egg Processing Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sanitation is vital to providing safe, healthy food to consumers. Understanding the degree to which microorganisms persist on specific equipment or locations contributes to developing effective sanitation programs. Certain microbial populations may be used to determine areas within a processing pl...

  11. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  12. Reduced large elastic artery stiffness with regular aerobic exercise in middle-aged and older adults: potential role of suppressed nuclear factor κ B signalling

    PubMed Central

    Jablonski, Kristen L.; Donato, Anthony J.; Fleenor, Bradley S.; Nowlan, Molly J.; Walker, Ashley E.; Kaplon, Rachelle E.; Ballak, Dov B.; Seals, Douglas R.

    2015-01-01

    Objective Aortic pulse-wave velocity (aPWV) increases with age and is a strong independent predictor of incident cardiovascular diseases (CVDs) in healthy middle-aged and older adults. aPWV is lower in middle-aged and older adults who perform regular aerobic exercise than in their sedentary peers. As exercise is associated with reduced systemic inflammation, we hypothesized that suppression of the pro-inflammatory transcription factor nuclear factor κ B (NFκB) may mediate this process. Methods aPWV was measured in young sedentary [n =10, blood pressure (BP) 108 ± 3/59 ± 2 mmHg; mean ± SEM], middle-aged and older sedentary (n =9, 124 ± 7/73 ± 5 mmHg) and middle-aged and older aerobic exercise-trained (n =12, 110 ± 4/67 ± 2 mmHg) healthy, nonhypertensive men and women. Results Baseline aPWV increased with age [626 ± 14 (young sedentary) vs. 859 ± 49 (middle-aged and older sedentary) cm/s, P <0.001] but was 20% lower in middle-aged and older trained (686 ± 30 cm/s) than in middle-aged and older sedentary (P <0.005). Short-term (4 days × 2500–4500 mg) treatment with the NFκB inhibitor salsalate (randomized, placebo-controlled cross-over design) reduced aPWV (to 783 ± 44 cm/s, P <0.05) without changing BP (P =0.40) or heart rate (P =0.90) in middle-aged and older sedentary, but had no effect in young sedentary (623 ± 19) or middle-aged and older trained (699 ± 30). Following salsalate treatment, aPWV no longer was significantly different in middle-aged and older sedentary vs. middle-aged and older trained (P =0.29). The reduction in aPWV with salsalate administration was inversely related to baseline (placebo) aPWV (r = −0.60, P <0.001). Conclusion These results support the hypothesis that suppressed NFκB signalling may partially mediate the lower aortic stiffness in middle-aged and older adults who regularly perform aerobic exercise. Because aPWV predicts incident cardiovascular events in this population, this suggests that tonic suppression of

  13. Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs.

    PubMed

    Daelman, Matthijs R J; Van Eynde, Tamara; van Loosdrecht, Mark C M; Volcke, Eveline I P

    2014-12-01

    Methane is a potent greenhouse gas and its emission from municipal wastewater treatment plants (WWTPs) should be prevented. One way to do this is to promote the biological conversion of dissolved methane over stripping in aeration tanks. In this study, the well-established Activated Sludge Model n°1 (ASM1) and Benchmark Simulation Model n°1 (BSM1) were extended to study the influence of process design and operating parameters on biological methane oxidation. The aeration function used in BSM 1 was upgraded to more accurately describe gas-liquid transfer of oxygen and methane in aeration tanks equipped with subsurface aeration. Dissolved methane could be effectively removed in an aeration tank at an aeration rate that is in agreement with optimal effluent quality. Subsurface bubble aeration proved to be better than surface aeration, while a CSTR configuration was superior to plug flow conditions in avoiding methane emissions. The conversion of methane in the activated sludge tank benefits from higher methane concentrations in the WWTP's influent. Finally, if an activated sludge tank is aerated with methane containing off-gas, a limited amount of methane is absorbed and converted in the mixed liquor. This knowledge helps to stimulate the methane oxidizing capacity of activated sludge in order to abate methane emissions from wastewater treatment to the atmosphere. PMID:25225767

  14. Potential of nitrous oxide recovery from an aerobic/oxic/anoxic SBR process.

    PubMed

    Zhao, Jianqiang; Huang, Nan; Hu, Bo; Jia, Luwei; Ge, Guanghuan

    2016-01-01

    A single sequencing batch reactor (SBR) with an operating mode of anaerobic/oxic/anoxic (A/O/A) was developed to determine a simpler process to recover nitrous oxide (N2O) from synthetic wastewater containing ammonia and glucose. This SBR system was initiated in A/O mode to implement nitritation (ammonia to nitrite) and then switched to A/O/A mode. Using measurements of the dissolved N2O concentration and release rate, the total production and conversion rate of N2O were calculated to reveal the potential of producing and recovering N2O in the extended anoxic phase. Results showed that the A/O/A SBR could convert the majority of the nitrite available in the system into N2O by heterotrophic denitritation over longer anoxic periods, and a conversion rate of 77% could be achieved. As a consequence, the A/O/A SBR presents potential ability to produce and recover N2O from wastewater containing ammonia and organic carbon. PMID:26942527

  15. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study. PMID:23109595

  16. Aerobic Anoxygenic Phototrophic Bacteria

    PubMed Central

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes. PMID:9729607

  17. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure▿

    PubMed Central

    Bassin, J. P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; van Loosdrecht, M. C. M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtained from genomic DNA and from rRNA after reverse transcription were compared to determine the presence of bacteria as well as the metabolically active fraction of bacteria. Fluorescence in situ hybridization (FISH) was used to validate the PCR-based results and to quantify the dominant bacterial populations. The results demonstrated that ammonium removal efficiency was not affected by salt concentrations up to 33 g/liter NaCl. Conversely, a high accumulation of nitrite was observed above 22 g/liter NaCl, which coincided with the disappearance of Nitrospira sp. Phosphorus removal was severely affected by gradual salt increase. No P release or uptake was observed at steady-state operation at 33 g/liter NaCl, exactly when the polyphosphate-accumulating organisms (PAOs), “Candidatus Accumulibacter phosphatis” bacteria, were no longer detected by PCR-DGGE or FISH. Batch experiments confirmed that P removal still could occur at 30 g/liter NaCl, but the long exposure of the biomass to this salinity level was detrimental for PAOs, which were outcompeted by glycogen-accumulating organisms (GAOs) in the bioreactor. GAOs became the dominant microorganisms at increasing salt concentrations, especially at 33 g/liter NaCl. In the comparative analysis of the diversity (DNA-derived pattern) and the activity (cDNA-derived pattern) of the microbial population, the highly metabolically active microorganisms were observed to be those related to ammonia (Nitrosomonas sp.) and phosphate removal (“Candidatus Accumulibacter”). PMID:21926194

  18. The effectiveness of flocculants on inorganic and metallic species removal during aerobic digestion of wastewater from poultry processing plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Large amount of water is used for processing of our food supplies, especially in meat processing plants. The resulting amount of wastewater cannot be discarded freely back into natural settings due to regulatory mandates, whether the sinks would be rivers, ponds, or other natural systems. These wa...

  19. Maximal Aerobic Capacity and the Oxygen Uptake Efficiency Slope as Predictors of Large Artery Stiffness in Apparently Healthy Subjects

    PubMed Central

    Arena, Ross; Arrowood, James A.; Fei, Ding-Yu; Helm, Shirley; Kraft, Kenneth A.

    2009-01-01

    PURPOSE Large artery stiffness is now recognized as an important marker of cardiovascular health. The purpose of the present investigation was to assess the relationship between large artery stiffness and the oxygen uptake efficiency slope (OUES) and to determine if the OUES is a viable surrogate for maximal oxygen uptake (VO2max) in a multivariate regression analysis developed to estimate large artery stiffness. METHODS Two hundred seventy-five apparently healthy subjects (149 males; age=48.1±15.8 yrs/126 females; age=47.0±15.3 yrs) participated in this study. Subjects underwent maximal cardiopulmonary exercise testing to determine VO2max and the OUES. The OUES was calculated using 50% and 100% of the exercise data. Measurement of aortic wave velocity (AWV in meters/second) was obtained via magnetic resonance imaging. RESULTS Pearson product moment correlation analysis revealed VO2max (r = -0.49, P<.001), the OUES calculation using 50% of exercise data (r = -0.25, P<.001) and the OUES calculation using 100% of the exercise data (r = -0.34, P<.001) were all significantly related to AWV. However, only VO2max was retained in a linear regression (also including age and resting systolic blood pressure) used to predict AWV. DISCUSSION Previous research has demonstrated a relationship between VO2max and AWV, which was also found in the present study. While the OUES was significantly correlated with AWV, it does not appear to be an adequate replacement for VO2max when attempting to gauge large artery compliance. PMID:19451829

  20. Large scale sonochemical processing: aspiration and actuality.

    PubMed

    Mason, T J

    2000-10-01

    It has been recognised for many years that power ultrasound has great potential in a wide variety of processes in the chemical and allied industries. Some of these processes have been known for many years and continue to flourish as major commercial applications, e.g. plastic welding and cleaning. Others, like ultrasonic drilling, while showing great potential have not been widely exploited to date. The potential for the industrial use of power ultrasound is enormous, and yet industry seems somewhat reluctant to adopt it. In this article the existing uses of power ultrasound in processing are reviewed and the potentials are explored. PMID:11062866

  1. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  2. Process for producing large grain cadmium telluride

    DOEpatents

    Hasoon, F.S.; Nelson, A.J.

    1996-01-16

    A process is described for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 {micro}m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10{sup {minus}6} torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 {micro}m.

  3. Process for producing large grain cadmium telluride

    DOEpatents

    Hasoon, Falah S.; Nelson, Art J.

    1996-01-01

    A process for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 .mu.m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10.sup.-6 torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 .mu.m.

  4. Ecophysiology of Defluviicoccus-related tetrad-forming organisms in an anaerobic-aerobic activated sludge process.

    PubMed

    Wong, Man-Tak; Liu, Wen-Tso

    2007-06-01

    A group of uncultured tetrad-forming organisms (TFOs) was enriched in an acetate-fed anaerobic-aerobic sequencing membrane bioreactor showing deteriorated enhanced biological phosphorus removal capacity. Based on 16S rRNA gene clone library and fluorescence in situ hybridization (FISH) analyses, these TFOs were identified as novel members of the Defluviicoccus cluster in the Alphaproteobacteria, accounting for 90 +/- 5% of the EUBmix FISH-detectable bacterial cell area in the reactor biomass. Microautoradiography in combination with FISH and polyhydroxyalkanoate (PHA) staining revealed that these Defluviicoccus-related TFOs could take up and transform acetate, lactate, propionate and pyruvate, but not aspartic acid and glucose, into PHA under anaerobic conditions. In contrast, under continuous anaerobic-aerobic cultivation, Defluviicoccus vanus, the only cultured strain from the cluster, was able to take up glucose with concurrent glycogen consumption and PHA production under anaerobic conditions. Under subsequent aerobic conditions, the accumulated PHA was utilized and the biomass glycogen levels were restored. These findings not only re-confirmed these Defluviicoccus-related TFOs as glycogen-accumulating organisms, but also revealed unexpected levels of physiological, phylogenetic and morphological diversity among members of the Defluviicoccus cluster. PMID:17504486

  5. Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation.

    PubMed

    Xue, Wenchao; Wu, Chunying; Xiao, Kang; Huang, Xia; Zhou, Haidong; Tsuno, Hiroshi; Tanaka, Hiroaki

    2010-12-01

    The occurrence and elimination of 19 micro-organic pollutants including endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in a full-scale anaerobic/anoxic/aerobic-membrane bioreactor process was investigated. The investigated process achieved over 70% removal of the target EDCs and 50%-100% removal of most of the PPCPs, with influent concentration ranging from ng/L to μg/L. Three PPCPs, carbamazepine, diclofenac and sulpiride were not well removed, with the removal efficiency below 20%. A rough mass balance suggests that the targets were eliminated through sludge-adsorption and/or biodegradation, the former of which was particularly significant for the removal of hydrophobic compounds. The two-phase fate model was employed to describe the kinetics of sludge-adsorption and biodegradation. It was found that the fast sludge adsorption (indicated by mass-transfer rates greater than 10 for most compounds) is responsible for the rapid decline of the aqueous concentration of the targets in the first compartment of the treatment process (i.e. in the anaerobic tank). In contrast, the slow biodegradation proved to be the rate-determining step for the entire degradation process, and the rates are generally positively related to the dissolved oxygen level. On the other hand, this study showed that the removal rates of most targets can reach a quasi-plateau in 5 h under aerobic conditions, indicating that hydraulic retention time of ca. 5 h in aerobic tanks should be sufficient for the elimination of most targets. PMID:20723962

  6. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process.

    PubMed

    Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun

    2016-03-01

    A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. PMID:26766160

  7. Data Processing: Large Data Processing Class Leads to Innovations

    ERIC Educational Resources Information Center

    Stair, Ralph M.; Render, Barry

    1977-01-01

    Experience with mass sections in the Introduction to Business Data Processing course at the University of New Orleans has been positive. The innovations described in this articles have not only helped to conserve scarce resources but have, in the author's opinion, provided the potential for a more effective and efficient course. (HD)

  8. Enhanced removal of contaminant using the biological film, anoxic-anaerobic-aerobic and electro-coagulation process applied to high-load sewage treatment.

    PubMed

    Wang, Wenlong; Chen, Shaohua; Bao, Keqian; Gao, Jingqing; Zhang, Ruiqin; Zhang, Zhenya; Sugiura, Norio

    2014-01-01

    In order to explore a new treatment process applying to decentralized domestic sewage treatment, and enhance removal of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD), a novel system integrating anoxic-anaerobic-aerobic (reversed A2O) and electro-coagulation (EC) process was studied, and complex biological media (CMB) was used as suspended carrier for biofilm development. In this work, TN, TP and COD removal performance were investigated with consideration of three major factors, hydraulic retention time (HRT), organic loading rate (OLR) and sludge recycle ratio (SRR). Results showed that (1) The optimum HRT was between 8 and 12 h. The removal efficiencies of TN, TP and COD were about 68%, 95% and 95%, respectively. (2) With the increase of OLR, the removal efficiency of TN increased slowly. But it increased first and then declined for COD and TP removal. Their maximum were attained when OLR was 1.8 g(COD)/(L d), and they were 96% and 93%, respectively. (3) The optimum SRR was 75%. The COD, TN and TP removal efficiencies were about 95%, 72% and 98%, respectively. In this system, the maximum TN and COD removal were achieved in anoxic tank, but it was achieved in aerobic tank for TP removal. The EC bed enhanced the effluent quality, especially the efficiency in advanced P removal. From these results, it was concluded that the new process could be a reliable option for providing excellent effluent quality. PMID:24645465

  9. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing

    PubMed Central

    Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun

    2015-01-01

    In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process. PMID:26461260

  10. Teaching Aerobic Fitness Concepts.

    ERIC Educational Resources Information Center

    Sander, Allan N.; Ratliffe, Tom

    2002-01-01

    Discusses how to teach aerobic fitness concepts to elementary students. Some of the K-2 activities include location, size, and purpose of the heart and lungs; the exercise pulse; respiration rate; and activities to measure aerobic endurance. Some of the 3-6 activities include: definition of aerobic endurance; heart disease risk factors;…

  11. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  12. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    PubMed

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. PMID:26119011

  13. New Development of VPI Process for Large Superconducting Coils

    NASA Astrophysics Data System (ADS)

    Pan, Wanjiang; Wu, Songtao; Cui, Yimin

    2003-08-01

    High vacuum is required for Vacuum Pressure Impregnation (VPI) process of large coils used in cryogenic. The defects such as dry spots and over rich resins should be minimized in large superconducting coils used. Both sealing problems associated with the mold and over rich resin problems are eliminated by using vacuum bag mold method with which we can simplify the design of vacuum mold.

  14. Characterization of organic particulates present in milk factory process waters used for reuse along with aerobically digested effluent wastewater.

    PubMed

    Verheyen, Vincent; Cruickshank, Alicia; Wild, Karl; Heaven, Michael W; McGee, Rachel; Watkins, Mark; Nash, David

    2011-01-01

    Wastewater from a dairy processor is being reused and recycled both within the plant and for irrigation. Flash pyrolysis GC-MS was used to examine nitrogen and phenol containing compounds (M.W.=35 to 450 g/mol) in the particulate fraction of the milk condensate, combined clean wastewater and aerobic bioreactor effluent. For comparison, the particulates were also prepared for standard GC-MS analyses using conventional solvent extraction methods. Compounds detected by pyrolysis GC-MS were found mostly in the bioreactor with the amino acid arginine (220 mg/kg) and the amino acid derivative 1-methyl-5-oxo-L-proline methyl ester (130 mg/kg) found at the highest concentrations. In comparison, sterols detected in the effluent were found at higher concentrations when using solvent extraction indicating some degradation with pyrolysis GC-MS. However, with few exceptions, particulates were generally found not to act as passive collectors capable of concentrating less water soluble chemicals. PMID:20826082

  15. [Process Optimization of Aerobic Granular Sludge Continuous-Flow System for the Treatment of Low COD/N Ratio Sewage].

    PubMed

    Lu, Lei; Xin, Xin; Lu, Hang; Zhu, Liao-dong; Xie, Si-jian; Wu, Yong

    2015-10-01

    The mature aerobic granular sludge (AGS) was inoculated in a continuous-flow joint constructor reactor to treat low chemical oxygen demand/nitrogen (COD/N) ratio sewage. The effects of aeration intensity and hydraulic retention time (HRT) on the denitrification and phosphorus removal efficiencies and the granular sludge stabilization were investigated. When the aeration intensity was 300 mL x min(-1) (superficial air upflow velocity of 1.2 cm x s(-1)) and the HRT was 7.5 h, the average removal efficiencies of COD, TN and TP were 76.34%, 51.23% and 53.70%, respectively. The mixed liquor suspended solids (MLSS) was only about 2 000 mg x L(-1), the sludge volume index ( SVI) was below 50 mL x g(-1), and the AGS exhibited complete forms and good settling performances. Additionally, the low COD/N ratios sewage could promote the production of extracellular polymeric substances (EPS) of AGS, and the PN proteins in EPS played a pivotal role in the maintenance of AGS stabilization. PMID:26841612

  16. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  17. Selective simplification and reinforcement of microbial community in autothermal thermophilic aerobic digestion to enhancing stabilization process of sewage sludge by conditioning with ferric nitrate.

    PubMed

    Jin, Ningben; Shou, Zongqi; Yuan, Haiping; Lou, Ziyang; Zhu, Nanwen

    2016-03-01

    The effect of ferric nitrate on microbial community and enhancement of stabilization process for sewage sludge was investigated in autothermal thermophilic aerobic digestion. The disinhibition of volatile fatty acids (VFA) was obtained with alteration of individual VFA concentration order. Bacterial taxonomic identification by 454 high-throughput pyrosequencing found the dominant phylum Proteobacteria in non-dosing group was converted to phylum Firmicutes in dosing group after ferric nitrate added and simplification of bacteria phylotypes was achieved. The preponderant Tepidiphilus sp. vanished, and Symbiobacterium sp. and Tepidimicrobium sp. were the most advantageous phylotypes with conditioning of ferric nitrate. Consequently, biodegradable substances in dissolved organic matters increased, which contributed to the favorable environment for microbial metabolism and resulted in acceleration of sludge stabilization. Ultimately, higher stabilization level was achieved as ratio of soluble chemical oxygen demand to total chemical oxygen demand (TCOD) decreased while TCOD reduced as well in dosing group comparing to non-dosing group. PMID:26773954

  18. Process for fabrication of large titanium diboride ceramic bodies

    DOEpatents

    Moorhead, Arthur J.; Bomar, E. S.; Becher, Paul F.

    1989-01-01

    A process for manufacturing large, fully dense, high purity TiB.sub.2 articles by pressing powders with a sintering aid at relatively low temperatures to reduce grain growth. The process requires stringent temperature and pressure applications in the hot-pressing step to ensure maximum removal of sintering aid and to avoid damage to the fabricated article or the die.

  19. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1978-01-01

    An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.

  20. Data Pre-Processing Method to Remove Interference of Gas Bubbles and Cell Clusters During Anaerobic and Aerobic Yeast Fermentations in a Stirred Tank Bioreactor

    NASA Astrophysics Data System (ADS)

    Princz, S.; Wenzel, U.; Miller, R.; Hessling, M.

    2014-11-01

    One aerobic and four anaerobic batch fermentations of the yeast Saccharomyces cerevisiae were conducted in a stirred bioreactor and monitored inline by NIR spectroscopy and a transflectance dip probe. From the acquired NIR spectra, chemometric partial least squares regression (PLSR) models for predicting biomass, glucose and ethanol were constructed. The spectra were directly measured in the fermentation broth and successfully inspected for adulteration using our novel data pre-processing method. These adulterations manifested as strong fluctuations in the shape and offset of the absorption spectra. They resulted from cells, cell clusters, or gas bubbles intercepting the optical path of the dip probe. In the proposed data pre-processing method, adulterated signals are removed by passing the time-scanned non-averaged spectra through two filter algorithms with a 5% quantile cutoff. The filtered spectra containing meaningful data are then averaged. A second step checks whether the whole time scan is analyzable. If true, the average is calculated and used to prepare the PLSR models. This new method distinctly improved the prediction results. To dissociate possible correlations between analyte concentrations, such as glucose and ethanol, the feeding analytes were alternately supplied at different concentrations (spiking) at the end of the four anaerobic fermentations. This procedure yielded low-error (anaerobic) PLSR models for predicting analyte concentrations of 0.31 g/l for biomass, 3.41 g/l for glucose, and 2.17 g/l for ethanol. The maximum concentrations were 14 g/l biomass, 167 g/l glucose, and 80 g/l ethanol. Data from the aerobic fermentation, carried out under high agitation and high aeration, were incorporated to realize combined PLSR models, which have not been previously reported to our knowledge.

  1. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures.

    PubMed

    Winkler, M-K H; Kleerebezem, R; van Loosdrecht, M C M

    2012-01-01

    Anaerobic ammonium oxidation, nitrification and removal of COD was studied at ambient temperature (18 °C ± 3) in an anoxic/aerobic granular sludge reactor during 390 days. The reactor was operated in a sequencing fed batch mode and was fed with acetate and ammonium containing medium with a COD/N ratio of 0.5 [g COD/gN]. During influent addition, the medium was mixed with recycled effluent which contained nitrate in order to allow acetate oxidation and nitrate reduction by anammox bacteria. In the remainder of the operational cycle the reactor was aerated and controlled at a dissolved oxygen concentration of 1.5 mg O(2)/l in order to establish simultaneous nitritation and Anammox. Fluorescent in-situ hybridization (FISH) revealed that the dominant Anammox bacterial population shifted toward Candidatus "Brocadia fulgida" which is known to be capable of organotrophic nitrate reduction. The reactor achieved stable volumetric removal rates of 900 [g N(2)-N/m(3)/day] and 600 [g COD/m(3)/day]. During the total experimental period Anammox bacteria remained dominant and the sludge production was 5 fold lower than what was expected by heterotrophic growth suggesting that consumed acetate was not used by heterotrophs. These observations show that Anammox bacteria can effectively compete for COD at ambient temperatures and can remove effectively nitrate with a limited amount of acetate. This study indicates a potential successful route toward application of Anammox in granular sludge reactors on municipal wastewater with a limited amount of COD. PMID:22094002

  2. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light.

    PubMed

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-14

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%. PMID:27357748

  3. Incremental terrain processing for large digital elevation models

    NASA Astrophysics Data System (ADS)

    Ye, Z.

    2012-12-01

    Incremental terrain processing for large digital elevation models Zichuan Ye, Dean Djokic, Lori Armstrong Esri, 380 New York Street, Redlands, CA 92373, USA (E-mail: zye@esri.com, ddjokic@esri.com , larmstrong@esri.com) Efficient analyses of large digital elevation models (DEM) require generation of additional DEM artifacts such as flow direction, flow accumulation and other DEM derivatives. When the DEMs to analyze have a large number of grid cells (usually > 1,000,000,000) the generation of these DEM derivatives is either impractical (it takes too long) or impossible (software is incapable of processing such a large number of cells). Different strategies and algorithms can be put in place to alleviate this situation. This paper describes an approach where the overall DEM is partitioned in smaller processing units that can be efficiently processed. The processed DEM derivatives for each partition can then be either mosaicked back into a single large entity or managed on partition level. For dendritic terrain morphologies, the way in which partitions are to be derived and the order in which they are to be processed depend on the river and catchment patterns. These patterns are not available until flow pattern of the whole region is created, which in turn cannot be established upfront due to the size issues. This paper describes a procedure that solves this problem: (1) Resample the original large DEM grid so that the total number of cells is reduced to a level for which the drainage pattern can be established. (2) Run standard terrain preprocessing operations on the resampled DEM to generate the river and catchment system. (3) Define the processing units and their processing order based on the river and catchment system created in step (2). (4) Based on the processing order, apply the analysis, i.e., flow accumulation operation to each of the processing units, at the full resolution DEM. (5) As each processing unit is processed based on the processing order defined

  4. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light

    NASA Astrophysics Data System (ADS)

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-01

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%.As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%. Electronic supplementary information (ESI) available: Experimental procedure, XRD patterns, TEM and HRTEM images, energy-dispersive X-ray spectra, UV-vis spectra, X-ray photoelectron spectroscopy (XPS), and EDS. See DOI: 10.1039/c6nr02949c

  5. Laser processing system development of large area and high precision

    NASA Astrophysics Data System (ADS)

    Park, Hyeongchan; Ryu, Kwanghyun; Hwang, Taesang

    2013-03-01

    As industry of PCB (Printed Circuit Board) and display growing, this industry requires an increasingly high-precision quality so current cutting process in industry is preferred laser machining than mechanical machining. Now, laser machining is used almost "step and repeat" method in large area, but this method has a problem such as cutting quality in the continuity of edge parts, cutting speed and low productivity. To solve these problems in large area, on-the-fly (stagescanner synchronized system) is gradually increasing. On-the-fly technology is able to process large area with high speed because of stage-scanner synchronized moving. We designed laser-based high precision system with on-the-fly. In this system, we used UV nano-second pulse laser, power controller and scanner with telecentric f-theta lens. The power controller is consisted of HWP(Half Wave Plate), thin film plate polarizer, photo diode, micro step motor and control board. Laser power is possible to monitor real-time and adjust precision power by using power controller. Using this machine, we tested cutting of large area coverlay and sheet type large area PCB by applying on-the-fly. As a result, our developed machine is possible to process large area without the problem of the continuity of edge parts and by high cutting speed than competitor about coverlay.

  6. Gaussian predictive process models for large spatial data sets

    PubMed Central

    Banerjee, Sudipto; Gelfand, Alan E.; Finley, Andrew O.; Sang, Huiyan

    2009-01-01

    Summary With scientific data available at geocoded locations, investigators are increasingly turning to spatial process models for carrying out statistical inference. Over the last decade, hierarchical models implemented through Markov chain Monte Carlo methods have become especially popular for spatial modelling, given their flexibility and power to fit models that would be infeasible with classical methods as well as their avoidance of possibly inappropriate asymptotics. However, fitting hierarchical spatial models often involves expensive matrix decompositions whose computational complexity increases in cubic order with the number of spatial locations, rendering such models infeasible for large spatial data sets. This computational burden is exacerbated in multivariate settings with several spatially dependent response variables. It is also aggravated when data are collected at frequent time points and spatiotemporal process models are used. With regard to this challenge, our contribution is to work with what we call predictive process models for spatial and spatiotemporal data. Every spatial (or spatiotemporal) process induces a predictive process model (in fact, arbitrarily many of them). The latter models project process realizations of the former to a lower dimensional subspace, thereby reducing the computational burden. Hence, we achieve the flexibility to accommodate non-stationary, non-Gaussian, possibly multivariate, possibly spatiotemporal processes in the context of large data sets. We discuss attractive theoretical properties of these predictive processes. We also provide a computational template encompassing these diverse settings. Finally, we illustrate the approach with simulated and real data sets. PMID:19750209

  7. Characterization of aerobic ethanol productions in a computerized auxostat

    SciTech Connect

    Fraleigh, S.P.

    1989-01-01

    For many valuable bioproducts high productivity is associated with rapid growth. However, most continuous microbial cultures become unstable when the dilution rate is fixed near the value for maximum growth rate. The auxostat culture technique employs feedback control of a nutrient or metabolite to stabilize the biomass at its maximum potential growth rate. An auxostat device is therefore ideal for study of bioprocesses involving the overproduction of primary metabolites such as ethanol. Oxidoreductive transformations involving ethanol are utilized by Saccharomyces yeasts when normal respiration cannot satisfy energy needs. When rapid growth or other stress creates oxidoreductive conditions in aerobic Saccharomyces cultures, very high specific ethanol formation rates are established and biomass yield drops to levels more typical of anaerobic fermentation. Although the physiology is favorable, the potential for large-scale aerobic ethanol processes to compete with traditional anaerobic fermentations has not previously been assessed. In this study, a fully computerized auxostat device was constructed and used to characterize the specific and volumetric aerobic ethanol productivity of the yeast Saccharomyces cerevisiae. To divert substrate away from biomass and into product formation, aerobic cultures were stressed with variations of ionic balance (via extreme K{sup +} and H{sup +} setpoints) in the auxostat device. During growth with limiting K{sup +} concentrations, the goal of very low biomass yield was attained but the rate of ethanol production was poor. However, with excess K{sup +} the volumetric productivity reached 6.1 g/I,-h, a value that is comparable to optimized, continuous anaerobic cultures.

  8. Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment.

    PubMed

    Yang, Lihua; Cheng, Qiao; Tam, Nora Fy; Lin, Li; Su, Weiqi; Luan, Tiangang

    2016-04-19

    The contributions of abiotic and biotic processes in an estuarine aquatic environment to the removal of four phenolic endocrine-disrupting chemicals (EDCs) were evaluated through simulated batch reactors containing water-only or water-sediment collected from an estuary in South China. More than 90% of the free forms of all four spiked EDCs were removed from these reactors at the end of 28 days under aerobic conditions, with the half-life of 17α-ethynylestradiol (EE2) longer than those of propylparaben (PP), nonylphenol (NP) and 17β-estradiol (E2). The interaction with dissolved oxygen contributed to NP removal and was enhanced by aeration. The PP and E2 removal was positively influenced by adsorption on suspended particles initially, whereas abiotic transformation by estuarine-dissolved matter contributed to their complete removal. Biotic processes, including degradation by active aquatic microorganisms, had significant effects on the removal of EE2. Sedimentary inorganic and organic matter posed a positive effect only when EE2 biodegradation was inhibited. Estrone (E1), the oxidizing product of E2, was detected, proving that E2 was removed by the naturally occurring oxidizers in the estuarine water matrixes. These results revealed that the estuarine aquatic environment was effective in removing free EDCs, and the contributions of abiotic and biotic processes to their removal were compound specific. PMID:26984110

  9. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  10. The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste

    NASA Astrophysics Data System (ADS)

    Smet, Erik; Van Langenhove, Herman; De Bo, Inge

    Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of

  11. Improving the performance of predictive process modeling for large datasets

    PubMed Central

    Finley, Andrew O.; Sang, Huiyan; Banerjee, Sudipto; Gelfand, Alan E.

    2009-01-01

    Advances in Geographical Information Systems (GIS) and Global Positioning Systems (GPS) enable accurate geocoding of locations where scientific data are collected. This has encouraged collection of large spatial datasets in many fields and has generated considerable interest in statistical modeling for location-referenced spatial data. The setting where the number of locations yielding observations is too large to fit the desired hierarchical spatial random effects models using Markov chain Monte Carlo methods is considered. This problem is exacerbated in spatial-temporal and multivariate settings where many observations occur at each location. The recently proposed predictive process, motivated by kriging ideas, aims to maintain the richness of desired hierarchical spatial modeling specifications in the presence of large datasets. A shortcoming of the original formulation of the predictive process is that it induces a positive bias in the non-spatial error term of the models. A modified predictive process is proposed to address this problem. The predictive process approach is knot-based leading to questions regarding knot design. An algorithm is designed to achieve approximately optimal spatial placement of knots. Detailed illustrations of the modified predictive process using multivariate spatial regression with both a simulated and a real dataset are offered. PMID:20016667

  12. Large Composite Structures Processing Technologies for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Vickers, J. H.; McMahon, W. M.; Hulcher, A. B.; Johnston, N. J.; Cano, R. J.; Belvin, H. L.; McIver, K.; Franklin, W.; Sidwell, D.

    2001-01-01

    Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.

  13. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. PMID:21051843

  14. Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: influence of temperature and pH on the progress and efficiency of the process.

    PubMed

    Cibis, Edmund; Ryznar-Luty, Agnieszka; Krzywonos, Małgorzata; Lutosławski, Krzysztof; Miśkiewicz, Tadeusz

    2011-07-01

    The key issue in achieving a high extent of biodegradation of beet molasses vinasse is to establish the conditions for the assimilation of betaine, which is the main pollutant in this high-strength industrial effluent. In the present study, aerobic batch biodegradation was conducted over the temperature range of 27-63°C (step 9°C), at a pH of 6.5 and 8.0, using a mixed culture of bacteria of the genus Bacillus. Betaine was assimilated at 27-54°C and the pH of 8.0, as well as at 27-45°C and the pH of 6.5. The processes where betaine was assimilated produced a high BOD(5) removal, which exceeded 99.40% over the temperature range of 27-45°C at the pH of 8.0, as well as at 27°C and the pH of 6.5. Maximal COD removal (88.73%) was attained at 36°C and the pH of 6.5. The results indicate that the process can be applied on an industrial scale as the first step in the treatment of beet molasses vinasse. PMID:21367516

  15. Effect of process temperature, pH and suspended solids content upon pasteurization of a model agricultural waste during thermophilic aerobic digestion.

    PubMed

    Ugwuanyi, J O; Harvey, L M; McNeil, B

    1999-09-01

    Thermophilic aerobic digestion(TAD), or liquid composting, is a versatile new process for the treatment and stabilization of high strength wastes of liquid or, perhaps more importantly, slurry consistency. The pattern of inactivation of various pathogenic and indicator organisms was studied using batch digestions under conditions that may be expected to be found in full-scale TAD processes. Rapid inactivation of test populations occurred within the first 10 min from the start of digestion. The inactivation rate was slightly lower when digestions were conducted below 60 degrees C. In some instances, a 'tail' was apparent, possibly indicating the survival of relatively resistant sub-populations particularly in the case of Serratia marcescens and Enterococcus faecalis, or of clumping or attachment of cells to particulate materials. The effect of pH on the inactivation of the test populations depended on the temperature of digestion, but varied with the test population. At 55 degrees C Escherichia coli was more sensitive to temperature effects at pH 7 than at pH 8, but was more sensitive at pH 8, 60 degrees C. The reverse was the case at 60 degrees C for Ent. faecalis. An increase in the solid content of the digesting waste caused a progressive increase in the protection of test organisms from thermal inactivation. Challenging a TAD process with test strains allows (via estimation of D-values) a quantification of the cidal effects of such processes, with a view to manipulating process variables to enhance such effects. PMID:10540241

  16. geoknife: Reproducible web-processing of large gridded datasets

    USGS Publications Warehouse

    Read, Jordan S.; Walker, Jordan I.; Appling, Alison P.; Blodgett, David L.; Read, Emily Kara; Winslow, Luke A.

    2016-01-01

    Geoprocessing of large gridded data according to overlap with irregular landscape features is common to many large-scale ecological analyses. The geoknife R package was created to facilitate reproducible analyses of gridded datasets found on the U.S. Geological Survey Geo Data Portal web application or elsewhere, using a web-enabled workflow that eliminates the need to download and store large datasets that are reliably hosted on the Internet. The package provides access to several data subset and summarization algorithms that are available on remote web processing servers. Outputs from geoknife include spatial and temporal data subsets, spatially-averaged time series values filtered by user-specified areas of interest, and categorical coverage fractions for various land-use types.

  17. High-Throughput Dry Processes for Large-Area Devices

    SciTech Connect

    BUSS,RICHARD J.; HEBNER,GREGORY A.; RUBY,DOUGLAS S.; YANG,PIN

    1999-11-01

    In October 1996, an interdisciplinary team began a three-year LDRD project to study the plasma processes of reactive ion etching and plasma-enhanced chemical vapor deposition on large-area silicon devices. The goal was to develop numerical models that could be used in a variety of applications for surface cleaning, selective etching, and thin-film deposition. Silicon solar cells were chosen as the experimental vehicle for this project because an innovative device design was identified that would benefit from immediate performance improvement using a combination of plasma etching and deposition processes. This report presents a summary of the technical accomplishments and conclusions of the team.

  18. Distributed Processing of Projections of Large Datasets: A Preliminary Study

    USGS Publications Warehouse

    Maddox, Brian G.

    2004-01-01

    Modern information needs have resulted in very large amounts of data being used in geographic information systems. Problems arise when trying to project these data in a reasonable amount of time and accuracy, however. Current single-threaded methods can suffer from two problems: fast projection with poor accuracy, or accurate projection with long processing time. A possible solution may be to combine accurate interpolation methods and distributed processing algorithms to quickly and accurately convert digital geospatial data between coordinate systems. Modern technology has made it possible to construct systems, such as Beowulf clusters, for a low cost and provide access to supercomputer-class technology. Combining these techniques may result in the ability to use large amounts of geographic data in time-critical situations.

  19. [Research advances in denitrogenation characteristics of aerobic denitrifiers].

    PubMed

    Liang, Shu-Cheng; Zhao, Min; Lu, Lei; Zhao, Li-Yan

    2010-06-01

    The discovery of aerobic denitrifiers is the enrichment and breakthrough of traditional denitrification theory. Owing to their unique superiority in denitrogenation, aerobic denitrifiers have become a hotspot in the study of bio-denitrogenation of waste water. Under aerobic conditions, the aerobic denitrifiers can utilize organic carbon sources for their growth, and produce N2 from nitrate and nitrite. Most of the denitrifiers can also proceed with heterotrophic nitrification simultaneously, transforming NH4(+)-N to gaseous nitrogen. In this paper, the denitrogenation characteristics and action mechanisms of some isolated aerobic denitrifiers were discussed from the aspects of electron theory and denitrifying enzyme system. The effects of the environmental factors DO, carbon sources, and C/N on the denitrogenation process of aerobic denitrifiers were analyzed, and the screening methods as well as the present and potential applications of aerobic denitrifiers in wastewater treatment were described and discussed. PMID:20873638

  20. Exposing earth surface process model simulations to a large audience

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kettner, A. J.; Borkowski, L.; Russell, E. L.; Peddicord, H.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) represents a diverse group of >1300 scientists who develop and apply numerical models to better understand the Earth's surface. CSDMS has a mandate to make the public more aware of model capabilities and therefore started sharing state-of-the-art surface process modeling results with large audiences. One platform to reach audiences outside the science community is through museum displays on 'Science on a Sphere' (SOS). Developed by NOAA, SOS is a giant globe, linked with computers and multiple projectors and can display data and animations on a sphere. CSDMS has developed and contributed model simulation datasets for the SOS system since 2014, including hydrological processes, coastal processes, and human interactions with the environment. Model simulations of a hydrological and sediment transport model (WBM-SED) illustrate global river discharge patterns. WAVEWATCH III simulations have been specifically processed to show the impacts of hurricanes on ocean waves, with focus on hurricane Katrina and super storm Sandy. A large world dataset of dams built over the last two centuries gives an impression of the profound influence of humans on water management. Given the exposure of SOS, CSDMS aims to contribute at least 2 model datasets a year, and will soon provide displays of global river sediment fluxes and changes of the sea ice free season along the Arctic coast. Over 100 facilities worldwide show these numerical model displays to an estimated 33 million people every year. Datasets storyboards, and teacher follow-up materials associated with the simulations, are developed to address common core science K-12 standards. CSDMS dataset documentation aims to make people aware of the fact that they look at numerical model results, that underlying models have inherent assumptions and simplifications, and that limitations are known. CSDMS contributions aim to familiarize large audiences with the use of numerical

  1. Designing large-scale conservation corridors for pattern and process.

    PubMed

    Rouget, Mathieu; Cowling, Richard M; Lombard, Amanda T; Knight, Andrew T; Kerley, Graham I H

    2006-04-01

    A major challenge for conservation assessments is to identify priority areas that incorporate biological patterns and processes. Because large-scale processes are mostly oriented along environmental gradients, we propose to accommodate them by designing regional-scale corridors to capture these gradients. Based on systematic conservation planning principles such as representation and persistence, we identified large tracts of untransformed land (i.e., conservation corridors) for conservation that would achieve biodiversity targets for pattern and process in the Subtropical Thicket Biome of South Africa. We combined least-cost path analysis with a target-driven algorithm to identify the best option for capturing key environmental gradients while considering biodiversity targets and conservation opportunities and constraints. We identified seven conservation corridors on the basis of subtropical thicket representation, habitat transformation and degradation, wildlife suitability, irreplaceability of vegetation types, protected area networks, and future land-use pressures. These conservation corridors covered 21.1% of the planning region (ranging from 600 to 5200 km2) and successfully achieved targets for biological processes and to a lesser extent for vegetation types. The corridors we identified are intended to promote the persistence of ecological processes (gradients and fixed processes) and fulfill half of the biodiversity pattern target. We compared the conservation corridors with a simplified corridor design consisting of a fixed-width buffer along major rivers. Conservation corridors outperformed river buffers in seven out of eight criteria. Our corridor design can provide a tool for quantifying trade-offs between various criteria (biodiversity pattern and process, implementation constraints and opportunities). A land-use management model was developed to facilitate implementation of conservation actions within these corridors. PMID:16903115

  2. Development of Safe and Scalable Continuous-Flow Methods for Palladium-Catalyzed Aerobic Oxidation Reactions.

    PubMed

    Ye, Xuan; Johnson, Martin D; Diao, Tianning; Yates, Matthew H; Stahl, Shannon S

    2010-01-01

    The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O(2) in N(2)) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis. PMID:20694169

  3. A novel anoxic-aerobic biofilter process using new composite packing material for the treatment of rural domestic wastewater.

    PubMed

    Pan, L T; Han, Y

    2016-01-01

    A pilot scale experiment was conducted to evaluate the characteristics of contaminants removal in a continuously two-stage biological process composed of an anoxic biofilter (AF) and an biological aerated filter (BAF). This novel process was developed by introducing new composite packing material (MZF) into bioreactors to treat rural domestic wastewater. A comparative study conducted by the same process with ceramsite as packing material under the same conditions showed that a MZF system with a Fe proportion in the packing material performed better in chemical oxygen demand (COD) removal (average 91.5%), ammonia (NH4(+)-N) removal (average 98.3%), total nitrogen (TN) removal (average 64.8%) and total phosphorus (TP) removal (average 90%). After treatment of the MZF system, the concentrations of COD, NH4(+)-N, TN and TP in effluent were 20.3 mg/L, 0.5 mg/L, 11.5 mg/L and 0.3 mg/L, respectively. The simultaneously high efficiencies of nitrification, denitrification and phosphorus removal were achieved by the coupling effects of biological and chemical processes in the MZF system. The results of this study showed that the application of MZF might be a favorable choice as packing material in biofilters for treatment of rural domestic wastewater. PMID:27191571

  4. Watermarking scheme for large images using parallel processing

    NASA Astrophysics Data System (ADS)

    Debes, Eric; Dardier, Genevieve; Ebrahimi, Touradj; Herrigel, Alexander

    2001-08-01

    Large and high-resolution images usually have a high commercial value. Thus they are very good candidates for watermarking. If many images have to be signed in a Client-Server setup, memory and computational requirements could become unrealistic for current and near future solutions. In this paper, we propose to tile the image into sub-images. The watermarking scheme is then applied to each sub-image in the embedding and retrieval process. Thanks to this solution, the first possible optimization consists in creating different threads to read and write the image tile by tile. The time spent in input/output operations, which can be a bottleneck for large images, is reduced. In addition to this optimization, we show that the memory consumption of the application is also highly reduced for large images. Finally, the application can be multithreaded so that different tiles can be watermarked in parallel. Therefore the scheme can take advantage of the processing power of the different processors available in current servers. We show that the correct tile size and the right amount of threads have to be created to efficiently distribute the workload. Eventually, security, robustness and invisibility issues are addressed considering the signal redundancy.

  5. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  6. Large-scale processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, A. P.

    1994-01-01

    Theoretical models of the structure of a minimum mass solar nebula should be able to provide the physical context to help evaluate the efficacy of any mechanism proposed for the formation of chondrules or Ca, Al-rich inclusions (CAI's). These models generally attempt to use the equations of radiative hydrodynamics to calculate the large-scale structure of the solar nebula throughout the planet-forming region. In addition, it has been suggested that chondrules and CAI's (=Ch&CAI's) may have been formed as a direct result of large-scale nebula processing such as passage of material through high-temperature regions associated with the global structure of the nebula. In this report we assess the status of global models of solar nebula structure and of various related mechanisms that have been suggested for Ch and CAI formation.

  7. Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Oefelein, Joseph C.; Garcia, Roberto (Technical Monitor)

    2002-01-01

    This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.

  8. Aerobic Conditioning Class.

    ERIC Educational Resources Information Center

    Johnson, Neil R.

    1980-01-01

    An aerobic exercise class that focuses on the conditioning of the cardiovascular and muscular systems is presented. Students complete data cards on heart rate, pulse, and exercises to be completed during the forty minute course. (CJ)

  9. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions.

    PubMed

    Kruglova, Antonina; Kråkström, Matilda; Riska, Mats; Mikola, Anna; Rantanen, Pirjo; Vahala, Riku; Kronberg, Leif

    2016-08-01

    Four emerging micropollutants ibuprofen, diclofenac, estrone (E1) and 17α-ethinylestradiol (EE2) were studied in large laboratory-scale wastewater treatment plants (WWTPs) with high nitrifying activity. Activated sludge (AS) with sludge retention times (SRTs) of 12days and 14days in sequencing batch reactors (SBRs) and 30days, 60days and 90days in membrane bioreactors (MBRs) were examined at 8°C and 12°C. Concentrations of pharmaceuticals and their main metabolites were analysed in liquid phase and solid phase of AS by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A remarkable amount of contaminants were detected in solids of AS, meaning the accumulation of micropollutants in bacterial cells. The biodegradation rate constants (Kbiol) were affected by SRT and temperature. MBR with a 90-day SRT showed the best results of removal. Conventional SBR process was inefficient at 8°C showing Kbiol values lower than 0.5lgSS(-1)d(-1) for studied micropollutants. PMID:27128192

  10. Fast methods for training Gaussian processes on large datasets

    PubMed Central

    Moore, C. J.; Berry, C. P. L.; Gair, J. R.

    2016-01-01

    Gaussian process regression (GPR) is a non-parametric Bayesian technique for interpolating or fitting data. The main barrier to further uptake of this powerful tool rests in the computational costs associated with the matrices which arise when dealing with large datasets. Here, we derive some simple results which we have found useful for speeding up the learning stage in the GPR algorithm, and especially for performing Bayesian model comparison between different covariance functions. We apply our techniques to both synthetic and real data and quantify the speed-up relative to using nested sampling to numerically evaluate model evidences. PMID:27293793

  11. Fast methods for training Gaussian processes on large datasets.

    PubMed

    Moore, C J; Chua, A J K; Berry, C P L; Gair, J R

    2016-05-01

    Gaussian process regression (GPR) is a non-parametric Bayesian technique for interpolating or fitting data. The main barrier to further uptake of this powerful tool rests in the computational costs associated with the matrices which arise when dealing with large datasets. Here, we derive some simple results which we have found useful for speeding up the learning stage in the GPR algorithm, and especially for performing Bayesian model comparison between different covariance functions. We apply our techniques to both synthetic and real data and quantify the speed-up relative to using nested sampling to numerically evaluate model evidences. PMID:27293793

  12. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid.

    PubMed

    Zhu, Xiaoyu; Chen, Yinguang

    2011-03-15

    This paper reported an efficient method to significantly reduce nitrous oxide (N(2)O) and nitric oxide (NO) generation in anaerobic-aerobic (low dissolved oxygen) processes. It was found that by the use of waste-activated sludge alkaline fermentation liquid as the synthetic wastewater-carbon source, compared with the commonly used carbon source in the literature (e.g., acetic acid), the generation of N(2)O and NO was reduced by 68.7% and 50.0%, respectively, but the removal efficiencies of total phosphorus (TP) and total nitrogen (TN) were improved. Both N(2)O and NO were produced in the low dissolved oxygen (DO) stage, and the use of sludge fermentation liquid greatly reduced their generation from the denitrification. The presences of Cu(2+) and propionic acid in fermentation liquid were observed to play an important role in the reduction of N(2)O and NO generation. The analysis of the activities of denitrifying enzymes suggested that sludge fermentation liquid caused the significant decrease of both nitrite reductase activity to NO reductase activity ratio and NO reductase activity to N(2)O reductase activity ratio, which resulted in the lower generation of NO and N(2)O. Fluorescence in situ hybridization analysis indicated that the number of glycogen accumulating bacteria, which was reported to be relevant to nitrous oxide generation, in sludge fermentation liquid reactor was much lower than that in acetic acid reactor. The quantitative detection of the nosZ gene, encoding nitrous oxide reductase, showed that the use of fermentation liquid increased the number of bacteria capable of reducing N(2)O to N(2). The feasibility of using sludge fermentation liquid to reduce NO and N(2)O generation in an anaerobic-low DO process was finally confirmed for a municipal wastewater. PMID:21322643

  13. Enabling materials and processes for large aerospace mirrors

    NASA Astrophysics Data System (ADS)

    Matson, Lawrence E.; Chen, Ming Y.

    2008-07-01

    The use of monolithic glass to produce large, rigid segmented members for lightweight space-based mirror systems appears to have reached its limits due to the long production lead times, high processing costs, and launch load/weight requirements. New material solutions and processes are required to meet the US Air Force's optical needs for directed energy, reconnaissance/surveillance, and communications. Mirror structural substrates made out of advanced materials (metal, ceramic, and polymer), composites, foams, and microsphere arrays should allow for CTE and modulus tailorability, low-density, and high values in strength, stiffness, thermal conductivity and toughness. Conventional mechanical polishing to visual specifications for figure and surface finish roughness requirements will be difficult, due to the multi-phase complexities of these new systems. Advances in surface removal technologies as well as replication processes will be required to produce the required optical finishes with reduced schedule and cost. In this paper selected material and process solutions being considered will be discussed.

  14. Processing Ocean Images to Detect Large Drift Nets

    NASA Technical Reports Server (NTRS)

    Veenstra, Tim

    2009-01-01

    A computer program processes the digitized outputs of a set of downward-looking video cameras aboard an aircraft flying over the ocean. The purpose served by this software is to facilitate the detection of large drift nets that have been lost, abandoned, or jettisoned. The development of this software and of the associated imaging hardware is part of a larger effort to develop means of detecting and removing large drift nets before they cause further environmental damage to the ocean and to shores on which they sometimes impinge. The software is capable of near-realtime processing of as many as three video feeds at a rate of 30 frames per second. After a user sets the parameters of an adjustable algorithm, the software analyzes each video stream, detects any anomaly, issues a command to point a high-resolution camera toward the location of the anomaly, and, once the camera has been so aimed, issues a command to trigger the camera shutter. The resulting high-resolution image is digitized, and the resulting data are automatically uploaded to the operator s computer for analysis.

  15. UAV Data Processing for Large Scale Topographical Mapping

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2014-06-01

    Large scale topographical mapping in the third world countries is really a prominent challenge in geospatial industries nowadays. On one side the demand is significantly increasing while on the other hand it is constrained by limited budgets available for mapping projects. Since the advent of Act Nr.4/yr.2011 about Geospatial Information in Indonesia, large scale topographical mapping has been on high priority for supporting the nationwide development e.g. detail spatial planning. Usually large scale topographical mapping relies on conventional aerial survey campaigns in order to provide high resolution 3D geospatial data sources. Widely growing on a leisure hobby, aero models in form of the so-called Unmanned Aerial Vehicle (UAV) bring up alternative semi photogrammetric aerial data acquisition possibilities suitable for relatively small Area of Interest (AOI) i.e. <5,000 hectares. For detail spatial planning purposes in Indonesia this area size can be used as a mapping unit since it usually concentrates on the basis of sub district area (kecamatan) level. In this paper different camera and processing software systems will be further analyzed for identifying the best optimum UAV data acquisition campaign components in combination with the data processing scheme. The selected AOI is covering the cultural heritage of Borobudur Temple as one of the Seven Wonders of the World. A detailed accuracy assessment will be concentrated within the object feature of the temple at the first place. Feature compilation involving planimetric objects (2D) and digital terrain models (3D) will be integrated in order to provide Digital Elevation Models (DEM) as the main interest of the topographic mapping activity. By doing this research, incorporating the optimum amount of GCPs in the UAV photo data processing will increase the accuracy along with its high resolution in 5 cm Ground Sampling Distance (GSD). Finally this result will be used as the benchmark for alternative geospatial

  16. Data processing 2: Advancements in large scale data processing systems for remote sensing

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1972-01-01

    The development of large scale data processing systems for remote sensing is studied by evaluating: (1) the suitability of several sensor types with regard to producing data required for multispectral machine analysis; (2) various types of data preprocessing necessary to prepare such data for analysis; and (3) transfer of machine processing techniques for earth resources data to user community.

  17. Large earthquake processes in the northern Vanuatu subduction zone

    NASA Astrophysics Data System (ADS)

    Cleveland, K. Michael; Ammon, Charles J.; Lay, Thorne

    2014-12-01

    The northern Vanuatu (formerly New Hebrides) subduction zone (11°S to 14°S) has experienced large shallow thrust earthquakes with Mw > 7 in 1966 (MS 7.9, 7.3), 1980 (Mw 7.5, 7.7), 1997 (Mw 7.7), 2009 (Mw 7.7, 7.8, 7.4), and 2013 (Mw 8.0). We analyze seismic data from the latter four earthquake sequences to quantify the rupture processes of these large earthquakes. The 7 October 2009 earthquakes occurred in close spatial proximity over about 1 h in the same region as the July 1980 doublet. Both sequences activated widespread seismicity along the northern Vanuatu subduction zone. The focal mechanisms indicate interplate thrusting, but there are differences in waveforms that establish that the events are not exact repeats. With an epicenter near the 1980 and 2009 events, the 1997 earthquake appears to have been a shallow intraslab rupture below the megathrust, with strong southward directivity favoring a steeply dipping plane. Some triggered interplate thrusting events occurred as part of this sequence. The 1966 doublet ruptured north of the 1980 and 2009 events and also produced widespread aftershock activity. The 2013 earthquake rupture propagated southward from the northern corner of the trench with shallow slip that generated a substantial tsunami. The repeated occurrence of large earthquake doublets along the northern Vanuatu subduction zone is remarkable considering the doublets likely involved overlapping, yet different combinations of asperities. The frequent occurrence of large doublet events and rapid aftershock expansion in this region indicate the presence of small, irregularly spaced asperities along the plate interface.

  18. Process control of large-scale finite element simulation software

    SciTech Connect

    Spence, P.A.; Weingarten, L.I.; Schroder, K.; Tung, D.M.; Sheaffer, D.A.

    1996-02-01

    We have developed a methodology for coupling large-scale numerical codes with process control algorithms. Closed-loop simulations were demonstrated using the Sandia-developed finite element thermal code TACO and the commercially available finite element thermal-mechanical code ABAQUS. This new capability enables us to use computational simulations for designing and prototyping advanced process-control systems. By testing control algorithms on simulators before building and testing hardware, enormous time and cost savings can be realized. The need for a closed-loop simulation capability was demonstrated in a detailed design study of a rapid-thermal-processing reactor under development by CVC Products Inc. Using a thermal model of the RTP system as a surrogate for the actual hardware, we were able to generate response data needed for controller design. We then evaluated the performance of both the controller design and the hardware design by using the controller to drive the finite element model. The controlled simulations provided data on wafer temperature uniformity as a function of ramp rate, temperature sensor locations, and controller gain. This information, which is critical to reactor design, cannot be obtained from typical open-loop simulations.

  19. Large-cell Monte Carlo renormalization of irreversible growth processes

    NASA Technical Reports Server (NTRS)

    Nakanishi, H.; Family, F.

    1985-01-01

    Monte Carlo sampling is applied to a recently formulated direct-cell renormalization method for irreversible, disorderly growth processes. Large-cell Monte Carlo renormalization is carried out for various nonequilibrium problems based on the formulation dealing with relative probabilities. Specifically, the method is demonstrated by application to the 'true' self-avoiding walk and the Eden model of growing animals for d = 2, 3, and 4 and to the invasion percolation problem for d = 2 and 3. The results are asymptotically in agreement with expectations; however, unexpected complications arise, suggesting the possibility of crossovers, and in any case, demonstrating the danger of using small cells alone, because of the very slow convergence as the cell size b is extrapolated to infinity. The difficulty of applying the present method to the diffusion-limited-aggregation model, is commented on.

  20. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

    1991-07-16

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

  1. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.

    1991-01-01

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

  2. Aerobic Activity--Do Physical Education Programs Provide Enough?

    ERIC Educational Resources Information Center

    McGing, Eileen

    1989-01-01

    High school physical education curricula should concentrate less on sport skill development and competition, and more on health-related fitness and aerobic activity. Results are reported from a study of the type and amount of aerobic exercise provided in 29 high school physical education programs in a large metropolitan area. (IAH)

  3. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat, III; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  4. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation.

    PubMed

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  5. Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation

    PubMed Central

    Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang

    2016-01-01

    In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181

  6. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  7. Aerobic biodegradation of trichloroethene without auxiliary substrates.

    PubMed

    Schmidt, Kathrin R; Gaza, Sarah; Voropaev, Andrey; Ertl, Siegmund; Tiehm, Andreas

    2014-08-01

    Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites. PMID:24793109

  8. Measurement Agreement between Estimates of Aerobic Fitness in Youth: The Impact of Body Mass Index

    ERIC Educational Resources Information Center

    Saint-Maurice, Pedro F.; Welk, Gregory J.; Laurson, Kelly R.; Brown, Dale D.

    2014-01-01

    Purpose: The purpose of this study was to examine the impact of body mass index (BMI) on the agreement between aerobic capacity estimates from different Progressive Aerobic Cardiorespiratory Endurance Run (PACER) equations and the Mile Run Test. Method: The agreement between 2 different tests of aerobic capacity was examined on a large data set…

  9. 40 CFR 796.3100 - Aerobic aquatic biodegradation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Aerobic aquatic biodegradation. 796.3100 Section 796.3100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Transformation Processes § 796.3100 Aerobic aquatic biodegradation. (a)...

  10. 40 CFR 796.3100 - Aerobic aquatic biodegradation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Aerobic aquatic biodegradation. 796.3100 Section 796.3100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Transformation Processes § 796.3100 Aerobic aquatic biodegradation. (a)...

  11. 40 CFR 796.3100 - Aerobic aquatic biodegradation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Aerobic aquatic biodegradation. 796.3100 Section 796.3100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Transformation Processes § 796.3100 Aerobic aquatic biodegradation. (a)...

  12. Aerobic Dance in Public Schools.

    ERIC Educational Resources Information Center

    Chiles, Barbara Ann; Moore, Suzanne

    1981-01-01

    Aerobic dance offers a challenging workout in a social atmosphere. Though some physical education instructors tend to exclude dance units from the curriculum, most could teach aerobic dance if they had a basic knowledge of aerobic routines. The outline for a unit to be used in the class is presented. (JN)

  13. Managing for Improved Aerobic Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic deterioration or spoilage of silage is the result of aerobic microorganisms metabolizing components of the silage using oxygen. In the almost 40 years over which these silage conferences have been held, we have come to recognize the typical pattern of aerobic microbial development by which s...

  14. A process yields large quantities of pure ribosome subunits

    NASA Technical Reports Server (NTRS)

    Friedman, M.; Lu, P.; Rich, A.

    1972-01-01

    Development of process for in-vitro protein synthesis from living cells followed by dissociation of ribosomes into subunits is discussed. Process depends on dialysis or use of chelating agents. Operation of process and advantages over previous methods are outlined.

  15. Silicon biogeochemical processes in a large river (Cauvery, India)

    NASA Astrophysics Data System (ADS)

    Kameswari Rajasekaran, Mangalaa; Arnaud, Dapoigny; Jean, Riotte; Sarma Vedula, V. S. S.; Nittala, S. Sarma; Sankaran, Subramanian; Gundiga Puttojirao, Gurumurthy; Keshava, Balakrishna; Cardinal, Damien

    2016-04-01

    Cauvery may result from the successive dams along the main course which are expected to favor the retention of isotopically light Si isotopes in sediments via diatom uptake in reservoirs and/or, Si uptake by vegetation. Both processes likely result in heavier δ30Si-DSi downstream. In the estuary, the average δ30Si-DSi is 2.20±0.17 ‰ (n=11). There is a significant positive relationship between ASi contents and fucoxanthin (diatom marker pigment) (r=0.61, p<0.05, n=11) suggesting a significant control of diatoms on ASi. However a dominant mixing effect is observed in dissolved silicon with a strong positive relationship between 1/DSi and δ30Si-DSi (r=0.71, p<0.01, n=11). A comparative study with a west-flowing river, the Netravathi (southwest India) will be performed and presented during the session. We will also compare the Si isotopic signatures in Cauvery along the transect with focus on seasonal variability and on upstream vs. downstream large dams to strengthen interpretations.

  16. Summer Decay Processes in a Large Tabular Iceberg

    NASA Astrophysics Data System (ADS)

    Wadhams, P.; Wagner, T. M.; Bates, R.

    2012-12-01

    Summer Decay Processes in a Large Tabular Iceberg Peter Wadhams (1), Till J W Wagner(1) and Richard Bates(2) (1) Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK (2) Scottish Oceans Institute, School of Geography and Geosciences, University of St Andrews, St. Andrews, Scotland KY16 9AL We present observational results from an experiment carried out during July-August 2012 on a giant grounded tabular iceberg off Baffin Island. The iceberg studied was part of the Petermann Ice Island B1 (PIIB1) which calved off the Petermann Glacier in NW Greenland in 2010. Since 2011 it has been aground in 100 m of water on the Baffin Island shelf at 69 deg 06'N, 66 deg 06'W. As part of the project a set of high resolution GPS sensors and tiltmeters was placed on the ice island to record rigid body motion as well as flexural responses to wind, waves, current and tidal forces, while a Waverider buoy monitored incident waves and swell. On July 31, 2012 a major breakup event was recorded, with a piece of 25,000 sq m surface area calving off the iceberg. At the time of breakup, GPS sensors were collecting data both on the main berg as well as on the newly calved piece, while two of us (PW and TJWW) were standing on the broken-out portion which rose by 0.6 m to achieve a new isostatic equilibrium. Crucially, there was no significant swell at the time of breakup, which suggests a melt-driven decay process rather than wave-driven flexural break-up. The GPS sensors recorded two disturbances during the hour preceding the breakup, indicative of crack growth and propagation. Qualitative observation during the two weeks in which our research ship was moored to, or was close to, the ice island edge indicates that an important mechanism for summer ablation is successive collapses of the overburden from above an unsupported wave cut, which creates a submerged ram fringing the berg. A model of buoyancy stresses induced by

  17. Large-Scale Neural Network for Sentence Processing

    ERIC Educational Resources Information Center

    Cooke, Ayanna; Grossman, Murray; DeVita, Christian; Gonzalez-Atavales, Julio; Moore, Peachie; Chen, Willis; Gee, James; Detre, John

    2006-01-01

    Our model of sentence comprehension includes at least grammatical processes important for structure-building, and executive resources such as working memory that support these grammatical processes. We hypothesized that a core network of brain regions supports grammatical processes, and that additional brain regions are activated depending on the…

  18. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, P.M.

    1984-08-01

    It is an object of the present invention to provide a procedure for desensitizing zirconium-based alloys to large grain growth (LGG) during thermal treatment above the recrystallization temperature of the alloy. It is a further object of the present invention to provide a method for treating zirconium-based alloys which have been cold-worked in the range of 2 to 8% strain to reduce large grain growth. It is another object of the present invention to provide a method for fabricating a zirconium alloy clad nuclear fuel element wherein the zirconium clad is resistant to large grain growth.

  19. Automated Science Processing for the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Chiang, James

    2012-03-01

    The Large Area Telescope (LAT) onboard the Fermi γ-ray Space Telescope provides high sensitivity to emission from astronomical sources over a broad energy range (20MeV to >300 GeV) and has substantially improved spatial, energy, and timing resolution compared with previous observatories at these energies [4]. One of the LAT's most innovative features is that it performs continuous monitoring of the gamma-ray sky with all-sky coverage every 3 h. This survey strategy greatly enables the search for transient behavior from both previously known and unknown sources. In addition, the constant accumulation of data allows for increasingly improved measurements of persistent sources. These include the Milky Way Galaxy itself, which produces gamma-ray emission as a result from interactions of cosmic rays with gas in the Galaxy, and potential signals from candidate dark matter particles in the Milky Way and its neighboring galaxies. The automated science processing (ASP) functionality of the Fermi Instrument Science Operations Center (ISOC) is a part of the automated data pipeline that processes the raw data arriving from the spacecraft and puts it into a form amenable to scientific analysis. ASP operates at the end of the pipeline on the processed data and is intended to detect and characterize transient behavior (e.g., short time scale increases or “flares” in the gamma-ray flux) from astronomical sources. On detection of a flaring event, ASP will alert other observatories on a timely basis so that they may train their telescopes on the flaring source in order to detect possible correlated activity in other wavelength bands. Since the data from the LAT is archived and publicly available as soon as it is processed, ASP serves mainly to provide triggers for those follow-up observations; its estimates of the properties of the flaring sources (flux, spectral index, location) need not be the best possible, as subsequent off-line analysis can provide more refined

  20. Response of Tradewind Cumuli to Large-Scale Processes.

    NASA Astrophysics Data System (ADS)

    Soong, S.-T.; Ogura, Y.

    1980-09-01

    The two-dimensional slab-symmetric numerical cloud model used by Soong and Ogura (1973) for studying the evolution of an isolated cumulus cloud is extended to investigate the statistical properties of cumulus clouds which would be generated under a given large-scale forcing composed of the horizontal advection of temperature and water vapor mixing ratio, vertical velocity, sea surface temperature and radiative cooling. Random disturbances of small amplitude are introduced into the model at low levels to provide random motion for cloud formation.The model is applied to a case of suppressed weather conditions during BOMEX for the period 22-23 June 1969 when a nearly steady state prevailed. The composited temperature and mixing ratio profiles of these two days are used as initial conditions and the time-independent large-scale forcing terms estimated from the observations are applied to the model. The result of numerical integration shows that a number of small clouds start developing after 1 h. Some of them decay quickly, but some of them develop and reach the tradewind inversion. After a few hours of simulation, the vertical profiles of the horizontally averaged temperature and moisture are found to deviate only slightly from the observed profiles, indicating that the large-scale effect and the feedback effects of clouds on temperature and mixing ratio reach an equilibrium state. The three major components of the cloud feedback effect, i.e., condensation, evaporation and vertical fluxes associated with the clouds, are determined from the model output. The vertical profiles of vertical heat and moisture fluxes in the subcloud layer in the model are found to be in general agreement with the observations.Sensitivity tests of the model are made for different magnitudes of the large-scale vertical velocity. The most striking result is that the temperature and humidity in the cloud layer below the inversion do not change significantly in spite of a relatively large

  1. Enhancing Cognitive Training Through Aerobic Exercise After a First Schizophrenia Episode: Theoretical Conception and Pilot Study.

    PubMed

    Nuechterlein, Keith H; Ventura, Joseph; McEwen, Sarah C; Gretchen-Doorly, Denise; Vinogradov, Sophia; Subotnik, Kenneth L

    2016-07-01

    Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia. PMID:27460618

  2. Benchmarking processes for managing large international space programs

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt C., Jr.; Duke, Michael B.

    1993-01-01

    The relationship between management style and program costs is analyzed to determine the feasibility of financing large international space missions. The incorporation of management systems is considered to be essential to realizing low cost spacecraft and planetary surface systems. Several companies ranging from large Lockheed 'Skunk Works' to small companies including Space Industries, Inc., Rocket Research Corp., and Orbital Sciences Corp. were studied. It is concluded that to lower the prices, the ways in which spacecraft and hardware are developed must be changed. Benchmarking of successful low cost space programs has revealed a number of prescriptive rules for low cost managements, including major changes in the relationships between the public and private sectors.

  3. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

    PubMed Central

    Hao, W.; Wang, H. L.; Ning, T. T.; Yang, F. Y.; Xu, C. C.

    2015-01-01

    The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 107 to 1010 cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 109 cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR. PMID:25925059

  4. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, Peter M.

    1987-01-01

    A method of treating cold-worked zirconium alloys to reduce large grain gth during thermal treatment at temperatures above the recrystallization temperature of the alloy comprising heating the cold-worked alloy between about 1300.degree.-1350.degree. F. for 1 to 3 hours prior to treatment above its recrystallization temperature.

  5. Really big data: Processing and analysis of large datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern animal breeding datasets are large and getting larger, due in part to the recent availability of DNA data for many animals. Computational methods for efficiently storing and analyzing those data are under development. The amount of storage space required for such datasets is increasing rapidl...

  6. Depth gradients in food web processes linking large lake habitats

    EPA Science Inventory

    In large lakes around the world, shifts in ecological communities are often associated with water depth. This suggests that there may be concomitant changes in patterns of resource allocation. Using Lake Superior as an example, we explored this idea through stable isotope analyse...

  7. Large intermediate-depth earthquakes and the subduction process

    NASA Astrophysics Data System (ADS)

    Astiz, Luciana; Lay, Thorne; Kanamori, Hiroo

    1988-12-01

    This study provides an overview of intermediate-depth earthquake phenomena, placing emphasis on the larger, tectonically significant events, and exploring the relation of intermediate-depth earthquakes to shallower seismicity. Especially, we examine whether intermediate-depth events reflect the state of interplate coupling at subduction zones, and whether this activity exhibits temporal changes associated with the occurrence of large underthrusting earthquakes. Historic record of large intraplate earthquakes ( mB ≥ 7.0) in this century shows that the New Hebrides and Tonga subduction zones have the largest number of large intraplate events. Regions associated with bends in the subducted lithosphere also have many large events (e.g. Altiplano and New Ireland). We compiled a catalog of focal mechanisms for events that occurred between 1960 and 1984 with M > 6 and depth between 40 and 200 km. The final catalog includes 335 events with 47 new focal mechanisms, and is probably complete for earthquakes with mB ≥ 6.5. For events with M ≥ 6.5, nearly 48% of the events had no aftershocks and only 15% of the events had more than five aftershocks within one week of the mainshock. Events with more than ten aftershocks are located in regions associated with bends in the subducted slab. Focal mechanism solutions for intermediate-depth earthquakes with M > 6.8 can be grouped into four categories: (1) Normal-fault events (44%), and (2) reverse-fault events (33%), both with a strike nearly parallel to the trench axis. (3) Normal or reverse-fault events with a strike significantly oblique to the trench axis (10%), and (4) tear-faulting events (13%). The focal mechanisms of type 1 events occur mainly along strongly or moderately coupled subduction zones where a down-dip extensional stress prevails in a gently dipping plate. In contrast, along decoupled subduction zones great normal-fault earthquakes occur at shallow depths (e.g., the 1977 Sumbawa earthquake in Indonesia). Type

  8. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.

  9. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  10. Novelty in the ESR process of making large hollow ingots

    NASA Astrophysics Data System (ADS)

    Medovar, L. B.; Stovpchenko, A. P.; Fedorovskii, B. B.

    2013-12-01

    The development of the formation of hollow ingots is briefly reviewed. The reasonability of application of large electroslag remelting hollow ingots, including the replacement of the forged and rolled metal of shells and rings by the low-deformed or even as-cast ESR metal, is shown. Data are presented on ESR of commercial hollow ingots produced by the remelting of short consumable electrodes exchanged in remelting.

  11. Anaerobic and aerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Boopathy, R.; Manning, J.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  12. Process for repairing large scratches on fused silica optics

    NASA Astrophysics Data System (ADS)

    Cormont, Philippe; Bourgeade, Antoine; Cavaro, Sandy; Doualle, Thomas; Gaborit, Gael; Gallais, Laurent; Rullier, Jean-Luc; Taroux, Daniel

    2015-10-01

    Scratches at the surface of fused silica optics can be detrimental for the performance of optical systems because they initiate damage on the optic but also they perturb the amplitude or phase of the transmitted laser light. Removing scratches by conventional polishing techniques can be time consuming as it is an iterative and long process, especially when hours of polishing time are required to obtain very high surface accuracy. So we have investigated ways to remove them with local laser processing. The silica is then heated at temperature higher than the softening point to heal the cracks.

  13. Large scale molecular dynamics modeling of materials fabrication processes

    SciTech Connect

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1994-02-01

    An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

  14. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor.

    PubMed

    Alzate Marin, Juan C; Caravelli, Alejandro H; Zaritzky, Noemí E

    2016-01-01

    The aim of this study was to evaluate the feasibility of achieving nitrogen (N) removal using a lab-scale sequencing batch reactor (SBR) exposed to anoxic/aerobic (AN/OX) phases, focusing to achieve aerobic denitrification. This process will minimize emissions of N2O greenhouse gas. The effects of different operating parameters on the reactor performance were studied: cycle duration, AN/OX ratio, pH, dissolved oxygen concentration (DOC), and organic load. The highest inorganic N removal (NiR), close to 70%, was obtained at pH=7.5, low organic load (440mgCOD/(Lday)) and high aeration given by 12h cycle, AN/OX ratio=0.5:1.0 and DOC higher than 4.0mgO2/L. Nitrification followed by high-rate aerobic denitrification took place during the aerobic phase. Aerobic denitrification could be attributed to Tetrad-forming organisms (TFOs) with phenotype of glycogen accumulating organisms using polyhydroxyalkanoate and/or glycogen storage. The proposed AN/OX system constitutes an eco-friendly N removal process providing N2 as the end product. PMID:26512862

  15. Aerobic and two-stage anaerobic-aerobic sludge digestion with pure oxygen and air aeration.

    PubMed

    Zupancic, Gregor D; Ros, Milenko

    2008-01-01

    The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%. PMID:17251012

  16. Advanced Instruction: Facilitation of Individual Learning Processes in Large Groups

    ERIC Educational Resources Information Center

    Putz, Claus; Intveen, Geesche

    2009-01-01

    By supplying various combinations of advanced instructions and different forms of exercises individual learning processes within the impartation of basic knowledge can be activated and supported at best. The fundamentals of our class "Introduction to spatial-geometric cognition using CAD" are constructional inputs, which systematically induce the…

  17. Natural Language Processing: Toward Large-Scale, Robust Systems.

    ERIC Educational Resources Information Center

    Haas, Stephanie W.

    1996-01-01

    Natural language processing (NLP) is concerned with getting computers to do useful things with natural language. Major applications include machine translation, text generation, information retrieval, and natural language interfaces. Reviews important developments since 1987 that have led to advances in NLP; current NLP applications; and problems…

  18. A Large-Scale Assessment to Support the Process Paradigm.

    ERIC Educational Resources Information Center

    O'Brien, Charlotte W.

    1992-01-01

    Asserts that writing assessment should reflect current composition pedagogy, and offers a design to assess process writing. Discusses the development of the scoring criteria and the selection of range finders, as well as the standardization of training and scoring procedures. (PRA)

  19. Large-scale network-level processes during entrainment.

    PubMed

    Lithari, Chrysa; Sánchez-García, Carolina; Ruhnau, Philipp; Weisz, Nathan

    2016-03-15

    Visual rhythmic stimulation evokes a robust power increase exactly at the stimulation frequency, the so-called steady-state response (SSR). Localization of visual SSRs normally shows a very focal modulation of power in visual cortex and led to the treatment and interpretation of SSRs as a local phenomenon. Given the brain network dynamics, we hypothesized that SSRs have additional large-scale effects on the brain functional network that can be revealed by means of graph theory. We used rhythmic visual stimulation at a range of frequencies (4-30 Hz), recorded MEG and investigated source level connectivity across the whole brain. Using graph theoretical measures we observed a frequency-unspecific reduction of global density in the alpha band "disconnecting" visual cortex from the rest of the network. Also, a frequency-specific increase of connectivity between occipital cortex and precuneus was found at the stimulation frequency that exhibited the highest resonance (30 Hz). In conclusion, we showed that SSRs dynamically re-organized the brain functional network. These large-scale effects should be taken into account not only when attempting to explain the nature of SSRs, but also when used in various experimental designs. PMID:26835557

  20. Large-scale network-level processes during entrainment

    PubMed Central

    Lithari, Chrysa; Sánchez-García, Carolina; Ruhnau, Philipp; Weisz, Nathan

    2016-01-01

    Visual rhythmic stimulation evokes a robust power increase exactly at the stimulation frequency, the so-called steady-state response (SSR). Localization of visual SSRs normally shows a very focal modulation of power in visual cortex and led to the treatment and interpretation of SSRs as a local phenomenon. Given the brain network dynamics, we hypothesized that SSRs have additional large-scale effects on the brain functional network that can be revealed by means of graph theory. We used rhythmic visual stimulation at a range of frequencies (4–30 Hz), recorded MEG and investigated source level connectivity across the whole brain. Using graph theoretical measures we observed a frequency-unspecific reduction of global density in the alpha band “disconnecting” visual cortex from the rest of the network. Also, a frequency-specific increase of connectivity between occipital cortex and precuneus was found at the stimulation frequency that exhibited the highest resonance (30 Hz). In conclusion, we showed that SSRs dynamically re-organized the brain functional network. These large-scale effects should be taken into account not only when attempting to explain the nature of SSRs, but also when used in various experimental designs. PMID:26835557

  1. Anaerobic digestion of dairy cattle manure autoheated by aerobic pretreatment

    SciTech Connect

    Achkari-Begdouri, A.

    1989-01-01

    A novel way to heat anaerobic digesters was investigated. Dairy cattle manure was autoheated by an aerobic pretreatment process and then fed to the anaerobic digester. Important physical properties of the dairy cattle manure were determined. These included bulk density, specific heat, thermal conductivity and the rheological properties; consistency coefficient, behavior index and apparent viscosity. These parameters were used to calculate the overall heat transfer coefficients, and to estimate the heat losses from the aerobic reactor to the outside environment. The total energy balance of the aerobic treatment system was then established. An optimization study of the main parameters influencing the autoheating process showed that the total solids, the air flow rate and the stirring speed for operation of the aerobic pretreatment should be approximately 7%, 70 L/H and 1,400 rpm respectively. Temperatures as high as 65C were reached in 40 hours of aerobic treatment. At the above recommended levels of total solids, the air flow rate and the stirring speed, there was little difference in the energy requirements for heating the influent by aeration and heating the influent by a conventional heating system. In addition to the temperature increase, the aerobic pretreatment assisted in balancing the anaerobic digestion process and increased the methanogenesis of the dairy cattle manure. Despite the 8% decomposition of organic matter that occurred during the aerobic pretreatment process, methane production of the digester started with the aerobically heated manure was significantly higher (at least 20% higher) than of the digester started with conventionally heated manure. The aerobic system successfully autoheated the dairy cattle manure with an energy cost equal to that of conventionally heated influent.

  2. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  3. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  4. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.

    PubMed

    Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua

    2016-04-15

    Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs. PMID:26905799

  5. Path Query Processing in Large-Scale XML Databases

    NASA Astrophysics Data System (ADS)

    Haw, Su-Cheng; Radha Krishna Rao, G. S. V.

    With the ever-increasing popularity of XML (e-Xtensible Markup Language) as data representation and exchange on the Internet, querying XML data has become an important issue to be address. In Native XML Database (NXD), XML documents are usually modeled as trees and XML queries are typically specified in path expression. In path expression, the primitive structural relationships are Parent-Child (P-C) and Ancestor-Descendant (A-D). Thus, finding all occurrences of these relationships is crucial for XML query processing. Current methods for query processing on NXD usually employ either sequential traversing of tree-structured model or a decomposition-matching-merging processes. We adopt the later approach and propose a novel hybrid query optimization technique, INLAB comprising both indexing and labeling technologies. Furthermore, we also propose several algorithms to create INLAB encoding and analyze the path query. We implemented our technique and present performance results over several benchmarking datasets, which prove the viability of our approach.

  6. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  7. Processing large remote sensing image data sets on Beowulf clusters

    USGS Publications Warehouse

    Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Schmidt, Gail

    2003-01-01

    High-performance computing is often concerned with the speed at which floating- point calculations can be performed. The architectures of many parallel computers and/or their network topologies are based on these investigations. Often, benchmarks resulting from these investigations are compiled with little regard to how a large dataset would move about in these systems. This part of the Beowulf study addresses that concern by looking at specific applications software and system-level modifications. Applications include an implementation of a smoothing filter for time-series data, a parallel implementation of the decision tree algorithm used in the Landcover Characterization project, a parallel Kriging algorithm used to fit point data collected in the field on invasive species to a regular grid, and modifications to the Beowulf project's resampling algorithm to handle larger, higher resolution datasets at a national scale. Systems-level investigations include a feasibility study on Flat Neighborhood Networks and modifications of that concept with Parallel File Systems.

  8. Nanomaterials processing toward large-scale flexible/stretchable electronics

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshitake

    In recent years, there has been tremendous progress in large-scale mechanically flexible electronics, where electrical components are fabricated on non-crystalline substrates such as plastics and glass. These devices are currently serving as the basis for various applications such as flat-panel displays, smart cards, and wearable electronics. In this thesis, a promising approach using chemically synthesized nanomaterials is explored to overcome various obstacles current technology faces in this field. Here, we use chemically synthesized semiconducting nanowires (NWs) including group IV (Si, Ge), III-V (InAs) and II-IV (CdS, CdSe) NWs, and semiconductor-enriched SWNTs (99 % purity), and developed reliable, controllable, and more importantly uniform assembly methods on 4-inch wafer-scale flexible substrates in the form of either parallel NW arrays or SWNT random networks, which act as the active components in thin film transistors (TFTs). Thusly obtained TFTs composed of nanomaterials show respectable electrical and optical properties such as 1) cut-off frequency, ft ~ 1 GHz and maximum frequency of oscillation, fmax ~ 1.8 GHz from InAs parallel NW array TFTs with channel length of ~ 1.5 μm, 2) photodetectors covering visible wavelengths (500-700 nm) using compositionally graded CdSxSe1-x (0 < x < 1) parallel NW arrays, and 3) carrier mobility of ~ 20 cm2/Vs, which is an order of magnitude larger than conventional TFT materials such as a-Si and organic semiconductors, without sacrificing current on/off ratio (Ion/Ioff ~ 104) from SWNT network TFTs. The capability to uniformly assemble nanomaterials over large-scale flexible substrates enables us to use them for more sophisticated applications. Artificial electronic skin (e-skin) is demonstrated by laminating pressure sensitive rubber on top of nanomaterial-based active matrix backplanes. Furthermore, an x-ray imaging device is also achieved by combining organic photodiodes with this backplane technology.

  9. Parallel Processing of Large Scale Microphone Arrays for Sound Capture

    NASA Astrophysics Data System (ADS)

    Jan, Ea-Ee.

    1995-01-01

    Performance of microphone sound pick up is degraded by deleterious properties of the acoustic environment, such as multipath distortion (reverberation) and ambient noise. The degradation becomes more prominent in a teleconferencing environment in which the microphone is positioned far away from the speaker. Besides, the ideal teleconference should feel as easy and natural as face-to-face communication with another person. This suggests hands-free sound capture with no tether or encumbrance by hand-held or body-worn sound equipment. Microphone arrays for this application represent an appropriate approach. This research develops new microphone array and signal processing techniques for high quality hands-free sound capture in noisy, reverberant enclosures. The new techniques combine matched-filtering of individual sensors and parallel processing to provide acute spatial volume selectivity which is capable of mitigating the deleterious effects of noise interference and multipath distortion. The new method outperforms traditional delay-and-sum beamformers which provide only directional spatial selectivity. The research additionally explores truncated matched-filtering and random distribution of transducers to reduce complexity and improve sound capture quality. All designs are first established by computer simulation of array performance in reverberant enclosures. The simulation is achieved by a room model which can efficiently calculate the acoustic multipath in a rectangular enclosure up to a prescribed order of images. It also calculates the incident angle of the arriving signal. Experimental arrays were constructed and their performance was measured in real rooms. Real room data were collected in a hard-walled laboratory and a controllable variable acoustics enclosure of similar size, approximately 6 x 6 x 3 m. An extensive speech database was also collected in these two enclosures for future research on microphone arrays. The simulation results are shown to be

  10. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater.

    PubMed

    Liu, Xiaodong; Chen, Yan; Zhang, Xin; Jiang, Xinbai; Wu, Shijing; Shen, Jinyou; Sun, Xiuyun; Li, Jiansheng; Lu, Lude; Wang, Lianjun

    2015-09-15

    Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5-1 mm, sludge volume index of 25.6 ± 3.6 mL g(-1) and settling velocity of 37.2 ± 2.7 m h(-1), were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (Vmax) varied between 1164.5 mg L(-1) h(-1) and 1867.4 mg L(-1) h(-1). High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule. PMID:25897697

  11. Processing method and process modeling of large aperture transparent magnesium aluminate spinel domes

    NASA Astrophysics Data System (ADS)

    Yu, Jian; McWilliams, Brandon; Kilczewski, Steven; Gilde, Gary; Lidie, Ashley; Sands, James

    2009-05-01

    Polycrystalline spinel serves as an alternative to materials such as sapphire and magnesium fluoride that are currently being used in electromagnetic window applications such as missile domes, where high strength, high hardness and high transmittance in the visible and infrared spectra are required. The cubic crystal lattice of spinel imparts an isotropy to the bulk optical property, which eliminates optical distortion due to birefringence that occurs in sapphire and other non-cubic materials. The current study is to find a reliable manufacturing process to produce large magnesium aluminate spinel domes from powder consolidation efficiently. A binder-less dry ball milling process was used to deflocculate the spinel powder to increase its fluidity in an effort to ease the shape-forming. Dry ball milling time trials were conducted at several intervals to determine the appropriate level of time required to break up both the hard and soft agglomerates associated with the virgin spinel powder. The common problems encountered in dry powder shape-forming are crack growth and delamination of the green body during cold isostatic pressing (CIPing). The cracking and the delamination are due to the buildup of stress gradients on the green body that are created by the frictional force between the powder and the die wall or mold wall. To understand the stresses during the CIPing process, a finite element analysis of stresses on the green body was conducted. The simulation was used to evaluate the effect of die tooling and process characteristics on the development of stress gradients in the green body dome. Additionally, the effect of friction between the die wall and powder was examined by the simulation. It was found that by mitigating the frictional forces, cracking and delamination on the green body could be eliminated. A stepped-pressure CIPing technique was developed to reduce stress gradient build-up during CIPing. Also, oleic acid lubricant was applied to the die wall to

  12. Evolution of a processing system in a large biomedical library.

    PubMed

    Darling, L; Fayollat, J

    1976-01-01

    The processing system used in the UCLA Biomedical Library is modest in size and still under development. Its origins date back to a batch mode serials control system begun in the mid-1960s. This was converted to an on-line system which currently has modules for check-in, updating and retrieval, claims, bindery preparation, and invoice information. Titles can be retrieved at the terminal by search of any word in the title, by subject heading, language, country of publication, and type of publication. The system is adaptable to network use and at present is shared with one other library. To the serials system has been added a computer-assisted cataloging and card production system. The latter utilizes serials nucleus software as well as design for data input and data storage. In-house listings and coding procedures overlap in a general way. Work is under way on further integration of the two processing subsystems and a feasibility study has been completed for addition of a subsystem for acquisitions which will combine and adapt features of the other two; for example, information retrieval characteristics from both, catalog coding and programs for acceptance of data, serials programs for claims, and other output programs. Cost benefits of the subsystems are described and discussed. PMID:1247705

  13. Aerobic and anaerobic microbial degradation of crude (4-methylcyclohexyl)methanol in river sediments.

    PubMed

    Yuan, Li; Zhi, Wei; Liu, Yangsheng; Smiley, Elizabeth; Gallagher, Daniel; Chen, Xi; Dietrich, Andrea; Zhang, Husen

    2016-03-15

    Cyclohexane and some of its derivatives have been a major concern because of their significant adverse human health effects and widespread occurrence in the environment. The 2014 West Virginia chemical spill has raised public attention to (4-methylcyclohexyl)methanol (4-MCHM), one cyclohexane derivative, which is widely used in coal processing but largely ignored. In particular, the environmental fate of its primary components, cis- and trans-4-MCHM, remains largely unexplored. This study aimed to investigate the degradation kinetics and mineralization of cis- and trans-4-MCHM by sediment microorganisms under aerobic and anaerobic conditions. We found the removal of cis- and trans-4-MCHM was mainly attributed to biodegradation with little contribution from sorption. A nearly complete aerobic degradation of 4-MCHM occurred within 14 days, whereas the anaerobic degradation was reluctant with residual percentages of 62.6% of cis-4-MCHM and 85.0% of trans-4-MCHM after 16-day incubation. The cis-4-MCHM was degraded faster than the trans under both aerobic and anaerobic conditions, indicating an isomer-specific degradation could occur during the 4-MCHM degradation. Nitrate addition enhanced 4-MCHM mineralization by about 50% under both aerobic and anaerobic conditions. Both cis- and trans-4-MCHM fit well with the first-order kinetic model with respective degradation rates of 0.46-0.52 and 0.19-0.31 day(-)(1) under aerobic condition. Respective degradation rates of 0.041-0.095 and 0.013-0.052 day(-)(1) occurred under anaerobic condition. One bacterial strain capable of effectively degrading 4-MCHM isomers was isolated from river sediments and identified as Bacillus pumilus at the species level based on 16S rRNA gene sequence and 97% identity. Our findings will provide critical information for improving the prediction of the environmental fate of 4-MCHM and other cyclohexane derivatives with similar structure as well as enhancing the development of feasible treatment

  14. Saline storage of aerobic granules and subsequent reactivation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Lin, Lin

    2014-11-01

    Loss of structural stability and bioactivity during long-term storage and operation is primary challenge to field applications of aerobic granular processes. This study for the first time stored aerobic granules in 5%w/w NaCl solution at 4°C for 187d. The stored granules were then successfully reactivated and used for 85d in sequencing batch reactors (SBR) and continuous-flow reactors (CFR) at varying levels of chemical oxygen demand (COD). High-throughput sequencing results reveal that Thauera sp., Paracoccus sp., and Nitrosomonas sp. were the predominant in the stored aerobic granules, and Pseudoxanthomonas sp. accumulated during the reactivation process. Saline storage, in which cells are in an unculturable state by saline stress, is a promising storage process for aerobic granules. PMID:25270079

  15. Large-scale ordering of nanoparticles using viscoelastic shear processing.

    PubMed

    Zhao, Qibin; Finlayson, Chris E; Snoswell, David R E; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P; Petukhov, Andrei V; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J

    2016-01-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. PMID:27255808

  16. Large-scale ordering of nanoparticles using viscoelastic shear processing

    PubMed Central

    Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.

    2016-01-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. PMID:27255808

  17. LSSA large area silicon sheet task continuous Czochralski process development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  18. Very large scale integration (VLSI) architectures for video signal processing

    NASA Astrophysics Data System (ADS)

    Pirsch, Peter; Gehrke, Winfried

    1995-04-01

    The paper presents an overview on architectures for VLSI implementations of video compression schemes as specified by standardization committees of the ITU and ISO, focussing on programmable architectures. Programmable video signal processors are classified and specified as homogeneous and heterogeneous processor architectures. Architectures are presented for reported design examples for the literature. Heterogenous processors outperform homogeneous processors because of adaptation to the requirements of special subtasks by dedicated modules. The majority of heterogenous processors incorporate dedicated modules for high performance subtasks of high regularity as DCT and block matching. By normalization to a fictive 1.0 micron CMOS process typical linear relationships between silicon area and through-put rate have been determined for the different architectural styles. This relationship indicated a figure of merit for silicon efficiency.

  19. Large-scale superconducting separator for Kaolin processing

    SciTech Connect

    Winters, A.J, Jr. ); Selvaggi, J.A. )

    1990-01-01

    Currently, high gradient magnetic separators (HGMSs) are used almost exclusively by the clay processing industry, particularly in producing an extremely white kaolin for the paper, coatings and rubber industries where a bright additive is desirable. As mined, the clay is a light cream color-not white. Many of these impurities can be removed chemically using a reducing agent such as sodium hydrosulfite in low pH, sulfuric acid, and alum. High purity, however, can be obtained by removing trace amounts of paramagnetic particles (100% finer than 2 {mu}m). This is accomplished by separating these particles from 28 wt% kaolin in a water slurry retaining them on magnetic wool, which is then periodically regenerated.

  20. Large-scale ordering of nanoparticles using viscoelastic shear processing

    NASA Astrophysics Data System (ADS)

    Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.

    2016-06-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.

  1. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1997-01-01

    Provides school counselors with information on aerobic exercise (specifically running) and the psychological, behavioral, and physical benefits children obtained by participating in fitness programs. Recommends collaboration between school counselors and physical education teachers and gives a preliminary discussion of aerobic running and its…

  2. Aerobic Fitness and School Children.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott

    1992-01-01

    Provides school counselors with information regarding aerobic exercise (specifically running), and the psychological, behavioral, and physical benefits children obtain by participating in fitness programs. Presents methods of collaboration between school counselors and physical education teachers. Offers preliminary discussion of aerobic running…

  3. Exercise, Animal Aerobics, and Interpretation?

    ERIC Educational Resources Information Center

    Oliver, Valerie

    1996-01-01

    Describes an aerobic activity set to music for children that mimics animal movements. Example exercises include walking like a penguin or jumping like a cricket. Stresses basic aerobic principles and designing the program at the level of children's motor skills. Benefits include reaching people who normally don't visit nature centers, and bridging…

  4. Large-Array Signal Processing for Deep-Space Applications

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Vilnrotter, V.; Satorius, E.; Ye, Z.; Fort, D.; Cheung, K.-M.

    2002-04-01

    This article develops the mathematical models needed to describe the key issues in using an array of antennas for receiving spacecraft signals for DSN applications. The detrimental effects of nearby interfering sources, such as other spacecraft transmissions or natural radio sources within the array's field of view, on signal-to noise ratio (SNR) are determined, atmospheric effects relevant to the arraying problem developed, and two classes of algorithms (multiple signal classification (MUSIC) plus beam forming, and an eigen-based solution) capable of phasing up the array with maximized SNR in the presence of realistic disturbances are evaluated. It is shown that, when convolutionally encoded binary-phase shift keying (BPSK) data modulation is employed on the spacecraft signal, previously developed data pre-processing techniques that partially reconstruct the carrier can be of great benefit to array performance, particularly when strong interfering sources are present. Since this article is concerned mainly with demonstrating the required capabilities for operation under realistic conditions, no attempt has been made to reduce algorithm complexity; the design and evaluation of less complex algorithms with similar capabilities will be addressed in a future article. The performances of the candidate algorithms discussed in this article have been evaluated in terms of the number of symbols needed to achieve a given level of combining loss for different numbers of array elements, and compared on this common basis. It is shown that even the best algorithm requires approximately 25,000 symbols to achieve a combining loss of less than 0.5 dB when 128 antenna elements are employed, but generally 50,000 or more symbols are needed. This is not a serious impediment to successful arraying with high data-rate transmission, but may be of some concern with missions exploring near the edge of our solar system or beyond, where lower data rates may be required.

  5. Aerobic Granules: Microbial Landscape and Architecture, Stages, and Practical Implications

    PubMed Central

    Holliger, Christof

    2014-01-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In “old” granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters “rooting” from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation. PMID:24657859

  6. Aerobic granules: microbial landscape and architecture, stages, and practical implications.

    PubMed

    Gonzalez-Gil, Graciela; Holliger, Christof

    2014-06-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In "old" granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters "rooting" from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation. PMID:24657859

  7. Removal of Pesticides and Inorganic Contaminants in Anaerobic and Aerobic Biological Contactors

    EPA Science Inventory

    This presentation contains data on the removal of pesticides (acetochlor, clethodim, dicrotophos), ammonia, nitrate, bromate and perchlorate through aerobic and anaerobic biological treatment processes.

  8. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  9. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    NASA Astrophysics Data System (ADS)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  10. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process.

    PubMed

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-01-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types. PMID:27485896

  11. Evaluation of the detoxication efficiencies for acrylonitrile wastewater treated by a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process: Acute toxicity and zebrafish embryo toxicity.

    PubMed

    Na, Chunhong; Zhang, Ying; Deng, Minjie; Quan, Xie; Chen, Shuo; Zhang, Yaobin

    2016-07-01

    Acrylonitrile (ACN) wastewater generated during ACN production has been reported to be toxic to many aquatic organisms. However, few studies have evaluated toxicity removal of ACN wastewater during and after the treatment process. In this study, the detoxication ability of an ACN wastewater treatment plant (WWTP) was evaluated using Daphnia magna, Danio rerio and zebrafish embryo. This ACN WWTP has a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process upgraded from the traditional anaerobic oxic (A/O) process. Moreover, the potential toxicants of the ACN wastewaters were identified by gas chromatography-mass spectrometry (GC-MS). The raw ACN wastewater showed high acute and embryo toxicity. 3-Cyanopyridine, succinonitrile and a series of nitriles were detected as the toxic contributors of ACN wastewater. The A/O process was effective for the acute and embryo toxicity removal, as well as the organic toxicants. However, the A/O effluent still showed acute and embryo toxicity which was attributed by the undegraded and the newly generated toxicants during the A/O process. The residual acute and embryo toxicity as well as the organic toxicants in the A/O effluent were further reduced after going through the downstream ABFT process system. The final effluent displayed no significant acute and embryo toxicity, and less organic toxicants were detected in the final effluent. The upgrade of this ACN WWTP results in the improved removal efficiencies for acute and embryo toxicity, as well as the organic toxicants. PMID:27037768

  12. The Lomagundi Event Marks Post-Pasteur Point Evolution of Aerobic Respiration: A Hypothesis

    NASA Astrophysics Data System (ADS)

    Raub, T. D.; Kirschvink, J. L.; Nash, C. Z.; Raub, T. M.; Kopp, R. E.; Hilburn, I. A.

    2009-05-01

    All published early Earth carbon cycle models assume that aerobic respiration is as ancient as oxygenic photosynthesis. However, aerobic respiration shuts down at oxygen concentrations below the Pasteur Point, (.01 of the present atmospheric level, PAL). As geochemical processes are unable to produce even local oxygen concentrations above .001 PAL, it follows that aerobic respiration could only have evolved after oxygenic photosynthesis, implying a time gap. The evolution of oxygen reductase-utilizing metabolisms presumably would have occupied this interval. During this time the PS-II-generated free oxygen would have been largely unavailable for remineralization of dissolved organic carbon and so would have profoundly shifted the burial ratio of organic/inorganic carbon. We argue that the sequential geological record of the Makganyene (Snowball?) glaciation (2.3-2.22), the exessively aerobic Hekpoort and coeval paleosols, the Lomagundi-Jatuli carbon isotopic excursion (ending 2.056 Ga), and the deposition of concentrated, sedimentary organic carbon (shungite) mark this period of a profoundly unbalanced global carbon cycle. The Kopp et al. (2005) model for oxyatmoversion agrees with phylogenetic evidence for the radiation of cyanobacteria followed closely by the radiation of gram-negative lineages containing magnetotactic bacteria, which depend upon vertical oxygen gradients. These organisms include delta-Proteobacteria from which the mitochondrial ancestor originated. The Precambrian carbon cycle was rebalanced after a series of biological innovations allowed utilization of the high redox potential of free oxygen. Aerobic respiration in mitochondria required the evolution of a unique family of Fe-Cu oxidases, one of many factors contributing to the >210 Myr delay between the Makganyene deglaciation and the end of the Lomagundi-Jatuli event. We speculate that metalliferious fluids associated with the eruption of the Bushveld complex facilitated evolution of these

  13. Development of large area, low-cost, solar cell processing sequence

    NASA Technical Reports Server (NTRS)

    Chitre, S.; Donon, J.

    1981-01-01

    A cost effective process based on state-of-the-art technology has been developed for the production of large-area (55 sq cm and larger) solar cells. The process is capable of providing silicon and polysilicon cell efficiencies in excess of 10% at an overall cost of 12 c/watt in 1980 dollars. The process provides large throughputs and is suitable for complete automation with high yields. Various stages of the process development are discussed.

  14. [Heterotrophic Nitrification and Aerobic Denitrification of the Hypothermia Aerobic Denitrification Bacterium: Arthrobacter arilaitensis].

    PubMed

    He, Teng-xia; Ni, Jiu-pai; Li, Zhen-lun; Sun, Quan; Ye Qing; Xu, Yi

    2016-03-15

    High concentrations of ammonium, nitrate and nitrite nitrogen were employed to clarify the abilities of heterotrophic nitrification and aerobic denitrification of Arthrobacter arilaitensis strain Y-10. Meanwhile, by means of inoculating the strain suspension into the mixed ammonium and nitrate, ammonium and nitrite nitrogen simulated wastewater, we studied the simultaneous nitrification and denitrification ability of Arthrobacter arilaitensis strain Y-10. In addition, cell optical density was assayed in each nitrogen removal process to analyze the relationship of cell growth and nitrogen removal efficiency. The results showed that the hypothermia denitrification strain Arthrobacter arilaitensis Y-10 exhibited high nitrogen removal efficiency during heterotrophic nitrification and aerobic denitrification. The ammonium, nitrate and nitrite removal rates were 65.0%, 100% and 61.2% respectively when strain Y-10 was cultivated for 4 d at 15°C with initial ammonium, nitrate and nitrite nitrogen concentrations of 208.43 mg · L⁻¹, 201.16 mg · L⁻¹ and 194.33 mg · L⁻¹ and initial pH of 7.2. Nitrite nitrogen could only be accumulated in the medium containing nitrate nitrogen during heterotrophic nitrification and aerobic denitrification process. Additionally, the ammonium nitrogen was mainly removed in the inorganic nitrogen mixed synthetic wastewater. In short, Arthrobacter arilaitensis Y-10 could conduct nitrification and denitrification effectively under aerobic condition and the ammonium nitrogen removal rate was more than 80.0% in the inorganic nitrogen mixed synthetic wastewater. PMID:27337904

  15. Aerobic capacity is correlated with the ranking of boxers.

    PubMed

    Bruzas, Vidas; Stasiulis, Arvydas; Cepulenas, Algirdas; Mockus, Pranas; Statkeviciene, Birute; Subacius, Vitalijus

    2014-08-01

    The goal was to assess the aerobic capacity of boxers and its relation with sport mastery. Participants were 12 boxers from the Lithuanian national team (VO₂max - 58.03 ± 3.00 ml/kg/min) of different weight classes. Their sport mastery ranking was established according to their achieved results during the last years of participation in amateur boxing contests. In a graduated treadmill running test, the boxers' aerobic capacity indices were established. Running speed at first and second ventilatory thresholds, VO₂max, and maximal oxygen pulse had moderate to strong correlations with the boxers' sport mastery ranking. Aerobic capacity is an important fitness component of boxers in all weight categories. Special attention should be paid to development of cardiac capacity in the boxers' training processes, as with aerobic power and anaerobic threshold training. PMID:25153738

  16. The EPS characteristics of sludge in an aerobic granule membrane bioreactor.

    PubMed

    Xuan, Wang; Bin, Zhang; Zhiqiang, Shen; Zhigang, Qiu; Zhaoli, Chen; Min, Jin; Junwen, Li; Jingfeng, Wang

    2010-11-01

    The relationship between extracellular polymerase substances (EPS) and sludge characteristic were investigated by extraction and analysis of EPS in different size biomass and membrane fouling in an aerobic granule membrane bioreactor (GMBR). The results indicated that the contents of EPS, polysaccharides and proteins in large granules (particle diameter, d>0.45mm) were significantly lower than that in small granules (d<0.45mm) and flocculent sludge. In addition, the content of EPS in membrane fouling was more than that in suspended biomass. For flocculent sludge, the sedimentation and filtering performance decreased markedly as increasing EPS content. However, for granular sludge, there was no significant correlation between EPS content and sludge characteristics. Furthermore, application of aerobic granule can improve sludge filtering properties and delay the process of membrane fouling, as a result of better morphological structure and lower EPS content. PMID:20566286

  17. Ecology of the Microbial Community Removing Phosphate from Wastewater under Continuously Aerobic Conditions in a Sequencing Batch Reactor▿

    PubMed Central

    Ahn, Johwan; Schroeder, Sarah; Beer, Michael; McIlroy, Simon; Bayly, Ronald C.; May, John W.; Vasiliadis, George; Seviour, Robert J.

    2007-01-01

    All activated sludge systems for removing phosphate microbiologically are configured so the biomass is cycled continuously through alternating anaerobic and aerobic zones. This paper describes a novel aerobic process capable of decreasing the amount of phosphate from 10 to 12 mg P liter−1 to less than 0.1 mg P liter−1 (when expressed as phosphorus) over an extended period from two wastewaters with low chemical oxygen demand. One wastewater was synthetic, and the other was a clarified effluent from a conventional activated sludge system. Unlike anaerobic/aerobic enhanced biological phosphate removal (EBPR) processes where the organic substrates and the phosphate are supplied simultaneously to the biomass under anaerobic conditions, in this aerobic process, the addition of acetate, which begins the feed stage, is temporally separated from the addition of phosphate, which begins the famine stage. Conditions for establishing this process in a sequencing batch reactor are detailed, together with a description of the changes in poly-β-hydroxyalkanoate (PHA) and poly(P) levels in the biomass occurring under the feed and famine regimes, which closely resemble those reported in anaerobic/aerobic EBPR processes. Profiles obtained with denaturing gradient gel electrophoresis were very similar for communities fed both wastewaters, and once established, these communities remained stable over prolonged periods of time. 16S rRNA-based clone libraries generated from the two communities were also very similar. Fluorescence in situ hybridization (FISH)/microautoradiography and histochemical staining revealed that “Candidatus Accumulibacter phosphatis” bacteria were the dominant poly(P)-accumulating organisms (PAO) in both communities, with the phenotype expected for PAO. FISH also identified large numbers of betaproteobacterial Dechloromonas and alphaproteobacterial tetrad-forming organisms related to Defluviicoccus in both communities, but while these organisms assimilated

  18. The mechanistic basis of aerobic performance variation in red junglefowl.

    PubMed

    Hammond, K A; Chappell, M A; Cardullo, R A; Lin, R; Johnsen, T S

    2000-07-01

    We examined aerobic performance, organ and muscle mass and enzymatic activity in red junglefowl (Gallus gallus). We tested three models of performance limitation (central limits, peripheral limits, symmorphosis) and explored relationships between basal metabolic rate (BMR), aerobic capacity ( V (O2max)) and social rank. Males had a lower BMR, a higher V (O2max) and a greater aerobic scope than females. Females possessed larger peritoneal and reproductive organs, while males had larger hearts, lungs and leg muscles. In females, BMR was correlated with spleen mass and V (O2max) was correlated with hematocrit and large intestine mass. Male BMR was correlated with intestinal tract and lung mass, and V (O2max) was correlated with heart and pectoralis mass. Male citrate synthase activity averaged 57 % higher than that of females and was correlated with V (O2max) (this correlation was not significant in females). Female social status was not correlated with any variable, but male dominance was associated with higher aerobic scope, larger heart and lungs, smaller peritoneal organs and greater leg citrate synthase activity. We conclude that aerobic capacity is controlled by system-wide limitations (symmorphosis) in males, while in females it is controlled by central organs. In neither sex is elevated aerobic capacity associated with increased maintenance costs. PMID:10851122

  19. Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.

  20. Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.

  1. Forecast of Large Earthquakes Through Semi-periodicity Analysis of Labeled Point Processes - Semi-Periodicity Analysis of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Quinteros Cartaya, C. B.; Nava Pichardo, F. A.; Glowacka, E.; Gómez Treviño, E.; Dmowska, R.

    2016-07-01

    Large earthquakes have semi-periodic behavior as a result of critically self-organized processes of stress accumulation and release in seismogenic regions. Hence, large earthquakes in a given region constitute semi-periodic sequences with recurrence times varying slightly from periodicity. In previous papers, it has been shown that it is possible to identify these sequences through Fourier analysis of the occurrence time series of large earthquakes from a given region, by realizing that not all earthquakes in the region need belong to the same sequence, since there can be more than one process of stress accumulation and release in the region. Sequence identification can be used to forecast earthquake occurrence with well determined confidence bounds. This paper presents improvements on the above mentioned sequence identification and forecasting method: the influence of earthquake size on the spectral analysis, and its importance in semi-periodic events identification are considered, which means that earthquake occurrence times are treated as a labeled point process; a revised estimation of non-randomness probability is used; a better estimation of appropriate upper limit uncertainties to use in forecasts is introduced; and the use of Bayesian analysis to evaluate the posterior forecast performance is applied. This improved method was successfully tested on synthetic data and subsequently applied to real data from some specific regions. As an example of application, we show the analysis of data from the northeastern Japan Arc region, in which one semi-periodic sequence of four earthquakes with M ≥ 8.0, having high non-randomness probability was identified. We compare the results of this analysis with those of the unlabeled point process analysis.

  2. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs.

    PubMed

    Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S

    2014-10-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750

  3. Aerobic Requirements for Moving Handweights through Various Ranges of Motion While Walking.

    ERIC Educational Resources Information Center

    Auble, Thomas E.; And Others

    1987-01-01

    Comparison of the aerobic metabolic requirements of normal walking with and without 1-, 2-, and 3-pound handweights among nine adult males indicated that walking while moving handweights through large ranges of motion provides a combined upper and lower body aerobic stimulus that is sufficient for endurance training for persons with poor to…

  4. Large-scale regional comparisons of ecosystem processes: Methods and approaches

    NASA Astrophysics Data System (ADS)

    Legendre, Louis; Niquil, Nathalie

    2013-01-01

    Large-scale regional marine ecosystems can be compared for various processes that include their structure and biodiversity, functioning, services, and effects on biogeochemical processes. The comparisons can proceed from data up, or from conceptual models down, or from a combination of models and data. This study proposes a typology of methods and approaches that are currently used, or could possibly be used for making large-scale ecosystem comparisons. The various methods and approaches are illustrated with examples drawn from the literature.

  5. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  6. An Effective Methodology for Processing and Analyzing Large, Complex Spacecraft Data Streams

    ERIC Educational Resources Information Center

    Teymourlouei, Haydar

    2013-01-01

    The emerging large datasets have made efficient data processing a much more difficult task for the traditional methodologies. Invariably, datasets continue to increase rapidly in size with time. The purpose of this research is to give an overview of some of the tools and techniques that can be utilized to manage and analyze large datasets. We…

  7. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  8. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  9. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  10. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  11. The ATAMM procedure model for concurrent processing of large grained control and signal processing algorithms

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.

    1988-01-01

    An overview is presented of a model for describing data and control flow associated with the execution of large-grained, decision-free algorithms in a special distributed computer environment. The ATAMM (Algorithm-To-Architecture Mapping Model) model provides a basis for relating an algorithm to its execution in a dataflow multicomputer environment. The ATAMM model features a marked graph Petri net description of the algorithm behavior with regard to both data and control flow. The model provides an analytical basis for calculating performance bounds on throughput characteristics which are demonstrated here.

  12. Taxonomy of Aerobic Marine Eubacteria

    PubMed Central

    Baumann, Linda; Baumann, Paul; Mandel, M.; Allen, Richard D.

    1972-01-01

    Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are

  13. Taxonomy of aerobic marine eubacteria.

    PubMed

    Baumann, L; Baumann, P; Mandel, M; Allen, R D

    1972-04-01

    Two hundred and eighteen strains of nonfermentative marine bacteria were submitted to an extensive morphological, physiological, and nutritional characterization. All the strains were gram-negative, straight or curved rods which were motile by means of polar or peritrichous flagella. A wide variety of organic substrates served as sole sources of carbon and energy. The strains differed extensively in their nutritional versatility, being able to utilize from 11 to 85 carbon compounds. Some strains had an extracellular amylase, gelatinase, lipase, or chitinase and were able to utilize n-hexadecane and to denitrify. None of the strains had a yellow, cell-associated pigment or a constitutive arginine dihydrolase system, nor were they able to hydrolyze cellulose or agar. The results of the physiological and nutritional characterization were submitted to a numerical analysis which clustered the strains into 22 groups on the basis of phenotypic similarities. The majority of these groups were separable by a large number of unrelated phenotypic traits. Analysis of the moles per cent guanine plus cytosine (GC) content in the deoxyribonucleic acid of representative strains indicated that the peritrichously flagellated groups had a GC content of 53.7 to 67.8 moles%; polarly flagellated strains had a GC content of 30.5 to 64.7 moles%. The peritrichously flagellated groups were assigned to the genus Alcaligenes. The polarly flagellated groups, which had a GC content of 43.2 to 48.0 moles%, were placed into a newly created genus, Alteromonas; groups which had a GC content of 57.8 to 64.7 moles% were placed into the genus Pseudomonas; and the remaining groups were left unassigned. Twelve groups were given the following designations: Alteromonas communis, A. vaga, A. macleodii, A. marinopraesens, Pseudomonas doudoroffi, P. marina, P. nautica, Alcaligenes pacificus, A. cupidus, A. venustus, and A. aestus. The problems of assigning species of aerobic marine bacteria to genera are

  14. Cost-effectiveness analysis of TOC removal from slaughterhouse wastewater using combined anaerobic-aerobic and UV/H2O2 processes.

    PubMed

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar

    2014-02-15

    The objective of this study is to evaluate the operating costs of treating slaughterhouse wastewater (SWW) using combined biological and advanced oxidation processes (AOPs). This study compares the performance and the treatment capability of an anaerobic baffled reactor (ABR), an aerated completely mixed activated sludge reactor (AS), and a UV/H2O2 process, as well as their combination for the removal of the total organic carbon (TOC). Overall efficiencies are found to be up to 75.22, 89.47, 94.53, 96.10, 96.36, and 99.98% for the UV/H2O2, ABR, AS, combined AS-ABR, combined ABR-AS, and combined ABR-AS-UV/H2O2 processes, respectively. Due to the consumption of electrical energy and reagents, operating costs are calculated at optimal conditions of each process. A cost-effectiveness analysis (CEA) is performed at optimal conditions for the SWW treatment by optimizing the total electricity cost, H2O2 consumption, and hydraulic retention time (HRT). The combined ABR-AS-UV/H2O2 processes have an optimal TOC removal of 92.46% at an HRT of 41 h, a cost of $1.25/kg of TOC removed, and $11.60/m(3) of treated SWW. This process reaches a maximum TOC removal of 99% in 76.5 h with an estimated cost of $2.19/kg TOC removal and $21.65/m(3) treated SWW, equivalent to $6.79/m(3) day. PMID:24486468

  15. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.

    PubMed

    Reddy, M Venkateswar; Mohan, S Venkata

    2012-01-01

    The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. PMID:22055090

  16. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    PubMed

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  17. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  18. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  19. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. PMID:23871253

  20. "Aerobic" Writing: A Writing Practice Model.

    ERIC Educational Resources Information Center

    Crisp, Sally Chandler

    "Aerobic writing" is a writing center strategy designed to keep students in writing "shape." Like aerobic exercise, aerobic writing is sustained for a certain length of time and done on a regular basis at prescribed time intervals. The program requires students to write at least two times a week for approximately an hour each time. Students write,…

  1. Arthritis and Aerobic Exercise: A Review.

    ERIC Educational Resources Information Center

    Ike, Robert W.; And Others

    1989-01-01

    Arthritic patients who regularly do aerobic exercise make significant gains in aerobic and functional status, and in subjective areas like pain tolerance and mood. Still, they are often advised to curtail physical activity. Guidelines are presented for physicians prescribing aerobic exercise. An exercise tolerance test is recommended. (SM)

  2. Occurrence and removal of six pharmaceuticals and personal care products in a wastewater treatment plant employing anaerobic/anoxic/aerobic and UV processes in Shanghai, China.

    PubMed

    Wang, Dan; Sui, Qian; Lu, Shu-Guang; Zhao, Wen-Tao; Qiu, Zhao-Fu; Miao, Zhou-Wei; Yu, Gang

    2014-03-01

    The occurrence and removal of six pharmaceuticals and personal care products (PPCPs) including caffeine (CF), N, N-diethyl-meta-toluamide (DEET), carbamazepine, metoprolol, trimethoprim (TMP), and sulpiride in a municipal wastewater treatment plant (WWTP) in Shanghai, China were studied in January 2013; besides, grab samples of the influent were also taken every 6 h, to investigate the daily fluctuation of the wastewater influent. The results showed the concentrations of the investigated PPCPs ranged from 17 to 11,400 ng/L in the WWTP. A low variability of the PPCP concentrations in the wastewater influent throughout the day was observed, with the relative standard deviations less than 25 % for most samples. However, for TMP and CF, the slight daily fluctuation still reflected their consumption patterns. All the target compounds except CF and DEET, exhibited poor removal efficiencies (<40 %) by biological treatment process, probably due to the low temperature in the bioreactor, which was unfavorable for activated sludge. While for the two biodegradable PPCPs, CF, and DEET, the anaerobic and oxic tank made contributions to their removal while the anoxic tank had a negative effect to their elimination. The tertiary UV treatment removed the investigated PPCPs by 5-38 %, representing a crucial polishing step to compensate for the poor removal by the biologic treatment process in winter. PMID:24306725

  3. Large break frequency for the SRS (Savannah River Site) production reactor process water system

    SciTech Connect

    Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Bush, S.H.; Review and Synthesis Associates, Richland, WA )

    1989-01-01

    The objective of this paper is to present the results and conclusions of an evaluation of the large break frequency for the process water system (primary coolant system), including the piping, reactor tank, heat exchangers, expansion joints and other process water, system components. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break. This evaluation encompasses three specific areas: the failure probability of large process water piping directly from imposed loads, the indirect failure probability of piping caused by the seismic-induced failure of surrounding structures, and the failure of all other process water components. The first two of these areas are discussed in detail in other papers. This paper primarily addresses the failure frequency of components other than piping, and includes the other two areas as contributions to the overall process water system break frequency. 6 refs., 2 figs., 1 tab.

  4. Medical Students Perceive Better Group Learning Processes when Large Classes Are Made to Seem Small

    PubMed Central

    Hommes, Juliette; Arah, Onyebuchi A.; de Grave, Willem; Schuwirth, Lambert W. T.; Scherpbier, Albert J. J. A.; Bos, Gerard M. J.

    2014-01-01

    Objective Medical schools struggle with large classes, which might interfere with the effectiveness of learning within small groups due to students being unfamiliar to fellow students. The aim of this study was to assess the effects of making a large class seem small on the students' collaborative learning processes. Design A randomised controlled intervention study was undertaken to make a large class seem small, without the need to reduce the number of students enrolling in the medical programme. The class was divided into subsets: two small subsets (n = 50) as the intervention groups; a control group (n = 102) was mixed with the remaining students (the non-randomised group n∼100) to create one large subset. Setting The undergraduate curriculum of the Maastricht Medical School, applying the Problem-Based Learning principles. In this learning context, students learn mainly in tutorial groups, composed randomly from a large class every 6–10 weeks. Intervention The formal group learning activities were organised within the subsets. Students from the intervention groups met frequently within the formal groups, in contrast to the students from the large subset who hardly enrolled with the same students in formal activities. Main Outcome Measures Three outcome measures assessed students' group learning processes over time: learning within formally organised small groups, learning with other students in the informal context and perceptions of the intervention. Results Formal group learning processes were perceived more positive in the intervention groups from the second study year on, with a mean increase of β = 0.48. Informal group learning activities occurred almost exclusively within the subsets as defined by the intervention from the first week involved in the medical curriculum (E-I indexes>−0.69). Interviews tapped mainly positive effects and negligible negative side effects of the intervention. Conclusion Better group learning processes can be

  5. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide

    PubMed Central

    Takaya, Naoki; Catalan-Sakairi, Maria Antonina B.; Sakaguchi, Yasushi; Kato, Isao; Zhou, Zhemin; Shoun, Hirofumi

    2003-01-01

    Most denitrifiers produce nitrous oxide (N2O) instead of dinitrogen (N2) under aerobic conditions. We isolated and characterized novel aerobic denitrifiers that produce low levels of N2O under aerobic conditions. We monitored the denitrification activities of two of the isolates, strains TR2 and K50, in batch and continuous cultures. Both strains reduced nitrate (NO3−) to N2 at rates of 0.9 and 0.03 μmol min−1 unit of optical density at 540 nm−1 at dissolved oxygen (O2) (DO) concentrations of 39 and 38 μmol liter−1, respectively. At the same DO level, the typical denitrifier Pseudomonas stutzeri and the previously described aerobic denitrifier Paracoccus denitrificans did not produce N2 but evolved more than 10-fold more N2O than strains TR2 and K50 evolved. The isolates denitrified NO3− with concomitant consumption of O2. These results indicated that strains TR2 and K50 are aerobic denitrifiers. These two isolates were taxonomically placed in the β subclass of the class Proteobacteria and were identified as P. stutzeri TR2 and Pseudomonas sp. strain K50. These strains should be useful for future investigations of the mechanisms of denitrifying bacteria that regulate N2O emission, the single-stage process for nitrogen removal, and microbial N2O emission into the ecosystem. PMID:12788710

  6. Removal of the anti-cancer drug methotrexate from water by advanced oxidation processes: Aerobic biodegradation and toxicity studies after treatment.

    PubMed

    Lutterbeck, Carlos Alexandre; Baginska, Ewelina; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-12-01

    Anti-cancer drugs are discussed as high risk substances in regard to human health and considered as problematic for the environment. They are of potential environmental relevance due to their poor biodegradability and toxicological properties. Methotrexate (MTX) is an antimetabolite that was introduced in the pharmaceutical market in the 40's and still today is one of the most consumed cytotoxic compounds around the world. In the present study MTX was only partially biodegraded in the closed bottle test (CBT). Therefore, it was submitted to three different advanced oxidation processes (AOPs): UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. The irradiation was carried out with a Hg medium-pressure lamp during 256min whereas the analytical monitoring was done through LC-UV-MS/MS and DOC analysis. MTX was easily removed in all the irradiation experiments, while the highest mineralization values and rates were achieved by the UV/Fe(2+)/H2O2 treatment. The lowest resulted from the UV/H2O2 reactions. The UV/H2O2 treatment resulted in little biodegradable transformation products (TPs). However, the same treatment resulted in a reduction of the toxicity of MTX by forming less toxic TPs. Analysis by LC-UV-MS/MS revealed the existence of nine TPs formed during the photo-catalytic treatments. The pH of the solutions decreased from 6.4 (t 0min) to 5.15 in the UV/H2O2 and from 6.4 (t 0min) to 5.9 in the UV/TiO2 at the end of the experiments. The initial pH of the UV/Fe(2+)/H2O2 experiments was adjusted to 5 and after the addition of H2O2 the pH decreased to around 3 and remained in this range until the end of the treatments. PMID:26298026

  7. Characterization and aerobic biodegradation of selected monoterpenes

    SciTech Connect

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M.

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  8. ANGEL program: Solution of large systems of linear differential equations describing nonstationary processes using CUDA technology

    SciTech Connect

    Moryakov, A. V. Pylyov, S. S.

    2012-12-15

    This paper presents the formulation of the problem and the methodical approach for solving large systems of linear differential equations describing nonstationary processes with the use of CUDA technology; this approach is implemented in the ANGEL program. Results for a test problem on transport of radioactive products over loops of a nuclear power plant are given. The possibilities for the use of the ANGEL program for solving various problems that simulate arbitrary nonstationary processes are discussed.

  9. Large Scale GPS Processing at ESOC for LEO, GNSS and Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Boomkamp, H.; Dow, J.

    2003-12-01

    Most POD systems that are used in GPS data analysis, for instance in routine IGS processing, are large FORTRAN programs that have evolved from early generation systems over many years of use. These systems do not exploit the advantages of modern software engineering technology, and their limited processing efficiency constrains their application to emerging large-scale GPS processes, like real-time GPS, high-rate data processing or combined solutions for LEO + MEO constellations. In support of such high-performance applications, the ESOC IGS Analysis Centre is developing a new POD system based on the latest software engineering methods. This system is optimised in its use of both CPU and memory, following fundamental rules of minimum information containment that are more commonly found in internet search engines or artificial intelligence applications. Although this new system still has an experimental status it is expected to augment the GPS data processing capacity at ESOC by at least one order of magnitude. Some innovative concepts behind the system will be presented, together with first examples of GPS processes that until now were prohibitively large or slow.

  10. Lipid Biomarkers Indicating Aerobic Methanotrophy at Ancient Marine Methane- Seeps

    NASA Astrophysics Data System (ADS)

    Birgel, D.; Peckmann, J.

    2007-12-01

    The inventory of lipid biomarkers of a number of ancient methane-seep limestones has been studied over the last decade. The molecular fingerprints of the chemosynthesis-based microbial communities tend to be extremely well-preserved in these limestones. The key process at seeps is the anaerobic oxidation of methane, performed by consortia of sulfate-reducing bacteria and methanotrophic archaea. Compounds preserved within modern and ancient seep settings comprise C-13-depleted lipid biomarkers. Besides the occurrence of C-13- depleted isoprenoids (archaea) and n-alkyl-chains (bacteria), C-13-depleted hopanoids have been reported in seep limestones. Here, lipid biomarker data are presented from three ancient methane-seep limestones embedded in Miocene and Campanian strata. These examples provide strong evidence that methane was not solely oxidized by an anaerobic process. In a Miocene limestone, 3-beta-methylated hopanoids were found (delta C-13: -100 per mil). Most likely, 3-beta-methylated hopanepolyols, prevailing in aerobic methanotrophs were the precursor lipids. In another Miocene limestone, a series of C-13-depleted 4-methylated steranes (lanostanes; -80 to -70 per mil) is derived from aerobic methanotrophs. Lanosterol is the most likely precursor of lanostanes, known to be produced by aerobic methanotrophs, some of which are outstanding among bacteria in having the capacity to produce steroids. In a Campanian seep limestone a suite of conspicuous secohexahydrobenzohopanes (-110 to -107 per mil) is found. These hopanoids probably represent early degradation products of seep-endemic aerobic methanotrophs. This interpretation is supported by the presence of "regular" hopanoids that can be discriminated from the unusual secohexahydrobenzohopanes by only moderately low delta C-13 values (-49 to -42 per mil). Structural and carbon isotope data reveal that aerobic methanotrophy is more common at ancient methane- seeps than previously noticed. Our data indicate that

  11. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    PubMed Central

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  12. TRANSIENT ACCIDENT ANALYSIS OF THE GLOVEBOX SYSTEM IN A LARGE PROCESS ROOM

    SciTech Connect

    Lee, S

    2008-01-11

    Local transient hydrogen concentrations were evaluated inside a large process room when the hydrogen gas was released by three postulated accident scenarios associated with the process tank leakage and fire leading to a loss of gas confinement. The three cases considered in this work were fire in a room, loss of confinement from a process tank, and loss of confinement coupled with fire event. Based on these accident scenarios in a large and unventilated process room, the modeling calculations of the hydrogen migration were performed to estimate local transient concentrations of hydrogen due to the sudden leakage and release from a glovebox system associated with the process tank. The modeling domain represented the major features of the process room including the principal release or leakage source of gas storage system. The model was benchmarked against the literature results for key phenomena such as natural convection, turbulent behavior, gas mixing due to jet entrainment, and radiation cooling because these phenomena are closely related to the gas driving mechanisms within a large air space of the process room. The modeling results showed that at the corner of the process room, the gas concentrations migrated by the Case 2 and Case 3 scenarios reached the set-point value of high activity alarm in about 13 seconds, while the Case 1 scenario takes about 90 seconds to reach the concentration. The modeling results were used to estimate transient radioactive gas migrations in an enclosed process room installed with high activity alarm monitor when the postulated leakage scenarios are initiated without room ventilation.

  13. Aerobic Glycolysis in Osteoblasts

    PubMed Central

    Esen, Emel; Long, Fanxin

    2014-01-01

    Osteoblasts, the chief bone-making cells in the body, are a focus of osteoporosis research. Although teriparatite, a synthetic fragment of the human parathyroid hormone (PTH), has been an effective bone anabolic drug, there remains a clinical need for additional therapeutics that safely stimulates osteoblast number and function. Work in the past several decades has provided unprecedented clarity about the roles of growth factors and transcription factors in regulating osteoblast differentiation and activity, but whether these factors may regulate cellular metabolism to influence cell fate and function has been largely unexplored. The past few years have witnessed a resurgence of interest in the cellular metabolism of osteoblasts, with the hope that elucidation of their metabolic profile may open new avenues for developing bone anabolic agents. Here we review the current understanding about glucose metabolism in osteoblasts. PMID:25200872

  14. Optimized algorithm module for large volume remote sensing image processing system

    NASA Astrophysics Data System (ADS)

    Jing, Changfeng; Liu, Nan; Liu, Renyi; Wang, Jiawen; Zhang, Qin

    2007-12-01

    A new remote sensing image processing system's algorithm module has been introduced in this paper, which is coded with Visual C++ 6.0 program language and can process large volume of remote sensing image. At the same time, adopted key technologies in algorithm module are given. Two defects of American remote sensing image processing system called ERDAS has been put forward in image filter algorithm and the storage of pixel values that are out of data type range. In author's system two optimized methods has been implemented in these two aspects. By contrasted with ERDAS IMAGINE System, the two methods had been proved to be effective in image analysis.

  15. Parallel processing of large datasets from NanoLC-FTICR-MS measurements.

    PubMed

    van der Burgt, Y E M; Taban, I M; Konijnenburg, M; Biskup, M; Duursma, M C; Heeren, R M A; Römpp, A; van Nieuwpoort, R V; Bal, H E

    2007-01-01

    A new approach for automatic parallel processing of large mass spectral datasets in a distributed computing environment is demonstrated to significantly decrease the total processing time. The implementation of this novel approach is described and evaluated for large nanoLC-FTICR-MS datasets. The speed benefits are determined by the network speed and file transfer protocols only and allow almost real-time analysis of complex data (e.g., a 3-gigabyte raw dataset is fully processed within 5 min). Key advantages of this approach are not limited to the improved analysis speed, but also include the improved flexibility, reproducibility, and the possibility to share and reuse the pre- and postprocessing strategies. The storage of all raw data combined with the massively parallel processing approach described here allows the scientist to reprocess data with a different set of parameters (e.g., apodization, calibration, noise reduction), as is recommended by the proteomics community. This approach of parallel processing was developed in the Virtual Laboratory for e-Science (VL-e), a science portal that aims at allowing access to users outside the computer research community. As such, this strategy can be applied to all types of serially acquired large mass spectral datasets such as LC-MS, LC-MS/MS, and high-resolution imaging MS results. PMID:17055738

  16. Structure/property development in aPET during large strain, solid phase polymer processing

    NASA Astrophysics Data System (ADS)

    Martin, Peter; Mohamed, Raja Roslan Raja

    2015-12-01

    Amorphous Polyethylene terephthalate (aPET) is increasingly of interest for the polymer packaging industry due to its blend of excellent mechanical properties and most importantly its ease of recyclability. Among the major commercial polymers it is almost unique in the degree of improvement in mechanical properties that can be obtained through process-induced strain. For many years these unique properties have been very successfully exploited in the injection stretch blow molding process, where it is deliberately stretched to very large strains using extremely high pressures. However, the material is now also being used in much lower pressure processes such as thermoforming where its properties are often not fully exploited. In this work the change in structure and properties of aPET with strain is systematically investigated using a high speed biaxial stretching machine. The aim was to demonstrate how the properties of the material could be controlled by large strain, high temperature biaxial stretching processes such as thermoforming and blow molding. The results show that property changes in the material are driven by orientation and the onset of rapid strain hardening at large strains. This in turn is shown to vary strongly with process-induced parameters such as the strain rate and the mode and magnitude of biaxial deformation.

  17. WWOX loss activates aerobic glycolysis

    PubMed Central

    Abu-Remaileh, Muhannad; Seewaldt, Victoria L; Aqeilan, Rami I

    2015-01-01

    Cancer cells undergo reprogramming of glucose metabolism to limit energy production to glycolysis—a state known as “aerobic glycolysis.” Hypoxia-inducible factor 1 (HIF1α) is a transcription factor that regulates many genes responsible for this switch. As discussed here, new data suggest that the tumor suppressor WW domain-containing oxidoreductase (WWOX) modulates HIF1α, thereby regulating this metabolic state. PMID:27308416

  18. Image process technique used in a large FOV compound eye imaging system

    NASA Astrophysics Data System (ADS)

    Cao, Axiu; Shi, Lifang; Shi, Ruiying; Deng, Qiling; Du, Chunlei

    2012-11-01

    Biological inspiration has produced some successful solutions for different imaging systems. Inspired by the compound eye of insects, this paper presents some image process techniques used in the spherical compound eye imaging system. By analyzing the relationship between the system with large field of view (FOV) and each lens, an imaging system based on compound eyes has been designed, where 37 lenses pointing in different directions are arranged on a spherical substrate. By researching the relationship between the lens position and the corresponding image geometrical shape to realize a large FOV detection, the image process technique is proposed. To verify the technique, experiments are carried out based on the designed compound eye imaging system. The results show that an image with FOV over 166° can be acquired while keeping excellent image process quality.

  19. Process Design by FEM Simulation for Shape Ring Rolling of Large-Sized Ring

    NASA Astrophysics Data System (ADS)

    Lee, Y. S.; Lee, M. W.; Park, S. S.; Lee, I.; Moon, Y. H.

    2010-06-01

    Ring rolling process is usually used to fabricate large-sized ring, such as, tower flange for wind power electric generator. Many kinds of seamless ring are used in wind power electric generator and manufactured by ring rolling process. In general, final part is machined after forming with shape of plain square section. Since interests for near net shaping of seamless ring have been increased gradually because of green energy, it is necessary to develop the technology for shape ring rolling with respect to the market demands and cost. Therefore, we studied the process and die design for shape ring rolling of large sized ring over 3,500 mm out diameter by experiment and FEM simulation. Ring rolling process is very difficult to solve by FEM method because of equilibrium state and size effect, etc. Moreover, shape ring rolling is more difficult to solve the problem that two plastic deformation zones are different each other, that is main roll and conical roll. Also since conical roll has a shape, deformation velocity field is very much complex and the deformed section passed axial roll is different section and velocity field. The FE simulations are performed to analyze process variables affected in forming of profiled ring. Therefore, the main features of used FE model are: (1) it adopts a transient or unsteady state full ring mesh to model the deformation processes and shape development; (2) the mandrel and conical rolls are modeled using coupled heat-transfer elements; (3) the model involves the full process from blank through perform to final profiled ring. From these calculated results, we have proposed the mechanisms of various tools, such as mandrel and conical roll. The calculated results are compared experimental results. Calculated results can predict the tilting of profiled ring and then process variables to form large sized ring.

  20. Process Design by FEM Simulation for Shape Ring Rolling of Large-Sized Ring

    SciTech Connect

    Lee, Y. S.; Lee, M. W.; Park, S. S.; Lee, I.; Moon, Y. H.

    2010-06-15

    Ring rolling process is usually used to fabricate large-sized ring, such as, tower flange for wind power electric generator. Many kinds of seamless ring are used in wind power electric generator and manufactured by ring rolling process. In general, final part is machined after forming with shape of plain square section. Since interests for near net shaping of seamless ring have been increased gradually because of green energy, it is necessary to develop the technology for shape ring rolling with respect to the market demands and cost. Therefore, we studied the process and die design for shape ring rolling of large sized ring over 3,500 mm out diameter by experiment and FEM simulation. Ring rolling process is very difficult to solve by FEM method because of equilibrium state and size effect, etc. Moreover, shape ring rolling is more difficult to solve the problem that two plastic deformation zones are different each other, that is main roll and conical roll. Also since conical roll has a shape, deformation velocity field is very much complex and the deformed section passed axial roll is different section and velocity field. The FE simulations are performed to analyze process variables affected in forming of profiled ring. Therefore, the main features of used FE model are: (1) it adopts a transient or unsteady state full ring mesh to model the deformation processes and shape development; (2) the mandrel and conical rolls are modeled using coupled heat-transfer elements; (3) the model involves the full process from blank through perform to final profiled ring. From these calculated results, we have proposed the mechanisms of various tools, such as mandrel and conical roll. The calculated results are compared experimental results. Calculated results can predict the tilting of profiled ring and then process variables to form large sized ring.

  1. Multi-stage evolution process of large scale landslides at the Patanpunas stream, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Lang; Lee, Kuo-Chen; Lo, Chia-Ming; Weng, Meng-Chia; Lee, Shun-Min

    2016-04-01

    This study used multi-temporal terrain and remote sensing images to investigate the geomorphological evolution of the Putanpunas stream caused by large-scale landslides over the last decade. We conducted an analysis of the landslides evolution process within the study area, which included a multi-temporal terrain analysis, remote sensing interpretation, surface displacement analysis, and mechanism investigation. By integrating the results from these analyses, we provided explanations for the topographic and geomorphologic action processes of the deep-seated landslides as well as the development of the potential collapsing mechanisms within the study area. Then, discrete element method was used to simulate the process of landslide movement and deposition. The results show that the evolution process of large-scale landslides in the Putanpunas stream can be divided into four stages, namely downcutting of the stream gully and decompression of the river gully in the early stage, creep and deformation of the rock slope, sliding surface development of the deformed bands in the rock strata, and movement of the sliding mass. The results of terrain analysis and interpretation show topographical changes in the alluvial fan downstream and the deposits in the midstream and downstream segments of the Putanpunas Stream between 2005 and 2009. In 2009, torrential rainfall induced large-scale landslides that greatly altered the terrain of the Putanpunas Stream and the alluvial fan. There still exists 7.2 × 107 m3 of unstable colluvium accumulated at the slope surface and stream gully within the upstream and midstream areas. In 2012, further large-scale landslides turned the colluvial layer into debris flows that cut across the Ryukyu Terraces downstream to the downstream segment of the Laonong Stream to the southwest. This greatly changed later debris flows and alluvial fan deposits. Key Words: large-scale landslides, multi-temporal terrain, remote sensing, discrete element method

  2. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  3. Efficient development and processing of thermal math models of very large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.

    1993-01-01

    As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.

  4. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  5. Meter-Scale Large-Area Plasma Sources for Next-Generation Processes

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi

    Development of large-area high-density plasma sources with a scale length of meters is strongly desired for a variety of plasma processes, especially the flat panel display fabrications. Considering design issues for plasma production with high-frequency power sources to satisfy the requirements for enlargement of source-size exceeding a meter, the power deposition profile and hence the plasma distribution become inherently non-uniform, largely due to standing wave effects, which cannot be avoided with increasing source size when the source employs power-coupling devices (inductive antennas or capacitive electrodes) with a scale-length equivalent to or as long as the 1/4 wavelength of the HF-power transmission. In this article, these constraints associated with large-area sources are reviewed, and an inductively coupled RF plasma source with multiple low-inductance antenna (LIA) units is presented as a promising candidate to avoid the problems with conventional sources.

  6. Experience gained with development and commissioning of retrofitted process control systems for large power units

    NASA Astrophysics Data System (ADS)

    Idzon, O. M.; Grekhov, L. L.

    2009-01-01

    Experience gained for many years at ZAO Interavtomatika with work on retrofitting control and monitoring systems of large power units is summarized. Principles based on which these systems should be retrofitted are considered together with the factors influencing the choice of retrofitting option, as well as decisions on constructing a process control system during full and partial retrofitting. Recommendations are given for the optimal scope of functions that should be incorporated in the software and hardware tools of a process control system during its retrofitting.

  7. A mesh density study for application to large deformation rolling process evaluations

    SciTech Connect

    Martin, J.A.

    1997-12-01

    When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated.

  8. Load Shedding Scheme in Large Pulp Mill by Using Analytic Hierarchy Process

    NASA Astrophysics Data System (ADS)

    Goh, H. H.; Kok, B. C.; Lee, S. W.; Zin, A. A. Mohd.

    2011-06-01

    Pulp mill is one of the heavy industries that consumes large amount of electricity in its production. In particular, the breakdown of the generator would cause other generators to be overloaded. Thus, load shedding scheme is the best way in handling such condition. Selected load will be shed under this scheme in order to protect the generators from being damaged. In the meantime, the subsequence loads will be shed until the generators are sufficient to provide the power to other loads. In order to determine the sequences of load shedding scheme, analytic hierarchy process (AHP) is introduced. Analytic Hierarchy Process is one of the multi-criteria decision making methods. By using this method, the priority of the load can be determined. This paper presents the theory of the alternative methods to choose the load priority in load shedding scheme for a large pulp mill.

  9. Curbing variations in packaging process through Six Sigma way in a large-scale food-processing industry

    NASA Astrophysics Data System (ADS)

    Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar

    2015-08-01

    Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.

  10. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  11. Detecting biotic and hydrogeochemical processes in large peat basins with Landsat TM imagery

    NASA Technical Reports Server (NTRS)

    Glaser, Paul H.

    1989-01-01

    A survey was made of three large peat basins in boreal North America with Landsat TM imagery and field sampling. False-color composites composed of Bands 2, 3, and 4 are particularly effective in discriminating the major vegetation types and the important hydrogeochemical processes in these peatlands. This imagery indicates that the discharge of alkaline groundwater provides one of the most important regional and local controls on peatland development.

  12. A hermetic sealing process for large irregularly shaped hybrid microcircuit enclosures

    NASA Technical Reports Server (NTRS)

    Stahler, M. R.

    1977-01-01

    A system for sealing vacuum baked hybrids in a dry inert atmosphere using an overlapping spot resistance weld is described. A unique electrode configuration and fixturing that permits sealing of large and irregularly shaped gold plated Kovar packages to the hermeticity requirements of MIL-STD-883 was discussed. Metallurgical considerations and comparisons to laser sealing were made. Problems encountered during the development and optimization of the process were highlighted. Solutions to plating, fixturing, warpage, weld splatter and cracked bead problems are presented.

  13. Large Data at Small Universities: Astronomical processing using a computer classroom

    NASA Astrophysics Data System (ADS)

    Fuller, Nathaniel James; Clarkson, William I.; Fluharty, Bill; Belanger, Zach; Dage, Kristen

    2016-06-01

    The use of large computing clusters for astronomy research is becoming more commonplace as datasets expand, but access to these required resources is sometimes difficult for research groups working at smaller Universities. As an alternative to purchasing processing time on an off-site computing cluster, or purchasing dedicated hardware, we show how one can easily build a crude on-site cluster by utilizing idle cycles on instructional computers in computer-lab classrooms. Since these computers are maintained as part of the educational mission of the University, the resource impact on the investigator is generally low.By using open source Python routines, it is possible to have a large number of desktop computers working together via a local network to sort through large data sets. By running traditional analysis routines in an “embarrassingly parallel” manner, gains in speed are accomplished without requiring the investigator to learn how to write routines using highly specialized methodology. We demonstrate this concept here applied to 1. photometry of large-format images and 2. Statistical significance-tests for X-ray lightcurve analysis. In these scenarios, we see a speed-up factor which scales almost linearly with the number of cores in the cluster. Additionally, we show that the usage of the cluster does not severely limit performance for a local user, and indeed the processing can be performed while the computers are in use for classroom purposes.

  14. Modern approaches to processing large hyperspectral and multispectral aerospace data flows

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.

    2014-12-01

    We consider approaches to processing large hyperspectral and multispectral imaging flows produced in aerospace monitoring for solving a wide range of problems of management of natural resources, environmental security, prevention of natural disasters and technogenic accidents, as well as problems of real economy, and basic and applied sciences. We analyze the specific features of the phases of hyperspectral data analysis and describe a software and hardware system that uses new and improved methods and algorithms for processing large flows of hyperspectral and other aerospace data and has a high-performance computer. This system contains different types of software for identifying the types of given objects by solving inverse problems of remote sensing as well as by analyzing their qualitative and quantitative characteristics, combined multiparameter processing of hyperspectral aerospace data, tracking the local changes including those related to changes in meteorological conditions and vegetation periods, detecting and identifying the types of small objects on the basis of analysis of individual parts of the image, detecting and identifying heat sources, etc. We bring examples of processing of hyperspectral and multispectral satellite images with the help of software and hardware tools developed.

  15. Brain aerobic glycolysis and motor adaptation learning

    PubMed Central

    Shannon, Benjamin J.; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G.; Shimony, Joshua S.; Rutlin, Jerrel; Raichle, Marcus E.

    2016-01-01

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual–motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  16. Brain aerobic glycolysis and motor adaptation learning.

    PubMed

    Shannon, Benjamin J; Vaishnavi, Sanjeev Neil; Vlassenko, Andrei G; Shimony, Joshua S; Rutlin, Jerrel; Raichle, Marcus E

    2016-06-28

    Ten percent to 15% of glucose used by the brain is metabolized nonoxidatively despite adequate tissue oxygenation, a process termed aerobic glycolysis (AG). Because of the known role of glycolysis in biosynthesis, we tested whether learning-induced synaptic plasticity would lead to regionally appropriate, learning-dependent changes in AG. Functional MRI (fMRI) before, during, and after performance of a visual-motor adaptation task demonstrated that left Brodmann area 44 (BA44) played a key role in adaptation, with learning-related changes to activity during the task and altered resting-state, functional connectivity after the task. PET scans before and after task performance indicated a sustained increase in AG in left BA 44 accompanied by decreased oxygen consumption. Intersubject variability in behavioral adaptation rate correlated strongly with changes in AG in this region, as well as functional connectivity, which is consistent with a role for AG in synaptic plasticity. PMID:27217563

  17. Biology of Moderately Halophilic Aerobic Bacteria

    PubMed Central

    Ventosa, Antonio; Nieto, Joaquín J.; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms. PMID:9618450

  18. Parallel processing technology for large-scale production of synthetic aperature radar imagery

    NASA Astrophysics Data System (ADS)

    Kirk, David; Bessette, Loretta A.; Fawcett, Glenn; Nobles, David

    1999-08-01

    This paper presents a case study in using parallel processing technology for large-scale production of Foliage Penetration (FOPEN) Synthetic Aperture Radar (SAR) imagery. The initial version of the FOPEN SAR image formation software ran on a Unix workstation. The research-grade parallel image formation software was transitioned into a full-scale remote processing facility resulting in a significant improvement in processing speed. The primary goal of this effort was to increase the production rate of calibrated, well-focused SAR imagery, but an important secondary objective was to gain insight into the capabilities and limitations of high performance parallel platforms. This paper discusses lessons that were learned in transitioning and utilizing the research-grade image formation code in a 'turn key' production setting, and discusses configuration control and image quality metrics.

  19. High resolution beamforming on large aperture vertical line arrays: Processing synthetic data

    NASA Astrophysics Data System (ADS)

    Tran, Jean-Marie Q.; Hodgkiss, William S.

    1990-09-01

    This technical memorandum studies the beamforming of large aperture line arrays deployed vertically in the water column. The work concentrates on the use of high resolution techniques. Two processing strategies are envisioned: (1) full aperture coherent processing which offers in theory the best processing gain; and (2) subaperture processing which consists in extracting subapertures from the array and recombining the angular spectra estimated from these subarrays. The conventional beamformer, the minimum variance distortionless response (MVDR) processor, the multiple signal classification (MUSIC) algorithm and the minimum norm method are used in this study. To validate the various processing techniques, the ATLAS normal mode program is used to generate synthetic data which constitute a realistic signals environment. A deep-water, range-independent sound velocity profile environment, characteristic of the North-East Pacific, is being studied for two different 128 sensor arrays: a very long one cut for 30 Hz and operating at 20 Hz; and a shorter one cut for 107 Hz and operating at 100 Hz. The simulated sound source is 5 m deep. The full aperture and subaperture processing are being implemented with curved and plane wavefront replica vectors. The beamforming results are examined and compared to the ray-theory results produced by the generic sonar model.

  20. An automated workflow for parallel processing of large multiview SPIM recordings

    PubMed Central

    Schmied, Christopher; Steinbach, Peter; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2016-01-01

    Summary: Selective Plane Illumination Microscopy (SPIM) allows to image developing organisms in 3D at unprecedented temporal resolution over long periods of time. The resulting massive amounts of raw image data requires extensive processing interactively via dedicated graphical user interface (GUI) applications. The consecutive processing steps can be easily automated and the individual time points can be processed independently, which lends itself to trivial parallelization on a high performance computing (HPC) cluster. Here, we introduce an automated workflow for processing large multiview, multichannel, multiillumination time-lapse SPIM data on a single workstation or in parallel on a HPC cluster. The pipeline relies on snakemake to resolve dependencies among consecutive processing steps and can be easily adapted to any cluster environment for processing SPIM data in a fraction of the time required to collect it. Availability and implementation: The code is distributed free and open source under the MIT license http://opensource.org/licenses/MIT. The source code can be downloaded from github: https://github.com/mpicbg-scicomp/snakemake-workflows. Documentation can be found here: http://fiji.sc/Automated_workflow_for_parallel_Multiview_Reconstruction. Contact: schmied@mpi-cbg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26628585

  1. Forecast of Large Earthquakes Through Semi-periodicity Analysis of Labeled Point Processes

    NASA Astrophysics Data System (ADS)

    Quinteros Cartaya, C. B.; Nava Pichardo, F. A.; Glowacka, E.; Gómez Treviño, E.; Dmowska, R.

    2016-08-01

    Large earthquakes have semi-periodic behavior as a result of critically self-organized processes of stress accumulation and release in seismogenic regions. Hence, large earthquakes in a given region constitute semi-periodic sequences with recurrence times varying slightly from periodicity. In previous papers, it has been shown that it is possible to identify these sequences through Fourier analysis of the occurrence time series of large earthquakes from a given region, by realizing that not all earthquakes in the region need belong to the same sequence, since there can be more than one process of stress accumulation and release in the region. Sequence identification can be used to forecast earthquake occurrence with well determined confidence bounds. This paper presents improvements on the above mentioned sequence identification and forecasting method: the influence of earthquake size on the spectral analysis, and its importance in semi-periodic events identification are considered, which means that earthquake occurrence times are treated as a labeled point process; a revised estimation of non-randomness probability is used; a better estimation of appropriate upper limit uncertainties to use in forecasts is introduced; and the use of Bayesian analysis to evaluate the posterior forecast performance is applied. This improved method was successfully tested on synthetic data and subsequently applied to real data from some specific regions. As an example of application, we show the analysis of data from the northeastern Japan Arc region, in which one semi-periodic sequence of four earthquakes with M ≥ 8.0, having high non-randomness probability was identified. We compare the results of this analysis with those of the unlabeled point process analysis.

  2. Large-scale automatic reconstruction of neuronal processes from electron microscopy images.

    PubMed

    Kaynig, Verena; Vazquez-Reina, Amelio; Knowles-Barley, Seymour; Roberts, Mike; Jones, Thouis R; Kasthuri, Narayanan; Miller, Eric; Lichtman, Jeff; Pfister, Hanspeter

    2015-05-01

    Automated sample preparation and electron microscopy enables acquisition of very large image data sets. These technical advances are of special importance to the field of neuroanatomy, as 3D reconstructions of neuronal processes at the nm scale can provide new insight into the fine grained structure of the brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the analysis of these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction performance while scaling to data sets in the GB-TB range. First, we train a random forest classifier on interactive sparse user annotations. The classifier output is combined with an anisotropic smoothing prior in a Conditional Random Field framework to generate multiple segmentation hypotheses per image. These segmentations are then combined into geometrically consistent 3D objects by segmentation fusion. We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate large-scale 3D reconstructions of neuronal processes from a 27,000 μm(3) volume of brain tissue over a cube of 30 μm in each dimension corresponding to 1000 consecutive image sections. We also introduce Mojo, a proofreading tool including semi-automated correction of merge errors based on sparse user scribbles. PMID:25791436

  3. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. PMID:26874310

  4. Complex submarine landsliding processes caused by subduction of large seamounts along the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, Cesar R.; Weinrebe, Wilhelm; von Huene, Roland

    2014-05-01

    Subduction of kms-tall and tens-of-km wide seamounts cause important landsliding events at subduction zones around the word. Along the Middle America Trench, previous work based on regional swath bathymetry maps (with 100 m grids) and multichannel seismic images have shown that seamount subduction produces large-scale slumping and sliding. Some of the mass wasting event may have been catastrophic and numerical modeling has indicated that they may have produced important local tsunamis. We have re-evaluated the structure of several active submarine landlide complexes caused by large seamount subduction using side scan sonar data. The comparison of the side scan sonar data to local high-resolution bathymetry grids indicates that the backscatter data has a resolution that is somewhat similar to that produced by a 10 m bathymetry grid. Although this is an arbitrary comparison, the side scan sonar data provides comparatively much higher resolution information than the previously used regional multibeam bathymetry. We have mapped the geometry and relief of the head and side walls of the complexes, the distribution of scars and the different sediment deposits to produce a new interpretation of the modes of landsliding during subduction of large seamounts. The new higher resolution information shows that landsliding processes are considerably more complex than formerly assumed. Landslides are of notably smaller dimensions that the lower resolution data had previously appear to indicate. However, significantly large events may have occur far more often than earlier interpretations had inferred representing a more common threat that previously assumed.

  5. Applying Convolution-Based Processing Methods To A Dual-Channel, Large Array Artificial Olfactory Mucosa

    NASA Astrophysics Data System (ADS)

    Taylor, J. E.; Che Harun, F. K.; Covington, J. A.; Gardner, J. W.

    2009-05-01

    Our understanding of the human olfactory system, particularly with respect to the phenomenon of nasal chromatography, has led us to develop a new generation of novel odour-sensitive instruments (or electronic noses). This novel instrument is in need of new approaches to data processing so that the information rich signals can be fully exploited; here, we apply a novel time-series based technique for processing such data. The dual-channel, large array artificial olfactory mucosa consists of 3 arrays of 300 sensors each. The sensors are divided into 24 groups, with each group made from a particular type of polymer. The first array is connected to the other two arrays by a pair of retentive columns. One channel is coated with Carbowax 20 M, and the other with OV-1. This configuration partly mimics the nasal chromatography effect, and partly augments it by utilizing not only polar (mucus layer) but also non-polar (artificial) coatings. Such a device presents several challenges to multi-variate data processing: a large, redundant dataset, spatio-temporal output, and small sample space. By applying a novel convolution approach to this problem, it has been demonstrated that these problems can be overcome. The artificial mucosa signals have been classified using a probabilistic neural network and gave an accuracy of 85%. Even better results should be possible through the selection of other sensors with lower correlation.

  6. Leveraging human oversight and intervention in large-scale parallel processing of open-source data

    NASA Astrophysics Data System (ADS)

    Casini, Enrico; Suri, Niranjan; Bradshaw, Jeffrey M.

    2015-05-01

    The popularity of cloud computing along with the increased availability of cheap storage have led to the necessity of elaboration and transformation of large volumes of open-source data, all in parallel. One way to handle such extensive volumes of information properly is to take advantage of distributed computing frameworks like Map-Reduce. Unfortunately, an entirely automated approach that excludes human intervention is often unpredictable and error prone. Highly accurate data processing and decision-making can be achieved by supporting an automatic process through human collaboration, in a variety of environments such as warfare, cyber security and threat monitoring. Although this mutual participation seems easily exploitable, human-machine collaboration in the field of data analysis presents several challenges. First, due to the asynchronous nature of human intervention, it is necessary to verify that once a correction is made, all the necessary reprocessing is done in chain. Second, it is often needed to minimize the amount of reprocessing in order to optimize the usage of resources due to limited availability. In order to improve on these strict requirements, this paper introduces improvements to an innovative approach for human-machine collaboration in the processing of large amounts of open-source data in parallel.

  7. Building high-performance system for processing a daily large volume of Chinese satellites imagery

    NASA Astrophysics Data System (ADS)

    Deng, Huawu; Huang, Shicun; Wang, Qi; Pan, Zhiqiang; Xin, Yubin

    2014-10-01

    The number of Earth observation satellites from China increases dramatically recently and those satellites are acquiring a large volume of imagery daily. As the main portal of image processing and distribution from those Chinese satellites, the China Centre for Resources Satellite Data and Application (CRESDA) has been working with PCI Geomatics during the last three years to solve two issues in this regard: processing the large volume of data (about 1,500 scenes or 1 TB per day) in a timely manner and generating geometrically accurate orthorectified products. After three-year research and development, a high performance system has been built and successfully delivered. The high performance system has a service oriented architecture and can be deployed to a cluster of computers that may be configured with high end computing power. The high performance is gained through, first, making image processing algorithms into parallel computing by using high performance graphic processing unit (GPU) cards and multiple cores from multiple CPUs, and, second, distributing processing tasks to a cluster of computing nodes. While achieving up to thirty (and even more) times faster in performance compared with the traditional practice, a particular methodology was developed to improve the geometric accuracy of images acquired from Chinese satellites (including HJ-1 A/B, ZY-1-02C, ZY-3, GF-1, etc.). The methodology consists of fully automatic collection of dense ground control points (GCP) from various resources and then application of those points to improve the photogrammetric model of the images. The delivered system is up running at CRESDA for pre-operational production and has been and is generating good return on investment by eliminating a great amount of manual labor and increasing more than ten times of data throughput daily with fewer operators. Future work, such as development of more performance-optimized algorithms, robust image matching methods and application

  8. A coherent light scanner for optical processing of large format transparencies

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.; Shackelford, R. G.; Walsh, J. R.

    1975-01-01

    A laser scanner is discussed in which the scanning beam is random-access addressable and perpendicular to the image input plane and the irradiance of the scanned beam is controlled so that a constant average irradiance is maintained after passage through the image plane. The scanner's optical system and design are described, and its performance is evaluated. It is noted that with this scanner, data in the form of large-format transparencies can be processed without the expense, space, maintenance, and precautions attendant to the operation of a high-power laser with large-aperture collimating optics. It is shown that the scanned format as well as the diameter of the scanning beam may be increased by simple design modifications and that higher scan rates can be achieved at the expense of resolution by employing acousto-optic deflectors with different relay optics.

  9. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  10. Laser processing system for stitching structured patterns on large 3D parts

    NASA Astrophysics Data System (ADS)

    Cano Zuriguel, Rafael; Saludes Rodil, Sergio

    2015-07-01

    The paper addresses the development of laser based equipment to structure large surfaces (1×1×0.5m - 3×3×1.5ft) that are shaped in three dimensions. A mechanic-optical system to process curved surfaces with an acceptance angle of up to 267° is presented. The challenge is to control the combined motion of the beam delivery system with respect to distortion of the motifs and positioning tolerances. The project starting Technology Readiness Level (TRL) was 5. Currently the project is under development and at the end of September 2015 the project will reach TRL 7 after industrial-like environment testing. The proposed system will enable manufacturers to offer individualized marking for large products.

  11. Fabrication of large area silicon solar cells by rapid thermal processing

    NASA Astrophysics Data System (ADS)

    Sivoththaman, S.; Laureys, W.; Nijs, J.; Mertens, R.

    1995-10-01

    Large area n+pp+ solar cells have been fabricated on 10 cm×10 cm pseudo-quasi-square CZ silicon wafers (1 Ω cm, p-type) predominantly used by the photovoltaic (PV) industry. All the high-temperature steps have been performed by rapid thermal processing (RTP). Emitter formation, back surface field (BSF) formation, and surface oxidation have been performed in just two RTP steps each lasting 50 s. Solar cells of 15% efficiency have been fabricated this way, demonstrating the applicability of this low thermal budget technology to large area, modulable size, industrial quality Si wafers. Furthermore, the rapid thermal oxidation (RTO) is shown to result in good quality thin oxides with Si/SiO2 interface trap densities (Dit)<1011 cm-3 eV-1 near-midgap.

  12. Aerobic Fitness for the Moderately Retarded.

    ERIC Educational Resources Information Center

    Bauer, Dan

    1981-01-01

    Intended for physical education teachers, the booklet offers ideas for incorporating aerobic conditioning into programs for moderately mentally retarded students. An explanation of aerobic fitness and its benefits is followed by information on initiating a fitness program with evaluation of height, weight, body fat, resting heart rate, and…

  13. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  14. Aerobic Dancing--A Rhythmic Sport.

    ERIC Educational Resources Information Center

    Sorensen, Jacki

    Fitness programs now and in the future must offer built-in cardiovascular conditioning, variety, novelty, and change to meet the physical, mental, and emotional needs of our society. Aerobic dancing (dancing designed to train and strengthen the heart, lungs, and vascular system) is one of the first indoor group Aerobic exercise programs designed…

  15. Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing

    SciTech Connect

    Becla, Jacek; Lim, Kian-Tat; Monkewitz, Serge; Nieto-Santisteban, Maria; Thakar, Ani; /Johns Hopkins U.

    2007-11-07

    The Large Synoptic Survey Telescope (LSST) will catalog billions of astronomical objects and trillions of sources, all of which will be stored and managed by a database management system. One of the main challenges is real-time alert generation. To generate alerts, up to 100K new difference detections have to be cross-correlated with the huge historical catalogs, and then further processed to prune false alerts. This paper explains the challenges, the implementation of the LSST Association Pipeline and the database organization strategies we are planning to use to meet the real-time requirements, including data partitioning, parallelization, and pre-loading.

  16. The large impact process inferred from the geology of lunar multiring basins

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1992-01-01

    The nature of the impact process has been inferred through the study of the geology of a wide variety of impact crater types and sizes. Some of the largest craters known are the multiring basins found in ancient terrains of the terrestrial planets. Of these features, those found on the Moon possess the most extensive and diverse data coverage, including morphological, geochemical, geophysical, and sample data. The study of the geology of lunar basins over the past 10 years has given us a rudimentary understanding of how these large structures have formed and evolved. The topics covered include basin morphology, basin ejecta, basin excavation, and basin ring formation.

  17. Proposal of an Improved Helium Supply Process for the Inflation of Large Balloon Systems

    NASA Astrophysics Data System (ADS)

    Bohn, M.

    2015-09-01

    Based on the experience with the supply of helium and inflation support for many large balloon systems, this paper proposes an improved process for the inflation concept for such systems. We propose to generally change to a supply of helium product in its liquid form, reducing the cost of deliveries. Secondly, the implementation of a mobile evaporator unit will reduce inflation time risks of balloon/payload losses due to changing weather conditions. The use of state-of-art flow measurement gives detailed information on the gas volume/static lift supplied to the balloon system.

  18. Large area low cost processing for CIS photovoltaics. Final technical report

    SciTech Connect

    B. Basol; G. Norsworthy; C. Leidholm; A. Halani; R. Roe; V. Kapur

    1999-07-22

    An ink coating method was developed for CIS absorber deposition. The technique involves four processing steps: (1) preparation of a Cu-In alloy powder, (2) preparation of an ink using this powder, (3) deposition of the ink on a substrate in the form of a precursor layer, and (4) selenization to convert the Cu-In precursor into a fused CIS film. Absorbers grown by this low-cost, large-area method were used in the fabrication of 10.5% efficient solar cells.

  19. Industrial large-aperture XeCl laser for surface processing

    NASA Astrophysics Data System (ADS)

    Letardi, Tommaso; Baldesi, Alessandro; Bollanti, Sarah; Bonfigli, Francesca; Di Lazzaro, Paolo; Flora, Francesco; Giordano, Gualtiero; Marinai, Alessandro; Murra, Daniele; Schina, Giovanni; Zheng, Cheng En

    2000-02-01

    In the frame of a large project on new materials technologies for photovoltaic and microelectronic applications (FOTO), the process of amorphous silicon (a-Si) transformation into polycrystalline silicon (poly-Si) by means of laser irradiation has been tested with a long-pulse (160 ns), 8 J/p XeCl source. Following the positive results, a laser source, having design parameters of 10 J/p, 120 ns, 10 Hz, has been designed and built, with the aim of realizing a laboratory line for the production of thin film transistors (TFTs) devices.

  20. Large area ceramic thin films on plastics: A versatile route via solution processing

    SciTech Connect

    Kozuka, H.; Yamano, A.; Uchiyama, H.; Takahashi, M.; Fukui, T.; Yoki, M.; Akase, T.

    2012-01-01

    A new general route for large area, submicron thick ceramic thin films (crystalline metal oxide thin films) on plastic substrates is presented, where the crystallization of films is guaranteed by a firing process. Gel films are deposited on silicon substrates with a release layer and fired to be ceramic films, followed by transferring onto plastic substrates using adhesives. The ceramic films thus fabricated on plastics exhibit a certain degree of flexibility, implying the possibility of the technique to be applied to high-throughput roll-to-roll processes. Using this technique, we successfully realized transparent anatase thin films that provide high optical reflectance and transparent indium tin oxide thin films that exhibit electrical conductivity on polycarbonate and acrylic resin substrates, respectively. Crystallographically oriented zinc oxide films and patterned zinc oxide films are also demonstrated to be realized on acrylic resin substrates.

  1. Numerical simulation of the process of airfoil icing in the presence of large supercooled water drops

    NASA Astrophysics Data System (ADS)

    Prykhodko, O. A.; Alekseyenko, S. V.

    2014-10-01

    We have developed a software package and related methodology that can be used to simulate the process of airfoil icing during flight in the presence of large supercooled liquid water drops in the oncoming airflow. The motion of a carrier medium is described using the Navier-Stokes equations for a compressible gas. The motion of water drops is described using an inertial model. The process of water deposition and its subsequent freezing on an airfoil surface are described by the method of control volumes based on the equations of conservation of mass, momentum, and energy for each element of the surface. The main results of simulations are presented for the icing of an NACA 0012 airfoil profile with "barrier" ice formation in the absence and presence of heating of the leading edge. The influence of the ice-growth thickness and position on the airfoil chord on the pattern of airflow and aerodynamic characteristics of airfoil is analyzed.

  2. Bathymetric comparisons adjacent to the Louisiana barrier islands: Processes of large-scale change

    USGS Publications Warehouse

    List, J.H.; Jaffe, B.E.; Sallenger, A.H., Jr.; Hansen, M.E.

    1997-01-01

    This paper summarizes the results of a comparative bathymetric study encompassing 150 km of the Louisiana barrier-island coast. Bathymetric data surrounding the islands and extending to 12 m water depth were processed from three survey periods: the 1880s, the 1930s, and the 1980s. Digital comparisons between surveys show large-scale, coherent patterns of sea-floor erosion and accretion related to the rapid erosion and disintegration of the islands. Analysis of the sea-floor data reveals two primary processes driving this change: massive longshore transport, in the littoral zone and at shoreface depths; and increased sediment storage in ebb-tidal deltas. Relative sea-level rise, although extraordinarily high in the study area, is shown to be an indirect factor in causing the area's rapid shoreline retreat rates.

  3. Large landslides lie low: Vertical domains of denudation processes in the arid Himalaya-Karakoram orogen

    NASA Astrophysics Data System (ADS)

    Blöthe, Jan Henrik

    2014-05-01

    Large bedrock landslides (defined here as affecting >0.1 km2 in planform area) are thought to substantially contribute to denuding active mountain belts, and limiting the growth of topographic relief produced by concurrent tectonic uplift and fluvial or glacial incision. While most research on large landslides has focused on tectonically active, humid mountain belts with varying degrees of rainstorm and earthquake activity, lesser attention has been devoted to arid mountain belts. Especially in the Himalaya, where high denudation rates are commonly associated with high landslide activity, previous work has largely ignored landslide processes in the arid compartments of the orogen. This was motivation for us to compile a landslide inventory covering the arid Himalaya-Karakoram of NW India and N Pakistan within the Indus catchment. Our data set contains 493 rock-slope failures that we compiled from published studies and mapping from remote sensing imagery. Using an empirical volume-area scaling approach we estimate the total landslide volume at >250 km3. This is more than thousand times the contemporary annual sediment load in the Indus River. We analyse the distribution of these volumetrically significant landslides with respect to the regional hypsometry, contemporary glacier cover, and the distribution of rock glaciers. We find that large bedrock landslides in the arid Himalaya-Karakoram region preferentially detach near or from below the study area's median elevation, while glaciers and rock glaciers occupy higher elevations almost exclusively. This trend holds true for both the study area and parts thereof. The largest and highest-lying landslides occur in the Karakoram mountains, where local relief exceeds 6 km, and >90% of the landslide areas lie below the region's median elevation. Our analysis reveals a hitherto unrecognized vertical layering of denudation processes, with landslides chiefly operating below the median elevation, whereas mass transport by

  4. Automatic Mapping Of Large Signal Processing Systems To A Parallel Machine

    NASA Astrophysics Data System (ADS)

    Printz, Harry; Kung, H. T.; Mummert, Todd; Scherer, Paul M.

    1989-12-01

    Since the spring of 1988, Carnegie Mellon University and the Naval Air Development Center have been working together to implement several large signal processing systems on the Warp parallel computer. In the course of this work, we have developed a prototype of a software tool that can automatically and efficiently map signal processing systems to distributed-memory parallel machines, such as Warp. We have used this tool to produce Warp implementations of small test systems. The automatically generated programs compare favorably with hand-crafted code. We believe this tool will be a significant aid in the creation of high speed signal processing systems. We assume that signal processing systems have the following characteristics: •They can be described by directed graphs of computational tasks; these graphs may contain thousands of task vertices. • Some tasks can be parallelized in a systolic or data-partitioned manner, while others cannot be parallelized at all. • The side effects of each task, if any, are limited to changes in local variables. • Each task has a data-independent execution time bound, which may be expressed as a function of the way it is parallelized, and the number of processors it is mapped to. In this paper we describe techniques to automatically map such systems to Warp-like parallel machines. We identify and address key issues in gracefully combining different parallel programming styles, in allocating processor, memory and communication bandwidth, and in generating and scheduling efficient parallel code. When iWarp, the VLSI version of the Warp machine, becomes available in 1990, we will extend this tool to generate efficient code for very large applications, which may require as many as 3000 iWarp processors, with an aggregate peak performance of 60 gigaflops.

  5. Breeding and Genetics Symposium: really big data: processing and analysis of very large data sets.

    PubMed

    Cole, J B; Newman, S; Foertter, F; Aguilar, I; Coffey, M

    2012-03-01

    15 m. Large data sets also create challenges for the delivery of genetic evaluations that must be overcome in a way that does not disrupt the transition from conventional to genomic evaluations. Processing time is important, especially as real-time systems for on-farm decisions are developed. The ultimate value of these systems is to decrease time-to-results in research, increase accuracy in genomic evaluations, and accelerate rates of genetic improvement. PMID:22100598

  6. A digital archiving system and distributed server-side processing of large datasets

    NASA Astrophysics Data System (ADS)

    Jomier, Julien; Aylward, Stephen R.; Marion, Charles; Lee, Joowhi; Styner, Martin

    2009-02-01

    In this paper, we present MIDAS, a web-based digital archiving system that processes large collections of data. Medical imaging research often involves interdisciplinary teams, each performing a separate task, from acquiring datasets to analyzing the processing results. Moreover, the number and size of the datasets continue to increase every year due to recent advancements in acquisition technology. As a result, many research laboratories centralize their data and rely on distributed computing power. We created a web-based digital archiving repository based on openstandards. The MIDAS repository is specifically tuned for medical and scientific datasets and provides a flexible data management facility, a search engine, and an online image viewer. MIDAS enables users to run a set of extensible image processing algorithms from the web to the selected datasets and to add new algorithms to the MIDAS system, facilitating the dissemination of users' work to different research partners. The MIDAS system is currently running in several research laboratories and has demonstrated its ability to streamline the full image processing workflow from data acquisition to image analysis and reports.

  7. Evaluation of raster image compression in the context of large-format document processing

    NASA Astrophysics Data System (ADS)

    Sibade, Cedric; Barizien, Stephane; Akil, Mohamed; Perroton, Laurent

    2003-12-01

    We investigate the task of wide format still image manipulation and compression, within the framework of a document printing and copying data path. A typical document processing chain can benefit from the use of data compression, especially when it manages wide format color documents. In order to develop a new approach to use data compression for wide format printing systems, we expose in this article the benchmarking process of compression applied to large documents. Standard algorithms, from the imaging and document processing industry have been chosen for the compression of wide format color raster images. A database of image files has been created and classified for this purpose. The goal is to evaluate the performance in terms of data-flow reduction, along with quality losses in case of lossy compression. For the sake of a precise evaluation of performance of these compression algorithms, we include time measurements of the sole compression and decompression processes. A comparison of the memory footprint of each compression and decompression algorithms helps also to appreciate their resource consumptions.

  8. Biologically inspired large scale chemical sensor arrays and embedded data processing

    NASA Astrophysics Data System (ADS)

    Marco, S.; Gutiérrez-Gálvez, A.; Lansner, A.; Martinez, D.; Rospars, J. P.; Beccherelli, R.; Perera, A.; Pearce, T.; Vershure, P.; Persaud, K.

    2013-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. EU Funded Project NEUROCHEM (Bio-ICT-FET- 216916) has developed novel computing paradigms and biologically motivated artefacts for chemical sensing taking inspiration from the biological olfactory pathway. To demonstrate this approach, a biomimetic demonstrator has been built featuring a large scale sensor array (65K elements) in conducting polymer technology mimicking the olfactory receptor neuron layer, and abstracted biomimetic algorithms have been implemented in an embedded system that interfaces the chemical sensors. The embedded system integrates computational models of the main anatomic building blocks in the olfactory pathway: the olfactory bulb, and olfactory cortex in vertebrates (alternatively, antennal lobe and mushroom bodies in the insect). For implementation in the embedded processor an abstraction phase has been carried out in which their processing capabilities are captured by algorithmic solutions. Finally, the algorithmic models are tested with an odour robot with navigation capabilities in mixed chemical plumes

  9. A versatile MEMS bimorph actuator with large vertical displacement and high resolution: Design and fabrication process

    NASA Astrophysics Data System (ADS)

    Rangra, Aarushee; Maninder, K.; Soni, Shilpi; Rangra, K. J.

    2016-04-01

    This paper presents design, simulation results and envisaged fabrication process for a versatile MEMS bimorph actuator with large out of plane displacement and high resolution. A comparative study of mechanical, thermal and electrical response of the micro-actuator is presented by using two well-known MEMS simulation tools. The bimorph structure measuring 700 × 1280 mm2 is fully integrable with CMOS fabrication process. It is indented for tunable filter applications where the precise vertical motion of the payload, the top metallic electrode anchored rigidly to bimorph `springs' spans the vertical range of 250-300 microns with submicron resolution. Each bimorph spring resembles a hair pin structure and is composed of materials with large difference in thermal expansion coefficients e.g. electroplated gold and polysilicon for optimal out-of-the plane deflection. The novel structure can also be configured for analog micro-mirror based optical and IR spectroscopy applications by controlling the actuation bias and top electrode surface parameters.

  10. Computation of Large Covariance Matrices by SAMMY on Graphical Processing Units and Multicore CPUs

    SciTech Connect

    Arbanas, Goran; Dunn, Michael E; Wiarda, Dorothea

    2011-01-01

    Computational power of Graphical Processing Units and multicore CPUs was harnessed by the nuclear data evaluation code SAMMY to speed up computations of large Resonance Parameter Covariance Matrices (RPCMs). This was accomplished by linking SAMMY to vendor-optimized implementations of the matrix-matrix multiplication subroutine of the Basic Linear Algebra Library to compute the most time-consuming step. The U-235 RPCM computed previously using a triple-nested loop was re-computed using the NVIDIA implementation of the subroutine on a single Tesla Fermi Graphical Processing Unit, and also using the Intel's Math Kernel Library implementation on two different multicore CPU systems. A multiplication of two matrices of dimensions 16,000 x 20,000 that had previously taken days, took approximately one minute on the GPU. Similar performance was achieved on a dual six-core CPU system. The magnitude of the speed-up suggests that these, or similar, combinations of hardware and libraries may be useful for large matrix operations in SAMMY. Uniform interfaces of standard linear algebra libraries make them a promising candidate for a programming framework of a new generation of SAMMY for the emerging heterogeneous computing platforms.

  11. Which processes shape stellar population gradients of massive galaxies at large radii?

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela

    2016-08-01

    We investigate the differential impact of physical mechanisms, mergers (stellar accretion) and internal energetic phenomena, on the evolution of stellar population gradients in massive, present-day galaxies employing a set of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity and color gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity and colour gradients in agreement with present-day observations. In contrast, the gradients of the models without winds are inconsistent with observations (too flat). In the wind model, colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (like MaNGA and Califa), which in turn can help to better constrain still uncertain models for energetic processes in simulations.

  12. Mosaic construction, processing, and review of very large electron micrograph composites

    NASA Astrophysics Data System (ADS)

    Vogt, Robert C., III; Trenkle, John M.; Harmon, Laurel A.

    1996-11-01

    A system of programs is described for acquisition, mosaicking, cueing and interactive review of large-scale transmission electron micrograph composite images. This work was carried out as part of a final-phase clinical analysis study of a drug for the treatment of diabetic peripheral neuropathy. MOre than 500 nerve biopsy samples were prepared, digitally imaged, processed, and reviewed. For a given sample, typically 1000 or more 1.5 megabyte frames were acquired, for a total of between 1 and 2 gigabytes of data per sample. These frames were then automatically registered and mosaicked together into a single virtual image composite, which was subsequently used to perform automatic cueing of axons and axon clusters, as well as review and marking by qualified neuroanatomists. Statistics derived from the review process were used to evaluate the efficacy of the drug in promoting regeneration of myelinated nerve fibers. This effort demonstrates a new, entirely digital capability for doing large-scale electron micrograph studies, in which all of the relevant specimen data can be included at high magnification, as opposed to simply taking a random sample of discrete locations. It opens up the possibility of a new era in electron microscopy--one which broadens the scope of questions that this imaging modality can be used to answer.

  13. Morphotectonic evolution of passive margins undergoing active surface processes: large-scale experiments using numerical models.

    NASA Astrophysics Data System (ADS)

    Beucher, Romain; Huismans, Ritske S.

    2016-04-01

    Extension of the continental lithosphere can lead to the formation of a wide range of rifted margins styles with contrasting tectonic and geomorphological characteristics. It is now understood that many of these characteristics depend on the manner extension is distributed depending on (among others factors) rheology, structural inheritance, thermal structure and surface processes. The relative importance and the possible interactions of these controlling factors is still largely unknown. Here we investigate the feedbacks between tectonics and the transfers of material at the surface resulting from erosion, transport, and sedimentation. We use large-scale (1200 x 600 km) and high-resolution (~1km) numerical experiments coupling a 2D upper-mantle-scale thermo-mechanical model with a plan-form 2D surface processes model (SPM). We test the sensitivity of the coupled models to varying crust-lithosphere rheology and erosional efficiency ranging from no-erosion to very efficient erosion. We discuss how fast, when and how the topography of the continents evolves and how it can be compared to actual passive margins escarpment morphologies. We show that although tectonics is the main factor controlling the rift geometry, transfers of masses at the surface affect the timing of faulting and the initiation of sea-floor spreading. We discuss how such models may help to understand the evolution of high-elevated passive margins around the world.

  14. Advanced optical sensing and processing technologies for the distributed control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, G. M.; Fraser, J. C.

    1991-01-01

    The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.

  15. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process.

    PubMed

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Fuller, Barry; Gibbons, Stephanie; Morris, G John

    2014-09-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to -60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze-viabilities at 93.4% ± 7.4%, viable cell numbers at 14.3 ± 1.7 million nuclei/mL alginate, and protein secretion at 10.5 ± 1.7

  16. Dynamic Processes of Large Wood and Their Effects on Fluvial Export at the Watershed Scale

    NASA Astrophysics Data System (ADS)

    Seo, J.; Nakamura, F.; Chun, K.

    2008-12-01

    The presence of large wood (LW) has a pronounced impact on the geomorphic and ecological character of river corridors, yet relatively little is known about the patterns and processes at the watershed scale. To understand these patterns we monitored the volumetric input of LW into 131 reservoirs and a suite of watershed characteristics. Of all geomorphic and hydrologic variables tested, watershed area was most important in explaining LW export. LW export per unit watershed area was relatively high in small watersheds, peaked in intermediate-sized watersheds and decreased in large watersheds. To explain these variations, we surveyed the amount of LW with respect to channel morphology in 78 segments (26 segments in each size class) in the Nukabira River, northern Japan, and examined the differences in LW dynamics, including its recruitment, transport, storage, and fragmentation and decay along the spectrum of watershed sizes. We found in small watersheds a larger proportion of LW produced by forest dynamics and hillslope processes was retained due to narrower valley floors and lower stream power. The retained LW pieces may eventually be exported during debris flows. In intermediate-sized watersheds the volume of LW pieces derived from hillslopes decreased substantially with reductions of proportion of channel length bordered by hillslope margins, which potentially deliver large quantities of LW. Because these channels have lower wood piece length to channel width ratios and higher stream power, LW pieces can be transported downstream. During transport, LW pieces are further fragmented and can be more easily transported; and therefore, the fluvial export of LW is maximized in intermediate-sized watersheds. Rivers in large watersheds, where the recruitment of LW is limited by the decreasing hillslope margins, cannot transport LW pieces because of their low stream power and thus LW pieces accumulate at various storage sites. Although these stored LW pieces can be re

  17. GMP Cryopreservation of Large Volumes of Cells for Regenerative Medicine: Active Control of the Freezing Process

    PubMed Central

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Gibbons, Stephanie; Morris, G. John

    2014-01-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to −60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze—viabilities at 93.4%±7.4%, viable cell numbers at 14.3±1.7 million nuclei/mL alginate, and protein secretion at 10.5±1.7

  18. Comparison of selected aerobic and anaerobic procedures for MSW treatment.

    PubMed

    Fricke, Klaus; Santen, Heike; Wallmann, Rainer

    2005-01-01

    This paper considers selected efficiency rates and process data of aerobic and anaerobic procedures for the treatment of municipal solid waste and residual waste. Data are exclusively related to mechanical-biological treatment (MBT) procedures for generating waste appropriate for landfilling. The following aspects are regarded: general framework conditions for the application of MBT, efficiency of decomposition and of stabilisation, air and water emissions and energy balances. The presented data can be used for more efficient planning. In comparison to aerobic processes, anaerobic digestion can be ecologically advantageous, particularly with regard to exhaust emissions and energy balances. On the other hand, the wastewater emissions and the wastewater treatment required must be regarded as disadvantageous. Due to the relatively short period of operational history of most anaerobic processes for mechanical-biological waste treatment and thus limited experiences, operational reliability of anaerobic processes is slightly lower. Extensive biological stability of the treated waste for low-emission disposal cannot be reached by anaerobic digestion alone, but only in combination with additional aerobic post-treatment. In connection with the utilisation of renewable energies and the rising relevancy of climate protection, it can be affirmed that anaerobic digestion for the treatment of municipal solid waste has a high potential for further development. PMID:16125060

  19. Conditionally Averaged Large-Scale Motions in the Neutral Atmospheric Boundary Layer: Insights for Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Jacob, Chinthaka; Anderson, William

    2016-06-01

    Aeolian erosion of flat, arid landscapes is induced (and sustained) by the aerodynamic surface stress imposed by flow in the atmospheric surface layer. Conceptual models typically indicate that sediment mass flux, Q (via saltation or drift), scales with imposed aerodynamic stress raised to some exponent, n, where n > 1 . This scaling demonstrates the importance of turbulent fluctuations in driving aeolian processes. In order to illustrate the importance of surface-stress intermittency in aeolian processes, and to elucidate the role of turbulence, conditional averaging predicated on aerodynamic surface stress has been used within large-eddy simulation of atmospheric boundary-layer flow over an arid, flat landscape. The conditional-sampling thresholds are defined based on probability distribution functions of surface stress. The simulations have been performed for a computational domain with ≈ 25 H streamwise extent, where H is the prescribed depth of the neutrally-stratified boundary layer. Thus, the full hierarchy of spatial scales are captured, from surface-layer turbulence to large- and very-large-scale outer-layer coherent motions. Spectrograms are used to support this argument, and also to illustrate how turbulent energy is distributed across wavelengths with elevation. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Results indicate that surface-stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. Fluid in the interfacial shear layers between these adjacent quasi-uniform momentum regions exhibits high streamwise and vertical vorticity.

  20. Performance of sequential anaerobic/aerobic digestion applied to municipal sewage sludge.

    PubMed

    Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe

    2011-07-01

    A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed. PMID:21477916

  1. The power of event-driven analytics in Large Scale Data Processing

    ScienceCinema

    None

    2011-04-25

    FeedZai is a software company specialized in creating high-­-throughput low-­-latency data processing solutions. FeedZai develops a product called "FeedZai Pulse" for continuous event-­-driven analytics that makes application development easier for end users. It automatically calculates key performance indicators and baselines, showing how current performance differ from previous history, creating timely business intelligence updated to the second. The tool does predictive analytics and trend analysis, displaying data on real-­-time web-­-based graphics. In 2010 FeedZai won the European EBN Smart Entrepreneurship Competition, in the Digital Models category, being considered one of the "top-­-20 smart companies in Europe". The main objective of this seminar/workshop is to explore the topic for large-­-scale data processing using Complex Event Processing and, in particular, the possible uses of Pulse in the scope of the data processing needs of CERN. Pulse is available as open-­-source and can be licensed both for non-­-commercial and commercial applications. FeedZai is interested in exploring possible synergies with CERN in high-­-volume low-­-latency data processing applications. The seminar will be structured in two sessions, the first one being aimed to expose the general scope of FeedZai's activities, and the second focused on Pulse itself: 10:00-11:00 FeedZai and Large Scale Data Processing Introduction to FeedZai FeedZai Pulse and Complex Event Processing Demonstration Use-Cases and Applications Conclusion and Q&A 11:00-11:15 Coffee break 11:15-12:30 FeedZai Pulse Under the Hood A First FeedZai Pulse Application PulseQL overview Defining KPIs and Baselines Conclusion and Q&A About the speakers Nuno Sebastião is the CEO of FeedZai. Having worked for many years for the European Space Agency (ESA), he was responsible the overall design and development of Satellite Simulation Infrastructure of the agency. Having left ESA to found FeedZai, Nuno is

  2. The power of event-driven analytics in Large Scale Data Processing

    SciTech Connect

    2011-02-24

    FeedZai is a software company specialized in creating high-­-throughput low-­-latency data processing solutions. FeedZai develops a product called "FeedZai Pulse" for continuous event-­-driven analytics that makes application development easier for end users. It automatically calculates key performance indicators and baselines, showing how current performance differ from previous history, creating timely business intelligence updated to the second. The tool does predictive analytics and trend analysis, displaying data on real-­-time web-­-based graphics. In 2010 FeedZai won the European EBN Smart Entrepreneurship Competition, in the Digital Models category, being considered one of the "top-­-20 smart companies in Europe". The main objective of this seminar/workshop is to explore the topic for large-­-scale data processing using Complex Event Processing and, in particular, the possible uses of Pulse in the scope of the data processing needs of CERN. Pulse is available as open-­-source and can be licensed both for non-­-commercial and commercial applications. FeedZai is interested in exploring possible synergies with CERN in high-­-volume low-­-latency data processing applications. The seminar will be structured in two sessions, the first one being aimed to expose the general scope of FeedZai's activities, and the second focused on Pulse itself: 10:00-11:00 FeedZai and Large Scale Data Processing Introduction to FeedZai FeedZai Pulse and Complex Event Processing Demonstration Use-Cases and Applications Conclusion and Q&A 11:00-11:15 Coffee break 11:15-12:30 FeedZai Pulse Under the Hood A First FeedZai Pulse Application PulseQL overview Defining KPIs and Baselines Conclusion and Q&A About the speakers Nuno Sebastião is the CEO of FeedZai. Having worked for many years for the European Space Agency (ESA), he was responsible the overall design and development of Satellite Simulation Infrastructure of the agency. Having left ESA to found FeedZai, Nuno is

  3. Integrating real-time digital signal processing capability into a large research and development facility

    NASA Astrophysics Data System (ADS)

    Manges, W. W.; Mallinak-Glassell, J. T.; Breeding, J. E.; Jansen, J. M., Jr.; Tate, R. M.; Bentz, R. R.

    The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world's largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The LCC design required the development of a near-field beamformer in addition to extending the range of real-time processing capability to frequencies unavailable at other facilities. The beamformer acquires and processes time-domain acoustic data at 9.5 MB/s from up to 45 hydrophones while performing 200 million floating-point operations per second, producing a time-integrated, spatially filtered, frequency-domain data set with improved signal-to-noise ratio. The acoustic processing software provides for the real-time analysis of acoustic data. Up to 128 facility sensors are sampled, time stamped, and stored at 600 kB/s. The system generates information for acoustic phenomena and facility measurements in real-time so that the operator can make facility adjustments to control the running equipment. This real-time control of facility conditions requires that the measurement system integrate facility and acoustic data for simultaneous display to the operator in engineering units via high-end workstations. A dual-host minicomputer configuration with high-end workstations connected via an Ethernet networking cluster controls and integrates measurement and display subsystems. The hardware and software architecture is described in this paper.

  4. Hydrogeologic processes of large-scale tectonomagmatic complexes in Mongolia southern Siberia and on Mars

    NASA Astrophysics Data System (ADS)

    Komatsu, Goro; Dohm, James M.; Hare, Trent M.

    2004-04-01

    Large-scale tectonomagmatic complexes are common on Earth and Mars. Many of these complexes are created or at least influenced by mantle processes, including a wide array of plume types ranging from superplumes to mantle plumes. Among the most prominent complexes, the Mongolian plateau on Earth and the Tharsis bulge on Mars share remarkable similarities in terms of large domal uplifted areas, great rift canyon systems, and widespread volcanism on their surfaces. Water has also played an important role in the development of the two complexes. In general, atmospheric and surface water play a bigger role in the development of the present-day Mongolian plateau than for the Tharsis bulge, as evidenced by highly developed drainages and thick accumulation of sediments in the basins of the Baikal rift system. On the Tharsis bulge, however, water appears to have remained as ground ice except during periods of elevated magmatic activity. Glacial and periglacial processes are well documented for the Mongolian plateau and are also reported for parts of the Tharsis bulge. Ice-magma interactions, which are represented by the formation of subice volcanoes in parts of the Mongolian plateau region, have been reported for the Valles Marineris region of Mars. The complexes are also characterized by cataclysmic floods, but their triggering mechanism may differ: mainly ice-dam failures for the Mongolian plateau and outburst of groundwater for the Tharsis bulge, probably by magma-ice interactions, although ice-dam failures within the Valles Marineris region cannot be ruled out as a possible contributor. Comparative studies of the Mongolian plateau and Tharsis bulge provide excellent opportunities for understanding surface manifestations of plume-driven processes on terrestrial planets and how they interact with hydro-cryospheres.

  5. Hydrogeologic processes of large-scale tectonomagmatic complexes in Mongolia-southern Siberia and on Mars

    USGS Publications Warehouse

    Komatsu, G.; Dohm, J.M.; Hare, T.M.

    2004-01-01

    Large-scale tectonomagmatic complexes are common on Earth and Mars. Many of these complexes are created or at least influenced by mantle processes, including a wide array of plume types ranging from superplumes to mantle plumes. Among the most prominent complexes, the Mongolian plateau on Earth and the Tharsis bulge on Mars share remarkable similarities in terms of large domal uplifted areas, great rift canyon systems, and widespread volcanism on their surfaces. Water has also played an important role in the development of the two complexes. In general, atmospheric and surface water play a bigger role in the development of the present-day Mongolian plateau than for the Tharsis bulge, as evidenced by highly developed drainages and thick accumulation of sediments in the basins of the Baikal rift system. On the Tharsis bulge, however, water appears to have remained as ground ice except during periods of elevated magmatic activity. Glacial and periglacial processes are well documented for the Mongolian plateau and are also reported for parts of the Tharsis bulge. Ice-magma interactions, which are represented by the formation of subice volcanoes in parts of the Mongolian plateau region, have been reported for the Valles Marineris region of Mars. The complexes are also characterized by cataclysmic floods, but their triggering mechanism may differ: mainly ice-dam failures for the Mongolian plateau and outburst of groundwater for the Tharsis bulge, probably by magma-ice interactions, although ice-dam failures within the Valles Marineris region cannot be ruled out as a possible contributor. Comparative studies of the Mongolian plateau and Tharsis bulge provide excellent opportunities for understanding surface manifestations of plume-driven processes on terrestrial planets and how they interact with hydro-cryospheres. ?? 2004 Geological Society of America.

  6. Environmental control on aerobic methane oxidation in coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  7. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew Amis; Liu, Yan-Hua

    2002-08-01

    Eighteen anaerobic/aerobic batch experiments were conducted with a variety of volatile fatty acids (VFAs) on a sequencing batch reactor (SBR) population displaying enhanced biological phosphorus removal (EBPR). A statistically significant (P < 0.01 for all variables) correlation between aerobic phosphorus uptake and polyhydroxyalkanoates (PHAs) quantity and form was observed. The results suggest that poly-3-hydroxy-butyrate (3HB) results in significantly higher aerobic phosphorus (P) uptake per unit mmoles as carbon (mmoles-C) than poly-3-hydroxy-valerate (3HV). The results showed that acetic and isovaleric acids resulted in higher P removals (relative to propionic and valeric acids) during EBPR batch experiments not because of higher PHAs quantity, but largely because the predominant type was 3HB rather than 3HV. In contrast propionic and valeric acids resulted in 3HV, and showed much lower aerobic P uptake per unit PHAs. PMID:12230192

  8. A scale down process for the development of large volume cryopreservation.

    PubMed

    Kilbride, Peter; Morris, G John; Milne, Stuart; Fuller, Barry; Skepper, Jeremy; Selden, Clare

    2014-12-01

    The process of ice formation and propagation during cryopreservation impacts on the post-thaw outcome for a sample. Two processes, either network solidification or progressive solidification, can dominate the water-ice phase transition with network solidification typically present in small sample cryo-straws or cryo-vials. Progressive solidification is more often observed in larger volumes or environmental freezing. These different ice phase progressions could have a significant impact on cryopreservation in scale-up and larger volume cryo-banking protocols necessitating their study when considering cell therapy applications. This study determines the impact of these different processes on alginate encapsulated liver spheroids (ELS) as a model system during cryopreservation, and develops a method to replicate these differences in an economical manner. It was found in the current studies that progressive solidification resulted in fewer, but proportionally more viable cells 24h post-thaw compared with network solidification. The differences between the groups diminished at later time points post-thaw as cells recovered the ability to undertake cell division, with no statistically significant differences seen by either 48 h or 72 h in recovery cultures. Thus progressive solidification itself should not prove a significant hurdle in the search for successful cryopreservation in large volumes. However, some small but significant differences were noted in total viable cell recoveries and functional assessments between samples cooled with either progressive or network solidification, and these require further investigation. PMID:25219980

  9. Subpixelic measurement of large 1D displacements: principle, processing algorithms, performances and software.

    PubMed

    Guelpa, Valérian; Laurent, Guillaume J; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-01-01

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range. PMID:24625736

  10. Activation process in excitable systems with multiple noise sources: Large number of units.

    PubMed

    Franović, Igor; Perc, Matjaž; Todorović, Kristina; Kostić, Srdjan; Burić, Nikola

    2015-12-01

    We study the activation process in large assemblies of type II excitable units whose dynamics is influenced by two independent noise terms. The mean-field approach is applied to explicitly demonstrate that the assembly of excitable units can itself exhibit macroscopic excitable behavior. In order to facilitate the comparison between the excitable dynamics of a single unit and an assembly, we introduce three distinct formulations of the assembly activation event. Each formulation treats different aspects of the relevant phenomena, including the thresholdlike behavior and the role of coherence of individual spikes. Statistical properties of the assembly activation process, such as the mean time-to-first pulse and the associated coefficient of variation, are found to be qualitatively analogous for all three formulations, as well as to resemble the results for a single unit. These analogies are shown to derive from the fact that global variables undergo a stochastic bifurcation from the stochastically stable fixed point to continuous oscillations. Local activation processes are analyzed in the light of the competition between the noise-led and the relaxation-driven dynamics. We also briefly report on a system-size antiresonant effect displayed by the mean time-to-first pulse. PMID:26764779

  11. A scale down process for the development of large volume cryopreservation☆

    PubMed Central

    Kilbride, Peter; Morris, G. John; Milne, Stuart; Fuller, Barry; Skepper, Jeremy; Selden, Clare

    2014-01-01

    The process of ice formation and propagation during cryopreservation impacts on the post-thaw outcome for a sample. Two processes, either network solidification or progressive solidification, can dominate the water–ice phase transition with network solidification typically present in small sample cryo-straws or cryo-vials. Progressive solidification is more often observed in larger volumes or environmental freezing. These different ice phase progressions could have a significant impact on cryopreservation in scale-up and larger volume cryo-banking protocols necessitating their study when considering cell therapy applications. This study determines the impact of these different processes on alginate encapsulated liver spheroids (ELS) as a model system during cryopreservation, and develops a method to replicate these differences in an economical manner. It was found in the current studies that progressive solidification resulted in fewer, but proportionally more viable cells 24 h post-thaw compared with network solidification. The differences between the groups diminished at later time points post-thaw as cells recovered the ability to undertake cell division, with no statistically significant differences seen by either 48 h or 72 h in recovery cultures. Thus progressive solidification itself should not prove a significant hurdle in the search for successful cryopreservation in large volumes. However, some small but significant differences were noted in total viable cell recoveries and functional assessments between samples cooled with either progressive or network solidification, and these require further investigation. PMID:25219980

  12. Further development of chemical vapor deposition process for production of large diameter carbon-base monofilaments

    NASA Technical Reports Server (NTRS)

    Hough, R. L.; Richmond, R. D.

    1974-01-01

    The development of large diameter carbon-base monofilament in the 50 micron to 250 micron diameter range using the chemical vapor deposition process is described. The object of this program was to determine the critical process variables which control monofilament strength, monofilament modulus, and monofilament diameter. It was confirmed that wide scatter in the carbon substrate strength is primarily responsible for the scatter in the monofilament strength. It was also shown through etching experiments that defective substrate surface conditions which can induce low strength modular growth in the monofilament layers are best controlled by processing improvements during the synthesis of the substrate. Modulus was found to be linearily proportional to monofilament boron content. Filament modulus was increased to above 27.8MN/sq cm but only by a considerable increase in monofilament boron content to 60 wt. % or more. Monofilament diameter depended upon dwell time in the synthesis apparatus. A monofilament was prepared using these findings which had the combined properties of a mean U.T.S. of 398,000 N/sq cm, a modulus of 18.9 MN/sq cm (24,000,000 psi), and a diameter of 145 microns. Highest measured strength for this fiber was 451,000 N/sq cm (645,000 psi).

  13. Activation process in excitable systems with multiple noise sources: Large number of units

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Perc, Matjaž; Todorović, Kristina; Kostić, Srdjan; Burić, Nikola

    2015-12-01

    We study the activation process in large assemblies of type II excitable units whose dynamics is influenced by two independent noise terms. The mean-field approach is applied to explicitly demonstrate that the assembly of excitable units can itself exhibit macroscopic excitable behavior. In order to facilitate the comparison between the excitable dynamics of a single unit and an assembly, we introduce three distinct formulations of the assembly activation event. Each formulation treats different aspects of the relevant phenomena, including the thresholdlike behavior and the role of coherence of individual spikes. Statistical properties of the assembly activation process, such as the mean time-to-first pulse and the associated coefficient of variation, are found to be qualitatively analogous for all three formulations, as well as to resemble the results for a single unit. These analogies are shown to derive from the fact that global variables undergo a stochastic bifurcation from the stochastically stable fixed point to continuous oscillations. Local activation processes are analyzed in the light of the competition between the noise-led and the relaxation-driven dynamics. We also briefly report on a system-size antiresonant effect displayed by the mean time-to-first pulse.

  14. Integration of the stratigraphic aspects of very large sea-floor databases using information processing

    USGS Publications Warehouse

    Jenkins, Clinton N.; Flocks, J.; Kulp, M.

    2006-01-01

    Information-processing methods are described that integrate the stratigraphic aspects of large and diverse collections of sea-floor sample data. They efficiently convert common types of sea-floor data into database and GIS (geographical information system) tables, visual core logs, stratigraphic fence diagrams and sophisticated stratigraphic statistics. The input data are held in structured documents, essentially written core logs that are particularly efficient to create from raw input datasets. Techniques are described that permit efficient construction of regional databases consisting of hundreds of cores. The sedimentological observations in each core are located by their downhole depths (metres below sea floor - mbsf) and also by a verbal term that describes the sample 'situation' - a special fraction of the sediment or position in the core. The main processing creates a separate output event for each instance of top, bottom and situation, assigning top-base mbsf values from numeric or, where possible, from word-based relative locational information such as 'core catcher' in reference to sampler device, and recovery or penetration length. The processing outputs represent the sub-bottom as a sparse matrix of over 20 sediment properties of interest, such as grain size, porosity and colour. They can be plotted in a range of core-log programs including an in-built facility that better suits the requirements of sea-floor data. Finally, a suite of stratigraphic statistics are computed, including volumetric grades, overburdens, thicknesses and degrees of layering. ?? The Geological Society of London 2006.

  15. Novel process for the production of large, stable photosensitivity in glass films

    SciTech Connect

    Simmons-Potter, K.; Potter, B.G. Jr.; McIntyre, D.C.; Grandon, P.D.

    1996-04-01

    Germanosilicate glasses exhibit a significant photosensitive response which has been linked to the presence of oxygen-deficient germanium point defects in the glass structure. Based on this correlation, a process which produces highly photosensitive thin films without the use of hydrogen exposures, has been developed. This process, applicable to a wide range of desired {ital x}GeO{sub 2}:{ital bf}{gt}(1{minus}{ital x})SiO{sub 2} film composition, uses reactive atmosphere sputtering and allows extensive control of the degree of oxidation of the films during synthesis to produce dramatic demonstrations of photosensitivity. In preliminary tests, our films demonstrated ultraviolet-induced refractive index perturbations ({Delta}{ital n}) of up to {minus}4{times}10{sup {minus}3} in the visible and {minus}0.4{times}10{sup {minus}3} at 1.5 {mu}m. Since no hydrogen exposure was necessary, this process yielded stable films which retained their predisposition for large photosensitivity for over one year of storage.

  16. Aerobic fitness ecological validity in elite soccer players: a metabolic power approach.

    PubMed

    Manzi, Vincenzo; Impellizzeri, Franco; Castagna, Carlo

    2014-04-01

    The aim of this study was to examine the association between match metabolic power (MP) categories and aerobic fitness in elite-level male soccer players. Seventeen male professional soccer players were tested for VO2max, maximal aerobic speed (MAS), VO2 at ventilatory threshold (VO2VT and %VO2VT), and speed at a selected blood lactate concentration (4 mmol·L(-1), V(L4)). Aerobic fitness tests were performed at the end of preseason and after 12 and 24 weeks during the championship. Aerobic fitness and MP variables were considered as mean of all seasonal testing and of 16 Championship home matches for all the calculations, respectively. Results showed that VO2max (from 0.55 to 0.68), MAS (from 0.52 to 0.72), VO2VT (from 0.72 to 0.83), %VO2maxVT (from 0.62 to 0.65), and V(L4) (from 0.56 to 0.73) were significantly (p < 0.05 to 0.001) large to very large associated with MP variables. These results provide evidence to the ecological validity of aerobic fitness in male professional soccer. Strength and conditioning professionals should consider aerobic fitness in their training program when dealing with professional male soccer players. The MP method resulted an interesting approach for tracking external load in male professional soccer players. PMID:24345968

  17. In-database processing of a large collection of remote sensing data: applications and implementation

    NASA Astrophysics Data System (ADS)

    Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina

    2016-04-01

    Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability

  18. Large-Scale Simulation of a Process for Cataloguing Small Orbital Debris

    NASA Astrophysics Data System (ADS)

    Phillion, D.; Pertica, A.; Fasenfest, B.; Horsley, M.; de Vries, W.; Springer, H.; Jefferson, D.; Olivier, S.; Hill, K.; Sabol, C.

    2010-09-01

    We demonstrate a methodology for establishing orbits for the abundant, un-catalogued, yet dangerous, small orbital debris that will become observable with planned improvements to the Space Fence. Although roughly 15,000 orbital objects are present in the SSN catalog, it is believed that at least 200,000 objects that are massive enough to cause significant damage are in Earth orbit. With improvements to the Space Fence, LEO debris down to 5 cm in size may become observable. The additional hundreds of thousands of observations a day of mostly un-catalogued objects will present a significant data processing challenge. Of particular concern are the large numbers of observations that are uncorrelated either to a known object or to a single object. To deal with the large-scale uncorrelated track (UCT) problem, we have ported the Covariance-Based Track Algorithm (CBTA) into the supercomputer-based Testbed Environment for Space Situational Awareness (TESSA) in order to perform simulations at scale. CBTA bins UCTs for which initial orbits and initial covariance matrices could be determined back to a common epoch and then uses a statistical measure to see if they correlate given the state vectors and covariance matrices at that common time. If they do, the observations from the two tracks are combined and orbit determination (OD) is used to attempt to fit an orbit to the combined tracks. If OD converges, a new UCT hypothesis is created and the state and covariance of that hypothesis is saved with the other pre-existing UCTs. If a certain number of tracks are successfully combined then they are used to create a new catalog object. Old UCTs are weeded out of the pool of hypotheses when they become obsolete, or when at least some of the observations are used to create a new catalog object. For the simulation, we developed a Radar detection model simulating the performance of a notional new Space Fence. We propagated thousands of objects over a several day period creating a

  19. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    PubMed

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females. PMID:22080322

  20. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  1. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    PubMed Central

    Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio

    2006-01-01

    Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in

  2. The complete process of large elastic-plastic deflection of a cantilever

    NASA Astrophysics Data System (ADS)

    Xiaoqiang, Wu; Tongxi, Yu

    1986-11-01

    An extension of the Elastica theory is developed to study the large deflection of an elastic-perfectly plastic horizontal cantilever beam subjected to a vertical concentrated force at its tip. The entire process is divided into four stages: I.elastic in the whole cantilever; II.loading and developing of the plastic region; III.unloading in the plastic region; and IV.reverse loading. Solutions for stages I and II are presented in a closed form. A combination of closed-form solution and numerical integration is presented for stage III. Finally, stage IV is qualitatively studied. Computed results are given and compared with those from small-deflection theory and from the Elastica theory.

  3. Processing large sensor data sets for safeguards : the knowledge generation system.

    SciTech Connect

    Thomas, Maikel A.; Smartt, Heidi Anne; Matthews, Robert F.

    2012-04-01

    Modern nuclear facilities, such as reprocessing plants, present inspectors with significant challenges due in part to the sheer amount of equipment that must be safeguarded. The Sandia-developed and patented Knowledge Generation system was designed to automatically analyze large amounts of safeguards data to identify anomalous events of interest by comparing sensor readings with those expected from a process of interest and operator declarations. This paper describes a demonstration of the Knowledge Generation system using simulated accountability tank sensor data to represent part of a reprocessing plant. The demonstration indicated that Knowledge Generation has the potential to address several problems critical to the future of safeguards. It could be extended to facilitate remote inspections and trigger random inspections. Knowledge Generation could analyze data to establish trust hierarchies, to facilitate safeguards use of operator-owned sensors.

  4. FUNDAMENTAL STUDIES OF IGNITION PROCESSES IN LARGE NATURAL GAS ENGINES USING LASER SPARK IGNITION

    SciTech Connect

    Azer Yalin; Morgan Defoort; Bryan Willson

    2005-01-01

    The current report details project progress made during the first quarterly reporting period of the DOE sponsored project ''Fundamental studies of ignition processes in large natural gas engines using laser spark ignition''. The goal of the overall research effort is to develop a laser ignition system for natural gas engines, with a particular focus on using fiber optic delivery methods. In this report we present our successful demonstration of spark formation using fiber delivery made possible though the use of novel coated hollow fibers. We present results of (high power) experimental characterizations of light propagation using hollow fibers using both a high power research grade laser as well as a more compact laser. Finally, we present initial designs of the system we are developing for future on-engine testing using the hollow fibers.

  5. Integrated Technologies for Large-Scale Trapped-Ion Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Sorace-Agaskar, C.; Bramhavar, S.; Kharas, D.; Mehta, K. K.; Loh, W.; Panock, R.; Bruzewicz, C. D.; McConnell, R.; Ram, R. J.; Sage, J. M.; Chiaverini, J.

    2016-05-01

    Atomic ions trapped and controlled using electromagnetic fields hold great promise for practical quantum information processing due to their inherent coherence properties and controllability. However, to realize this promise, the ability to maintain and manipulate large-scale systems is required. We present progress toward the development of, and proof-of-principle demonstrations and characterization of, several technologies that can be integrated with ion-trap arrays on-chip to enable such scaling to practically useful sizes. Of particular use are integrated photonic elements for routing and focusing light throughout a chip without the need for free-space optics. The integration of CMOS electronics and photo-detectors for on-chip control and readout, and methods for monolithic fabrication and wafer-scale integration to incorporate these capabilities into tile-able 2D ion-trap array cells, are also explored.

  6. A Natural Language Processing Tool for Large-Scale Data Extraction from Echocardiography Reports.

    PubMed

    Nath, Chinmoy; Albaghdadi, Mazen S; Jonnalagadda, Siddhartha R

    2016-01-01

    Large volumes of data are continuously generated from clinical notes and diagnostic studies catalogued in electronic health records (EHRs). Echocardiography is one of the most commonly ordered diagnostic tests in cardiology. This study sought to explore the feasibility and reliability of using natural language processing (NLP) for large-scale and targeted extraction of multiple data elements from echocardiography reports. An NLP tool, EchoInfer, was developed to automatically extract data pertaining to cardiovascular structure and function from heterogeneously formatted echocardiographic data sources. EchoInfer was applied to echocardiography reports (2004 to 2013) available from 3 different on-going clinical research projects. EchoInfer analyzed 15,116 echocardiography reports from 1684 patients, and extracted 59 quantitative and 21 qualitative data elements per report. EchoInfer achieved a precision of 94.06%, a recall of 92.21%, and an F1-score of 93.12% across all 80 data elements in 50 reports. Physician review of 400 reports demonstrated that EchoInfer achieved a recall of 92-99.9% and a precision of >97% in four data elements, including three quantitative and one qualitative data element. Failure of EchoInfer to correctly identify or reject reported parameters was primarily related to non-standardized reporting of echocardiography data. EchoInfer provides a powerful and reliable NLP-based approach for the large-scale, targeted extraction of information from heterogeneous data sources. The use of EchoInfer may have implications for the clinical management and research analysis of patients undergoing echocardiographic evaluation. PMID:27124000

  7. A Natural Language Processing Tool for Large-Scale Data Extraction from Echocardiography Reports

    PubMed Central

    Jonnalagadda, Siddhartha R.

    2016-01-01

    Large volumes of data are continuously generated from clinical notes and diagnostic studies catalogued in electronic health records (EHRs). Echocardiography is one of the most commonly ordered diagnostic tests in cardiology. This study sought to explore the feasibility and reliability of using natural language processing (NLP) for large-scale and targeted extraction of multiple data elements from echocardiography reports. An NLP tool, EchoInfer, was developed to automatically extract data pertaining to cardiovascular structure and function from heterogeneously formatted echocardiographic data sources. EchoInfer was applied to echocardiography reports (2004 to 2013) available from 3 different on-going clinical research projects. EchoInfer analyzed 15,116 echocardiography reports from 1684 patients, and extracted 59 quantitative and 21 qualitative data elements per report. EchoInfer achieved a precision of 94.06%, a recall of 92.21%, and an F1-score of 93.12% across all 80 data elements in 50 reports. Physician review of 400 reports demonstrated that EchoInfer achieved a recall of 92–99.9% and a precision of >97% in four data elements, including three quantitative and one qualitative data element. Failure of EchoInfer to correctly identify or reject reported parameters was primarily related to non-standardized reporting of echocardiography data. EchoInfer provides a powerful and reliable NLP-based approach for the large-scale, targeted extraction of information from heterogeneous data sources. The use of EchoInfer may have implications for the clinical management and research analysis of patients undergoing echocardiographic evaluation. PMID:27124000

  8. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module

    NASA Astrophysics Data System (ADS)

    Feng, Xuning; Sun, Jing; Ouyang, Minggao; Wang, Fang; He, Xiangming; Lu, Languang; Peng, Huei

    2015-02-01

    This paper investigates the mechanisms of penetration induced thermal runaway (TR) propagation process within a large format lithium ion battery pack. A 6-battery module is built with 47 thermocouples installed at critical positions to record the temperature profiles. The first battery of the module is penetrated to trigger a TR propagation process. The temperature responses, the voltage responses and the heat transfer through different paths are analyzed and discussed to characterize the underlying physical behavior. The temperature responses show that: 1) Compared with the results of TR tests using accelerating rate calorimetry (ARC) with uniform heating, a lower onset temperature and a shorter TR triggering time are observed in a penetration induced TR propagation test due to side heating. 2) The maximum temperature difference within a battery can be as high as 791.8 °C in a penetration induced TR propagation test. The voltage responses have a 5-stage feature, indicating that the TR happens in sequence for the two pouch cells packed inside a battery. The heat transfer analysis shows that: 1) 12% of the total heat released in TR of a battery is enough to trigger the adjacent battery to TR. 2) The heat transferred through the pole connector is only about 1/10 of that through the battery shell. 3) The fire has little influence on the TR propagation, but may cause significant damage on the accessories located above the battery. The results can enhance our understandings of the mechanisms of TR propagation, and provide important guidelines in pack design for large format lithium ion battery.

  9. Quantification of aerobic biodegradation and volatilization rates of gasoline hydrocarbons near the water table under natural attenuation conditions

    USGS Publications Warehouse

    Lahvis, M.A.; Baehr, A.L.; Baker, R.J.

    1999-01-01

    Aerobic biodegradation and volatilization near the water table constitute a coupled pathway that contributes significantly to the natural attenuation of hydrocarbons at gasoline spill sites. Rates of hydrocarbon biodegradation and volatilization were quantified by analyzing vapor transport in the unsaturated zone at a gasoline spill site in Beaufort, South Carolina. Aerobic biodegradation rates decreased with distance above the water table, ranging from 0.20 to 1.5g m-3 d-1 for toluene, from 0.24 to 0.38 g m-3 d-1 for xylene, from 0.09 to 0.24 g m-3 d-1 for cyclohexene, from 0.05 to 0.22 g m-3 d-1 for ethylbenzene, and from 0.02 to 0.08 g m-3 d-1 for benzene. Rates were highest in the capillary zone, where 68% of the total hydrocarbon mass that volatilized from the water table was estimated to have been biodegraded. Hydrocarbons were nearly completely degraded within 1 m above the water table. This large loss underscores the importance of aerobic biodegradation in limiting the transport of hydrocarbon vapors in the unsaturated zone and implies that vapor-plume migration to basements and other points of contact may only be significant if a source of free product is present. Furthermore, because transport of the hydrocarbon in the unsaturated zone can be limited relative to that of oxygen and carbon dioxide, soil, gas surveys conducted at hydrocarbon-spill sites would benefit by the inclusion of oxygen- and carbon-dioxide-gas concentration measurements. Aerobic degradation kinetics in the unsaturated zone were approximately first-order. First-order rate constants near the water table were highest for cyctohexene (0.21-0.65 d-1) and nearly equivalent for ethylbenzene (0.11-20.31 d-1), xylenes (0.10-0.31 d-1), toluene (0.09-0.30 d-1), and benzene (0.07,0.31 d-1). Hydrocarbon mass loss rates at the water table resulting from the coupled aerobic biodegradation and volatilization process were determined by extrapolating gas transport rates through the capillary zone. Mass

  10. ParaText : scalable solutions for processing and searching very large document collections : final LDRD report.

    SciTech Connect

    Crossno, Patricia Joyce; Dunlavy, Daniel M.; Stanton, Eric T.; Shead, Timothy M.

    2010-09-01

    This report is a summary of the accomplishments of the 'Scalable Solutions for Processing and Searching Very Large Document Collections' LDRD, which ran from FY08 through FY10. Our goal was to investigate scalable text analysis; specifically, methods for information retrieval and visualization that could scale to extremely large document collections. Towards that end, we designed, implemented, and demonstrated a scalable framework for text analysis - ParaText - as a major project deliverable. Further, we demonstrated the benefits of using visual analysis in text analysis algorithm development, improved performance of heterogeneous ensemble models in data classification problems, and the advantages of information theoretic methods in user analysis and interpretation in cross language information retrieval. The project involved 5 members of the technical staff and 3 summer interns (including one who worked two summers). It resulted in a total of 14 publications, 3 new software libraries (2 open source and 1 internal to Sandia), several new end-user software applications, and over 20 presentations. Several follow-on projects have already begun or will start in FY11, with additional projects currently in proposal.

  11. Large-volume methacrylate monolith for plasmid purification. Process engineering approach to synthesis and application.

    PubMed

    Danquah, Michael K; Forde, Gareth M

    2008-04-25

    The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 degrees C. Maximum radial temperature recorded at the centre of the monolith was 62.3 degrees C, which was only 2.3 degrees C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5alpha-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis. PMID:18329651

  12. Gaining insight into river ecosystem processes from a large-scale flow experiment

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Pike, A.; Boughton, D. A.

    2015-12-01

    In rivers throughout the world, anthropogenic impacts related to large dams have altered or eliminated the habitat necessary for many aquatic organisms. Flow experiments, both planned and unplanned, provide unique opportunities to evaluate the extent to which alternative dam operations can provide downstream ecological benefits. Here we use an unanticipated, reservoir release on the Santa Ynez River in southern California to investigate how a large flood influenced river ecosystem processes. We directly measured the flood-induced, topographic changes over 80 km of the river and floodplain using two high-resolution field and remote sensing data sets that bracketed the flood event. DEM-differencing of the pre- and post-flood topography was used to calculate shifts in the active channel planform and the net volumetric fluxes in gravel storage along the channel and floodplain. LiDAR and image-based habitat mapping was conducted to quantify the proportion of different habitat units before and after the flood. Large-scale geomorphic changes were observed as a result of the flood, including lateral migration of the river channel, gravel bar formation and the development of off-channel chute habitat. Spatial patterns of gravel storage changed with distance from the dam, with the upper 20 km experiencing a net sediment deficit and the lower 60 km undergoing net deposition. The longitudinal trends in gravel transport and storage reflect differences in the channel gradient, valley confinement and density of floodplain vegetation. We found that the flood nearly doubled the extent of pool habitat, primarily by converting runs to pools and by incising new pools adjacent to valley walls and terraces. The increase in the number of pools was predicted to have positive impacts on steelhead habitat, by providing a broader range of water depths and micro-habitats utilized by different age classes. Results from this study highlight the value of using flow pulses as opportunities to

  13. Graphene films with large domain size by a two-step chemical vapor deposition process.

    PubMed

    Li, Xuesong; Magnuson, Carl W; Venugopal, Archana; An, Jinho; Suk, Ji Won; Han, Boyang; Borysiak, Mark; Cai, Weiwei; Velamakanni, Aruna; Zhu, Yanwu; Fu, Lianfeng; Vogel, Eric M; Voelkl, Edgar; Colombo, Luigi; Ruoff, Rodney S

    2010-11-10

    The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16,000 cm(2) V(-1) s(-1) at room temperature. PMID:20957985

  14. High-precision work distributions for extreme non-equilibrium processes in large systems

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander

    2014-03-01

    The distributions of work for strongly non-equilibrium processes are studied using a very general form of a large-deviation approach, which allows one to study distributions down to extremely small probabilities of almost arbitrary quantities of interest for equilibrium, non-equilibrium stationary and even non-stationary processes. The method is applied to varying quickly the external field in a wide range B = 3 <--> 0 for critical (T = 2 . 269) two-dimensional Ising system of size L × L = 128 × 128 . To obtain free energy differences from the work distributions, they must be studied in ranges where the probabilities are as small as 10-240, which is not possible using direct simulation approaches. By comparison with the exact free energies, one sees that the present approach allows one to obtain the free energy with a very high relative precision of 10-4. This works well also for non-zero field, i.e., for a case where standard umbrella-sampling methods seem to be not so efficient to calculate free energies. Furthermore, for the present case it is verified that the resulting distributions of work fulfill Crooks theorem with high precision. Finally, the free energy for the Ising magnet as a function of the field strength is obtained.

  15. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  16. Potential for on-orbit manufacture of large space structures using the pultrusion process

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.

    1987-01-01

    On-orbit manufacture of lightweight, high-strength, advanced-composite structures using the pultrusion process is proposed. This process is adaptable to a zero-gravity environment by using preimpregnated graphite-fiber reinforcement systems. The reinforcement material is preimpregnated with a high-performance thermoplastic resin at a ground station, is coiled on spools for compact storage, and is transported into Earth orbit. A pultrusion machine is installed in the Shuttle cargo bay from which very long lengths of the desired structure is fabricated on-orbit. Potential structural profiles include rods, angles, channels, hat sections, tubes, honeycomb-cored panels, and T, H, and I beams. A potential pultrudable thermoplastic/graphite composite material is presented as a model for determining the effect on Earth-to-orbit package density of an on-orbit manufacture, the package density is increased by 132 percent, and payload volume requirement is decreased by 56.3 percent. The fabrication method has the potential for on-orbit manufacture of structural members for space platforms, large space antennas, and long tethers.

  17. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. PMID:26851837

  18. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills.

    PubMed

    Erses, A Suna; Onay, Turgut T; Yenigun, Orhan

    2008-09-01

    Two landfill bioreactors were operated under aerobic and anaerobic conditions in a thermo-insulated room at a constant temperature of 32 degrees C. Reactors were filled with 19.5 kg of shredded synthetic solid waste prepared according to the average municipal solid waste compositions determined in Istanbul and operated under wet-tomb management strategy by using leachate recirculation. Aerobic conditions in the reactor were developed by using an air compressor. The results of experiments indicated that aerobic reactor had higher organic, nitrogen, phosphorus and alkali metal removal efficiencies than the anaerobic one. Furthermore, stabilization time considerably decreased when using aerobic processes with leachate recirculation compared to the anaerobic system with the same recirculation scheme. PMID:18082400

  19. Validation of New Process Models for Large Injection-Molded Long-Fiber Thermoplastic Composite Structures

    SciTech Connect

    Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Kunc, Vlastimil; Tucker III, Charles L.

    2012-02-23

    This report describes the work conducted under the CRADA Nr. PNNL/304 between Battelle PNNL and Autodesk whose objective is to validate the new process models developed under the previous CRADA for large injection-molded LFT composite structures. To this end, the ARD-RSC and fiber length attrition models implemented in the 2013 research version of Moldflow was used to simulate the injection molding of 600-mm x 600-mm x 3-mm plaques from 40% glass/polypropylene (Dow Chemical DLGF9411.00) and 40% glass/polyamide 6,6 (DuPont Zytel 75LG40HSL BK031) materials. The injection molding was performed by Injection Technologies, Inc. at Windsor, Ontario (under a subcontract by Oak Ridge National Laboratory, ORNL) using the mold offered by the Automotive Composite Consortium (ACC). Two fill speeds under the same back pressure were used to produce plaques under slow-fill and fast-fill conditions. Also, two gating options were used to achieve the following desired flow patterns: flows in edge-gated plaques and in center-gated plaques. After molding, ORNL performed measurements of fiber orientation and length distributions for process model validations. The structure of this report is as follows. After the Introduction (Section 1), Section 2 provides a summary of the ARD-RSC and fiber length attrition models. A summary of model implementations in the latest research version of Moldflow is given in Section 3. Section 4 provides the key processing conditions and parameters for molding of the ACC plaques. The validations of the ARD-RSC and fiber length attrition models are presented and discussed in Section 5. The conclusions will be drawn in Section 6.

  20. Aerobic Exercise Improves Cognition and Motor Function Poststroke

    PubMed Central

    Quaney, Barbara M.; Boyd, Lara A.; McDowd, Joan M.; Zahner, Laura H.; He, Jianghua; Mayo, Matthew S.; Macko, Richard F.

    2010-01-01

    Background Cognitive deficits impede stroke recovery. Aerobic exercise (AEX) improves cognitive executive function (EF) processes in healthy individuals, although the learning benefits after stroke are unknown. Objective To understand AEX-induced improvements in EF, motor learning, and mobility poststroke. Methods Following cardiorespiratory testing, 38 chronic stroke survivors were randomized to 2 different groups that exercised 3 times a week (45-minute sessions) for 8 weeks. The AEX group (n = 19; 9 women; 10 men; 64.10 ± 12.30 years) performed progressive resistive stationary bicycle training at 70% maximal heart rate, whereas the Stretching Exercise (SE) group (n = 19; 12 women; 7 men; 58.96 ± 14.68 years) performed stretches at home. Between-group comparisons were performed on the change in performance at “Post” and “Retention” (8 weeks later) for neuropsychological and motor function measures. Results Vo2max significantly improved at Post with AEX (P = .04). AEX also improved motor learning in the less-affected hand, with large effect sizes (Cohen’s d calculation). Specifically, AEX significantly improved information processing speed on the serial reaction time task (SRTT; ie, “procedural motor learning”) compared with the SE group at Post (P = .024), but not at Retention. Also, at Post (P = .038), AEX significantly improved predictive force accuracy for a precision grip task requiring attention and conditional motor learning of visual cues. Ambulation and sit-to-stand transfers were significantly faster in the AEX group at Post (P = .038), with balance control significantly improved at Retention (P = .041). EF measurements were not significantly different for the AEX group. Conclusion AEX improved mobility and selected cognitive domains related to motor learning, which enhances sensorimotor control after stroke. PMID:19541916

  1. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  2. Neuromodulation of Aerobic Exercise—A Review

    PubMed Central

    Heijnen, Saskia; Hommel, Bernhard; Kibele, Armin; Colzato, Lorenza S.

    2016-01-01

    Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors. PMID:26779053

  3. Aerobic Dance for Children: Resources and Recommendations.

    ERIC Educational Resources Information Center

    Wood, Denise A.

    1986-01-01

    Aerobic dance classes may be safe for older children, but are inappropriate for children in the fourth grade and under. Programs for these children should emphasize creativity. Resources for program development are given. (MT)

  4. Conditioning and Aerobics for Older Americans.

    ERIC Educational Resources Information Center

    Hansen, Joyce

    1980-01-01

    A class designed for the maintenance and gradual improvement of senior citizens' physical fitness includes relaxation training, flexibility and stretching exercises, interval training activities (designed as a link between less strenuous exercise and more strenuous activities), and aerobic exercises. (CJ)

  5. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.

    PubMed

    Gobi, K; Vadivelu, V M

    2014-06-01

    Aerobic dynamic feeding (ADF) strategy was applied in sequencing batch reactor (SBR) to accumulate polyhydroxyalkanoate (PHA) in aerobic granules. The aerobic granules were able to remove 90% of the COD from palm oil mill effluent (POME). The volatile fatty acids (VFAs) in the POME are the sole source of the PHA accumulation. In this work, 100% removal of propionic and butyric acids in the POME were observed. The highest amount of PHA produced in aerobic granules was 0.6833mgPHA/mgbiomass. The PHA formed was identified as a P (hydroxybutyrate-co-hydroxyvalerate) P (HB-co-HV). PMID:24725384

  6. Physiological responses during aerobic dance of individuals grouped by aerobic capacity and dance experience.

    PubMed

    Thomsen, D; Ballor, D L

    1991-03-01

    This study examined the effects of aerobic capacity (peak oxygen uptake) and aerobic dance experience on the physiological responses to an aerobic dance routine. The heart rate (HR) and VO2 responses to three levels (intensities) of aerobic dance were measured in 27 women. Experienced aerobic dancers (AD) (mean peak VO2 = 42 ml.kg-1.min-1) were compared to subjects with limited aerobic dance experience of high (HI) (peak VO2 greater than 35 ml.kg-1.min-1) and low (LO) (peak VO2 less than 35 ml.kg-1.min-1) aerobic capacities. The results indicated the LO group exercised at a higher percentage of peak heart rate and peak VO2 at all three dance levels than did either the HI or AD groups (HI = AD). Design of aerobic dance routines must consider the exercise tolerance of the intended audience. In mixed groups, individuals with low aerobic capacities should be shown how and encouraged to modify the activity to reduce the level of exertion. PMID:2028095

  7. Dancing the aerobics ''hearing loss'' choreography

    NASA Astrophysics Data System (ADS)

    Pinto, Beatriz M.; Carvalho, Antonio P. O.; Gallagher, Sergio

    2002-11-01

    This paper presents an overview of gymnasiums' acoustic problems when used for aerobics exercises classes (and similar) with loud noise levels of amplified music. This type of gymnasium is usually a highly reverberant space, which is a consequence of a large volume surrounded by hard surfaces. A sample of five schools in Portugal was chosen for this survey. Noise levels in each room were measured using a precision sound level meter, and analyzed to calculate the standardized daily personal noise exposure levels (LEP,d). LEP,d values from 79 to 91 dB(A) were found to be typical values in this type of room, inducing a health risk for its occupants. The reverberation time (RT) values were also measured and compared with some European legal requirements (Portugal, France, and Belgium) for nearly similar situations. RT values (1 kHz) from 0.9 s to 2.8 s were found. These reverberation time values clearly differentiate between good and acoustically inadequate rooms. Some noise level and RT limits for this type of environment are given and suggestions for the improvement of the acoustical environment are shown. Significant reductions in reverberation time values and noise levels can be obtained by simple measures.

  8. Extension of 4-8 Texture Hierarchies to Large Video Processing and Visualization

    SciTech Connect

    Senecal, J G; Wegner, A E

    2007-11-30

    The purpose of this Techbase was to reduce to practice the tiled 4-8 texture hierarchy for the display of video imagery (i.e. sequences of frames). The immediate intent was to demonstrate its use in the analysis and display of sensor imagery. As sensors are increasing in resolution the physical amount of imagery that needs to be displayed can quickly overwhelm most display systems. For example, a sensor with a horizontal resolution of over 8000 pixels would generate an image over 10 feet wide on a standard 72 DPI display. Breaking an image into tiles, and then decomposing each tile into a multiresolution hierarchy, allows a user (or software) to efficiently select and display only those parts of the image that are of interest to the user. The originator of the idea of 4-8 Texture Hierarchies was Dr. Mark Duchaineau, and we consulted with him in much of our work. We also consulted with Dan Knight, from SequoiaTek Corp., who is a contractor responsible for implementing the viewers for our applications. Most of the code for actual 4-8 Texture Hierarchy generation already existed; a large focus of the Techbase was to determine how to best use what was available for video imagery. The majority of progress was made in specifying and implementing the software framework, which turned out to be rather involved. This framework is to support the creation, storage, and display of images, both tiled and untiled. A first albeit incomplete version was successfully tested in the field in August 2007. The framework structures the process of collecting and processing images conceptually as a pipeline, where work is passed along and a different operation is performed at each stage. In practice, the pipeline is implemented by a group of processes (not threads), or 'workers', each responsible for a specific type of operation. Associated with these workers is a pool of memory (cache). As each process finishes its work, it places the results into the cache and sends a message to the

  9. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new. PMID:27415771

  10. Analysis of chemical and physical processes during the pyrolysis of large biomass pellets

    SciTech Connect

    Chan, W.C.R.

    1983-01-01

    The detailed chemical and physical processes that occur during the pyrolysis of large biomass pellets have been studied both experimentally and mathematically. The quantitative effects on product distribution of chemical composition and physical variables, such as external heat flux, pellet length, density and wood grain orientation, are determined systematically by using a Box-Behnken experimental design. The yield of each product is reported as a function of these variables in the form of a second order polynomial. The experimental apparatus consists of a single pellet reactor with one-dimensional radiant heat flux (2-6 cal/cm/sup 2/-sec) applied to a surface of the cylindrical pellet. Volatile product, which are collected by a cold trap and an automatic gas sampling system, are analyzed by gas chromatography. Temperatures along the pellet length are measured by an optical pyrometer and thermocouples, and the pellet density is obtained by an X-ray technique. The theoretical analysis extends previous mathematical models to include a multi-step reaction mechanism which predicts char yield. Variable properties, heat, and mass transfer effects during the pyrolysis are also treated. The differential equations are solved using a finite difference method. Experimental results in large particle pyrolysis show a different maximum release rate for each volatile component which offers a possibility for increased selectivity. Heat flux has the most significant effect on the pyrolysis rate and product distribution. Pellet length and grain orientation are secondary. The results obtained from this study will be useful in many applications such as improving wood combustion and fire safety. The methodology used in this work may also apply to coal and oil-shale pyrolysis.

  11. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    PubMed Central

    2012-01-01

    Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS) throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input) in a stirred tank reactor throughout high solid enzymatic hydrolysis (< 20% WIS) of steam-pretreated Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength), whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed) it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  12. Investigating convective transport processes and large scale stratospheric dynamics with ICON-ART

    NASA Astrophysics Data System (ADS)

    Stassen, Christian; Ruhnke, Roland; Schröter, Jennifer; Daniel, Rieger; Bischoff-Gauss, Ingeborg; Vogel, Heike; Vogel, Bernhard

    2015-04-01

    We have extended the global ICON (ICOsahedral Nonhydrostatic) modelling framework. ICON is a joint development by the German Weather Service (DWD) and the Max-Planck-Institute for Meteorology (MPI-M). We added modules for gas-phase chemistry and aerosol dynamics (ART, Aerosols and Reactive Trace gases) [1]. ICON allows a regional grid refinement with two-way interactions between the different horizontal grids. It is used by DWD for numerical weather predictions and will be used by MPI-M for climate projections [2]. The extended modelling framework ICON-ART is developed in an analogous way to its predecessors COSMO-ART [3], so that aerosol and chemical composition feedbacks can be considered in a comprehensive way. Up to now, ICON-ART accounts for volcanic ash tracers, radioactive tracers, sea salt and mineral dust aerosols. Additionally, several gaseous tracers have been introduced. For the dynamics (transport and diffusion) of aerosol and gaseous tracers, the original ICON tracer framework is used. For the model physics, numerical time integration follows a process splitting approach separating physical processes. Each process is called independently via an interface module. Currently, the processes of emission, dry and wet deposition, sedimentation, and first order chemical reactions are included. We will present a simulation of the transport of ozone depleting short-lived trace gases from the surface into the stratosphere as well as of long-lived tracers. The simulated tracer distributions are used to investigate the ability of ICON-ART to simulate convective vertical transport in the troposphere as well as of large-scale stratospheric dynamics. [1] Rieger, D., et al. (2014), ICON-ART - A new online-coupled model system from the global to regional scale, submitted to Geosci. Model Dev. [2] Zängl, G., et al. (2014), The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD MPI-M: Description of the non-hydrostatic dynamical core. Q.J.R. Meteorol. Soc

  13. Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1997-01-01

    The following is the final technical report for grant NAGW-3442, 'Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere'. Research efforts in the first year concentrated on transport and mixing processes in the polar vortices. Three papers on mixing in the Antarctic were published. The first was a numerical modeling study of wavebreaking and mixing and their relationship to the period of observed stratospheric waves (Bowman). The second paper presented evidence from TOMS for wavebreaking in the Antarctic (Bowman and Mangus 1993). The third paper used Lagrangian trajectory calculations from analyzed winds to show that there is very little transport into the Antarctic polar vortex prior to the vortex breakdown (Bowman). Mixing is significantly greater at lower levels. This research helped to confirm theoretical arguments for vortex isolation and data from the Antarctic field experiments that were interpreted as indicating isolation. A Ph.D. student, Steve Dahlberg, used the trajectory approach to investigate mixing and transport in the Arctic. While the Arctic vortex is much more disturbed than the Antarctic, there still appears to be relatively little transport across the vortex boundary at 450 K prior to the vortex breakdown. The primary reason for the absence of an ozone hole in the Arctic is the earlier warming and breakdown of the vortex compared to the Antarctic, not replenishment of ozone by greater transport. Two papers describing these results have appeared (Dahlberg and Bowman; Dahlberg and Bowman). Steve Dahlberg completed his Ph.D. thesis (Dahlberg and Bowman) and is now teaching in the Physics Department at Concordia College. We also prepared an analysis of the QBO in SBUV ozone data (Hollandsworth et al.). A numerical study in collaboration with Dr. Ping Chen investigated mixing by barotropic instability, which is the probable origin of the 4-day wave in the upper stratosphere (Bowman and Chen). The important result from

  14. Lightning Processes And Dynamics Of Large Scale Optical Emissions In Long Delayed Sprites

    NASA Astrophysics Data System (ADS)

    Li, J.; Cummer, S. A.; Lyons, W. A.; Nelson, T. E.; Hu, W.

    2006-12-01

    Simultaneous measurements of high altitude optical emissions and the magnetic field produced by sprite-associated lightning discharges enable a close examination of the link between low altitude lightning process and high altitude sprite process. In this work, we report results of the coordinated analysis of high speed (1000--10000 frames per second) sprite video and wideband (0.1 Hz to 30 kHz) magnetic field measurements made simultaneously at the Yucca Ridge Field Station and Duke University during the June through August 2005 campaign period. We investigate the relationship of lightning charge transfer characteristics and long delayed (>30 ms) sprites after the lightning return stroke. These long delayed sprites initiated after a total vertical charge moment change from a few thousand C km to more than ten thousand C km. Continuing currents provide about 50% to 90% of this total charge transfer depending on the sprite delayed time and amplitude of continuing current. Our data also show that intense continuing current bigger than a few kA plays an important role in sprites whose primary optical emissions last unusually long (>30 ms). On one observation night (4 July 2005), a large mesoscale convective system produced many sprites that were part of complex transient luminous event (TLE) sequences that included optical emission elements that appear well after any return stroke and initiate at apparently relatively low altitudes (~ 50 km). These low initiation altitude sprite events are typically associated with intense continuing currents and total charge moment changes of 4000 C km or more. With the estimated lightning source current moment waveform, we also employ a 2-D FDTD model to numerically simulate the electric field at different altitudes and compare it with the breakdown field. This reveals the initiation altitude of those long delayed sprites and the effect of electric field dependence of the electron mobility.

  15. The large deviations of the whitening process in random constraint satisfaction problems

    NASA Astrophysics Data System (ADS)

    Braunstein, Alfredo; Dall’Asta, Luca; Semerjian, Guilhem; Zdeborová, Lenka

    2016-05-01

    Random constraint satisfaction problems undergo several phase transitions as the ratio between the number of constraints and the number of variables is varied. When this ratio exceeds the satisfiability threshold no more solutions exist; the satisfiable phase, for less constrained problems, is itself divided in an unclustered regime and a clustered one. In the latter solutions are grouped in clusters of nearby solutions separated in configuration space from solutions of other clusters. In addition the rigidity transition signals the appearance of so-called frozen variables in typical solutions: beyond this threshold most solutions belong to clusters with an extensive number of variables taking the same values in all solutions of the cluster. In this paper we refine the description of this phenomenon by estimating the location of the freezing transition, corresponding to the disappearance of all unfrozen solutions (not only typical ones). We also unveil phase transitions for the existence and uniqueness of locked solutions, in which all variables are frozen. From a technical point of view we characterize atypical solutions with a number of frozen variables different from the typical value via a large deviation study of the dynamics of a stripping process (whitening) that unveils the frozen variables of a solution, building upon recent works on atypical trajectories of the bootstrap percolation dynamics. Our results also bear some relevance from an algorithmic perspective, previous numerical studies having shown that heuristic algorithms of various kinds usually output unfrozen solutions.

  16. Post-project geomorphic assessment of a large process-based river restoration project

    USGS Publications Warehouse

    Erwin, Susannah O.; Schmidt, John C.; Allred, Tyler M.

    2016-01-01

    This study describes channel changes following completion of the Provo River Restoration Project (PRRP), the largest stream restoration project in Utah and one of the largest projects in the United States in which a gravel-bed river was fully reconstructed. We summarize project objectives and the design process, and we analyze monitoring data collected during the first 7 years after project completion. Post-project channel adjustment during the study period included two phases: (i) an initial phase of rapid, but small-scale, adjustment during the first years after stream flow was introduced to the newly constructed channel and (ii) a subsequent period of more gradual topographic adjustment and channel migration. Analysis of aerial imagery and ground-survey data demonstrate that the channel has been more dynamic in the downstream 4 km where a local source contributes a significant annual supply of bed material. Here, the channel migrates and exhibits channel adjustments that are more consistent with project objectives. The upstream 12 km of the PRRP are sediment starved, the channel has been laterally stable, and this condition may not be consistent with large-scale project objectives.

  17. Groundwater in the Earth's critical zone: Relevance to large-scale patterns and processes

    NASA Astrophysics Data System (ADS)

    Fan, Ying

    2015-05-01

    Although we have an intuitive understanding of the behavior and functions of groundwater in the Earth's critical zone at the scales of a column (atmosphere-plant-soil-bedrock), along a toposequence (ridge to valley), and across a small catchment (up to third-order streams), this paper attempts to assess the relevance of groundwater to understanding large-scale patterns and processes such as represented in global climate and Earth system models. Through observation syntheses and conceptual models, evidence are presented that groundwater influence is globally prevalent, it forms an environmental gradient not fully captured by the climate, and it can profoundly shape critical zone evolution at continental to global scales. Four examples are used to illustrate these ideas: (1) groundwater as a water source for plants in rainless periods, (2) water table depth as a driver of plant rooting depth, (3) the accessibility of groundwater as an ecological niche separator, and (4) groundwater as the lower boundary of land drainage and a global driver of wetlands. The implications to understanding past and future global environmental change are briefly discussed, as well as critical discipline, scale, and data gaps that must be bridged in order for us to translate what we learn in the field at column, hillslope and catchment scales, to what we must predict at regional, continental, and global scales.

  18. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics

    PubMed Central

    Deutsch, Eric W.; Mendoza, Luis; Shteynberg, David; Slagel, Joseph; Sun, Zhi; Moritz, Robert L.

    2015-01-01

    Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include mass spectrometry to define protein sequence, protein:protein interactions, and protein post-translational modifications. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative mass spectrometry proteomics. It supports all major operating systems and instrument vendors via open data formats. Here we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of tandem mass spectrometry datasets, as well as some major upcoming features. PMID:25631240

  19. Active edge control in the precessions polishing process for manufacturing large mirror segments

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Zhang, Wei; Walker, David; Yu, Gouyo

    2014-09-01

    The segmentation of the primary mirror is the only promising solution for building the next generation of ground telescopes. However, manufacturing segmented mirrors presents its own challenges. The edge mis-figure impacts directly on the telescope's scientific output. The `Edge effect' significantly dominates the polishing precision. Therefore, the edge control is regarded as one of the most difficult technical issues in the segment production that needs to be addressed urgently. This paper reports an active edge control technique for the mirror segments fabrication using the Precession's polishing technique. The strategy in this technique requires that the large spot be selected on the bulk area for fast polishing, and the small spot is used for edge figuring. This can be performed by tool lift and optimizing the dell time to compensate for non-uniform material removal at the edge zone. This requires accurate and stable edge tool influence functions. To obtain the full tool influence function at the edge, we have demonstrated in previous work a novel hybrid-measurement method which uses both simultaneous phase interferometry and profilometry. In this paper, the edge effect under `Bonnet tool' polishing is investigated. The pressure distribution is analyzed by means of finite element analysis (FEA). According to the `Preston' equation, the shape of the edge tool influence functions is predicted. With this help, the multiple process parameters at the edge zone are optimized. This is demonstrated on a 200mm crosscorners hexagonal part with a result of PV less than 200nm for entire surface.

  20. Spatially-aware Processing of Large Raw LiDAR Data Sets

    NASA Astrophysics Data System (ADS)

    Strane, M. D.; Oskin, M.

    2004-12-01

    An ultimate goal of LiDAR (LIght Detection And Ranging) data acquisition is to produce a regularly sampled accurate topographic view of the surface of the Earth. Last-return and inverse-distance weighted sampling of raw LiDAR data do not take into account the non-random distribution of raw data points. While elevation data produced by these methods is of high accuracy, gradients are not well-resolved and aliasing artifacts are produced, especially on low gradient surfaces. Because of the volume of data involved, resampling schemes that take into account the spatial distribution of raw data have been cumbersome to implement. We have developed a resampling method that uses the free open-source PostgresSQL database to store the raw LiDAR data indexed spatially and as its original time series. This database permits rapid access to raw data points via spatial queries. A robust and expedient algorithm has been implemented to produce regularly gridded resampled data with a least squares plane fit regression. This algorithm reduces aliasing artifacts on low gradient surfaces. The algorithm is also a proof-of-concept to show that complex spatially-aware processing of large LiDAR data sets is feasible on a reasonable time scale, and will be the basis for further improvements such as vegetation removal.

  1. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics.

    PubMed

    Deutsch, Eric W; Mendoza, Luis; Shteynberg, David; Slagel, Joseph; Sun, Zhi; Moritz, Robert L

    2015-08-01

    Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features. PMID:25631240

  2. Control considerations for high frequency, resonant, power processing equipment used in large systems

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Schreiner, K. E.; Wolff, F.

    1987-01-01

    Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects; and (6) limits and overloads.

  3. Control considerations for high frequency, resonant, power processing equipment used in large systems

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Schreiner, K. E.; Wolff, F.

    1987-01-01

    Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects, and (6) limits and overloads.

  4. The Macro Model of the Inequality Process and the Surging Relative Frequency of Large Wage Incomes

    NASA Astrophysics Data System (ADS)

    Angle, John

    2008-03-01

    Particles are randomly paired in the Inequality Process (IP), a particle system scattering a positive quantity, wealth. Each particle has a parameter, φ, the fraction of wealth lost in a loss whose probability is 0.5. The stationary distribution of the wealth of particles with φψ is approximated by a γ pdf, the IP's macro model, with shape and scale parameters expressed in terms of φψ. The model's dynamics are driven by the product, φtμt, where φt is the harmonic mean of the φ's in the population at time t and μt, the population mean of wealth at time t. This γ pdf model fits the annual distribution of annual wage income in the U.S. 1961-2003. These data also confirm that the time-series of scalar statistics of wage income that labor economists think are produced by the U.S. distribution of wage income being ``hollowed out'' (bimodal), the increasing dispersion of wage income and the surging relative frequency of large wage incomes, are produced by the distribution being stretched over larger wage incomes, as implied by the IP's macro model when φtμt increases. The IP's macro model includes wage income distribution dynamics into statistical mechanics. To appear in The Econophysics of Markets and Business Networks.

  5. Timescales of Magmatic Processes Preceding Eruption in a Large, Extraordinarily Restless, Silicic Magma System

    NASA Astrophysics Data System (ADS)

    Andersen, N.; Costa Rodriguez, F.; Singer, B. S.

    2014-12-01

    Recent investigations of the Laguna del Maule (LdM) volcanic field, central Chile, suggest the presence of a large, shallow, and active rhyolitic magma reservoir. Modest (up to ~1.2 km3) rhyolitic eruptions over the last 20 kyr encircle an area inflating at an average rate of 25 cm/yr since 2007. 40Ar/39Ar, 14C, and tephra stratigraphy indicate that the majority of rhyolitic volcanism was concentrated in two phases (phase 1 and 2) separated by 9 kyr of repose. Here we report new petrological and geochemical results in order to determine if LdM rhyolites were issued from the same reservoir, identify the nature and timescales of processes leading to their eruption, and begin to relate the spectacular signs of unrest to magmatic processes. All LdM rhyolites are crystal-poor and contain phenocrysts of plagioclase, biotite and rare quartz. Major and trace element contents indicate most plagioclase crystallized in equilibrium with the erupted rhyolitic magma. Incompatible trace element contents (e.g. Ce) delineate distinct crystal populations erupted during phases 1 and 2. Thus, the two magma reservoirs experienced limited physical interaction. A subset of crystal domains from both eruptive phases record melts inconsistent with the whole rock and glass, crystallization-dominated differentiation trend. Plagioclase erupted in the Early Espejos Tephra (phase 1), the largest recent explosive eruption, display the highest An and Mg contents and depletion of Ba and Sr. In contrast, early phase 2 plagioclase contain zones of Ba enrichment. This Mg and Ba enrichment records contrasting responses to the intrusion of mafic magma. The high Mg zones are consistent with an intermediate magma resulting from rhyolite and basalt mixing whereas the Ba enrichment results from melting of Ba-rich phases such as biotite and K-feldspar. Modeling of Mg, Sr, and Ba diffusion indicates that mixing between these Mg and Ba rich melts and the erupted magma body occurred within a year of eruption

  6. Large-scale erosion processes and parameters derived from a modeling of the Messinian salinity crisis

    NASA Astrophysics Data System (ADS)

    Loget, N.; Davy, P.; van den Driessche, J.

    2003-04-01

    The closing of the Gibraltar strait during Messinian have produced a drop of the sea level of about 1500 m in less than half a million year. This certainly constitutes one of the largest perturbation of erosion systems in the Earth, whose analysis in terms of form and dynamics should bring invaluable constraints on erosion processes and parameters. In addition to a precise chronology of the bulk crisis, the main data consists of the reconstruction of paleocanyons, that were eroded during sea drop and refilled during sea rise. The Rhone's canyon is certainly the most documented, with numerous seismic lines and boreholes. We have now a reasonable estimation of the canyon profile from its outlet to the Bresse graben, more 500 km upslope. Sparse data are also available in the Languedoc region, in the Pyrenees, for some drainage basins of the Var-Ligure coast, in the gulf of Valence. A particularity of this erosion phase was to propagate very far inland along the main rivers, but in a very localized way in the sense that hillslopes or upslope drainage basins were barely affected. All these data were compiled in a database that we used to constrain erosion processes. We assume that the erosion law belongs to the classical power-law framework, where the erosion flux depends on local slope s, and water flow q, such as: e=k qmsn-ec, where k and ec are two constants which depend on material strength properties, and m and n are two exponents which are found to play an important role in the time-length scaling. The transfer model must be completed by a transfer or deposition terms that we assume to be controlled by a deposition length Ld. If Ld is very small, the model comes to the transport-limited case where the height variation is proportional to the gradient of the erosion flux e. In contrast if Ld is very large, rivers can carry all the eroded sediment out; the process is usually called detachment-limited. We simulate the erosion dynamics, induced by the Messinian sea

  7. Replicating Scour Processes around Large Wood in a Simplified Flume Study

    NASA Astrophysics Data System (ADS)

    Russell, K.; Svoboda, C.; Gordon, E.

    2011-12-01

    surfaces and GPS surveys for underwater surfaces. These data were combined to develop continuous surfaces. The work presented includes a comparison of the flume and field topographic and habitat data. Comparisons were made between spatial variability and volumetric changes near the structure. The habitat around the field structure (based on a biological assessment) and habitat created in the laboratory experiment were also compared. There were scaling and practical limitations that prevent exact replication of the field conditions. Although the 2-year discharge in the field corresponds to an out of bank flow in the flume the 90% bankfull discharge provides a close approximation. In addition, the flume experiments were conducted under a clear water condition (no upstream sediment feed), which provides a more conservative estimate of scour than if sediment were being supplied. Finally, replicating the combined hydrologic and sediment transport processes in the flume was complicated because scour pools developed in the field likely had some filling during the falling limb of the hydrograph. Despite the challenges associated with the flume modeling, the results indicate that the laboratory experiments can provide useful information for future installations of large wood.

  8. Respirometric assessment of aerobic sludge stabilization.

    PubMed

    Tas, Didem Okutman

    2010-04-01

    Aerobic sludge stabilization was assessed respirometrically with the sludge taken from the secondary settling tank of a domestic wastewater treatment facility in Istanbul, Turkey. Zero-order removal rates of 178, 127 and 44 mg/L day were found for Suspended Solids (SS), Volatile Suspended Solids (VSS) and Total Organic Carbon (TOC) at the end of 18 days sludge stabilization, respectively. Significant nutrient release was observed by the mineralized nitrogen and phosphorus from the death and lysis of microorganisms. The model simulations for the batch respirometric assays for initial, 7th and 18th days of the stabilization agree reasonably well with the experimental data. The maximum storage rates (k(sto)) as well as maximum growth rates on stored products (micro(H2)) decrease with increasing stabilization period. Respirometric assays indicated the presence of microorganisms that started to compete with the dominant microorganisms as a result of the stabilization. As such, these findings have significance in terms of the efforts related to the sludge management and application processes. PMID:19942430

  9. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  10. Soil and sediment bacteria capable of aerobic nitrate respiration.

    PubMed Central

    Carter, J P; Hsaio, Y H; Spiro, S; Richardson, D J

    1995-01-01

    Several laboratory strains of gram-negative bacteria are known to be able to respire nitrate in the presence of oxygen, although the physiological advantage gained from this process is not entirely clear. The contribution that aerobic nitrate respiration makes to the environmental nitrogen cycle has not been studied. As a first step in addressing this question, a strategy which allows for the isolation of organisms capable of reducing nitrate to nitrite following aerobic growth has been developed. Twenty-nine such strains have been isolated from three soils and a freshwater sediment and shown to comprise members of three genera (Pseudomonas, Aeromonas, and Moraxella). All of these strains expressed a nitrate reductase with an active site located in the periplasmic compartment. Twenty-two of the strains showed significant rates of nitrate respiration in the presence of oxygen when assayed with physiological electron donors. Also isolated was one member of the gram-positive genus Arthrobacter, which was likewise able to respire nitrate in the presence of oxygen but appeared to express a different type of nitrate reductase. In the four environments studied, culturable bacteria capable of aerobic nitrate respiration were isolated in significant numbers (10(4) to 10(7) per g of soil or sediment) and in three cases were as abundant as, or more abundant than, culturable bacteria capable of denitrification. Thus, it seems likely that the corespiration of nitrate and oxygen may indeed make a significant contribution to the flux of nitrate to nitrite in the environment. PMID:7487017

  11. Effects of Aerobic and Microaerobic Conditions on Anaerobic Ammonium-Oxidizing (Anammox) Sludge

    PubMed Central

    Strous, M.; Van Gerven, E.; Kuenen, J. G.; Jetten, M.

    1997-01-01

    The anaerobic ammonium oxidation (Anammox) process is a promising novel option for removing nitrogen from wastewater. In this study it was shown that the Anammox process was inhibited reversibly by the presence of oxygen. Furthermore, aerobic nitrifiers were shown not to play an important role in the Anammox process. PMID:16535633

  12. Aerobic Methane Oxidation in Alaskan Lakes Along a Latitudinal Transect

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K. C.; Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Anthony, P.; Thalasso, F.

    2013-12-01

    Karla Martinez-Cruz* **, Armando Sepulveda-Jauregui*, Katey M. Walter Anthony*, Peter Anthony*, and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Methane (CH4) is the third most important greenhouse gas in the atmosphere, after carbon dioxide and water vapor. Boreal lakes play an important role in the current global warming by contributing as much as 6% of global atmospheric CH4 sources annually. On the other hand, aerobic methane oxidation (methanotrophy) in lake water is a fundamental process in global methane cycling that reduces the amount of CH4 emissions to the atmosphere. Several environmental factors affect aerobic methane oxidation in the water column both directly and indirectly, including concentration of CH4 and O2, temperature and carbon budgets of lakes. We analyzed the potential of aerobic methane oxidation (PMO) rates in incubations of water collected from 30 Alaskan lakes along a north-south transect during winter and summer 2011. Our findings showed an effect of CH4 and O2 concentrations, temperature and yedoma thawing permafrost on PMO activity in the lake water. The highest PMO rates were observed in summer by lakes situated on thawing yedoma permafrost, most of them located in the interior of Alaska. We also estimated that 60-80% of all CH4 produced in Alaskan lakes could be taken up by methanotrophs in the lake water column, showing the significant influence of aerobic methane oxidation of boreal lakes to the global CH4 budget.

  13. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings.

    PubMed

    Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F

    2014-01-01

    Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients. PMID:24090098

  14. Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR.

    PubMed

    Guo, Long-Jie; Zhao, Bin; An, Qiang; Tian, Meng

    2016-03-01

    A novel aerobic denitrifier strain HNR, isolated from activated sludge, was identified as Enterobacter cloacae by16S rRNA sequencing analysis. Glucose was considered as the most favorable C-source for strain HNR. The logistic equation well described the bacterial growth, yielding a maximum growth rate (μmax) of 0.283 h(-1) with an initial NO3 (-)-N concentration of 110 mg/L. Almost all NO3 (-)-N was removed aerobically within 30 h with an average removal rate of 4.58 mg N L(-1) h(-1). Nitrogen balance analysis revealed that proximately 70.8 % of NO3 (-)-N was removed as gas products and only 20.7 % was transformed into biomass. GC-MS result indicates that N2 was the end product of aerobic denitrification. The enzyme activities of nitrate reductase and nitrite reductase, which are related to the process of aerobic denitrification, were 0.0688 and 0.0054 U/mg protein, respectively. Thus, the aerobic denitrification of reducing NO3 (-) to N2 by strain HNR was demonstrated. The optimal conditions for nitrate removal were C/N ratio 13, pH value 8, shaking speed 127 rpm and temperature 30 °C. These findings show that E. cloacae strain HNR has a potential application on wastewater treatment to achieve nitrate removal under aerobic conditions. PMID:26573667

  15. Biodegradation of 14C-dicofol in wastewater aerobic treatment and sludge anaerobic biodigestion.

    PubMed

    Oliveira, Jaime L da M; Silva, Denise P; Martins, Edir M; Langenbach, Tomaz; Dezotti, Marcia

    2012-01-01

    Organic micropollutants are often found in domestic and industrial effluents. Thus, it is important to learn their fate, the metabolites generated and their sorption during biological treatment processes. This work investigated the biodegradation of 14C-dicofol organochloride during wastewater aerobic treatment and sludge anaerobic biodigestion. The performance of these processes was evaluated by physical-chemical parameters. Radioactivity levels were monitored in both treatments, and residues of dicofol (DCF) and dichlorobenzophenone (DBP) were quantified by HPLC/UV. The efficiency of the aerobic and anaerobic processes was slightly reduced in the presence of DCF and DBP. After aerobic treatment, only 0.1% of DCF was mineralized, and 57% of radioactivity remained sorbed on biological sludge as DBP. After 18 days of anaerobiosis, only 3% of DCF and 5% of DBP were detected in the sludge. However, 70% of radioactivity remained in the sludge, probably as other metabolites. Dicofol was biodegraded in the investigated process, but not mineralized. PMID:22629645

  16. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  17. A Largely Unsatisfied Need: Continuing Professional Development for Process and Process Plant Industries. A Summary. FEU/PICKUP Project Report.

    ERIC Educational Resources Information Center

    Geldhart, D.; Brown, A. S.

    This summary report outlines the aims of a project that focused on provision of short courses for technical professionals in the chemical and allied process industry and the process plant industry. Continuing education needs of both companies and individuals, as well as corporate policies and attitudes toward continuing education and constraints…

  18. Large eddy simulations of turbulent flows on graphics processing units: Application to film-cooling flows

    NASA Astrophysics Data System (ADS)

    Shinn, Aaron F.

    Computational Fluid Dynamics (CFD) simulations can be very computationally expensive, especially for Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of turbulent ows. In LES the large, energy containing eddies are resolved by the computational mesh, but the smaller (sub-grid) scales are modeled. In DNS, all scales of turbulence are resolved, including the smallest dissipative (Kolmogorov) scales. Clusters of CPUs have been the standard approach for such simulations, but an emerging approach is the use of Graphics Processing Units (GPUs), which deliver impressive computing performance compared to CPUs. Recently there has been great interest in the scientific computing community to use GPUs for general-purpose computation (such as the numerical solution of PDEs) rather than graphics rendering. To explore the use of GPUs for CFD simulations, an incompressible Navier-Stokes solver was developed for a GPU. This solver is capable of simulating unsteady laminar flows or performing a LES or DNS of turbulent ows. The Navier-Stokes equations are solved via a fractional-step method and are spatially discretized using the finite volume method on a Cartesian mesh. An immersed boundary method based on a ghost cell treatment was developed to handle flow past complex geometries. The implementation of these numerical methods had to suit the architecture of the GPU, which is designed for massive multithreading. The details of this implementation will be described, along with strategies for performance optimization. Validation of the GPU-based solver was performed for fundamental bench-mark problems, and a performance assessment indicated that the solver was over an order-of-magnitude faster compared to a CPU. The GPU-based Navier-Stokes solver was used to study film-cooling flows via Large Eddy Simulation. In modern gas turbine engines, the film-cooling method is used to protect turbine blades from hot combustion gases. Therefore, understanding the physics of

  19. Large wood storage in streams of the Eastern Italian Alps and the relevance of hillslope processes

    NASA Astrophysics Data System (ADS)

    Rigon, E.; Comiti, F.; Lenzi, M. A.

    2012-01-01

    An understanding of the dynamics of large wood (LW) in mountain channels provides the basis for evaluating natural morphological patterns as well as managing potentially hazardous wood transport during flood events. Few studies have investigated the distribution of LW in managed streams of the Alps across a wide spatial scale. This paper presents extensive field measurements of LW storage and channel morphology carried out in 13 channels of the Eastern Italian Alps with drainage areas ranging from 1.2 to 70 km2, mean bed slope between 0.03 and 0.38, and channel width between 2 and 20 m. More than 9000 LW elements were measured in the 33 reaches surveyed. A geostatistical, geographic information system (GIS)-based model for wood recruitment from hillslope instabilities was also developed and applied to the study basin. LW storage in the study channels results as being much lower than in seminatural basins of comparable size and climate, and only basins characterized by extensive mass wasting processes contain high wood loads with relevant morphological consequences. The statistical analysis of LW storage at the reach scale indicates that unit stream power is apparently the most significant hydromorphological factor influencing LW storage, in agreement with studies in other world regions. However, we argue that the effect of unit stream power on LW storage is not only linked to flow transport capacity but also derives from its association with LW supply and valley morphology. Both the GIS model and statistical tests on field data indicate that hillslope instabilities connected to the channel network dominate the LW recruitment volume and the distribution of in-channel wood storage.

  20. Complex Nucleation Process of Large North Chile Earthquakes, Implications for Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Ruiz, S.; Meneses, G.; Sobiesiak, M.; Madariaga, R. I.

    2014-12-01

    We studied the nucleation process of Northern Chile events that included the large earthquakes of Tocopilla 2007 Mw 7.8 and Iquique 2014 Mw 8.1, as well as the background seismicity recorded from 2011 to 2013 by the ILN temporary network and the IPOC and CSN permanent networks. We built our catalogue of 393 events starting from the CSN catalogue, which has a completeness of magnitude Mw > 3.0 in Northern Chile. We re-located and computed moment magnitude for each event. We also computed Early Warning (EW) parameters - Pd, Pv, τc and IV2 - for each event including 13 earthquakes of Mw>6.0 that occurred between 2007-2012. We also included part of the seismicity from March-April 2014 period. We find that Pd, Pv and IV2 are good estimators of magnitude for interplate thrust and intraplate intermediate depth events with Mw between 4.0 and 6.0. However, the larger magnitude events show a saturation of the EW parameters. The Tocopilla 2007 and Iquique 2014 earthquake sequences were studied in detail. Almost all events with Mw>6.0 present precursory signals so that the largest amplitudes occur several seconds after the first P wave arrival. The recent Mw 8.1 Iquique 2014 earthquake was preceded by low amplitude P waves for 20 s before the main asperity was broken. The magnitude estimation can improve if we consider longer P wave windows in the estimation of EW parameters. There was, however, a practical limit during the Iquique earthquake because the first S waves arrived before the arrival of the P waves from the main rupture. The 4 s P-wave Pd parameter estimated Mw 7.1 for the Mw 8.1 Iquique 2014 earthquake and Mw 7.5 for the Mw 7.8 Tocopilla 2007 earthquake.

  1. Breast Implant–associated Anaplastic Large Cell Lymphoma: Updated Results from a Structured Expert Consultation Process

    PubMed Central

    Predmore, Zachary S.; Mattke, Soeren; van Busum, Kristin; Gidengil, Courtney A.

    2015-01-01

    Background: Despite increased cases published on breast implant–associated anaplastic large cell lymphoma (BIA-ALCL), important clinical issues remain unanswered. We conducted a second structured expert consultation process to rate statements related to the diagnosis, management, and surveillance of this disease, based on their interpretation of published evidence. Methods: A multidisciplinary panel of 12 experts was selected based on nominations from national specialty societies, academic department heads, and recognized researchers in the United States. Results: Panelists agreed that (1) this disease should be called “BIA-ALCL”; (2) late seromas occurring >1 year after breast implantation should be evaluated via ultrasound, and if a seroma is present, the fluid should be aspirated and sent for culture, cytology, flow cytometry, and cell block to an experienced hematopathologist; (3) surgical removal of the affected implant and capsule (as completely as possible) should occur, which is sufficient to eradicate capsule-confined BIA-ALCL; (4) surveillance should consist of clinical follow-up at least every 6 months for at least 5 years and breast ultrasound yearly for at least 2 years; and (5) BIA-ALCL is generally a biologically indolent disease with a good prognosis, unless it extends beyond the capsule and/or presents as a mass. They firmly disagreed with statements that chemotherapy and radiation therapy should be given to all patients with BIA-ALCL. Conclusions: Our assessment yielded consistent results on a number of key, incompletely addressed issues regarding BIA-ALCL, but additional research is needed to support these statement ratings and enhance our understanding of the biology, treatment, and outcomes associated with this disease. PMID:25674377

  2. Developing Software Requirements for a Knowledge Management System That Coordinates Training Programs with Business Processes and Policies in Large Organizations

    ERIC Educational Resources Information Center

    Kiper, J. Richard

    2013-01-01

    For large organizations, updating instructional programs presents a challenge to keep abreast of constantly changing business processes and policies. Each time a process or policy changes, significant resources are required to locate and modify the training materials that convey the new content. Moreover, without the ability to track learning…

  3. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  4. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    PubMed Central

    2011-01-01

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374

  5. Greenhouse gas production in wastewater treatment: process selection is the major factor.

    PubMed

    Keller, J; Hartley, K

    2003-01-01

    Many practical design and operating decisions on wastewater treatment plants can have significant impacts on the overall environmental performance, in particular the greenhouse gas (GHG) emissions. The main factor in this regard is the use of aerobic or anaerobic treatment technology. This paper compares the GHG production of a number of case studies with aerobic or anaerobic main and sludge treatment of domestic wastewater and also looks at the energy balances and economics. This comparison demonstrates that major advantages can be gained by using primarily anaerobic processes as it is possible to largely eliminate any net energy input to the process, and therefore the production of GHG from fossil fuels. This is achieved by converting the energy of the incoming wastewater pollutants to methane which is then used to generate electricity. This is sufficient to power the aerobic processes as well as the mixing etc. of the anaerobic stages. In terms of GHG production, the total output (in CO2 equivalents) can be reduced from 2.4 kg CO2/kg COD(removed) for fully aerobic treatment to 1.0 kg CO2/kg COD(removed) for primarily anaerobic processes. All of the CO2 produced in the anaerobic processes comes from the wastewater pollutants and is therefore greenhouse gas neutral, whereas up to 1.4 kg CO2/kg COD(removed) originates from power generation for the fully aerobic process. This means that considerably more CO2 is produced in power generation than in the actual treatment process, and all of this is typically from fossil fuels, whereas the energy from the wastewater pollutants comes primarily from renewable energy sources, namely agricultural products. Even a change from anaerobic to aerobic sludge treatment processes (for the same aerobic main process) has a massive impact on the CO2 production from fossil fuels. An additional 0.8 kg CO2/kg COD(removed) is produced by changing to aerobic sludge digestion, which equates for a typical 100,000 EP plant to an additional

  6. COPASutils: an R package for reading, processing, and visualizing data from COPAS large-particle flow cytometers.

    PubMed

    Shimko, Tyler C; Andersen, Erik C

    2014-01-01

    The R package COPASutils provides a logical workflow for the reading, processing, and visualization of data obtained from the Union Biometrica Complex Object Parametric Analyzer and Sorter (COPAS) or the BioSorter large-particle flow cytometers. Data obtained from these powerful experimental platforms can be unwieldy, leading to difficulties in the ability to process and visualize the data using existing tools. Researchers studying small organisms, such as Caenorhabditis elegans, Anopheles gambiae, and Danio rerio, and using these devices will benefit from this streamlined and extensible R package. COPASutils offers a powerful suite of functions for the rapid processing and analysis of large high-throughput screening data sets. PMID:25329171

  7. Assessing aerobic natural attenuation of trichloroethene at four DOE sites

    SciTech Connect

    Koelsch, Michael C.; Starr, Robert C.; Sorenson, Jr., Kent S.

    2005-03-01

    A 3-year Department of Energy Environmental Science Management Program (EMSP) project is currently investigating natural attenuation of trichloroethane (TCE) in aerobic groundwater. This presentation summarizes the results of a screening process to identify TCE plumes at DOE facilities that are suitable for assessing the rate of TCE cometabolism under aerobic conditions. In order to estimate aerobic degradation rates, plumes had to meet the following criteria: TCE must be present in aerobic groundwater, a conservative co-contaminant must be present and have approximately the same source as TCE, and the groundwater velocity must be known. A total of 127 TCE plumes were considered across 24 DOE sites. The four sites retained for the assessment were: (1) Brookhaven National Laboratory, OU III; (2) Paducah Gaseous Diffusion Plant, Northwest Plume; (3) Rocky Flats Environmental Technology Site, Industrialized Area--Southwest Plume and 903 Pad South Plume; and (4) Savannah River Site, A/M Area Plume. For each of these sites, a co-contaminant derived from the same source area as TCE was used as a nonbiodegrading tracer. The tracer determined the extent to which concentration decreases in the plume can be accounted for solely by abiotic processes such as dispersion and dilution. Any concentration decreases not accounted for by these processes must be explained by some other natural attenuation mechanism. Thus, ''half-lives'' presented herein are in addition to attenuation that occurs due to hydrologic mechanisms. This ''tracer-corrected method'' has previously been used at the DOE's Idaho National Engineering and Environmental Laboratory in conjunction with other techniques to document the occurrence of intrinsic aerobic cometabolism. Application of this method to other DOE sites is the first step to determining whether this might be a significant natural attenuation mechanism on a broader scale. Application of the tracer-corrected method to data from the Brookhaven

  8. ASSESSING AEROBIC NATURAL ATTENUATION OF TRICHLOROETHENE AT FOUR DOE SITES

    SciTech Connect

    Michael C. Koelsch; Robert C. Starr; Kent S. Sorenson, Jr.

    2005-03-01

    A 3-year Department of Energy Environmental Science Management Program (EMSP) project is currently investigating natural attenuation of trichloroethane (TCE) in aerobic groundwater. This presentation summarizes the results of a screening process to identify TCE plumes at DOE facilities that are suitable for assessing the rate of TCE cometabolism under aerobic conditions. In order to estimate aerobic degradation rates, plumes had to meet the following criteria: TCE must be present in aerobic groundwater, a conservative co-contaminant must be present and have approximately the same source as TCE, and the groundwater velocity must be known. A total of 127 TCE plumes were considered across 24 DOE sites. The four sites retained for the assessment were: (1) Brookhaven National Laboratory, OU III; (2) Paducah Gaseous Diffusion Plant, Northwest Plume; (3) Rocky Flats Environmental Technology Site, Industrialized Area--Southwest Plume and 903 Pad South Plume; and (4) Savannah River Site, A/M Area Plume. For each of these sites, a co-contaminant derived from the same source area as TCE was used as a nonbiodegrading tracer. The tracer determined the extent to which concentration decreases in the plume can be accounted for solely by abiotic processes such as dispersion and dilution. Any concentration decreases not accounted for by these processes must be explained by some other natural attenuation mechanism. Thus, ''half-lives'' presented herein are in addition to attenuation that occurs due to hydrologic mechanisms. This ''tracer-corrected method'' has previously been used at the DOE's Idaho National Engineering and Environmental Laboratory in conjunction with other techniques to document the occurrence of intrinsic aerobic cometabolism. Application of this method to other DOE sites is the first step to determining whether this might be a significant natural attenuation mechanism on a broader scale. Application of the tracer-corrected method to data from the Brookhaven

  9. Ionization processes in the ultrashort, intense laser field interaction with large clusters

    NASA Astrophysics Data System (ADS)

    Shokri, B.; Niknam, A. R.; Smirnov, M.

    2004-03-01

    Multiple ionization of large clusters when they are irradiated by an intense ultrashort laser pulse is investigated. Different mechanisms, responsible for cluster ionization, are investigated. It is found that the ionization of large clusters, irradiated by a strong intense ultrashort laser pulse, is realized by means of the surface thermoemission.

  10. Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge.

    PubMed

    Mihciokur, Hamdi; Oguz, Merve

    2016-09-01

    This study investigates biosorption of Oxytetracycline, a broad-spectrum antibiotic, using aerobic granular sludge as an adsorbent in aqueous solutions. A sequencing batch reactor fed by a synthetic wastewater was operated to create aerobic granular sludge. Primarily, the pore structure and surface area of granular sludge, the chemical structure and the molecular sizes of the pharmaceutical, operating conditions, such as pH, stirring rate, initial concentration of Oxytetracycline, during adsorption process was verified. Subsequently, thermodynamic and kinetic aspects of the adsorption were examined and adsorption isotherm studies were carried out. It was shown that the aerobic granular sludge was a good alternative for biosorption of this pharmaceutical. The pharmaceutical was adsorbed better at pH values of 6-8. The adsorption efficiency increased with rising ionic strength. Also, it was seen that the adsorption process was an exothermic process in terms of thermodynamics. The adsorption can be well explained by Langmuir isotherm model. PMID:27485178

  11. Aerobic and anaerobic PCB biodegradation in the environment

    SciTech Connect

    Abramowicz, D.A.

    1995-06-01

    Studies have identified two distinct biological processes capable of biotransforming polychlorinated biphenyls (PCBs): aerobic oxidative processes and anaerobic reductive processes. It is now known that these two complementary activities are occurring naturally in the environment. Anaerobic PCB dechlorination, responsible for the conversion of highly chlorinated PCBs to lightly chlorinated ortho-enriched congeners, has been documented extensively in the Hudson River and has been observed at many other sites throughout the world. The products from this anaerobic process are readily degradable by a wide range of aerobic bacteria, and it has now been shown that this process is occurring in surficial sediments in the Hudson River. The widespread anaerobic dechlorination of PCBs that has been observed in many river and marine sediments results in reduction of both the potential risk from and potential exposure to PCBs. The reductions in potential risk include reduced dioxin like toxicity and reduced carcinogenicity. The reduced PCB exposure realized upon dechlorination is manifested by reduced bioaccumulation in the food chain and by the increased anaerobic degradability of these products. 27 refs., 1 fig., 1 tab.

  12. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  13. Fine-Scale Relief in the Amazon Drives Large Scale Ecohydrological Processes

    NASA Astrophysics Data System (ADS)

    Nobre, A. D.; Cuartas, A.; Hodnett, M.; Saleska, S. R.

    2014-12-01

    Access to soil water by roots is a key ecophysiological factor for plant productivity in natural systems. Periodically during dry seasons or critically during episodic climate droughts, shortage of water supply can reduce or severely impair plant life. At the other extreme persistent soil waterlogging will limit root respiration and restrict local establishment to adapted species, usually leading to stunted and less productive communities. Soil-water availability is therefore a very important climate variable controlling plant physiology and ecosystem dynamics. Terra-firme, the non-seasonally floodable terrain that covers 82% of the landscape in Amazonia,[1] supports the most massive part of the rainforest ecosystem. The availability of soil water data for terra-firme is scant and very coarse. This lack of data has hampered observational and modeling studies aiming to develop a large-scale integrative ecohydrological picture of Amazonia and its vulnerability to climate change. We have mapped the Amazon basin with a new terrain model developed in our group (HAND, Height Above the Nearest drainage[2]), delineating soil water environments using topographical data from the SRTM digital elevation model (250 m horizontal interpolated resolution). The preliminary results show that more than 50% of Terra-firme has the water table very close to the surface (up to 2 m deep), while the remainder of the upland landscape has variable degree of dependence on non-saturated soil (vadose layer). The mapping also shows extremely heterogeneous patterns of fine-scale relief across the basin, which implies complex ecohydrological regional forcing on the forest physiology. Ecoclimate studies should therefore take into account fine-scale relief and its implications for soil-water availability to plant processes. [1] Melack, J. M., & Hess, L. L. (2011). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In W. J. Junk & M. Piedade (Eds.), Amazonian floodplain

  14. Controlling the catalytic aerobic oxidation of phenols.

    PubMed

    Esguerra, Kenneth Virgel N; Fall, Yacoub; Petitjean, Laurène; Lumb, Jean-Philip

    2014-05-28

    The oxidation of phenols is the subject of extensive investigation, but there are few catalytic aerobic examples that are chemo- and regioselective. Here we describe conditions for the ortho-oxygenation or oxidative coupling of phenols under copper (Cu)-catalyzed aerobic conditions that give rise to ortho-quinones, biphenols or benzoxepines. We demonstrate that each product class can be accessed selectively by the appropriate choice of Cu(I) salt, amine ligand, desiccant and reaction temperature. In addition, we evaluate the effects of substituents on the phenol and demonstrate their influence on selectivity between ortho-oxygenation and oxidative coupling pathways. These results create an important precedent of catalyst control in the catalytic aerobic oxidation of phenols and set the stage for future development of catalytic systems and mechanistic investigations. PMID:24784319

  15. [Anaerobic-aerobic infection in acute appendicitis].

    PubMed

    Mamchich, V I; Ulitovskiĭ, I V; Savich, E I; Znamenskiĭ, V A; Beliaeva, O A

    1998-01-01

    362 patients with acute appendicitis (AA) were examined. For microbiological diagnosis of aerobic and anaerobic nonclostridial microflora we used complex accelerated methods (including evaluation of gram-negative microorganisms in comparison with tinctorial-fermentative method of differential staining according to oxygen sensitivity of catalasopositive together with aerobic and cathalasonegative anaerobic microorganisms) as well as complete bacteriologic examination with determination of sensitivity of the above microorganism to antimicrobial remedies. High rate of aerobic-anaerobic microbial associations and substantial identity of microflora from appendicis and exudate from abdominal cavity was revealed, which evidenced the leading role of endogenous microorganisms in etiology and pathogenesis of AA and peritonitis i. e. autoinfection. In patients with destructive forms of AA, complicated by peritonitis it is recommended to use the accelerated method of examination of pathologic material as well as the complete scheme of examination with the identification of the isolated microorganisms and the correction of antibiotic treatment. PMID:9511291

  16. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  17. A process for creating multimetric indices for large-scale aquatic surveys

    EPA Science Inventory

    Differences in sampling and laboratory protocols, differences in techniques used to evaluate metrics, and differing scales of calibration and application prohibit the use of many existing multimetric indices (MMIs) in large-scale bioassessments. We describe an approach to develop...

  18. [Phosphorus removal characteristics by aerobic granules in normal molasses wastewater after anaerobic treatment].

    PubMed

    Wang, Shuo; Yu, Shui-Li; Shi, Wen-Xin; Bao, Rui-Ling; Yi, Xue-Song; Li, Jian-Zheng

    2012-04-01

    COD decreased obviously in normal molasses wastewater after anaerobic treatment, however, concentrations of nitrogen and phosphorus were still higher in the effluent which seriously damaged the ecological balance. In this study, aerobic granules cultivated in sequencing batch airlift reactor (SBAR) were carried out for treating the effluent; phosphorus removal processes and characteristics were discussed as well. The mean diameter of aerobic granules cultivated by multiple carbon sources (acetate, propionate and butyrate) was 1.7 mm. The average phosphorus removal efficiency was 90.9% and the level of phosphorus in effluent was only 1.3 mg x L(-1); TP released per COD consumed was 0.571 and the specific rate of TP released was 5.73 mg x (g x h)(-1). NO3(-) -N usage of phosphorus accumulating organisms (PAOs) improved during denitrifying process because the concentration of propionate and butyrate increased in multiple carbon sources which means the phosphorus uptake efficiency increased when per NO3(-) -N consumed. Phosphorus content represented a stronger correlation with magnesium, calcium and ferrum contents in aerobic granules and their extracellular polymeric substances (EPS), the phosphorus adsorption by EPS could enhance phosphorus removal. 61.9% of phosphorus accumulating organisms were denitrifying phosphorus accumulating organisms in aerobic granules and TP uptake per NO3(-) -N consumed was 1.14 which was higher than that of aerobic granules only cultivated by acetate. PMID:22724155

  19. Occurrence and Fate of Trace Contaminants during Aerobic and Anaerobic Sludge Digestion and Dewatering.

    PubMed

    Guerra, Paula; Kleywegt, Sonya; Payne, Michael; Svoboda, M Lewina; Lee, Hing-Biu; Reiner, Eric; Kolic, Terry; Metcalfe, Chris; Smyth, Shirley Anne

    2015-07-01

    Digestion of municipal wastewater biosolids is a necessary prerequisite to their beneficial use in land application, in order to protect public health and the receiving environment. In this study, 13 pharmaceuticals and personal care products (PPCPs), 11 musks, and 17 polybrominated diphenyl ethers were analyzed in 84 samples including primary sludge, waste activated sludge, digested biosolids, dewatered biosolids, and dewatering centrate or filtrate collected from five wastewater treatment plants with aerobic or anaerobic digestion. Aerobic digestion processes were sampled during both warm and cold temperatures to analyze seasonal differences. Among the studied compounds, triclosan, triclocarban, galaxolide, and BDE-209 were the substances most frequently detected under different treatment processes at levels up to 30,000 ng/g dry weight. Comparing aerobic and anaerobic digestion, it was observed that the levels of certain PPCPs and musks were significantly higher in anaerobically digested biosolids, relative to the residues from aerobic digestion. Therefore, aerobic digestion has the potential advantage of reducing levels of PPCPs and musks. On the other hand, anaerobic digestion has the advantage of recovering energy from the biosolids in the form of combustible gases while retaining the nutrient and soil conditioning value of this resource. PMID:26437100

  20. INACTIVATION OF ENTERIC PATHOGENS DURING AEROBIC DIGESTION OF WASTEWATER SLUDGE

    EPA Science Inventory

    The effects of aerobic and anaerobic digestion on enteric viruses, enteric bacteria, total aerobic bacteria, and intestinal parasites were studied under laboratory and field conditions. Under laboratory conditions, the temperature of the sludge digestion was the major factor infl...

  1. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  2. Integrated observations of processes and products of large scale cratering experiments

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.; Sonder, I.; Valentine, G.; Ross, P.; White, J. D.; Taddeucci, J.; Zimanowski, B.; Lube, G.; Kueppers, U.; Bowman, D. C.

    2013-12-01

    Detailed analysis of volcanic craters and ballistic deposits can provide insight into eruption dynamics and evolution. As fully exposed craters and associated unmodified deposits are rarely preserved, the dynamics involved can only be inferred. Large-scale blast experiments conducted at the University at Buffalo Geohazards Field Station produced deposits from single and multiple subsurface explosions at individual craters, along with a range of observational data, and provide a unique opportunity to link dynamics with geologic structures and deposits. Meter-scale craters were produced through repeated blasts using chemical explosives in 15 cm thick strata constructed of compacted aggregates (e.g. sands and gravels). Each experiment had 1-3 individual explosions with the same epicenter to form a single crater, with a total of 12 blasts and five craters. Three craters were produced through a series of shallow blasts (34-75 cm depth, six blasts) and two additional craters were produced by deeper blasts (75-100 cm, six blasts). The experiments successfully reproduced crater structures similar to those of maar volcanoes, which are the product of one or more subsurface explosions resulting from the interaction of magma with groundwater. Deep explosion tests successfully reproduced mixing and structures similar to maar-diatremes. The ballistics produced were collected in sample boxes up to 18 m from the blast center. The pits were later excavated and the vertical structures and deposits were described and sampled. Deposits can be described as bedded-diatreme (fallback/inter-crater deposits), unbedded diatreme (disturbed subsurface material), tephra ring (debris on the pre-blast surface) and distal extra-crater deposits. Granulometry and componentry were acquired for all samples. The diatreme structures and deposit componentry were interpreted using high-speed video recordings of the blasts. A comparison of ballistic source depth and collection location revealed the

  3. Investigating Coastal Processes Responsible for Large-Scale Shoreline Responses to Human Shoreline Stabilization

    NASA Astrophysics Data System (ADS)

    Slott, J. M.; Murray, A. B.; Ashton, A. D.

    2006-12-01

    Human shoreline stabilization practices, such as beach nourishment (i.e. placing sand on an eroding beach), have become more prevalent as erosion threatens coastal communities. On sandy shorelines, recent experiments with a numerical model of shoreline change (Slott, et al., in press) indicate that moderate shifts in storminess patterns, one possible outcome of global warming, may accelerate the rate at which shorelines erode or accrete, by altering the angular distribution of approaching waves (the `wave climate'). Accelerated erosion would undoubtedly place greater demands on stabilization. Scientists and coastal engineers have typically only considered the site-specific consequences of shoreline stabilization; here we explore the coastal processes responsible for large-scale (10's kms) and long-term (decades) effects using a numerical model developed by Ashton, et al. (2001). In this numerical model, waves breaking at oblique angles drive a flux of sediment along the shoreline, where gradients in this flux can shape the coastline into surprisingly complex forms (e.g. cuspate-capes found on the Carolina coast). Wave "shadowing" plays a major role in shoreline evolution, whereby coastline features may block incoming waves from reaching distant parts. In this work, we include beach nourishment in the Ashton, et al. (2001) model. Using a cuspate-cape shoreline as our initial model condition, we conducted pairs of experiments and varied the wave-climate forcing across each pair, each representing different storminess scenarios. Here we report on one scenario featuring increased extra-tropical storm influence. For each experiment-pair we ran a control experiment with no shoreline stabilization and a second where a beach nourishment project stabilized a cape tip. By comparing the results of these two parallel runs, we isolate the tendency of the shoreline to migrate landward or seaward along the domain due solely to beach nourishment. Significant effects from beach

  4. Criterion Related Validity of Karate Specific Aerobic Test (KSAT)

    PubMed Central

    Chaabene, Helmi; Hachana, Younes; Franchini, Emerson; Tabben, Montassar; Mkaouer, Bessem; Negra, Yassine; Hammami, Mehrez; Chamari, Karim

    2015-01-01

    Background: Karate is one the most popular combat sports in the world. Physical fitness assessment on a regular manner is important for monitoring the effectiveness of the training program and the readiness of karatekas to compete. Objectives: The aim of this research was to examine the criterion related to validity of the karate specific aerobic test (KSAT) as an indicator of aerobic level of karate practitioners. Patients and Methods: Cardiorespiratory responses, aerobic performance level through both treadmill laboratory test and YoYo intermittent recovery test level 1 (YoYoIRTL1) as well as time to exhaustion in the KSAT test (TE’KSAT) were determined in a total of fifteen healthy international karatekas (i.e. karate practitioners) (means ± SD: age: 22.2 ± 4.3 years; height: 176.4 ± 7.5 cm; body mass: 70.3 ± 9.7 kg and body fat: 13.2 ± 6%). Results: Peak heart rate obtained from KSAT represented ~99% of maximal heart rate registered during the treadmill test showing that KSAT imposes high physiological demands. There was no significant correlation between KSAT’s TE and relative (mL/min kg) treadmill maximal oxygen uptake (r = 0.14; P = 0.69; [small]). On the other hand, there was a significant relationship between KSAT’s TE and the velocity associated with VO2max (vVO2max) (r = 0.67; P = 0.03; [large]) as well as the velocity at VO2 corresponding to the second ventilatory threshold (vVO2 VAT) (r = 0.64; P = 0.04; [large]). Moreover, significant relationship was found between TE’s KSAT and both the total distance covered and parameters of intermittent endurance measured through YoYoIRTL1. Conclusions: The KSAT has not proved to have indirect criterion related validity as no significant correlations have been found between TE’s KSAT and treadmill VO2max. Nevertheless, as correlated to other aerobic fitness variables, KSAT can be considered as an indicator of karate specific endurance. The establishment of the criterion related validity of the KSAT

  5. Efficient Processing of Models for Large-scale Shotgun Proteomics Data.

    PubMed

    Grover, Himanshu; Gopalakrishnan, Vanathi

    2012-01-01

    Mass-spectrometry (MS) based proteomics has become a key enabling technology for the systems approach to biology, providing insights into the protein complement of an organism. Bioinformatics analyses play a critical role in interpretation of large, and often replicated, MS datasets generated across laboratories and institutions. A significant amount of computational effort in the workflow is spent on the identification of protein and peptide components of complex biological samples, and consists of a series of steps relying on large database searches and intricate scoring algorithms. In this work, we share our efforts and experience in efficient handling of these large MS datasets through database indexing and parallelization based on multiprocessor architectures. We also identify important challenges and opportunities that are relevant specifically to the task of peptide and protein identification, and more generally to similar multi-step problems that are inherently parallelizable. PMID:25309967

  6. Efficient Processing of Models for Large-scale Shotgun Proteomics Data

    PubMed Central

    Grover, Himanshu

    2013-01-01

    Mass-spectrometry (MS) based proteomics has become a key enabling technology for the systems approach to biology, providing insights into the protein complement of an organism. Bioinformatics analyses play a critical role in interpretation of large, and often replicated, MS datasets generated across laboratories and institutions. A significant amount of computational effort in the workflow is spent on the identification of protein and peptide components of complex biological samples, and consists of a series of steps relying on large database searches and intricate scoring algorithms. In this work, we share our efforts and experience in efficient handling of these large MS datasets through database indexing and parallelization based on multiprocessor architectures. We also identify important challenges and opportunities that are relevant specifically to the task of peptide and protein identification, and more generally to similar multi-step problems that are inherently parallelizable. PMID:25309967

  7. Aerobic Exercise and Other Healthy Lifestyle Factors That Influence Vascular Aging

    ERIC Educational Resources Information Center

    Santos-Parker, Jessica R.; LaRocca, Thomas J.; Seals, Douglas R

    2014-01-01

    Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development…

  8. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    PubMed

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. PMID:23650260

  9. Effectiveness and Efficiency in Natural Language Processing for Large Amounts of Text.

    ERIC Educational Resources Information Center

    Ruge, Gerda; And Others

    1991-01-01

    Describes a system that was developed in Germany for natural language processing (NLP) to improve free text analysis for information retrieval. Techniques from empirical linguistics are discussed, system architecture is explained, and rules for dealing with conjunctions in dependency analysis for free text processing are proposed. (13 references)…

  10. Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes

    SciTech Connect

    Chu, Kung-Hui; Mahendra, Shaily; Song, Donald L.; Conrad, Mark E.; Alvarez-Cohen, Lisa

    2003-06-01

    Stable isotope analysis is recognized as a powerful tool for monitoring, assessing, and validating in-situ bioremediation processes. In this study, kinetic carbon isotope fractionation factors () associated with the aerobic biodegradation of vinyl chloride (VC), cis-1,2-dichloroethylene (cDCE), and trichloroethylene (TCE) were examined. Of the three solvents, the largest fractionation effects were observed for biodegradation of VC. Both metabolic and cometabolic VC degradation were studied using Mycobacterium aurum L1 (grown on VC), Methylosinus trichosporium OB3b (grown on methane), Mycobacterium vaccae JOB 5 (grown on propane), and two VC enrichment cultures seeded from contaminated soils of Alameda Point and Travis Air Force Base, CA. M. aurum L1 caused the greatest fractionation (= -5.7) while for the cometabolic cultures, values ranged from -3.2 to -4.8. VC fractionation patterns for the enrichment cultures were within the range of those observed for the metabolic and cometabolic cultures (= -4.5 to -5.5). The fractionation for cometabolic degradation of TCE by Me. trichosporium OB3b was low (= -1.1), while no quantifiable carbon isotopic fractionation was observed during the cometabolic degradation of cDCE. For all three of the tested chlorinated ethenes, isotopic fractionation measured during aerobic degradation was significantly smaller than that reported for anaerobic reductive dechlorination. This study suggests that analysis of compound-specific isotopic fractionation could assist in determining whether aerobic or anaerobic degradation of VC and cDCE predominates in field applications of in-situ bioremediation. In contrast, isotopic fractionation effects associated with metabolic and cometabolic reactions are not sufficiently dissimilar to distinguish these processes in the field.

  11. The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments.

    PubMed

    Davis, J W; Gonsior, S; Marty, G; Ariano, J

    2005-03-01

    The biological transformation of hexabromocyclododecane (HBCD), a brominated fire retardant commonly used in a variety of consumer goods, was investigated in aerobic and anaerobic soils and freshwater sediments. Soil, river water, and aquatic sediments were collected from several locations in the United States and transformation of HBCD was evaluated in the correspondingly composed microcosms based on the Organisation for Economic Co-Operation and Development (OECD) Test Guidelines 307 (Aerobic and Anaerobic Transformation in Soil) or 308 (Aerobic and Anaerobic Transformation in Aquatic Sediment Systems). Soil and sediment reaction mixtures, prepared under either aerobic or anoxic conditions, were dosed with HBCD at a concentration ranging from approximately 10 to 80 ng/g dry weight. The soils and sediments were then placed at 20 degrees C for approximately 4 months and the concentration of HBCD in the microcosms was determined at selected time intervals utilizing high-performance liquid chromatography-mass spectrometry (LC-MS). HBCD loss was observed in both the aerobic and anaerobic soils and sediments although the rates were appreciable faster under anoxic conditions. Biologically mediated transformation processes (i.e., biotransformation) accelerated the rate of loss of HBCD when compared to the biologically inhibited (i.e., autoclaved) soils and sediments. Biotransformation half-lives for HBCD were determined to be 63 and 6.9 days in the aerobic and anaerobic soils, respectively, while biotransformation half-lives for HBCD in the two river systems ranged from 11 to 32 days and 1.1 to 1.5 days under aerobic and anaerobic conditions, respectively. Brominated degradation products were not detected in any of the soils or sediments during the course of the study. PMID:15766961

  12. Depth gradients in food web processes linking large lake habitats -presentation

    EPA Science Inventory

    In large lakes around the world, shifts in ecological communities are often associated with water depth. This suggests that there may be concomitant changes in patterns of resource allocation. Using Lake Superior as an example, we explored this idea through stable isotope analyse...

  13. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.

    PubMed

    Quan, Xiang-chun; Quan, Yan-ping; Tao, Kun; Jiang, Xiao-man

    2013-01-01

    This study compared the difference in microbial community and power generation capacity of air-cathode MFCs enriched under anode aerobic and anaerobic conditions. Results showed that MFCs successfully started with continuous air inputting to anode chamber. The aerobic enriched MFC produced comparable and even more electricity with the fuels of acetate, glucose and ethanol compared to the anaerobic MFC when returning to anaerobic condition. The two MFCs showed a slightly different microbial community for anode biofilms (a similarity of 77%), but a highly similar microbial community (a similarity of 97%) for anolyte microbes. The anode biofilm of aerobic enriched MFC showed the presence of some specific bacteria closely related to Clostridium sticklandii, Leucobacter komagatae and Microbacterium laevaniformans. The anaerobic enriched MFC found the presence of a large number of yeast Trichosporon sp. This research demonstrates that it is possible to enrich oxygen-tolerant anode respiring bacteria through purposely aeration in anode chamber. PMID:23196248

  14. Aeration control of thermophilic aerobic digestion using fluorescence monitoring.

    PubMed

    Kim, Young-Kee; Oh, Byung-Keun

    2009-01-01

    The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate. PMID:19190414

  15. Reflections on Psychotherapy and Aerobic Exercise.

    ERIC Educational Resources Information Center

    Silverman, Wade

    This document provides a series of reflections by a practicing psychologist on the uses of aerobic workouts in psychotherapy. Two case histories are cited to illustrate the contention that the mode of exercise, rather than simply its presence or absence, is the significant indicator of a patient's emotional well-being or psychopathology. The first…

  16. Aerobic Exercise Prescription for Rheumatoid Arthritics.

    ERIC Educational Resources Information Center

    Evans, Blanche W.; Williams, Hilda L.

    The use of exercise as a general treatment for rheumatoid arthritics (RA) has included range of motion, muscular strength, water exercise and rest therapy while virtually ignoring possible benefits of aerobic exercise. The purposes of this project were to examine the guidelines for exercise prescription in relation to this special population and…

  17. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

  18. Media for the aerobic growth of campylobacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of agar and sodium bicarbonate (NaHCO3) concentration on aerobic growth of Campylobacter in a fumarate-pyruvate medium was examined. The broth medium was supplemented with 0.0 to 0.2% agar and inoculated with 106 CFU/ml of Campylobacter coli 33559, Campylobacter fetus 27349, Campylobacter...

  19. Strengthening aerobic granule by salt precipitation.

    PubMed

    Chen, Yu-You; Pan, Xiangliang; Li, Jun; Lee, Duu-Jong

    2016-10-01

    Structural stability of aerobic granules is generally poor during long-term operation. This study precipitated seven salts inside aerobic granules using supersaturated solutions of (NH4)3PO4, CaCO3, CaSO4, MgCO3, Mg3(PO4)2, Ca3(PO4)2 or SiO2 to enhance their structural stability. All precipitated granules have higher interior strength at ultrasonic field and reveal minimal loss in organic matter degradation capability at 160-d sequential batch reactor tests. The strength enhancement followed: Mg3(PO4)2=CaSO4>SiO2>(NH4)3PO4>MgCO3>CaCO3=Ca3(PO4)2>original. Also, the intra-granular solution environment can be buffered by the precipitate MgCO3 to make the aerobic granules capable of degradation of organic matters at pH 3. Salt precipitation is confirmed a simple and cost-effective modification method to extend the applicability of aerobic granules for wastewater treatments. PMID:27377228

  20. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  1. Energy, capital and labor tradeoffs in traditional, small- and large-scale Pakistani sugar-cane processing techniques

    SciTech Connect

    Delasanta, D.

    1981-01-01

    After reviewing previous work on choice of sugar processing technique, an analysis of five combinations of product and scale for sugar manufacture in Pakistan are presented. Energy, capital and labor tradeoffs associated with traditional, small- and large-scale processing techniques are identified and discussed, and a methodology is presented for their analysis. Economic evaluation of these tradeoffs using shadow prices within the framework of economic cost/benefit analysis, indicates that improved, small-scale gur processing is the most attractive option of the five. The choice of sugar cane processing for Pakistan is analyzed in terms of its capital, labor and energy costs to that country. In an approach that may be useful in assessing these costs in other third World food processing areas, this analysis uses shadow pricing within the framework of econimic cost/benefit analysis, to evaluate the choice of sugar processing technique for Pakistan.

  2. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    ERIC Educational Resources Information Center

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  3. Adolescents' Interest and Performances in Aerobic Fitness Testing

    ERIC Educational Resources Information Center

    Zhu, Xihe; Chen, Senlin; Parrott, James

    2014-01-01

    This study examined adolescents' interest in aerobic fitness testing and its relation to the test performances. Adolescents (N = 356) from three middle schools participated in the study. The participants took two aerobic fitness tests: the Progressive Aerobic Cardiovascular Endurance Run (PACER) and One-Mile Run (1MR) with a two-day interval,…

  4. Large break frequency for the SRS (Savannah River Site) production reactor process water system

    SciTech Connect

    Daugherty, W.L.; Awadalla, N.G.; Sindelar, R.L.; Bush, S.H.; Review and Synthesis Associates, Richland, WA )

    1989-01-01

    The objective of this paper is to present the results and conclusions of an evaluation of the break frequency for the process water system (primary coolant system), including the piping, reactor tank, heat exchangers, expansion joints and other process water system components. This evaluation was performed to support the ongoing PRA effort and to complement deterministic analyses addressing the credibility of a double-ended guillotine break. 6 refs., 2 figs., 1 tab.

  5. Two pass method and radiation interchange processing when applied to thermal-structural analysis of large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.; Rogers, Karen M.

    1993-01-01

    A method of efficient and automated thermal-structural processing of very large space structures is presented. The method interfaces the finite element and finite difference techniques. It also results in a pronounced reduction of the quantity of computations, computer resources and manpower required for the task, while assuring the desired accuracy of the results.

  6. Automation of Survey Data Processing, Documentation and Dissemination: An Application to Large-Scale Self-Reported Educational Survey.

    ERIC Educational Resources Information Center

    Shim, Eunjae; Shim, Minsuk K.; Felner, Robert D.

    Automation of the survey process has proved successful in many industries, yet it is still underused in educational research. This is largely due to the facts (1) that number crunching is usually carried out using software that was developed before information technology existed, and (2) that the educational research is to a great extent trapped…

  7. Denitrification kinetics in anoxic/aerobic activated sludge systems

    SciTech Connect

    Horne, G.M.

    1998-12-11

    Nitrogen removal needs at municipal wastewater treatment plants (WWTPs) have increased due to greater concerns about eutrophication and increased interest in reuse of treated municipal effluents. Biological processes are the most cost-effective method for nitrogen removal. Biological nitrogen removal is accomplished in two distinctly different processes by the conversion of nitrogen in the wastewater from organic nitrogen and ammonia to nitrate, followed by reduction of the nitrate to nitrogen gas. Nitrate production occurs in an aerobic activated sludge treatment zone during a process called nitrification. The nitrate is then converted through a series of intermediate steps to nitrogen gas in an anoxic zone (an anaerobic condition with nitrate present) during a process called denitrification, effectively removing the nitrogen from the wastewater. Many different WWTP designs have been developed to incorporate these two conditions for nitrogen removal.

  8. Boundary driven Kawasaki process with long-range interaction: dynamical large deviations and steady states

    NASA Astrophysics Data System (ADS)

    Mourragui, Mustapha; Orlandi, Enza

    2013-01-01

    A particle system with a single locally-conserved field (density) in a bounded interval with different densities maintained at the two endpoints of the interval is under study here. The particles interact in the bulk through a long-range potential parametrized by β⩾0 and evolve according to an exclusion rule. It is shown that the empirical particle density under the diffusive scaling solves a quasilinear integro-differential evolution equation with Dirichlet boundary conditions. The associated dynamical large deviation principle is proved. Furthermore, when β is small enough, it is also demonstrated that the empirical particle density obeys a law of large numbers with respect to the stationary measures (hydrostatic). The macroscopic particle density solves a non-local, stationary, transport equation.

  9. An Efficient Simulation Environment for Modeling Large-Scale Cortical Processing

    PubMed Central

    Richert, Micah; Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L.

    2011-01-01

    We have developed a spiking neural network simulator, which is both easy to use and computationally efficient, for the generation of large-scale computational neuroscience models. The simulator implements current or conductance based Izhikevich neuron networks, having spike-timing dependent plasticity and short-term plasticity. It uses a standard network construction interface. The simulator allows for execution on either GPUs or CPUs. The simulator, which is written in C/C++, allows for both fine grain and coarse grain specificity of a host of parameters. We demonstrate the ease of use and computational efficiency of this model by implementing a large-scale model of cortical areas V1, V4, and area MT. The complete model, which has 138,240 neurons and approximately 30 million synapses, runs in real-time on an off-the-shelf GPU. The simulator source code, as well as the source code for the cortical model examples is publicly available. PMID:22007166

  10. Computer-Controlled Cylindrical Polishing Process for Large X-Ray Mirror Mandrels

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    We are developing high-energy grazing incidence shell optics for hard-x-ray telescopes. The resolution of a mirror shells depends on the quality of cylindrical mandrel from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation software is developed to model the residual surface figure errors of a mandrel due to the polishing process parameters and the tools used, as well as to compute the optical performance of the optics. The study carried out using the developed software was focused on establishing a relationship between the polishing process parameters and the mid-spatial-frequency error generation. The process parameters modeled are the speeds of the lap and the mandrel, the tool s influence function, the contour path (dwell) of the tools, their shape and the distribution of the tools on the polishing lap. Using the inputs from the mathematical model, a mandrel having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. The preliminary results of a series of polishing experiments demonstrate a qualitative agreement with the developed model. We report our first experimental results and discuss plans for further improvements in the polishing process. The ability to simulate the polishing process is critical to optimize the polishing process, improve the mandrel quality and significantly reduce the cost of mandrel production

  11. Applications of Parallel Process HiMAP for Large Scale Multidisciplinary Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Potsdam, Mark; Rodriguez, David; Kwak, Dochay (Technical Monitor)

    2000-01-01

    HiMAP is a three level parallel middleware that can be interfaced to a large scale global design environment for code independent, multidisciplinary analysis using high fidelity equations. Aerospace technology needs are rapidly changing. Computational tools compatible with the requirements of national programs such as space transportation are needed. Conventional computation tools are inadequate for modern aerospace design needs. Advanced, modular computational tools are needed, such as those that incorporate the technology of massively parallel processors (MPP).

  12. Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures

    NASA Technical Reports Server (NTRS)

    Knott, Tamara W.; Loos, Alfred C.

    2000-01-01

    Resin film infusion (RFI) is a cost-effective method for fabricating stiffened aircraft wing structures. The RFI process lends itself to the use of near net shape textile preforms manufactured through a variety of automated textile processes such as knitting and braiding. Often, these advanced fiber architecture preforms have through-the-thickness stitching for improved damage tolerance and delamination resistance. The challenge presently facing RFI is to refine the process to ensure complete infiltration and cure of a geometrically complex shape preform with the high fiber volume fraction needed for structural applications. An accurate measurement of preform permeability is critical for successful modeling of the RFI resin infiltration process. Small changes in the permeability can result in very different infiltration behavior and times. Therefore, it is important to accurately measure the permeabilities of the textile preforms used in the RFI process. The objective of this investigation was to develop test methods that can be used to measure the compaction behavior and permeabilities of high fiber volume fraction, advanced fiber architecture textile preforms. These preforms are often highly compacted due to through-the-thickness stitching used to improve damage tolerance. Test fixtures were designed and fabricated and used to measure both transverse and in-plane permeabilities. The fixtures were used to measure the permeabilities of multiaxial warp knit and triaxial braided preforms at fiber volume fractions from 55% to 65%. In addition, the effects of stitching characteristics, thickness, and batch variability on permeability and compaction behavior were investigated.

  13. ISETTA: Service Orientation in the "Bologna Process" of a Large University

    NASA Astrophysics Data System (ADS)

    Vossen, Gottfried; Thies, Gunnar

    With the signing of the "Bologna Declaration" in June 1999 by 29 representatives of the European education ministries, a decision was made to introduce comparable educational structures among European universities based on a. Bachelor-Master system until the year 2010. The process itself, collectively known as the "Bologna process,"1 is now well-underway and has created both administrative as well as technical challenges. The ISETTA project at the University of Muenster in Germany aims at the development of an Integrated Student, Exam, Test, and Teaching Application that properly reflects the changes of the university's internal activities caused by the Bologna process. In this paper, we report on the specific requirements of the project, the approach that has been taken and the current status of ISETTA.

  14. Object-oriented design: Deriving conceptual solutions to large-scale information processing problems

    SciTech Connect

    Whiting, M.A.

    1990-05-01

    The Vertical Integration of Science, Technology, and Applications (VISTA) Project is a long-term effort conducted by the Pacific Northwest Laboratory (PNL) directed toward accelerating the process of making research results (data, models, advanced concepts) usable and available to R D applications. The initial goal of the program is to develop a software-based information system to guide the assessment and remediation process for hazardous waste sites at the US Department of Energy (DOE) facilities. The information system will link users (DOE, laboratories, and remediation contractors) to computer models and technical data available at PNL, to speed up the remediation process, while decreasing costs and accelerating the deployment of new technologies. This report describes a methodology used to design components of the VISTA information system based on an object-oriented computing model. 17 refs., 7 figs.

  15. Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up.

    PubMed

    Girard, Valérie; Hilbold, Nicolas-Julian; Ng, Candy K S; Pegon, Laurence; Chahim, Wael; Rousset, Fabien; Monchois, Vincent

    2015-11-10

    The development and optimization of a purification process of monoclonal antibodies based on two continuous chromatography steps for capture and intermediate purification are presented. The two chromatography steps were individually optimized using either batch chromatography or sequential multicolumn chromatography (SMCC). Proprietary simulation software was used to optimize SMCC and to evaluate the potential gains compared with batch chromatography. The SMCC recipes provided by the simulation software were evaluated experimentally. A good correlation was found between the simulated results and experimental observations. Significant gains were observed on the productivity, buffer consumption and the volume of resin required for SMCC over batch chromatography. Based on these results, a chained process from the capture to polishing steps was implemented. This chained process demonstrated significantly better performance compared with the batch equivalent while satisfying the specifications. The expected positive impact provided by implementing continuous chromatography is also discussed. PMID:25962790

  16. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Lalonde, Stefan V; Planavsky, Noah J; Pecoits, Ernesto; Lyons, Timothy W; Mojzsis, Stephen J; Rouxel, Olivier J; Barley, Mark E; Rosìere, Carlos; Fralick, Phillip W; Kump, Lee R; Bekker, Andrey

    2011-10-20

    The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology. PMID:22012395

  17. Monitoring the process of pulmonary melanoma metastasis using large area and label-free nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Hua, Daozhu; Qi, Shuhong; Li, Hui; Zhang, Zhihong; Fu, Ling

    2012-06-01

    We performed large area nonlinear optical microscopy (NOM) for label-free monitoring of the process of pulmonary melanoma metastasis ex vivo with subcellular resolution in C57BL/6 mice. Multiphoton autofluorescence (MAF) and second harmonic generation (SHG) images of lung tissue are obtained in a volume of ~2.2 mm×2.2 mm×30 μm. Qualitative differences in morphologic features and quantitative measurement of pathological lung tissues at different time points are characterized. We find that combined with morphological features, the quantitative parameters, such as the intensity ratio of MAF and SHG between pathological tissue and normal tissue and the MAF to SHG index versus depth clearly shows the tissue physiological changes during the process of pulmonary melanoma metastasis. Our results demonstrate that large area NOM succeeds in monitoring the process of pulmonary melanoma metastasis, which can provide a powerful tool for the research in tumor pathophysiology and therapy evaluation.

  18. Numerical study of transient behaviour of molten zone during industrial FZ process for large silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Rudevičs, A.; Muižnieks, A.; Ratnieks, G.; Mühlbauer, A.; Wetzel, Th.

    2004-05-01

    The fully transient axisymmetric model has been developed for calculation of phase boundaries in large (up to 200 mm diameter) industrial floating zone (FZ) silicon single crystal growth with the needle-eye technique. The transient model is implemented in a specialized computer program. The model and program are based on a previously developed model and program for steady-state FZ process calculations. This transient approach allows studying of such substantially time-dependent process phases as the growth of the starting and ending cones of the crystal rod, which are particularly important for growth of large crystals in practice. Numerous calculations are carried out and the results for reducing crystal diameter during growth process are presented.

  19. Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance.

    PubMed

    Bauernfeind, Amy L; Barks, Sarah K; Duka, Tetyana; Grossman, Lawrence I; Hof, Patrick R; Sherwood, Chet C

    2014-07-01

    Glucose metabolism produces, by oxidative phosphorylation, more than 15 times the amount of energy generated by aerobic glycolysis. Nonetheless, aerobic glycolysis remains a prevalent metabolic pathway in the brain. Here we review evidence suggesting that this pathway contributes essential molecules to the biomass of the brain. Aerobic metabolism is the dominant metabolic pathway during early postnatal development when lipids and proteins are needed for the processes of axonal elongation, synaptogenesis, and myelination. Furthermore, aerobic metabolism may continue into adulthood to supply biomolecules for activity-related changes at the synapse and turnover of constituent structural components of neurons. Conversely, oxidative phosphorylation appears to be the main metabolic support for synaptic transmission, and, therefore, this pathway seems to be more dominant in brain structures and at time points in the lifespan that are characterized by increased synaptic density. We present the case for differing relationships between aerobic glycolysis and oxidative phosphorylation across primates in association with species-specific variation in neurodevelopmental trajectories. In doing so, we provide an alternative interpretation for the assessment of radiolabeled glucose positron emission tomography studies that regularly attribute increases in glucose uptake to neural activity alone, and propose a new model for the contribution of metabolic pathways for energetic demand and neural tissue growth. We conclude that comparative studies of metabolic appropriation in the brain may contribute to the discussion of human cognitive evolution and to the understanding of human-specific aging and the etiology of neuropsychiatric diseases. PMID:24185460

  20. Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment.

    PubMed

    Del Pozo, R; Diez, V

    2005-03-01

    An integrated anaerobic-aerobic fixed-film pilot-scale reactor with arranged media was fed during 166 days with slaughterhouse wastewater. Operation temperature was 25 degrees C and the anaerobic-aerobic volume ratio was decreased from 4:1 to 3:2 and finally to 2:3. Overall organic matter removal efficiencies of 93% were achieved for an average organic loading rate of 0.77 kg COD/m3 d, and nitrogen removal efficiencies of 67% were achieved for nitrogen loading rates of 0.084 kg N/m3 d. The high internal recirculation associated to the air-lift effect linked to the aeration of a part of the reactor section caused high mixing between the anaerobic and aerobic zones, so that most organic matter was removed aerobically. The nitrification process achieved an efficiency of 91% for nitrogen loads of 0.15 kg N/m3 d when the anaerobic-aerobic volume ratio was 2:3 and was limited by dissolved oxygen concentration below 3 mg/l. The influence of the heterotrophic biomass growing in the outer biofilm was checked. Denitrification only implied the 12-34% of the total nitrogen removal and was limited by dissolved oxygen concentration in the anaerobic zone above 0.5 mg/l caused by the mixing regime. Most removed nitrogen was employed in synthesis of heterotrophic bacteria. PMID:15766966

  1. Biosorption of Malachite Green from aqueous solutions onto aerobic granules: kinetic and equilibrium studies.

    PubMed

    Sun, Xue-Fei; Wang, Shu-Guang; Liu, Xian-Wei; Gong, Wen-Xin; Bao, Nan; Gao, Bao-Yu; Zhang, Hua-Yong

    2008-06-01

    Batch experiments were conducted to study the biosorption characteristics of a cationic dye, Malachite Green (MG), onto aerobic granules. Effects of pH, aerobic granule dosage, contact time and solution temperature on MG biosorption by aerobic granules were evaluated. Simultaneity the thermodynamic analysis was also performed. The results showed that alkaline pH was favorable for the biosorption of MG and chemisorption seemed to play a major role in the biosorption process. Kinetic studies indicate that MG biosorption on aerobic granules in the system follows the pseudo-second order kinetics. The equilibrium time was 60 min for both 50 and 60 mg/L and 120 min for both 70 and 80 mg/L MG concentrations, respectively. Moreover, the experimental equilibrium data have been analyzed using the linearized forms of Langmuir, Freundlich, and Redlich-Peterson isotherms and the Langmuir isotherm was found to provide the best theoretical correlation of the experimental data for the biosorption of MG. The monolayer biosorption (saturation) capacities were determined to be 56.8 mg of MG per gram of aerobic granules at 30 degrees C. Thermodynamic analysis show that biosorption follows an endothermic path of the positive value of Delta H( composite function) and spontaneous with negative value of Delta G( composite function). PMID:17855080

  2. New records in aerobic power among octogenarian lifelong endurance athletes

    PubMed Central

    Hayes, Erik; Galpin, Andrew; Kaminsky, Leonard; Jemiolo, Bozena; Fink, William; Trappe, Todd; Jansson, Anna; Gustafsson, Thomas; Tesch, Per

    2013-01-01

    We examined whole body aerobic capacity and myocellular markers of oxidative metabolism in lifelong endurance athletes [n = 9, 81 ± 1 yr, 68 ± 3 kg, body mass index (BMI) = 23 ± 1 kg/m2] and age-matched, healthy, untrained men (n = 6; 82 ± 1 y, 77 ± 5 kg, BMI = 26 ± 1 kg/m2). The endurance athletes were cross-country skiers, including a former Olympic champion and several national/regional champions, with a history of aerobic exercise and participation in endurance events throughout their lives. Each subject performed a maximal cycle test to assess aerobic capacity (V̇o2max). Subjects had a resting vastus lateralis muscle biopsy to assess oxidative enzymes (citrate synthase and βHAD) and molecular (mRNA) targets associated with mitochondrial biogenesis [peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and mitochondrial transcription factor A (Tfam)]. The octogenarian athletes had a higher (P < 0.05) absolute (2.6 ± 0.1 vs. 1.6 ± 0.1 l/min) and relative (38 ± 1 vs. 21 ± 1 ml·kg−1·min−1) V̇o2max, ventilation (79 ± 3 vs. 64 ± 7 l/min), heart rate (160 ± 5 vs. 146 ± 8 beats per minute), and final workload (182 ± 4 vs. 131 ± 14 W). Skeletal muscle oxidative enzymes were 54% (citrate synthase) and 42% (βHAD) higher (P < 0.05) in the octogenarian athletes. Likewise, basal PGC-1α and Tfam mRNA were 135% and 80% greater (P < 0.05) in the octogenarian athletes. To our knowledge, the V̇o2max of the lifelong endurance athletes is the highest recorded in humans >80 yr of age and comparable to nonendurance trained men 40 years younger. The superior cardiovascular and skeletal muscle health profile of the octogenarian athletes provides a large functional reserve above the aerobic frailty threshold and is associated with lower risk for disability and mortality. PMID:23065759

  3. Development of a specific anaerobic field test for aerobic gymnastics.

    PubMed

    Alves, Christiano Robles Rodrigues; Borelli, Marcello Tadeu Caetano; Paineli, Vitor de Salles; Azevedo, Rafael de Almeida; Borelli, Claudia Cristine Gomes; Lancha Junior, Antônio Herbert; Gualano, Bruno; Artioli, Guilherme Giannini

    2015-01-01

    The current investigation aimed to develop a valid specific field test to evaluate anaerobic physical performance in Aerobic Gymnastics athletes. We first designed the Specific Aerobic Gymnast Anaerobic Test (SAGAT), which included gymnastics-specific elements performed in maximal repeated sprint fashion, with a total duration of 80-90 s. In order to validate the SAGAT, three independent sub-studies were performed to evaluate the concurrent validity (Study I, n=8), the reliability (Study II, n=10) and the sensitivity (Study III, n=30) of the test in elite female athletes. In Study I, a positive correlation was shown between lower-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.69, CI: -0.94 to 0.03 and Peak power: p = 0.02, r = -0.72, CI: -0.95 to -0.04) and between upper-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.67, CI: -0.94 to 0.02 and Peak power: p = 0.03, r = -0.69, CI: -0.94 to 0.03). Additionally, plasma lactate was similarly increased in response to SAGAT (p = 0.002), lower-body Wingate Test (p = 0.021) and a simulated competition (p = 0.007). In Study II, no differences were found between the time to complete the SAGAT in repeated trials (p = 0.84; Cohen's d effect size = 0.09; ICC = 0.97, CI: 0.89 to 0.99; MDC95 = 0.12 s). Finally, in Study III the time to complete the SAGAT was significantly lower during the competition cycle when compared to the period before the preparatory cycle (p < 0.001), showing an improvement in SAGAT performance after a specific Aerobic Gymnastics training period. Taken together, these data have demonstrated that SAGAT is a specific, reliable and sensitive measurement of specific anaerobic performance in elite female Aerobic Gymnastics, presenting great potential to be largely applied in training settings. PMID:25876039

  4. Development of a Specific Anaerobic Field Test for Aerobic Gymnastics

    PubMed Central

    Paineli, Vitor de Salles; Azevedo, Rafael de Almeida; Borelli, Claudia Cristine Gomes; Lancha Junior, Antônio Herbert; Gualano, Bruno; Artioli, Guilherme Giannini

    2015-01-01

    The current investigation aimed to develop a valid specific field test to evaluate anaerobic physical performance in Aerobic Gymnastics athletes. We first designed the Specific Aerobic Gymnast Anaerobic Test (SAGAT), which included gymnastics-specific elements performed in maximal repeated sprint fashion, with a total duration of 80-90 s. In order to validate the SAGAT, three independent sub-studies were performed to evaluate the concurrent validity (Study I, n=8), the reliability (Study II, n=10) and the sensitivity (Study III, n=30) of the test in elite female athletes. In Study I, a positive correlation was shown between lower-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.69, CI: -0.94 to 0.03 and Peak power: p = 0.02, r = -0.72, CI: -0.95 to -0.04) and between upper-body Wingate test and SAGAT performance (Mean power: p = 0.03, r = -0.67, CI: -0.94 to 0.02 and Peak power: p = 0.03, r = -0.69, CI: -0.94 to 0.03). Additionally, plasma lactate was similarly increased in response to SAGAT (p = 0.002), lower-body Wingate Test (p = 0.021) and a simulated competition (p = 0.007). In Study II, no differences were found between the time to complete the SAGAT in repeated trials (p = 0.84; Cohen’s d effect size = 0.09; ICC = 0.97, CI: 0.89 to 0.99; MDC95 = 0.12 s). Finally, in Study III the time to complete the SAGAT was significantly lower during the competition cycle when compared to the period before the preparatory cycle (p < 0.001), showing an improvement in SAGAT performance after a specific Aerobic Gymnastics training period. Taken together, these data have demonstrated that SAGAT is a specific, reliable and sensitive measurement of specific anaerobic performance in elite female Aerobic Gymnastics, presenting great potential to be largely applied in training settings. PMID:25876039

  5. GLAST: Exploring Nature's Highest Energy Processes with the Gamma-ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    Digel, Seth; Myers, J. D.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is an international and multi-agency space mission that will study the cosmos in the energy range 10 keV-300 GeV. Several successful exploratory missions in gamma-ray astronomy led to the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Gamma Ray Observatory (CGRO). Launched in 1991, EGRET made the first complete survey of the sky in the 30 MeV-10 GeV range. EGRET showed the high-energy gamma-ray sky to be surprisingly dynamic and diverse, with sources ranging from the sun and moon to massive black holes at large redshifts. Most of the gamma-ray sources detected by EGRET remain unidentified. In light of the discoveries with EGRET, the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope vastly more capable than instruments flown previously, as well as a secondary instrument to augment the study of gamma-ray bursts. The main instrument, the Large Area Telescope (LAT), will have superior area, angular resolution, field of view, and deadtime that together will provide a factor of 30 or more advance in sensitivity, as well as provide capability for study of transient phenomena. The GLAST Burst Monitor (GBM) will have a field of view several times larger than the LAT and will provide spectral coverage of gamma-ray bursts that extends from the lower limit of the LAT down to 10 keV. The basic parameters of the GBM are compared to those of the Burst and Transient Source Experiment (BATSE) instrument on CGRO in Table 1-2. With the LAT and GBM, GLAST will be a flexible observatory for investigating the great range of astrophysical phenomena best studied in high-energy gamma rays. NASA plans to launch GLAST in late 2005.

  6. Keeping a large-pupilled eye on high-level visual processing.

    PubMed

    Binda, Paola; Murray, Scott O

    2015-01-01

    The pupillary light response has long been considered an elementary reflex. However, evidence now shows that it integrates information from such complex phenomena as attention, contextual processing, and imagery. These discoveries make pupillometry a promising tool for an entirely new application: the study of high-level vision. PMID:25467128

  7. Plasma Processing of Large Surfaces with Application to SRF Cavity Modification

    SciTech Connect

    Upadhyay, Janardan; Popovic, Svetozar; Vuskovic, Leposova; Im, Do; Valente, Anne-Marie; Phillips, H

    2013-09-01

    Plasma based surface modifications of SRF cavities present promising alternatives to the wet etching technology currently applied. To understand and characterize the plasma properties and chemical kinetics of plasma etching processes inside a single cell cavity, we have built a specially-designed cylindrical cavity with 8 observation ports. These ports can be used for holding niobium samples and diagnostic purposes simultaneously. Two frequencies (13.56 MHz and 2.45 GHz) of power source are used for different pressure, power and gas compositions. The plasma parameters were evaluated by a Langmuir probe and by an optical emission spectroscopy technique based on the relative intensity of two Ar 5p-4s lines at 419.8 and 420.07 nm. Argon 5p-4s transition is chosen to determine electron temperature in order to optimize parameters for plasma processing. Chemical kinetics of the process was observed using real-time mass spectroscopy. The effect of these parameters on niobium surface would be measured, presented at this conference, and used as guidelines for optimal design of SRF etching process.

  8. The Large Laboratory Course: Organize It to Parallel Industrial Process Development.

    ERIC Educational Resources Information Center

    Eckert, Roger E.; Ybarra, Robert M.

    1988-01-01

    Describes a senior level chemical engineering course at Purdue University that parallels an industrial process development department. Stresses the course organization, manager-engineer contract, evaluation of students, course evaluation, and gives examples of course improvements made during the course. (CW)

  9. Dissolving decision making? Models and their roles in decision-making processes and policy at large.

    PubMed

    Zeiss, Ragna; van Egmond, Stans

    2014-12-01

    This article studies the roles three science-based models play in Dutch policy and decision making processes. Key is the interaction between model construction and environment. Their political and scientific environments form contexts that shape the roles of models in policy decision making. Attention is paid to three aspects of the wider context of the models: a) the history of the construction process; b) (changes in) the political and scientific environments; and c) the use in policy processes over longer periods of time. Models are more successfully used when they are constructed in a stable political and scientific environment. Stability and certainty within a scientific field seems to be a key predictor for the usefulness of models for policy making. The economic model is more disputed than the ecology-based model and the model that has its theoretical foundation in physics and chemistry. The roles models play in policy processes are too complex to be considered as straightforward technocratic powers. PMID:25549446

  10. A Distributed Processing Approach to Payroll Time Reporting for a Large School District.

    ERIC Educational Resources Information Center

    Freeman, Raoul J.

    1983-01-01

    Describes a system for payroll reporting from geographically disparate locations in which data is entered, edited, and verified locally on minicomputers and then uploaded to a central computer for the standard payroll process. Communications and hardware, time-reporting software, data input techniques, system implementation, and its advantages are…

  11. Scaling-up Process-Oriented Guided Inquiry Learning Techniques for Teaching Large Information Systems Courses

    ERIC Educational Resources Information Center

    Trevathan, Jarrod; Myers, Trina; Gray, Heather

    2014-01-01

    Promoting engagement during lectures becomes significantly more challenging as class sizes increase. Therefore, lecturers need to experiment with new teaching methodologies to embolden deep learning outcomes and to develop interpersonal skills amongst students. Process Oriented Guided Inquiry Learning is a teaching approach that uses highly…

  12. Index Compression and Efficient Query Processing in Large Web Search Engines

    ERIC Educational Resources Information Center

    Ding, Shuai

    2013-01-01

    The inverted index is the main data structure used by all the major search engines. Search engines build an inverted index on their collection to speed up query processing. As the size of the web grows, the length of the inverted list structures, which can easily grow to hundreds of MBs or even GBs for common terms (roughly linear in the size of…

  13. Simulation of mass storage systems operating in a large data processing facility

    NASA Technical Reports Server (NTRS)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  14. Automated spray coating process for the fabrication of large-area artificial opals on textured substrates.

    PubMed

    Sprafke, Alexander N; Schneevoigt, Daniela; Seidel, Sophie; Schweizer, Stefan L; Wehrspohn, Ralf B

    2013-05-01

    3D photonic crystals, such as opals, have been shown to have a high potential to increase the efficiency of solar cells by enabling advanced light management concepts. However, methods which comply with the demands of the photovoltaic industry for integration of these structures, i. e. the fabrication in a low-cost, fast, and large-scale manner, are missing up to now. In this work, we present the spray coating of a colloidal suspension on textured substrates and subsequent drying. We fabricated opaline films of much larger lateral dimensions and in much shorter times than what is possible using conventional opal fabrication methods. PMID:24104441

  15. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu

    2012-02-01

    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency. PMID:22509578

  16. Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions.

    PubMed

    Bordeleau, Geneviève; Martel, Richard; Bamba, Abraham N'Valoua; Blais, Jean-François; Ampleman, Guy; Thiboutot, Sonia

    2014-10-01

    The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils. The role of SOM in NG degradation has already been documented under anoxic conditions, and was attributed to SOM-mediated electron transfer involving different reducing agents. However, unsaturated soils are usually well-oxygenated, and it was not clear whether SOM could participate in NG degradation under these conditions. Our results from batch- and column-type experiments clearly demonstrate that in presence of dissolved organic matter (DOM) leached from a natural soil, partial NG degradation can be achieved. In presence of particulate organic matter (POM) from the same soil, complete NG degradation was achieved. Furthermore, POM caused rapid sorption of NG, which should result in NG retention in the organic matter-rich shallow horizons of the soil profile, thus promoting degradation. Based on degradation products, the reaction pathway appears to be reductive, in spite of the aerobic conditions. The relatively rapid reaction rates suggest that this process could significantly participate in the natural attenuation of NG, both on military training ranges and in contaminated soil at production facilities. PMID:25086776

  17. Fast Estimate of Rupture Process of Large Earthquakes via Real Time Hi-net Data

    NASA Astrophysics Data System (ADS)

    Wang, D.; Kawakatsu, H.; Mori, J. J.

    2014-12-01

    We developed a real time system based on Hi-net seismic array that can offer fast and reliable source information, for example, source extent and rupture velocity, for earthquakes that occur at distance of roughly 30°- 85°with respect to the array center. We perform continuous grid search on a Hi-net real time data stream to identify possible source locations (following Nishida, K., Kawakatsu, H., and S. Obara, 2008). Earthquakes that occurred off the bright area of the array (30°- 85°with respect to the array center) will be ignored. Once a large seismic event is identified successfully, back-projection will be implemented to trace the source propagation and energy radiation. Results from extended global GRiD-MT and real time W phase inversion will be combined for the better identification of large seismic events. The time required is mainly due to the travel time from the epicenter to the array stations, so we can get the results between 6 to 13 min depending on the epicenter distances. This system can offer fast and robust estimates of earthquake source information, which will be useful for disaster mitigation, such as tsunami evacuation, emergency rescue, and aftershock hazard evaluation.

  18. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  19. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  20. In situ stimulation of aerobic PCB biodegradation in Hudson River sediments

    SciTech Connect

    Harkness, M.R.; McDermott, J.B.; Abramowicz, D.A.; Salvo, J.J.; Flanagan, W.P.; Stephens, M.L.; Mondello, F.J.; May, R.J.; Lobos, J.H.; Carroll, K.M.; Brennan, M.J.; Bracco, A.A.; Fish, K.M.; Warner, G.L.; Wilson, P.R.; Dietrich, D.K.; Lin, D.T.; Morgan, C.B.; Gately, W.L. )

    1993-01-22

    A 73-day field study of in situ aerobic biodegradation of polychlorinated biphenyls (PCBs) in the Hudson River shows that indigenous aerobic microorganisms can degrade the lightly chlorinated PCBs present in these sediments. Addition of inorganic nutrients, biphenyl, and oxygen enhanced PCB biodegradation, as indicated both by a 37 to 55 percent loss of PCBs and by the production of chlorobenzoates, intermediates in the PCB biodegradation pathway. Repeated inoculation with a purified PCB-degrading bacterium failed to improve biodegradative activity. Biodegradation was also observed under mixed but unamended conditions, which suggests that this process may occur commonly in river sediments, with implications for PCB fate models and risk assessments.

  1. Formation of filamentous aerobic granules: role of pH and mechanism.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Zhang, Qinlan; Li, Jieni; Liu, Xiang

    2014-10-01

    Filamentous overgrowth in aerobic granular sludge processes can cause reactor failure. In this work, aerobic granules were cultivated in five identical sequencing batch reactors with acetate or glucose as the carbon source with various values of influent pH (4.5-8). Microscopic observations revealed that acidic pH, rather than the species of carbon source, epistatically controls the aerobic granules with filamentous structure. An acidic pH shifted the structure of the microbial community in the granules, such that the fungus Geotrichum fragrans was the predominant filamentous microorganism therein. The acidic pH reduced the intracellular cyclic diguanylate (c-di-GMP) content for increasing the motility of the bacteria to washout and increase the growth rate of G. fragrans on glucose or acetate, together causing overgrowth of the fungus. Maintaining the suspension under alkaline condition is proposed as an effective way to suppress filamentous overgrowth and maintain granule stability. PMID:24928656

  2. Experimental determination of carbon dioxide evolution during aerobic composting of agro-wastes.

    PubMed

    Tripathi, Shilpa; Srivastava, J K

    2012-10-01

    This work aims at optimal composting of agro-wastes like sugarcane bagasse, wood straw and soya husk. A mixture of these substances along with small quantity of food waste as the seed was composted aerobically and carbon dioxide evolved was determined experimentally using a composting system comprising aerobic digester, operating in near-optimal conditions with regard to adequacy of oxygen and temperature in the system. During aerobic composting of agro-waste carbon dioxide is produced due to degradation of different carbon fractions in the substrate. Carbon dioxide production rate, which is a measure of bacterial/fungal activity in composting systems, can be related to various process parameters like different carbon fractions present in the substrate and their reaction rates, progress and termination of compost phenomenon and stabilization of organic matter. This gives a balanced compromise between complexity of mathematical model and extensive experimentation, and can be used for determining optimum conditions for composting. PMID:25151714

  3. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  4. Model of a thermo-elastic-inelastic process with large deformations and structural changes in material

    NASA Astrophysics Data System (ADS)

    Rogovoi, A. A.

    2015-09-01

    The dependence of a scalar measure of the structural changes occurring in a material under plastic deformation on a plastic strain measure and the dependence of a free energy measure on a structural change measure are constructed using experimental data that allow the expended plastic work to be divided into a latent part and a thermal part. The obtained dependences, kinematic relations, a constitutive equation, and a heat-conduction equation that satisfy the principles of thermodynamics and objectivity are used to construct a model of thermo-elastic-inelastic processes in the presence of finite deformations and structural changes in the material. The model is tested on the problem of temperature changes in the process of adiabatic elastic-plastic compression, which has experimental support.

  5. Myosin VI is a processive motor with a large step size

    PubMed Central

    Rock, Ronald S.; Rice, Sarah E.; Wells, Amber L.; Purcell, Thomas J.; Spudich, James A.; Sweeney, H. Lee

    2001-01-01

    Myosin VI is a molecular motor involved in intracellular vesicle and organelle transport. To carry out its cellular functions myosin VI moves toward the pointed end of actin, backward in relation to all other characterized myosins. Myosin V, a motor that moves toward the barbed end of actin, is processive, undergoing multiple catalytic cycles and mechanical advances before it releases from actin. Here we show that myosin VI is also processive by using single molecule motility and optical trapping experiments. Remarkably, myosin VI takes much larger steps than expected, based on a simple lever-arm mechanism, for a myosin with only one light chain in the lever-arm domain. Unlike other characterized myosins, myosin VI stepping is highly irregular with a broad distribution of step sizes. PMID:11707568

  6. Studies on distributed sensing and processing for the control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Ghosh, Dave

    1991-01-01

    Technology is being developed to process signals from distributed sensors using distributed computations. These distributed sensors provide a new feedback capability for vibration control that has not been exploited. Additionally, the sensors proposed are of an optical and distributed nature and could be employed with known techniques of distributed optical computation (Fourier optics, etc.) to accomplish the control system functions of filtering and regulation in a distributed computer. This paper reviews a procedure for the analytic design of control systems for this application. For illustration, the procedure is applied to the problem of suppressing the vibrations of a simply supported beam. A simulator has been developed to study the effects of sensor and processing errors. An extensive study of the effects of these errors on estimation and regulation performance is presented.

  7. Investigation of rifting processes in the Rio Grande Rift using data from unusually large earthquake swarms

    SciTech Connect

    Sanford, A.; Balch, R.; House, L.; Hartse, H.

    1995-12-01

    San Acacia Swarm in the Rio Grande Rift. Because the Rio Grande rift is one of the best seismically instrumented rift zones in the world, studying its seismicity provides an exceptional opportunity to explore the active tectonic processes within continental rifts. We have been studying earthquake swarms recorded near Socorro in an effort to link seismicity directly to the rifting process. For FY94, our research has focused on the San Acacia swarm, which occurred 25 km north of Socorro, New Mexico, along the accommodation zone between the Albuquerque-Belen and Socorro basins of the central Rio Grande rift. The swarm commenced on 25 February 1983, had a magnitude 4.2 main shock on 2 March and ended on 17 March, 1983.

  8. MOSAIC - A space-multiplexing technique for optical processing of large images

    NASA Technical Reports Server (NTRS)

    Athale, Ravindra A.; Astor, Michael E.; Yu, Jeffrey

    1993-01-01

    A technique for Fourier processing of images larger than the space-bandwidth products of conventional or smart spatial light modulators and two-dimensional detector arrays is described. The technique involves a spatial combination of subimages displayed on individual spatial light modulators to form a phase-coherent image, which is subsequently processed with Fourier optical techniques. Because of the technique's similarity with the mosaic technique used in art, the processor used is termed an optical MOSAIC processor. The phase accuracy requirements of this system were studied by computer simulation. It was found that phase errors of less than lambda/8 did not degrade the performance of the system and that the system was relatively insensitive to amplitude nonuniformities. Several schemes for implementing the subimage combination are described. Initial experimental results demonstrating the validity of the mosaic concept are also presented.

  9. Investigation of the Physical Processes Governing Large-scale Tracer Transport in the Stratosphere and Troposphere

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.

    1996-01-01

    This report reviews the second year of a three-year research program to investigate the physical mechanisms which underlie the transport of trace constituents in the stratosphere- troposphere system. The primary scientific goal of the research is to identify the processes which transport air masses within the lower stratosphere, particularly between the tropics and middle latitudes. The SASS program seeks to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The present investigation contributes to the goals of each of these by diagnosing the history of air parcels intercepted by NASA research aircraft in UARP and AEAP campaigns.

  10. Large-scale analytical Fourier transform of photomask layouts using graphics processing units

    NASA Astrophysics Data System (ADS)

    Sakamoto, Julia A.

    2015-10-01

    Compensation of lens-heating effects during the exposure scan in an optical lithographic system requires knowledge of the heating profile in the pupil of the projection lens. A necessary component in the accurate estimation of this profile is the total integrated distribution of light, relying on the squared modulus of the Fourier transform (FT) of the photomask layout for individual process layers. Requiring a layout representation in pixelated image format, the most common approach is to compute the FT numerically via the fast Fourier transform (FFT). However, the file size for a standard 26- mm×33-mm mask with 5-nm pixels is an overwhelming 137 TB in single precision; the data importing process alone, prior to FFT computation, can render this method highly impractical. A more feasible solution is to handle layout data in a highly compact format with vertex locations of mask features (polygons), which correspond to elements in an integrated circuit, as well as pattern symmetries and repetitions (e.g., GDSII format). Provided the polygons can decompose into shapes for which analytical FT expressions are possible, the analytical approach dramatically reduces computation time and alleviates the burden of importing extensive mask data. Algorithms have been developed for importing and interpreting hierarchical layout data and computing the analytical FT on a graphics processing unit (GPU) for rapid parallel processing, not assuming incoherent imaging. Testing was performed on the active layer of a 392- μm×297-μm virtual chip test structure with 43 substructures distributed over six hierarchical levels. The factor of improvement in the analytical versus numerical approach for importing layout data, performing CPU-GPU memory transfers, and executing the FT on a single NVIDIA Tesla K20X GPU was 1.6×104, 4.9×103, and 3.8×103, respectively. Various ideas for algorithm enhancements will be discussed.

  11. A High-Level Framework for Distributed Processing of Large-Scale Graphs

    NASA Astrophysics Data System (ADS)

    Krepska, Elzbieta; Kielmann, Thilo; Fokkink, Wan; Bal, Henri

    Distributed processing of real-world graphs is challenging due to their size and the inherent irregular structure of graph computations. We present hipg, a distributed framework that facilitates high-level programming of parallel graph algorithms by expressing them as a hierarchy of distributed computations executed independently and managed by the user. hipg programs are in general short and elegant; they achieve good portability, memory utilization and performance.

  12. Processing and characterization of edgeless radiation detectors for large area detection

    NASA Astrophysics Data System (ADS)

    Kalliopuska, J.; Wu, X.; Jakubek, J.; Eränen, S.; Virolainen, T.

    2013-12-01

    The edgeless or active edge silicon pixel detectors have been gaining a lot of interest due to improved silicon processing capabilities. At VTT, we have recently triggered a multi-project wafer process of edgeless silicon detectors. Totally 80 pieces of 150 mm wafers were processed to provide a given number of detector variations. Fabricated detector thicknesses were 100, 200, 300 and 500 μm. The polarities of the fabricated detectors on the given thicknesses were n-in-n, p-in-n, n-in-p and p-in-p. On the n-in-n and n-in-p wafers the pixel isolation was made either with a common p-stop grid or with a shallow p-spray doping. The wafer materials were high resistivity Float Zone and Magnetic Czochralski silicon with crystal orientation of <100>. In this paper, the electric properties on various types of detectors are presented. The results from spectroscopic measurement show a good energy resolution of the edge pixels, indicating an excellent charge collection near the edge pixels of the edgeless detector.

  13. A practical overview and comparison of certain commercial forensic software tools for processing large-scale digital investigations

    NASA Astrophysics Data System (ADS)

    Kröger, Knut; Creutzburg, Reiner

    2013-05-01

    The aim of this paper is to show the usefulness of modern forensic software tools for processing large-scale digital investigations. In particular, we focus on the new version of Nuix 4.2 and compare it with AccessData FTK 4.2, X-Ways Forensics 16.9 and Guidance Encase Forensic 7 regarding its performance, functionality, usability and capability. We will show how these software tools work with large forensic images and how capable they are in examining complex and big data scenarios.

  14. Measuring the In-Process Figure, Final Prescription, and System Alignment of Large Optics and Segmented Mirrors Using Lidar Metrology

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak

    2011-01-01

    The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.

  15. Real-time target detection technology of large view-field infrared image based on multicore DSP parallel processing

    NASA Astrophysics Data System (ADS)

    Sun, Gang; Liu, Songlin; Wang, Weihua; Chen, Zengping

    2013-10-01

    In order to implement real-time detection of hedgehopping target in large view-field infrared (LVIR) image, the paper proposes a fast algorithm flow to extract the target region of interest (ROI). The ground building region was rejected quickly and target ROI was segmented roughly through the background classification. Then the background image containing target ROI was matched with previous frame based on a mean removal normalized product correlation (MRNPC) similarity measure function. Finally, the target motion area was extracted by inter-frame difference in time domain. According to the proposed algorithm flow, this paper designs the high-speed real-time signal processing hardware platform based on FPGA + DSP, and also presents a new parallel processing strategy that called function-level and task-level, which could parallel process LVIR image by multi-core and multi-task. Experimental results show that the algorithm can extract low altitude aero target with complex background in large view effectively, and the new design hardware platform could implement real time processing of the IR image with 50000x288 pixels per second in large view-field infrared search system (LVIRSS).

  16. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  17. GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems

    SciTech Connect

    Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil; Schwan, Karsten

    2015-11-15

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host and device.

  18. Evaluation of signal processing techniques for the analysis of large civil structures.

    SciTech Connect

    Hunter, N. F.; Schultze, J. F.

    2001-01-01

    Several new methods of determining change in the data signature of a large Cable-Stayed bridge are examined and compared. Two sets of data, one taken in September 1995, and the second in June 2000 are studied. Structural changes are investigated using several techniques; (1) Modal behavior in the .3 to 3 Hz range is investisated using Transmissibility FRFs and the Random Decrement Method, (2) Quasi Periodic behavior in the 3 to 30 Hz frequency range is observed in several tests. Potential causes and characteristics of this behavior are investigated. (3) Some methods of non-linear analysis are applied to the bridge data and changes in behavior are evaluated. Capability and concerns with each method are addressed in conjunction with physical ambient excitation data and its signal properties.

  19. Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing

    SciTech Connect

    Kim, K.N.; Jung, S.J.; Lee, Y.J.; Yeom, G.Y.; Lee, S.H.; Lee, J.K.

    2005-03-15

    An internal-type linear inductive antenna, that is, a double-comb-type antenna, was developed for a large-area plasma source having the size of 1020 mmx830 mm, and high density plasmas on the order of 2.3x10{sup 11} cm{sup -3} were obtained with 15 mTorr Ar at 5000 W of inductive power with good plasma stability. This is higher than that for the conventional serpentine-type antenna, possibly due to the low impedance, resulting in high efficiency of power transfer for the double-comb antenna type. In addition, due to the remarkable reduction of the antenna length, a plasma uniformity of less than 8% was obtained within the substrate area of 880 mmx660 mm at 5000 W without having a standing-wave effect.

  20. One-Way Markov Process Approach to Repeat Times of Large Earthquakes in Faults

    NASA Astrophysics Data System (ADS)

    Tejedor, Alejandro; Gomez, Javier B.; Pacheco, Amalio F.

    2012-11-01

    One of the uses of Markov Chains is the simulation of the seismic cycle in a fault, i.e. as a renewal model for the repetition of its characteristic earthquakes. This representation is consistent with Reid's elastic rebound theory. We propose a general one-way Markovian model in which the waiting time distribution, its first moments, coefficient of variation, and functions of error and alarm (related to the predictability of the model) can be obtained analytically. The fact that in any one-way Markov cycle the coefficient of variation of the corresponding distribution of cycle lengths is always lower than one concurs with observations of large earthquakes in seismic faults. The waiting time distribution of one of the limits of this model is the negative binomial distribution; as an application, we use it to fit the Parkfield earthquake series in the San Andreas fault, California.